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Abstract
Multi-reservoir system planners should consider hownew dams impact downstream reservoirs and
the potential contribution of each component to coordinatedmanagement.We propose an
optimizedmulti-criteria screening approach to identify best performing designs, i.e., the selection,
size and operating rules of new reservoirs withinmulti-reservoir systems. Reservoir release
operating rules and storage sizes are optimized concurrently for each separate infrastructure design
under consideration. Outputs reveal system trade-offs usingmulti-dimensional scatter plots where
each point represents an approximately Pareto-optimal design. Themethod is applied to proposed
BlueNile River reservoirs in Ethiopia, where trade-offs between total andfirm energy output,
aggregate storage and downstream irrigation and energy provision for the best performing designs
are evaluated. This proof-of concept study shows that recommended BlueNile system designs
would depend onwhethermonthly firm energy or annual energy is prioritized. 39 TWh/yr of energy
potential is available from the proposed BlueNile reservoirs. The results show that depending on the
amount of energy deemed sufficient, the currentmaximum capacities of the planned reservoirs
could be larger than they need to be. Themethod can also be used to informwhich of the proposed
reservoir type and their storage sizes would allow for the highest downstream benefits to Sudan in
different objectives of upstream operating objectives (i.e., operated tomaximize either average
annual energy or firm energy). The proposed approach identifies themost promising system
designs, reveals how they imply different trade-offs betweenmetrics of systemperformance, and
helps system planners asses the sensitivity of overall performance to the design parameters of
component reservoirs.

1. Introduction

Sufficient and reliable energy supplies are a pre-
requisite for attracting investments and bolstering
local industry in developing countries (Dunkerley
and Ramsay 1982, Bartle 2002, Javadi et al 2013,
Kenfack et al 2014, Zhu et al 2014). Many developing
countries are ill-equipped to meet growing energy
demands and suffer from frequent service interrup-
tions (Pode 2013, Alfaro and Miller 2014, Dugoua
and Urpelainen 2014). Energy security is therefore at

the forefront of development agendas of many
governments who, despite the high initial capital
cost, would like to investigate future hydropower
investments (Bartle 2002, Kaygusuz 2004, Arsano
and Tamrat 2005, Porrua et al 2009). New reservoirs
are frequently challenged however for their high costs
(Ansar et al 2014) or inappropriately balanced
benefits (Bird and Wallace 2001, Sneddon and
Fox 2008). Many researchers have focused on how to
operate hydropower reservoirs to meet multiple
objectives including ecological ones (e.g., Petersson
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et al 2007, Jager and Smith 2008, Renofalt et al 2010,
Mirumachi and Torriti 2012). In this paper we focus
on the design and operation of reservoir systems to
meetmultiple conflicting societal objectives.

Various methods have been used for designing
cost-effective reservoir system interventions in the
last decades. Klemes (1979), Lall and Miller (1988),
Eastman and Revelle (1973) contributed early meth-
ods for design of single purpose standalone reser-
voirs. Often reservoirs are planned jointly so multi-
reservoir system design, i.e., identifying the combi-
nations of reservoirs, their capacities and operating
rules, should maximize overall system performance
and meet different requirements. This task is difficult
to handle with conventional simulation modeling
because invariably too many possible combinations
of assets and their coordinated operation rules need
to be considered (Khaliquzzaman and Chan-
der 1997). This led researchers early on to attempt
using optimization to search for goodmulti-reservoir
system designs (Houck and Cohon 1978, Lall and
Miller 1988, Sinha and Bischof 1998). Stedinger et al
(1983) reviews different early optimization-based
screeningmodels.

The above-mentioned studies design for a single
system objective whereas real multi-reservoir systems
seek to maximize reliable and total energy output
whilst considering other needs such as flood preven-
tion, minimizing water losses and other downstream
impacts. Ko et al (1992) proposed multi-reservoir sys-
tem design optimization considering multiple objec-
tives. That study and others like it use linear
programing which requires significant simplification
for large water resource systems or nonlinear pro-
gramming that may be unreliable at achieving global
optima (Yeh 1985, Labadie 2004). Labadie (2004) and
Rogers and Fiering (1986) cite lack of confidence in the
assumptions and structure of many water resource
optimization models for their relatively modest real-
world use. Some authors opine that operating rules
should be expressed such that they are usable by
operators who have limited foresight of the future (Li
et al 2014).

Water resources problem formulations can lead
to models with non-convex and/or discontinuous
functions which are difficult to handle with tradi-
tional mathematical programming methods (Laba-
die 2004). Approaches that link simulation models
with heuristic global search methods such as evolu-
tionary algorithms (Deb et al 2002, Coello 2007) are
well suited to handle nonlinearity associated with
operating rule design (Thorne et al 2003, Sechi and
Sulis 2009, Vamvakeridou-Lyroudia et al 2010, Hur-
ford and Harou 2014). Evolutionary algorithms
have been demonstrated to be effective for water
resources optimization involving non-convex and
discontinuous functions (Castelletti et al 2008,
Nicklow et al 2010, Reed et al 2012, 2013, Maier
et al 2014). Anghileri et al (2013), Arena et al (2010)

and Giuliani et al (2014) used multi objective evolu-
tionary algorithms to refine operating policies of
reservoir systems. Matrosov et al (2015) reveal Par-
eto-approximate portfolios of infrastructure and
demand management options but assume pre-set
operating rules.

Multi-reservoir system design should consider the
potential for coordinated operation of reservoirs.
Mortazavi et al (2013) identify the failure to optimize
operating rules jointly with infrastructure options as a
limitation of existing design methods. The approach
proposed here screens designs by considering the
interdependency of infrastructure and its operation.
We do this by simultaneously optimizing asset selec-
tion, size (capacity) and reservoir operating rules to
balance multiple objectives. The method suggests the
required increase in reservoir capacities for gaining
particular increases in benefits (i.e., energy, reliability,
irrigation water supply). The approach fulfils deci-
sion-makers’ desire to see the critical factors that affect
various objectives. In transboundary systems where
full coordinationmay not be feasible, selecting designs
that lead to acceptable downstream benefits while
being operated to maximize upstream benefits is
desirable.

The proposed approach is applied to suggest
which combinations of new Ethiopian Blue Nile
reservoirs, are most efficient and what the relevant
trade-offs between system goals are. ‘Efficient’ is used
in a Pareto-optimality sense (the set of solutions
which cannot be further improved in any one metric
without simultaneously reducing performance in
others) rather than a monetized sense where multiple
performance objectives would need to be commen-
surable. The approach proposed in this paper is a
‘weightless’multi-criteria approach. This approach is
an ‘aposteriori’ or generate-first-choose-later
approach (Herman et al 2014), where there is no need
to provide weights or priorities for objectives apriori.
The multi-objective optimization approach works
for any number of objectives, typically up to 10,
(Nicklow et al 2010, Reed et al 2013) which can be
monetary or not. We optimize proposed upstream
Blue Nile multi-reservoir system design considering
Ethiopian hydropower and storage size of reservoirs.
We show that specific groupings of reservoirs per-
form better in firm and/or total annual energy than
individual reservoirs for similar aggregate storage
size. Impacts of optimized infrastructure choices on
downstream assets are demonstrated via visual analy-
tic trade-off scatter plots which help explore and
understand the information contained in Pareto-
approximate solution sets (Vitiello et al 2012, Fu
et al 2013, Reed andKollat 2013).

The next section describes the case-study context
and is followed by a description of the problem for-
mulation. These are followed by results, discussion
and conclusion sections.
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2. TheNile context

The Blue Nile is one of the largest basins in Ethiopia,
covering 35% of its land mass. The narrow gorges in
the upper part of the Blue Nile harbor large hydro-
power potential. However because of disputes in water
use rights in the Nile basin and lack of capacity for
Ethiopia to self-finance the large projects (Amer
et al 2005, Arsano and Tamrat 2005, Cascao 2008) the
basin remains under-developed.

In Sudan, two multipurpose dams are used to
serve three large irrigation sites and generate hydro-
power. The river is highly seasonal and annually vari-
able (Block and Rajagopalan 2007) with frequent
flooding and occasional droughts. Goor et al (2010)
argue implementation of the proposed hydropower
reservoirs in Ethiopia and consequent regulation of
the flow could boost irrigation production and hydro-
power in Sudan. Regardless, in the Nile basin as a
whole, there is concern about the potential impacts of
newupstream storage (Swain 2011).

The Grand Ethiopian Renaissance dam currently
under construction is located downstream of all of the
other potential dam sites in Ethiopia (see figure 1). The
dam if fully completed as planned with 6000MW
installed capacity, would impound a 62 BCM (Billion
cubic meters) reservoir which will have a full supply
level of 640masl (meters above sea level). This reservoir,
referred to in this study as GERD, would inundate the
site of the proposedMandaya dam, butwould still allow
an alternative reservoir named ‘Upper Mandaya’. A
smaller design with 620 masl full supply level (see
table 1) at the site of GERD, which we will refer to as
Border dam, would allow the implementation of Man-
daya dam. Further upstream, the BekoAboHigh can be
implemented instead of the most upstream proposed
dam site, Karadobi, or the smallest of the proposed
dams, Beko Abo Low, could simultaneously exist with
Karadobi. The Border dam design is not actively being
considered (Jeuland and Whittington 2014) but it is
included here to demonstrate the proposed approach.
Mutually exclusive reservoir designs are given in table 1.

The Blue Nile reservoirs would provide benefits
through regulation of the river for irrigation purposes
(Goor et al 2010) and by providing energy (Whittington
et al 2014). This study contributes to the BlueNile infra-
structure literature by exploring what combinations of
new Ethiopian reservoirs, their storage sizes and

operating rules, would perform best considering several
performance metrics. We also investigate what new
reservoir systemdesigns, optimized for Ethiopian bene-
fits, would most benefit Sudan irrigation and hydro-
power interests. The minimization of total Ethiopian
storage capacity is included as one of the optimized
objectives in an attempt to represent the potential inter-
ests of Nile stakeholders wishing to minimize the water
and land footprint of the dams. This informs planners
about howmuchhydropower productionwould be lost
in the best case (assuming an optimized system) for his-
toricalflows if theywere to opt for less storedwater.

This study aims to show how impacts of the dam
system (including some downstream impacts) depend
on design parameters of the Ethiopian dams. The
approach is applied to a proof of concept evaluation of
proposed Blue Nile reservoirs in Ethiopia. Results of
this study are intended to demonstrate themethod but
not to be taken as prescriptive recommendations.

3.Methods

We employ a heuristic optimization approach where a
search algorithm (Kollat and Reed 2006, Reed
et al 2012) is coupled with a simulation model of the
water resources system (Matrosov et al 2011). The
water system simulation model representing the Blue
Nile includes 3 irrigation demand, 9 reservoir node
and 16 junction nodes and 13 links representing river
reaches. The system model was built using the inter-
active river-aquifer simulation system 2010 (‘IRAS-
2010’) described byMatrosov et al (2011).

3.1.Many-objective optimization formulation
The problem is formulated as a seven-objective optim-
ization problemwith 2 existing reservoirs and 7 proposed
reservoir designs.Theobjectives are evaluatedby simulat-
ing the system monthly using 50 years of monthly
historical flow data. The objectives include minimizing
the storage size of new infrastructures, maximizing firm
monthly and average annual energy generation from the
proposed dams and maximizing energy generation and
minimizingwater supplydeficit for irrigation served from
the existing 2 reservoir system. Minimizing the number
of reservoirs is also included as an objective to consider
possible preferences for a simpler systemdesign.Decision
variables include the activation of new reservoirs, their

Table 1.Parameters of damprojects.

Reservoir Mutually exclusive with MaxStorage (MCM) Installed capacity (MW)

BekoAboHigh Karadobi, BekoAboLow 31 692 1940

BekoAbo Low BekoAboHigh 1751 935

Border (FSL 620) GERD 34 970 2400

GERD (FSL 640) Border dam 62 930 6000

Karadobi BekoAboHigh 40 200 1600

Mandaya UpperMandaya 48 088 2000

UpperMandaya Mandaya 27 702 1700
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storage capacity and reservoir release rule parameters.
Themulti objectiveproblem is formulated as:

F f f f

f f f

Minimize , , ,
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Where RES is the set of all reservoirs given in

table 1, whilem RESt Ì are the sets of mutually exclu-
sive designs given in rows in the table.

Where

Fx = Objective function

fSC
= Aggregate storage capacity of reservoirs in themulti-

reservoir system

fFEE
= Reliability of the energy output,measured as the

monthly energy generation exceeded 95%of the

time. The objective is tomaximize theminimum

monthly energy generation from all time steps

(months) in the simulation.

fAAE
= The average annual energy generation from the com-

bined BlueNile dams in Ethiopia

fAAS
= Average annual energy generation from theRoseires

and Sennar dams combined

fIDS
= Average annual Irrigationwater supply deficit in the

BlueNile schemes in Sudan

f RNo es
= Number of reservoirs

mt Sets ofmutually exclusive designs (columns 1 and 2

in table 1) overwhich logical constraints are set.
i j, Notations refereeing to proposed and existing dams

respectively

Yi Decision to activate reservoir i

Capi Storage capacity of reservoir i

Op , Opi j Operation rule parameters of proposed and existing

reservoirs respectively

We aim to answer the question, what combina-
tions of assets perform well for the historical flow
record. The storage capacity (Scap) varies between
maximum storage (SMax) and storage corresponding
to the minimum operating level of the hydropower
generators (SMol). The study does not consider the
future progression of time, and discounting is not
used. The storage size is used as a rough proxy for capi-
tal costs.

Because upstream reservoirs alter flow regimes,
downstream reservoirs operating rules may need to
change if dams are built upstream.With simultaneous
design and operating rule optimization, the selection
of reservoirs and their release rules are jointly con-
sidered by the search algorithm to increase perfor-
mance. The proposed approach identifies high
performing designs of multi-reservoir systems assum-
ing optimally coordinated operations formulated as a
piecewise linear curve for each reservoir (figure 2).
Reservoir designs where the storage sizes are opti-
mized are compared with those for which the storage
sizes are assumed fixed to demonstrate the impact of
concurrent optimization in achieving efficient invest-
ment portfolios.

3.2. Computational details
The optimization is conducted using amany-objective
evolutionary algorithm which have proved popular in
water system applications (Labadie 2004, Reed
et al 2013). We employ the Epsilon-Dominance Non-
dominated Sorted Genetic Algorithm II (Kollat and
Reed 2006, Tang et al 2006) linked to the water impact
model via a wrapper code.

The ε-NSGAII generates its initial random popu-
lation of decision variables by exploiting uniform ran-
dom sampling within the user specified ranges. These

Figure 1. Locations of proposed reservoirs in Ethiopia and existing dams in downstreamSudan.
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variables are then passed as input variables to the water
resources simulator which evaluates the performance
of the system. The performance information is passed
back to the ε-NSGAII algorithm which evaluates the
fitness of the decision variables to produce the next
generation of decision variables. We ran the algorithm
(parameters given in table A1) for 50 000 function eva-
luations based on a visual assessment convergence and
time-varying diversity of the evolving solutions. To
ensure the final solutions are not influenced by the
randomly generated initial populations we ran the
algorithm 5 times with different seed values. The
results from each run are then sorted together to pro-
vide the best overall reference set (Kollat et al 2008).
The proposed multi-objective system design analysis
provides Pareto-approximate sets of designs for which
no objective can be further improved without dete-
rioration in at least one other objective (Reed
et al 2012) (i.e., the ‘non-dominated’ set of infra-
structure portfolios). Heuristic search results cannot
be mathematically proven to be Pareto-optimal hence
the term ‘Pareto-approximate’ (Datta et al 2008).
Visual analytic trade-off plots (Vitiello et al 2012, Reed
andKollat 2013) are used to present the results.

3.3.Data
We use a publicly available database of proposed Blue
Nile reservoirs and their characteristics collected by
the Nile Basin Initiative (NBI-ENTRO 2015). Water
demand patterns assumed for the three irrigation sites
served by the Roseires and Sennar reservoirs in the
Blue Nile in Sudan are given in figure A1 in the
appendix. A 50 year monthly stream flow data set is
used to simulate the performance of reservoir designs.
Because information on methods used for filling gaps,
and estimating ungauged catchments is not accessible
(Block and Strzepek 2010, Alan 2012, NBI-
ENTRO2015), results are only indicative and intended
to demonstrate themethodology but not to be taken as
prescriptive recommendations.

4. Results

Analysis results consist of trade-off curves built of
Pareto-approximate designs; each design consists of
existing reservoirs and one or more new reservoirs,
their storage capacities, and operating rules. The
‘efficient’ designs cannot be further improved in any
dimension without deterioration of at least one other
objective (Olenik and Haimes 1979, Mavrotas and
Florios 2013).

In the following sections, we present non-domi-
nated designs of proposed individual new reservoirs
(section 4.1) and of multi-reservoir system designs
(4.2) considering multiple performance metrics.
Reservoir operating rules for the different Pareto-
approximate reservoir configurations are discussed in
section 4.3. Finally, section 4.4 investigates the down-
stream impact of designs that are Pareto-approximate
in upstreamobjectives.

4.1. Single dam strategy
This section presents performance of non-dominated
designs of single new dams using different operational
strategies, e.g., maximizing average annual energy or
firmmonthly energy generation.

The points with darkened fills in figure 3 showper-
formance of proposed reservoirs without storage
capacity optimization, i.e., Cap CapMax .i i= For a
reservoir with a given storage capacity, operating rule
parameters (which are decision variables) can be cho-
sen tomaximize the firm energy (panel (A)) at a cost of
the average annual energy (red colored shapes in
figure 3 panel (B)) and vice-versa.

Panel (B) shows that when operating rule para-
meters are chosen to maximize annual energy, the
GERD works well over a wide range of capacities.
Although a GERD design with intermediate storage
capacity performs better when maximizing annual
energy (in panel (B)), it is inferior to Mandaya and
Beko Abo High dam designs (in panel (A)) if the

Figure 2.Operating rule curve as represented in thewater resource simulationmodel adapted from (Hurford et al 2014).Rcri,,RMin,
RMax: release values corresponding to the dead storage required for siltation (SDead), the storage level beyondwhich hedging is
employed (SMin) and the storage capacity SCapacity, respectively. The storage capacity itself varies betweenmaximum storage (SMax) and
storage corresponding to theminimumoperating level of the hydropower generators (SMol). Arrows indicate allowed directions of
search for the optimized decision rules (the coordinates of points A, B andC).
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objective is tomaximize firm energy. Therefore, if firm
energy is preferred and a storage capacity of 48 or 30
BCM are chosen for other reasons as the upper storage
limit, Mandaya and Beko Abo High dam respectively
would be better choices than theGERD.

4.2.Multi-reservoir systems
Figure 4 shows designs that include more than one
reservoir on the firm energy versus the total combined
storage capacity (panel (A)) and energy generationversus
total combined storage capacity trade-off (panel (B)).

A 4-reservoir system of GERD, UpperMandaya,
Karadobi and Beko Abo Low (‘d’ in panel (B)) achieve
the highest average annual energy generation capacity
of more than 39 TWh/yr, an alternative 4-reservoir
system with Border dam, Mandaya, Karadobi and
Beko Abo Low (‘e’) being the next largest. Labels ‘c’
and ‘n’ in figure 4 show alternative designs recom-
mended (for similar aggregate storage sizes) when
maximizing firm energy (label ‘c’) and for maximizing
annual energy (label ‘n’). Some portfolios (e.g. designs
‘u’ and ’v’) do well in both annual energy and firm
energy whereas other designs (e.g. labeled ‘a’, ‘b, ‘c’)
only dowell in one of these.

Stakeholders may prefer reservoir systems with
smaller aggregate storage capacity as these would leave
lower local environmental footprint and could trans-
late to a lower cost. Fewer reservoirs could also be pre-
ferable (e.g. easier to implement, quicker onset of
benefits). Pareto approximate portfolios that mini-
mize the number of reservoirs are shown infigure 5.

Figure 5 shows the relationship of the optimal sizes
of the alternative Border and GERD dams (circles and
squares respectively in panel (B)) with the overall
energy generation capacity of the system. The plots
show Border dam with reduced storage size is Pareto-
approximate in most combinations (lighter circles)
that do not constrain the number of reservoirs. The
optimal size of the Border dam depends on which
upstream reservoirs are implemented, with reductions
to its size improving overall performance (i.e., lighter
colored circles approach the ideal solution, e.g. ‘q’, ‘x’,
‘y’). The GERD designs with current storage size
(figure 5 label ‘o’) is dominated by two (‘p’) or three
reservoirs (‘q’) i.e., with less aggregate storage size and
higher energy generation. However, the current design
of the GERD (with 100% of its stated storage size) is
Pareto-approximate for plans that aim to minimize

Figure 3.Performance of efficient non-dominated strategies that build only one new reservoir as seen in the storage capacity versus
firm energy (panel (A)) and storage capacity versus average annual energy (panel (B)) two-dimensional trade-off spaces. Panel (B) also
shows the performance of Pareto-optimal designs operated formaximizing firm energy (green) in comparisonwith Pareto-optimal
designs formaximizing annual energy (red). Some designs such asMandaya (‘M_f’ and ‘BAH_f’) , which are Pareto-approximate for
maximizing firm energy (panel (A)) are not Pareto-approximate formaximizing annual energy. Optimizing storage size of designs
(shownwith hollow shapes) achieves better performance (e.g., ‘B_a2’) compared towhere the storage size of reservoirs is assumed
fixed (shownwith dark fillings e.g., ‘UM_a’).
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number of reservoirs such as one (‘o’), two (‘r’) and
three (‘s’) reservoir systems.

4.3.Operating rules
In this section we show how optimized reservoir
operating rules change depending on system config-
urations using GERD as an example. Figure 6 panel
(A) displays storage and release relationships over the
full simulation period forGERD reservoir.

Upstream regulation when reservoirs are added
(e.g., Beko Abo High, Upper Mandaya) allows the
GERD to function with less variation and a high sto-
rage level (green star, orang circle and magenta trian-
gle) compared to the standalone GERD (blue square in
figure 6 panel (A)).

Figure 6 panel (B) shows monthly energy genera-
tion fromGERD for annual energymaximizing opera-
tions as a standalone (‘o’) and in coordinated
operation with upstream dams (‘r’, ’s’, and ‘d’ in
figure 5). Both the minimum energy that may be
required to be guaranteed as firm energy (to be gener-
ated close to 95%–100% of the time) and the highest
monthly energy (e.g., available only 5% to 20% of the
time) are improved with addition of upstream
reservoirs.

4.4.Downstream impact of proposed reservoirs
In this section, we investigate the impact of upstream
Pareto-approximate designs identified in figure 3 on
the Sudanese system. Figure 7 shows the highest

Figure 4.Performance of non-dominated reservoir portfolios thatmaximize firm energy (panel (A)) and annual energy (panel (B))
andminimize aggregate storage (y-axis on both panels). Letter labels assigned to portfolios are the same in each panel. Panel (B) shows
that designs for which storage capacity is optimized achieve better performance inminimizing aggregate storage size in some ranges of
the trade-off space (between 8 and 35 TWh/yr) compared towhen the storage size of reservoirs is not optimized (dark filled shapes).
The plot reveals what systemdesigns aremost efficient as total system storage capacity is decreased. Panel (C) show the reduction in
annual energy (panel (B)) iffirm energy is preferred by overlaying the annual energy performance of designs that are Pareto-
approximate formaximizing firm energy (filled shapes) andminimizing aggregate storage size. Overall, this plot shows that for high
energy producing systems (left hand side of each panel) that achieve a relatively small overall system storage, the portfolios with the
Border andGERD (e.g., ‘d’, ‘e’, ‘v’, ‘n’ and ‘k’) reservoirs aremost efficient.
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achievable performance of the two existing Sudanese
reservoirs with designs (i.e., reservoirs, storage capa-
city and operating rules) that are Pareto-approximate
for Ethiopian objectives of maximizing firm and
annual energy at least storage capacity.

Figure 7 shows the average irrigation water sup-
ply deficit for a simulation period of 50 years. Down-
stream system performance (in Sudan) is affected by
what single reservoir is built upstream (shown with
shapes), its size (labels) and its operating strategy
(color). For each portfolio plotted in figure 7, the
operating rules of the two Sudanese reservoirs,
Roseires and Sennar, are optimized to adjust to the
new hydrologic conditions each upstream system
design implies. Although the downstream system
performance is improved under most designs, a large
storage (shown with % of maximums storage capa-
city), Mandaya and GERD operated for firm energy
(green upright triangle and square respectively near
origin) and Upper Mandaya operated to maximize
annual energy (red triangle pointing downwards near
origin of figure 7) are most favorable to Sudanese sys-
tem performance.

5.Discussion

5.1. Screening new reservoirs within the BlueNile
multi-reservoir system
A multi-criteria approach to screening proposed new
reservoirs within multi-reservoir systems is proposed
and applied to the Blue Nile multi-reservoir portfolio
design problem. The method reveals the trade-offs in
management objectives that the most promising
(Pareto-approximate) system designs (incorporating
new and existing dams, their sizes and their operating
rules) imply. High performing designs which achieve
the most efficient trade-offs between conflicting
objectives are revealed visually. The mapping of assets
in performance space, e.g., figures 3–5, summarize
which asset combinations achieve what performance
providing valuable insights to systemplanners.

The results show the combinations of assets that
work best together vary throughout the performance
space. Figures 3 and 4 were used to assess which subset
of designs are Pareto-approximate revealing how cer-
tain assets do well under several sets of objectives (e.g.
designs ‘u’ and ’v’ in figure 4) whilst others not as well
(e.g. design ‘a’, ‘b, ‘c infigure 4).

Figure 5.Contains the same Pareto-optimal portfolios asfigure 4 panel (B) butwith an additional objective:minimizing the number
of new reservoirs. Panel (A) shows the performance reduction as the number of reservoirs (shownwith insidefill color gradient) are
minimized. Panel (B) shows the optimal size of the BorderDam (Circles) andGERD (squares) relative to theirmaximum storage
(shownwith color gradient). The plot shows that the Border damwith reduced storage size is Pareto-approximate inmost
combinations (lighter circles) that do not limit the number of reservoirs.
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Reliability measures for hydropower systems can
be difficult to commensurate with cost and benefit
measures. Designs that have the highest average
annual and firm monthly energy generating capacity
are in general desirable. However, those efficient in
maximizing annual energy do not necessarily perform
best for maximizing firm energy output. Incorporat-
ing energy reliability, a non-monetary metric of inter-
est to system planners, shows how multi-objective
analysis helps reveal practical designs with complex
combinations of monetary and non-monetary
benefits.

Investment costs and costs associated with the
downstream impact of projects often are accrued by
different stakeholders. Due to ongoing disputes over
Nile water use rights, selecting designs on the aggre-
gated net benefits, i.e., total benefits estimated from
energy generation, capital costs and costs incurred by
downstream users (reduction in benefits due to
upstream intervention) may be difficult. In reservoir
systems required to meet a number of conflicting
objectives held by upstream and downstream system
owners, explicit consideration of all major stakeholder
objectives help identify potential compromise designs
and the trade-offs in benefits these designs imply.
Visual assessment of trade-offs can facilitate stake-
holder deliberations post optimization, meaning
weights are not required as in ‘apriori’ multi-criteria
analysis. Many-objective optimization as shown here
allows planners to visually assess important trade-offs
where stakeholder preferences are evolving. Learning
and exploring about benefits and negative impacts of
new investments help different parties assess new
designs, compromise on their benefit distribution and
hopefully agree upon an acceptable way forward. Con-
sidering multiple goals and their trade-offs explicitly

and simultaneously in system planning can provide
valuable assistance in the decision making process
(Kasprzyk et al 2009).

Figure 4 shows jointly optimizing reservoir capa-
cities and operating rules achieves better performing
designs than only optimizing the coordination of
rules. Figures 5 and 6 demonstrated that optimal sto-
rage size and optimal operating rules for a reservoir
depend on the portfolio of reservoirs included in any
particular design. Plots like figures 5 and 7 that show
the performance trade-offs of new dams as their sto-
rage capacity is reduced could be of interest to those
arguing for larger or smaller reservoirs. Results show
assessing new reservoirs considering their coordina-
tion with existing and other new assets enables effec-
tive screening of new reservoir designs.

5.2. Implications for BlueNile infrastructure
development
Given our current data and modeling assumptions,
results argue that multiple reservoirs achieve better
results at lower aggregate storage capacity. The current
GERD design is not Pareto-approximate for maximiz-
ing energy generation for the least storage capacity
possible (figure 4 panel (B)) but it is Pareto-approx-
imate with regard to maximizing energy generation
while minimizing number of reservoirs (figure 5 panel
(A)). GERD only requires one dam to achieve the
benefits rather than two or three as the nearby more
efficient portfolios do. If several dams could be built at
once, it would be advantageous to build a combination
of reservoirs rather than a single reservoir with
equivalent storage size, if not, GERD is an efficient
alternative for the benefits considered in this study.

Storage-size-optimized designs (hollow shapes in
figure 4) perform better in energy generation

Figure 6. Storage versus release (Scatter plot panel (A)) andmonthly energy generation exceedance probability (panel (B)) from
GERD. The plots compare optimal operating rules andmonthly energy outputs for annual energymaximizing operations of a
standaloneGERD (blue squares) and inGERDoperated in coordinationwith upstreamdams (‘r’,‘s’, and ‘d’ infigure 5).
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compared to those at maximum capacity for which
only operating rules are optimized (shapes with dark
outline in figure 4) in some ranges of the trade-off
space. Results show if constructing more than one
dam was possible at the same time and Border dam
were to be selected, less than its maximal storage
would have been efficient up to 35 TWh/yr (e.g., ‘v’ on
panel (B) in figure 4). Outside of this range, the max-
imum storage size designs of each reservoir are most
efficient. Figure 5 panel (B) presents system designs for
which storage size of the downstream most reservoirs
GERD and Border dam are optimized (shown with
color and shape).The maximum storage size of the
GERD is efficient in all ranges where the number of
reservoirs is purposely limited. Although reducing the
storage size of GERD leads to Pareto-approximate
designs (e.g., label ‘q’ in figure 5 panel (B)) at lower
ranges of energy generation capacity. This would limit
future expansion potential (e.g., ‘d’,‘s’,‘r’ in figure 5)
and performance in designs aiming to minimize the
number of reservoirs as it would involve, for example,
constructing the GERD and the Beko Abo High (‘p’)
with reduced storage size.

Figure 6 panels (B) shows that the reliability of
energy output from the GERD will be improved with
addition of upstream reservoirs. Figure 7 showed

downstream irrigation deficits and hydropower pro-
duction in Sudan given different optimized standalone
Ethiopian reservoirs. Sudan’s benefits depend on
upstream reservoir storage capacities and operations
(i.e., whether they maximize firm or total annual
energy). Figure 7 showed the Mandaya design would
perform better than all alternative single dam designs
from the Sudanese perspective including Border dam
if it was to be operated for firm energy. The current
GERD design performs best if it is to be operated to
maximize annual energy. The results also show redu-
cing the storage size of the GERD reduces the irriga-
tion water supply performance. Coordinated multi-
purpose operation of Ethiopian reservoirs could
potentially further improve performance of the down-
stream system. However the potential collaborative
use of the Ethiopian and Sudanese and other down-
stream reservoirs is out of scope for this study which
limits itself to predicting the best performance achiev-
able in Sudan when the Ethiopian system is operated
to eithermaximize annual orfirm energy.

Study assumptions and limitations discussed next
strongly impact the results. At it currently stands, the
analysis results can be summarized as follows. A four-
reservoir system, either with GERD or Border dam,
can generate more than 39 TWh/yr. If a total energy

Figure 7.Key Sudanese systemmetrics for upstreamPareto-optimal designs limited to a single upstreamdam (same designs
considered infigure 3). Shapes showwhich single damachieves the performance; optimized storage capacities are givenwith labels as
percentage ofmaximum storage capacity. Green colored shapes showdownstream systemperformance for upstream reservoirs
operated tomaximizefirm energy; red colored ones showdesigns where upstream annual energywasmaximized. The plot shows
Mandaya andUpperMandaya (green upright and downward pointing triangles, respectively, near the ideal solution), with large%of
theirmaximum storage capacity operated forfirm energy andUpperMandaya andGERDoperated tomaximize annual energy (red
triangle pointing downwards and red square, respectively), are themost favorable designs when considering Sudanese irrigation and
energy generation objectives. Note: Sudanese objectives displayed on the plot axes abovewere not optimized for in themodel
formulation described in this paper.
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generation capacity of less than 35 TWh/yr is accep-
table, Border dam is in the efficient asset mix in lieu of
GERD. Although once it has been filled a two-reser-
voir system (e.g., GERD and Beko Abo High) achieves
higher energy production with a lesser aggregate sto-
rage capacity than a standalone GERD, the current
GERD-only design is the best possible one-reservoir
system design given the objectives and assumptions
considered in this study. Furthermore, if operated to
maximize annual energy, the current GERD design
(with 95% to 100% of the proposed storage capacity)
enables the highest levels of downstream Sudanese
benefits assuming Sudan would change its reservoir
operations to adapt to the newupstreamdevelopment.

5.3. Limitations and futurework
Recent papers explore climate change impacts on the
economic feasibility of the projects and the impact on
the downstream system that filling and operating of
these reservoirs entails (Block and Strzepek 2010, Jeu-
land andWhittington 2014, King and Block 2014). Here
our focus was on optimizaing joint operations and
investments over the historical period to investigate
potentially promising investment portfolios. This study
focuses on a trade-off analysis of alternative designs and
leaves the consideration of uncertainty of filling periods
and the long-term impacts of climate change or other
supply/demand changes for future work. The study is
deterministic, the assets are evaluated over one hydro-
logical time-series (the historical one) rather thanmulti-
ple plausible futures. Also, as discussed in section 5.2,
this paper does not consider possible inter-country
collaboration; all plots maximize benefits from the
country where the dams are located (in this case
Ethiopia). This study onlymodeledBlueNile impacts.

The study assesses the storage size requirements
assuming fixed installed power capacities. An aggre-
gate net benefit maximizing objective considering var-
iation in cost and installed power capacities with
storage size, peaking power demand and the cost of
delay in onset of benefits could provide more decision
relevant information. The study uses monthly time
steps. The firm energy metric used in this study repre-
sents the seasonal and inter annual variation of
monthly energy generated. Incorporating other short-
term performance metrics such as energy supply relia-
bility considering the daily and hourly demand dis-
tribution which are of interest to system planners
could revealmore insights on the design problem.

Only benefits along the Blue Nile and for few major
irrigation sites in Sudan are considered. The impact/ben-
efit of regulation on other important dams on the Main
Nile (Merowe and Aswan) and impacts of Ethiopian
dams on Egypt are not assessed in this proof of concept
study. The study also ignores possible changes of crop-
ping patterns in Sudan, i.e., the change in magnitude
and/or timing of seasonal irrigation demand with the

availability of more regulated flow from Ethiopian dams.
Finally in this study reservoirs use one operating policy,
the standard linear operating policy. The operating rules
are assumed to be fixed throughout the time horizon and
do not vary when basin conditions change as they might
with real operators.More complex rules that changewith
environmental conditions could likely attain better per-
formance and hence might change the systems designs
recommendedwithin this study.

6. Conclusions

Increasingly new reservoirs will be built within existing
multi-reservoir systems with significant stakeholder
preferences and complex distributions of diverse system
benefits. Evaluating future designs based on aggregating
all benefits will in many situations not be helpful; it will
be more helpful for planners to evaluate various
stakeholder defined goals and track the implications of
various infrastructure investments on these. A screening
method is proposed that simultaneously optimizes the
operation and sizing of reservoirs when searching for
promising multi-reservoir system configurations. The
approach works by linking a water resource system
simulator of existing and new reservoirs to a multi-
criteria heuristic search optimization algorithm. The
approachworks for anynumber of objectives and ideally
are defined through repeated consultation with stake-
holders and/or decision-makers to ensure appropriate
investment criteria are being used. Outputs include the
set of approximately Pareto-optimal systems designs
which canbe viewed in customized scatter plots showing
how different objectives trade-off for the most efficient
designs and how proposed assets map to performance
space. The approach is designed such that it can serve a
single organization’s planning or potentially aid negotia-
tions on future reservoir development between different
stakeholder groups (e.g. upstreamanddownstream).

The approach is applied to a proof of concept eva-
luation of proposed Blue Nile reservoirs in Ethiopia.
Proposed system designs were obtained via minimizing
aggregate storage capacity whilst maximizing monthly
firm energy and total energy production. The method
was used to identify those Ethiopian reservoirs and their
capacities that achieve the greatest firm or total annual
energy production at least aggregate system storage.
This study could benefit from amore thorough analysis
of the impact of the new upstream interventions on the
many downstream Nile water uses. The type and num-
ber of objectives considered in this study and assump-
tions are preliminary and changeable.

The proposed approach for screening efficient sys-
tem designs allows the analyst to present decision
makers with a wide range of designs and the trade-offs
they imply to informdeliberation.
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