
UCL - University College London

Department of Statistical Sciences

Modelling neonatal
electroencephalogram time series

A thesis submitted for the degree of Doctor of Philosophy

Author: Supervisors:

Simon Wallace Prof. Sofia C. Olhede

Prof. Maria Fitzgerald

Dr. Lorenzo Fabrizi



I, Simon Wallace, confirm that the work presented in

this thesis is my own. Where information has been de-

rived from other sources, I confirm that this has been

indicated in the thesis.

Signed:

1



Abstract

Creating a model for brain activity is a highly complex task; this is especially true

in modelling neonatal electroencephalogram (EEG) signals. Whereas previous work

is motivated by improving seizure detection, this research focuses on describing the

development of these complicated multivariate signals. Using data collected from

inpatients at University College London Hospital at different degrees of prematurity,

we propose a model for background and somatosensory response neonatal EEG sig-

nals and subsequently make inferences about the observed EEG signals using this model.

We construct a univariate model for neonatal EEG by analysing the second order prop-

erties of these signals, taking into account time segments which have time-heterogeneous

second order properties. To do so we utilise time, frequency and time-frequency domain

methods. The presented univariate model is combined with a time domain correlation

structure to generate a multivariate representation which is possible, in part, due to the

resolution of the data. Furthermore, the parameters and signal components are best

described by taking into account not only the age at which testing occurred, but also

the age at which an infant was born. This research has attempted to create a model

that is not only descriptive of somatosensory responses, but also applicable in other

avenues of similar research.

We propose to use generalised linear models to describe the age dependence of the ob-

served time series, and use these models to simulate EEG observations. When modelling

characteristics of the estimated parameters, all models require the age pairing - age at

birth and age at test - as variables. Combined with an appropriate time domain corre-

lation structure, this allows us to achieve suitable estimates of observed signal structure.

The model class presented is a flexible and accurate representation of neonatal back-

ground and somatosensory response electroencephalogram signals, and can be used to

describe similar multivariate observations.
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Chapter 1

Introduction

The work in this thesis is a contribution to applied time series analysis. In particular

methods are developed to describe electrical activity in infant electroencephalography

(EEG). EEG observations are modelled in terms of frequency domain representations

so that brain activity can be associated with different temporal scales. The challenge of

applying time series methods to the data sets that will be studied in this thesis is that,

whilst adult EEG observations are very well understood, we shall model and estimate

representations of infant EEG signals. One of the main reasons this is difficult is that

infant EEG is extremely heterogeneous. In adult EEG the signals analysed are the result

of averaging several electrodes around the site of interest. Whereas in infants this is not

possible due to the fact that the infant brain is significantly different from the adult

brain [4,5]. This thesis will focus on the analysis of background EEG signals. The main

purpose of such models is to be able to discover abnormal, or stimulation associated

activity. In essence, it helps us build a null model understanding of what an EEG signal

would show if nothing interesting was happening.

Activity in the brain is the result of the polarisation and depolarisation of billions of

neurons instigated by an influx of ions across the cell membrane [1–3]. This results in

voltage fluctuations which are measureable using electroencephalography. First imple-

mented in the early 20th century, electroencephalography (EEG) records the changing

electrical activity by recording the output of multiple electrodes; the resultant signals

form a multivariate time series. These are inherently time-heterogeneous over long

epochs, however they contain time-homogeneous segments [1–3].
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1.1. Previous Research

To build a good model of background EEG signals we need to develop methods of describ-

ing time series observations that are not changing significantly in their generation across

time. Such behaviour will be called “time-homogenous”. In contrast, time observations

that are the consequence of stimulation or temporally localised activity will be time-

heterogeneous by their very nature of generation. The challenging statistics problems is

to propose models that can reproduce both time-homogenous and time-heterogeneous

structure so that we can assess how unlikely or abnormal certain temporal characteristics

are. To focus our efforts, we shall answer the following questions:

1. Can we describe six seconds of background EEG using a time-homogeneous model?

2. Can we adapt such a model to incorporate time-heterogeneous signal components?

3. Are the properties of neonatal EEG dependent upon the age of the infant?

4. Given the time-heterogeneous nature of EEG signals, can we identify when the

baseline activity changes?

5. Do previous modelling techniques concur with the presented model?

All the presented concepts in this thesis are given to enable answers to these questions

to be obtained.

This and the subsequent Chapter are designed to provide an understanding of the moti-

vation and methods of this research. More priority is given to describing the statistical

concepts employed, however the electroencephalogram background presented is enough

detail to understand the outlined material.

1.1 Previous Research

The aim of this research is to describe, model and simulate neonatal EEG signals fo-

cusing upon how the signals change across development. We do so by analysing signals

recorded from inpatients at University College London Hospital, by the Department of

Neuroscience, Physiology and Pharmacology at University College London [6].

16



1.1. Previous Research

The developments and breakthroughs in measuring activity allow us to study and dis-

cover more about the brain, especially in the weeks after birth. Premature births are

increasing globally [7, 8], and as a result of medical advancement in the field of paedi-

atrics, the survival rate of premature (neonatal) infants has also increased [7, 8]. This

has enabled research into the early stages of brain activity to be undertaken, and has

been vital in improving the diagnosis and treatment of neonatal infants [4, 9, 10]. The

effect that premature birth has on the development of the infant, and the consequences

of invasive intensive care procedures on the development of the central nervous system,

are critical problems warranting further investigation.

Premature birth has been shown to correlate with long-term neurological problems

[11–13], as well as more immediate issues such as increased intercranial pressure [14].

Additionally, infants born prior to 33 weeks gestation have been shown to have decreased

brain volume later in life [15] as well as learning and developmental issues [16,17]. The

survival rates for neonatal infants (neonates) on the brink of viability has increased,

however they are at risk of complications. These complications are not only present

whilst under observation, but persist throughout life [13, 18]. It has been shown that

the procedures undertaken whilst in neonatal intensive care can affect the function and

structure of the brain [19].

The functional circuits of the brain form in the first stages of pregnancy [1,2]; however,

the final trimester is a crucial stage in the development of the neonatal brain [20–22].

Whilst the brain and spinal cord are developed in the first six weeks of gestation [23], it is

the final trimester where the crucial stages of development occur [20,21]. In this period,

the weight of the brain triples and the cerebellum increases by a factor of 30 [20, 21].

Any premature brain damage is more than just loss of tissue - neurological issues are

increasingly recognised to be trans-synaptic events - in which damage in one part of the

brain affects another region that is synaptically connected [21]. It has been illustrated

within developing neural circuits that if disruption occurs in one element, another will

generate similar activity [22]. Brain activity in the weeks following birth is crucial and

affects subsequent growth of the brain [15], and has long-term effects on future activ-

ity [11,12,23,24].
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1.1. Previous Research

The main focus of neonatal EEG modelling has been on seizure detection, with multiple

approaches outlined [25–46] and assessed [47,48]. Whilst an important area of research,

it has been made clear in recent years that a vital area has been overlooked: pain re-

sponse development. Whereas oral sucrose is seen as sufficient management for neonatal

pain [49–51], it has only recently been discovered that this is an unsuitable analgesic;

although the behavioural effects of painful stimuli are reduced, the response within the

brain is not [5].

Neonates can undergo many procedures in the weeks after birth, which can illicit so-

matosensory responses such as the nociceptive (pain) response [24]. The behavioural re-

sponse to these procedures was shown to change if an infant was born prematurely [52].

Infants born prematurely expressed less mature behavioural responses than those tested

within four days of birth at full term [52]. This illustrates the possible effect of prema-

turity and invasive procedures in the weeks after birth. Additionally, the time frame

immediately pre or post birth has been shown to be a critical period, during which

the underlying neuronal circuitry is vulnerable to long-term neurological development

problems [11,53–56]

If appropriate pain management techniques are not administered, the consequences could

affect an infants development and cause issues with pain response in later life [57–59].

Based upon parental perception, it has been reported that at 18 months ex-preterm

neonates were less sensitive to pain than ex-full term infants [11, 60]. Specifically it

has been proposed that exposure to repetitive pain causes excessive NMDA/excitatory

amino acid activation causing excitotoxic damage to the developing neurons [11]. Epi-

demiological studies have correlated neonatal complications with abnormal adult be-

haviour and in mammalian subjects, alterations in the adult brain have been correlated

with such complications [11]. Combined with the behavioural experiments previously

undertaken, this portrays a concerning pattern with regards to the effect of painful stim-

uli evoked in neonatal infants.

It has been shown that the response to somatosensory stimuli, such as touch or pain,

changes as the infant matures [4]. During brain development, specifically during the

formation of functional circuits, it has been shown that there is a transient sponta-
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1.2. EEG characteristics and analysis methods

neous neuronal bursting activity, known as a delta brush [61, 62]. Present in infant

responses prior to 35-37 weeks post menstrual ages, as well as in background EEG,

this activity is defined as a time-varying or time-heterogeneous process with simultane-

ous activity in the frequency ranges [0.5,1.5]Hz and [8,25]Hz [4, 46, 62, 63]. These delta

brushes are an important component of neonatal EEG that have been majoritively over-

looked, but are necessary to include in signal analysis [46]. EEG signals are inherently

time-heterogeneous multivariate processes, due to the changing brain waves present at

different times [1–3]. The aim of this research is to analyse the development of neonatal

EEG signals and we shall do this by utilising time, frequency and time-frequency domain

techniques with primary focus on the frequency domain.

1.2 EEG characteristics and analysis methods

We are motivated to use the frequency and time-frequency domains by the composition

of EEG signals and the corresponding brain waves [1–3]. Brain waves are classified by

the frequency bands that the wave is in, and correspond to different brain states. Figure

1.1 demonstrates such waves, and provides the corresponding frequency bands [1–3]

Utilising the frequency domain enables us to describe the signal’s covariance structure,

taking into account the waves present. The use of the frequency domain to analyse

EEG is a standard method of analysis [46, 64, 65]. The frequency domain describes a

signal’s covariance structure by describing its spectrum [66, 67]. However, EEG sig-

nals are time-heterogeneous, and thus require that we describe how the covariance

changes over time [1–3]. This can be done using the time-frequency domain [68]. EEG

signals can be viewed and analysed as multiple time-homogeneous segments (quasi-

stationary) [1–3,61,62]. We shall identify these segments by utilising the time-frequency

domain as the frequency domain is best utilised if analysing time-homogeneous seg-

ments. Utilising frequency domain analysis on time-heterogeneous signals describes the

frequency composition, however we lose information with regards to how the structure

changes over time.

When recording EEG, electrodes are usually placed according to the International 10-20

system and the analogue signal recorded; these signals are stored digitally and therefore
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1.2. EEG characteristics and analysis methods

must undergo conversion from analogue to digital format [1, 2]. This conversion proce-

dure defines the resolution of the signals, according to how many times per second the

signal is sampled, i.e. a 2000Hz signal is sampled every 0.0005s or 2000 times a second.

This sampling has an aliasing effect on the signal and as such anti-aliasing filters are

often applied [1,2,69]. Additionally, other filters are applied to “remove” unwanted com-

ponents - or artefacts - from the signal during this conversion [1–3]. A high-pass filter

would remove artefacts such as those from movement, whereas a low-pass filter would

remove artefacts such as breathing [1–3, 66, 67]. These signals are stored digitally once

referenced against a designated electrode, such as FCz in the data set presented [4, 6].

Electrodes are named according to the position of the electrode on the scalp. The letters

refer to the frontal, temporal, occipital and parietal lobes; the C stands for central, and

Figure 1.1: Common brainwaves and their corresponding frequency bands
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This figure provides illustrative example of the five common brainwaves and gives the

corresponding frequency bands that define these brainwaves.

20



1.2. EEG characteristics and analysis methods

is solely for reference. Odd numbers are on the left hemisphere, even numbers on the

right hemisphere and Z refers to electrodes placed on the midline [1–3].

It has been shown that in response to noxious and tactile stimuli, infants are more likely

to express a delta brush response prior to 35-37 weeks post menstrual age at test [4].

The effect of such responses to stimuli is concerning, considering the long-term neuro-

logical and behavioural effects of pain in neonates [12,52,58,60].

The maturational stages of neonatal EEG are well classified [61, 62]. These classifica-

tions illustrate that the delta brush activity is not only a response to somatosensory

stimuli, but can also occur spontaneously in background EEG recording. Background

EEG is a classification of EEG signal segments that refers to the baseline electrical ac-

tivity seen in an awake patient [1–3]. With neonates however, background EEG changes

across development with spontaneous delta brushes decreasing in frequency at around

37 weeks post menstrual age [61]. We can identify possible time-homogeneous segments

within background signals by investigating the segments between delta brushes, known

as inter-burst intervals [61,62].

The time heterogeneity of background EEG signals has been modelled and recreated

utilising fractional Brownian motion, creating time-heterogeneous signals by appending

simulated segments with different parameters whilst ignoring the contribution of delta

brushes to the time heterogeneity of the signals [70]. The time-heterogeneous nature of

neonatal EEG has not been accurately identified, with no understanding of how to recre-

ate the time-heterogeneous nature of the signal’s parameters. Given that we know EEG

signals are time-heterogeneous, it would be interesting to find the maximum/minimum

lengths of the component time-homogeneous segments.

As mentioned, the majority of neonatal EEG modelling has focused upon seizure de-

tection and has proved crucial in developing early detection procedures. The multiple

possible models proposed have not been used clinically, due in part to the large variabil-

ity in the infant [48]. Many analysis techniques have been proposed such as: Duffing

oscillators [70], linear time invariant filters [33], Kalman filters [71], adapted probabilis-

tic modelling [41, 44], autoregressive modelling [72] and causal modelling [73]. There is
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1.2. EEG characteristics and analysis methods

little agreement in modelling neonatal EEG signals with a diverse and eclectic range of

models employed. Many proposed models have placed importance on the signal to be

detected and the baseline activity is a secondary concern.

With such a heavy focus upon creating a neonatal seizure detection procedure, it is

clear that the modelling of neonatal background EEG is an important task and clinical

problem. An accurate neonatal background EEG model has wide ranging applications

to neonatal brain research, such as the development of cortical activity in response to

somatosensory stimulation or as a baseline to be used in abnormal component detection.

The multivariate nature of EEG has been described previously using the multivariate

autoregressive process [74]. However, little has been done when simulating the observed

correlation between electrodes, with simulation methods presented not addressing this

structure [71, 75]. Recordings obtained from surface electrodes are affected by the at-

tenuation of the different layers in the head, resulting in the amalgamation of signals,

and as such an artificial correlation structure [1–3]. Although it has been shown that

neonatal EEG is very focal by nature due to the high conductivity of skull tissue [76],

the spatial relationship of neonatal EEG is of analytical interest with recommendations

to use a high number of scalp electrodes to adequately capture this relationship [77].

When utilising frequency domain analysis methods, the aim is to describe a signal’s

covariance structure by its spectrum, which can contain long range and/or short range

dependence. The spectrum is a description of how the variance of a signal is distributed

over different frequencies. Therefore by modelling the spectrum of a signal, we describe

the second order properties.

Short range dependence (short memory) in a signal is where the immediate time points

have an effect on the covariance structure, and long range dependence (long memory) is

where more than the immediate time points have an effect on the signal. By analysing

the auto covariance sequence, which is the covariance of the signal with itself at different

pairs of time points, we can identify the type of dependence present. Long range depen-

dence illustrates slow decay to zero in this sequence, whereas short range dependence

illustrates fast decay. Therefore when utilising frequency domain methods, we aim to
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1.3. Structure and contribution of thesis

describe the structure of the covariance sequence utilising models which describe the

type of dependence present.

1.3 Structure and contribution of thesis

From six-second recording of neonatal EEG we explore these questions; and determine

partial answers for the unique data set provided by UCLH. [6]. We shall build, estimate,

analyse and simulate from a model constructed to explain the underlying observed signal

characteristics.

In Chapter 2, we describe the methods that we shall employ stating relevant theorems

and providing illustrative examples to enable an understanding of the statistical meth-

ods employed throughout this thesis. We then define our model in Chapter 3, refining

it from observations made from the data and obtaining parameter estimates. Chapter

4 investigates the characteristics of these estimates, in an attempt to produce relevant

parameter distributions; from which accurate realisations could be simulated. Having

performed the analyses univariately up to this point, in Chapter 5 we analyse the mul-

tivariate characteristics of the signals in the time domain. Utilising this multivariate

representation we simulate signals from our model, and compare the time domain charac-

teristics against the observed data and competing models. Following this we summarise

our conclusions before outlining possible avenues of future research, ways in which this

research could be extended and the limitations of this research.

The modelling and description of the activity within the brain is an ongoing task for

researchers, and will be for the foreseeable future. As such this thesis whilst applying

statistical methods to best describe the data set, and building upon previous work, will

hopefully serve as starting point for the development of the observed features.

This research has made several contributions to the understanding of this field. First

we have illustrated short and long range dependence in the covariance structure of EEG

recorded at high resolutions. Additionally, for EEG signals of up to six seconds in

length, we can utilise a time-homogeneous parameter model, i.e. the same parameters

across the signal segment. This parameterisation can be used even if time-heterogeneous
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1.3. Structure and contribution of thesis

components are present. Furthermore we have shown that we can extend our model to

incorporate time-heterogeneous components such as the delta brush.

Extending upon previous research, we have found evidence to suggest that the pairing

of age at birth and age at test is a better description of neonatal somatosensory stimuli

response development than just age at test. Similarly, this research concludes that the

signals recorded are less correlated in the time domain if obtained from a premature

infant or tested close to birth. Whilst information is lost modelling univariately, we can

recreate a set of EEG recordings by taking into account the time domain correlation

structure of similar recordings thus obtaining a multivariate representation from uni-

variate estimates.
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Chapter 2

Methodology

In the introduction we provided the motivation for utilising the frequency and time-

frequency domains to analyse our signals. Now we shall introduce and describe the

statistical tools utilised in this thesis.

We shall model the EEG observations by describing the first two moments of the signal

via the frequency domain. This modelling will take different forms if the underlying

process is assumed to be stationary. We start by describing methods that can applied

to signals with a similar second order structure to those observed. EEG signals can be

analysed utilising a number of methods [1–3, 78], with advancements in the recording

process and analytical software, further understanding of these signals can be obtained.

One such method that has benefitted from this advancement is frequency analysis, which

we shall outline in this chapter.

By analysing a signal in the frequency domain we can determine which frequencies are

present within the signal. Considering the composition of EEG as an amalgamation of

different brain waves, this provides an intuitive description that can describe the type

of brain waves present within a signal [1–3, 78]. In order to utilise frequency domain

methods to analyse a signal, we must first transform the signal from the time domain

into the frequency domain. There are several transforms that can be utilised to achieve

this task and we shall utilise the Fourier transform to obtain the frequency domain

structure of the signals. The frequency domain allows us to describe the second order

properties of a signal by describing the signal’s spectrum, and it is of use to have a way
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in which we can assess the suitability of a fitted spectrum. By describing a signal in

terms of its spectrum, we are describing its covariance structure in the time domain;

since our processes are Gaussian this is sufficient to describe the structure of the process.

The way in which a spectrum can be fitted falls into the two traditional estimation

methods, parametric and non-parametric. Parametric estimates assume a finite number

of parameters and a specified distribution, as opposed to non-parametric which does not

assume any distribution and allows an infinite number of parameters.

EEG signals are highly complex signals whose properties inherently change over time.

To best describe the spectrum of signals whose properties change over time we must

utilise time-frequency domain methods. The time-frequency domain describes how a

signal’s spectrum changes across time intervals and can be used to identify periods

where the characteristics of a signal remain constant. Periods where the activity changes

are referred to as time-heterogeneous, and require different approaches to their time-

homogeneous counterparts. Such segments are typically identified prior to analysis to

allow appropriate analysis to be conducted.

EEG signals are usually filtered to remove unwanted components that can mask features

within the signal [1–3]. The signals presented are filtered to remove unwanted artefacts

such as breathing or limb movement. Furthermore, as we are analysing a segment of

EEG signals they will contain a phenomenon known as aliasing, and as such a filter has

been applied to limit the aliasing effect on the signal; Aliasing relates to the sampling of

continuous signals and how this affects the frequency domain representation of the sig-

nal. The filtering that is applied in the preprocessing affects the spectrum of a signal as

it acts as a convolution. As such we need to apply the filtering function to the function

that we wish to estimate. Therefore taking into account the contribution of the filter

on the signals structure.

The outlined approaches are utilised to analyse the presented data set in this thesis;

from which we aim to obtain a description of the second order properties of six second

neonatal EEG signals across a range of developmental ages. In order to assess the

suitability of an estimated structure for these signals, we construct a procedure based

26



2.1. Fourier transform

upon the properties of the signal in the frequency domain. Following this we investigate

frequency domain methods by which we can estimate the structure of the signal, and

the effect that the preprocessing of the signals has upon this structure. Finally we

outline ways in which we can identify time-heterogeneous segments within our signals.

Throughout this chapter we utilise simulated data to illustrate these concepts.

2.1 Fourier transform

The Fourier transform, is one way to decompose a signal from the time domain into

the frequency domain [66, 67]. Similarly to the Fourier series, wave forms in the time

domain are decomposed and represented by a series of sine and cosine waves. The Fourier

transform results in a complex-valued signal, representing the amplitude and phase of

the component frequencies [66, 67]. Definitions of the continuous and discrete Fourier

transforms are given in Equations 2.1.1 and 2.1.2 respectively. The discrete Fourier

transform is important as it is used in the fast Fourier transform (FFT). The FFT is

one way in which the frequency domain representation of a signal can be obtained using

analytical packages such as R or MATLAB. [66,67,79]:

X (f) =

∫ ∞
−∞

(X(t)− µ)e−i2πftdt, (2.1.1)

Xk = ∆t
N−1∑
n=0

(Xn−µ)e−i2πkn/N = ∆t

N−1∑
n=0

(Xn−µ)e−i2πfkn∆t, fk ≡
k

N∆t
, k = 0, . . . , N−1.

(2.1.2)

We can see from these definitions that theoretically, the transform is performed over an

infinite range. However, in practice this is impossible; as shown the FFT decomposes

the n point signal, not an infinite length signal. This truncation has the same effect as

convolving the infinite signal with a finite length rectangular window. As such, we need

to know the effect that this has upon the frequency domain representation.

Consider two signals X◦(t) and Xn, where Xn is an n point sample from the infinite

length X◦(t), sampled every ∆t seconds/points. These signals have the frequency do-

main representations X ◦(f) and X (f) respectively and the relationship between them

is [66,67]:

X (f) =
∞∑

k=−∞
X ◦
(
f +

k

∆t

)
, − 1

2∆t
≤ f ≤ 1

2∆t
. (2.1.3)
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2.1. Fourier transform

From this Equation 2.1.3, we see that the Fourier transform of Xn, at a frequency f , is

the sum of the Fourier transform of X(t) across the frequencies f + k
∆t . As a result, we

cannot obtain X ◦(f) from X (f) because frequencies outside the range
[
− 1

2∆t ,
1

2∆t

]
are

folded into X (f). This is called aliasing and is an often overlooked aspect of frequency

domain analysis [66] - Figure 2.3 shows how aliasing can affect the signal’s structure.

In Equation 2.1.3 the bounding interval for f is known as the Nyquist interval. This in-

terval, defined by the sampling rate of the signal, determines the frequencies over which

a discrete signal can be analysed; in our dataset ∆t = 0.0005 indicating a Nyquist inter-

val of [−1000, 1000]Hz. The highest frequency with no aliases is defined as the Nyquist

frequency, and is the point about which the folding of frequencies occurs, this is the

bound of the Nyquist interval [66,67].

We can utilise the Fourier transform only for a specific subset of signals; specifically

stationary signals [66, 67]. We can however, use the Fourier transform for some non-

stationary signals, provided certain conditions are satisfied. The reason behind this

constriction of signals is as follows and we start with the spectral representation theorem

[66,67].

Theorem 2.1.1 (Spectral Representation Theorem). Let Xn be a real valued dis-

crete parameter stationary process with zero mean, with increments ∆t. There exists an

orthogonal process Z(f) defined on the interval [− 1
2∆t ,

1
2∆t ], such that:

Xn =

∫ 1
2∆t

− 1
2∆t

dZ(f)ei2πfn∆t, ∀n ∈ Z. (2.1.4)

The process Z(f) has the properties:

1. E{dZ(f)} = 0 ∀f ∈ [− 1
2∆t ,

1
2∆t ].

2. E{|dZ(f)|2} = dS(I) ∀f ∈ [− 1
2∆t ,

1
2∆t ] Where dS(I)(f) is the integrated spectrum

of Xn.

3. For any two frequencies f, f ′ ∈ [− 1
2∆t ,

1
2∆t ], since Z(f) is an orthogonal process.

Cov{dZ(f ′), dZ(f)} = E{dZ∗(f ′)dZ(f)} = 0.

This theorem shows any discrete stationary process can be written as an infinite sum

of complex exponentials. Consider the auto covariance sequence (ACVS), sτ , using
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2.1. Fourier transform

the spectral representation theorem, specifically property 3, the ACVS can be written

as [66,67]:

sτ =

∫∫ 1
2∆t

− 1
2∆t

E{dZ∗(f ′)dZ(f)}ei2π(f−f ′)n∆tei2πfτ∆tdf.

Through Theorem 2.1.1 and property 1, the only contribution to the integral occurs

when f = f ′, therefore:

sτ =

∫ 1
2∆t

− 1
2∆t

E{|dZ(f)|2}ei2πfτ∆tdf =

∫ 1
2∆t

− 1
2∆t

dS(I)(f)ei2πfτ∆t. (2.1.5)

Where the differential of the integrated spectrum, S(I)(f), is the spectral density func-

tion, S(f). Therefore the ACVS and the SDF form an FFT pairing, i.e. the FFT of the

ACVS is the SDF and vice versa. These equations illustrate what we want to achieve by

modelling in the frequency domain; we want to describe the ACVS of a signal through

its spectrum [66,67].

Stationarity is important due to property 3 of the spectral representation theorem. If

we were dealing with a non-stationary series we would have correlated increments, and

we could not define the spectrum as cleanly [66,67]. We would have to look at the corre-

lated increments between frequencies, nor is it guaranteed that the spectrum would be a

finite process. If we have a non-stationary process, under the definition of weak station-

arity, we might be able to utilise this representation. Such a case is fractional Brownian

motion, which is a non-stationary process due to the covariance being dependent upon

time, however has a defined spectral density function [67]. Fractional Brownian motion

(fBm) is a generalisation of Brownian motion whose increments are not required to be

independent; the covariance structure of fBm are described in Equation 3.2.2 [80].

If the parameters of any process change over time, so are therefore time-heterogeneous;

we cannot utilise this time-homogeneous description and the frequency domain. Instead

we must utilise the time-frequency domain to suitably describe the behaviour of a signal’s

second order properties.
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2.2. Estimating the second order properties of a stochastic process

2.2 Estimating the second order properties of a stochastic

process

For now let us focus upon estimating a signal’s spectrum, starting with data visualisa-

tion. Given a signal’s frequency domain representation, X (f), we can obtain a naive

estimator of the spectrum by taking the absolute value squared: the periodogram [66,67].

Definition 2.2.1 (Periodogram). The periodogram for a signal Xn is defined by:

Ŝ
(p)
X (f) ≡ ∆t

N

∣∣∣∣∣
N∑
n=1

(Xn − µ)e−i2πfn∆t

∣∣∣∣∣
2

=
1

N∆t
|X (f)|2 .

Which has properties:

1. V ar{Ŝ(p)
X (f)} =


S2
X(f) 0 < |f | < 1

2∆t

2S2
X(f) |f | = 0, |f | = 1

2∆t

2. Cov{Ŝ(p)
X (f), Ŝ

(p)
X (f ′)} = 0, 0 ≤ |f ′| < |f | ≤ 1

2∆t

The periodogram is a sensible starting point for frequency analysis as it can be viewed

as a diagnostic plot for the signal’s covariance structure. The periodogram is the sample

variance of the FFT, like the SDF is the variance of the orthogonal increment process

dZ(f) in the Spectral Representation Theorem. Thus, the periodogram is a method

of moments estimator of the spectrum. [66, 67]. Whilst it does not tell us the exact

relationship it does provide an insight into what is needed to obtain such a description.

From inspection of the periodogram the type of spectrum can be become obvious; for

example, red processes - such as fractional Brownian motion - are difficult to visualise

unless on a decibel (dB) scale; furthermore on this scale they show evidence of decay

from f = 0.

Fractional Brownian motion has different properties depending upon the Hurst param-

eter, which describes the amount of self similarity within the process. When the Hurst

parameter is greater than one we obtain an integrated processes, the periodogram of

such processes illustrates high bias due to leakage [66]. As well as susceptible to issues

due to leakage, the periodogram is an inconsistent estimator as the variance does not

asymptotically tend to 0 [66,67]. This can be rectified simply through application of the

periodogram’s variance stabilising function, the logarithm [67]. A by product of taking
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2.2. Estimating the second order properties of a stochastic process

logarithms is the Euler-Mascheroni constant, γ, which is something we need to be aware

of when plotting on a decibel scale - log10.

E{log(Ŝ
(p)
X (f))} = log{SX(f)} − γ, V ar{log(Ŝ

(p)
X (f))} =

π2

6
.

Then let the non normal random variable ε`(f) be defined for |f | < 1
2∆t as [67]:

ε`(f) = log

(
Ŝ

(p)
X (f)

SX(f)

)
+ γ,

which is equal in distribution to:

ε`(f) = log(χ2
2) + γ − log(2).

Therefore if we let:

Y (p)(f) ≡ log(Ŝ
(p)
X (f)) + γ,

Then for |f | < 1
2∆t :

Y (p)(f) = log(SX(f)) + ε`(f).

Therefore the log periodogram plus a constant (Euler-Mascheroni Constant γ) can be

written as the true log SDF plus the non normal noise variable ε`(f). This information

has been presented for two purposes, first we can identify the asymptotic distribution

of the periodogram as χ2
2 and as previously mentioned we need to take this into account

when plotting on a log scale, such as the decibel scale. [67]

The periodogram is a biased estimator of the spectrum, and is severely affected by

leakage which is the result of the finite length sequence in the fast Fourier trans-

form [66, 67, 79]. The expectation of the periodogram is equal to a convolution of the

Fourier transform of a rectangular window with the true spectrum [66, 67, 79]; an issue

to be aware of is that the FFT assumes the signal to be periodic and repeats the signal

accordingly. The resultant sharp discontinuity between the start and end of the signal,

as well as the abrupt way in which the rectangular taper goes to zero outside the inter-

val, results in leakage [66,67]. We have already presented this type of leakage discussed

above: aliasing. Leakage is a result of the signal’s energy being blurred across frequen-

cies, and is visible in the sidelobes of the Fejér kernel. The energy in the sidelobes of

Fejér’s kernel is the cause of leakage within an estimator, as sidelobes transfer power

from one region of the spectrum to another [66,67].
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2.2. Estimating the second order properties of a stochastic process

To illustrate this we shall simulate a 50Hz sine wave sampled at 2000Hz (i.e. ∆t =

0.0005s), and plot the periodogram of the signal - Figure 2.1. We should see a solitary

spike at 50Hz however we can see energy around 50Hz and across the spectrum, which

is leakage. We can reduce the sidelobes of Fejér’s kernel by applying a taper/windowing

function to our signal [66,67,81,82].

Figure 2.1: 50Hz Simulated Signal

0 100 200 300 400

-1
.0

-0
.5

0.
0

0.
5

1.
0

Time Domain

x

si
n(
x)

0 200 400 600 800 1000

-1
50

-1
00

-5
0

Frequency Domain

Frequency - Hz

S
pe

ct
ra

l D
en

si
ty

 F
un

ct
io

n 
- d

B

The plot on the left is the time domain representation of a 50Hz sine wave sampled every

0.0005s, the plot on the right is the raw periodogram - a naive estimator the spectrum.

We can see in the frequency domain plot evidence of leakage due to the energy around

the spike at 50Hz. As the signal is only a 50Hz sine wave we should not see any energy

at these frequencies, however due to the effect of Fejér’s kernel we see blurring/leakage

across them.

2.2.1 Bias reduction techniques

A taper is a suitable sequence of real valued constants, which smoothes the transition

of the rectangular window to zero; therefore reducing the sidelobes of Fejér’s kernel

and reducing leakage [66]. Application of a taper, hn, results in the direct spectral

estimate [66]:
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2.2. Estimating the second order properties of a stochastic process

Definition 2.2.2 (Direct Spectral Estimator). The direct spectral estimator of a

signal Xn is defined by:

Ŝ
(d)
X (f) = ∆t

∣∣∣∣∣
N∑
n=1

hnXne
−i2πfn∆t

∣∣∣∣∣
2

.

We obtain the smoothed spectral window of the taper applied from:

H(f) = ∆t

∣∣∣∣∣
N∑
n=1

hne
−i2πfn∆t

∣∣∣∣∣
2

.

Finally as a result of the orthogonal increments property of the periodogram the expected

value of this estimator is:

E{Ŝ(d)
X (f)} =

∫ 1
2∆t

− 1
2∆t

H(f − f ′)S(f ′)df ′.

This illustrates that the spectral window of a taper is a convolution of Fejér’s kernel,

with hopefully reduced sidelobes. This is illustrated by setting hn = 1√
N
, 1 ≤ n ≤ N ; as

the direct spectral estimate is then equal to the periodogram, and the spectral window

of the taper is equal to the Fejér kernel [66,67,82].

One possible taper which we can use is the cosine taper [66,82]:

Definition 2.2.3 (Cosine Taper). The cosine taper is defined as:

hn =


C
2 [1− cos( 2πn

bpNc+1)], 1 ≤ n ≤ bpNc2

C, bpNc
2 < n < N + 1− bpNc2

C
2 [1− cos(2π(N+1−n)

bpNc+1 )], N + 1− bpNc2 ≤ n ≤ N

Where p is the tapering ratio - p ∈ [0, 1] - the higher the value of p the more tapered the

signal is.

If we set p = 1 we obtain the Hanning window. The cosine taper reduces leakage within

the estimator by reducing the sidelobes of the Fejér kernel, which causes leakage within

an estimator. Furthermore, when dealing with segments of a signal the FFT has issues

with regards to the sharp discontinuity between the start and end of the signal. The

FFT assumes that the signal is periodic with period N and treats it as such, which is

not accurate in practice. The cosine taper smoothes the transition at the ends of the

signal to zero, removing this source of bias within the periodogram [66, 67]. Figure 2.2
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2.2. Estimating the second order properties of a stochastic process

shows the effect that this window has had on the simulated 50Hz signal, the spectral

leakage has been reduced.

Figure 2.2: 50Hz Cosine Tapered Simulated Signal
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The plot on the left shows the full - p = 1 - cosine tapered signal presented in Figure

2.1. The plot on the right shows the corresponding direct spectral estimator - red line

- against the raw periodogram from Figure 2.1 - black line. We see the same spike at

50Hz however we have also reduced the leakage as can be seen by the lower energy at the

other frequencies when comparing the direct spectral estimator and the raw periodogram.

Let us illustrate the effect that leakage can have on a simulated fractional Brownian mo-

tion process. Figure 2.3 shows the time domain representation and the cosine tapered

periodogram of a fractional Brownian motion process. Notice on the decibel scale we

can see clear evidence of decay in the spectrum; furthermore, the plot illustrates the

effect of aliasing and shows that unless the signal undergoes a process to minimise the

effect of aliasing, we need the spectrum to reflect this [67,83].

In the periodogram definition, several properties were given of this naive estimator of

the spectrum. The second property, asymptotic independence, allows estimates of the

spectral density function to be created by smoothing across frequencies. As mentioned

previously, tapering obtains a less bias estimate by smoothing across frequencies but

at the cost of increased variance [66, 67, 84]. Multitaper estimation is asymptotically
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2.2. Estimating the second order properties of a stochastic process

Figure 2.3: Simulated fractional Brownian motion process illustrating leakage
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The plot on the left is a time domain representation of a fractional Brownian motion

process. The plot of the right is the cosine tapered direct spectral estimator of the sim-

ulated fractional Brownian motion process. In the direct spectral estimator we can see

the effect of aliasing in the spectral density functions plotted. The green line is the spec-

tral density function taking into account the effect of aliasing, and fits the process better

especially at high frequencies when compared to the non-aliased spectrum.

consistent if the spectrum is continuous, however if the signal is finite bias is increased

due to blurring.

Multitapering, first outlined by Thomson in 1982 [85], obtains a spectral estimate by

averaging several orthogonal tapers. The multitapered spectral estimate is the average

of K direct spectral estimators and is defined by [66,67,85]:

Definition 2.2.4 (Multitaper Estimate). The multitapered estimate of a signal Xn

using k tapers is defined by:

Ŝ
(mt)k
X (f) = ∆t

∣∣∣∣∣
N∑
n=1

hn,k(Xn − µ)e−i2πfn∆t

∣∣∣∣∣
2

, Ŝ
(mt)
X (f) =

1

K

K∑
k=1

Ŝ
(mt)k
X (f).

Where {ht,k} is the data taper for the kth direct spectral estimator Ŝ
(mt)k
X (·) and has the

properties

E{Ŝ(mt)k
X (·)} =

∫ 1
2∆t

− 1
2∆t

Hk(f − f ′)S(f ′)df ′,
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2.2. Estimating the second order properties of a stochastic process

E{Ŝ(mt)
X (·)} =

∫ 1
2∆t

− 1
2∆t

H̄(f − f ′)S(f ′)df ′, H̄(f) =
1

K

K−1∑
k=0

Hk(f). (2.2.1)

The behaviour of the sidelobes dictates the bias of the estimate; therefore, the K spectral

windows must provide adequate protection against leakage, if we are to obtain a suitable

estimate with respect to minimising leakage. Utilising more tapers results in a reduced

variance, however at the cost of bias [66]. The more tapers utilised the smaller the

window over which the spectra is calculated; if a wide window is used then the estimator

will not be as smooth, it will have high variance. However if too narrow a window is

used then the estimator will lose information contained within the signal, it will have

high bias. When using a multitaper estimate it is important to strike a balance and

choose a value for the width of the window, W , and K which has a sufficient trade off

between the two. The rate at which the variance of Ŝ(mt)(·) decreases as the number

of eigenspectra K increase. The change in variance of Ŝ(mt)(·) as K increases can be

expressed as [66,84]:

V ar{Ŝ(mt)(f)} = V ar

{
1

K

K−1∑
k=0

Ŝ(mt)(f)

}

=
1

K2

K−1∑
j=0

K−1∑
k=0

Cov{Ŝ(mt)j(f), Ŝ(mt)k(f)}.

We shall illustrate the multi tapering approach utilising sinusoidal multi tapers [86]; the

bandwidth of the kth taper is 1
N centred around the frequency k

2N , as such the bandwidth

can be altered by adding or removing tapers [86]. Therefore sinusoidal tapers do not have

the parameter W , unlike other approaches such as discrete prolate spheroidal sequence

tapers [66,67,87–91]. The kth sinusoidal taper is defined as:

Definition 2.2.5 (Sinusoidal Multitaper). The kth sinusoidal multitaper is defined

by:

hn,k =

√
2

N + 1
sin

(
πkn

N + 1

)
.

We shall estimate the spectral density of a simulated AR(2) process with parameters:

σ = 1, φ1 = 0.9, φ2 = −0.8 and K=8. The estimated spectral density function from

sinusoidal multi tapering and the simulated spectrum can be seen in Figure 2.4.

As demonstrated, we obtain a more refined non-parametric estimate of the spectrum

from multi-tapering. Whilst averaging over several spectral density estimates has pro-

duced a closer approximation to the spectrum - reduced bias - we have done so at the
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2.2. Estimating the second order properties of a stochastic process

Figure 2.4: Multitaper estimate of simulated AR(2) process
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This plot illustrates the effectiveness of averaging over multiple spectral density estimates

in reducing the bias of an estimator. Previously we have utilised only one taper, which

results in an estimate that looks similar to the periodogram - averaging over multiple

estimates results in an estimator that is more refined and closer to the simulated spec-

trum. This reduction in bias comes at the cost of increased variance, and is a tradeoff

accounted for when multitapering.

cost of increased variance. The multivariate taper is one way in which we can get a

more interpretable estimate of the spectral density function. To generate estimates of

the neonatal EEG signals within our dataset we are going to use the univariate tapered

signal in an estimation procedure that produces a parametric estimate of the spectrum.

37



2.3. Automated detection procedure for the suitability of estimated spectra

2.3 Automated detection procedure for the suitability of

estimated spectra

Before we start fitting spectral density function estimates, it would be useful to have an

objective way in which we can assess the fit of an estimated spectrum. Especially given

then size of data set we are to analyse; as such we shall define a method. In order to do

so we need to first define the residuals of a signal given an estimated SDF.

Definition 2.3.1 (Spectral residuals). For a signal X(t) with direct spectral estimate

Ŝ
(d)
X (f) we shall define the residuals of the signal given an estimated set of parameters

θ̂ and objective function SX(f ; θ) by:

ε̂(f) =
Ŝ

(d)
X (f)

SX(f ; θ̂)
.

In a signal where the estimated spectral density function is a fair approximation to the

variance of the Fourier transformed signal we would expect to see no trend in the resid-

uals. If trend is remaining in the residuals then the estimated spectrum is not a suitable

description of the signal. In the estimation of the neonatal EEG signals contained in

the presented data set, we cannot visually inspect each signal for lack of trend. As such

we need to create a detection procedure which will be an automated way to determine

whether the signal’s spectrum has been described. In order to do so we need to utilise

the asymptotic distribution of the periodogram.

We have already identified the asymptotic distribution of the periodogram in the defini-

tion of the Euler-Mascheroni constant and as a result of the periodogram’s properties.

From the definition of the periodogram, the variance stabilisation proof and standard

likelihood theory we obtain the asymptotic distribution as χ2
2 [66, 67, 109]. Using this

distributional result we can construct a hypothesis test for the fit of an estimated spec-

trum.
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2.3. Automated detection procedure for the suitability of estimated spectra

Definition 2.3.2 (Automated detection procedure for a fitted spectral den-

sity function). For a signal X(t) with spectral residuals ε̂(f) we would expect for an

adequately fitting spectrum that:

T = 2
J∑
j=1

ε̂(f) ∼ χ2
2J .

Therefore, we can construct a hypothesis test, with a null hypothesis of an adequately

described spectrum. i.e.

H0 : T ∼ X2
2J

If J is sufficiently large, i.e. J > 50, then we can test this using the normal approximation

to the chi-squared distribution. Since the number of frequencies we are analysing shall

always be large enough we can obtain a p-value easily by:

PGoF = 2

[
1− Φ

(
|T − 2J |√

4J

)]
. (2.3.1)

Since we are assessing multiple infants, we want to reduce the number of Type II errors

obtained; these errors reflect null hypotheses that are failed to be rejected, when they

should be rejected. As such we shall implement false discovery rate analysis (FDR) by

the Benjamini-Hochberg procedure [92].

Definition 2.3.3 (Benjamini-Hochberg False Discovery Rate: Independent

Tests). Consider m independent tests with null hypotheses H1, ...Hm and corresponding

p values p1, ..., pm. Then order these p values in ascending order denoted p(1), ..., p(m),

for a given α find the largest k such that:

p(m) ≤
k

m
α.

Then reject all H(i) ∀ i = 1, .., k i.e. reject the null hypothesis with significance level k
mα

If no such k exists then fail to reject all m hypotheses

This ensures that the expected false discovery rate is less than a given α. The p value

shall be calculated through the following equation. Although, implementing false dis-

covery rate analysis can increase Type II errors; not rejecting the null hypothesis when

it should be rejected.

We have implemented FDR analysis because of the number of signals that we are

analysing and we want to ensure that we are not rejecting signals that should not
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be rejected. This application of FDR is to help ensure that during future analyses that

the estimates are adequate descriptions of the procedure. Furthermore we have utilised

the Benjamini-Hochberg procedure over other methods, such as Bonferroni correction,

because of sample size and we do not want to reduce statistical power as a result of an

increase in Type II errors.

2.4 Whittle Estimation

Now we have a way in which the suitability of an estimated spectrum can be assessed,

we shall introduce the way in which a non-parametric estimate can be used to fit a

parametric estimate: Whittle estimation.

The Whittle likelihood, first introduced by Peter Whittle in 1953 [93], constructs and

approximation to the time domain log likelihood in a manner similar to weighted least

squares. For a non-parametric estimator of the SDF, such as the periodogram ŜX(f),

and parametric SDF, SX(f ; θ), the Whittle likelihood is defined as [93]:

lW (θ) = −
∫ 1

2∆t

− 1
2∆t

(
Ŝ

(d)
X (f)

SX(f ; θ)
+ log{SX(f ; θ)}

)
df. (2.4.1)

From this, the parameters can be estimated by minimising this likelihood [93]:

θ̂ = arg min
θ∈Θ

lW (θ).

The Whittle likelihood approximates the time domain likelihood of a Gaussian time

series. By minimising the negative of this function efficient estimates are found. The

Whittle likelihood constructs an estimate in a similar manner to weighted least squares,

by minimising the sum (or theoretically the integral) of the spectral residuals [93]. Care

use be taken however with traits in the signal, such as in our case electrical interference.

As with other concepts explained, the above formulation is infeasible as we are inte-

grating across all frequencies. We can approximate this equation however, through a

Riemann approximation; which is an approximation of the area described by an integral.

l
(R)
W (θ) = − 2

N∆t

M∑
k=0

(
ŜX(fk)

SX(fk; θ)
+ log{SX(fk; θ)}

)
, M =


N
2 Neven

N−1
2 Nodd

(2.4.2)
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2.4. Whittle Estimation

Riemann approximations become more accurate the finer you make the approximation,

in the above equation the larger than M is, to the point that the approximation is effec-

tively equal to the actual function. However, as suitable non-parametric estimates such

as the periodogram, are not smooth we cannot utilise this argument. However, we can

say that if N is large enough, we get a decent enough approximation. Since the distance

between frequencies becomes smaller, and the approximation becomes finer.

We can implement Whittle estimation with any well defined SDF and either the peri-

odogram or a univariate tapered signal; multitapered signals should not be used since

they increase the bias of the estimator with no reduction in the variance of the estimates

obtained from the Whittle estimation. Due to the formulation of the likelihood, Whittle

estimation is affected by high bias, and can produce unsatisfactory estimates. With

spectral density functions such as fractional Brownian motion, we need to be careful

about their contribution to the likelihood at certain frequencies. Consider the frequency

representation of a fractional Brownian motion process; at f = 0 there is an infinite

peak in the periodogram due to the process’ underlying generating mechanism. This

frequency cannot be included in Whittle estimation due its formulation being similar to

that of weighted least squares.

We can illustrate the effectiveness with a simple demonstration using an autoregressive

process of order two. In Figure 2.5 we can see the cosine tapered periodogram of a

simulated AR(2) process with variance 1 and parameters 0.9, -0.8. In this plot, the red

line is the simulated spectrum, the light blue line is the multi-taper estimate and the

blue line is the Whittle estimate; furthermore the table of estimates shows the accuracy

of the estimated parameters.

Table 2.4.1: AR(2) Whittle Estimates

Simulated Value Whittle Whittle 95% C.I.

σ 1 1.01231 (0.99252, 1.03210)

φ1 0.9 0.88969 (0.87252, 0.90686)

φ2 -0.8 -0.78392 (-0.80110, -0.76676)
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2.4. Whittle Estimation

Figure 2.5: Whittle estimate of simulated AR(2) process
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This plot illustrates the sinusoidal multitaper estimate outlined in Figure 2.4 and the

Whittle estimate obtain by utilising an AR(2) objective function. We find that when the

objective function matches the underlying generating mechanism of the signal that the

estimate obtained is accurate - Table 2.4.1

Whittle estimation is an elegant and effective way of fitting a parametric spectrum from

a non-parametric estimator of the spectrum. Furthermore, confidence intervals for the

estimates are easily constructed from the Hessian matrix. However, there are limitations

that can cause this estimation procedure to produce unsatisfactory estimates; mainly

spikes and bias in the non-parametric estimator. Both of these show the issues in the

formulation of the Whittle likelihood. Perhaps the most important issue is the bias and

leakage in the periodogram, whilst easily rectified it is an important further illustration
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2.5. Linear time invariant filters

of how bias affects estimation of the spectrum.

One of the major strengths of Whittle estimation is the flexibility with regards to the

estimates that can be obtained. For any process whose SDF is well defined, we can

obtain a parametric estimate; however, should we omit frequencies - due to worrying

components such as bias or electrical interference - we obtain a semi-parametric estimate

[83]. Should there be any alteration to the signal, such as filtering, we can take this

into account in the estimation by applying the same transformation to the covariance

sequence, and as such the SDF.

2.5 Linear time invariant filters

During the signal recording process, unwanted components can be present. These un-

wanted components could be electrical interference or recording of unwanted movements,

such as eyes/limb movements, known as artefacts [1–3]. We can minimise, and almost

entirely remove, the effect of these components through filtering [1–3,66].

Filters can be described by the frequencies which they omit or include. For example a

band-pass filter minimises the contribution of all frequencies, except the band specified.

Conversely a band-stop filter minimises the contribution of these frequencies within the

specified band. Similarly a low-pass filter minimises the effect of frequencies after a spec-

ified cutoff, leaving lower frequencies along; and a high-pass leaves higher frequencies

along minimising the contribution of lower ones [66]. There are more filters than those

mentioned, for example if we were to convolve a stochastic process with an ARMA(p,q)

SDF we would be filtering the process according the characteristics of the ARMA(p,q)

process. By convolving an ARMA spectrum onto another process we impose a short

term covariance structure onto the time series in question. We will utilise this method

when simulating a time series with both a long term and short term covariance structure.

The way in which a filter is applied is by its transfer function, H(·); this is applied to a

signal X, resulting in the filtered signal Y [66]. We can also describe a filter by its gain

function, which we apply to a signal in the frequency domain; as such a convolution [66].
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2.5. Linear time invariant filters

The ideal stop band or pass band filter has values of only zero or one; with unfiltered

frequencies equal to one, and filtered frequencies equal to zero. However, we cannot

apply a filter of this type, and as such multiple ways to approximate this have been

defined. A filter is assessed by whether it has ripples in the pass or stop band and how

quickly it excludes frequencies, the roll off, with tradeoffs between these factors being

assessed when deciding which to use. The strength of a filter and how fast the roll off

occurs can be changed by increasing the order of a filter [66].

We present the gain functions for the Butterworth filter [94]. These are outlined be-

cause a first order Butterworth, n = 1, is the best approximation of the type of filter

implemented in the analysed dataset. The documentation of the preprocessing did not

reference the filter implemented. Requesting further information about the device used

to filter the signals resulted in a technical document. Upon consultation the Butter-

worth first order filter was identified as the best approximation of the applied filter.

This is an approximation due to the fact that we could not obtain confirmation from

the manufacturer of the device that this is the filter implemented during preprocessing.

Definition 2.5.1 (Low-pass Butterworth Filter). A low-pass Butterworth filter of

order n with cut off frequency fcL and DC gain G0 has a gain function defined as:

∣∣H(f)2
∣∣ =

G2
0

1 +
(

f
fcL

)2n . (2.5.1)

Definition 2.5.2 (High-pass Butterworth Filter). A high-pass Butterworth filter

of order n with cut off frequency fcH and DC gain G0 has a gain function defined as:

∣∣H(f)2
∣∣ =

G2
0

1 +
(
fcH
f

)2n . (2.5.2)

Definition 2.5.3 (Band-pass Butterworth Filter). A band-pass Butterworth filter

of order n with cut off frequencies fcL and fcH and DC gain G0 has a gain function

defined as: ∣∣H(f)2
∣∣ =

G2
0[

1 +
(
fcH
f

)2n
] [

1 +
(

f
fcL

)2n
] . (2.5.3)
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2.6. Continuous Wavelet Transform

Definition 2.5.4 (Band-stop Butterworth Filter). A band-stop Butterworth filter

of order n with cut off frequencies fcL and fcH and DC gain G0 has a gain function

defined as: ∣∣H(f)2
∣∣ =

G2
0[

1 +
(
fcL
f

)2n
] [

1 +
(

f
fcH

)2n
] . (2.5.4)

In the above equations DC gain refers to the gain at zero frequency, and the frequencies

fcL and fcH are the cut off frequencies for the low and high pass filters respectively. As

n→∞ the filter approaches the ideal rectangular filter, as such the higher the value of

n the stronger the effect of the filter shall be. The filters discussed are all linear time

invariant filters as their characteristics are time-homogeneous.

We can estimate a filtered signal easily by Whittle estimation, so long as we know the

filter applied. For a filtered signal X which has a direct spectral estimator Ŝ
(d)
X (f),

if we know the gain function G(f) we can estimate the spectral density function by

minimising the following likelihood.

lW (θ) = −
∫ 1

2∆t

− 1
2∆t

(
Ŝ

(d)
X (f)

G(f)SX(f ; θ)
+ log{G(f)SX(f ; θ)}

)
df. (2.5.5)

2.6 Continuous Wavelet Transform

The methods presented so far have all been time-homogeneous; i.e. can be used for sig-

nals whose properties do not change with time. However, EEG signals are known to be

time-heterogeneous and contain many different time-heterogeneous components [1–3].

As such, we need to outline ways in which to assess and visualise time-heterogeneous

signals.

The way in which we can assess how the second order properties of a signal change across

time, is to decompose a signal into the time-frequency domain. Two ways in which we

can do this are short-time Fourier transform [66,68] and wavelet decomposition [67,95].

The first performs the Fourier transform over a series of windows in time, and the latter

decomposes the signal into wavelets. We shall implement wavelet decomposition due

to its preferable time and frequency localisation properties, as well as its robustness to

noisy signals [95].
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The wavelet transform is a way in which we can decompose a time series into the time

frequency domain, and can obtain finer detail and resolution than the STFT. The way in

which we consider the time frequency decomposition of a signal is through the scalogram,

in a similar manner to studying the periodogram in the frequency domain. Similarly

to the periodogram, the behaviour of the signal in the time-frequency domain can be

masked by high variance which can be visible in the scalogram unless further smoothing

is implemented.

The scalogram is constructed through the use of wavelets, which can be considered lo-

cal to a time point and frequency. Through the use of a family of wavelets, which are

specific functions, and translating and scaling the wavelet function we can isolate sig-

nal behaviour associated with the localised time point and frequency using the wavelet

transform.

The continuous wavelet transform takes a signal, X(t), and a possibly complex-valued

wavelet function, ψ(t), then for a scale and time point the continuous wavelet transform

is defined as [67,95]:

X (ti, aj) =
1√
|aj |

∫ ∞
−∞

X(t)ψ∗
(
t− ti
aj

)
dt. (2.6.1)

The continuous wavelet transform is convolution of the signal with a set of functions

generated by the so called mother wavelet, which can be computed using the FFT.

Earlier in this thesis we introduced the concept of obtaining a more refined spectral

density estimate through the creation of a set of orthogonal tapers - multitapering. The

result of multi tapering an estimate that is more interpretable due to reduced variance.

This approach can be utilised to obtain a more interpretable scalogram utilising wavelets,

for example the Morse wavelet as shall be utilised. If we create orthogonal wavelets and

average the resulting scalograms we can obtain a lower variance scalogram estimate -

in a similar manner to multitapering. The time-frequency decomposition obtained from

the Morse wavelet decomposition will allow such a scalogram to be obtained. [67,95]

Since we want to obtain a reduced variance scalogram, therefore allowing a more accu-

rate detection of any time heterogeneous components within our signal, we will utilise
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such a set of orthogonal continuous wavelets - generalised morse wavelets. [95]

Generalised Morse wavelets are eigenfunction wavelets that are suitable for use in time-

heterogeneous SDF estimation as a result of average time-scale eigenscalograms. Eigen-

scalograms are scalograms where the wavelet is an eigenfunction derived from a time-

frequency concentration problem. We obtain a set of orthogonal eigenfunctions, and the

first K can be ordered by the corresponding eigenvalue have orders k = 0, ...,K − 1.

From these K eigenscalograms can be computed and the resulting time-varying spec-

trum estimate is obtained from their average. These wavelets are defined by their order

k - the corresponding eigenvalue order- and are dependent upon a pair of parameters

(β, γ); in the analysis that follows the wavelets will be β=8, γ=3. When γ = 1 the ze-

roth order wavelet is known as a Cauchy wavelet. These wavelets have superior energy

concentration over Hermites wavelets when γ > 1 and are easily computed using the

FFT. [95].

From this time-frequency decomposition, we can obtain the scalogram, which is a mea-

sure of the energy at a scale aj and time point ti.

SX(ti, aj) = |X (ti, aj)|2. (2.6.2)

The scales can be related to a set of pseudo-frequencies, and can be localised to a

specific interval of interest. We can obtain the pseudo-frequencies from the scales by the

following definition:

fa =
fc
a∆t

, (2.6.3)

where fc is the central frequency of the wavelet.

The scales that we will analyse the scalogram over have been chosen due to the analytical

range of interest - in this case the areas where delta brush activity occurs [0.5, 1.5]Hz and

[8, 25]Hz. We are defining the scales using Equation 2.6.3 from pseudo-frequencies going

from 0.04Hz to 31.17Hz in increments of 0.21Hz. Using fc = 0.23Hz and ∆t = 0.0005 we

obtain scales that can be used to obtain the scalogram. The increments utilised by the

pseudo-frequencies define the resolution of the scalogram accordingly. These values have

been chosen to identify delta brush activity as mentioned, which are time heterogeneous
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2.7. Identification of time-heterogeneous signal segments

components present within neonatal EEG signals. These waveforms can be present in

background EEG or somatosensory responses dependent upon the infants age.

2.7 Identification of time-heterogeneous signal segments

Delta brush, or neuronal bursting, activity is an identified response to stimuli [4, 96] as

well as a spontaneous occurrence in background EEG in neonatal infants [61, 62]. As

such we need a way in which to detect this time-heterogeneous signal component, so it

does not affect the fitting of any future model. Ways in which this has previously been

done involves either automated detection [4, 97] or visual inspection by an expert [98].

Time heterogeneity in a signal will result in a poor estimate of a signal’s SDF, resulting

in an inadequately fitted spectral density function. Furthermore, it is an unsuitable

estimate because it does not take into account the time-heterogeneous nature of the

signal. We can still use the outlined methods to analyse such a signal, but first we

must segment the signal into time-heterogeneous and homogeneous segments; however

we need a way in which to do this. One way in which we could do so is through visual

inspection [96], although in our case this is impractical due to the sample size and would

require a trained expert to identify such varying waveforms. Another, more accurate

way, is to test the proportion of energy in the scalogram against a baseline [4].

Both spontaneous and event related neuronal bursts, also known as delta brushes, have

been identified according to their time-frequency characteristics. Specifically a high fre-

quency ripple between 8 and 25Hz occurring simultaneously as low frequency activity

between 0.5 and 1.5Hz [4,61,96]. The scales of the scalogram have been chosen to high-

light these areas of activity as they must occur simultaneously in order the activity to

be classified as a delta brush.

In order to detect delta brush activity we shall test each frequency in the scalogram

against a signal that is time homogeneous. We have constructed such a baseline from

the signals identified as time-homogeneous and have been adequately described by our

model. Utilising a simple proportion test we shall test to see whether the proportion of

energy at a frequency and time point in the signal of interest is the same as the time
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2.7. Identification of time-heterogeneous signal segments

homogeneous baseline; rejection of the null hypothesis that p0 = ps - where p0 is the

homogeneous baseline and ps is the signal we want to test for the presence of delta

brushes. This shall identify a region with possible delta brush activity before refining

the region further utilising criteria defined from the numerical derivative of the signal.

The procedure to refine the interval is the same that was utilised by Fabrizi et al. [4]

and shall be outlined.

To refine the delta brush region - [X(t1), X(t2)] - within a signal X(t) it was first low-

pass filtered at 2Hz using a 4th order Butterworth filter, before the numerical first and

second order derivatives - X ′(t) and X ′′(t) respectively - were obtained. Delta brushes

are identified as negative deflections and therefore we determined the start and end

point of the delta brush as follows. The start - onset - was defined as the time point,

ton, preceding t1 where: X ′(ton − ∆t) > 0 and X ′(ton + ∆t) < 0, or X ′(ton) < 0 and

X ′′(ton −∆t) > 0 and X ′′(ton + ∆t) < 0. The trough - ttr - of the delta brush is a time

point that is needed in defining the end of the delta brush and is defined by a point

following ton where X ′(ttr−∆t) < 0 and X ′(ttr + ∆t) > 0 The end - offset - was defined

as the time point, toff , following ttr where X ′(ton −∆t) > 0 and X ′(ton + ∆t) < 0, or

X ′(ton) < 0 and X ′′(ton −∆t) < 0 and X ′′(ton + ∆t) > 0 [4].

It is important that, unlike previously outlined detection procedures, our baseline re-

mains constant across infants and time points. As such we shall utilise the same time

homogeneous baseline between sets of signals therefore helping to ensure that we are

detecting time-heterogeneous components fairly across all infants and recordings.

Using a signal from our data set we shall illustrate the results of this method. The

image presented in Figure 2.6 illustrates the ability of the detection procedure to identify

regions with significant time heterogeneity from the baseline. The significant level that

was used in Figure 2.6, and shall be used throughout the detection analysis, is α = 0.1.

The signals analysed also contain specific responses to nociceptive and tactile stimuli, as

such to obtain estimates we need to be able to detect the presence of these components.

Fabrizi et al. 2011 illustrated how the nociceptive and tactile somatosensory stimuli can

be represented by a weighted principal component [4].
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2.7. Identification of time-heterogeneous signal segments

Figure 2.6: Detection procedure for time-heterogeneous delta brush within signal

The outlined delta brush detection procedure returns intervals where there is simultaneous

activity in the regions [0.5,1.5]Hz and [8,25]Hz. This plot illustrates two regions where

at least one frequency in each range has a higher proportion of energy than a time-

homogenous baseline constructed from the presented dataset.

The evoked specific responses with regards to noxious and tactile stimuli have been

outlined and illustrated by Fabrizi et al. [4]. As such we shall use these identified wave-

forms to classify whether a specific response is present. These waveforms were identified

through principle component analysis, and the way in which they were identified will

have bearing upon how we detect their presence. Fabrizi et al considered time points

as observations and recordings (epochs) as variables. The recordings were aligned to
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2.7. Identification of time-heterogeneous signal segments

correct for latency jitter, by maximising the normalised inner product of the individual

epoch against an iteratively constructed grand average of all the epochs analysed. Tac-

tile stimuli was recognised as occurring 50-300ms post stimulation (with a maximum -50

to +50ms jitter allowed) and nociceptive stimuli occurring 300-700ms post stimulation

(maximum allowed jitter -50 to 100ms). From this procedure the waveforms were iden-

tified that are associated with noxious and tactile stimulation, and these shall be used

in our analysis. With these waveforms identified we can ascertain the presence of these

waveforms in a given signal utilising the singular value decomposition of the waveforms

and the signals.

For a signal X, the singular value decomposition, SV DX , is a linear decomposition such

that:

SV DX = UXDXV
T
X . (2.7.1)

Where the diagonal entries of DX are non-negative real numbers and are the singular

values of X. The parameter UX is a matrix whose columns contain the left singular vec-

tors of X, and the parameter VX is a matrix whose columns contain the right singular

vectors of X.

In order to get the weight of a principal component in a signal, we also need the singular

value decomposition of the data that generates the principal component. We shall utilise

the defined principal components for Fabrizi et al. 2011 [4], which show the tactile

and noxious responses are the first and second principal components of the relevant

data respectively. For the aligned epochs, obtained by maximising the normalised inner

product of individual epochs with a grand reference electrode constructed of an iterative

average of all epochs, we can obtain the relevant principal components, W . Using the

corresponding SVD of the defined specific responses, SW , we can obtain the weight of

the ith principal component in X, a
(i)
X , by:

a
(i)
X =

UTW [, i]X

DW [i]
. (2.7.2)

Therefore we can obtain the fitted value of the principal component. Ŵ
(i)
X , within the

signals by:

Ŵ
(i)
X = a

(i)
X SV DW [, i]. (2.7.3)
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2.7. Identification of time-heterogeneous signal segments

In order to obtain the weight of the principal component within the signal we utilised

the following procedure.

1. For nociceptive stimuli response the epoch was filtered between 0.5 and 8Hz as

this is the frequency band containing most of the principal components energy

2. The signal was aligned by maximising the inner product of the identified waveform

and the signal in the ranges outlined taking into account latency jitter.

3. The weight of the principal component was calculated utilising the SVD of the

signal and waveform as outlined in Equation 2.7.3.

A visualisation of the waveforms identified with specific tactile and nociceptive responses

can be seen in Figures 3.5 and 3.6 respectively.

To ensure a specific response was identified in the region where a somatosensory response

is typically evoked - central and central parietal region - we confirmed the presence of

the waveform visually; as an automated system was prone to false positives with regards

to specific response presence. After detecting a response in this region we analysed for

a presence at other electrode sites. Whilst this method requires visual inspection of the

data it ensures, for the purposes of testing our model, that we appropriately identify

the specific response to stimuli.
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Chapter 3

Estimation of neonatal EEG

signal parameters

As outlined in the introduction, modelling neonatal EEG is a rapidly expanding field,

whose primary focus seems to be on seizure detection. However, little has been done

on modelling the development of these signals or the presence of delta brushes within

them. In this Chapter we present and fit the presented model for background and so-

matosensory response EEG signals.

The data set at our disposal is recorded at a higher resolution than previously anal-

ysed [4, 6]. Whereas previous research suggests fractional Brownian motion [75], or

other processes [33, 41, 44, 70–73], none have made mention of the integrated nature of

the signals and that we might require both a long and short range covariance sequence

to describe these signals. Inspection of the periodograms illustrates high bias and leak-

age associated with such processes. This observation could be due to the fact that we

are analysing a higher signal resolution than previous research [4, 75]. As illustrated in

the methodology section, we will favour cosine tapering to address this integration and

leakage [81]. As well as the evident long-term covariance sequence, we present a model

with the short term covariance described by an autoregressive moving average process.

We define our fitting procedure for time-homogeneous signal segments using a subset

of our data identified as time-homogeneous by an EEG practitioner, such as the inter-

burst interval. A time-heterogeneous process is one whose generating mechanism for
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the process does not change across time but the covariance structure does, whereas a

time-homogeneous process’ covariance structure remains constant across time. We test

three fitting procedures on the cosine tapered data: fBm only, simultaneous or stepwise

fBmARMA(δ,p,q) estimation. The stepwise procedure is performed by estimating the

long range covariance structure first, then estimating the short term covariance struc-

ture from the resulting spectral residuals.

During the estimation procedure a signal is classified as “adequately” described if it

fails to the reject the null hypothesis of the automated detection procedure, outlined in

Chapter 2, which states that the residuals come from a χ2
2 distribution. If this holds

then the trend contained within the signal has been removed and therefore adequately

described. Upon inspection of the results from the automated detection procedure we

find the stepwise model to be the best fitting procedure. From this we improve our

model by investigating rejected signals and adapting the long-term covariance sequence

to the Matérn process [99]. The inclusion of this provides greater flexibility to our model,

whilst still agreeing with previous findings, as fBm is allowable as a limiting case of the

Matérn process.

Modelling these signals utilising a time-homogeneous covariance structure can aid in the

diagnosis of the type of signal. This is because a time-homogeneous covariance structure

will be an inadequate description of a time-heterogeneous process, due to the changing

covariance structure. In this analysis such an occurrence would be when a delta brush

is present in the signal. As such before progressing to somatosensory response data we

investigate the possibility that the time-heterogeneous delta brush is present in some

of the rejected signals. Whilst classified by an EEG practitioner as time-homogeneous

background/IBI signal segments, the developmental stages of neonatal EEG means that

delta brush components could be present and remain unobserved [61, 62]. Utilising

the detection procedure outlined in the methodology, and adapted from previous tech-

niques [4], we can identify these segments. Then utilising band-stop filters, we subtract

the identified time-heterogeneous delta brush frequencies, and fit our suggested model

to the remaining covariance structure. Finally we apply the outlined fitting procedure

to somatosensory response data from tactile and noxious stimuli.
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3.1. Proposed model for neonatal electroencephalogram signals

Neonatal EEG signals are highly complex, and time-heterogeneous signal components

can be present which are not described by delta brush or somatosensory specific activity.

This could be an unidentified waveform or an issue from the recording procedure given

the highly sensitive and delicate nature of the subjects within our sample. The results

of our estimation show that 69% of the overall data set are adequately described by

our model; the proportion of adequately described signals increases to 76%, once signals

with unidentified time-heterogeneous components were removed.

3.1 Proposed model for neonatal electroencephalogram sig-

nals

To start this Chapter we present models that we are going to fit to the data, in an

attempt to describe the typical variation in neonatal EEG signals. We propose that we

can model time-homogeneous EEG signals, recorded at 2000Hz, using a special case of

the unobserved components model [100].

Definition 3.1.1 (Time-homogeneous Model). For an infant, i, and electrode, e,

the variation typical in time-homogeneous EEG, Xi,e(tk), can be described by the unob-

served components model:

Xi,e(tk) = Zi,e(tk) + εi,e(tk), εi,e(tk) ∼ N(0, 1). (3.1.1)

Where Zi,e(·) is a time-homogeneous process that adequately describes the covariance

structure and εi,e(·) is random noise.

The resolution of a signal is defined by the number of times a continuous signal is

sampled per second, a 2000Hz signal is sampled every 0.0005 seconds or 2000 times

a second. Neonatal EEG contains time-heterogeneous components, and is inherently

time-heterogeneous in nature; as such, we need to propose a model that takes time

heterogeneity into account.

Definition 3.1.2 (Additive time-heterogeneous Model). For an infant, i, and

electrode, e, the variation typical in time-heterogeneous EEG, Xi,e(tk), can be described

by the unobserved components model:

Xi,e(tk) = Zi,e(tk) + Yi,e(tk) + εi,e(tk), εi,e(tk) ∼ N(0, 1). (3.1.2)
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3.1. Proposed model for neonatal electroencephalogram signals

Where Zi,e(·) is a time-homogeneous process that adequately describes the covariance

structure, Yi,e(·) is a time-heterogeneous signal component and εi,e(·) is random noise.

With this additive time-heterogeneous model, it suggests a simple way in which we can

remove the time-heterogeneous component, resulting in a time-homogeneous signal:

Xi,e(tk)− Yi,e(tk) = Zi,e(tk) + εi,e(tk). (3.1.3)

Furthermore, this formulation can be used for any additional signal components such

as somatosensory specific responses. A somatosensory specific response as described

and estimated in this thesis is one that exhibits the waveforms outlined in Fabrizi et

al. [4] rather than a delta brush in response to somatosensory stimuli. There are other

somatosensory responses than those estimated however, the focus will lie on noxious

and tactile as identified by Fabrizi et al [4]. These models describe time-homogeneous

and time-heterogeneous signal components. However, there is more that needs to be

added to provide a full model for the data. Whilst background activity is present for all

electrodes, the time-heterogeneous components may not be.

The probability of a delta brush, or somatosensory response, occurring in response to

stimuli has been well outlined [4], and we can obtain simultaneous delta brush expression

locations straightforwardly. Using this we can create an indicator variable, based upon

age, that determines the presence of time heterogeneity at an electrode. As such we

present the following model we can use to describe the neonatal EEG, which takes into

account the behaviour of time-heterogeneous components.

Definition 3.1.3 (Additive neonatal electroencephalogram model). For an in-

fant, i, and a set of electrodes of size ne, the variation typical in time-heterogeneous

EEG, Xi(tk), can be described by the unobserved components model, where:

Xi(tk) = [Xi,1(tk), . . . , Xi,ne(tk)]
T , Y i(tk) = [Yi,1(tk), . . . , Yi,ne(tk)]

T , (3.1.4)

Zi(tk) = [Zi,1(tk), . . . , Zi,ne(tk)]
T , εi(tk) = [εi,1(tk), . . . , εi,ne(tk)]

T . (3.1.5)

Let us define an indicator variable such that:

ξi,e(tk) =


1 if time heterogeneity is present at electrode e and time point tk

0 else

,

(3.1.6)

56



3.1. Proposed model for neonatal electroencephalogram signals

where

ξT
i

(tk) = [ξi,1(tk), . . . , ξi,ne(tk)] . (3.1.7)

We define a model for electroencephalogram recordings with n additive time-heterogeneous

components by:

Xi(tk) = Zi(tk) +
n∑
j=1

ξj
i
(tk)Y

j
i (tk) + εi(tk), εi(tk) ∼ N(0, Ine). (3.1.8)

If at all time points ξi,1(tk) = . . . = ξi,ne(tk) = 0 we obtain a time-homogeneous model.

We have presented additive models throughout this section however this is not the only

way in which this model can be constructed. It is possible that a time heterogeneous

component could be multiplicative to the baseline level of activity rather than additive.

Such a model is presented in Model 3.1.4.

Definition 3.1.4 (Multiplicative neonatal electroencephalogram model). For

an infant, i, and a set of electrodes of size ne, the variation typical in time-heterogeneous

EEG, Xi(tk), can be described by the unobserved components model, where:

Xi(tk) = [Xi,1(tk), . . . , Xi,ne(tk)]
T , Y i(tk) = [Yi,1(tk), . . . , Yi,ne(tk)]

T , (3.1.9)

Zi(tk) = [Zi,1(tk), . . . , Zi,ne(tk)]
T , εi(tk) = [εi,1(tk), . . . , εi,ne(tk)]

T . (3.1.10)

Let us define an indicator variable such that:

ξi,e(tk) =


1 if time heterogeneity is present at electrode e and time point tk

0 else

,

(3.1.11)

where

ξT
i

(tk) = [ξi,1(tk), . . . , ξi,ne(tk)] . (3.1.12)

We define a model for electroencephalogram recordings with n multiplicative time-

heterogeneous components by:

Xi(tk) = Zi(tk)×
n∑
j=1

ξj
i
(tk)Y

j
i (tk) + εi(tk), εi(tk) ∼ N(0, Ine). (3.1.13)

The presented model class is flexible to other such approaches to the way in which the

time-heterogeneous nature of the signal can be applied to a time-homogeneous base-

line. Similarly the error - or random noise - component could have another operator
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3.2. Procedure to obtain fitted values for the proposed model

than the additive operator. Furthermore we could change the operator that applies the

time-heterogeneous component to the signal dependent upon the time-heterogeneous

component in question; i.e. different time-heterogeneous components will require differ-

ent models such as the additive or multiplicative models presented.

3.2 Procedure to obtain fitted values for the proposed

model

Now that we have outlined the model we are going to use, we can proceed to fitting the

model to the signals in the data set. To start, we shall provide the descriptive statis-

tics of the data set. The signals have all been recorded at 2000Hz, ∆t = 0.0005, and

undergone band-pass filtering with a frequency band of [0.05, 70]Hz and a first order

Butterworth filter. The filter at 70Hz has been implemented as an anti-aliasing filter,

as such we shall implement non aliased spectral density functions. Filtering minimises

the contribution of unwanted components of EEG such as breathing or limb movement,

known as artefacts. Done as part of the preprocessing procedure it is important that we

take this into account when estimating the long term covariance structure so that we

gain an accurate estimate.

The 10769 six second recordings were recorded from inpatients at University College

London Hospital and have an age range of [24, 41.57] gestational weeks at birth and

[28.43, 45.29] gestational weeks at test [6]. Gestational weeks is a measurement based

upon the time since the woman’s last menstruation. Background segments were ob-

tained from 44 infants, tactile stimuli responses were obtained from 45 infants and

noxious stimuli responses were obtained from 47 infants.

Ethical approval was obtained from the University College Hospital ethics committee,

and informed written parental consent was obtained prior to each study. The study

conformed to the standards set by the Declaration of Helskini guidelines [101]. The

infants underwent the clinical test only once, however the length of the recording was

longer than the six second interval analysed. When obtaining noxious stimuli response,

this was done as part of a clinically required heel lance to obtain a blood sample.

Noxious stimuli were not administered solely for the purpose of obtaining data. Tactile
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3.2. Procedure to obtain fitted values for the proposed model

stimulation was applied through use of a tendon hammer against the heel of the infants.

Whereas the noxious stimuli could be applied only once, the tactile stimuli was able to

be repeated and was in some cases. The multiple six second segments were taken from a

singular recording far enough apart to not be affected by the previous tests, as decided

by an EEG practitioner.

3.2.1 Time-homogeneous signals

First, we shall visually inspect the periodogram of a signal to gain an initial under-

standing about the covariance structure to fit by Whittle estimation. The periodogram

in Figure 3.1 is indicative of signals within the presented dataset, and shows evidence

of leakage, indicating a possible integrated process [66, 67]. Specifically the decay in

the variance of the periodogram at high frequencies is evidence of leakage. As observed

for nonstationary infinite random functions that are strongly nonstationary, the peri-

odogram is strongly biased and the periodogram illustrates a large amount of bias and

the variance of the periodogram is decreasing as the frequency increases [81, 102]. This

large amount of leakage is indicative of a disjoint signal and a possible integrated pro-

cess, this shall be considered and investigated further. tWe cannot obtain a reliable

estimate of the covariance structure from the periodogram when we have large bias, as

evidenced in Figure 3.1, since the fit at higher frequencies will be affected.

The fit of a spectrum will be assessed by the automated detection procedure outlined in

the methodology. Whilst the description at all frequencies is important, the suitability

of the fit will be assessed based upon the fitting in the passband which in the presented

dataset is the interval [0.05, 70]Hz; this raises a question about how we proceed in the

analysis. Since the leakage within the presented signals only affects the higher frequen-

cies, we could limit the estimation only to the passband in the raw periodogram, and fit

only a long-term covariance structure. This is an entirely unsuitable and unacceptable

approach to analysing the data, as we are ignoring the effect of 93% of the frequencies on

the spectrum; therefore, we shall fit the spectrum across all frequencies. Whist assessing

the fit only in the passband is similar to ignoring the other frequencies, we are giving

analytical weight to the interval of interest in EEG applications, and incorporating the

evident need for describing these high frequencies that effect the signal’s structure. In
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3.2. Procedure to obtain fitted values for the proposed model

Figure 3.1: Periodogram representative of neonatal electroencephalogram signal prop-

erties
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This plot illustrates the raw periodogram of a signal from within the presented data

set. This behaviour is evident throughout the data set and is possibly indicative of an

integrated process. This evidence is seen in the variance of the periodogram and how it

reduces at higher frequencies. Attempting to utilise Whittle estimation would result in

substandard estimates as the construction of the Whittle likelihood would result in a poor

fit at the higher frequencies, as such this needs to be addressed before estimation.

order for us to do this, we need to reduce the leakage in the estimator; this shall be done

utilising the Hanning window [81], as outlined in the methodology.

The Hanning window - or full cosine taper - reduces leakage by reducing the sidelobes

of the Fejér kernel, which causes a transfer in energy from one region to another. The
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3.2. Procedure to obtain fitted values for the proposed model

Hanning window also smoothes the way in which the signal goes to 0 at the extremities

reducing signal discontinuity problems with the FFT.

We shall begin building the time-homogeneous model structure by analysing 1358 signals

identified as time homogenous background/inter-burst intervals by an EEG practitioner,

dependent upon the age of the infant. Previous research has utilised fractional Brownian

motion (fBm) as a description of the long-term covariance, so this shall be the starting

point for our model building. The fractional Brownian motion spectrum is defined

by [67]:

Definition 3.2.1. The spectral density function of a fractional Brownian motion co-

variance structure is defined as:

SX(f) =
σ2

|f∆t|2δ
, δ = H + 0.5, δ ∈ [0.5, 1.5] . (3.2.1)

Where H is measure of the self similarity of the process and ∆t is the sampling rate.

Which has associated covariance structure [67,80]:

Definition 3.2.2. The covariance of a fractional Brownian motion process is defined

as:

Cov {t, s} =
Cσ2

2

(
|t|2H + |s|2H − |t− s|2H

)
, H = δ − 0.5, σ ∈ R. (3.2.2)

Where H is measure of the self similarity of the process and C is defined by,

C =
Γ(2− 2H) cos(πH)

πH(2H − 1)
.

This illustrates the non-stationarity of fractional Brownian motion as the covariance

sequence is dependent upon time. Whilst fBm is a non-stationary process we can fit

estimates using Whittle estimation because it has a time homogeneous structure and a

defined spectral density function. It is a time-homogeneous process because the struc-

ture does not change with respect to time. If we difference fBm a sufficient number of

times we obtain a stationary process. This cannot be done for the time heterogeneous

stochastic process Xt = σtεt, where σt is a deterministic time-varying function and εt is

stationary.

61



3.2. Procedure to obtain fitted values for the proposed model

Figure 3.2: Cosine tapered periodogram representative of neonatal electroencephalo-

gram signal properties
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This plot shows the direct spectral estimate of the signal presented in Figure 3.1 utilising

the full cosine taper. As can be seen the variance in the periodogram remains constant

due to reduced bias and leakage. Furthermore the taper used is addressing problems with

the FFT assuming the signal is infinitely repeating and as such the sharp discontinuity

between the start and end of the signal. We can utilise Whittle estimation effectively

using this direct spectral estimate; however we must take into account spikes seen at 50Hz

and resonances of 50Hz. This is due to electrical interference and if left unaddressed

would affect the estimate obtained. Due to the construction of the Whittle likelihood

we would see the estimated MatérnARMA class spectrum “dragged” to account for the

contribution of these frequencies to the likelihood.
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3.2. Procedure to obtain fitted values for the proposed model

At this point it is important to note another component of the periodogram that could

affect estimates; electrical interference [1–3]. As mentioned the signals have undergone

band-pass filtering, which shall be reflected in the estimation of the long-term covari-

ance sequence, however they have not undergone notch filtering to remove electrical

interference. In the UK, this is seen by spikes in the periodogram at 50Hz, and also at

resonant frequencies. As such, we shall omit 2.5Hz either side of 50Hz and its resonances

to avoid our estimate being affected. This results in the estimate we obtain no longer

being parametric, instead we obtain a semi-parametric estimate of the spectral density

function [102].

The resulting estimates are semi-parametric due to the removal of frequencies in the

estimation of the parameters. As a result of this removal of frequencies we are assuming

that the underlying generating mechanism of the signal behaves the same in the removed

frequencies; we are not fitting the parametric model to all of the data. We are aware

that they do not behave the same due to electrical interference, however the assumption

is with respect to the process’ generating mechanism.

A purely fBm estimation is unsurprisingly a completely unsatisfactory description with

the automated detection procedure - Section 2.3 - finding only 1.04% of the signals are

adequately described. The untapered periodogram is illustrative of the possible need

for a short term covariance sequence, in addition to the long-term covariance. This is

because the spectral estimate is not showing a simple decay but more a complex high

frequency structure. In order to address this we shall implement the autoregressive

moving average process as a description of the short range covariance, which has the

spectral density function:

Definition 3.2.3 (Autoregressive Moving Average Spectral Density Function).

The spectral density function of an autoregressive moving average process of order (p,q)

is defined as:

SX(f) = σ2

∣∣∣∣1− q∑
k=1

θke
−i2πif∆t

∣∣∣∣2∣∣∣∣∣1− p∑
j=1

φje−i2πjf∆t

∣∣∣∣∣
2 .

Where (θ, φ) are the parameters of the moving average and autoregressive components
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3.2. Procedure to obtain fitted values for the proposed model

respectively.

We determine the order of the ARMA(p, q) process by implementing a grid search pro-

cedure based upon Akaike’s information criterion corrected for finite size (AICc). The

AICc of a model is defined by [103]:

Definition 3.2.4 (AICc). Akaike’s information criterion corrected for finite sample

size is defined as:

AICC = 2n− 2`(w) +
2n(n+ 1)

M − n− 1
, `W = −

M∑
k=0

(
Ŝ

(d)
X (fk)

SX(fk; θ)
+ log{SX(fk; θ)}

)
.

Where `(w) is the Whittle likelihood defined in Equation 2.4.2, n = ||θ|| and θ is the

parameters used in the objective function SX(fk; θ).

There are two ways in which we investigated fitting the fBmARMA model to the data

presented, simultaneous and two step estimation. These titles refer to how we fit the

long term and short term covariance sequence - before both estimations we have imple-

mented the Hanning window to obtain a direct spectral estimator of the spectrum.

There are two ways in which we investigated fitting the fBmARMA model to the data

presented, simultaneous and stepwise. These titles refer to how we fit the long term

and short term covariance sequence - before both estimations we have implemented the

Hanning window to obtain a direct spectral estimator of the spectrum.

In the simultaneous procedure we estimate both the long and short range covariance

sequence at the same time utilising the spectral density function, Definition 3.2.8, the

Butterworth passband filter with frequency cutoffs at 0.05Hz and 70Hz and Whittle

estimation. We obtain the best description of the process utilising an AICc reduction,

limiting the ARMA(p,q) component to a maximum order of (3,3), we chose the model

with the lowest AICc as calculated from Equation 3.2.4.

In the stepwise procedure we first estimate the long term covariance sequence utilising

the fBm spectral density function and the Butterworth passband filter to take into ac-

count the filtering that the signal has undergone during preprocessing. Once we have

obtained the long term covariance estimate we obtain the spectral residuals. Following
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3.2. Procedure to obtain fitted values for the proposed model

this we estimate the short term ARMA(p,q) utilising the same AICc approach as the

simultaneous model.

Having tested both, we proceed with the stepwise procedure over the simultaneous pro-

cedure; as the automated detection procedure outlined in Section 2.3 finding 75.09%

and 23.32% of the signals are described by the fitted spectra respectively. The image in

Figure 3.3 illustrates the effectiveness of the two step fitted spectrum, and the frequen-

cies over which we have performed the estimation.

The stepwise estimation procedure induces bias because we are not allowing all param-

eters to change simultaneously. The ARMA(p,q) estimation is performed upon a set of

residuals where the estimated long term covariance sequence has been described. Whilst

this method of estimating the spectra induces bias in our estimates, it is evidently a

better way to obtain descriptions of the signals based upon the proportion of signals

described. It appears also that the simultaneous procedure had convergence problems,

indicated by the values of δ̂ being equal to 0.5 or 1.5. since these are the boundary

values of δ in fractional Brownian motion.

Although we have described 75% of the background signals identified as time homoge-

neous, it would be prudent to assess why we have not been able to describe the other

25%; since after fitting spectra to the background EEG signals, we progress to the rest

of our data set: somatosensory response data.

First we shall look at whether fractional Brownian motion is a suitable description of

the long range covariance, or does the limitation of the Hurst parameter value result in

inadequate descriptions of the signal’s covariance. We shall look at utilising the Matérn

covariance structure [99] to explain signals not describable by fractional Brownian mo-

tion.

Definition 3.2.5. The covariance sequence of a Matérn process is defined as:

Cov {t, s} =
ϑ2π

1
2

2ν−1Γ
(
ν + 1

2

)
β2ν

(β|τ |)ν Kν (β|τ |) (3.2.3)

τ = t− s, ν ∈ [0,∞] , β ∈ (0,∞] , ϑ ∈ R
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3.2. Procedure to obtain fitted values for the proposed model

Figure 3.3: Illustration of fitting fBm(δ)ARMA(p,q) process
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This plot illustrates the result of our estimation procedure and the frequencies over which

we have performed the estimation. As can be seen in the plot the estimated spectrum is a

good description of the sample variance of the Fourier transform, and this is supported by

the associated p-values. The p-values relate to the ADP implemented to assess fit where

the null hypothesis is an adequately described signal. We have removed frequencies either

side of 50Hz and its resonances to avoid the effect of the electrical interference spikes

on our signal. This results in a semi-parametric signal due to the assumption that the

frequencies behave the same in the signal’s generating mechanism as in our model.

Where KH(·) is the modified Bessel function of the second kind.

The Matérn process is a stationary process, whose limiting behaviours are exceptionally

useful in time series analysis. These behaviours become clearer if we reparameterise to

66



3.2. Procedure to obtain fitted values for the proposed model

utilise the parameters outlined in Definition 3.2.2 and by looking at the corresponding

spectral density function.

Definition 3.2.6. The covariance sequence of a Matérn process reparameterised to

utilise parameters similar to fractional Brownian motion is defined as:

Cov {t, s} =
σ2

2H−1Γ
(
H + 1

2

)
d2H

(d|τ |)H KH (d|τ |) , (3.2.4)

τ = t− s, H ∈ [0,∞] , d ∈ (0,∞] , σ ∈ R.

Definition 3.2.7. The spectral density function of a Matérn process reparameterised to

utilise parameters similar to fractional Brownian motion is defined as:

SX(f) =
σ2

(|f∆t|2 + d2)δ
, (3.2.5)

δ = H + 0.5, δ ∈ [0.5,∞] , d ∈ (0,∞] .

Consider the range, or distance, parameter d, as d→∞ the limiting behaviour is white

noise, SX(f) → σ2. However as d → 0 the limiting behaviour is fractional Brownian

motion, SX(f)→ σ2

|f∆t|2δ . Figure 3.4 illustrates the effect the distance parameter has on

the time domain representation of a signal with a distance parameter d = 0.001.

We can see from Figure 3.4 that the distance parameter makes the fractional Brownian

motion process behave more like white noise, i.e. reduces the correlation of the incre-

ments. The formulation of the Matérn covariance in Definition 3.2.6 is not the standard

parameterisation, however we have utilised the parameters from Definition 3.2.2 to il-

lustrate the similarity between these two processes. One of the benefits of the Matérn

process is that the smoothness parameter is not restricted at the upper bound, as under

fractional Brownian motion the δ parameter is restricted to the range [0.5, 1.5].

Applying this Matérn extension to the long-term covariance structure in our stepwise

estimation model describes another 7% of the overall time homogeneous signals, and

28% of the previously rejected signals. As such the Matérn flexibility is beneficial for

signals inadequately described by fBm. Therefore if the fBmARMA(δ, p, q) parameteri-

sation is rejected by the automated detection procedure, we shall re estimate the signal

using MatérnARMA(δ, d, p, q).

67



3.2. Procedure to obtain fitted values for the proposed model

Figure 3.4: Fractional Brownian motion vs. Matérn covariance structure
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The Matérn covariance sequence allows fBm as a limiting case, by letting d→ 0, and as

such is useful as a description of a process, as it allows for a wider range of signals to be

described in comparison to just using an fBm covariance structure. The spectral density

functions are also similar between fBm and Matérn, with the Matérn SDF containing an

extra parameter - the range parameter. This plot shows the effect of the additional range

parameter in the Matérn covariance function on the time domain structure of a signal.

In comparison to the fBm signal - black line - the signal with distance parameter d =

0.001 - red line - behaves less like a random walk and stays closer to the mean than the

fBm. As the distance parameter increases the signal will behave more like a white noise

process, as the distance parameter decreases the signal will behave more like a fractional

Brownian motion process.
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3.2. Procedure to obtain fitted values for the proposed model

Definition 3.2.8. The spectral density function for a process with a Matérn long range

covariance and autoregressive moving average short range covariance is defined as:

SX(f) =
σ2

(|f∆t|2 + d2)δ

∣∣∣∣1− q∑
k=1

θke
−i2πif∆t

∣∣∣∣2∣∣∣∣∣1− p∑
j=1

φje−i2πjf∆t

∣∣∣∣∣
2 , (3.2.6)

Where (θ, φ) are the parameters of the moving average and autoregressive components

respectively and δ = H+0.5, δ ∈ [0.5,∞] , d ∈ (0,∞].

This is one of the first pieces of research to use the Matérn covariance structure to

describe neonatal electroencephalogram signals. If we can limit the use of Matérn to

describe a signal’s long range covariance, we might be able to gain an insight as to why

these signals require this covariance structure.

Before proceeding to apply this procedure to somatosensory response data, we shall

try one more analysis technique to the remaining signals yet to be described: time-

heterogeneous signals.

3.2.2 Time-heterogeneous signals

Although the signals analysed up to now have been identified as time-homogeneous by

an EEG practitioner, it is possible that misclassification occurred. Furthermore, a com-

mon component of neonatal background EEG is the time-heterogeneous delta brush.

Therefore using the detection procedure outlined in Chapter 2 we identified signals that

contained delta brush activity and then estimated them appropriately. As a result we

described another 3% of the presented signals without stimuli.

Below we illustrate the procedure, by which we fit the time-heterogeneous model to sig-

nals identified as containing time-heterogeneous signal segments by an EEG technician.

We identify time-heterogeneous regions in two manners dependent upon the classification

of the signal being analysed. If the signal segment is attempting to detect a response

to a somatosensory stimuli then it has been focused around the time of experiment
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3.2. Procedure to obtain fitted values for the proposed model

- i.e. the time when the stimulation was administered. If we are looking for time

heterogeneous regions in any signal we are looking at the scalogram for one type of time

heterogeneity in particular - delta brush activity. We have explained the delta brush in

detail in the introduction and the estimation and identification of regions where they are

present is done by testing the proportion of energy - proportion test - within the defined

delta brush regions - [0.5,1.5]Hz and [8,25]Hz - against a time homogeneous baseline

constructed from our adequately estimated time homogeneous signals.

Non-specific delta brush somatosensory response signal estimation

Once we have identified the regions containing delta brush activity, we can obtain the

delta brush component by implementing band-stop filters on the delta brush frequencies.

We then “remove” the delta brush activity from the signal by implementing a stop-band

filter on the delta brush region of activity then subtracting this from our initial signal

as prescribed in Model 3.1.3. Once subtracted from the relevant segments, this should

allow the time-homogeneous model to fitted. The only difference between the model for

the time-heterogeneous segments is that we allow the MatérnARMA covariance from the

beginning, due to the removal of frequencies. We present the estimates of a signal with a

delta brush identified as present in Figure 3.5. This figure illustrates the effectiveness of

the estimation procedure in the segments, and raises questions as to how we determine

the suitability of a signal’s description, when the signal has multiple segments.

Specific somatosensory response identification and signal estimation

Once signals which express specific somatosensory responses to nociceptive and tactile

stimuli are identified we can fit the model to these signals. We illustrate the time-

heterogeneous estimation procedure with a nociceptive somatosensory response in Fig-

ure 3.6.

If a signal is identified as containing time-heterogeneous components we split the signal

into n time-homogeneous segments and m time heterogeneous segments. We estimate

the time-homogeneous segments as outlined in the previous section and test the suitabil-

ity of the estimated spectrum utilising our automated detection procedure described in

Definition 2.3.2. With respect to the time heterogeneous segments, we first attempt to
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3.2. Procedure to obtain fitted values for the proposed model

“remove” the time-heterogeneous components from the segments resulting theoretically

in a time-homogeneous segment. By assuming the components are orthogonal these

can be extracted non parametrically using PCA [105]. From there we implement the

time-homogeneous estimation procedure as outlined.

We intend to perform analysis on these estimates in the next chapter and so we want

all of the segments to be adequately described by our fitting. Therefore if one segment

rejects the null hypothesis outlined in the ADP procedure - Definition 2.3.2 - then we

will classify the entire signal as having failed to be described. This will be punitive with

respect to the total number of signals within our data set that we have described using

our model, however it ensures that we can utilise these estimates freely in resulting

analyses.
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3.2. Procedure to obtain fitted values for the proposed model

3.2.3 Estimation procedure

Throughout this chapter we have illustrated the methods by which we obtained parame-

ter estimates for our model, utilising signals recorded with no stimuli administered. The

estimation procedure was refined in order to obtain a methodology to apply to future

signals, such as signals recorded with a somatosensory stimulus response. Taking into

account the fact that we wish to limit the use of the Matérn covariance, such that we

can attempt to identify why this structure is necessary. The flowchart in Figure 3.7 is

an algorithmic overview of the procedure taken to estimate the parameters of the model

presented in Model 3.1.

Figure 3.7: Flowchart describing the estimation process for neonatal EEG covariance

structure

Is 
the signal time-
homogeneous?

Set of neonatal EEG signals

Identify which have 
time-heterogeneous 

components

Estimate all using 
fBmARMA covariance and 

obtain ADP p-values 

For 
each signal does it fail 

to reject the null hypothesis of 
adequate fit

Estimate remaining using 
MatérnARMA covariance 
and obtain ADP p-values 

For 
each signal does it fail 

to reject the null hypothesis of 
adequate fit

Are the segments in 
the array time-homogeneous?

Split each signal into 
time-homogeneous and 

heterogeneous segments

Estimate all using 
fBmARMA covariance and 

obtain ADP p-values 

For 
each segment does 

it fail to reject the null hypothesis 
of adequate fit

Estimate remaining using 
MatérnARMA covariance 
and obtain ADP p-values 

Place into an array 
depending upon time 

heterogeneity of segment

Remove time 
heterogeneous component 

from segment

Estimate remaining using 
MatérnARMA covariance 
and obtain ADP p-values 

Regroup segmented ADP 
p-values for each signal

Do all segments 
within the signal fail to reject 

the null hypothesis of 
adequate fit

Signal is adequately 
described

Signal is not adequately 
described

74



3.3. Results and Conclusions

3.3 Results and Conclusions

Using the outlined model we attempted to estimate the parameters from the signals.

Noxious and tactile response data underwent delta brush detection, to define non-specific

responses, before analysing for the presence of waveforms associated with specific re-

sponse in the somatosensory region of the brain. We assume the observed signal is an

aggregation of unobserved components. By assuming the components are orthogonal

these can be extracted non parametrically using PCA. [105]. Once the characteristics

of the signal were obtained, the parameters of the model were fitted; the suitability of

estimates was ascertained by the automated detection procedure, α = 0.05, with false

discovery rate analysis to reduce type II errors - Definition 2.3.3.

In the entire data set 69% of the signals were adequately described by the presented

model, Definition 3.1.3:

Xi(tk) = Zi(tk) + ξT
i

(tk)Y i(tk) + εi(tk), εi(tk) ∼ N(0, Ine). (3.3.1)

Upon inspection of the rejected signals, to determine why the model rejects 31%, prob-

lems were noticed with the time-heterogeneous components. We have detected and

fitted two departures from time homogeneity: delta brushes and somatosensory specific

responses. It appears that in some of the rejected signals, 9%, there are unidentified

time-heterogeneous components. Therefore, there is an argument that we cannot use

these signals to assess the model validity.

If we remove these unsuitable signals from the analysis, the presented model describes

76% of the suitable signals. However, given the flexibility of the presented model, it is

possible that if we were to identify the time-homogeneous structure present, as in the

case of delta brushes, these signals could be described.

Previous models have focused solely upon the pass-band when estimating and analysing

neonatal EEG. Whilst understandable due to its analytical importance, ignoring or sam-

pling to remove the higher frequencies ignores their contribution to the structure of the

signal. The presented model was fitted across all frequencies - avoiding electrical inter-

ference - and assessed for suitability of fit within the passband. This approach takes into
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account the full structure of the signal whilst placing importance upon the frequencies

of interest to EEG practitioners.

Whilst we do not know the motivations behind the previous estimations performed,

analysing in low resolution allows for faster estimation to be performed within the fre-

quency domain. Furthermore it has been common in previous research to disregard

frequencies outside the analytical interval of interest. This could be because the compo-

nents being detected are easily identifiable at low resolution, however if higher resolutions

are required we have to take into account the short range covariance.

However, the presented model and estimation procedure is not without flaws. We have

introduced bias into our estimates by performing the estimation in two steps, and most

importantly we have ignored the multivariate nature of the data. The presented signals

were estimated univariately due to computational intensities, to estimate a set of 17

electrodes multivariately, we would have to estimate each cross-spectrum for a total of

153 fitted spectra for each set of recordings. Taking into account the number of record-

ings that we have this corresponds to around 90000 fitted spectral density functions.

Whilst this is the preferred way in which to estimate these signals, taking into account

the length and resolution of the signals, it is wholly impractical to perform and would

be a task for an analytic team.

The outlined approach is a flexible parameterisation of neonatal EEG; furthermore we

could adapt this model to take into account other components not analysed in this

research. The inability to describe the remaining 24% of the dataset could be due to

an unidentified time-heterogeneous component as we only took delta brush activity,

nociceptive and tactile responses into account when fitting. However, given the time-

heterogeneous characteristics we could extend our model to take these into account.

Overall 76% of the signals adequately described in the passband is evidence that the

presented model can be used to describe neonatal EEG signals.
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Chapter 4

Analysis of estimated model

parameters

Having obtained satisfactory estimates for 76% of suitable signals within our data set,

we now proceed to analyse the parameter estimates. Our eventual goal is to construct

a model that can reproduce the variability of the parameters seen in the data.

Several authors have found indications that the EEG characteristics of prematurely born

infants evolve over time, such as Stevenson et al. [75]. We, to be specific about the na-

ture of change, will attempt to capture the change-point indicating the time point of

evolution within the presented dataset. We do so by comparing the parameters of signals

with somatosensory specific responses and up to two delta brush components. We are

utilising these time heterogeneous segments to look at whether the time heterogeneity

“triggers” a change in the underlying parameters of the time-homogeneous segments

surrounding these regions. The values outside of these regions, and therefore baseline

activity, were tested to see whether there was a change in the parameters. From visual

inspection of graphs, Wilcoxon signed ranks tests and Kolmogorov-Smirnov tests, we

were able to determine that there was no change in the parameters. As a consequence of

this conclusion, we reduced the number of parameters per signal, such that only one set

of parameters is present per electrode per signal. From this we investigate the proper-

ties of, and relationships between, the reduced estimated parameters. Finding that the

estimated values of the variance has a bimodal distribution, and the value of this has

an apparent relationship to the values of the long and short term covariance structure.
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Taking these observations we construct three binary parameterisations based upon the

bimodality of the variance, parameterisation of the long-term covariance structure and

parameterisation of the short term covariance structure. These binary parameters are

described using generalised linear models. These reflect the relationships seen in the pa-

rameters, with an apparant link between the parameterisations of long and short term

covariance structures, depending upon the value of the variance. Additionally we find

that the parameterisation of the long-term covariance has an effect on the parameter-

isation of the short term covariance, which is intuitive given the stepwise estimation

procedure from which these estimates have been obtained. Utilising the binary param-

eter models we construct several multivariate normal distributions, dependent upon the

predicted binary parameters.

Finally, we model probability of delta brushes occurring and the number of electrodes

expressing delta brush activity, both spontaneously and as a response to stimuli. With

regards to the probability of occurrence we find that age at birth affects the probability

of occurrence, not just age at test. We find that not only do infants before 35-37 weeks

age at test express delta brush responses at more electrodes, in response to noxious or

tactile stimuli, but also infants tested close to the age of birth. We notice also, that in

response to tactile stimuli, the expected number of electrodes expressing delta brushes

is in a smaller range of values. Finally, we have identified that spontaneous delta brush

activity is expected at more electrodes when infants are tested close to birth. These

findings are concurrent with current theory, but utilise the age pairing of birth and test

instead of just age at test.

4.1 Time-heterogeneous parameters

Electroencephalogram signals are by definition time-heterogeneous [1–3]. Previously,

short time intervals have been simulated with different parameters, in order to recreate

this time heterogeneity [75]. However, we have been able to adequately describe up

to six seconds with a time-homogeneous model or a segmented approach to take into

account time heterogeneity within the signal; with the descriptions working for multi-

ple segments within one time course. A point at which the baseline parameters might

change, is after a delta brush or a specific response. Utilising the estimated parameters,
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4.1. Time-heterogeneous parameters

we shall now analyse the parameter values from time-heterogeneous estimates to test

whether the parameters change after the observation of a time-heterogeneous compo-

nent. Signals with up to two delta brushes or a specific response were analysed, as the

sample size becomes too small for signals with more than two delta brushes present.

We investigate whether the parameters are the same by visual inspection and Wilcoxon

signed ranks test [104]. Although estimates from the Whittle likelihood are asymptot-

ically normal, this method will allow for departures from this due to the sample to be

accounted for. We would expect the estimates from Whittle estimation to be asymp-

totically normal, but only if the underlying parameter distribution is normal. Across

the EEG signals the distribution of the parameter values is not a delta function, thus

the observed estimates have a distribution which is a convolution of the parameter dis-

tribution in the infant population. Observed parameters have a distribution that is a

convolution between the estimation error distribution and the original distribution of

the sample parameters. So whilst the error distribution under Whittle estimation is nor-

mal, the estimated parameters distribution might not be due to the original distribution

of the parameters. Because of the number of possible autoregressive moving average

combinations, we reduce the dimensionality by analysing the first and second principal

components of these estimates [105].

We will now text whether the parameters of the time-homogeneous segments before and

after a time-heterogeneous component are the same. This shall be done in two ways;

first we shall look to see whether they are the same using the paired non-parametric

Wilcoxon signed ranks test. Second, we shall look at whether the distribution of the

parameters is the same. This is to ascertain, if they are not equal, could they be random

realisations from the same distribution.

Table 4.1.1: Comparison of estimated spectrum parameters pre and post delta brush

utilising Wilcoxon signed ranks and Kolmogorov-Smirnov tests

Test σ δ ARMA PC1 ARMA PC2

Wilcoxon 0.8476 0.1847 0.7716 0.3401

Kolmogorov-Smirnov 0.4806 0.2202 0.5316 0.5316
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4.1. Time-heterogeneous parameters

Table 4.1.2: Comparison of estimated spectrum parameters pre and inter two delta

brush utilising Wilcoxon signed ranks and Kolmogorov-Smirnov tests

Test σ δ ARMA PC1 ARMA PC2

Wilcoxon 0.6053 0.5538 0.8849 0.0694

Kolmogorov-Smirnov 0.7417 0.5862 0.7911 0.1661

Table 4.1.3: Comparison of estimated spectrum parameters inter and post two delta

brush utilising Wilcoxon signed ranks and Kolmogorov-Smirnov tests

Test σ δ ARMA PC1 ARMA PC2

Wilcoxon 0.7495 0.2506 0.7933 0.1587

Kolmogorov-Smirnov 0.9918 0.2794 0.8790 0.2469

Table 4.1.4: Comparison of estimated spectrum parameters pre and post specific reaction

utilising Wilcoxon signed ranks and Kolmogorov-Smirnov tests

Test σ δ ARMA PC1 ARMA PC2

Wilcoxon 0.7624 0.7004 0.5043 0.8069

Kolmogorov-Smirnov 0.4189 0.8336 0.6679 0.9010

We have plotted the histograms of the pre-post, pre-inter-post parameters where rele-

vant, and by visual inspection they appear to be identically distributed - Figures 4.1, 4.2,

4.3 and 4.4. A conclusion supported by the p values of the Kolmogorov-Smirnov test for

distributional similarity [106, 107], and the Wilcoxon signed ranks tests - Tables 4.1.1,

4.1.2, 4.1.3 and 4.1.4. We also checked the parameterisation with respect to Matérn

or fBm, and we found that: 82% of specific responses, 96% of signals with one delta

brush and 93% of signals with two delta brushes remained the same parameterisation

across all segments. These analyses indicate that we cannot detect a change-point in the

estimated parameters of these six second recordings. Furthermore, we have illustrated

that we can use the same long range covariance parameters across all six seconds. This

also suggests that the time heterogeneity identified is an additional component that can
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4.1. Time-heterogeneous parameters

be added to the time-homogeneous baseline.

From these analyses we obtain an answer to the question of interest: At what point

does the baseline activity change for neonatal EEG signals? We do not know, and we

cannot ascertain this from our estimates. What we can infer from this analysis, is that

in six seconds the parameters remain the same and time-heterogeneity can be included

at relevant points, as prescribed by our model.

As a result of this analysis, we are going to reduce the number of parameters per signal,

so only one set of parameters is present per electrode and signal; by taking the mean of

the parameters when necessary.
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4.1. Time-heterogeneous parameters

Figure 4.1: Histograms of σ̂ between time heterogeneous segments
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This figure shows histograms and box plots for σ̂ between time heterogeneous segments

and shows the distributional similarities between them - an analysis that is confirmed

by the Kolmogorov-Smirnov test results. This when analysed with the results of the

Wilcoxon signed ranks tests illustrates that we cannot reject the hypothesis that the pa-

rameters are the same between time heterogeneous segments
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4.1. Time-heterogeneous parameters

Figure 4.2: Histograms of δ̂ between time heterogeneous segments
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This figure shows histograms and box plots for δ̂ between time heterogeneous segments and

shows the distributional similarities between them - an analysis that is confirmed by the

Kolmogorov-Smirnov test results. This when analysed with the results of the Wilcoxon

signed ranks tests illustrates that we cannot reject the hypothesis that the parameters are

the same between time heterogeneous segments
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4.1. Time-heterogeneous parameters

Figure 4.3: Histograms of ARMA PC1 between time heterogeneous segments
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This figure shows histograms and box plots for the first principal component description of

the ARMA parameters between time heterogeneous segments and shows the distributional

similarities between them - an analysis that is confirmed by the Kolmogorov-Smirnov

test results. This when analysed with the results of the Wilcoxon signed ranks tests

illustrates that we cannot reject the hypothesis that the parameters are the same between

time heterogeneous segments.
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4.1. Time-heterogeneous parameters

Figure 4.4: Histograms of ARMA PC2 between time heterogeneous segments
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This figure shows histograms and box plots for the second principal component descrip-

tion of the ARMA parameters between time heterogeneous segments and shows the dis-

tributional similarities between them - an analysis that is confirmed by the Kolmogorov-

Smirnov test results. This when analysed with the results of the Wilcoxon signed ranks

tests illustrates that we cannot reject the hypothesis that the parameters are the same

between time heterogeneous segments.
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4.2. Inter-parameter relationships

4.2 Inter-parameter relationships

Previous research has looked at the distribution of δ [75], however since we have a dif-

ferent covariance structure, containing short term covariance, we need to incorporate

this also. First we shall assess the inter-parameters relationships and the behaviour of

the parameters, starting with the standard deviation, σ.

Figure 4.5 shows the histogram of σ̂ as it is an intuitive starting point for assessing the

pattern in the data.

Figure 4.5: Histogram of σ̂ illustrating bimodality
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This figure illustrates that we have a possibly bimodal distribution of σ̂ and as such it is

a sensible starting point for analysis into the variable relationships
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4.2. Inter-parameter relationships

The histogram in Figure 4.5 appears to illustrate evidence of bimodality, with the two

distributions separated at σ̂ = 0.0007. The amount of bimodality appears slight, how-

ever it could become more evident looking at the relationship with other parameters.

Figure 4.6 shows a plot of σ̂ vs. δ̂ with the possible separation between the two distri-

butions illustrated.

Figure 4.6: Plots of σ̂ vs. δ̂ and d̂ coloured according to bimodality

This plot illustrates that the bimodality of σ̂ could correlate to some behaviours with

respect to whether the process is best described using a Matérn parameterisation over

fBm. With values in the minor peak possibly being better described by the Matérn process

The bimodality is more evident here, especially when looking at its effect of the values

of δ̂. We see from Figure 4.6, that the Matérn parameterisation , δ̂ > 1.5 or d̂ > 0, has

some relationship with respect to the bimodality: the Matérn parameterisation appears

to become more likely when σ̂ < 0.0007.

Now let us investigate the fitted ARMA parameters, ϕ̂ and ϑ̂; these are more difficult

to visualise due to the changing values of p̂ and q̂. Therefore, we shall assess these

parameters based upon the shape of the spectral density function. On inspection of

the estimates, it became clear that two distinct shapes of spectra appeared, Figure 4.7,

and we noticed the main difference appears to be the behaviour in the passband and at

high frequencies. This difference was first noticed when fitting the time-homogeneous
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4.2. Inter-parameter relationships

model and realised it might affect the delta brush detection; as such we created two

time-homogeneous detection baselines based upon the shape of the raw periodogram.

Figure 4.7: Illustrative plots of observed MatérnARMA(δ,d,p,q) spectral density shapes
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This plot illustrates the two shapes of spectral density function that classify the parameter

Shape. For each set of parameters we have assessed which they are more similar to in

shape by which is more similar at f > 600 as this is where the most noticeable difference

occurs. The parameter Shape = 0 if more similar to the black line and 1 if more similar

to the red

Having classified the spectral density functions accordingly, we present σ̂ vs. δ̂ with the

points coloured to reflect the spectral shape. Figure 4.8 illustrates some very interesting

behaviour amongst all parameters. It appears the shape of the spectral density function
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4.2. Inter-parameter relationships

is strongly related to Matérn and Bimodality. The behaviour when the covariance is

Matérn and σ̂ < 0.0007 is slightly concerning, but appears to be distinct.

So, from the estimated parameters we have extracted three binary parameters: Matérn,

Shape and Bimodality, and have illustrated the effect that they have on the data and

each other. Next, the relationship of these three variables with respect to age shall be

assessed. The plot below shows the box plots of age at birth and test, segregated into

the eight possible groupings based upon the values of the three binary variables. The

value of the binary parameter Matérn is equal to 1 if the long-term covariance param-

eterisation is Matérn and equal to 0 otherwise. Bimodality is equal to 1 if σ̂ < 0.0007,

and Shape is equal to 1 if the raw periodogram is similar to the first spectral density

function illustrated in Figure 4.7 - as indicated by the red line.

These box plots appear to illustrate a relationship with age, and raise a worrying feature

in the segregated data. It would appear for the grouping Shape = 0 and Bimodality =

0 we do not have enough data to segregate according to Matérn when modelling.

Figure 4.8: Plots of σ̂ vs. δ̂ and d̂ coloured according to spectral shape

This plot illustrates the behaviour of parameters when classified by the variable Shape,

we have also indicated the values of the Matérn parameterisation using dotted lines. We

see for values of δ̂ < 1.5 & d̂ = 0 the classification seems to be distinct. However outside

these values this relationship is less clear and as such the classification is not as simple.
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4.3. Modelling the estimated parameters

Figure 4.9: Boxplots of ages by observed segregations
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This figure shows some interesting behaviour with regards to the parameter Shape and

the age at birth at which it is occurs. We notice that the distribution of Shape = 0 -

black line Figure 4.7 - is skewed towards higher ages at birth. But for Shape = 1 - red

line Figure 4.7 - the distribution is less skewed. We also notice the issue with lack of

points for certain classifications due to their occurrence within the sample.

4.3 Modelling the estimated parameters

Having assessed the inter-parameter relationships, we now attempt to fit a series of

models to the parameters, with the aim of producing similar data for simulation.

The previous section illustrated the possible relationship between age, and the three bi-

nary variables we defined based upon the characteristics of the estimated model param-

eters. Now, we want to describe the variables’ relationship with age and other possible

explanatory variables; this shall be done using a generalised linear model with a logit

link function. i.e. binomial regression. Taking into account the effect of the segregated

variables on each other we obtain the following models by stepwise regression.

90



4.3. Modelling the estimated parameters

Model 4.3.1. The generalised linear models to describe the probability of the binary

variables being equal to 1 have the general form:

Bimodal ∼ MCAC
1 ×MCAC

2 + Type + Electrode + MCAC
1 : Type+

MCAC
1 : Electrode + MCAC

2 : Electrode, (4.3.1)

Matern ∼ MCAC
1 ×MCAC

2 + Type + Bimodal + Electrode+

MCAC
1 : Type + Bimodal : Electrode + Bimodal : Type, (4.3.2)

Shape ∼ MCAC
2 × (Bimodal : Matern + Bimodal : Type + Matern : Type)+

MCAC
1 × (Bimodal : Matern + Bimodal : Type)+

Bimodal×Matern× Type. (4.3.3)

The models with corresponding estimated coefficients are described in Appendix A.

Where MCAC
1 and MCAC

2 are the principal components defined in Model 4.3.2; since

these variables are strongly correlated we use the principal components to avoid is-

sues with multicollinearity [105]. The variable Type is whether the signal is time-

homogeneous background, delta brush or somatosensory specific stimuli response ac-

tivity.

We require a multicollinearity adjustment because we have strong positive correlation

between age at birth and age at test (τ̂ = 0.678). This correlation is partially induced

by the fact that we cannot test before an infant is born and by the fact that clinicians

will not allow testing for medical reasons. We have many tests performed within the

immediate weeks after birth, again this could be induced because of medical pressures,

testing procedure or discharge time. Utilising solely age at test ignores the length of

time infants have been ex utero, which could have an effect on development.

Model 4.3.2 (Linear transformation of ages to avoid multicollinearity). In

order to avoid issues with multicollinearity the linear transformation of the parameters

PMA and PMAT shall be used. For the subset of the data describing the characteristics

of the estimated parameters these are defined as:

MCAC
1 = −0.904741× PMA− 0.425962× PMAT,
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4.3. Modelling the estimated parameters

MCAC
2 = −0.425962× PMA + 0.904741× PMAT.

Where PMA is post menstrual age at birth and PMAT is post menstrual age at test.

Since the presented models are too complicated to give all parameters, we shall highlight

some interesting features from the variable coefficients. Generalised linear models with

the logic link function fit the probability of the response variable being equal to 1, as

such we shall describe the parameters in terms of increase or decrease in this probability.

From the estimated coefficients, presented in Appendix A, we notice the following effects

on the estimated parameter characteristics described by these binary variables. First

we find across all GLMs that as the age at birth increases, the probability of the binary

variables being equal to 1 decreases. We also find that only the Shape variable being

equal to 1 decreases as age at test increases. This suggests an interesting feature with

respect to development, as it would appear that infants with a low age at birth and high

age at test are more likely, under our model, to have a small variance and a covariance

structure not describable by the fBmARMA covariance model. A conclusion further

supported since when the bimodal variable is equal to 1 in the Matérn GLM, the prob-

ability increases. When we look at the plots in the previous section, compared with the

results from the above models, we also see the behaviour described by the generalised

linear models.

We find that across all GLMs, that delta brush responses increase the probability of

the binary variables being equal to 1, in comparison to time-homogeneous signals.

For somatosensory specific responses, the probability decreases in comparison to time-

homogeneous signals, in all GLMs except the Shape GLM.

To check that these models can be used to recreate the structure seen in the estimates,

we obtained fitted estimates and shall check these against the observed statistics. We do

so by comparing the estimated and actual box plots of age at birth and test, segregated

into the eight possible groupings based upon the values of the three binary variables.

Figure 4.10 illustrates that we can obtain a suitably similar distribution to the observed

values. With the extracted binary variables described, we can now look to describe the

estimated parameters.
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4.3. Modelling the estimated parameters

Figure 4.10: Boxplots of ages by observed and fitted segregations
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This plot shows the results of our modelling by comparing the box plots of ages vs the

observed segregations. We see a similar distribution from the fitted values within our

model indicating a capturing of the behaviour. This does not suggest a perfect description

but rather we can realise a decent approximation to the observed behaviour

The way in which we shall produce estimates for simulation is via several multivari-

ate normal distributions, since under the Whittle likelihood, estimates obtained are

asymptotically normal due to the estimated error distribution under Whittle estimation

following a normal distribution.

However, we must take the observed behaviour of our estimates into account when con-

structing multivariate distributions. We shall do so by creating multiple distributions

based upon the values of the observed binary parameters outlined. The estimated mean

vectors and covariance matrices from the fitted model parameters have been obtained

and these are given in Appendix B.

An issue that is noticeable at this juncture is the number of parameters from which

the distribution is estimated, with some segregations having very few observations from

which a distribution might be fitted. Furthermore, whilst the estimates might be asymp-
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4.4. Modelling the presence and occurrence of delta brushes

totically normal, the sample from which the distribution is estimated might not be. It

should be noted that as a result of some of the groupings having few observations, some

of the simulated parameters may be inappropriate; however, in other groupings adequate

simulated parameters are obtained.

Whilst this approach may produce adequate realisations of the estimated parameters, we

have not produced a structure that can adequately describe neonatal electroencephalo-

gram signals. In Chapter 1 we noted that these signals are multivariate, and due to

computational intensities we estimated them as univariate. In order to produce similar

signals we must recreate a suitable multivariate structure.

4.4 Modelling the presence and occurrence of delta brushes

A key component of neonatal EEG signals is the delta brush, as such any simulation must

take into account its presence. Before using the models to realise similar signals, and

assessing their suitability, we shall analyse the behaviour of the delta brush components,

starting with spontaneous occurrence. As with the parameter models we shall utilise

the principal components of the age variables to avoid multicollinearity issues.

Model 4.4.1 (Linear transformation of ages to avoid multicollinearity). In

order to avoid issues with multicollinearity the linear transformation of the parameters

PMA and PMAT shall be used. For the subset of the data describing the signal’s structure

these are defined as:

MCAS
1 = −0.88207× PMA− 0.47113× PMAT,

MCAS
2 = −0.47113× PMA + 0.88207× PMAT.

Where PMA is post menstrual age at birth and PMAT is post menstrual age at test.

We require a multicollinearity adjustment because we have strong positive correlation

between age at birth and age at test (τ̂ = 0.653). The same reasoning applied for the use

of a multicollinearity adjustment in Section 4.3 still applies. The linear transformation

is different to Model 4.3.2 due to the use of different samples of our data. The inclusion

of age at birth differs from previous research into this developmental stage [4]. However,

this parameter cannot be overlooked; previous research has shown behaviourally that the
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4.4. Modelling the presence and occurrence of delta brushes

difference between age at birth and test has an effect on the response to stimuli [52,60]

and as such we shall investigate this utilising non behavioural measurements of stimuli

response. Furthermore it has been shown that the weeks preceding birth have an effect

upon the response to stimuli [12, 14,108].

The models fitted are illustrated using heat maps and we have indicated the areas that

we cannot have data for as, under the testing procedure, an infant cannot be tested

before they are born. Furthermore we have indicated areas which have not been repre-

sented in the sample.

This raises an issue that can affect the results of our analysis, and as such affects the

conclusions that we can draw. We have evidence that both age at birth and age at test

are important explanatory variables, however we do not have data points for many of

the pairings. As such, we can construct hypotheses from the trends that we discover,

however a more representative sample is required to confirm or reject these hypotheses.

4.4.1 Spontaneous delta brush activity

Spontaneously occurring delta brushes are a feature of neonatal EEG across develop-

ment, becoming less common by 39-41 weeks post menstrual ages [61]. First, we want

to determine if the probability of occurrence changes with the age at test and age at

birth. We did so by fitting a binomial generalised linear model, and found that there is

a relationship between spontaneous delta brush occurrences and ages.

Model 4.4.2 (Binomial GLM of spontaneous delta brush activity). The proba-

bility of an infant expressing delta brush activity spontaneously, p̂SP , is modelled by the

logit function,

log

(
p̂SP

1− p̂SP

)
= 0.72508−0.05093×MCAS

1−0.16907×MCAS
2+0.03369×MCAS

1 ×MCAS
2 .

Interaction significant at α = 0.1

Figure 4.13 shows a heat map illustrating the probability of spontaneous delta brushes

occurring and is congruent with the underlying theory with regards to spontaneous

delta brush occurrence [61]. We can see that infants born prematurely have a higher

probability of expressing spontaneous delta brushes. We also see that infants tested close
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to birth have a similarly high probability of expressing delta brushes spontaneously. The

probability of spontaneous delta brushes being present in an infant’s recording reduces

at around 40 weeks at test depending upon the age of the infant at birth; thus showing

the possible effect of the noxious procedures that premature infants undergo [21].

Figure 4.11: Heatmap of the fitted probability of an infant expressing spontaneous delta

brush

This figure shows the predicted probability of a spontaneous delta brush occurring. The

greyed out areas indicate areas where data points are not present within the sample.

With a model to describe the probability of spontaneous delta brushes occurrences, we

shall proceed to modelling the number of electrodes that express such activity. We shall

model this observed behaviour utilising the binomial distribution, by describing the pro-

portion of electrodes that simultaneously express delta brush activity.
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4.4. Modelling the presence and occurrence of delta brushes

By viewing electrodes with simultaneous delta brush activity as successes and the num-

ber of electrodes as the number of trials, we can describe the proportion of electrodes

expressing spontaneous delta brush activity, pSPn , using a binomial generalised linear

model, as outlined in Model 4.4.3.

Model 4.4.3 (Binomial GLM for simultaneous spontaneous delta brushes).

The proportion of electrodes simultaneously expressing spontaneous delta brush activity,

p̂SPn , is modelled by the logit function,

log

(
p̂SPn

1− p̂SPn

)
= −0.95378−0.02847×MCAS

1−0.09×MCAS
2+0.01112×MCAS

1 ×MCAS
2

Interaction significant at α = 0.07

From Model 4.4.3 and Figure 4.12 we can see that infants tested close to birth are more

likely to have a higher number of electrodes expressing simultaneous delta brush ac-

tivity, and fewer electrodes expressing simultaneous delta brush activity after 40 weeks

gestational age at test.

Whilst the model describing the probability of spontaneous delta brush occurrence sug-

gests that infants born prior to 28 gestational weeks at test are more likely to express

spontaneous delta brushes, we see from Figure 4.12 that these infants could express

them at fewer electrode sites. This is an important realisation to take into account

when simulating a set of neonatal EEG signals and could be due to the development of

the brain, specifically the growth and increase in neural connections that occur in the

brain over development.

4.4.2 Delta brush response to somatosensory stimuli

Now we shall analyse the presence of delta brushes in response to noxious and tactile

stimuli; this shall be done with the methods outlined and demonstrated with sponta-

neous delta brushes. Before discussion of the results from our models we shall present

the models and fitted heat maps illustrating the modelled behaviour.

First we present the probability of delta brushes occurring in response to noxious and

tactile stimuli, then the proportion of electrodes that express delta brushes shall be

described. As with the previous model fitting, we shall utilise stepwise regression to fit
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our models. Whilst stepwise regression does not guarantee terms significant at a given

significance level, we obtain a model that includes the relevant terms that best describes

the pattern within the data. Finally, whilst the presented sample is representative with

respect to age at test or age at birth, when we look at the age pairings we do not have

a suitable sample; future research is required to test the conclusions obtained.

Model 4.4.4 (Binomial GLM of nociceptive delta brush response). The proba-

bility of an infant expressing delta brush activity in response to nociceptive stimuli, p̂N ,

Figure 4.12: Heatmap of predicted expected number of electrodes, simultaneously ex-

pressing spontaneous delta brush activity

This figure shows the predicted expected number of electrodes, simultaneously expressing

spontaneous delta brush activity. The greyed out areas indicate areas where data points

are not present within the sample.
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is modelled by the logit function,

log

(
p̂N

1− p̂N

)
= 1.481 + 0.11046×MCAS

1

Significant at α = 0.12

Figure 4.13: Heatmap of the probability of noxious stimulation expressing non-specific

response

This figure shows the predicted probability of noxious stimulation expressing non-specific

response. The greyed out areas indicate areas where data points are not present within

the sample.

Model 4.4.5 (Binomial GLM of tactile delta brush response). The probability

of an infant expressing delta brush activity in response to tactile stimuli, p̂T , is modelled

by the logit function,

log

(
p̂T

1− p̂T

)
= 1.49012−0.03358×MCAS

1−0.1658×MCAS
2 +0.02414×MCAS

1 ×MCAS
2
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Figure 4.14: Heatmap of the probability of tactile stimulation expressing non-specific

response

This figure shows the predicted probability of tactile stimulation expressing non-specific

response. The greyed out areas indicate areas where data points are not present within

the sample.

Interaction significant at α < 0.05

Models 4.4.4 and 4.4.5 are in agreement with previous findings about the maturation of

somatosensory stimuli response [4]. The probability of a non-specific response to stimuli

starts to decrease past 37 weeks age at test, however we do not find as strong a result

as previous research.

The probability for a delta brush being expressed in response to tactile stimuli, appears

to be similar for almost all infants until 37-39 weeks, when we see a decrease in this

probability. We notice however, that it is not only the age at test that affects the
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probability of a delta brush response; for both noxious and tactile stimuli, infants tested

close to birth, or born prematurely, are more likely to express a non-specific reaction.

This indication of a less mature response to such stimuli is congruent with behavioural

studies into noxious stimuli [52,60]; however we find a similar response to babies tested

close to birth, in contradiction to some behavioural observations [52]. Next, we present

the models that describe the proportion of electrodes that express delta brush responses

to somatosensory stimuli.

Model 4.4.6 (Binomial GLM simultaneous nociceptive delta brush response).

The proportion of electrodes simultaneously expressing delta brush activity in response

to nociceptive stimuli, p̂Nn , is modelled by the logit function,

log

(
p̂Nn

1− p̂Nn

)
= −1.18499+0.00784×MCAS

1−0.19393×MCAS
2+0.02835×MCAS

1 ×MCAS
2

Interaction significant at α < 0.05

Model 4.4.7 (Binomial GLM simultaneous tactile delta brush response). The

proportion of electrodes simultaneously expressing delta brush activity in response to

tactile stimuli, p̂Tn , is modelled by the logit function,

log

(
p̂Tn

1− p̂Tn

)
= −0.92191−0.00004×MCAS

1−0.02739×MCAS
2+0.00486×MCAS

1 ×MCAS
2

Interaction significant at α < 0.05

From Models 4.4.6 and 4.4.7, we find again that both age at test and age at birth are im-

portant explanatory variables describing the proportion of electrodes that express delta

brush responses. For noxious stimuli, we find that infants born prematurely or tested

close to birth, have a larger proportion of electrodes expressing simultaneous delta brush

activity. Furthermore we find that post 37 weeks age at test this proportion decreases

across all ages.

With regards to tactile stimuli response, we find a less distinct result than noxious

stimuli response; the range of fitted proportions is smaller and we see that any infant

tested at 33-37 weeks has a higher proportion of electrodes simultaneously expressing

delta brushes. This was seen in the probability of delta brush occurrence in response to

tactile stimuli, and seems to indicate a difference in the way which neonates respond to
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Figure 4.15: Heatmap of predicted proportion of electrodes, simultaneously expressing

non-specific nociceptive stimuli response

This figure shows the predicted proportion of electrodes, simultaneously expressing non-

specific nociceptive stimuli response. The greyed out areas indicate areas where data

points are not present within the sample.

noxious and tactile stimuli. These results seem to indicate that infants tested close to

birth or born prematurely are more likely to express a non-specific response to stimuli,

and this response is present at at a higher proportion of electrodes than infants tested

outside this range.
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Figure 4.16: Heatmap of predicted proportion of electrodes, simultaneously expressing

non-specific tactile stimuli response

This figure shows the predicted proportion of electrodes, simultaneously expressing non-

specific tactile stimuli response. The greyed out areas indicate areas where data points

are not present within the sample.

4.5 Results and Conclusions

From the estimates obtained for the model presented in Definition 3.1.3 we have identi-

fied some key features that must be taken into account when simulating neonatal EEG

signals.

First we analysed whether we could detect the point at which parameters change within

a signal. The inherent time-heterogeneous nature of neonatal EEG is poorly understood,

with previous attempts to model such activity arbitrarily selecting parameter change-

points. By analysing the parameters after identified time heterogeneous components, we
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found no significant difference in the estimated parameters from the time-homogeneous

segments. Our inability to identify the parameters change-point could be due to the

fact that we are only analysing a short segment; the change-point might become evident

over a longer interval.

Using this conclusion about the parameterisation of the signals, we reduced the set of

time homogeneous parameters per recording; such that we had only one set of param-

eters, per infant and electrode. Given the previous result we assume that the time-

heterogeneous segments are additions to a time-homogeneous baseline.

From this we were able to discern three behaviours in the signal that are seemingly de-

pendent upon age; the value of the estimated variance within a bimodal distribution, the

shape of the ARMA(p,q) spectral density function and whether the long range covari-

ance was best described by a Matérn or fBm process. Analysing these parameters using

a GLM with a logit link function showed a dependence upon the age pairing, gestational

age at birth and gestational age at test. Additionally we found that the value of the vari-

ance has an effect on the other parameters, whereas this has previously been overlooked.

The way in which models have been estimated and analysed previously has focused upon

the long range covariance sequence - specifically the Hurst parameter - and have ignored

the variance parameter as just affecting the scale of the signal. We have found some

evidence to suggest that the value of the variance affects other values in the spectral

density function and should not be ignored.

From these analyses several multivariate Gaussian distributions were constructed to de-

scribe the parameters - which are grouped according to the three outlined parameter

characteristics.

Finally, in order to realise similar signals from our estimated parameters we must include

time-heterogeneous components appropriately; such a component is neuronal bursting

activity, or delta brush. Analysing the occurrence of spontaneous delta brush activity

we found a dependence upon age at birth and age at test. We noticed similar behaviour

with regards to probability of spontaneous delta brush occurrence in infants born pre-
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maturely and tested close to birth. Looking at the proportion of electrodes that express

such activity showed a higher proportion only at infants tested close to birth.

The occurrence of delta brush activity in response to nociceptive and tactile stimuli

was also investigated, showing dependence upon the age pairing - age at birth and age

at test - with respect to both probability of occurrence and proportion of electrodes

expressing delta brush activity. These show a similar behaviour to spontaneous delta

brush responses, with a higher probability of expressing delta brush responses seen in

infants born prematurely and tested close to birth. In contrast to spontaneous delta

brushes, we see a similar proportion of electrodes expressing delta brush activity with

infants born prematurely and tested close to birth.

This Chapter has highlighted some interesting behaviours and characteristics of neonatal

EEG - especially with regards to the occurrence of delta brush activity - however we

are limited in the conclusions that we can draw. This is as a result of the sample which

we are analysing, which is unrepresentative as highlighted in the heat maps throughout.

Throughout this Chapter we have looked at the age pairing - age at birth and age at

test - in contrast to previous work which has focused upon age at test. Whilst the

sample analysed is representative with respect to age at birth or age at test, it is not

representative when looking at the aforementioned age pairing. As a result of this,

further research is required to test these hypotheses suitably.
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Chapter 5

Simulation of similar neonatal

EEG signals

Up to this point in the research presented, we have analysed one signal at a time in-

dependently of any other signals recorded at the same time - i.e. univariately. A set

of electroencephalogram signals contains multiple electrodes, each having an effect and

relationship with the other signals within the set - i.e. multivariate. Up until now we

have overlooked the multivariate nature of these highly complex signals. Although our

univariate analyses has been successful in describing the second order structure, we have

lost a large amount of information with regards to the interaction of electrodes; which

would increase the accuracy of any simulated set of signals. Since this Chapter discusses

simulation methods, it is crucial we attempt to regain this multivariate nature present

within the signals.

The most obvious multivariate nature of these signals, evident from visual inspection, is

the time domain correlation structure between electrodes; which has been documented

in previous research [76, 77]. This structure was estimated by analysing the principal

component weights of the signals within a recording [105], and classifying signals ac-

cording to these weights. From this we were able to obtain a representation of the time

domain correlation structure, represented by a set of adjacency matrices. Taking infants

with 17 recorded electrodes, we were able to model the number of distinct groups of elec-

trodes using a binomial generalised linear model. We can use this GLM to obtain the

number groups expected for simulated infant, given the age at birth and the age at test,
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5.1. Modelling time domain correlation

and obtain a correlation structure by sampling from the set of observed adjacency ma-

trices. This analysis describes an interesting feature of these signals: prematurely born

infants and infants tested close to birth have a weaker correlation structure, i.e. more

distinct electrodes. This is congruent with underlying theory, considering the growth

and increase in neural connections that occur in the brain over development.

The last aspect we shall discuss is the way in which we can simulate a set of signals

from an infants age at birth, and age at test. The focus of our simulations shall be

background EEG activity as this illustrates the time-heterogeneous nature of our model

and allows direct comparisons to be drawn. In order to assess our approach, we shall

compare the resulting simulated signals against another approach outlined in previous

literature.

5.1 Modelling time domain correlation

The model presented in Chapter 3 provides an adequate description for 76% of suitable

signals, and has been modelled in Chapter 4 using a group of multivariate distributions.

We need to simulate full signals in order to assess the suitability of the predicted pa-

rameters.

Since we have estimated these multivariate signals univariately; we have lost information

about the relationship between signals [109, 110]. If we had have estimated the signals’

spectrum multivariately, we would have obtained a measure of association between the

signals as described by the cross spectral density function. In order to provide adequate

realisations from our model we must attempt to regain the inter-electrode recording

structure. Visual inspection of the recorded signals shows that there is a large amount

of similarity among signals. Whilst the parameters of the covariance sequence for the

signals within a recording set are different, the underlying Gaussian stochastic process

of the signals is similar; this is demonstrated in the plotted signals in Figure 5.1.

Figure 5.1 illustrates the multivariate structure we are wanting to capture with this

procedure, the correlation between signals across time. If we wanted to capture the

correlation between the covariance sequence parameters during estimation we would
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5.1. Modelling time domain correlation

Figure 5.1: Full set of electroencephalogram recordings from an infant PMA = 35.57,

PMAT = 37.85
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This figure illustrates a full set of neonatal electroencephalogram signals. There is vi-

sual evidence of a similar structure between electrodes as is to be expected given the

multivariate nature of these signals.

require the use of multivariate Whittle estimation. Utilising multivariate Whittle esti-

mation would allow us to ascertain not only a measure of the correlation between time

domain signals, but additionally the components within the covariance sequences.

When simulating, a Gaussian stochastic process with orthogonal increments is used

[75, 80, 111], which corresponds to εt - εt ∼ N(0, 1) - in Model 3.1; we shall refer to this

as the random normal basis, as it is the basis to which we convolve the covariance struc-

ture to obtain simulated signals. Figure 5.1 illustrates that we should utilise the same

random normal basis for some signals, in order to recreate the signals appropriately.

Therefore, we need a means by which we can assess the similarity of the signals in the

time domain. We require that for a set of EEG signals, we can obtain groupings of simi-

108



5.1. Modelling time domain correlation

lar signals in the time domain. Whilst the correlation coefficient could be used [112], we

are going to use principal component analysis to obtain an estimate of these groupings.

Definition 5.1.1 (User tuned algorithm to determine the number of electrode

groupings). The algorithm by which we shall estimate the number of distinct groups

present within a set of signals is:

1. Scale the time series to avoid issues with regards to PCA and scale.

2. Obtain the linear decomposition of the time series by PCA - princomp in R.

3. Obtain the number of significant principal components as prescribed by Kaiser’s

criterion - pcn

4. For each loading lij ; i = 1, ..., 17, j = 1, ..., pcn

If lij > 0.1, lijG = 1

Else if lij < −0.1, lijG = −1

Else lijG = 0

5. For each electrode ei; i = 1, ..., 17

If lijG 6∈ GINF

add lijG to GINF Where GINF is the proposed groupings of electrodes

6. nG = ||GINF ||

Definition 5.1.1 outlines the algorithm used to obtain the estimated groupings present

within the analysed signals. The value 0.1 was chosen as a minimum to have either neg-

ative or positive assignment so as to stop low loadings affecting the grouping algorithm.

Taking the observed signals, once scaled, we obtain the loadings of up to the first three

principal components. Using Kaiser’s criterion to determine how many of the three sets

of loadings to use [105], we then obtain groups depending upon the similarity of the

loadings. Kaiser’s criterion suggests the number of components to use based upon the

eigenvalues of the loadings; the number of suggested loadings is such that the eigenvalues

are greater than one. The results of the groupings on the data presented above can be

seen in Figure 5.2.
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Figure 5.2: Full set of electroencephalogram recordings from an infant PMA = 35.57,

PMAT = 37.85 - Coloured according to identified groupings
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This plot illustrates the result of the algorithmic procedure to identify groupings as out-

lined in Definition 5.1.1. We can see evidence of a similarity in the signal structure

among the groupings. We can also notice slight similarities between the groupings as

well, although this is not as similar as within the colour coded groups. The autonomous

and algorithmic nature of this process removes any bias in the analysis with regards to

different analysts identifying different structural patterns.

Figure 5.2 shows that the grouping procedure identified nine different groupings present

in the observed signals, corresponding to an adjacency matrix comprised of nine disjoint

graphs. This shows that utilising a different white noise parameters for each simulated

electrode is, most likely, an unrealistic recreation of the data. As previously described

EEG signals contain a highly complex multivariate structure [76,77]; utilising a different

basis for each electrode is further shown to be an inadequate simulation method.

By utilising nE independent Gaussian stochastic processes to serve as a basis for the

covariance structures, we do not recreate the similarity between signals recorded at dif-
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ferent electrode sites. In the presented example, rather that simulating 17 independent

white noise signals, to serve as a random normal basis to which we convolve our es-

timated covariance sequence, we would simulate nine independent Gaussian stochastic

processes. This is an improvement upon previous simulation techniques [75, 112], but

has room for improvement itself.

The benefit of this analysis is that we now have a measure of the association between

signals recorded at different electrode sites within an infant. First, this provides a multi-

variate structure that we can apply to our univariate estimates by attempting to recreate

the observed similarity between signals recorded at different electrode sites. Second, we

have a statistic by which we can assess the similarity of signals recorded at electrode

sites across development.

Taking the proportion of groups, p̂Gn in a set of signals as data points, we obtain a set

of proportions we can model using a binomial generalised linear model. We are looking

at the proportion of groups instead of the number of electrodes so that we do not get

a suggested number of groupings that is outside the maximum number of electrodes

allowable - in our data set that value is 17. We then fit this model using stepwise proce-

dures and the age pairings as explanatory variables, again utilising principal component

analysis to avoid multicollinearity issues in the regression. The linear transformation of

the variables age at birth and age at test are given in Model 4.4.1. The resultant linear

model is below with the interaction term significant at α = 0.06, and is supported by

stepwise regression.

Model 5.1.1 (Binomial GLM for expected number of electrode groupings).

The number of distinct underlying Gaussian stochastic processes in an infant - expressed

as a proportion of the number of electrodes within a recording - is modelled by the logit

function,

log

(
p̂Gn

1− p̂Gn

)
= −0.73279− 0.00543×MCAS

1

Interaction significant at α = 0.06

As a result of this we can obtain the expected proportion of correlated electrodes, given

an age pairing and simulate from the binomial GLM to obtain the number of distinct
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white noise signals to simulate; Figure 5.3 shows predicted values from Model 5.1.1

Figure 5.3: Heatmap of predicted expected proportion of electrode groupings

This figure shows the predicted p expected proportion of electrode groupings. The number

of electrode groupings identified by the outlined algorithmic procedure is divided by the

total number of electrodes present. This is done to allow the use of logistic regression

and to ensure that any proposed grouping is not larger than the total number of electrodes

within a recording. The greyed out areas indicate areas where data points are not present

within the sample.

Similarly to the delta brush heat maps, we have indicated the areas that we cannot have

data and also areas for which have not been represented in the sample; these sections of

the graph are indicated by a dark overlay in Figure 5.3. From the heat map in Figure

5.3 we can see a trend in the number of distinct groupings across development. The

colouration of Figure 5.3 indicates that if an infant is born prematurely, or if they are

tested close to birth, then the predicted proportion of distinct groupings is higher; and
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becomes lower as the infant matures. This could be due to the formation of regions in

the brain, however as mentioned, more investigation is required to confirm or reject the

hypothesis of greater similarity between electrode sites as an infant matures. Figure 5.3

shows that in infants tested between 33 and 37 weeks post menstrual age at test, we

have reason to investigate this further. This is because infants born extremely prema-

turely and at the brink of viability, 25-27 weeks [61], have a higher expected value for

groupings. This lessens the later an infant is born, and increases again the shorter the

time frame between birth and test - according to our model.

Having identified trends and constructed models for neonatal development in response

to somatosensory stimuli, as well as having constructed a multivariate framework which

we can apply to our univariate estimates. We shall now simulate similar signals, given a

set of ages, and compare them against observed signals and selected current techniques

for simulating neonatal EEG.

5.2 Simulating a similar set of neonatal electroencephalo-

gram signals

The simulation of structurally similar neonatal EEG signals is possible, however a di-

rect comparison to observed signals is grossly impractical and extremely difficult to be

accurate due to the unobserved random noise component described by εt in our model

outlined in Definition 3.1. We can however, compare the properties of simulated signals

against observed signals, and compare against simulated signals from the estimated pa-

rameters.

Having constructed models for the time domain correlation structure and the estimated

parameters, we shall assess their ability to simulate similar neonatal electroencephalo-

gram signals. We shall compare our models against the time-varying parameter model

proposed in previous research [75], and determine the suitability of our simulation model.

Due to the resolution at which previous modelling techniques were performed, we shall

sample our signals to be comparable.

The estimation and analysis of neonatal EEG signals has primarily been to focus upon
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5.2. Simulating a similar set of neonatal electroencephalogram signals

seizure detection. Simulated signals have been utilised as a baseline against which com-

parisons can be performed to ascertain whether a seizure is present within a signal. The

aim of simulating signals is similar in our case, we wish to simulate a set of signals that

can be utilised as a baseline. The advantage of our model is that it is obtained from

high resolution data and as such can be sampled for lower resolution signals, the inverse

is not true for current models.

First the time domain correlation structure shall be tested, this shall be done by simu-

lating the following levels of association between the underlying Gaussian process: All

the same random noise, different random noise for each electrode and the proposed ran-

dom noise according to the estimated structure - as obtained in Section 5.1; simulations

of these can be seen in Figures 5.4, 5.5 and 5.6. To ensure we are just testing the

appropriateness of the random noise structure, we shall simulate signals with the esti-

mated parameters. The estimates for the covariance structure were obtained according

the procedure outlined in Chapter 3; all the electrodes are adequately described by the

proposed model apart from T6, which is reflected in the plots.

Figures 5.4 and 5.5 show that utilising the same white noise structure does not produce

signals with a similar structure to the observed signals, neither does utilising a different

noise structure for all electrodes. The grouped structure provides a decent approxima-

tion, however as mentioned earlier, we still have disjoint signals. Although, there is

room for improvement, it is clear that the best white noise structure takes into account

the correlation between electrodes rather than assuming they are all the same, or all

different. The spatial nature of neonatal EEG has been studied and found that a high

number, and spatial density, of electrodes is required to capture this spatial correla-

tion [77].

Now that we have demonstrated the need for a correlated white noise structure when

simulating we shall proceed to assess the suitability of the simulation method. Focusing

upon background EEG, we shall now present the method by which we can realise signals

with a similar structure to those observed.
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5.2. Simulating a similar set of neonatal electroencephalogram signals

Figure 5.4: Signals simulated from estimated parameters with different random bases

PMA = 35.57, PMAT = 37.85

This figure illustrates that utilising a different ε(t) when simulating does not recreate the

structure of the signals as presented in Figure 5.1. The parameters used were estimated

using the outlined methods in this thesis and all apart from T6 were deemed adequately

described by the outlined ADP.

Theorem 5.2.1 (Background EEG Simulation Procedure).

1. For an age at test and age at birth pairing obtain the predicted values from the

principal component reductions to avoid multicollinearity presented in Model 4.3.2

and Model 4.4.1. Denoted MCAC and MCAP respectively, these are used in the

structure simulations and parameter simulations respectively

2. Obtain a time domain correlation structure for the random noise, according to

Model 5.1.1. After obtaining nG from Model 5.1.1 we then sample from observed

structures.

3. Obtain the probability of spontaneous delta brush occurrence and the number of
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5.2. Simulating a similar set of neonatal electroencephalogram signals

Figure 5.5: Signals simulated from estimated parameters with the same random base

PMA = 35.57, PMAT = 37.85

This figure illustrates that utilising the same random normal base when simulating does

not recreate the structure of the signals as presented in Figure 5.1. Therefore this ap-

proach should not be used when simulating a set of neonatal EEG signals. The parame-

ters used were estimated using the outlined methods in this thesis and all apart from T6

were deemed adequately described by the outlined ADP.

electrodes expressing delta brushes, according to Models 4.4.2 and 4.4.3 respec-

tively.

4. For the structures obtained include delta brush activity appropriately in the random

noise components.

5. Obtain the probabilities of the electrodes being within the segregated groups: Bi-

modal, Matern and Shape, according to Sections A.1, A.2 and A.3. From these

the binary parameters can be obtained by drawing from a Bernoulli distribution.

6. Use the obtained binary parameters, electrodes, and MCAP to obtain predicted
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parameter values from the segregated parameter distributions.

7. Utilising the Cholesky decomposition method, simulate the long range covariance

structure as described by the non aliased Matérn parameterisation.

8. Apply the short term covariance structure, as described by the autoregressive mov-

ing average process, and the band-pass filter to the signals.

In order to compare the proposed simulation against another outlined method for sim-

ulating neonatal electroencephalogram signals, we have presented a method to simulate

background EEG signals. Although we have focused upon background EEG simulation,

this procedure can be adapted easily to simulate other time-heterogeneous components;

Figure 5.6: Signals simulated from estimated parameters with grouped random base

PMA = 35.57, PMAT = 37.85

This figure illustrates that utilising a grouped ε(t) when simulating is a better approxi-

mation to the structure of the signals as presented in Figure 5.1 than Figures 5.4 and

5.5. The parameters used were estimated using the outlined methods in this thesis and

all apart from T6 were deemed adequately described by the outlined ADP.
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such as somatosensory stimuli response or possibly neonatal seizure activity.

The signals simulated in Figures 5.4, 5.5 and 5.6 were created utilising this method.

We shall now assess the simulation of parameters from our proposed distributions by

utilising the simulated parameters to generate signals. Figure 5.7 illustrates signals

simulated with the estimated signal structure outlined in Figure 5.2.

Figure 5.7: Signals simulated from simulated parameters with estimated signal structure

PMA = 35.57, PMAT = 37.85

This figure shows parameters simulated from our suggested parameter distributions -

Appendix B - and the actual structure estimated in Figure 5.2. We see issues regarding

the proposed distributions realising parameters due to the number of estimates from which

they have been constructed.

Figure 5.7 highlights an issue with the proposed distributions utilised in electrodes T3

and C4, which is the number of estimates from which the parameters are constructed is

not large enough to produce reliable estimates. This issue is highlighted by the struc-

ture of the simulated signals which is not similar to that observed in Figure 5.1; further

analysis is required to refine these distributions.
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5.2. Simulating a similar set of neonatal electroencephalogram signals

Figure 5.8 illustrates a fully simulated set of signals where the structure and parameters

are estimated. Utilising the age pairing 38 weeks at birth and 45.29 weeks at test, we

utilised the proposed models to simulate a set of signals recorded at 17 electrodes. Apart

from the simulated parameter issue outlined, the structure simulated seems appropriate

and is similar to the observed signals in Figure 5.1.

Figure 5.8: Fully simulated signals PMA = 38, PMAT = 45.29

This figure illustrates a set of signals fully simulated utilising an age pairing of 38 weeks

at birth and 45.29 weeks at test. Upon visual inspection these display traits and charac-

teristics evidenced throughout our data set, and as illustrated in Figure 5.1. At electrode

site T5 we see issues due to the estimated parameter distribution, however as a set of

data it appears to capture the nature of the signals analysed throughout.

The problem with comparing the structure of EEG signals is the underlying inter-patient

variation. Having estimated the parameters in the frequency domain, we have described

the underlying structure, however EEG analysis is also performed within the time do-

main. Apart from T5 in Figure 5.8 the signals produced are visually similar to the EEG

signals presented in Figure 5.1. Comparing these in the frequency domain could result
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in the signals being dissimilar due to a different underlying generating mechanism, al-

beit from a relevant distribution. If we were to look at correlation between a simulated

and observed electrode that would be inappropriate also due to the differences in the

random noise of the structure; as such we are relying upon visual similarity to assess

appropriateness.

Figure 5.8 illustrates that similar signals can be realised, however it shows issues with

regards to some parameterisations being unsuitable. This is further seen in Appendix

C which contains further simulations across a range of age pairings. However we have

managed to recreate the time-heterogeneous structure by including the delta brush com-

ponent, often overlooked in other neonatal EEG models. Whilst we have this time

heterogeneity accounted for, it is clear that we still need to find when the parameters

change in order to adequately simulate neonatal EEG.

5.3 Comparison against time-varying simulation method

One approach to simulate signals with similar characteristics is to utilise time-varying

fractional Brownian motion [75, 112] since it is understood that EEG signals are quasi-

stationary - i.e. comprised of time-homogeneous segments [1–3]. Whilst this addresses

the quasi stationarity, it ignores the time-heterogeneous delta brush component. Most,

if not all, of the previously presented models for neonatal background EEG omit the

delta brush when producing simulated signals [37,39,70,75,112–114].

The time-varying fractional Brownian motion process draws values for the Hurst pa-

rameter from a Gamma(α, β) distribution, where α = 7.82 and β = 7.44 [75]. We shall

simulate six second intervals at 2000Hz, changing parameters every 0.5 seconds to di-

rectly compare against a signal from our model. After this we shall sample both signals

to 64.5Hz, to provide a more appropriate estimate for the time-varying simulation pro-

cess. So we can assess the effect of the time-varying parameters, we shall use the same

underlying Gaussian process for both simulated processes. Figure 5.9 shows the 2000Hz

signals and the signals sampled to 64.5Hz. The observed signal presented was failed to

be described by our model, and the simulated parameters were generated according to

the outlined procedure.

120



5.3. Comparison against time-varying simulation method

At 2000Hz the presented model more closely resembles the signal due to its similar

characteristics with regards to the self similarity of the process, as indicated by the

roughness of the signal. However, at 64.5Hz both the time-varying parameter and the

presented model are both close approximations to the signal. This is because at this

resolution the short term covariance structure does not have an effect on the process.

In our estimations of the underlying covariance sequence, the short term covariance was

described using an autoregressive moving average process up to order (3,3). Therefore if

we subsample at 500Hz or lower we might not see the effect of any short term covariance

on the signal.

Despite this the presented model is technically a better representation, as we have better

represented the time heterogeneity of neonatal background EEG, by taking into account

the presence of delta brushes. The time-varying fBm model however, takes into account

the changing parameters albeit randomly, and is a better description of the first second

of the observed signal. We can see some possible evidence of a changing parameterisa-

tion in this first second of the observed signal at 2000Hz, again observable by change in

the signals’ self similarity, however this is less pronounced at 64.5Hz.

A combination of these models, taking into account the changing parameterisation of the

signal, the short term covariance as well as the delta brush component would be better.

However we have not been able to identify the point at which the parameters change, and

it is better to present the time-homogeneous parameterisation with delta brush added

then a random change in parameters. Our model could be used for such a parameteri-

sation we just need to find where we change the parameters and to take care in doing so.

This comparison highlights an important advantage of our model and process over other

methods; we can sample our 2000Hz simulated signals to obtain other recording resolu-

tions, however other processes cannot accurately describe a higher resolution than they

have been fitted on. This comes down to a fundamental property observed from the

data, the short term dependence; this has not been fitted previously and, according to

our fitting, possibly not present in resolutions lower than 500Hz due to the order of the

fitted ARMA(p, q) process.
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5.3. Comparison against time-varying simulation method

The time-varying nature of the parameters could be recreated utilising our parameter

distributions, as we could draw realisations in a similar manner to the time-varying

simulation. However, extreme care would have to be taken at the time points where the

parameters are appended due to the short term covariance structure. Furthermore, an

understanding of when to change the parameters, rather than an arbitrary change-point,

would be preferred
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5.4. Results and Conclusions

5.4 Results and Conclusions

Throughout this thesis univariate methods have been employed successfully to describe

these highly complex multivariate signals. However, we have overlooked the multivariate

nature by not taking this into account whilst performing the estimations. In order to

realise similar signals to those recorded, we must address this lack of information.

In Chapter 4 we analysed the proportion of electrodes that express delta brushes simul-

taneously or in response to nociceptive or tactile stimuli. In this Chapter we utilise the

same methodology to describe the amount of time domain correlation seen in a set of

EEG signals. By obtaining a measure of similarity from principal component analysis

we analysed how the similarity between activity at electrode sites changed across devel-

opment.

We found that as an infant matures the similarity between recorded activity at differ-

ent electrode sites increased; we also noticed that infants born prematurely have more

distinct electrodes than those born closer to term. As mentioned in Chapter 4 we lack a

representative sample with regards to the age at birth and age at test pairing utilised, as

such we require more data points in order to test the results obtained. The distinction

of the recorded activity at electrode sites is crucial to incorporate into any simulated

data. Given a description of the association between activity at electrode sites - as well

as information about the behaviour of delta brush activity contained within Chapter 4

- we were able to define a simulation method that produces signals exhibiting similar

behaviours to the signals observed throughout this thesis.

A key aspect of the research undertaken is the high resolution at which the signals are

recorded. This enabled the detection of the short range covariance structure present

within these signals. Previous simulation methods have been described at a lower reso-

lution and as such did not detect this component of the covariance structure. This has

an effect on the strength of the simulation procedure as we can sub-sample to reduce the

resolution, however a higher resolution cannot be described. Combining the results ob-

tained throughout this thesis we have been able to realise a set of signals with a similar

structure to the observed neonatal EEG signals.
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Chapter 6

Conclusions and Future Work

This thesis outlines: a model that describes 76% of analysable signals, a description

of the time domain correlation structure and focuses upon the development of neona-

tal electroencephalogram signals. In this Chapter, we summarise the results obtained,

present the limitations of the research and answer the questions of interest outlined at

the very start of the thesis. From these conclusions we discuss possible extensions and

future avenues of work.

6.1 Conclusions

The major contributions this research has made to the understanding of neonatal elec-

troencephalogram signals are twofold; first that there is a long and short term covariance

structure evident in these recordings. Where previously recordings were obtained at 64-

200Hz, as this was the area of interest, we focused upon modelling the signals at as high

a resolution as possible. In most situations 2000Hz is the highest resolution utilised for

electroencephalography, as it provides detailed information, as well as flexibility with

regards to subsampling. This resolution allowed us to identify the previously unnoticed

short term covariance structure present within neonatal EEG. Secondly, our presented

model takes into account the time heterogenous properties that are observed in neonatal

background electroencephalography signals. Whilst our focus has been upon sponta-

neous neuronal bursting activity - “delta brush” - this model could also be adapted to

multiple time-heterogeneous components.
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This flexible and detailed model - constructed using the time, frequency and time-

frequency domains - was able to describe 69% of all the signals in the presented data

set; using only three time-heterogeneous components: delta brush as well as the nox-

ious and tactile somatosensory specific responses. Of the unexplained signals 9% of the

signals had an unidentified time-heterogeneous component, which was unsuitable to be

modelled by the outlined and implemented approach. This could have been an error

in the recording process, however we removed these signals from analysis as they were

unsuitable for future analyses. With these signals omitted from the data set our simple,

flexible and detailed model described 76% of the data. Furthermore this model can be

viewed as a first step, and a robust baseline that can be improved upon with future

developments.

Our model admitted the Matérn process as the description of the long range covariance

sequence, previously described using fractional Brownian motion. The Matérn process is

a stationary process that admits fBm as a special case, furthermore the inclusion of the

distance parameter affects the mean reversion of the process. This development allows

for flexibility with regards to the range of possible parameterisations, and has not pre-

viously been used. With the identification of the Matérn process being able to describe

neonatal EEG, as well as the evidence of an additional short term covariance structure,

we wanted to gain an understanding of why these values occurred. Unfortunately, due

to a poor sample with regards to the age at birth and age at test pairing, we are limited

with the strength of conclusions that we can draw. A representative sample means that

we can make inferences about the population from which it has been drawn. However,

due to the sample being analysed there would be a large amount of extrapolation and

as such further testing is required to confirm or reject the results obtained.

The inherent time-heterogeneous nature of neonatal electroencephalography is poorly

understood, with seemingly arbitrary changes in parameters reflecting this change. We

attempted to determine the point at which the parameters change, by assessing the

behaviour after the identified time-heterogeneous components in our signals. However we

found that the parameters were not significantly different, following these components.

Whilst disappointing that we were not able to identify the point at which the parameters

change, the outlined approach and presented model would be able to be utilised.
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From the parameters we were able to discern three behaviours in signals that are seem-

ingly dependent upon age; the value of the estimated variance within a bimodal distri-

bution, the shape of the autoregressive moving average spectral density function and

whether or not the long range covariance was best described by the Matérn process.

Although in previous research the value of the variance is largely overlooked, we found

that the value of the variance had an effect on the other parameters. Previous models

have ignored the contribution of the variance to the model, choosing to focus solely upon

the long term covariance structure of the signals. Whilst the signals may be scaled by

an EEG practitioner, the effect of the variance on the other parameters shows that this

is important to take into account and should not be viewed as an arbitrary value that

affects only the scale of the time series.

The age relationship seen in these parameters is interesting, given that the possible rela-

tionship is not just dependent upon the age at test, but also the age at birth. We found

similar results in infants who were tested close to birth and those born prematurely.

This is one of the first pieces of research to study non-behaviourally the effect of time

since birth on responses.

Utilising these parameter characteristics we constructed several multivariate Gaussian

distributions. Estimates obtained by minimising the Whittle likelihood are asymptot-

ically normal. However, the observed parameters have a distribution that is a con-

volution between the estimation error distribution and the original distribution of the

sample parameters. So whilst the error distribution under Whittle estimation is normal,

the estimated parameters distribution might not be due to the original distribution of

the parameters. As the original distribution is unknown, unsuitability in the simulated

parameters could be due to the MVN distributions being too severe a departure in

some cases from the original unknown parameter distribution. Due to the complexity

and variability of the data set the distribution could require non parametric modelling.

Whilst the estimated Gaussian distributions might produce unsatisfactory estimates for

some segregations, we obtain suitable parameterisations for segregations with a suitable

number of observations.

This research has estimated the properties of neonatal electroencephalogram signals uni-
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variately, however in order to realise similar signals we had to recreate the similarity of

time series between electrode sites. To obtain an estimate of the time domain correlation

present within the signals, we analysed the loadings of a principal component analysis

performed on the recordings of an infant. This method looked for similarity between

the loadings of the significant principal components at electrode sites - significance of

the principal components was determined by Kaiser’s criterion. If electrodes displayed

similarity in the loadings then we grouped them together, finishing the grouping pro-

cedure once all electrodes were placed into a group. This approach is a user tuned

clustering of signals based upon principal component analysis, whilst it may only be

an approximation of the time domain correlation structure of the time series’, however

it illustrates an important point when simulating a set of neonatal EEG signals which

cannot continue to be ignored.

In obtaining this framework, we noticed a pattern in the number of distinct electrode

groupings; mainly that recordings at electrode sites become less distinct, i.e. more simi-

lar, as development occurs. Again, we noticed similar results in infants born prematurely

as well as infants tested close to birth. We found that we can recreate the time domain

correlation structure by utilising the same underlying Gaussian stochastic process across

certain electrodes when simulating, an aspect overlooked in previous research. In re-

gards to the spontaneous occurrence of delta brushes within the data and delta brush

responses to somatosensory stimuli we observe a similar dependence upon the ages at

birth and test, whereas previous research focused solely upon age at test. It would be

of interest to see whether the pattern obtained with regards to the multivariate nature

of the data being dependent upon both age at birth and test are obtained given a more

representative sample.

Simulating from the predicted parameters, generated from the presented multivariate

distributions seen in Appendix B, we see issues with regards to the scale of the sig-

nals. Given that other simulation methods ignore the variance [75,112] we compare our

method against others according to the way in which the structure has been described.

Simulating similar signals at 2000Hz we find that a time-varying fractional Brownian

motion, with parameters changing every 0.5 seconds, does not describe the signal’s struc-

ture as well as our limited distributional parameterisations. Furthermore, our approach
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better describes the signal’s behaviour as we include the time-heterogeneous delta brush

component. When sampled to 64.5Hz, both models seem to provide adequate realisa-

tions; this is because the lack of a short term covariance does not affect the simulated

signal at this resolution, however the delta brush component is still missing. Whilst

the time-varying fractional Brownian motion omits features from the simulated signal,

the changing parameters is a recognised weakness in our approach. However, randomly

changing the parameters is not a sensible approach to describing these complicated sig-

nals; we would find out why the parameters change, or at least how long the parameters

stay the same for. By including the effect of the delta brushes in the simulated signals we

have produced an inherently better model, as we have not ignored an inherent property

of neonatal electroencephalography.

With any research it is important to identify the limitations of the conclusions drawn,

the main limitation in our research is that the sample is not representative; specifically

with regards to the age at birth and age at test pairings. When looking at the age

pairing we do not have a representative sample, as we are missing data points for key

age pairings. We are missing these due to experimental restrictions, such as consent

issues or doctors allowing the requisite heel prick procedure to performed.

Although we have a large data set the lack of a representative sample in this regard

limits the strength of the conclusions that we can draw, and future research is required to

confirm our findings. Additionally we have estimated these multivariate signals utilising

a univariate approach so we could obtain results in a reasonable time frame. As a result,

we have lost information with regards to the interaction between signals at different

electrode sites. Finally, in our estimation we utilised a stepwise approach, estimating the

long-term covariance and then the short term covariance, inducing unwanted bias into

our estimates. Future research should limit these issues to improve upon the accuracy

of any obtained results.

6.2 Future Research

No research is perfect, and there are always ways in which we can improve upon the

results obtained. This thesis has presented the progress made in modelling only a small
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part and a short time window of neonatal brain activity. The inherent beauty of mod-

elling electroencephalogram signals, such as the ones presented, is that there is always

more that we can uncover. Much like the previous research outlined in the introduction,

this research can provide a stepping stone for future research avenues, some possible

directions of which are outlined now.

First, with regards to our model and estimation procedure, we could model bipolar

montages, as analysing such montages is a common technique, possibly utilising bivari-

ate or complex Whittle estimation. In such an approach we would let one signal be

the real component, and the other being the complex component; this approach has

been successfully employed in modelling oceanographic currents, and could be of in-

terest here [83]. The obvious extension of this would be to model the entire signal

multivariately, however given the number of electrodes that can be recorded, this might

be infeasible as it would be incredibly computationally intensive.

Additionally in any future estimation of parameters, the Matérn covariance would be

used from the start; instead of only implementing this covariance structure should fBm

fail to be an adequate description. Care would have to be taken for signals where the

range parameter is equal to zero, d = 0, however as we are fitting in the frequency

domain this could be set as a parameter value. Although in the covariance sequence

a range parameter being equal to zero is infeasible, we could obtain estimates of this

when fitting spectra. As d → ∞ the process becomes less similar to a random walk

process and more similar to white noise. Therefore as the distance parameter increases

the process will stay around the mean more. As such it would be interesting to see the

way in which the distance parameter changes across windows within a longer signal.

Finally in terms of modelling approaches, improving the way in which we describe delta

brushes would be of interest. Delta brushes are a commonly overlooked component of

neonatal EEG when modelling signals, especially when creating a baseline for seizure

detection. In the outlined research we implemented a band-pass filter over the range of

possible frequencies; it would be of interest if we modelled the delta brushes in the time-

frequency domain, either by inverting the wavelet transform, or by providing a model

that could assess the change in the activity across development. The parameterisation

130



6.2. Future Research

approach for delta brushes would fit in our model, as it is flexible with regards to time

heterogenous components. However, we might require an approach other than addition

to adequately include these components.

Analysing the estimated parameters of our model, we found that we have no reason

to change parameters during these six second signal segments; which is counter intu-

itive with regards to the expected properties of electroencephalogram signals [1–3, 61].

Whereas previous simulation methods have utilised time-varying parameter processes,

at arbitrary lengths, it would be of interest to see if the time at which the parameters

change could be identified and what could cause the change in parameters. Whilst our

model describes the overlooked delta brush time heterogeneity, the constant parame-

ters across a longer length of signal are completely counterintuitive to the properties of

electroencephalogram signals. Furthermore, our modelling of the estimated parameters

could also be improved by taking into account the possible departures from a multivari-

ate Gaussian distribution.

Given the univariate estimates, we constructed a multivariate framework in order to

produce similar signals. When simulating, we sampled from adjacency matrices cre-

ated from the signals within out sample. Instead of sampling from those obtained from

observed signals, it would be of interest to see if we could simulate similar adjacency ma-

trices. We require that the adjacency matrices form nG disjoint graphs from a matrix of

probabilities. One way in this might be achieved is utilising Monte Carlo Markov chain

in adjacency matrices, similar to the approach of image noise reduction [115]. We can

represent the grouping of electrodes as a symmetrical adjacency matrix, where a value

of 1 in an off diagonal element illustrates that the electrodes belong to the same group-

ing. Furthermore, we can ascertain transition probabilities according to the groupings

identified within the data set. It is possible therefore that we could simulate a random

adjacency matrix utilising the transition probabilities and the Bernoulli distribution.

From this we stage we could perform MCMC in a similar manner to image noise reduc-

tion to obtain nG disjoint graphs. [115]. This approach might be applied similarly with

regards to the simultaneous expression of delta brushes. These problems could also be

addressed through modelling the signals using an n dimensional multivariate estimation

approach.
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Our model provided a univariate description of the signal, and we then applied a mul-

tivariate framework to simulate similar signals; this is another commonly overlooked

aspect of the data when modelling. However, due to the sample being poor with regards

to the age at birth and age at test pairing analysed we cannot draw solid conclusions

about the multivariate framework obtained. In the majority of the analyses performed,

both age at birth and age at test had an effect on the signal’s properties; with premature

infants showing similar behaviour to infants tested close to birth. One interesting aspect

identified was the time domain correlation within the signals. However this is described,

testing whether the formation of regions within the brain is dependent upon the ages at

birth and test would be an interesting avenue to pursue. This would be easily tested,

as we could observe an infant across the weeks after birth, without having to perform

the painful or tactile stimuli.

To summarise, our research has possibly raised more questions than it has answered;

due primarily to the observation that the ages at birth and test affect the signals.

We are limited in the conclusions that we can draw due to our data set forming an

unrepresentative sample, with respect to the age pairings. Given more time and a

larger, more representative data set, these are the questions of interest that we would

pursue.

1. How does the inherent time-heterogeneous nature of neonatal EEG signal param-

eters occur?

The signal characteristics will not remain the same for long periods, different waves

will be present changing the signal. We are analysing six seconds, which has been

identified as quasi-stationary in electroencephalography.

2. Does the way in which parameters change across time remain the same across all

developmental ages?

It would be of interest to analyse the interval lengths of time-homogeneous seg-

ments, specifically how the inherent time-heterogeneous nature of neonatal EEG

signals changes across development.

3. Does prematurity affect the development of regions within the brain?

It is understood that as development occurs the growth and increase in neural
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connections that occur in the brain over this time. However, we have illustrated

that there is less correlation between activity recorded at electrode sites from pre-

mature infants. Therefore it would be of interest to analyse whether prematurity

affects this formation of regions within the brain.

4. What further insights into the development of neonatal EEG will be obtained from

modelling bivariately or mutlivariately?

A recognised weakness of our analysis is the loss of information from estimating

these highly complex multivariate signals univariately. It would be of interest to see

what further information could be obtained by utilising a bivariate or multivariate

estimation procedure. This could improve the detection of time domain correlated

signals utilising information contained within the cross spectral density functions.

5. Could we apply the other time-heterogeneous signal components to this modelling

technique?

9% of our signals contain non delta brush time-heterogeneous activity. Can we

adapt our model to describe this? Is this seizure activity, or time heterogeneity

describable by a time-heterogeneous MatérnARMA process.

6. Can we apply this modelling procedure to other areas of electroencephalographic

research?

Our defined model is flexible with regards to time-heterogeneity, as such it would

be of interest to apply it to other clinical problems.

6.3 Summary

We shall finish this research the way in which we started, by outlining the questions of

interest alongside the answers discovered over its course.

1. Can we describe six seconds of background EEG using a time-homogeneous model?

Yes with a but; if background EEG contains spontaneous delta brush activity,

as is a possibility given the ages of the infants analysed, we require additional

components. However, we have found that we can describe up to six seconds with

a time-homogeneous model, where appropriate.
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2. Can we adapt such a model to incorporate time-heterogeneous signal components?

Yes. When we include time-heterogeneous signal components into our model we

end up being able to describe 76% of the analysable signals and 69% of all the

signals. It is possible that we would be able to describe more of the presented

signals if we could identify the time heterogeneity present

3. Are the properties of neonatal EEG dependent upon the age of the infant?

Maybe. Unlike previous research into neonatal somatosensory stimuli develop-

ment, we focus upon the pairing age at birth and age at test and we do not have

enough pairings to draw solid conclusions about the estimated parameters. It is

common place to look solely at age at test or the difference between age at test

and age at birth - known as post natal age. This results in a loss of resolution

with respect to development as it is implying that any infant tested at a given

age will have a similar response regardless of how long the gestational period was.

Neonatal infants undergo procedures and are exposed to many stimuli, as such the

thought that they would exhibit the same responses as an infant tested at the same

age, but born a day previously, is counter intuitive. We have shown that certain

signal characteristics and parameter characteristics could be dependent upon the

age pairings. We have also shown that the probability of a delta brush response

to noxious and tactile stimuli could require the outlined age pairing.

4. Given the time-heterogeneous nature of EEG signals, can we identify when the

baseline activity changes?

We don’t know. But we have shown that in six seconds, even with time-varying

components interspersed, the baseline activity remains the same in those signals

adequately described by our model.

5. Do previous modelling techniques concur with the presented model?

Yes and No. Previous models do not look at as high a resolution as we have,

our signals show strong evidence that at this resolution both long and short term

covariance structures are required, which is only observable at high resolution.

We agree that fractional Brownian motion is a good description of the long range

covariance structure, however Matérn should be implemented for greater flexibility

especially since fractional Brownian motion is a limiting case. Furthermore, the
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Chapter 6. Conclusions and Future Work

time-varying parameters should only be applied in combination with delta brush

activity and a knowledge of when the parameters change.
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Appendix A

Parameter characteristic

generalised linear models

In the following sections we present the generalised linear models with a logit link func-

tion that describe the probability of a parameter characteristic occurring. The fitting

procedure and general form was outlined in Chapter 4, this Chapter gives specific pa-

rameter values.

The values of this GLM, can then be used to obtain a binary variable indicating: whether

the signal is Matérn, the variance is bimodal, or the overall spectral density shape.

These estimated parameter characteristics are then utilised in constructing parameter

estimates by segregating the data according to these values. Which is done in Appendix

B.
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Appendix A. Parameter characteristic generalised linear models

A.1 Bimodal GLM

log

(
p̂B

1− p̂B

)
=



− 0.64073

−0.01773

−0.17819

0.14273

−0.25223

−0.18543

−0.29395

−0.75767

−0.95710

−0.28700

−0.34810

−0.10224

−0.66445

−0.80608

−0.69558

−1.10127

−0.98185

−1.09377

−0.95988

−0.80777

−0.89930

0.01414

0.00372

−0.13070

−0.03191

−0.03383

−0.04185

−0.01394



T 
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1
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2

RDB

RPC
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1 ×MCAC

2

MCAC
1 × RDB

MCAC
1 × RPC

MCAC
1 × F7

MCAC
1 × T3

MCAC
1 × T5

MCAC
1 ×O1



+



− 0.02322

0.02745

−0.06518

−0.06544

−0.09636

−0.03619

−0.09461

−0.10796

−0.04950

−0.07190

−0.04786

−0.06403

0.00136

0.23387

0.10300

0.00793

−0.04738

0.01352

0.12944

0.07034

−0.06987

0.09286

0.07576

0.15364

0.08926

−0.08033

0.07507

0.21136



T 
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A.2 Matérn GLM

log

(
p̂M

1− p̂M

)
=



− 5.37140

0.08900

−0.02249

0.47643

1.84684

6.30424

−1.39201

−0.03813

−0.73410

−15.21064

0.67202

1.81969

0.18869

−0.87831
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−15.01520
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+



− 0.02745

0.11695

−0.03409

1.42813

0.16918

0.58810

14.81049

−0.90365

−1.73012

0.41036

0.57422
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14.60411
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1.34516
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A.3 Shape GLM

log

(
p̂S

1− p̂S

)
=



26.56483

3.29941

−29.27632

−402.69145

682.20751

−14.49167

11.88175

−3.21522

−82.09257

407.20283

79.63035
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−679.54564

16.44917
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−11.81744

−347.01516
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Appendix B

Fitted distributions for simulating

neonatal EEG parameters

The estimated parameters of the covariance structure presented for neonatal electroen-

cephalogram signals requires the use of a multivariate distribution. Utilising the asymp-

totic distribution of estimates obtained from minimising the Whittle likelihood, we fit

several multivariate normal distributions based upon the characteristics of the estimated

parameters.

Some of these distributions require further estimation in order to obtain estimates suit-

able for simulation, as outlined in the main body of the thesis. We present the mean

vectors and covariance matrices for the distributions utilised, as well as the number of

observations from which this distribution was obtained.

When Matérn = 0, the distance parameter is equal to 0; this is not allowable under the

definition of the Matérn covariance, Definition 3.2.4. As such we must apply a fractional

Brownian motion covariance structure when simulating from these distributions. The

third element in the mean vectors as well as the third row and column in the covariance

matrices have been left in these distributions, so as to illustrate the “dummy” parameter

in these cases.
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Appendix B. Fitted distributions for simulating neonatal EEG parameters
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Appendix C

Simulated neonatal

electroencephalogram signals

We present in this appendix a further eight realisations from our simulation model across

a range of age at birth, age at test pairings.

As mentioned in the main body of the text there are some signals for which unrealistic

parameterisations are generated. This is due in part to the number of observations from

which the distribution is estimated, as well as the fact that the sample from which the

distributions were estimated might not be muiltivariately normally distributed.
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Appendix C. Simulated neonatal electroencephalogram signals

Figure C.1: Fully simulated signals PMA = 24 PMAT = 38

Figure C.2: Fully simulated signals PMA = 25.24 PMAT = 36.29
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Appendix C. Simulated neonatal electroencephalogram signals

Figure C.3: Fully simulated signals PMA = 25.71, PMAT = 30.71

Figure C.4: Fully simulated signals PMA = 27, PMAT = 28.43
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Appendix C. Simulated neonatal electroencephalogram signals

Figure C.5: Fully simulated signals PMA = 32.57, PMAT = 39.43

Figure C.6: Fully simulated signals PMA = 34.43, PMAT = 35
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Appendix C. Simulated neonatal electroencephalogram signals

Figure C.7: Fully simulated signals PMA = 36.14, PMAT = 37

Figure C.8: Fully simulated signals PMA = 39, PMAT = 39
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