brought to you by 🎛 CORE

Might infection explain South Asians' higher coronary heart disease risk?: systematic review comparing prevalence rates with White populations in developed countries

Dr. D Stefler (corresponding author)

University of Pécs, Medical School, Department of Public Health Medicine

Szigeti u.12. 7624 Pécs, Hungary

Departmental phone: +36 72 536 394, fax: +36 72 536 395

e-mail of author: steflerdenes@yahoo.com

current address of author: 22 Cedar Close, Buckhurst Hill, Essex, IG9 6EJ, UK

current phone of author: +44 758 716 5859

Professor R Bhopal

University of Edinburgh, College of Medicine and Veterinary Medicine, Division of Community Health Sciences, Public Health Sciences Section

Teviot Place, Edinburgh EH89AG, UK

Dr. C M Fischbacher

Information Services Division (ISD), NHS National Services Scotland

1 South Gyle Cresc, Edinburgh EH12 9EB, UK

ABSTRACT

Objectives: South Asians in developed countries like the United Kingdom have

comparatively high coronary heart disease risk, for reasons which are not fully understood.

One unexplored hypothesis is more infections in this ethnic group. We assessed whether

prevalence of infections among South Asians differs from European origin, White populations

in developed countries.

Study design: Systematic review.

Methods: A systematic literature review was carried out using Medline, Web of Science and

Google Scholar databases. Reference lists and citations were reviewed.

Results: 21 studies reported prevalence rates and mean antibody levels of infection with 17

different pathogens or non-specific markers of infection. Among bacterial infections, we

found higher rates in South Asians for Escherichia coli and Mycobacterium tuberculosis. No

consistent differences were found for periodontal pathogens, Helicobacter pylori,

Staphylococcus aureus, Chlamydia pneumoniae and Mycobacterium avium. For viral

pathogens, higher rates in South Asians were found for hepatitis A, hepatitis B, and

cytomegalovirus, lower rates for herpes simplex, hepatitis C, human immunodeficiency virus

and varicella zoster virus, and no difference for hepatitis G virus. Levels of non-specific

markers of infection (total immunoglobulin G, endotoxin) were higher in South Asians.

Conclusions: The number of studies was small. We found differences in specific infections,

but the current evidence is insufficient to support or reject the hypothesis under examination.

Further studies are warranted.

Keywords: infectious burden, ethnicity, South Asian, coronary heart disease

2

INTRODUCTION

South Asians – people with ancestral origins in the Indian subcontinent countries of India, Pakistan, Bangladesh, Sri Lanka – living in developed countries with White European majority populations tend to have a comparatively high mortality risk of coronary heart disease (CHD). 1-8 Despite considerable research the explanation for this phenomena is not completely determined. Although the role of conventional risk factors for atherosclerosis – such as tobacco smoking, diabetes mellitus, hyperlipidaemia, hypertension – and the potential complex interaction between them - is well recognised, currently these do not fully account for the increased risk among South Asians. 9-11 Large-scale cohort studies are required to assess interactions. Although such studies are currently in progress, ¹² to date no longitudinal data are available in the European setting, specifically for South Asian populations.¹³ Novel atherogenic markers have emerged in recent years including chronic systemic infections. 14,15 The relation between infection and atherosclerosis has been of compelling interest but is unclear. In the last decade the most intensively investigated infection has been Chlamydia pneumoniae but Helicobacter pylori, cytomegalovirus (CMV), herpes simplex virus (HSV), Mycobacterium tuberculosis, influenza and periodontal infections have also emerged in this context. 14,16-21 A focus on individual infective agents has not vielded conclusive results leading to the hypothesis that atherosclerosis might not be specific to one organism but to the aggregate "pathogen burden". ²² Several studies have supported this hypothesis, ²³⁻²⁵ although others did not. ^{26,27} Systemic infections could potentially impact on the atherosclerotic process in various ways. Microbes could alter endothelial cell function and injure the vessel wall directly, or the infection-induced inflammatory response could have pro-atherosclerotic effects through elevated levels of acute phase proteins or through an autoimmune mechanism called molecular mimicry. ^{23,24,28} Increased serum level of C-reactive protein (CRP) was specifically suggested as an important risk factor for CHD in South

Asians.²⁹ However, a recently published mendelian randomisation study did not support this hypothesis.³⁰

The pattern of infection in South Asians compared to White European populations has not yet been systematically reviewed. Our purpose was to review the literature to see whether systemic infections were more common among populations of South Asian ethnic origin than among majority ethnic populations in developed countries. The objective was to assess whether the infection hypothesis was a serious contender, among the many explanations offered by Bhopal,³¹ in explaining the comparatively high CHD rates in South Asians.

METHODS

Search strategy

Using the search terms and strategy described in the Appendix 1, Medline, Google Scholar and Web of Science database were searched from inception to April 2011. Reference lists were studied for additional papers. Personal bibliographic databases of Professor RS Bhopal and Dr C Fischbacher were also searched.

Inclusion and exclusion criteria, study selection

We included original, quantitative, epidemiological studies which described participants with ancestral origins in the countries that are now India, Pakistan, Bangladesh and Sri Lanka and living in developed countries including countries of the European region, United States, Canada, Australia, New Zealand and South Africa. We included only studies that provided comparisons with "White Europeans" or the "general population" and which reported quantitative measures of markers of systemic infections, focusing on specific infections previously associated with CHD, including *C. pneumoniae*, CMV, *H. pylori*, HSV, *M.*

tuberculosis, P. gingivalis, influenza or providing measures of total levels of non-specific markers of infection such as IgG, total IgA or total IgM. Only English language papers were reviewed.

We excluded studies that examined "Asian" populations without evidence that they were of Indian subcontinent origin. We also excluded studies that reported local infections with low potential to contributing a generalised atherosclerotic process, such as vulvitis caused by *Chlamydia trachomatis*, urethritis caused by *Neisseria gonorrhoeae* or bacteruria.

Statistical analysis of the retrieved data

If statistical analysis was not performed or results were not reported in the study, we calculated confidence intervals for proportions and calculated prevalence rate ratios from the available data, using Epi Info 3.5.1 software (Centers for Disease Control and Prevention, Atlanta, US). Such calculations were marked on the tables with a dagger symbol. As statistical power of some studies was low due to small sample size, we have distinguished those results where the difference between the two ethnic groups was not statistically significant but was equal to or higher than 20%, a difference that we judged as potentially important and needs larger studies.

Table 1.

RESULTS

Methods of reviewed studies

Twenty-one studies met the inclusion criteria. 32-52 Table 1 shows the main features of the studies identified. They are categorised according to the infectious agents or markers of infection examined and the date of publication. All studies were cross-sectional or reported cross-sectional data from case control or cohort designs. Most studies were in the United

Kingdom, but we identified papers from Australia, ³⁹ South Africa, ⁴² the United States, ⁴⁶ Italy, ⁴⁷ and New Zealand. ⁵⁰ Only four studies examined randomly selected general population samples. ^{36,37,51,52} Other studies were based on schoolchildren, ^{33,34,39,40,44} three-year-old children ⁵⁰ or neonates; ⁴⁸ lactating or pregnant women; ^{32,41,45,46,49} hospital patients or clinic attendees; ^{35,38,42,43} and volunteers from specific groups like blood donors, immigrants, haemodialysis patients or drug users. ^{42,47} Five studies included only women, ^{32,41,45,46,49} one only men ⁴³ and 10 both genders, ^{35-39,44,47,50-52} while five did not give gender. ^{33,34,39,42,48} The indicator of ethnicity was stated in only 13 studies, mostly self reported ethnicity ^{37,38,41,43,45,50,51} or country of birth or parents' country of birth, ^{39,47-49,52} or both. ⁴⁴ Sample size mostly varied from 44 to 1910 for White Europeans and from 9 to 1274 for South Asians, excepting one study ⁴⁸ of 340573 blood samples from White European donors and 45471 samples from South Asians.

Table 2.

Results of reviewed studies

Table 2 shows there were 15 pathogens studied: seven bacterial³²⁻⁴⁰ and eight viral agents.⁴¹⁻⁵⁰ Two non-specific infectious disease markers were investigated.^{51,52} Mostly, exposure to infection was detected by measuring IgG, IgM or IgA type antibodies with ELISA in blood samples, but also IgA antibodies in breast milk;³² IgG in oral fluid samples;⁴⁴ skin tests;^{39,40} identification of pathogens in saliva samples,³³ subgingival plaque samples³⁴ or gastric biopsies;³⁵ endotoxin measurement in blood samples⁵² were used. Ten studies adjusted the outcome results for potential confounding factors.^{33,36-38,40,41,46,50-52} In all the adjusted studies sex and age were taken into account; four studies also adjusted the results for social status,^{36,37,41,50} and three for cardiovascular risk factors like smoking or blood lipid levels.^{38,51,52} Outcome measures were usually the proportion of participants positive for the

examined infection. Only three studies gave average levels of antibody or antigen concentration.^{37,51,52} In one study the mean pathogen (*Escherichia coli*) specific antibody level was compared to the mean total non-specific antibody level.³²

Bacterial infections: Among the seven bacterial pathogens investigated only *E. coli*³² and *M. tuberculosis*^{39,40} were consistently more common in South Asians. The difference was statistically significant for *E. coli* and partly significant for *M. tuberculosis*. The difference between the two ethnic groups was negligible (smaller than 20% and showed no statistical significance) for *C. pneumonia*³⁸ and *Mycobacterium avium*. Results were mixed for infections with periodontal pathogens, 33,34 *H. Pylori*, 35-37 and *Staphylococcus aureus*: 7 for periodontal pathogens one study found no difference, the other found a significantly higher rate in South Asians; three studies that compared *H. pylori* infection gave conflicting results: no difference, statistically not significant but higher rates in South Asians, statistically significant lower rates in South Asian females; higher antibody levels against *S. aureus* toxin A and toxin B were reported in South Asians but no such difference was seen for toxin C and for TSST-1.

Viral infections: Eight viral pathogens were investigated from which hepatitis A virus (HAV),⁴²⁻⁴⁴ hepatitis B virus (HBV),^{45,46} and CMV⁵⁰ were more common in South Asians. The difference was statistically significant for CMV and HBV but was not consistently significant for HAV. HSV,⁴¹ hepatitis C virus (HCV),⁴⁵ human immunodeficiency virus (HIV)⁴⁸ and varicella zoster virus (VZV)⁴⁹ turned out to be less common in this ethnic group. Except the one for HCV, all results were statistically significant. Hepatitis G virus (HGV)⁴⁷ showed no difference between the two ethnic groups.

Non-specific markers of infection: Both total IgG level⁵¹ and endotoxin level⁵² showed higher mean levels in South Asians. The differences were statistically significant except when the comparison between endotoxin levels were adjusted with metabolic risk factors like blood levels of insulin, HDL or triglyceride.

Overall: From the 17 specific pathogens and non-specific markers of infection seven found to be more common in South Asians (*E. coli*, ³² *M. tuberculosis*, ^{39,40} HAV, ⁴²⁻⁴⁴ HBV, ^{45,46} CMV, ⁵⁰ total IgG level, ⁵¹ endotoxin level ⁵²). The difference was statistically significant in four (*E. coli*, ³² HBV, ^{45,46} CMV, ⁵⁰ total IgG level ⁵¹). Four pathogens were less common in South Asians (three statistically significant differences: HSV, ⁴¹ HIV, ⁴⁸ VZV ⁴⁹ and one not significant: HCV ⁴⁵). Three pathogens showed no difference (*C. Pneumonia*, ³⁸ *M. avium*, ⁴⁰ HGV ⁴⁷), and three gave mixed results (periodontal pathogens, ^{33,34} *H. pylori*, ³⁵⁻³⁷, *S. aureus* ³⁷).

DISCUSSION

Overview of key findings

Overall, this review indicates differences for certain specific infections between South Asians and White Europeans in developed countries. Among the pathogens associated with atherosclerosis there was consistent evidence that *M. tuberculosis* and CMV infection were more common in South Asians. ^{39,40,50} However, HSV was less common in this ethnic group. ⁴¹ There was no consistent evidence of differences in the prevalence of infection with *C. pneumoniae*, *H. pylori*, or periodontal pathogen infections. ³³⁻³⁸ Among infectious agents or infectious markers that have not been previously linked with CHD, *E. coli*, HAV, HBV, total IgG and endotoxin level were more common, ^{32,42,43-46,51} and HIV, VZV and HCV less common in South Asians. ^{45,48,49} For a further three pathogens clear ethnic differences were not found.

Limitations and strengths

We found only five pathogens that were investigated by more than one study (periodontal pathogens, ^{33,34} *H. pylori*, ³⁵⁻³⁷ *M. tuberculosis*, ^{39,40} HAV, ⁴²⁻⁴⁴ HBV^{45,46}) and for the other 12 infectious agents or markers of infection one single study was found for each. This, as well as

the significant heterogeneity in study populations, differences in indicator of infection and often low sample size, made the interpretation difficult. Recent studies have confirmed the inverse association between infectious burden and socioeconomic and educational status.^{53,54} Furthermore the greater pathogen burden in developing countries is well known. These findings make it necessary to take into account social class, educational level and the time that a person spent in developing countries when interpreting data.

We found only four studies^{37,38,41,51} which had relatively high participation rate (i.e.: more than 100 subjects in each ethnic groups) and also adjusted the results for social class and/or cardiovascular risk factors. However, even if the analysis is restricted to these higher quality studies, the differences between the two ethnic groups in overall infectious rates remained inconsistent. (*H. pylori, S. aureus* giving mixed results;³⁷ *C. pneumonia* showing no difference;³⁸ HSV showing lower rate in South Asians;⁴¹ and total IgG showing higher rates in South Asians⁵¹)

We summarised the differences in individual infectious rates between South Asians and White Europeans. Evidence on the cumulative pathogen burden was limited as studies examined only one or two pathogens. Hence, only the two studies that reported data on non-specific markers of infection^{51,52} measured, indirectly, some levels of actual cumulative pathogen burden.

Conclusion

Our systematic review provided evidence of ethnic differences in some specific infections, but no clear support for the overall burden of infection hypothesis. From the individual pathogens which might contribute to the evolution of atherosclerosis *M. tuberculosis* and CMV were reported to be more common in South Asians. The small number and methodological weaknesses of the relevant studies limit our conclusions. Further studies with

appropriate control of potential confounders are needed to clarify the role of these specific pathogens.

To pursue the question we would need to measure prevalence rates of all the potentially relevant pathogens in representative population samples in each of the ethnic groups of interest. Such research has been already carried out on other ethnic groups,⁵⁵ and a study of South Asians is required. A multi-ethnic cohort study with repeatedly collected data on pathogen burden would provide even stronger evidence. Until these studies are done, the question posed by the systematic review remains open.

More sound understanding of the factors which contribute to the high CHD risk of South Asians would allow more specific and focused public health interventions in this ethnic group. If infection plays a role, it imposes a double disease burden on affected individuals and preventive measures would be particularly important. In light of these, the answer for the question could have relevant public health implications in the future.

ACKNOWLEDGEMENTS

We would like to thank to Professor István Ember and István Kiss for their support

throughout this work. We also thank to Snorri B. Rafnsson, Marshall Dozier and Veronika

Martos for their advice and help in the literature search.

We thank to Leonardo Mobility Programme for providing financial support to Dénes Stefler

from September to December in 2008 and also to Rosa Bisset for her assistance during this

period.

Funding: From September to December 2008, Dénes Stefler, was supported by the European

Commission's Leonardo Mobility Programme (part of the Lifelong Learning Programme).

Competing interest: None declared.

Ethical approval: Not required

11

REFERENCES

- 1. McKeigue PM, Miller GJ, Marmot MG. Coronary heart disease in south Asians overseas: a review. *J Clin Epidemiol*. 1989;42:597-609.
- 2. Balarajan R. Ethnic differences in mortality from ischaemic heart disease and cerebrovascular disease in England and Wales. *BMJ*. 1991;302:560-4.
- 3. Venkata C, Ram S. Hypertension and other cardiac risk factors among Asian Indians. Am J Hypertens. 1995;8:124-7.
- 4. Bhopal R. What is the risk of coronary heart disease in South Asians? A review of UK research. *J Public Health Med.* 2000;22:375-85.
- 5. Uppaluri CR. Heart disease and its related risk factors in Asian Indians. *Ethn Dis*. 2002;12:45-53.
- Barnett AH, Dixon AN, Bellary S, Hanif MW, O'hare JP, Raymond NT, Kumar S.
 Type 2 diabetes and cardiovascular risk in the UK south Asian community.
 Diabetologia. 2006;49:2234-46.
- 7. Wild SH, Fischbacher C, Brock A, Griffiths C, Bhopal R. Mortality fom all causes and circulatory disease by country of birth in England and Wales 2001-2003. *J Public Health*. 2007;29:191-8.
- 8. Lip GY, Barnett AH, Bradbury A, Cappuccio FP, Gill PS, Hughes E, Imray C, Jolly K, Patel K. Ethnicity and cardiovascular disease prevention in the United Kingdom: a practical approach to management. *J Hum Hypertens*. 2007;21:183-211.
- McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet. 1991;337:382-6.
- 10. Forouhi NG, Sattar N, Tillin T, McKeigue PM, Chaturvedi N. Do known risk factors explain the higher coronary heart disease mortality in South Asian compared with

- European men? Prospective follow up of the Southall and Brent studies, UK. *Diabetologia*. 2006;49:2580-8.
- 11. Bhopal R. Epidemic of cardiovascular disease in South Asians. BMJ. 2002;324:625-6.
- 12. Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R. Ethnicity-related differences in left ventricular function, structure and geometry: a population study of UK Indian Asian and European white subjects. *Heart*. 2010;96:466-71.
- 13. Ranganathan M, Bhopal R. Exclusion and inclusion of nonwhite ethnic minority groups in 72 North American and European cardiovascular cohort studies. *PLoS Med.* 2006;3:e44.
- 14. Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease: is there a link? *Lancet*. 1997;350:430-6.
- 15. Gupta S. Chronic infection in the aetiology of atherosclerosis focus on *Chlamydia pneumoniae*. *Atherosclerosis*. 1999;143:1-6.
- Smith D, Gupta S, Kaski JC. Chronic infections and coronary heart disease. *Int J Clin Pract.* 1999;53:460-6.
- 17. Kalayoglu MV, Libby P, Byrne GI. Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. *JAMA*. 2002;288:2724-31.
- 18. Leinonen M, Saikku P. Evidence for infectious agents in cardiovascular disease and atherosclerosis. *Lancet Infect Dis.* 2002;2:11-7.
- 19. Rota S, Rota S. Mycobacterium tuberculosis complex in atherosclerosis. *Acta Med Okayama*. 2005;59:247-51.
- 20. Madjid M, Awan I, Ali M, Frazier L, Casscells W. Influenza and atherosclerosis: vaccination for cardiovascular disease prevention. *Expert Opin Biol Ther*. 2005;5:91-6.

- 21. Seymour GI, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. *Clin Microbiol Infect*. 2007;13(Suppl 4):3-10.
- 22. Zhu J, Quyyumi AA, Norman JE, Csako G, Waclawiw MA, Shearer GM, Epstein SE. Effects of total pathogen burden on coronary artery disease risk and C-reactive protein levels. *Am J Cardiol.* 2000;85:140-6.
- 23. Espinola-Klein C, Rupprecht HJ, Blankenberg S, Bickel C, Kopp H, Victor A, Hafner G, Prellwitz W, Schlumberger W, Meyer J. Impact of infectious burden on progression of carotid atherosclerosis. *Stroke*. 2002;33:2581-6.
- 24. Prasad A, Zhu J, Halcox JP, Waclawiw MA, Epstein SE, Quyyumi AA. Predisposition to atherosclerosis by infections: role of endothelial dysfunction. *Circulation*. 2002;106:184-90.
- 25. Elkind MSV, Luna JM, Moon YP, Boden-Albala B, Liu KM, Spitalnik S, Rundek T, Sacco RL, Paik MC. Infectious burden and carotid plaque thickness: The Northern Manhattan Study. *Stroke* 2010; 41:e117-22.
- 26. Khairy P, Rinfret S, Tardif JC, Tardif JC, Marchand R, Shapiro S, Brophy J, Dupuis J. Absence of association between infectious agents and endothelial function in healthy young men. *Circulation*. 2003;107:1966-71.
- 27. Szklo M, Ding J, Tsai MY, Cushman M, Polak JF, Lima J, Barr RG, Sharrett AR.
 Individual pathogens, pathogen burden and markers of subclinical atherosclerosis: the
 Multi-Ethnic Study of Atherosclerosis. *J Cardiovasc Med.* 2009;10:747-51.
- 28. Epstein SE, Zhu J, Burnett MS, Zhou YF, Vercellotti G, Hajjar D. Infection and atherosclerosis. Potential roles of pathogen burden and molecular Mimicry.

 *Arterioscler Thromb Vasc Biol. 2000;20:1417-20.
- 29. Chambers JC, Eda S, Bassett P, Karim Y, Thompson SG, Gallimore JR, Pepys MB, Kooner JS. C-reactive protein, insulin resistance, central obesity, and coronary heart

- disease risk in Indian Asians from the United Kingdom compared with European whites. *Circulation*. 2001;104:145-50.
- 30. C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC), Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, Engert JC, Clarke R, Davey-Smith G, Nordestgaard BG, Saleheen D, Samani NJ, Sandhu M, Anand S, Pepys MB, Smeeth L, Whittaker J, Casas JP, Thompson SG, Hingorani AD, Danesh J. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. *BMJ*. 2011;342:d548.
- 31. Bhopal R. Chapter 1: Coronary heart disease in South Asians: the scale of the problem and the challenge. In Bhopal R, Patel KCR: *Epidemic of coronary disease in South Asian populations: causes and consequences*. UK: South Asian Health Foundation 2003:1-18.
- 32. Nathavitharana KA, Catty D, McNeish AS. IgA antibodies in human milk: epidemiological markers of previous infections? *Arc Dis Child Fetal Neonatal Ed.* 1994;71:F192-F197.
- 33. Drucker DB, Primrose SM, Hobson P, Worthington HV. Salivary microflora and caries experience in 5-year-old children from two ethnic groups. *Int J Paediatr Dent*. 1995;5:15-22.
- 34. Elwood R, Worthington HV, Cullinan MP, Hamlet S, Clerehugh V, Davies R.

 Prevalence of suspected periodontal pathogens identified using ELISA in adolescents of differing ethnic origins. *J Clin Periodontol*. 1997;24:141-5.
- 35. Seery JP, Henshaw DJ, Sandhu PJ, Mather HM, Ahmad F, McNeil I, Arnold JD. Helicobacter pylori infection and upper gastrointestinal pathology in a British immigrant indian community. Eur J Gastroenterol Hepatol. 1997;9:191-4.

- 36. Stone MA, Patel H, Panja KK, Barnett DB, Mayberry JF. Results of *Helicobacter* pylori screening and eradication in a multi-ethnic community in central England. Eur J Gastroenterol Hepatol. 1998;10:957-62.
- 37. Fischbacher CM, Blackwell CC, Bhopal R, Ingram R, Unwin NC, White M. Serological evidence of *Helicobacter pylori* infection in UK South Asian and European populations: implications for gastric cancer and coronary heart disease. *J Inf.* 2004;48:168-74.
- 38. Cook PJ, Davies P, Wise R, Honeybourne D. *Chlamydia pneumoniae* infection and ethnic origin. *Ethn Health*. 1998;3:237-46.
- 39. Johnson PDR, Carlin JB, Bennett CM, Phelan PD, Starr M, Hulls J, Nolan TM.

 Prevalence of tuberculosis infection in Melbourne secondary school students. *Med J Aust.* 1998;168:106-10.
- 40. Weir RE, Fine PEM, Nazareth B, Floyd S, Black GF, King E, Stanley C, Bliss L, Branson K, Dockrell HM. Interferon-γ and skin test responses of schoolchildren in southeast England to purified protein derivates from *Mycobacterium tuberculosis* and other species of mycobacteria. *Clin Exp Immunol.* 2003;134:285-94.
- 41. Ades AE, Peckham CS, Dale GE, Best JM, Jeansson S. Prevalence of antibodies to herpes simplex virus types 1 and 2 in pregnant women, and estimated rates of infection. *J Epidemiol Community Health*. 1989;43:53-60.
- 42. Sathar MA, Soni PN, Fernandes-Costa FJTD, Wittenberg DF, Simjee AE. Racial differences in seroprevalence of hepatitis A virus infection in Natal/KwaZulu, South Africa. *J Med Virol.* 1994;44:9-12.
- 43. Ross JDC, Ghanem M, Tariq A, Gilleran G, Winter AJ. Seroprevalence of hepatitis A immunity in male genitourinary medicine clinic attenders: a case control study of heterosexual and homosexual men. *Sex Transm Infect*. 2002;78:174-9.

- 44. Morris-Cunnington M, Edmunds WJ, Miller E. Immunity and exposure to hepatitis A virus in pre-adolescent children from a multi-ethnic inner city area. *Commun Dis Public Health.* 2004;7:134-7.
- 45. Boxall E, Skidmore S, Evans C, Nightingale S. The prevalence of hepatitis B and C in an antenatal population of various ethnic origins. *Epidemiol Infect.* 1994;113:523-8.
- 46. Euler GL, Wooten KG, Baughman AL, Williams WW. Hepatitis B surface antigen prevalence among pregnant women in urban areas: implication for testing, reporting, and preventing perinatal transmission. *Paediatrics*. 2003;111:1192-7.
- 47. Villari P, Ribera G, Nobile CGA, Torre I, Ricciardi G. Antibodies to the E2 protein of GB virus C/hepatitis G virus: prevalence and risk factors in different populations in Italy. *Infection*. 2001;29:17-23.
- 48. Cortina-Borja M, Cliffe S, Tookey P, Williams D, Cubitt WD, Peckham C. HIV prevalence in pregnant women in an ethnically diverse population in the UK: 1998-2002. *AIDS*. 2004;18:535-40.
- 49. Talukder YS, Kafatos G, DeMoira AP, Aquilina J, Parker SP, Crowcroft NS, Brown DW, Breuer J. The seroepidemiology of varicella zoster virus among pregnant Bangladeshi and white British women in the London Borough of Tower Hamlets, UK. *Epidemiol Infect.* 2007;135:1344-53.
- 50. O'Brien TP, Thompson JMD, Black PN, Becroft DM, Clark PM, Robinson E, Wild C, Mitchell EA. Prevalence and determinants of cytomegalovirus infection in pre-school children. J Paediatr Child Health. 2009;45:291-6.
- 51. Fischbacher CM, Bhopal R, Blackwell CC, Ingram R, Unwin NC, White M, Alberti KG. IgG is higher in South Asians than Europeans: Does infection contribute to ethnic variation in cardiovascular disease. *Arterioscler Throm Vasc Biol.* 2003;23:703-4.
- 52. Miller MA, McTernan PG, Harte AL, Silva NF, Strazzullo P, Alberti KG, Kumar S, Cappuccio FP. Ethnic and sex differences in circulating endotoxin levels: A novel

- marker of atherosclerotic and cardiovascular risk in a British multi-ethnic population. *Atherosclerosis*. 2009;203:494-502.
- 53. Steptoe A, Shamaei-Tousi A, Gylfe A, Henderson B, Bergström S, Marmot M. Socioeconomic status, pathogen burden and cardiovascular disease risk. *Heart*. 2007;93:1567-70.
- 54. Aiello AE, Diez-Roux A, Noone AM, Ranjit N, Cushman M, Tsai MY, Szklo M. Socioeconomic and psychosocial gradients in cardiovascular pathogen burden and immune-response: The multi-ethnic study of atherosclerosis. *Brain Behav Immun*. 2009;23:663-71.
- 55. Zajcova A, Dowd JB, Aiello AE. Socioeconomic and race/ethnic patterns in persistent infection burden among U.S. adults. *J Gerontol A Biol Sci Med Sci*. 2009;64:272-9.

<u>Table 1.:</u> Contextual details of the studies on bacterial infections (A), viral infections (B) and non-specific markers of infection (C): publication, time and location of the study, sample selection, sex and age distribution of study populations, sample size

A. Bacterial infections

Study (First author, date of publication, examined pathogen or indicator of infection, reference)	a.Date of fieldwork, b.Place, c.Basis of sample	% females	Mean age in years	Inclusion criteria	Indicator of ethnicity	Response rate	Sample size
Nathavitharana KA, 1994 Escherichia coli [32]	a.Not stated b.Birmingham, UK c.Volunteer lactating women	100%	W: 29 (r: 20-39) SA: 26 (r: 20-37)	Lactating women	Not stated	Not stated	W: 75 SA: 20
Drucker DB , 1995 Periodontal pathogens [33]	a.Not stated b.Keighley, UK c.Targeted sample of schoolchildren	Not specified	5	Children who had teeth with obvious carious lesions	Not stated	Not stated	W: 70 SA: 70
Elwood R, 1997 Periodontal pathogens [34]	a.Not stated b.Manchester, UK c.Targeted sample of schoolchildren	Not specified	13 (SD: 0.33)	Children had to have both upper first permanent molars present, no history of rheumatic fever, jaundice, hepatitis, heart disease or be taking antibiotics	Not stated	Not stated	W: 333 SA: 187
Seery JP , 1997 Helicobacter pylori [35]	a.Not stated b.Southall, UK c.Consecutive hospital patients	W: 41% SA: 46%	W: 47 SA: 45	Not stated	Not stated	Not stated	W: 107 SA: 124
Stone MA, 1998 Helicobacter pylori [36]	a.Not stated b.Leicester, UK c.Randomly selected subjects in one GP district	W: 56% SA: 54%	W: 44 SA: 40	People between 21-55 years	Not stated	W: 22.6% SA: 28%	W: 44 SA: 112
Fischbacher CM, 2004 Helicobacter pylori, Staphylococcus aureus [37] Continued	a.W: Apr 1993 – Oct 1994 SA: May 1995 – March 1997 b.Newcastle upon Tyne, UK c.Randomly selected subjects from the Newcastle Heart Project (NHP)	W: 52% SA: 54%	W: 54 (SD: 13) SA: 50 (SD: 12)	People between 25-74 years	Self reporting: W: ancestral origin in Europe SA: 3 or more grand parents from the Indian Subcontinent	NHP: W: 67.5% SA: 64.2%	W: 302 SA: 300

Study (First author, date of publication, examined pathogen or indicator of infection, reference)	a.Date of fieldwork, b.Place, c.Basis of sample	% females	Mean age in years	Inclusion criteria	Indicator of ethnicity	Response rate	Sample size
Cook PJ, 1998 Chlamydia pneumoniae [38]	 a. Jan 1993 – Jan 1995 b.Birmingham, UK c.Randomly selected hospital patients 	W: 43% SA: 48%	W: 60 (SD: 17.4) SA: 49 (SD: 17.3)	No evidence of active cardiac, vascular, pulmonary disease; No known/suspected immuno-deficiency, autoimmun disease, hyper- gammaglobulinaemia	Self reporting	96%	W:1061 SA: 290
Johnson PDR, 1998 Mycobacterium tuberculosis [39]	a. 1995 b.Melbourne, Australia c.Partly random and partly targeted sample of schoolchildren	Not specified	r: 9-10	Not stated	Country of birth	49%	W: 156 SA: 114
Weir RE, 2003 Mycobacterium tuberculosis, Mycobacterium avium [40]	a.Feb 1999 – Apr 2000 b.Southeast England, UK c.Volunteer schoolchildren	49%	13 (r: 12-15)	No record of BCG vaccination or any serious or immunmodulatory disease	Not stated	Not stated	W: 321 SA: 32
B. Viral infections	;						
Ades AE, 1989 Herpes Simplex Virus (HSV) [41]	a.1980–1981 b.London, UK c.Consecutive pregnant women attending antenatal clinics	100%	Not specified	Not stated	Self identification	Not stated	W:1226 SA: 742
Sathar MA, 1994 Hepatitis A Virus (HAV) [42]	a.Not stated	Not specified	W: r: 17-87 SA: r: 17-84	Not stated	Not stated	Not stated	W: 187 SA: 163
Ross JDC, 2002 Hepatitis A Virus (HAV) [43]	a.Not stated b.Birmingham, UK c.Consecutive outpatient facility attendees	0%	Not specified	Age over 16 years, not received normal immunglobulin in the last 12 months not vaccinated against HAV, not infected with HIV	Self identification	Not stated	W: 146 SA: 9

Study (First author, date of publication, examined pathogen or indicator of infection, reference)	a.Date of fieldwork, b.Place, c.Basis of sample	% females	Mean age in years	Inclusion criteria	Indicator of ethnicity	Response rate	Sample size
Morris-Cunnington M, 2004 Hepatitis A Virus (HAV) [44]	a.Not stated b.Northwestern England, UK c.Volunteer schoolchildren	52%	R: 7-12	Not stated	Self identification of parent / Participant's country of birth / Parents' country of birth	20.9%	W: 74 SA: 153
Boxall E, 1994 Hepatitis B Virus (HBV) Hepatitis C Virus (HCV) [45]	a.Not stated b.Birmingham, UK c.Consecutive pregnant women attending an antenatal clinic	100%	Not specified	Not stated	Self identification	Not stated	W:1604 SA:1274
Euler GL , 2003	a.1990–1993 b.Four states (CT, GA, MI, TX) in the US c.Randomly selected pregnant Women	100%	Not specified	Not stated	Self identification	Not stated	W:1910 SA: 366
Villari P, 2001 Hepatitis G Virus (HGV) [47]	a.1998	W: 18% SA: Not stated	Not specified	Not stated	Country of origin	Not stated	W: 357 SA: 79
Cortina-Borja M, 2004 Human Immuno- deficiency Virus (HIV) [48]	a.1998–2002 b.London, UK c.Neonatal babies	Not specified	Not specified	Not stated	Place of mother's birth	Not stated	W:340,573 SA: 45,471
Talukder YS, 2007 Varicella Zooster Virus (VZV) [49]	a. Oct 2001 – March 2002 Sept 2003 – Febr 2004 b.London, UK c.Consecutive pregnant women attending an antenatal clinic	100%	W: 28 (SD: 6.4) SA: 26 (SD: 5)	Only British and Bangladeshi women were included	Place of birth / Place of parents' birth	92%	W: 275 SA: 765
O'Brien TP, 2009 Cytomegalo-virus (CMV) [50]	a.Apr 1998 – May 2001 b.Auckland, New Zealand c.Randomly selected children from Auckland Birthweight Collaborative Study (ABCS)	51%	3.5	All babies were born at 37 or more completed weeks of gestation	Self reported by the mother	W: 63.2% SA: 29%	W: 409 SA: 29

Study (First author, date of publication, examined pathogen or indicator of infection, reference)	a.Date of fieldwork, b.Place, c.Basis of sample	% females	Mean age in years	Inclusion criteria	Indicator of ethnicity	Response rate	Sample size
C. Non-specific m	narkers of infection						
Fischbacher CM, 2003 Total IgG level [51]	a. W: Apr 1993 – Oct 1994 SA: May 1995 – March 1997 b.Newcastle upon Tyne,UK c.Randomly selected subjects from the Newcastle Heart Project (NHP)	W: 52% SA: 54%	W: 54 (SD: 13) SA: 50 (SD: 12)	People between 25-74 years	Self reporting: W:ancestral origin in Europe SA:3 or more grand parents were born in the Indian Subcontinent	NHP: W: 67.5% SA: 64.2%	W: 302 SA: 300
Miller MA, 2009 Endotoxin level [52]	a. 1994 – 1996 b.London,UK c.Randomly selected subjects from the Wandsworth Heart and Stroke Study (WHSS)	W: 49% SA: 52%	Not specified	age 40-59; no antihypertensive or lipid lowering medication; no oral anticoncipient or hormone replacement therapy; no diabetes; no previous CHD or stroke	WHSS: Subject's and their parent's place of birth	WHSS: 64%	W: 61 SA: 63

W, White European; SA, South Asian r, Range; SD, Standard Deviation CT, Connecticut; GA, Georgia; MI, Michigan; TX, Texas NHP, Newcastle Heart Project; ABCS, Auckland Birthweight Collaborative Study; WHSS, Wandsworth Heart and Stroke Study

<u>Table 2.:</u> Findings and analysis of the studies on bacterial infections (A), viral infections (B) and non-specific markers of infection (C): compared indicator of infection, adjustment, percentage of positive cases or means of antibody levels in study populations, statistical analysis and overall summary of the results († indicates additional analysis by authors)

A. Bacterial infections

Study	Compared indicator of infection	Adjustment	<u>or</u> 1	centage of positive cases (%) neans of antibody levels (m) tudy populations (95% CI)	Statistical analysis	Summary Infectious rate in South Asians vs. White Europeans
Nathavitharana KA et al. (1994) [32]	Escherichia coli: Mean E. coli specific secretory IgA level in breast milk (as a percentage of total non-specific secretory IgA level)	None	(m)	W: 0.7 SA: 4.0	p<0.001	Higher Statistically significant Difference ≥20%
Drucker DB et al. (1995) [33]	Streptococcus mutans: Proportion of cases with over 10 ³ cfu counts/ml (in saliva samples)	Age, sex, number of unrestored decayed dental surfaces	(%)	W: 85.7 (77.5-93.9) † SA: 90.0 (83.0-97.0) †	PRR=1.05 (0.93-1.17) †	No difference Statistically not significant Difference <20%
	Lactobacillus: Proportion of cases with over 10 ³ cfu counts/ml (in saliva samples)	Age, sex, number of unrestored decayed dental surfaces	(%)	W: 51.4 (39.7-63.1) [†] SA: 50.0 (38.3-61.7) [†]	PRR=0.97 (0.70-1.35) †	No difference Statistically not significant Difference <20%
Elwood R et al. (1997) [34]	Periodontal pathogens: Proportion of cases with detected pathogens (in subgingival plaques)	None	(%)	W: 9.0 (5.9-12.1) † SA: 22.4 (16.5-28.4) †	PRR=2.49 (1.63-3.80) [†]	Higher Statistically significant Difference ≥20%
Seery JP et al. (1997) [35]	Helicobacter pylori: Proportion of positive cases (in gastric biopsies)	None	(%)	W: 43.0 (33.6-52.4) † SA: 52.0 (43.2-60.7) †	PRR=1.20 (0.91-1.59) †	Higher Statistically <u>not</u> significant Difference ≥20%
Stone MA et al. (1998) [36]	Helicobacter pylori: Proportion of seropositive cases	Age, sex, social class	(%)	W: 47.0 (32.3-61.8) [†] SA: 53.0 (43.8-62.2) [†]	PRR=0.83 (0.56-1.19) [†]	No difference Statistically not significant Difference <20%
Fischbacher CM et al. (2004) [37]	Helicobacter pylori: Mean IgG level in blood samples (µg/ml)	Age, social class, income, education	men (m)	W: 16.7 (13.9-20.2) SA: 11.6 (9.8-13.7)	OR=0.73 (0.55-0.96)	Lower Statistically significant Difference ≥20%
Continued			women (m)	W: 11.3 (9.4-13.5) SA: 14.3 (12.1-16.9)	OR=1.23 (0.89-1.70)	Higher Statistically <u>not</u> significant Difference ≥20%

Study	Compared indicator of infection	_	Percentage of positive cases (%) or means of antibody levels (m) in study populations (95% CI)	Statistical analysis	Summary Infectious rate in South Asians vs. White Europeans
Fischbacher CM et al. (2004) [37]	Staphylococcus aureus: Mean IgG level against toxin A in blood samples (μg/ml)	None men	(m) W: 3.6 (3.2-4.2) SA: 5.5 (5.6-6.7)	p<0.05 †	Higher Statistically significant Difference ≥20%
(cont.)		women	(m) W: 3.4 (3.0-3.9) SA: 4.8 (4.1-5.7)	p<0.05 †	Higher Statistically significant Difference ≥20%
	Staphylococcus aureus: Mean IgG level against toxin B in blood samples (µg/ml)	None men	(m) W: 10.6 (9.1-12.3) SA: 22.9 (19.0-27.5)	p<0.05 †	Higher Statistically significant Difference ≥20%
		women	(m) W: 12.4 (10.8-14.2) SA: 19.8 (16.7-23.4)	p<0.05 †	Higher Statistically significant Difference >20%
	Staphylococcus aureus: Mean IgG level against toxin C in blood samples (µg/ml)	None men	(m) W: 19.6 (16.8-23.0) SA: 27.0 (22.9-31.7)	p>0.05 †	Higher Statistically not significant Difference >20%
	- W- /	women	(m) W: 22.3 (19.5-25.7) SA: 23.6 (20.2-27.7)	p>0.05 †	No difference Statistically not significant Difference <20%
	Staphylococcus aureus: Mean IgG level against TSST-1 in blood samples (µg/ml)	None men	(m) W: 8.8 (7.6-10.1) SA: 9.2 (7.7-10.9)	p>0.05 †	No difference Statistically not significant Difference <20%
	1 (6 /	women	(m) W: 10.1 (8.8-11.5) SA: 9.0 (7.8-10.5)	p>0.05 †	No difference Statistically not significant Difference <20%
Cook PJ et al. (1998) [38]	Chlamydia pneumoniae: Proportion of seropositive cases	Age, sex, smoking habit, date of admission	(%) W: 16.6 (14.4-18.8) [†] SA: 18.9 (14.5-23.5) [†]	PRR=1.14 (0.88-1.52) †	No difference Statistically not significant Difference <20%
Johnson PDR et al. (1998) [39]	Mycobacterium tuberculosis: Proportion of cases with positive Mantoux tests	None	(%) W: 0.6 (-0.6-1.9) † SA: 2.7 (-0.3-5.6) †	PRR=4.10 (0.59-28.59) †	Higher Statistically <u>not</u> significant Difference ≥20%

Continued

Study	Compared indicator of infection	Adjustment	Percentage of positive cases (%) or means of antibody levels (m) in study populations (95% CI)	Statistical analysis	Summary Infectious rate in South Asians vs. White Europeans
Weir RE et al. (2003) [40]	Mycobacterium tuberculosis: Proportion of participants with a positive tuberculin test	Age, sex, attended school	(%) W: 16.0 (12.0-20.0) † SA: 41.0 (24.0-58.0) †	PRR=2.56 (1.52-3.93) †	Higher Statistically significant Difference ≥20%
	Mycobacterium tuberculosis: Proportion of participants with positive in vitro IFNγ response to PPD	Age, sex, attended school	(%) W: 22.0 (17.5-26.5) † SA: 47.0 (29.7-64.9) †	PRR=2.12 (1.34-3.04) †	Higher Statistically significant Difference ≥20%
	Mycobacterium avium: Proportion of participants with positive in vitro IFNγ response to PPD	Age, sex, attended school	(%) W: 59.0 (53.6-64.4) † SA: 58.0 (40.9-75.1) †	PRR=1.01 (0.71-1.29) †	No difference Statistically not significant Difference <20%
B. Viral infe	ections				
Ades AE et al (1989) [41]	Herpes Simplex Virus (HSV-1): Proportion of seropositive cases	Age, marital status, social class	(%) W: 80.1 (77.9-82.3) † SA: 72.5 (69.3-75.7) †	PRR=0.91 (0.86-0.96) †	Lower Statistically significant Difference <20%
	Herpes Simplex Virus (HSV-2): Proportion of seropositive cases	Age, marital status, social class	(%) W: 7.2 (5.7-8.6) † SA: 3.4 (2.1-4.7) †	PRR=0.47 (0.30-0.72) †	Lower Statistically significant Difference ≥20%
Sathar MA et al. (1994) [42]	Hepatitis A Virus (HAV): Proportion of seropositive cases	None	(%) W: 50.0 (42.8-57.2) † SA: 67.0 (59.8-74.2) †	PRR=1.33 (1.11-1.58) †	Higher Statistically significant Difference ≥20%
Ross JDC, et al. (2002) [43]	Hepatitis A Virus (HAV): Proportion of seropositive cases	None	(%) W: 21.0 (14.4-27.6) † SA: 56.0 (23.6-88.4) †	PRR=2.62 (1.19-4.10) †	Higher Statistically significant Difference >20%
Morris- Cunnington M, et al. (2004)	Hepatitis A Virus (HAV): Proportion of seropositive cases (from oral fluid samples)	identification	(%) W: 13.2 (5.0-21.3) SA: 21.3 (14.8-27.7)	PRR=1.60 (0.86-3.08) †	Higher Statistically <u>not</u> significant Difference ≥20%
[44]		subject's country of birth	(%) W: 17.3 (12.2-22.5) SA: 54.1 (23.3-84.9)	PRR=3.09 (1.92-5.20) †	Higher Statistically significant Difference ≥20%
		Indicator of ethnicity country of birth country of birth country of birth	(%) W: 14.3 (7.0-21.7) SA: 22.8 (15.5-30.2)	PRR=1.54 (0.85-2.88) †	Higher Statistically <u>not</u> significant Difference ≥20%
Continued		father's country of birth	(%) W: 13.7 (5.7-21.7) SA: 21.8 (15.0-28.5)	PRR=1.60 (0.86-3.08) †	Higher Statistically <u>not</u> significant Difference ≥20%

Study	Compared indicator of infection	Adjustment	Percentage of positive cases (%) or means of antibody levels (m) in study populations (95% CI)	Statistical analysis	Summary Infectious rate in South Asians vs. White Europeans
Boxall E, et al. (1994) [45]	Hepatitis C Virus (HCV): Proportion of seropositive cases	None	(%) W: 0.25 (0.01-0.49) [†] SA: 0.08 (-0.08-0.24) [†]	PRR=0.32 (0.05-2.10) [†]	Lower Statistically <u>not</u> significant Difference ≥20%
	Hepatitis B Virus (HBV): Proportion of seropositive cases	None	(%) W: 0.0 (-0.4-0.4) [†] SA: 1.04 (0.47-1.57) [†]	PRR=infinite †	Higher Statistically significant Difference ≥20%
Euler GL et al (2003) [46]	Hepatitis B Virus (HBV): Proportion of seropositive cases (95%CI)	Prenatal care, source of pay, age, year of infant's birth	(%) W: 0.6 (0.3-1.1) SA: 3.2 (0.8-8.7)	PRR=5.69 (2.58-12.55) [†]	Higher Statistically significant Difference ≥20%
Villari P, et al. (2001) [47]	Hepatitis G Virus (HGV): Proportion of seropositive cases	None	(%) W: 12.6 (9.2-16.1) † SA: 12.7 (5.3-20.0) †	PRR=1.01 (0.53-1.85) [†]	No difference Statistically not significant Difference <20%
Cortina-Borja M et al. (2004) [48]		None	(%) W: 0.04 (0.03-0.05) † SA: 0.02 (0.01-0.03) †	PRR=0.50 (0.25-0.96) [†]	Lower Statistically significant Difference ≥20%
Talukder YS, et al. (2007) [49]	Varicella Zooster Virus (VZV): Proportion of seropositive cases	None	(%) W: 93.6 (90.5-96.4) † SA: 85.7 (83.3-88.2) †	PRR=0.92 (0.89-0.96) [†]	Lower Statistically significant Difference <20%
O'Brien et al. (2009) [50]	Cytomegalovirus (CMV): Proportion of seropositive cases	Sex, day care attendance, breastfeeding duration, mother's age, occupation, marital status, education, number of people in the household	(%) W: 26.5 (22.1-30.7) † SA: 50.0 (31.8-68.2) †	PRR=1.96 (1.27-2.70) [†]	Higher Statistically significant Difference ≥20%

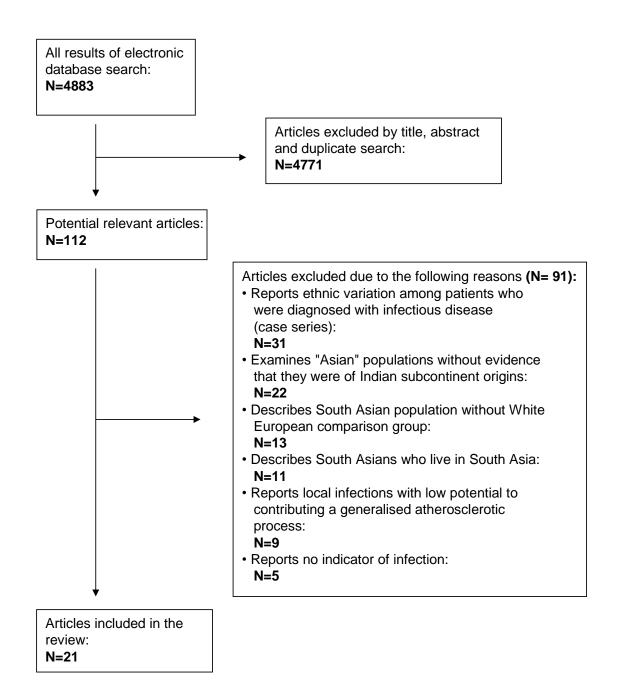
Study	Compared indicator of infection	Adjustment	Percentage of positive cases (%) or means of antibody levels (m) in study populations (95% CI)	Statistical analysis	Summary Infectious rate in South Asians vs. White Europeans
C. Non-spec	ific markers of infection				
Fischbacher CM et al. (2003) [51]	Total IgG level: Mean in blood samples (g/L)	Age, sex, smoking status	(m) W: 7.4 (6.7 - 8.2) SA: 13.5 (12.1-15.2)	OR=1.75 (1.48-2.08)	Higher Statistically significant Difference ≥20%
Miller MA et al. (2009) [52]	Endotoxin level: Geometric mean in blood samples (Eu/mL)	age, sex total cholesterol level	(m) W: 10.9 (9.8-12.1) SA: 13.3 (12.0-14.7)	p=0.013 p=0.001	Higher Statistically significant Difference ≥20%
		insulin level HDL level triglyceride level		p=0.371 p=0.321 p=0.411	Higher Statistically <u>not</u> significant Difference ≥20%

W, White European; SA, South Asian, CI, Confidence Interval; OR, Odds Ratio; PRR, Prevalence Rate Ratio cfu, Colony Forming Unit † additional analysis by author

Appendix 1 (search strategies)

<u>Search strategy for Medline</u> (Compiled after consultation with librarian: Marshall Dozier, University of Edinburgh):

south asia*, asian india*, india*, pakistan*, bangladesh*, sri lanka*, exp Ethnic Groups/ **AND** exp "bacterial infections and mycoses"/, exp Parasitic Diseases/, exp Virus Diseases/, pathogen burden*, exp Cytomegalovirus Infections/, exp Chlamydia Infections/, cmv, exp Helicobacter Infections/, hsv, exp Herpes Simplex/, exp Mycobacterium tuberculosis/, exp Periodontitis/, exp Gingivitis/, exp Porphyromonas gingivalis/, exp Influenza, Human/, exp Immunoglobulin G/, exp Immunoglobulin M/, exp Immunoglobulin A/, **AND** exp North America/, exp Europe/, exp Australia/, **AND** exp Epidemiologic Methods/, exp comparative study/, **NOT** exp American Native Continental Ancestry Group/


Search strategy for Web of Science

south asia* or asian india* or india* or pakistan* or bangladesh* or sri lanka* or ethnic* **AND** infection* **AND** epidemiologic study* or comparative study* or case control* or cohort* or cross sectional* or seroepidemiology* or seroprevalence*

Search strategy for GoogleScholar:

- with all of the words: infection, ethnic groups
- with at least one of the words: south asia* or asian india* or india* or pakistan* or bangladesh* or sri lanka*
- without the words: "american indian"

Appendix 2 (quorum diagram)

Appendix 3 (list of relevant but excluded papers)

Examines "Asian" populations without evidence that they were of Indian subcontinent origins:

- Badami KG, et al. Cytomegalovirus seroprevalence and 'cytomegalovirus-safe' seropositive blood donors. *Epidemiol Infect*. 2009;137:1776-80.
- Zajacova A, Dowd JB, Aiello AE.: Socioeconomic and race/ethnic patterns in persistent infection burden among U.S. adults. *J Geront A Biol Sci Med Sci*. 2009;64:272-9.
- Tindberg Y, et al. The accuracy of serologic diagnosis of Helicobacter pylori infection in schoolaged children of mixed ethnicity. *Helicobacter*. 2001;6:24-30.
- Verdú EF, et al. Prevalence of Helicobacter pylori infection and chronic dyspeptic symptoms among immigrants from developing countries and people born in industrialized countries. *Digestion*. 1996;57:180-5.

Reports local infections with low potential to contributing a generalised atherosclerotic process:

- Tariq S, et al. Sexual health services for South Asians in London, UK: a case-control study. Int J STD AIDS. 2007;18:563-4.
- Versi E, et al. Bacteriuria in pregnancy: a comparison of Bangladeshi and Caucasian women. Int Urogynecol J Pelvic Floor Dysfunct. 1997;8:8-12.
- Skinner CJ, Saulsbury NK, Goh BT. Sexually transmitted infections in Bangladeshis resident in the UK: a case-control study. Sex Transm Infect. 2002;78:120-2.
- Simms I, et al. The English National Chlamydia Screening Programme: variations in positivity in 2007/2008. *Sex Transm Dis.* 2009;36:522-7.
- Fenton KA, et al. Ethnic variations in sexual behaviour in Great Britain and risk of sexually transmitted infections: a probability survey. *Lancet*. 2005;365:1246-55.