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Abstract

Variational inference techniques are powerful methods for learning probabilistic models and provide significant advantages
over maximum likelihood (ML) or maximum a posteriori (MAP) approaches. Nevertheless they have not yet been fully
exploited for image processing applications. In this paper we present a variational Bayes (VB) approach for image
segmentation. We aim to show that VB provides a framework for generalizing existing segmentation algorithms that
rely on an expectation-maximization formulation, while increasing their robustness and computational stability. We
also show how optimal model complexity can be automatically determined in a variational setting, as opposed to ML
frameworks which are intrinsically prone to overfitting. Finally, we demonstrate how suitable intensity priors, that can be
used in combination with the presented algorithm, can be learned from large imaging data sets by adopting an empirical
Bayes approach.
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1. Introduction

When analysing neuroimaging data, it is often necessary
or helpful to partition brain tissues into different types.
This represents indeed the primary stage for performing
brain volumetry, which is extremely valuable both in re-
search and for clinical practice [17, 3]. In fact, quantify-
ing brain structure volume not only has a major role for
unraveling the mechanisms underlying neurodegenerative
and psychiatric disorders, but can also significantly help
in disease diagnosis and treatment planning or monitoring
[30].

For healthy subjects the tissues of interest are typically
gray matter, white matter and cerebrospinal fluid, while
for patients, additional classes may be defined, such as tu-
mor, edema or necrosis [35, 31]. In this framework, mag-
netic resonance imaging (MRI) is usually the most con-
venient imaging modality to work with, as it provides si-
multaneously high spatial resolution, excellent soft tissue
contrast and good signal to noise ratio.

Many widely used image segmentation algorithms rely
on probabilistic modelling techniques to fit the intensity
distributions of images. These methods commonly oper-
ate by means of unsupervised clustering algorithms and
assume that the data are drawn from mixture distribu-
tions, with different mixture components being associated
to different tissue types. In particular, Gaussian mixture
models (GMM) have been extensively adopted as they
provide a flexible and computationally efficient framework
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that can be easily applied to solve the problem of auto-
matically partitioning images into homogeneous regions
[50, 44, 46, 19, 32, 18, 13, 31, 42].

Intensity based segmentation tools of this sort have been
developed profusely over the past twenty years. Most of
them either rely directly on an explicit Bayesian formu-
lation, or exhibit an implicit probabilistic interpretation.
Nevertheless almost all of them are based on maximum
likelihood (ML) or maximum a posteriori (MAP) estima-
tion of the model parameters [4, 27, 37, 28, 47, 50, 24, 43,
48, 18], without exploiting the potential of full Bayesian
inference.

Indeed, the choice of ML or MAP techniques ensures
mathematical tractability and sufficient segmentation ac-
curacy for many applications. Nonetheless there is still a
crucial theoretical point that makes these methods some-
how suboptimal, regardless of their mathematical and
computational convenience: the fact that they just pro-
vide point estimates of the model parameters instead of
full posterior probability distributions. In other words,
information is missing on the posterior uncertainty in es-
timating unobserved variables, and this often results in
the occurrence of overfitting as well as in the difficulty to
perform model comparison [5].

On the other hand, full Bayesian inference has been
poorly explored in the field of medical image segmentation,
in spite of a promising potential, which was shown for ex-
ample by Woolrich and Behrens [45] and Tian et al. [40].
The reason for this is most probably related to the compu-
tational challenges that arise when trying to evaluate the
model evidence or the posterior probability distributions
over the model parameters. In fact, very often and also
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for relatively simple models, integrating out all the unob-
served variables turns out to be intractable in analytical
form. On the other hand, numerical integration is gener-
ally impractical because either the dimensionality, or the
complexity, of the problem would make the computational
resources necessary to integrate over all possible parameter
configurations too large for real world applications.

One approach for dealing with the mathematical diffi-
culties that arise in Bayesian inference is to make use of
stochastic techniques to sample from the probability dis-
tributions that are of interest [1]. In particular, Markov
Chain Monte Carlo methods can provide rather accurate
solutions at the expenses of a long processing time. As
to be expected, the time required to reach convergence in-
creases with the size of the data set. The result of this be-
ing the fact that, for large-scale problems, sampling tech-
niques can become computationally prohibitive. The work
of Iglesias et al. [21] is among the very few attempts to
exploit MCMC sampling methods to integrate out model
parameters in the context of Bayesian medical image seg-
mentation. Their atlas based segmentation method takes
into account the uncertainty in the estimates of the de-
formations that bring the individual images in alignment
with the reference anatomical space. However, they report
a running time of the sampling of approximately three
hours, which might still be non-viable for some applica-
tions, even if this additional computational time ensures
higher segmentation accuracy. Related work, on solving
image segmentations problems making use of stochastic
techniques, has been done also by Fan et al. [15], Kato
[22] and da Silva [12].

A second family of approaches is based on introducing
analytical approximations. For instance, one possibility is
to approximate an unknown posterior probability distri-
bution by a Gaussian, centered at the mode of the pos-
terior, or at one of the modes, if the distribution is mul-
timodal. Such a method, known as the Laplace approx-
imation, overcomes many of the limitations of sampling
techniques, since the number of required computations is
much lower in this case. Nevertheless, depending on how
different the actual posterior distribution is from a Gaus-
sian, the method might provide a poor approximation. In
particular the underlying Gaussian assumption might be-
come inadequate for samples that are far from the mode
of the density.

Variational Bayes (VB) represents an alternative way of
obtaining approximate solutions to inference problems. It
often relies on analytical approximations, as the Laplace
method, and likewise it is much less computationally ex-
pensive than MCMC. However, the VB framework is more
general and flexible than the Laplacian approach. In fact,
even if for computational reasons it is often necessary to
constrain the posterior distributions to have a specific form
or factorization, they are not necessarily forced to be Gaus-
sian. In other words, variational Bayesian inference per-
mits finding a trade off between allowing sufficient com-
plexity and accuracy of the estimated posteriors and ensur-

ing computational tractability. Stochastic variational algo-
rithms have also been proposed [20].

Even if the estimated posteriors will almost never be
exact, variational methods have proved to be more conve-
nient than standard ML or MAP techniques, since, at a
substantially similar computational cost, they significantly
alleviate the problems related to overfitting, which are in-
trinsic to the other methods. In other words, variational
techniques open up the possibility of learning the optimal
model structure (the one with highest generalization capa-
bility) without performing ad-hoc cross validation analyses
[5, 11, 8]. Another interesting aspect of working within a
VB framework is that it leads to a more general formula-
tion of the EM algorithm, which has the same convergence
properties and higher computational stability. In fact, one
significant limitation of the ML formulation (for mixture
models) is the presence of singular points of the likelihood
function, which have to be avoided during the optimization
process to assure numerical stability.

So far, very few authors have explored the applicabil-
ity of the variational Bayes framework to perform medical
image segmentation. In particular, Woolrich and Behrens
[45] exploited variational inference to fit spatial mixture
models to medical imaging data while automatically tun-
ing the parameter controlling spatial regularization. Tian
et al. [40] proposed a variational algorithm for segmenting
brain MRI data, which combines variational Bayes tech-
niques with a genetic algorithm to initialize the priors on
tissue intensities.

In this paper, we present an extension of the tissue clas-
sification algorithm presented by Ashburner and Friston
[4] and publicly distributed as part of the SPM12 soft-
ware. Specifically, we replace the maximum likelihood ap-
proach adopted in Ashburner and Friston [4] to estimate
the Gaussian mixture parameters that model the distribu-
tion of image intensities, with a fully Bayesian inference
scheme relying on variational approximations.

This greatly increases the robustness of the method if
suitable intensity priors are introduced, thus reducing sig-
nificantly the chance of the algorithm failing due to the
mismatch or misregistration of the tissue probability maps
with the individual scans. Additionally we demonstrate
that, in principle, having tissue specific intensity priors
yields fairly accurate segmentations also in a completely
atlas- (and registration-) free setting.

Secondly, we illustrate how the fundamental problem of
determining the optimal model complexity, i.e. the num-
ber of Gaussian components that are necessary to model
the distributions of the different tissues, can be effectively
addressed in a variational setting. Such a framework, in
fact, implicitly implements an automatic relevance deter-
mination scheme, where redundant mixture components
are automatically pruned out of the model.

Finally we present a parametric empirical Bayes ap-
proach to learn informative intensity priors from suffi-
ciently large data sets and demonstrate how the priors
estimated in this fashion can increase the robustness of
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the presented segmentation algorithm. We also address
the common problem of different MRI images having dif-
ferent intensity values by incorporating a free global rescal-
ing parameter that is optimized, within the same Bayesian
framework, so as to increase the consistency of intensities
across scans.

2. Background on variational Bayes

In this section we summarize the underpinnings of vari-
ational Bayesian inference. We highlight the advantages of
VB over point estimation techniques and illustrate some
of the challenges that arise in the variational framework.

Variational Bayesian inference can be formulated as a
maximization (or minimization) problem.

Let us consider the marginal log likelihood log p(X)
given by

log p(X) = log

∫
p(X,Υ) dΥ , (1)

where X indicates the observed data and Υ the set of
unobserved variables (model parameters and latent vari-
ables).

If we introduce a distribution q(Υ) over the unobserved
variables, the log evidence in (1) can be re-expressed as

log p(X) =

∫
q(Υ) log p(X) dΥ

=

∫
q(Υ) log

{
p(X,Υ)

q(Υ)

}
dΥ

+

∫
q(Υ) log

{
q(Υ)

p(Υ|X)

}
dΥ ,

(2)

which is a decomposition of log p(X) that holds for any
q(Υ).

The second integral in the last line of (2) is the Kullback-
Leibler divergence DKL(q‖p) between q(Υ), which is a
variational approximating posterior, and p(Υ|X), which
is the true posterior distribution [8].

Since DKL(q‖p) ≥ 0, the first integral in the last line
of (2) defines a lower bound L(q) on the logarithm of the
model evidence

log p(X) ≥ L(q) =

∫
q(Υ) log

{
p(X,Υ)

q(Υ)

}
dΥ . (3)

The previous statement can also be derived from (1) by
applying Jensen’s inequality.

In summary equation (2) can be rewritten as [41]

log p(X) = L(q) +DKL(q‖p) . (4)

As anticipated, DKL(q‖p) is always non negative and, in
particular, it is equal to zero if and only if q(Υ) = p(Υ|X).
In such a case the variational posterior is an exact solution
and the lower bound is exactly equal to the evidence.

In all the other cases, DKL(q‖p) > 0 and L(q) <
log p(X), which means that q(Υ) is an approximate pos-
terior.

In summary, the inference problem can be solved by
maximizing the functional L(q) with respect to the dis-
tribution q(Υ), which is equivalent to minimizing the
Kullback-Leibler divergence between the variational and
the true posterior distribution.

The lower bound on the model evidence (negative vari-
ational free energy) can be further decomposed as

L(q) =

∫
q(Υ) log p(X|Υ)dΥ +

∫
q(Υ) log

{
p(Υ)

q(Υ)

}
dΥ .

(5)
This shows that the lower bound comprises a likelihood

term which is equal to the expected value of the log like-
lihood log p(X|Υ) under the variational posterior q(Υ)

L1 =

∫
q(Υ) log p(X|Υ)dΥ = EΥ

[
log p(X|Υ)

]
, (6)

and a regularizing term which is the negative Kullback-
Leibler divergence beetween the approximating posterior
q(Υ) and the prior distribution over the unobserved vari-
ables p(Υ) [5]

L2 =

∫
q(Υ) log

{
p(Υ)

q(Υ)

}
dΥ = −DKL(q‖p0) . (7)

This last term penalizes overly complex or implausible
models (Occam factor) [5].

While in principle arbitrary variational posterior distri-
butions q(Υ) can be used, a commonly adopted strategy
to solve the inference problem consists in restricting the
space of q(Υ) so as to ensure mathematical tractability,
which also means that DKL(q‖p) > 0, or, in other words,
that q(Υ) 6= p(Υ|X). In particular, it is often convenient
to assume that q(Υ) factorizes into a product of terms,
each one involving just a subset of Υ (mean field theory):

q(Υ) =
∏S
s=1 qs(Υs) .

In such a case, the lower bound depends on the generic
factor qŝ(Υŝ) as follows [8]

L(qŝ) = −DKL(qŝ ‖ p̂(X,Υŝ)) + const , (8)

with

p̂(X,Υŝ) ∝ exp(Es6=ŝ[log p(X,Υ)]) . (9)

Equation (8) shows that the optimal form of the fac-
tor qŝ(Υŝ) corresponds to the one that minimizes the
Kullback-Leibler divergence between qŝ(Υŝ) and p̂(X,Υŝ)
which is defined in (9). Therefore qŝ(Υŝ) ≡ p̂(X,Υŝ).

Note that this solution is not analytical, since the dif-
ferent factors have optimal forms that depend on one an-
other. As a result, the natural approach for solving this
variational optimization problem consist in iteratively up-
dating each factor given the most recent forms of the other
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ones. This leads to a scheme that turns out to be very sim-
ilar to the structure of the EM algorithm [8, 41].

For some complex models, a fully Bayesian treatment of
all unobserved variables might still be extremely impracti-
cal, if not impossible, even when variational techniques are
used. One other advantage from adopting a VB approach
is that its generality allows it to be combined with stan-
dard MAP and ML techniques in a unified and principled
framework. If one of the subsets {Υs}s=1,...,S of the unob-
served variables cannot be treated in a fully Bayesian man-
ner, it is still possible to obtain MAP point estimates for
the corresponding parameters. Such values are obtained
in a way that is a generalization of the M-step in the EM
algorithm. In particular, the function that needs to be
optimized is the expectation of the logarithm of the joint
probability of X and Υ, E[log p(X,Υ)]. The main differ-
ence from the EM algorithm for ML (or MAP) estimation
is that in the VBEM case, expectations are computed not
only over the latent variables of the model (as in the EM),
but also over all the model parameters that are described
in terms of a full posterior distribution.

3. Data model

This section describes the mathematical model adopted
for this work. We introduce all variables, illustrate their
conditional dependencies and, finally, we derive a varia-
tional objective function (lower bound).

Let X denote the observed data, that is to say the inten-
sities corresponding to D images of the same subject ac-
quired with different modalities. The signal at voxel j can
then be represented by a D-dimensional vector xj ∈ RD,
with j ∈ {1, . . . , N}.

We can model the distribution of xj as a multivariate
Gaussian mixture consisting of K clusters parametrized
by mean vectors {µk}k=1,...,K and covariance matrices
{Σk}k=1,...,K . The mixing proportions of the different
components are given by Θπ = {πjk} with πjk ∈ [0, 1] and∑
k πjk = 1. Essentially πjk indicates the prior probability

of signal at spatial location j being drawn from cluster k.

Moreover we can assume that the K Gaussians are par-
titioned into T subsets, corresponding to different tis-
sue types. Let {Ct}t=1,...,T denote these subsets, with⋃T
t Ct = {1, . . . ,K}. This means that each tissue t ∈
{1, . . . , T} is itself represented by a GMM consisting of Kt

components with
∑
tKt = K.

The prior probability of voxel j belonging to tissue t
is considered to be given a priori (through a probabilis-
tic atlas) and is indicated by τjt. Furthermore, these tis-
sue priors are allowed to be rescaled by a set of weights
{wt}t=1,...,T to accommodate individual differences in tis-
sue composition. Finally it is necessary to introduce a
set of parameters {gk}k=1,...,K denoting the normalized
weights of the different Gaussians associated with one tis-

sue type, so that

∀t ∈ {1, . . . , T} :
∑
k∈Ct

gk = 1. (10)

As a result the mixing proportions Θπ of the presented
GMM can be expressed as

πjk = gk
τjt wt∑T
t′ τjt′ wt′

, (11)

where {τjk} are known parameters, while {wt}t=1,...,T and
{gk}k=1,...,K have to be estimated from the observed data
X.

To correct for intensity non-uniformity artifacts, a
multiplicative D-dimensional bias field, denoted by
{bj(Θβ)}j=1,...,N , is introduced in the model, where Θβ

is a vector of parameters. Each of the D components of
the bias is modelled as the exponential of a linear combi-
nation of discrete cosine transform basis functions [4].

Finally, to account for the variability of anatomical
shapes among subjects, the probabilistic atlas given by
{τt}t=1,...,T is allowed to be deformed according to a dis-
placement field parametrized by the set of vectors Θα =
{αj}j=1,...,N . The warped tissue priors can therefore be
expressed as {τt(ϕ(Θα))}t=1,...,T , where ϕ(Θα) is a coor-
dinate mapping from the individual image space into the
atlas space. The parametrization adopted here consists in
adding to the identity transform a small displacement field
{αj}j=1,...,N , so that

ỹj = yj +αj , (12)

where the vector yj encodes the coordinates of the centre
of voxel j.

If we introduce a set of binary latent variables Z de-
noting the class memberships of the observed data X, the
probability of Z given the mixing proportions Θπ and the
deformation parameters Θα is given by

p(Z|Θπ,Θα) =

N∏
j=1

K∏
k=1

(
τjt
(
ϕ(Θα)

)
wt∑T

t′ τjt′
(
ϕ(Θα)

)
wt′

)zjk
, (13)

where we have assumed that all data are independent.
The conditional distribution (class conditional density)

of the observed intensities given the latent variables, the
Gaussian means Θµ and covariances ΘΣ and the bias field
parameters Θβ can be expressed as

p(X|Z,Θµ,ΘΣ,Θβ) =

N∏
j=1

K∏
k=1

(
|Bj | N (Bjxj |µk,Σk)

)zjk ,
(14)

with Bj = diag(bj), modelling the bias field.
The joint probability of all the random variables condi-

tioned on the mixing proportions is given, for the presented
model, by

p(X,Z,Θµ,ΘΣ,Θβ ,Θα|Θπ) =

p(X|Z,Θµ,ΘΣ,Θβ)p(Z|Θπ,Θα)p(Θµ,ΘΣ)p(Θα)p(Θβ) .
(15)
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The voxel specific mixing proportions Θπ are treated here
as deterministic parameters depending on the available
anatomical atlas, on the tissue weights {wt}t=1,...,T and on
the within-tissue mixing proportions {gk}k=1,...,K , there-
fore they are determined via ML estimation.

It should be noted that we have kept the formal distinc-
tion between latent variables Z and model parameters Θ
for clarity, even if the treatment of these is essentially the
same with variational inference techniques.

The priors on the means and covariances of the different
classes are modelled as Gaussian-Wishart distributions

p(Θµ,ΘΣ) =

K∏
k=1

p(µk|Σ−1
k )p(Σ−1

k ) , (16)

with

p(µk|Σ−1
k ) = N (µk|m0k, b

−1
0k Σk) , (17)

p(Σ−1
k ) =W(Σ−1

k |W0k, ν0k) , (18)

where W(W , ν) indicates the probability density function
of a Wishart distribution with ν degrees of freedom and
scale matrix W (see Appendix A for a more detailed de-
scription of Gaussian-Wishart priors).

Such a choice is algebraically convenient, as it leads to
posterior distributions having the same functional form of
the priors (conjugate priors).

The parameters governing the priors will be indicated
as

Φ0 = {β0k,m0k, ν0k,W0k}k=1,...,K . (19)

The terms p(Θα) and p(Θβ) represent prior probability
distributions over the deformation and bias field parame-
ters. Their function is to regularize the solution obtained
through model fitting by penalizing improbable parame-
ters values. In doing so, they assure greater physical plau-
sibility of the resulting non-uniformity and deformation
fields, while also improving numerical stability within the
optimization process. Here the same regularization scheme
described in [4] is adopted. The question of how to deter-
mine optimal forms for the regularization terms is beyond
the scope of this work and therefore is not addressed here.
Interestingly, such a problem could also be solved in a vari-
ational inference framework, as shown in [39].

A lower bound on the marginal likelihood
p(X,Θβ ,Θα|Θπ) is given by

L =
∑
Z

∫∫
q(Z,Θµ,ΘΣ)

× log

{
p(X,Z,Θµ,ΘΣ,Θβ ,Θα|Θπ)

q(Z,Θµ,ΘΣ)

}
dΘµdΘΣ .

(20)

To make the problem tractable we assume that
the variational distribution q(Z,Θµ,ΘΣ) factorizes as
q(Z,Θµ,ΘΣ) = q(Z)q(Θµ,ΘΣ), so that

Λk

µk

K
τt

wt T

gkt

Kt

πj zj

xjαj

N

Ψα m0

β0

ν0

W0

Θβ

Σβµβ

Figure 1: Directed acyclic graph representing the generative Gaus-
sian mixture model adopted in this work for the purpose of seg-
menting neuroimaging data into tissue types. Large filled circles
indicate the observed data (image intensities X). Unfilled circles
represent unobserved random variables (latent variables Z, which
encode class memberships, and model parameters Θ). Solid dots de-
note fixed hyperparameters. The observed intensities are assumed
to be drawn from a Gaussian mixture distribution consisting of K
components with means {µk} and covariance matrices {Σk}. Inten-
sity non-uniformities are modelled through a multiplicative bias field
parametrized by Θβ . The mixing proportions of our model {πjk}
vary locally according to a smooth anatomical atlas {τt}, which is
mapped onto the individual data by the deformation field encoded
in {αj}.

L =
∑
Z

∫∫
q(Z)q(Θµ,ΘΣ) log p(X|Z,Θµ,ΘΣ,Θβ)dΘµdΘΣ

+
∑
Z

∫∫
q(Z)q(Θµ,ΘΣ)

× log

{
p(Z|Θπ,Θα)p(Θµ,ΘΣ)

q(Z)q(Θµ,ΘΣ)

}
dΘµdΘΣ

+ p(Θβ) + p(Θα) .

(21)

The described probabilistic model can be represented by
a directed acyclic graph, as shown in figure 1. It should
be noted that such a model is generative. In fact equation
(15) allows to generate synthetic observations X via sam-
pling from the joint distribution of all random variables
conditioned on the mixing proportions [7].

Once the model has been learned, it is directly possible
to infer the tissue labels by examining the posterior distri-
bution p(Z|X). In fact, the decision on which class each
voxel belongs to should be taken according to Bayes deci-
sion rule (BDR), which states that the class to be chosen
is the one that minimizes the probability (”risk”) of error.
In practice,

xj ∈ class k ⇐⇒ p(zjk = 1|xj) > p(zjk′ = 1|xj) ∀k′ 6= k .
(22)
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4. Model learning

The statistical model descried in Section 3 can be fit
to data adopting a variational version of the standard
EM algorithm for MLE. The objective of this optimiza-
tion procedure is to learn optimal solutions for the vari-
ational posterior distribution q(Z)q(Θµ,ΘΣ), to estimate
MAP values for the parameters {Θα,Θβ} and ML values
for {gk}k=1,...,K and {wt}t=1,...,T .

4.1. Variational E-step

In the variational generalization of the EM algorithm
(VBEM) we can still distinguish two steps: VE-step and
VM-step. In the variational E-step the functional L in (20)
is maximized with respect to the posterior factor q(Z) over
the latent variables [8]. Making use of (9) we find that

q(Z) ∝ exp
(

log p(Z|Θπ,Θα)

+Eµ,Σ [log p(X|Z,Θµ,ΘΣ,Θβ)]
)
.

(23)

If we define

log ρjk = log p(Z|Θπ,Θα) + Eµ,Σ [log p(X|Z,Θµ,ΘΣ,Θβ)] ,
(24)

it follows that

q(Z) ∝
N∏
j=1

K∏
k=1

(ρjk)zjk . (25)

By normalizing the variational distribution q(Z) we obtain

q(Z) =

N∏
j=1

K∏
k=1

(
ρjk∑K
c=1 ρjc

)zjk
=

N∏
j=1

K∏
k=1

(γjk)
zjk . (26)

The quantity log ρjk can be computed from (24) to give

log ρjk = log πjk(ϕ(Θα))

−D
2

log(2π) +
1

2
EΣk

[
log |(Σk)−1|

]
−1

2
Eµk,Σk

[
(Bjxj − µk)TΣ−1

k (Bjxj − µk)
]
.

(27)

The expectations that appear in (27) have to be computed
with respect to the current estimates of the variational pos-
terior distributions over {µk}k=1,...,K and {Σk}k=1,...,K

(Appendix A).

The terms {γjk} which are computed during the VE-
step are equal to the expectations of the latent variables
with respect to their posterior variational distribution (re-
sponsibilities) [8]. They can be used to compute the fol-
lowing sufficient statistics of the observed data, which will
serve to update the posterior distributions of {µk}k=1,...,K

and {Σk}k=1,...,K , during the VM-step

s0k =

N∑
j=1

γjk ,

s1k =

N∑
j=1

γjkBjxj ,

S2k =

N∑
j=1

γjk(Bjxj)(Bjxj)
T .

(28)

It should be noted that the computational complexity
of this VE-step is identical to that of the E-step in the
standard EM algorithm.

4.2. Variational M-step

In the following VM-step we can derive approximate
solutions for the posterior distributions over the cluster
means and covariance matrices [8]. Making again use of
(9) we obtain

q(Θµ,ΘΣ) ∝ exp

{
N∑
j=1

K∑
k=1

γjk logN (Bjxj |µk,Σk)

+

K∑
k=1

log p(Θµ,ΘΣ)

}
.

(29)

It can be proved (Appendix B) that the posterior dis-
tributions on the means and covariances of the different
Gaussians take the same form as the corresponding priors
[8], that is

q(Θµ,ΘΣ) =

K∏
k=1

q(µk|Σ−1
k )q(Σ−1

ik ) , (30)

with

q(µk|Σ−1
k ) = N (µk|mk, b

−1
k Σk) , (31)

q(Σ−1
k ) =W(Σ−1

k |Wk, νk) . (32)

The parameters that govern these posterior distributions

Φ = {βk,mk, νk,Wk}k=1,...,K , (33)

can be computed as a function of the prior hyperparam-
eters and the sufficient statistics obtained in the previous
VE-step, as follows (Appendix B)

bk = b0k + s0k ,

mk =
b0km0k + s1k

b0k + s0k
,

W−1
k = W−1

0k + S2k +
b0ks0km0km

T
0k

b0k + s0k
− s1ks

T
1k

b0k + s0k

− b0ks1km
T
0k

b0k + s0k
− b0km0ks

T
1k

b0k + s0k
,

νk = ν0k + s0k .

(34)
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The point estimates of the mixing proportions
{gk}k=1,...,K within each tissue type can instead be up-
dated by

gk =
s0k∑
c∈Ct s0c

, (35)

while for the tissue weights {wt}t=1,...,T we obtain the fol-
lowing

wt =

∑
k∈Ct s0k

N∑
j=1

τjt(ϕ(Θα))∑T
t′=1 τjt′(ϕ(Θα))wt′

. (36)

A brief discussion on how to solve the bias and defor-
mation optimization problems is provided in Appendix C
and Appendix D.

4.3. Empirical Bayes learning of GMM priors

The hyperparameters Φ0 reflect prior beliefs on how
signal intensities should be distributed within each tissue
type. With a Gaussian-Wishart parametrization, the fol-
lowing hyperparameter setting ensures minimally informa-
tive and non improper priors

β0k ' 0 ∧ ν0k ' D − 1 =⇒ p(µk,Σk) ' const . (37)

With such a choice, the posterior distributions of the Gaus-
sian parameters would be essentially determined by fit-
ting the data, in a similar way to the maximum likelihood
framework, and the regularization term of the lower bound
would reduce to the entropy of the posterior distributions.

On the contrary, choosing more informative priors can
potentially increase the robustness of the algorithm by en-
forcing meaningfulness and plausibility of the estimated
posteriors and, at the same time, ensure faster conver-
gence. However, defining pertinent priors is a non trivial
problem, as ideally such priors should express information
derived from previously acquired data, rather than simple
subjective beliefs. Therefore an appropriate hyperparam-
eter configuration should be learned from large population
data. Essentially, informative empirical priors should al-
low transferring the posterior information inferred from a
training data set onto new unseen testing data [26, 36, 38].

Interestingly, the model described so far can be fur-
ther extended to represent a data set comprising scans
of different subjects and, therefore, it provides a natural
framework for estimating empirical priors. In fact, a lower
bound on the marginal likelihood can be expressed, for a
population of M subjects, as follows

L =

M∑
i=1

∑
Z

∫∫
qi(Zi,Θµ,ΘΣ)

× log

{
pi(Xi,Zi,Θµ,ΘΣ,Θβ ,Θα|Θπ)

qi(Zi,Θµ,ΘΣ)

}
dΘµdΘΣ

(38)

Supposing that the posteriors {qi(Θµ,ΘΣ)}i=1,...,M have
been estimated, equation (38) can be maximized with
respect to p(Θµ,ΘΣ). Since we are assuming that the
functional form of this distribution is parametric and
known (Gaussian-Wishart), standard non-linear optimiza-
tion techniques can be exploited to find maximum likeli-
hood estimates of the hyperparameters Φ0.

Indeed, the lower bound in (38) can be expressed as a
function of Φ0

L(Φ0) =

m∑
i=1

∫ ∫
qi(Θµ,ΘΣ) log p(Θµ,ΘΣ) dΘµdΘΣ + const

=
1

2

M∑
i=1

K∑
k=1

{
E
[

log |Σ−1
ik |
]
(ν0k −D)

− νk Tr(W−1
0k Wik + β0k(mik −m0k)(mik −m0k)TWk)

}

+
M

2

K∑
k=1

D log
β0k

2π
−D

M∑
i=1

K∑
k=1

β0k

βik

+ 2M

K∑
k=1

logBW (W0k, ν0k) + const ,

(39)

where BW indicates the normalizing constant of the
Wishart distribution.

We also derived the first and second derivatives of
L(Φ0), which are useful to solve this optimization prob-
lem using gradient based techniques. Such derivatives are
reported in Appendix F.

In summary, a convenient strategy for learning Gaussian
mixture priors consists in, first, initializing the hyperpa-
rameters so as to obtain weak priors, secondly, estimating
the posterior distributions for a population of M subjects,
finally, optimizing L with respect to Φ0. The estimates of
the hyperparameters (Φ0) can then be further refined by
using these empirical priors to reestimate the posteriors
and so on, thus leading to an iterative learning scheme.

5. Experimental results

In this section we present a series of experiments that
were performed to assess the validity of our approach and
to explore some of its properties and potential applica-
tions. The results presented in 5.1 were produced making
use of synthetic data while the ones described in 5.2 were
obtained on real, publicly available, MRI data.

5.1. Experiments on synthetic data

The performance of our variational algorithm was first
evaluated making use of simulated data produced by the
Brainweb MRI simulator [9, 25, 10].

To assess the accuracy of brain tissue classification per-
formed by our method we employed twenty synthetic T1-
weighted scans of healthy adult subjects [6]. The volumes
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Figure 2: Dice similarity coefficients between the gray and white
matter segmentations produced by our algorithm (VB) and the un-
derlying ground truth for twenty simulated T1-weighted scans. We
report as well the DSC obtained with the ML algorithm provided
with SPM12. For each boxplot, the central mark indicates the me-
dian, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points, while outliers are
indicated by red stars.

were generated with the following MR simulation param-
eters: Spoiled Fast Low Angle Shot (SFLASH) sequence
with repetition time (TR) of 22 ms, echo time (TE) of 9.2
ms, flip angle=30 deg and 1 mm isotropic voxel size.

We segmented these images using the algorithm pre-
sented in the previous section. We set the following hy-
perparameters values so as to obtain weakly informative
intensity priors (WIP). This choice in fact permits quanti-
fying the accuracy of our method in the most general case
that no reliable information is available on the distribution
of tissue intensities.

β0k = 0.1,

m0k =
1

N

N∑
j=1

xj ,

ν0k = D − 0.9,

W−1
0k =

1

N

N∑
j=1

(xj −m0k)(xj −m0k)T .

(40)

The resulting segmentations were compared to the
anatomical models used to generate the data by comput-
ing Dice similarity coefficients (DSC). Results, which are
reported in figure 2, indicate that our method can segment
gray and white matter with an accuracy that is at least
equal to that of some widely used, state-of the-art segmen-
tation tools, such as the ones provided with SPM [4], FSL
[50] and Freesurfer [16], whose performance was assessed
in [23].

The Brainweb database also provides multimodality
data, even if, in this case, only one anatomical model is
available. We made use of these synthetic scans to test
the performance of our algorithm in segmenting multi-
spectral data. Specifically we simulated T1-weighted and

T2-weighted volumes, with the pulse sequence parameters
reported in table 1 and then segmented the data with the
same hyperparameter setting used for the previous exper-
iment.

To examine the behaviour of the algorithm with respect
to noise, we repeated the analyses for three different lev-
els of noise in the data (3%, 5% and 9% of the brightest
intensity).

Results are summarized in table 2. They clearly indi-
cate that our method can successfully handle multimodal-
ity data sets and that, even if the use of a single modality
(in this case T1-weighted) already ensures very accurate
segmentations, the availability of scans with different con-
trast can provide additional robustness to noise.

A similar behaviour is exhibited by the ML algorithm
provided with the SPM software (table 2). However, by
comparing the accuracy achieved by the two methods, we
find that the variational implementation provides signifi-
cantly better results.

With this simulated data we could also assess the valid-
ity of bias field correction performed by our method. To do
so we computed Pearson’s correlation coefficients between
the estimated non-uniformity fields and the ground truth.
Results are shown in table 3, where we report as well the
correlation coefficients achieved by SPM ML based seg-
mentation algorithm. As to be expected the two methods
perform quite similarly in estimating the non-uniformity
field. In fact, they rely on the same parametrization and
optimization of the bias. Nevertheless, because the accu-
racy in correcting intensity inhomogeneities depends heav-
ily on how reliable the estimates of the Gaussian parame-
ters are, our algorithm, which takes into account the pos-
terior uncertainty of such estimates, can outperform the
maximum likelihood implementation when noise in the
data increases.

With our method, run time for each individual segmen-
tation was approximately 3 min 30 s, on a Quad-Core PC
at 3.19 GHz with 12 GB RAM.

5.1.1. Learning GMM priors

Among the advantages of the variational framework that
we present here is the fact that it allows incorporating
priors on the parameters modelling the intensity distribu-
tions of brain (and potentially non brain) tissues. This
form of a priori knowledge acts conjointly with the shape
information carried by the tissue probability maps, thus
ensuring additional robustness. The use of different inten-
sity priors leads to differences in the estimated posteriors
and segmentations, in the sense that the algorithm tries to
simultaneously maximize the model fit (i.e. the likelihood
of the data) while minimizing the divergence between the
prior and posterior probability distributions.

Determining suitable priors for each application, or
imaging modality, is a fundamental question. However,
it should also be noted that the need to define priors does
not limit the applicability of the method if compared to
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Table 1: Simulation parameters selected to generate the synthetic data which was used to evaluate the accuracy of the presented VB algorithm
in segmenting multispectral data. SFLASH and DSE indicate respectively a spoiled fast low angle shot amd a dual spin echo sequence. A
bias intensity of 20% corresponds to values of the non-uniformity field in the range [0.9, 1.1] .

Sequence TR (ms) Flip angle (deg) TE (ms) Bias field

T1w SFLASH 18 30 10 20%
Modality

T2w DSE LATE 3300 90 35,120 20%

Table 2: Dice similarity coefficients between the ground truth tissue labels and the segmentations produced by the presented algorithm (VB)
and by the ML implementation provided with the SPM software. The experiments were performed on simulated normal brain scans (T1- and
T2-weighted) for three different noise levels.

Maximum Likelihood (ML)

Noise level 3% 5% 9%

Modality T1w T1w and T2w T1w T1w and T2w T1w T1w and T2w

GM 0.93 0.90 0.91 0.90 0.87 0.88
Tissue

WM 0.95 0.95 0.93 0.94 0.88 0.89

Variational Bayes (VB)

Noise level 3% 5% 9%

Modality T1w T1w and T2w T1w T1w and T2w T1w T1w and T2w

GM 0.92 0.92 0.92 0.92 0.87 0.89
Tissue

WM 0.95 0.96 0.94 0.94 0.89 0.90

standard maximum likelihood techniques. In fact, when-
ever no information is available on what priors it is most
convenient or correct to use, it is always possible to resort
to minimally informative priors, which would simply let
the algorithm determine the posterior distributions that
explain the data best, given the assumption that all pa-
rameter settings within the admissible parameter space are
equally (or almost equally) probable a priori.

As explained in section 4.3 the variational framework
presented in this paper can be exploited to learn empiri-
cal priors over the Gaussian mixture parameters from large
population data. To demonstrate the efficacy of this proce-
dure we used the same set of simulated T1-weighted scans
employed for the previous experiments. We learned priors
over the intensities of gray and white matter by first col-
lecting the posterior probability distributions for all the
subjects in the data set and then maximizing the func-
tional in (39) with respect to Φ0. This optimization prob-
lem was solved making use of a Gauss-Newton scheme. In
particular we iterated over optimizing the priors and up-
dating the posteriors so as reduce the chance of finding
suboptimal solutions.

Results are depicted in figure 3. We report the esti-
mated Gaussian priors over the mean intensity of gray (3a)
and white (3b) matter. These should be compared to the
modes of the corresponding posteriors (red crosses).

Our empirical Bayes learning scheme captures very pre-
cisely the information encoded in the variational posteri-
ors. In particular the more the posteriors are peaked and
the more they overlap, the more the priors will be infor-
mative. If one or more posteriors have relatively high vari-
ance, this uncertainty will be immediately reflected in the

empirical priors, which will become less informative. In
the case of the synthetic data set used for this experiment,
all the volumes have the same contrast and intensity map-
ping, therefore the resulting priors are highly informative.

The true means (blue crosses) are also shown in figure 3.
For white matter, they are extremely consistent with the
estimated posterior means. In fact, for this data set, our
algorithm exhibits higher accuracy in segmenting white
matter than gray matter (see figure 2). A slightly higher
discrepancy emerges between the true and estimated gray
matter mean intensities, which also explains the relatively
lower accuracy in classifying gray matter.

5.1.2. Robustness to misregistration and atlas-free seg-
mentation

Atlas based segmentation methods rely heavily on the
accuracy in estimating the deformations mapping from the
atlas to the individual volumes. Solving the segmentation
and registration problems within a single modelling and
computational framework has been widely accepted as a
powerful and effective strategy in order to assure the suc-
cess of both processing tasks, additionally to being a the-
oretically principled approach [34, 4, 14, 48, 49]. Nonethe-
less, it is possible to encounter cases in which aligning the
template to an individual scan turns out to be particu-
larly difficult, due for example to a poor initialization of
the deformations or to the presence of anatomical features
(especially pathological ones) that the atlas does not cap-
ture correctly. In such cases segmentation accuracy can be
strongly affected by misregistration errors.

Introducing priors over the intensity distribution param-
eters is a convenient and reliable solution to cope with
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Table 3: Pearson’s correlation coefficients between estimated and ground truth bias fields for the presented VB method and for SPM ML
method.

Noise level 3% 5% 9%

Algorithm VB ML VB ML VB ML

T1w 0.83 0.83 0.84 0.82 0.68 0.61
Modality

T2w 0.88 0.88 0.89 0.89 0.88 0.70

these difficulties. In fact, it can help to prevent implausi-
ble parameter estimates, whenever registration errors are
misleading the model fitting process.

To demonstrate this property, the synthetic data set
consisting of twenty T1-weighted scans was split into a
training and a testing subset, of ten volumes each. The
first ten images were processed by our variational algo-
rithm to learn population representative intensity priors,
as explained in 5.1.1. Secondly, the remaining test images
were segmented making use of these priors, while registra-
tion failure was simulated by imposing a 7.5 mm shift of
the atlas from its optimal alignment position in each of
the three spatial directions (figure 4).

The accuracy of the resulting segmentations was finally
assessed by computing Dice overlap coefficients. Results
are illustrated in figure 5. Here the performance of the
presented method, used in combination with the empirical
priors, is compared to that of the same algorithm with
uninformative priors, as well as to that of a maximum
likelihood method (implemented in SPM12).

As to be expected the maximum likelihood method and
the variational method with uninformative priors do not
perform very differently, except for the fact that the ML
algorithm shows higher variance in the results. On the
contrary, when using the priors learned from the training
data, the accuracy in segmenting gray and white matter
increases significantly, with a relatively low variance of the
overlap measures. This confirms that Bayesian inference
can augment the robustness of standard maximum like-
lihood algorithms, while providing a general and flexible
framework that can be applied to many real world prob-
lems, by learning appropriate priors from available data.

As an additional proof of validity, we implemented an
atlas free version of the algorithm presented in this paper,
which we tested on the same synthetic data. We don’t
expect this purely intensity based framework to achieve
segmentation accuracy and reliability comparable to that
of the full, atlas driven method. However by showing that,
even in the absence of tissue probability maps, we obtain
fairly accurate segmentations (figure 6) we demonstrate
again the soundness of the algorithm presented in this pa-
per.

5.2. Experiments on real data

The previous experiments, performed on simulated data,
have demonstrated and quantified the accuracy of the
presented method in segmenting brain tissues from MRI

volumes. In fact, due to the availability the underlying
ground truth, working with synthetic data is especially
convenient for the objective testing of new techniques and
for the comparison of their performance to that of the
methods that have become established as current state-of-
the-art.

Nonetheless, simulated data is intrinsically less complex
than the data encoded in any real scan, from a biological
point of view, as well as in terms of signal and noise prop-
erties. For this reason it is quite important to asses the
behaviour of image processing tools also on real data.

In this section we present a series of experiments that
we performed on real MRI data from two publicly avail-
able data sets: the OASIS (Open Access Series of Imaging
Studies) [29] and the IXI (Information eXtraction from
Images) databases. Such experiments provide evidence re-
garding the accuracy of our method for segmenting brain
tissues and illustrate some of its distinctive properties,
which derive from adopting a variational inference scheme.

5.2.1. Assessing segmentation accuracy

To assess the performance of our segmentation al-
gorithm we used data from the cross-sectional OA-
SIS database (http://www.oasis-brains.org), which in-
cludes T1-weighted scans of young, middle aged, nonde-
mented and demented older adults, all acquired in one
site with the same scanning protocol. Manual labels for a
subset of this data set (35 subjects) are provided by Neuro-
morphometrics, Inc. (http://Neuromorphometrics.com)
under academic subscription, thus allowing quantitative
evaluation of image segmentation tools.

We processed this data with our segmentation algorithm
and compared its performance to that of the SPM soft-
ware.

In figure 7 we summarize the distributions of Dice co-
efficients for gray and white matter, which were obtained
by comparing the manual labels with the segmentations
produced by our VB method using minimally informative
priors and by SPM ML algorithm.

For both tissue types we observe a statistically signifi-
cant increase in segmentation accuracy, when we use our
variational algorithm, compared to the maximum likeli-
hood implementation.

As to be expected, the Dice scores are generally lower,
compared to the experiments performed on synthetic data.
This is due to the more complex nature of real MRI sig-
nals. Additionally, the subset of the OASIS database that
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Figure 3: Priors over the mean intensities of gray (a) and white (b)
matter. The priors were learned from a synthetic data set consisting
of 20 T1-weighted scans generated with the Brainweb MR simula-
tor. The Gaussian curves show the estimated priors, while crosses
represent the true (blue) and estimated (red) tissue means. The esti-
mated means correspond to the modes of the posterior distributions
computed by our VB algorithm.

was used for this experiment comprises few scans of elderly
subjects with severe atrophy and abnormal signal intensi-
ties, which explains the presence of negative outliers in the
distribution of accuracy scores.

We performed additional validation experiments using
the freely available IXI brain database (http://www.ixi.
org.uk), which, as opposed to the OASIS data sets, in-
cludes multiple modalities, in particular T1-, T2- and
PD-weighted images of healthy adult subjects, acquired
in three different sites, with different scanning systems.
Ground truth segmentations are not available for such a
data set. However, in this case, as opposed to the exper-
iments performed on the OASIS data, our aim is to illus-
trate some of the properties and advantages of our method,
rather than providing explicit accuracy measures.

5.2.2. Determining model complexity

One of the most significant advantages of variational in-
ference over maximum likelihood estimation is its intrinsic
capability of containing overfitting [5, 8]. In the case of
mixture models this allows, for instance, determining the
optimal number of components (K) without performing

(a) Aligned template (b) Misaligned template

Figure 4: To test the robustness of the algorithm to misregistration,
the tissue probability maps were voluntarily shifted from their opti-
mal position (a) by imposing a 7.5 mm translation in each direction,
as illustrated in (b).
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Figure 5: Accuracy of the presented variational algorithm obtained
on synthetic data in the presence of registration errors. The perfor-
mance of the VB algorithm with population based priors (blue) is
compared to that of the same algorithm with uninformative priors
(red) and to the ML approach implemented in SPM12 (black).

cross-validation, which is usually rather demanding for the
amount of computations and data that it requires [8].

Indeed, the question of selecting model’s complexity has
often been overlooked in the framework of medical image
segmentation: throughout the literature, the most com-
mon way of handling the choice on the number of classes,
is to manually tune K, based on visual inspection of the
segmentations and/or intensity histograms. Clearly, this
is too arbitrary and subjective for even being considered
as a model selection strategy.

Instead, our method implements an implicit automated
relevance determination scheme, where, if the number of
Gaussians is set to a value that is higher than the opti-
mal one, the redundant components will be automatically
pruned out of the model [11, 41], as their responsibilities
γjk are quickly driven to zero by the algorithm. This fol-
lows from adopting a variational lower bound to approxi-
mate the marginal likelihood, which causes overly complex
models (that is to say models with additional clusters that
do not significantly help to explain the observed data) to
be implicitly penalized [5]. A similar behaviour is inher-
ently impossible to reproduce within model fitting strate-
gies that do not take into account estimation uncertainty,
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Figure 6: Dice similarity coefficients between the gray and white
matter segmentations produced by our algorithm in an atlas free
setting and the underlying ground truth, for twenty simulated T1-
weighted scans.
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Figure 7: Dice scores computed between the manual labels provided
by Neuromorphometrics for a subset of the OASIS data set and the
gray and white matter segmentations obtained with our VB method
(using minimally informative priors) and with SPM ML algorithm.

such as the maximum likelihood framework.

To illustrate this property of our algorithm we use the
images of one of the subjects included in the IXI database.
In particular, we processed the data illustrated in figures
8a, 8b and 8c with our method, after having set 5 Gaus-
sians for each of the tissue types of interest. At conver-
gence of the VBEM algorithm, we observed only two com-
ponents surviving for gray matter, one for white matter,
three for CSF, two for bone and four for soft tissues, as
shown in figure 9. The plots reported in figure 10 illustrate
how the posterior densities over the means of white matter
evolve during model learning and, in particular, how four
irrelevant components are reverted to their prior distribu-
tions, which in this case are uninformative. In a similar
setting a ML or MAP algorithm would have simply found
the best fit to the data, making use of all the available
components, but the optimal number of Gaussians would
have had to be determined a priori, through some form of
model comparison.

(a) T1w (b) T2w (c) PDw

(d) GM (e) WM (f) CSF

Figure 8: Axial slices of T1-weighted (a), T2-weighted (b) and PD-
weighted (c) scans and resulting gray matter (d), white matter (e)
and cerebrospinal fluid (f) segmentations obtained with the varia-
tional algorithm described in this paper.

5.2.3. Learning informative GMM priors via intensity
normalization

One of the difficulties of working with MRI data is the
lack of a standardized intensity scale [33]. With respect to
our work, this makes it difficult to define, or learn, inten-
sity priors that can effectively generalize to unseen data.
Indeed, even for images of a single data set (comprising
volumes acquired with the same scanner and protocol) the
distribution of intensities across subjects might be poorly
consistent.

Unsurprisingly, when we tried to learn intensity priors
using real data from the IXI database, we were directly
confronted with the problem of normalizing MR signal in-
tensities. Initially we randomly selected 50 T1-weighted
scans acquired in the same site and with the same scan-
ner. We processed such data with our variational algo-
rithm and made use of the resulting posterior distributions
to estimate intensity priors as described in 4.3. Results are
reported in figure 11, where we illustrate the collection of
individual posteriors over the means of gray (a) and white
(b) matter, together with the resulting empirical priors
(black curves).

It is easy to observe how, for this non-quantitative data,
the empirical priors turn out to be weakly informative.
In fact, they properly reflect the uncertainty due to the
variability of the intensity scales. The situation would have
been even worse if we had selected volumes acquired with
different scanners.

Nonetheless, our generative model can also be ex-
ploited to address the problems associated with the non-
standardized nature of MRI signals. In particular we can
introduce a linear global scaling parameter of the intensi-
ties, which can be optimized in the same learning scheme
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Figure 9: Contour plot of the intensity distributions of gray matter,
white matter, cerebrospinal fluid, bone and soft tissue obtained for
one subject included in the IXI dataset, overlaid on the joint his-
togram of the T1- and T2-weighted images. The optimal number of
components is determined automatically by our VB algorithm.

presented in this paper.
We can formulate this as a maximization problem, where

our aim is to maximize the following term (L2) contribut-
ing to the lower bound

L2 =

∫∫
q(Θµ,ΘΣ|Θgs) log

{
p(Θµ,ΘΣ)

q(Θµ,ΘΣ|Θgs)

}
dΘµdΘµ

= −DKL(q(Θµ,ΘΣ|Θgs)‖p(Θµ,ΘΣ)) ,

(41)

which corresponds to minimizing the KL divergence be-
tween the intensity priors and the approximating posteri-
ors. The problem can be solved using non linear, gradient
based optimization techniques, by computing the first and
second derivatives of L2(Θgs) with respect to the global
scaling parameters Θgs. If we iterate over updating the
empirical priors and estimating the scaling factors for the
individual scans, we manage to learn informative intensity
priors, as illustrated in figure 12, while automatically com-
pensating for the inconsistency of MRI signal intensities.

Naturally, such a procedure requires accurate estimates
of the intensity distribution, bias and deformation param-
eters for each individual, that is to say, the problems of
learning priors and estimating individual posteriors are in-
herently related in a circular manner. As a result, for par-
ticularly critical data sets, i.e. pathological data, which
often exhibit larger anatomical variability, the Bayesian
framework described in this manuscript might not be able
to provide informative priors, due to the lack of a sufficient
number of samples or to poor initial estimates of the model
parameters. Nonetheless, in such cases, the presented com-
putational framework, which represents a coherent gener-
alization of some state-of-the-art segmentation algorithms
that rely on ML model fitting, could be applied with min-
imally informative intensity priors and yet it would out-
perform ML estimation (as indicated by the experiments
that we performed on the OASIS data).
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(c) Iteration 7
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(d) Last iteration

Figure 10: Posterior densities over the means of white matter, at dif-
ferent iterations of our algorithm, showing non relevant components
being reverted to their prior distributions.
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Figure 11: Collection of individual posteriors over the means of gray
(a) and white (b) matter, obtained from 50 subjects included in the
IXI database. Without performing any intensity normalization the
resulting empirical priors (black curves) are poorly informative.
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Figure 12: Collection of individual posteriors over the means of gray
(a) and white (b) matter, after including a global rescaling param-
eter, that is optimized within our generative modelling framework.
The estimated priors (black curves) are now much more informative
than the ones depicted in figure 11.

6. Discussion

Evaluating posterior probability distributions over
model parameters and latent variables is often a very de-
manding task in the context of probabilistic modelling
problems, especially when working with large-scale data
sets. Unfortunately this is usually the case for image pro-
cessing applications.

In general, finding exact solutions involves the computa-
tion of integrals whose treatment in analytical form is very
difficult or impossible, while numerical integration is often
unfeasible too, due to the volume of data and the com-
plexity of the equations to be solved [8]. In such circum-
stances, stochastic approximation techniques, like MCMC,
have turned out to be impracticable, at least so far, since
they require large computational resources, which makes
the resulting algorithms rather slow for dealing with real
life applications.

Variational Bayes techniques instead formulate Bayesian
inference as an optimization problem, where the objec-
tive function is constructed to be a lower bound on the
marginal likelihood. Despite not providing exact results,
they allow learning of fully Bayesian models without the
computational drawbacks of sampling techniques. The re-

sulting algorithms have the interesting property of gener-
alizing ML or MAP approaches, while automatically ad-
dressing the overfitting issues associated with ML estima-
tion.

In this paper we have shown that VB represents a viable
and effective framework for performing medical image seg-
mentation, in spite of not having been exploited so far in
such a field.

When tested on both synthetic and real data, the pre-
sented method provided very accurate results, at an equiv-
alent computational cost compared to ML or MAP imple-
mentations. We also illustrated some of advantages deriv-
ing from adopting a fully Bayesian formulation, such as,
the possibility of automatically determining optimal model
complexity and performing model comparison by evaluat-
ing the model evidence. Finally we described an empirical
Bayes learning scheme, that can serve to estimate infor-
mative intensity priors. Such priors can be used to ensure
even greater robustness, for example in the presence of
misalignment between the tissue probability maps and the
individual scans, or whenever the available atlases are not
best representative of the population of interest.

All of these properties can compensate for the cor-
responding limitations of standard maximum likelihood
techniques, which are inherently prone to overfitting, inap-
propriate for comparing models and, in the context of atlas
based image segmentation, highly sensitive to registration
accuracy.

Appendix A. Gaussian-Wishart priors

The Gaussian-Wishart distribution is the conjugate
prior of a multivariate D-dimensional normal distribution
with unknown mean µ and precision matrix Λ. Its prob-
ability density function is

p(µ,Λ|m, β,W , ν) = p(µ|Λ,m, β)p(Λ|W , ν)

= N (µ|m, (βΛ)−1)W(Λ|W , ν) ,

(A.1)

with

N (µ|m, (βΛ)−1) =
|βΛ|1/2

(2π)D/2
exp

{
−1

2
(µ−m)TΛ (µ−m)

}
,

(A.2)

and

W(Λ|W , ν) = BW (W , ν)|Λ|
ν−D−1

2 exp

{
−1

2
Tr
(
W−1Λ

)}
.

(A.3)

The normalizing constant BW is given by

BW (W , ν) = |W |−ν/2
(

2νD/2πD(D−1)/4
D∏
i=1

Γ

(
ν + 1− i

2

))−1

,

(A.4)
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where Γ(·) is the Gamma function

Γ(x) =

∫ ∞
0

ux−1e−udu . (A.5)

The expectation of the determinant of the precision ma-
trix, which appears in equation 27 (VE-step), is equal to
[8]

E[log |Λ|] =

D∑
i=1

ψ

(
ν + 1− i

2

)
+D log 2 + log |W | ,

(A.6)

where ψ(·) indicates the digamma function, which is the
logarithmic derivative of the Gamma function

ψ(x) =
d

dx
log Γ(x) =

Γ′(x)

Γ(x)
. (A.7)

The following expectation has also to be computed during
the VE-step

Eµ,Λ
[
(x− µ)TΛ (x− µ)

]
= Dβ−1 + ν(x−m)TW (x−m) .

(A.8)

Appendix B. Updating the posterior hyperparam-
eters

From equation 29 we obtain

log q(µk,Σ
−1
k ) =

+ logN (µk|m0k, b
−1
0k Σk)

+ logW(Σ−1
k |W0k, ν0k)

+

N∑
j=1

γjk logN (Bjxj |µk,Σk) + const, (B.1)

which can be expanded as

log q(µk,Σ
−1
k ) =

− β0k

2
(µk −m0k)TΣ−1

k (µk −m0k)

− 1

2

N∑
j=1

γjk(Bjxj − µk)TΣ−1
k (Bjxj − µk)

− 1

2
Tr
(
(ΣkW0k)−1

)
+

1

2
log |Σ−1

k |

+
ν0k −D − 1

2
log |Σ−1

k |

+
1

2

N∑
j=1

γjk log |Σ−1
k |+ const .

(B.2)

Let us first consider the terms containing µk

logq(µk|Σ−1
k ) =

− 1

2

N∑
j=1

γjk

(
µTkΣ−1

k (Bjxj−µk)−(Bjxj)
TΣ−1

k µk

)

− β0k

2

(
µTkΣ−1

k (µk−m0k)−mT
0kΣ

−1
k µk

)
+const . (B.3)

By rearranging and grouping terms we obtain

log q(µk|Σ−1
k ) =

+ µTkΣ−1
k

(
β0km0k +

N∑
j=1

γjkBjxj

)

− 1

2

(
β0k +

N∑
j=1

γjk

)
µTkΣ−1

k µk + const . (B.4)

By completing the square we obtain

q(µk|Σ−1
k ) = N (µk|mk, β

−1
k Σk) , (B.5)

with

βk = β0k + s0k , (B.6)

and

mk =
b0km0k +

∑N
j=1 γjkBjxj

b0k + s0k
. (B.7)

The posterior q(Σ−1
k ) can be computed by

log q(Σ−1
k ) = log q(µk,Σ

−1
k )− log q(µk|Σ−1

k ) . (B.8)

Thus we obtain

log q(Σ−1
k ) =

− β0k

2
(µk −m0k)TΣ−1

k (µk −m0k)

− 1

2

N∑
j=1

γjk(Bjxj − µk)TΣ−1
k (Bjxj − µk)

− 1

2
Tr
(
(ΣkW0k)−1

)
+
ν0k −D − 1

2
log |Σ−1

k |

+
βk
2

(µk −mk)TΣ−1
k (µk −mk)

+
1

2

N∑
j=1

γjk log |Σ−1
k |+ const . (B.9)

Making use of the property uTAu = Tr(AuuT ) we can
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write

q(Σ−1
k ) =

1

2

N∑
j=1

(γjk + ν0k −D − 1) log |Σ−1
k |

− 1

2
Tr

{(
W−1

0k + β0k(µk −m0k)(µk −m0k)T

+

N∑
j=1

γjk(Bjxj − µk)(Bjxj − µk)T

− βk(µk −mk)(µk −mk)T
)
Σ−1
k

}
+ const . (B.10)

Substituting B.6 and B.7 into B.10 we obtain

q(Σ−1
k ) =W(Σ−1

k |Wk, νk) , (B.11)

where

νk = ν0k + s0k , (B.12)

and

W−1
k = W−1

0k +

N∑
j=1

γjk(Bjxj)(Bjxj)
T − s1ks

T
1k

b0k + s0k

+
b0ks0km0km

T
0k

b0k + s0k
− b0ks1km

T
0k

b0k + s0k
− b0km0ks

T
1k

b0k + s0k
.

(B.13)

Appendix C. Estimating the bias field

In order to estimate optimal parameters to represent the
bias field we need, at each iteration of the algorithm, to
maximize the lower bound (E.1) on the objective function
with respect to the parameters Θβ . A closed form solution
does not exist in this case; therefore, recourse to numerical
optimization techniques cannot be avoided. The optimiza-
tion problem can be formulated as follows

Θ̂β = arg max
Θβ

{
EZ,Θµ,ΘΣ

[
log p(X|Z,Θµ,ΘΣ,Θβ)

]
+ log p(Θβ)

}
.

(C.1)

A convenient and fast converging strategy to estimate
the bias field, consists in adopting a Gauss-Newton itera-
tive scheme. This involves computing the first and second
derivatives of L with respect to Θβ . A very similar ap-
proach for finding MAP estimates of the bias field param-
eters has already been described in [4] for the same pa-
rameterization of the non-uniformity field adopted in this
work. Therefore, further details on how this optimization
problem can be solved are omitted.

Appendix D. Estimating the deformations

The deformation field that best matches the population
based atlas {τt}t=1,...,T to an individual image can be es-
timated by maximizing L with respect to Θα. This is
equivalent to finding

Θ̂α = arg max
Θα

{
EZ

[
log p(Z|Θπ,Θα)

]
+ log p(Θα)

}
.

(D.1)

Solutions can again be obtained making use of a Gauss-
Newton scheme. This involves applying the following up-
date rule

Θ(n+1)
α = Θ(n)

α −H−1f , (D.2)

where f indicates the gradient and H the Hessian of the
objective function. Numerical techniques are required to
solve the term H−1f since a very local, and therefore
highly dimensional, parameterization of the deformations
is adopted in this work. A very efficient strategy consist
in using multigrid algorithms. In particular the method
presented in this work employs a multigrid scheme with
the same implementation described in [2].

Appendix E. Computing the lower bound

The lower bound can be easily evaluated, once the suffi-
cient statistics and the variational posterior distributions
have been computed [8], by

L = EZ,Θµ,ΘΣ
[log p(X|Z,Θµ,ΘΣ,Θβ)]

+ EZ[log p(Z|Θπ,Θα)]

+ EΘµ,ΘΣ
[log p(Θµ,ΘΣ)]

+ log p(Θα) + log p(Θβ)

− EZ[log q(Z)]

− EΘµ,ΘΣ
[log q(Θµ,ΘΣ)] , (E.1)

with

EZ,Θµ,ΘΣ

[
log p(X|Z,Θµ,ΘΣ,Θβ)

]
=

1

2

K∑
k=1

s0k E
[

log |Σ−1
k |
]
−D log(2π)− D

βk

− 1

2

K∑
k=1

s0kνkm
T
kWkmk

− 1

2

K∑
k=1

νk Tr(WkS2k − 2s1km
T
kWk)

+

N∑
j=1

K∑
k=1

γjk log |Bj | . (E.2)

EZ[log p(Z|Θπ,Θα)] =

N∑
j=1

K∑
k=1

γjk log πjk(ϕ(Θα)) . (E.3)
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EΘµ,ΘΣ
[logp(Θµ,ΘΣ)] =

+
1

2

K∑
k=1

{
Dlog

β0k

2π
−Dβ0k

βk

}
+2KlogBW (W0k,ν0k)

−
K∑
k=1

{
νk
2

Tr
(
(W−1

0k +β0k(mk−m0k)(mk−m0k)T )Wk

)
+E
[
log|Σ−1

k |
]
(ν0k−D)

}
. (E.4)

EZ[log q(Z)] =

N∑
j=1

K∑
k=1

γjk log γjk . (E.5)

EΘµ,ΘΣ
[log q(Θµ,ΘΣ)] =

K∑
k=1

{
1

2
D

(
log

βk
2π
− 1− νk

)
+ logBW (Wk, νk)

+ E
[

log |Σ−1
k |
](1

2
νk −D

)}
. (E.6)

The term BW (W , ν) in equations (E.4) and (E.6) indi-
cates the normalizing constant for a Wishart distribution
parametrized by W and ν.

Appendix F. Derivatives of the lower bound with
respect to the intensity prior hyper-
parameters

Given a data set of M individual scans, the lower bound
on the marginal likelihood depends on the hyperparame-
ters {β0k}k=1,...,K as follows

L(β0k) =
MD

2
log

(
β0k

2π

)
− 1

2

M∑
i=1

{
D
β0k

βik

− β0kνik(mik −m0k)TWik(mik −m0k)

}
+ const , (F.1)

and the corresponding gradient and Hessian are given by

gβ=
MD

β0k
− 1

2

M∑
i=1

{
D

βik
−νik(mik−m0k)TWik(mik−m0k)

}
,

Hβ=−MD

2β2
0k

.

(F.2)

Similarly for {m0k}k=1,...,K we find that L(m0k) can be
expressed as

L(mok)=
1

2

M∑
i=1

β0kνik(mik−m0k)TWik(mik−m0k)+const.

(F.3)

The first and second derivatives are instead

gm = −
M∑
i=1

β0kνik(mik −m0k)TWik ,

Hm =

M∑
i=1

β0kνikWik .

(F.4)

The following indicates the dependency of L on the de-
grees of freedom of the Wishart priors

L(ν0k) =

M∑
i=1

ν0k

2
E
[

log |Σ−1
ik |] +M log |W0k|−

ν0k
2

+M log

(
2
Dν0k

2 π
D(D−1)

4

D∏
d=1

Γ

(
ν0k + 1− d

2

))−1

+ const . (F.5)

In this case the gradient and Hessian can be computed by

gν =
1

2

M∑
i=1

E
[

log |Σ−1
ik |]

− M

2

{
log |W0k|+D log 2 +

D∑
d=1

ϕ

(
ν0k + 1− d

2

)}
,

Hν = Mϕ1

(
ν0k + 1− d

2

)
.

(F.6)

Finally for the Wishart scale matrices we find that

L(W0k) = Mν0k log |C0k|

− 1

2

M∑
i=1

νik Tr(CT
0kWikC0k) + const , (F.7)

where C0k is the Cholesky factor of W−1
0k

W−1
0k = C0kC

T
0k . (F.8)

The first and second derivatives are given by

gW = Mν0k diag(1/C11, . . . , 1/CDD)−
M∑
i=1

νikWikC0k ,

HW = −Mν0k diag(1/C2
11, . . . , 1/C

2
DD)−

M∑
i=1

νikWik .

(F.9)
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