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ABSTRACT 

 

Introduction: 

Brain tumours are the 17th most common cancer worldwide. Gliomas are the most 

common of the primary brain tumours and are highly malignant.  

 

Objectives:  

(a) To undertake gene expression profiling of the blood of glioma patients to determine 

key genetic components of signalling pathways    

(b) To develop a panel of genes that could be used as a potential blood-based biomarker 

to differentiate between high and low grade gliomas, non-glioma and control samples. 

 

Methods: 

Blood samples were obtained from glioma patients, non-glioma and control subjects. Ten 

samples each were obtained from patients with high and low grade tumours respectively, 

ten samples from non-glioma patients and twenty samples from control subjects. Total 

RNA was isolated from each sample after which first and second strand synthesis was 

performed. The resulting cRNA was then hybridized with the Agilent Whole Human 

Genome (4x44K) microarray chip according to the manufacturer's instructions. Universal 

Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP 

respectively. Microarray data were analyzed by Agilent Gene Spring 12.1V software 

using stringent criteria which included at least a 2-fold difference in gene expression 

between samples. Statistical analysis was performed using the unpaired student T-test 

with a p-value < 0.01. Pathway enrichment was also performed with key genes within 

these pathways selected for validation with ddPCR. 

 

Results:  

The gene expression profiling indicated that were a substantial number of genes that were 

differentially expressed with more than a 2-fold change (FDR corrected value < 0.01) 

between each of the four different conditions. We selected key genes within significant 

pathways that were analyzed through pathway enrichment. These key genes included 

regulators of cell proliferation, transcription factors, cytokines and tumour suppressor 

genes.  

 

Conclusion: 

In this study, we have shown that key genes involved in significant and well established 

pathways, could possibly be used as a potential blood-based biomarker to differentiate 

between high and low grade gliomas, non-gliomas and control samples. 
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  CHAPTER 1: INTRODUCTION 

 Cancer is the leading cause of morbidity and mortality worldwide with the 

number of cases expected to increase by 70% over the next 2 decades (1).  Brain and 

central nervous system tumours are ranked 17th in incidence among all cancers 

worldwide, being the 13th and 15th most common tumour in men and women 

respectively (2). Cancer is the 2nd leading cause of death in the paediatric age group (3), 

with brain and other nervous system tumours  ranked 2nd in incidence after leukaemias 

(4).  

 Brain tumours can be either primary or secondary. Gliomas are the most common 

of the primary brain tumours consisting  mainly of oligodendroglioma and astrocytoma 

with a small number of mixed oligoastrocytoma. Currently, there is a simple World 

Health Organization (WHO) classification for these tumours. Oligodendrogliomas are 

divided into low grade (Grade II) and anaplastic (Grade III) tumours. For astrocytic 

tumours, the WHO classification system divides this tumour into pilocytic astrocytoma  

(Grade I),  low grade diffuse astrocytoma (Grade II), anaplastic astrocytoma (Grade III) 

and glioblastoma multiforme (GBM) and its variants (Grade IV). Oligoastrocytomas are 

also classified into low grade (Grade II) and anaplastic (Grade III) tumours (5). 

  Low grade oligodendrogliomas grow slowly whereas anaplastic 

oligodendrogliomas grow more aggressively. These tumours are predominantly found in 

the cortex but may invade into other structures of the brain such as the corpus callosum, 

the ependyma and deep into the brainstem (6). 
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 Oligodendrogliomas have their own unique set of genetic alterations compared to 

other gliomas. The most common genetic alteration found in oligodendrogliomas is loss 

of heterozygosity (LOH) on chromosomes 1p and 19q (7,8). Oligodendrogliomas with 

LOH at 1p are known to be more chemosensitive than tumours with retention of this 

chromosome. In addition, combined allelic losses at 1p and 19q are associated with 

longer recurrence-free survival after chemotherapy (9). Loss of chromosome 1p is also a 

predictor of longer recurrence-free survival in patients receiving radiotherapy with or 

without chemotherapy (10,11).  

 Besides LOH on chromosomes 1p and 19q, almost all oligodendrogliomas have 

mutations in the IDH1/2 genes (12). In genome sequencing studies, IDH1 appears to be a 

persistent mutation found in all patients with low grade glioma suggesting that this 

mutation is an early event and precedes the LOH on chromosomes 1p and 19q during 

glioma development and progression (13). In addition, patients with IDH1/2 mutations 

are younger and have a more favourable prognosis compared to those without these 

mutations (14). 

 Astrocytic tumours also show many different genetic alterations. Some of the 

early genetic changes in low grade astrocytomas are mutations in IDH1 and TP53 

(15,16). In addition, there are other genomic alterations that occur as a diffuse low grade 

glioma progresses to a high grade glioma which includes the anaplastic astrocytoma and 

secondary GBM. These changes include disruption of the RB1 pathway (17), deletion of 

chromosome 9p including CDKN2A (18) and the presence of microRNAs miR-17 and 

miR-184 (19). On the other hand, primary GBM occurs de novo, has a short clinical 
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history and possesses unique genetic alterations such as EGFR amplification (20), 

EGFRvIII mutation (21), loss of the tumour suppressor gene PTEN (22) and deletion of 

chromosome 10 (23). 

   IDH1/2 mutations and MGMT promoter methylation deserve further mention as 

they have significant predictive and prognostic value in gliomas. IDH1 mutations are 

mainly found in grade II and III gliomas and secondary GBM (12). IDH2 mutations are 

commonly found in low grade oligodendrogliomas (24). Glioblastomas that have 

mutations in the IDH1 gene generally show less oedema and necrosis with reduced 

disruption of the blood brain barrier (25). VEGF is responsible for vascular permeability 

in GBM resulting in oedema, increased vascularity and tumour enhancement. HIFα 

regulates VEGF expression and is downregulated in IDH1/2 mutated cells resulting in 

tumours that have less oedema and decreased vascularity (26). In addition, tumours that 

have the IDH1/2 mutations are more sensitive to oxidative stress induced by radiation 

(27) and chemotherapy (28,29) resulting in cell death. These phenomena result in better 

prognosis for glioma patients with IDH1/2 mutations (14). 

 MGMT is a DNA repair enzyme that reverses the effects of alkylating 

chemotherapeutic agents such as temozolomide. Epigenetic silencing of the MGMT 

promoter by methylation, sensitizes GBM cells to temozolomide. The phenomenon is 

present in about half of all GBM patients resulting in marked survival when treated with 

temozolomide and radiation therapy (30). 

  The treatment for gliomas involves surgical resection, radiation and 

chemotherapy.  Maximal safe surgical resection is recommended for all patients with 
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gliomas as it results in increased survival (31). Advanced neurosurgical equipment and 

techniques such as intraoperative MRI (32) and brain mapping (33) together with the use 

of 5-aminolevulinic acid which causes fluorescence of glioma tissue (34), has increased 

safety and resulted in more extensive resections of the tumour. Despite all these 

advances, it is still not possible to achieve complete resection of the tumour as gliomas 

are diffuse and infiltrate into surrounding brain tissue. As such, the majority of glioma 

patients have to undergo adjuvant therapy in the form of radiotherapy, chemotherapy or 

both. In addition, some patients are also offered more recently available treatments such 

as targeted immunotherapy. 

 Radiation in the form of external beam irradiation is given as an adjuvant therapy 

after surgical resection for glioma patients. Radiation therapy has been shown to prolong 

survival compared to surgery alone or supportive care only (35), especially when residual 

tumour is still evident (36).  In addition to radiation therapy, chemotherapy is also used to 

treat malignant gliomas. The common chemotherapeutic agents used are procarbazine, 

CCNU and vincristine (PCV) for the treatment of oligodendroglial tumours (37,38) and 

temozolomide for the treatment of astrocytic tumours including GBM (39). Amongst 

targeted therapies for malignant gliomas, bevacizumab, a monoclonal antibody against 

vascular endothelial growth factor receptor (VEGFR) has shown promising activity (40). 

 Genome-wide characterization and classification of tumours as well as the 

development of specific inhibitors to treat such tumours, has given rise to the age of 

personalized medicine.  Bevacizumab, besides its role in the treatment of malignant 

gliomas, is also effective in treating colorectal cancer patients whose tumours harbour the 
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wild-type K-RAS oncogene (41). Approximately 25 percent of breast cancers have 

amplification of the epidermal growth factor receptor 2 gene (HER2) which is involved in 

the growth and proliferation of both normal and malignant cells and a strong driver of 

tumorigenesis (42,43). This discovery led to the development of a recombinant 

humanized monoclonal antibody, trastuzumab, which inhibits the HER2 receptor through 

antibody mediated cellular cytotoxocity (44,45). Multiple clinical trials have shown the 

superiority of using trastuzumab as an adjuvant and neoadjuvant agent in the treatment of 

early stage and metastatic breast cancers. In early stage and locally advanced breast 

cancer, the addition of trastuzumab to chemotherapy significantly improved both disease 

free survival and overall survival (46-48) whilst in metastatic breast cancer this led to 

higher response rates, prolonged time to progression and increased overall survival (44). 

 Non-small cell lung cancers, especially adenocarcinomas, have mutations in the 

intracellular tyrosine kinase domains of the epidermal growth factor receptor (EGFR) 

which results in activation of several signal transduction pathways promoting cell growth 

and proliferation (49). In addition, amplification of EGFR also promotes malignant 

transformation. Together, mutations in the tyrosine kinase domain and amplification of 

EGFR are found in 43-89 percent of cases of non-small cell carcinoma of the lung (50). 2 

oral tyrosine kinase inhibitors, gefitinib and erlotinib, have been used successfully to treat 

mutated EGFR advanced lung cancer with a response rate of 65-90 percent (51). 

 The classical case of personalized medicine and targeted therapy can be found in 

the treatment of the Philadelphia positive chromosome in chronic myeloid leukaemia 

(CML). In this myeloproliferative disorder, there is a chromosomal rearrangement 
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between the long arms of chromosomes 9 and 22, forming the Philadelphia chromosome 

(52). This translocation gives rise to a fusion protein, BCR-ABL, demonstrating 

constitutive tyrosine kinase activity (52) resulting in uncontrolled cell growth and 

proliferation (53). Imatinib mesylate (Gleevec), a potent tyrosine kinase inhibitor which 

can be taken orally, is highly effective in treating CML (54) and induces a high 

haematologic and cytogenic response (55), in addition to prolonging survival (56). 

Imatinib mesylate is also used as adjuvant treatment in localized primary gastrointestinal 

stromal tumour (GIST) where it prolongs recurrence free survival after complete 

resection of the primary tumour (57). In GIST, imatinib mesylate inhibits activation of 

the KIT proto-oncogene and the platelet-derived gowth factor receptor alpha (PDGFRα) 

(58,59). It is also used to treat metastatic GIST where it achieves partial response and 

stable disease in up to 80 percent of patients with a median survival of 5 years (60). Thus, 

personalized medicine has resulted in improved treatments and prolonged survival for 

patients with different types of cancer. 

 In the case of gliomas however, despite advances in surgery, radiation and 

chemotherapy together with more recently available therapies such as molecularly 

targeted therapies, prognosis is generally poor. The median survival for patients with 

malignant gliomas is less than 15 months with GBM patients having the worst prognosis 

with less than 5% surviving after 5 years (61).   

 One of the reasons that cancers are detected at a late stage is because many 

tumours do not have symptoms until the disease has spread. There is also poor 

compliance in adhering to standard screening procedures, as some of these tests are 
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unpleasant in nature and have associated risks and complications (62,64). The current 

methods available for the detection of gliomas are computed tomography (CT) scan and 

magnetic resonance imaging (MRI) of the brain. However, the definitive diagnosis is by 

stereotactic guided biopsy of the tumour sample which is technically demanding and has 

its risks such as causing hemorrhage, infection, seizures and neurological deficits but is 

however considered relatively acceptable (64-66). Therefore, the development of a 

simple, non-invasive blood test which involves RNA profiling in whole blood, can be 

used as an addition to the more traditional methods of cancer screening and detection 

(67). 

 The inspiration for whole-blood, transcriptome profiling in the context of gliomas 

originates from the "sentinel" principle (67). Inherent in this principle is the fact that 

blood is in intimate contact and interacts with all human tissues including cancerous 

tissue. Blood is considered a connective tissue and is a transporter for various substances 

such as oxygen, nutrients, cells of the immune system including B cells, T cells, dendritic 

and natural killer cells, cytokines, growth factors and hormones (68). In addition, blood 

cells are affected in many disease processes such as haematological malignancies, solid 

tumours, asthma, autoimmune diseases such as rheumatoid arthritis to common chronic 

illnesses such as hypertension, diabetes and cardiovascular disease (69-72). 

 Peripheral blood cells have the ability to respond to changes that affect the 

physiology, microenvironment and systems biology of the human body. Perturbations or 

disturbances in the homeostasis of the system can also be subtly detected by peripheral 

blood cells (68,73).  Thus blood, being easily accessible could serve as a molecular gene 
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expression profile reflecting changes that occur within tissues of the human body (67). 

The term "bloodomics" has thus been coined to reflect this function of blood in regulation 

of gene expression and in the molecular profiling of human diseases (68). 

 One of the earliest models where the sentinel principle has been studied is 

colorectal carcinoma where a 5 and 7-gene biomarker panel has been developed to assess 

the current relative risk of patients developing this cancer in Canada and Malaysia (74-

76). Molecular gene profiling of the blood transcriptome has also been studied in other 

diseases including neurological disorders such as schizophrenia and bipolar disorders,. 

chronic fatigue syndrome, tuberous sclerosis complex 2, neurofibromatosis type 1, 

Down's syndrome, epilepsy, Tourette syndrome, ischemic stroke, migraine, Huntington's 

and Alzheimer's diseases (77-84).   

  Genome wide expression profiling of human blood in Huntington's disease 

resulted in a 12 gene biomarker panel that was clearly able to distinguish between normal 

controls and those with Huntington's disease. In addition, the genes in this panel showed 

varying expression in disease progression from early presymptomatic to late 

presymptomatic and finally to the symptomatic stage of Huntington's disease (83). In 

acute ischaemic stroke, blood expression profiling has identified 18 genes that are 

upregulated within 24 hours of the event. These genes were found to be upregulated in 

67, 87 and 100 percent of patients after 3, 5 and 24 hours respectively (85). Some of the 

genes expressed after 3 hours are involved in the inflammatory process such as MMP9 

and also participate in the degradation of the extracellular matrix and breakdown of the 

blood brain barrier. MMP9 is mainly secreted by neutrophils (86) and levels correlate 
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with infarct volume and hemorrhagic complications after thrombolytic therapy (87-89). 

S100 proteins are also released during acute ischaemia (90) bind to the vascular 

endothelium and induce a thrombotic state (91). These early changes in the expression 

levels of certain genes in blood, can be exploited as a diagnostic and predictive tool for 

acute stroke. Blood expression profiling in migraine has been able to distinguish between 

migraine and chronic migraine with a group of immediate early genes such as c-fos and 

cox-2 being upregulated in migraine while specific mitochondrial genes were upregulated 

in chronic migraine (92).  

 Epilepsy in children treated with carbamezepine or valproic acid showed distinct 

patterns of expression in blood. In addition, patients treated with valproic acid formed 

distinct subclusters of those who were responsive versus refractory to treatment (81). 

Blood based gene expression has also been studied in schizophrenia and bipolar disorder. 

A set of putative biomarker genes to differentiate between schizophrenia and bipolar 

disorder has been validated with an accuracy of 95-97 percent by receiver operating 

characteristic (ROC) curve analysis (77). As can be seen, personalized medicine is 

revolutionizing the field of neurology including diseases with a pure brain pathology. 

 However, results obtained from gene expression profiling in blood have to be 

interpreted with caution.  In colorectal carcinoma, the 7-gene biomarker panel assesses 

the current relative risk of a person developing the disease compared to the general 

population according to a scale (74). The panel of genes only indicates the probability of 

developing the disease and there is some overlap between high risk and low risk 

populations (75). 
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 In Huntington's disease (HD), 4 of the 12 genes in the biomarker panel were 

upregulated in the Affymetrix platform but downregulated in the Amersham Biosciences 

platform (83). The reason for the discrepancy in results was most likely due to the probes 

on the different platforms hybridizing to different isoforms of the gene (83). This is 

clearly one of the drawbacks of gene expression profiling in blood unless custom made 

arrays are used where probes are specifically designed to detect all relevant exons. 

 Although gene expression profiling in blood has been undertaken in ischaemic 

stroke patients (85), the results need to be evaluated further. This is because all the 

patients in the study were treated with either tissue plasminogen activator (tPA) or tPA 

and eptifibatide. Thus, the increase in the number of genes that were upregulated after 3 

hours could have been partly due to a direct effect of these medications on gene 

expression in blood.  

 Similarly for the psychiatric disorders, schizophrenia and bipolar disorder, the 

results of the studies have to be viewed critically, as all patients were receiving 

medications (77). It is likely that these medications, including antipsychotics and mood 

stabilizers, alter the gene expression profile in blood directly and therefore account for 

the differences seen. In addition the sample size was small and consisted of 30 patients 

with schizophrenia, 16 patients with bipolar disorder and 28 healthy control subjects (77) 

and has not been replicated in the literature to date. 

 Nonetheless given the accessibility of blood and the totality of available data on 

"bloodomics", blood-based profiling to differentiate between gliomas remains a 

promising approach. Furthermore, in considering cancers, there are compelling biological 
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reasons to believe that this may be a useful approach. It is known that during 

development of a tumour, substances are secreted by the tumour into the bloodstream and 

as a systemic response, there are subtle alterations in the level of expression of genes 

within peripheral blood cells in order to maintain homeostasis or as a reaction to the 

disease entity itself (67). Disruption of the blood-brain barrier is due to loss of substances 

such as the tight junction proteins claudin-1 and claudin-3, decrease in polarity of glioma 

cells, loss of the molecule agrin and upregulation of the aqueous channel protein, 

aquaporin 4 (AQP4) resulting in brain oedema formation (93-99). Since blood-brain 

barrier disruption occurs in brain tumours (100,101), substances that play a role in both 

homeostasis and tumourigenesis are likely to be secreted into the bloodstream under such 

conditions and may give a molecular profile signature.  

 In addition, cells may dislodge from the tumour and enter the peripheral 

circulation as circulating tumour cells (CTCs). These CTCs then colonise a distant tissue 

or organ and begin to form a new tumour mass. Although most CTCs do not survive in 

the circulation, a subset of cells known as disseminated tumour cells (DTCs) that have 

cancer stem cell properties are able to survive. These DTCs initially undergo an 

epithelial-to-mesenchymal transition (EMT), enter the circulation and then re-express 

their epithelial properties through the process of mesenchymal-to-epithelial transition 

(MET). They are then able to invade a distant tissue or organ site and form tumour cell 

clusters known as micrometastasis (102). 

 Since CTCs are found in extremely low levels in the circulation (less than 5 cells 

per 10mL of blood)(103), identification and detection of these cells require analytical 
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methods that are highly sensitive and specific combined with enrichment procedures. 

Among the procedures used for enrichment of CTCs are density gradient centrifugation, 

immunomagnetic procedures and filtration (102). Immunomagnetic procedures generally 

involve antibodies directed against tumour-associated antigens especially the epithelial 

cell adhesion molecule (EpCAM)(104) for positive selection or the common leukocyte 

antigen CD45 for negative selection(102). 

  EpCAM is found only on epithelial cells and therefore DTCs may be missed as 

they do not express this marker (105). CTCs have been extensively studied in tumours of 

epithelial origin such as breast, colon and prostate cancer including global gene 

expression profiling of CTCs of these tumours (106).  CTCs have also been detected in 

patients with gliomas particularly those patients with high grade tumours such as GBM. 

However, glioma cells do not express EpCAM but instead express Nestin, both in, in 

vitro and in vivo studies. This suggests that Nestin could be used as a suitable marker for 

the detection of circulating glioma cells. In addition, glioma cells also express high levels 

of human telomerase (hTERT) which co-localizes with Nestin in vivo (107). 

 Detection of CTCs in glioma patients also has clinical utility. Many glioma 

patients who have undergo chemoradiaton therapy have necrosis of brain tissue which 

shows a persistence of signal on MRI. Clinicians are unable to accurately determine 

whether such signals are due to disease progression or pseudoprogression as current 

imaging (CT and MRI) cannot distinguish between them (107). However, the  

identification of glioma-derived CTCs in the circulation of such patients posttreatment is 
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prognostic, with a reduction in CTCs indicating treatment response and an increase in 

CTCs indicating disease progression (107). 

  As mentioned earlier, the prognosis for gliomas remains poor and has not 

changed much since the 1980s, despite advances in neuroimaging, neurosurgery, 

chemotherapy, radiotherapy and targeted therapy. It has been shown that patient survival 

depends on several clinical and biological factors such as tumour size and location (108), 

age at presentation (109), treatment (110,111), Karnofsky performance score (KPS)(112), 

histology (113), and molecular genetics of the tumour (114). 

 In this study, we have extrapolated the fascinating theory of the sentinel principle 

to the development of adult gliomas and to determine if such expression profiling in 

blood could be used to distinguish between high and low grade gliomas, non-gliomas and 

control samples. The justification for  this study is that such profiling will help not only 

in the stratification of gliomas, but also in the early detection of tumours when they are 

far more amenable to complete surgical resection, thus improving prognosis and survival 

of the patient. 
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WHO Grade 

 

Astrocytic 

Tumours 

 

Oligodendroglial 

Tumours 

 

Mixed Gliomas 

I Pilocytic 

Astrocytoma 
_ 

 

_ 

II Low Grade Diffuse 

Astrocytoma 

Oligodendroglioma Oligoastrocytoma 

III Anaplastic 

Astrocytoma 

Anaplastic 

Oligodendroglioma 

Anaplastic 

Oligoastrocytoma 

IV Glioblastoma 

Multiforme 
_ _ 

 

Table 1: World Health Organization (WHO) classification of gliomas 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Clinical patient data 

 Upon admission to the hospital, demographic data and a brief clinical history was 

elicited from 30 of the 50 patients. The demographic data included the age and sex of the 

patient and the state in which the patient was domiciled. The 30 patients comprised of 10 

high grade gliomas (HG), 10 low grade gliomas (LG) (Table 2) and 10 non-glioma (NG) 

cases (Table 3). The remaining 20 subjects were normal, healthy controls (C) (Table 4) 

Due to the limited availability of samples, we were unable to fully age and sex match 

patients. The summary statistics for all 4 groups of patients is shown in Table 5.  

 The clinical history centered on whether there was a past history of brain tumours 

or other cancers in the family or the patient. In addition, patients were asked about any 

neurological symptoms they experienced prior to admission to the hospital, such as 

headache, nausea or vomiting, seizure, personality changes, slurring of speech, changes 

in vision or sensation and motor changes (Table 6). This data was documented on a 

patient consent form.  

 Informed consent was obtained prior to blood taking and brain tumour removal 

from the patient during surgery. The consent was obtained from the patient or a close 

relative the day before surgery. After obtaining consent, blood was immediately drawn 

from the patient. Surgery was performed the next day, typically within 12-24 hours of 

obtaining consent and drawing blood from the patient. The patient's consent was also 

obtained in order to perform further analysis and studies on the extracted samples. In 

addition, this study had received ethics approval from the Medical Research Ethics 
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Committee (MREC) of the Ministry of Health, Malaysia. The ethics approval reference 

was KKM/NIHSEC/08/0804/P10-622. Ethics approval for this project (NMRR-10-930-

7461) was given on 24
th

 January 2011 and was valid through 16
th

 January 2015.  A 

schematic diagram showing the process of blood collection, study design and procedure 

is shown in Figure 1.  

2.2 Histopathological examination 

 Brain tumour tissue was sectioned onto glass slides and stained with 

haematoxylin and eosin (H&E). The slides were read by neuropathologists at the 

respective hospital. The diagnosis was made based on the World Health Organization 

(WHO) classification of tumours of the central nervous system (2007) (5). Of the 20 

tumour samples, 10 each were high and low grade gliomas respectively (Table 1). Grade 

I and II tumours were classified as low grade while Grade III and IV tumours were 

classified as high grade. The incidence of gliomas is 2-3 new cases per 100,000 

population per year (115). As such, the number of samples we were able to collect on our 

own was small. 

2.3 Non-glioma and control samples 

 In addition to the 20 tumour samples, 10 non-glioma and 20 control samples were 

also obtained. The 10 non-glioma cases constituted patients with an inflammatory, non-

malignant condition of the brain and included cases of hemangioblastoma, haemorrhagic 

and ischaemic stroke, inflammatory pseudotumour, arteriovenous malformation and 
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multiple sclerosis (Table 2). The 20 control subjects were healthy with no known illness 

(Table 3).  

2.4 Blood sample collection 

 2.5ml of venous blood was drawn from each patient using the BD Vacutainer 

(Becton Dickinson, USA) with attached 21G x 3/4" x 12" butterfly needle directly into 

the PreAnalytiX (PAXgene) Blood RNA Tube (BRT) (Qiagen, Germany). The samples 

were kept at room temperature for 2 hours to allow for complete lysis of cell components 

after which they were stored at -20
0
C. 

2.5 RNA extraction 

  RNA was extracted from each blood sample using the PreAnalytiX (PAXgene)
TM

 

Total RNA Blood Extraction Kit (Qiagen, Germany). After collection, the blood sample 

in the PAXgene Blood RNA Tube (BRT) was incubated at a minimum of 2 hours at room 

temperature to ensure complete lysis of blood cells. The BRT was then spun for 10 

minutes at 3000-5000 x g. The supernatant was removed and the pellet containing the 

blood cells vortexed until dissolved in 4 ml of RNase- free water. The BRT was 

centrifuged again and the supernatant removed. 350µl of resuspension buffer  was added 

and the pellet vortexed until dissolved. The sample was transferred into a 1.5ml 

microcentrifuge tube where 300µl of binding buffer was added to bind the RNA   which 

was predominantly derived from leukocytes. 40µl of proteinase was also added to 

dissolve any protein present in the sample. The lysate was transferred directly into a 

PAXgene Shredder spin column and centrifuged to remove cell debris. The flow through 
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supernatant containing the total RNA  was mixed with 350µl of 96-100% ethanol and 

vortexed. 700µl of the sample was pipetted into the PAXgene RNA spin column to which 

DNase I was added to remove any contaminating DNA. The PAXgene RNA spin  column 

was washed several times with wash buffers 1 and 2 after which 40µl of elution buffer 

was added directly onto the PAXgene RNA spin column membrane. This was 

centrifuged for 1 minute at 8000-20,000 x g to elute the RNA. The eluate containing the 

total RNA was incubated at 65
0
C for 5 minutes and then chilled immediately on ice. 

 The concentration and purity of the RNA was analyzed using the 

Spectrophotometer NanoDrop ND1000 (Thermoscientific, USA). The integrity of the 

RNA was analyzed using the Agilent 2100 BioAnalyzer RNA 6000 Nano Chip platform 

(Agilent Technologies, USA). The  concentration of RNA obtained ranged from 37 to 

442 ng/µl. The average value for the RNA Integrity Number (RIN) for the samples was 

7.4 with a standard deviation of 0.87.  The samples were stored at -80
0
C until further use. 

2.6 Microarray processing 

 Two-colour microarray-based gene expression utilizing the Agilent 4x44K whole 

human genome microarray, was performed on RNA isolated from the 50 blood samples. 

This array was chosen because it contained all the known genes in the human genome 

and was readily available at a competitive price.  Standard protocols were followed for 

sample preparation, probe labelling and hybridization according to the Two-Colour 

Microarray-Based Gene Expression Analysis Protocol (Agilent Technologies, USA).  
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 For sample preparation, the Two-Colour RNA Spike-In kit (Agilent 

Technologies, USA) was used. Spike A and Spike B Mix were thawed, mixed vigorously 

on a vortex mixer and then heated at 37
0
C in a water bath for 5 minutes. 3 serial dilutions 

of 1:20, 1:40 and 1:4 were performed for each spike mix. For the labelling reactions, the 

Low Input Quick Amp Labelling Kit (Agilent Technologies, USA) was used. 150ng of 

total RNA to a volume of 1.5µl was labelled.  2µl of the Spike A Mix/Cy3-CTP  was 

used to label the Universal Human Reference RNA (Stratagene,  USA) while 2µl of the 

Spike B/Cy5-CTP was used to label the HG, LG, NG and C samples respectively. 1.8µl 

of T7 Promoter Primer Mix (consisting of 0.8µl T7 promoter primer and 1µl nuclease-

free water) was added to the reaction containing 3.5µl of total RNA and diluted RNA 

spike-in mix. The primer and template were denatured by incubating the reaction in a 

water bath at 65
0
C for 10 minutes. The reactions were then placed on ice for 5 minutes. 

4.7µl of cDNA master mix (2µl 5X first strand buffer, 1µl 0.1M DTT, 0.5µl 10mM 

dNTP and 1.2µl AffinityScript RNase block mix) was added to each sample tube to a 

total volume of 10µl. Samples were incubated at 40
0
C in a water bath for 2 hours after 

which they were moved to a 70
0
C water bath and incubated for a further 15 minutes. The 

samples were then incubated on ice for 5 minutes. Finally, 6µl of transcription master 

mix (0.75µl nuclease-free water, 3.2µl 5X transcription buffer, 0.6µl 0.1M DTT, 1µl 

NTP mix, 0.21µl T7 RNA polymerase blend and 0.24µl Cy3-CTP/Cy5-CTP) was added 

to each sample tube for a total volume of 16µl and incubated at 40
0
C in a water bath for 2 

hours.                                                                                                                                                                                                                                                   

 The resulting labelled/amplified cRNA was purified as per protocol using the 

RNeasy mini spin columns (Qiagen, Germany). The cleaned cRNA sample was eluted by 
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transferring the RNeasy column to a new 1.5ml collection tube. 30µl RNase-free water 

was added directly onto the RNeasy filter membrane and allowed to stand for 60 seconds. 

The RNeasy column in the collection tube was then centrifuged at 4
0
C for 30 seconds at 

13,000rpm. The flow-through containing the cRNA sample was maintained on ice. If not 

used immediately, the samples were stored at -80
0
C.  

 The cRNA was quantified using the Nanodrop spectrophotometer as described 

previously. The yield and specific activity of each reaction was determined respectively 

as follows: 

(Concentration of cRNA)  x 30µl (elution volume)  =  µg of  cRNA 

   1000 

 

Concentration of Cy3 or Cy5     x 1000  =  pmol Cy3 or Cy5 per µg cRNA 

Concentration of cRNA 

  

For the 4-pack microarray format, almost all yields obtained were ≥ 0.825µg and had 

specific activity (pmol Cy3 or Cy5 per µg cRNA) ≥ 6.    

 The initial step for the hybridization reactions involved the fragmentation of 

RNA. For the 4-pack microarray format, 825ng each of Cy3- and Cy5-labelled, linearly 

amplified cRNA, 11µl of 10x blocking agent were made up to a volume of 52.8µl with 

nuclease free water, after which 2.2µl of 25x fragmentation buffer was added to a total 

volume of 55µl. The samples were incubated at 60
0
C for exactly 30 minutes to fragment 

the RNA and then immediately cooled on ice for 1 minute. 55µl of the fragmentation mix 

containing cRNA was mixed with an equal volume of 2x GE hybridization buffer HI-

RPM. The samples were spun in a microcentrifuge at 13,000 rpm for 1 minute at room 
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temperature to drive any residual sample from the walls and lid of the tubes and to help 

with bubble reduction. The samples were then placed on ice and loaded onto the array 

immediately. 100µl of sample was pipetted into the gasket slide well of the Agilent 

SureHyb chamber and the "active side" of the array placed directly on top of the gasket 

slide to form a sandwich pair. The SureHyb chamber cover was placed on the 

sandwiched slides and the clamp assembly tightened onto the chamber. The assembled 

slide chamber was then placed in a rotisserie hybridization oven at 20rpm and the 

samples allowed to hybridize at 65
0
C for 17 hours. The slides were then washed with 

Gene Expression Wash Buffer 1 followed by Prewarm Gene Expression Wash Buffer 2. 

In addition, 0.0005% Triton X-102 was added to both buffers which reduced the 

possibility of array wash artifacts. The microarray slides were scanned using the DNA 

Microarray Scanner (Agilent Technologies, USA). 

2.7 Data extraction  

 Data was extracted using Agilent feature extraction software analyzed with Gene 

Spring version GX 12.5V (Agilent Technologies, USA). The data files were extracted in 

text (.txt) format after Lowess normalization. The sequence of events involved in 

processing of the data files were as follows: thresholding, summarization, dye swap, ratio 

computation, log transformation and baseline transformation.   

 Thresholding involved a substitution step where all expression values below a 

certain specified value were made constant. Thresholding was done to remove very small 

expression values or negative values in the dataset. This was to ensure that there were no 

very large negative numbers when the data was log transformed. Summarization was 
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done by calculating the geometric mean of the expression values. Raw signal values were 

then generated which essentially were linear data that had undergone thresholding and 

summarization for the individual channels (Cy3 and Cy5). Normalized signal values refer 

to the data after it has undergone ratio computation, log2 transformation and baseline 

transformation. Normalization was also done using the Human Reference RNA. 

 Dye-swapping accounts for dye related bias as different dyes (Cy3 and Cy5) bind 

DNA with different affinities. This dye related bias cannot be removed by standard 

normalization methods. In GeneSpring, samples that have been marked as dye-swapped 

were treated as follows: Cy3 was designated as "signal" and Cy5 as "control" and the 

signal was computed as Cy3/Cy5. For samples that have not undergone dye-swapping, 

GeneSpring treats Cy5 as "signal" and Cy3 as "control" and the signal is computed as 

Cy5/Cy3.   

 In baseline transformation, the baseline to median of control samples was 

performed. In the Agilent 4x44K Human Array, there are a set of samples designated as 

controls that can be used for all samples. In this baseline transformation, for each probe, 

the median of the log summarized values from the control samples was first computed, 

after which, this value was subtracted from the sample.  

 As mentioned previously, Lowess normalization was performed before the raw 

data was extracted. Lowess normalization is critical for reducing intra-array (within slide) 

variation. In 2 colour experiments, 2 fluorescent dyes, red and green, are used. The 

intensity-dependent variation in dye bias may introduce spurious variations in the dataset. 
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Lowess normalization is performed which merges the 2 colour data and applies a 

smoothing adjustment which removes such variations. 

2.8 Investigating the effects of tumour status, age, gender and experimental array 

batch on gene expression 

A linear mixed regression analysis was performed using the “R” statistical 

package, to investigate the effects of tumour pathology, age, gender and experimental 

batch effects on gene expression. The tumour status was defined by the four groups of 

samples, HG, LG, NG and C. The age and gender of patients are represented in Tables 2, 

3 and 4. Samples were run on arrays in 4 experimental batches as follows: Batch 1: 6 HG 

and 6 LG samples, Batch 2: 4 HG, 4 LG and 4C samples, Batch 3: 8C and 4 NG samples, 

Batch 4: 8C and 6 NG samples. The explanatory power of each factor was assessed in a 

stepwise manner by examining the increase in the variation explained when a new 

covariate or set of covariates was added to the existing model. This resulted in the 

investigation of the following four models: 

(1) Model 1:  Gene expression as a function of tumour status 

(2) Model 2:  Gene expression as a function of tumour status and age 

(3) Model 3:  Gene expression as a function of tumour status, age and gender  

(4) Model 4:  Gene expression as a function of tumour status, age, gender and 

array batch 
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In total there were 50 microarray samples each with 29,092 gene expression 

values from 44,000 probe sets. In preparation of input data for multiple regression 

analysis, a table of 50 microarray samples (50 rows) x 29,092 gene expression values 

(29,092 columns) was generated. The metadata for each sample that included tumour 

status, age, gender and array batch were combined as columns in the prepared table. The 

input data was then read into the “R” software. For each gene, a linear model was fitted 

using the Im() function to its respective gene expression values versus variable(s) of 

interest as per the four models. For each model, there were 29,092 r
2 

(coefficient of 

determination) values that were generated. Each r
2
 value was then modified to generate 

an adjusted r
2
 value to account for the number of variables and the sample size. A 

median, mean and range for r
2
 was then calculated for each model as shown in Figure 2 

and Table 7. 

 2.9 Unsupervised hierarchical clustering 

 Unsupervised hierarchical clustering using the Euclidean distance method and 

Ward's linkage was performed on each of the 4 different pairs of conditions and all 4 

conditions.  

 One of the limitations in unsupervised hierarchical clustering is that this form of 

analysis could be influenced by noise and outliers particularly when sample sizes are 

small. 

2.10 Principal component analysis (PCA) 

 Principal component analysis (PCA) was performed on the complete data set. The 

first step in PCA was to subtract the mean from each of the data dimensions. Then, the 



 

39 

 

covariance matrix and the eigenvectors and eigenvalues of the covariance matrix were 

calculated. Data compression and reduced dimensionality was performed when 

converting the data into components and to form feature vectors in 3 dimensions along 

the x, y and z axis.  

 2.11 Identification of significant differences in gene expression between the 4 

different conditions 

 The moderated t-test, a modification of the Student’s t-test, was used to identify 

significant differences in gene expression between the 4 sets of conditions (HG vs C, LG 

vs C, HG vs LG and NG vs C). While the Student’s t-test calculates variance from the 

data that is available for each gene, the moderated t-test uses information from all of the 

genes to calculate variance. This is particularly useful when a small number of samples is 

available in each group (as in this case) making the variance estimates unstable. 

 When testing was performed across these different conditions, each gene was 

considered independently from the other as a moderated t-test was performed on each 

gene separately. Given that in this microarray experiment, the expression levels of 44,000 

probes was measured simultaneously across each condition, multiple testing correction 

(MTC) was required. MTC is performed to control for occurrence of false positives that 

arise as a result of performing multiple tests. The purpose of MTC is to keep the overall 

error rate (false positive rate) to less than the p-value cutoff as specified by the user, even 

if hundreds or thousands of genes are being analysed. With this in mind, the Benjamini 

and Hochberg (B-H) false discovery rate was used to control for the large number of tests 

performed. This procedure is one of the less stringent methods of MTC but it provides a 
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good balance between identification of many genes that are statistically significant and 

protection against false positives (type I error). 

 The B-H multiple-testing correction of p-values was chosen because it is widely 

used, relatively easy to implement and computationally inexpensive. However, the B-H 

corrected p-values may be slightly over-corrected as the p-value decreases because they 

involve the upper boundary of the false discovery rate. This corresponds to the case 

where the null hypothesis is true for all tests. In addition, null distributions for the 

different tests are assumed to be independent which may not be the case. 

2.12 Pathway analysis 

 For each group, genes were selected based on at least a 2-fold difference in 

expression and a B-H corrected p-value <0.01. Pathway analysis was performed using the 

Ingenuity Pathway Analysis (IPA) programme (Johns Hopkins University, Baltimore, 

Maryland, USA). 

 IPA is based on the Ingenuity Knowledge Base. In IPA, canonical pathways are 

well characterized pathways that have been curated and hand-drawn by PhD level 

scientists and the information comes from specific journal articles, review articles, text 

books, and Human Cyc, an encyclopaedia of human genes and metabolism 

(http://humancyc.org). Gene selection for the canonical pathways is based on this 

analysis. Although IPA is a single database, it is built upon a large collection of resources 

and the Ingenuity Knowledge base is one of the largest repositories in the world. It 

includes information from many databases such as the Biomolecular Interaction Network 

http://humancyc.org/
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Database (BIND), Biological General Repository for Interaction Databases (BIOGRID), 

ClinicalTrials.gov, Cognia, Database of Interacdting proteins (DIP), Gene Ontology 

(GO), GVK Biosciences, HumanCyc, Ingenuity Expert Findings, Ingenuity ExpertAssist 

Findings, INTACT, Interactome studies, Molecular Interaction Database (MINT), 

Munich Information Centre for Protein Sequences (MIPS), and microRNA database 

(miRBase). Furthermore, the IPA database is updated weekly. One drawback is that some 

very well established curated pathway databases are not included in IPA such as KEGG 

and REACTOME. Ideally, an analysis should be run against all canonical pathway 

databases. However, there is a very high level of overlap between many of these pathway 

databases. 

2.13 Fisher’s Exact Test and p-values 

 For a given gene list and pathway, the p-value associated with a pathway is a 

measure of its statistical significance in relation to the genes or pathway annotation for 

the gene list and a Reference Set of genes, which is defined by the total number of genes 

that could possibly be involved in all the pathways. The p-value for the pathways was 

calculated using the right-tailed Fischer’s Exact Test. 

 In the right-tailed Fischer’s Exact Test, only the over-represented functions or 

pathways will be shown. Under-represented functions or pathways (left-tailed p-values) 

will not be shown. Due to the large number of pathways tested, multiple testing 

correction (MTC) was performed using the Benjamini-Hochberg false discovery rate 

(FDR) with a corrected p-value <0.05. In some cases, the supporting evidence was further 

explored to grasp a better understanding of the biological significance. 
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2.14  cDNA synthesis 

 RNA from each sample was converted to cDNA using the high capacity RNA-to-

cDNA kit (Applied Biosystems, USA). This kit used the reverse transcriptase enzyme 

from the multiscribe murine leukaemia virus (MuLV) mixed with RNase inhibitor 

protein. Optimal blend priming was performed with a mixture of random octamers and 

oligo dT primers. 

 200ng of total RNA was mixed with 10.0 µl of 2x Reverse Transcriptase (RT) 

buffer, 1.0 µl 20X enzyme mix and nuclease-free water to a total volume of 20.0 µl. The 

tube containing the reaction mix was then incubated in the T-Professional basic 

thermocycler (Biometra, Germany) at 37
0
C for 60 minutes after which the reaction was 

terminated by heating to 95
0
C for 5 minutes. The reactions were then used for droplet 

digital PCR (ddPCR) or stored long-term at -80
0
C. 

2.15 Droplet digital polymerase chain reaction (ddPCR) 

  Selected genes (Table 12 under Results section) from each of the 4 group pairs as 

mentioned previously, were verified using ddPCR. Reactions for each sample were done 

either singly or in duplicate. Beta- glucuronidase (GUSB) was used as the  reference gene 

as it showed the least variation with gene expression amongst the other housekeeping 

genes used, namely TATA binding protein (TBP) and human acidic ribosomal protein 

(HuPO). All reagents and equipment used for ddPCR were from Bio-Rad, USA. 10ng of 

cDNA was mixed with 10 µl of 2x ddPCR Supermix for Probes (No dUTP), 1 µl 20x 

target primers/probe mix (FAM) or 20x reference primers/probe (HEX) and nuclease-free 
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water to a total reaction volume of 20 µl. The entire reaction mix of 20 µl was then 

loaded into a sample well of a DG8 Cartridge for the QX200/QX100 Droplet Generator. 

This was then followed by adding 70 µl of Droplet Generation Oil for Probes into the oil 

wells of the cartridge, according to the QX200/QX100 Droplet Generator Instruction 

Manual. The cartridge was then inserted into the Automated Droplet Generator. After 

droplet generation, the droplets were transferred to a 96-well plate and then sealed with 

foil using the PX1 PCR Plate Sealer. 

 Thermal cycling was then performed on the droplets using the C1000 Touch 

Thermal Cycler with 96-Deep Well Reaction Module according to the following 

protocol: enzyme activation at 95
0
C for 10 minutes (1 cycle), denaturation at 94

0
C for 30 

seconds followed by annealing/extension at 55
0
C for 1 minute (40 cycles), enzyme 

deactivation at 98
0
C for 10 minutes (1 cycle) followed by hold at 4

0
C. The ramp rate was 

set at 2
0
C/sec, the heated lid to 105

0
C and the sample volume at 40µl. After thermal 

cycling, the sealed plate was placed in a QX200/QX100 Droplet Reader and the absolute 

gene expression level per well for the probes and reference genes were quantitated using 

the QuantaSoft Software. 

 For analysis of the gene expression data, we assumed a normal distribution. Each 

gene was evaluated for its expression in a minimum of 3 to a maximum of 6 samples 

under each pair of conditions. The gene expression values for each sample were 

normalized to the housekeeping gene.  The values for the absolute level of gene 

expression as obtained by ddPCR were then subjected to the t-test for the genes selected 
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under the 4 sets of conditions, with a resulting fold change and p-value. Statistical 

outliers were removed using the box and whisker plot.  
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Histopathology Grade Age Gender 

Pilocytic astrocytoma 

 

I 31 Male 

Diffuse astrocytoma 

 

II 17 Male 

Diffuse astrocytoma 

 

II 32 Male 

Fibrillary astrocytoma 

 

II 62 Female  

Recurrent astrocytoma 

 

II 45 Female 

Diffuse astrocytoma 

 

II 36 Male 

Low grade astrocytoma 

 

II 59 Male 

Low grade oligodendroglioma 

 

II 45 Male 

Low grade oligodendroglioma 

 

II 56 Male 

Recurrent oligodendroglioma 

 

II 59 Male 

Anaplastic oligoastrocytoma 

 

III 37 Female 

Anaplastic oligoastrocytoma 

 

III 58 Male 

Recurrent anaplastic 

oligoastrocytoma 

 

III 66 Male 

Anaplastic astrocytoma 

 

III 29 Female 

Anaplastic astrocytoma 

 

III 43 Male 

Glioblastoma multiforme 

 

IV 24 Male 

Glioblastoma multiforme 

 

IV 54 Male 

Glioblatoma multiforme 

 

IV 24 Male 

Glioblastoma multiforme 

 

IV 34 Male 

Glioblastoma multiforme 

 

IV 56 Female 

 

Table 2: WHO classification, histopathology of tumour samples and demographic 

data 
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Patient 

no 

Age Gender Sample Type 

1 40 Male Hemangioblastoma 

2 77 Male Blood Clot 

3 44 Female Inflammatory pseudotumour 

4 27 Male Arteriovenous malformation 

(AVM) 

5 51 Female Ischaemic stroke 

6 53 Female Hemangioblastoma 

7 61 Male Haemorrhagic stroke 

8 56 Female Multiple sclerosis 

9 34 Female Ischaemic stroke 

10 46 Female Haemorrhagic stroke 

 

Table 3: Demographics and types of non-glioma samples 
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Patient no. Age Gender 

1 30 Female 

2 38 Female 

3 41 Male 

4 57 Male 

5 25 Male 

6 57 Male 

7 33 Male 

8 51 Male 

9 28 Male 

10 25 Male 

11 56 Male 

12 32 Male 

13 22 Male 

14 59 Female 

15 42 Female 

16 55 Male 

17 58 Male 

18 48 Male 

19 33 Male 

20 55 Male 

 

Table 4: Demographics of control samples 
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Patient/Subject 

type 

 No. of 

patients/subjects 

Male Female Age 

range 

(years) 

 

Median 

age 

(years) 

Low Grade 

Glioma 

10 8 2 17-62 45 

High Grade 

Glioma 

10 7 3 24-66 40 

Non-glioma 10 4 6 27-77 48.5 

Control 20 16 4 22-59 41.5 

 

Table 5: Summary statistics of patients 
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Question Information requested 

1 Patients were asked if there was any history of brain tumours or other 

cancers in the family. 

 

2 Patients were asked if they had any of the following neurological 

symptoms prior to presenting to the hospital: 

(a) Headaches     (b) Seizures    (c) Personality changes    (d) Slurring of 

speech 

(e) Changes in vision    (f) Changes in sensation     (g) Motor weakness 

(h) Other symptoms such as vomiting 

 

 

Table 6: Questionnaire 
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Figure 1: Schematic diagram of blood collection, study design and procedures 

 

 

 

 

 

 

 

 

 

 

Consent obtained from patients at respective 

hospital 

5ml  of blood drawn from patient into PAX Gene 

RNA tube 

 

PAX Gene RNA tube kept on ice and transported 

within 30 minutes to laboratory, kept at room 

temperature for 2 hours to allow complete lysis 

of cell components 

Total RNA extracted from PAX Gene RNA 

tube. If RNA not extracted immediately, 

samples stored at -80
0
C 

Total RNA converted to cDNA and hybridized 

with Agilent 4x44K whole human genome 

microarray; results analyzed 
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CHAPTER 3: RESULTS 

 

3.1 Modelling the effects of tumour status, age, gender and experimental array 

batch effects on gene expression 

Using a linear mixed regression analysis, the effect of tumour pathology, age, 

gender and experimental batch on gene expression was investigated. For models 1, 2, 3, 

and 4, the median and mean adjusted r
2 

values did not vary significantly (Table 7, Figure 

2). The change in median values for models 2 and 3 were 0.0077% and 0.0065% 

respectively as compared to model 1, suggesting that age and gender had a minimal 

impact on gene expression globally. For model 4, the change in the median adjusted r
2
 

value when compared to tumour status alone was 3.57%, indicating that array batch had 

some impact on gene expression globally, but that this was still small. The mean adjusted 

r
2 

values showed a similar trend. Based on these findings, all subsequent analysis focused 

on the impact of tumour pathology alone on gene expression. 

3.2 (a) Microarray analysis of samples 

  Unsupervised hierarchical clustering was performed on each of the 4 different 

pairs of conditions (HG vs C, LG vs C, HG vs LG and NG vs C) and all 4 conditions 

together, with the total gene input list, using the Euclidean distance method and Ward's 

linkage. The gene input list consisted of genes which were found to be differentially 

expressed with a corrected p-value < 0.01 and a fold change of at least 2. The results are 

shown in Figures 3(a-e).  All the microarray analysis heat maps clearly showed the 

different groups clustering independently. This was seen clearly in the unsupervised 
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hierarchical clustering with all four conditions together which showed that there were 3 

clusters of samples: one cluster for the high grade tumours, a second cluster for the low 

grade tumours and a third cluster for the non-glioma and control samples. In Figure 3(e), 

the non-glioma and controls clustered together and were distinct from the glioma 

samples, with the low grade glioma being furthest from the control and non-glioma 

samples. Therefore, not only were we able to show a distinction between the glioma and 

control samples but were also able to distinguish between high and low grade gliomas. 

(b) Principal component analysis (PCA) of samples 

  The PCA plot (Figure 4) of the first 3 axes, showed results that were very similar 

to that of the microarray analysis, demonstrating clear separation into the 3 clusters of 

samples as mentioned in 3.2(a). Of specific note, is that the 2 sample types which were 

closest to each other were the control and non-glioma sets. 

 

3.3 Volcano plots 

 Multiple testing correction using the Benjamini-Hochberg (B-H) analysis with a 

corrected p value of  <0.01, and a two-fold change cut-off,  for each of the four 

conditions were as follows: HG vs C: total number of genes: 1055, with 479 upregulated 

and 576 downregulated; LG vs C: total number of genes: 2708, with 713 upregulated and 

1995 downregulated; HG vs LG: total number of genes: 1629, with 1287 upregulated and 

342 downregulated; and NG vs C: total number of genes: 82, with 56 upregulated and 26 

downregulated (Table 8). The results were represented on volcano plots [Figures 5(a)-

(d)].  
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 The results showed that there were relatively few genes which were differentially 

expressed between control and non-glioma samples. In comparing the glioma samples to 

the controls, the predominant effect was the downregulation of genes in the glioma 

samples. When comparing the high and low grade samples, there was in general an 

upregulation occurring in the high grade samples. 

 

3.4 Venn Diagram of Differentially Expressed Genes 

 The Venn Diagram represented the genes with at least a 2 fold difference in 

expression and a p-value <0.01, that were unique to each condition and also those that 

overlapped between the various conditions (Figure 6). There were 104 genes common to 

both the HG vs C and the HG vs LG pairs. These included genes belonging to the zinc 

finger transcription factor, ZNF 649 and ZNF 205, homeobox genes such as HOXB2 and 

SOX8, a transcription factor involved in embryonic development and determination of 

cell fate. For the HG vs LG pair, there were a total of 1629 genes, of which 644 were 

unique to this pair and included EGFR, TGFβ1 and VEGFA. There were 573 genes 

common to both the HG vs C and LG vs C pairs. These common genes included 

IL12RB1, FOS, TP53 and TNF. One important gene common to the HG vs C, LG vs C 

and HG vs LG pairs was IL6.  

 For the NG vs C pair, there were 46 unique genes, 19 that overlapped with the HG 

vs C pair, 7 that overlapped with the LG vs C pair and another 7 that were common to the 

HG vs LG and LG vs C pairs. There were no genes common to all 4 conditions (Figure 

6).  
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3.5 Canonical Pathways  

  The significance of association between differentially expressed genes and the 

canonical pathways (as annotated by the HumanCyc Pathway Database) were assumed to 

follow a normal distribution and assessed using the B-H multiple testing correction to 

calculate a p-value. Only those pathways with a corrected p-value <0.05 were selected. 

This determined the probability that the association between the genes and the pathways, 

relative to all functionally characterized human genes, were not explained by chance 

alone [Figure 7(a)-(d)]. The IPA also determines whether the pathways are activated or 

inhibited by assigning a z score. The ratio defined the proportion of differentially 

expressed genes from a pathway to the total number of genes that make up that particular 

pathway. For the HG vs C pair, 4 significant pathways were identified (ratios ranging 

from 0.084 to 0.136) with no evidence for significant activation or inhibition as shown by 

z scores close to zero. (Figure 7a). The 4 significant pathways included those involved in 

innate and adaptive immunity. For the LG vs C pair, the IPA predicted a mixed pattern of 

activity for the 46 significant pathways with 23 pathways having no activity pattern 

available, 5 pathways having a positive z-score (predicted activation), 16 pathways 

having a negative z-score (predicted inhibition) and 2 pathways having a z-score of zero 

(Figure 7b). The z-score of zero corresponded to the standard mean of the normal 

distribution curve. Pathways having no activity pattern available meant that a z-score 

could not be calculated. The significant pathways with a positive z-score included those 

involved in LXR/RXR activation, RhoG, Ephrin B, IL-8 and cholecystokinin/gastrin-

mediated signalling. The z-score of zero included pathways involved in NF-κB activation 

by viruses and glioma invasiveness signalling. The significant pathways with a negative 
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z-score were signalling by the Rho family of GTPases, Tec kinase signalling, HGF, 

eicosanoid, integrin, acute phase response, PEDF and thrombin signalling. It also 

included pathways involved in PKC, actin nucleation and immune system signalling. 

 For the HG vs LG glioma pair, 9 significant pathways were predicted with 6 

having no activity pattern and 1 each with a positive, negative and zero z-score 

respectively. The activity pattern referred to the differential expression of genes that 

made up the pathway.  The 6 pathways with no activity pattern were those involved in 

FXR/RXR activation, superoxide radical degeneration, hepatic fibrosis/hepatic stellate cell 

activation, role of tissue factor in cancer, clathrin-mediated endocytosis and 

atherosclerosis signalling. The pathways that had a positive z-score, a z-score of zero and 

a negative z-score were pathways involved in LXR/RXR activation, coagulation system 

and acute phase response signalling respectively (Figure 7c). For the NG vs C pair, there 

was only one significant pathway, hepatic fibrosis/hepatic stellate cell activation that had 

no activity pattern available (Figure 7d). 

 In summary, the total number of pathways with differentially expressed genes for 

each pair of conditions after B-H multiple testing correction, is shown in Table 9. The list 

of pathways are listed in Table 10. In Tables 11(a)-(d), the significant pathways are 

shown for each pair of conditions together with the B-H multiple testing correction value 

and associated genes. 

 

3.6 Venn Diagram of Significant Pathways 

 The Venn diagram for the pathways showed pathways that were unique to each 

pair of conditions and also pathways that overlapped between the 4 different groups 
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(Figure 8). For the HG vs C pair, there was 1 unique pathway and 3 pathways that 

overlapped with the LG vs C pair.. The LG vs C pair had 39 unique pathways. The 

pathways that overlapped between the HG vs C and LG vs C pairs were pathways 

involved in the innate and adaptive immune response. The HG vs LG pair had a total of 9 

significant pathways, with 4 unique pathways, 4 overlapping with the LG vs C pair and 1 

overlapping with the NG vs C pair. The 4 unique pathways were the superoxide radicals 

degradation, clathrin-mediated endocytosis, coagulation system and role of tissue factor 

in cancer pathways. The 4 pathways overlapping with the LG vs C pair were the acute 

phase response, FXR/RXR activation, LXR/RXR activation and atherosclerosis signalling 

pathways. The 1 pathway overlapping with the NG vs C pair was the hepatic 

fibrosis/hepatic stellate cell activation pathway (Figure 8). 

 

3.7 Heat Map 

 A heat map (Figure 9) with genes commonly involved in tumour signalling 

pathways especially in high and low grade brain tumours was generated with the four 

types of samples, namely C, NG, LG and HG glioma respectively.   The results showed a 

unique differential pattern of expression for each of the 4 sample types. In addition, genes 

commonly upregulated in high grade tumours such as EGFR and VEGFC, are also highly 

expressed in blood. On the other hand, these genes are downregulated in the low grade 

tumour heat map. Specific isoforms of Bcl2 such as Bcl2L11 and Bcl2A1 are upregulated 

in the low grade but not high grade samples.  None of the genes involved in 

tumourigenesis are significantly upregulated in the non-glioma and control samples. 
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3.8 Genes Chosen for Validation by ddPCR 

 10 genes were selected for statistical validation by ddPCR (Table 12).  These 

genes were selected from the list of differentially expressed genes that were significant 

from the 4 pairs of conditions. These genes were selected because they were known to be 

common genes involved in pathways related to tumourigenesis including the 

pathogenesis of brain tumours. Only the NG vs C had no significant genes that were 

downregulated. The other 3 conditions had significant genes that were both upregulated 

and downregulated. 

 Each gene was evaluated for its expression in a minimum of 3 to a maximum of 6 

samples under each pair of conditions. The values for the absolute level of gene 

expression as obtained by ddPCR was then subjected to statistical analysis. A normal 

distribution of the values was assumed and the t-test applied to each gene with a resulting 

p-value. 7 of the 10 genes had p-values <0.05 and 3 genes had p-values >0.05. The genes 

with a p-value <0.05 were MMP, MAP3K8, TP53, SOS1, FOS, IL6 and TNF. The genes 

with a p-value >0.05 were EGFR, VEGFA and MAPK12 (Table 12). Multiple testing 

correction of the p-value using the Bonferroni correction with a threshold p-value of 0.05 

and 10 test samples, resulted in only 4 genes that were highly significant. The genes were 

MAP3K8, TP53, SOS1 and IL6 (Table 13). 
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Figure 2: Box plot of adjusted r
2
 values for the 4 models 
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Figure 3 (A)-(E): Unsupervised hierarchical clustering of the different conditions by 

use of the Euclidean similarity measure and Wards linkage to visualize variation in 

gene expression between the selected conditions: (A) HG vs C, (B) LG vs C, (C) HG 

vs LG, (D) NG vs C and (E) all 4 conditons together. The heat map showed the gene 

expression for the different conditions in columns, with a dendogram representing 

their similarity. The clustering was performed on a filtered gene list of normalized 

signal intensity values (averaged over replicates) for each condition. 
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Figure 3(a): Unsupervised hierarchical clustering of HG  vs C samples. 
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Figure 3(b): Unsupervised hierarchical clustering of LG vs C samples 
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Figure 3(c): Unsupervised hierarchical clustering of HG vs LG samples 
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Figure 3(d): Unsupervised hierarchical clustering of NG vs C samples
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Figure 3(e): Unsupervised hierarchical clustering of all 4 condition pairs 
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Figure 4: Principal Component Analysis (PCA) plots for the different conditions. 

Panels (A) - (C) are plots based on the first 3 principal components in various 

orientations. The axes corresponds to principal component 1 (PC1, x-axis), PC2 (y-

axis) and PC3 (z-axis). Panel D is a plot of PC axes 1 and 2.  The ellipses (2 standard 

deviation coverage; see colour key for the different conditions) showed a distinct 

directionality in the different groups based on similarities in gene expression.  



 

66 

 

 

Figure 4: Principal Component Analysis (PCA) plots in various orientations for all 4  

conditions together. 
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Figure 5: Volcano plots to determine differentially expressed genes for the 

individual pairs of conditions: (A) HG vs C, (B) LG vs C, (C) HG vs LG, and (D) 

NG vs C. The x-axis represents the log2 fold change of genes for the different 

condition pairs, while the y-axis represents the -log10 of the corrected p-values for 

the different pairs of conditions. Each dot represents a gene and the red coloured 

area represents the differentially expressed genes that meet the selection criteria of a 

fold change (FC) of at least 2 (FC≥ 2 or ≤ 2) and a p-value <0.01. 
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Figure 5: Volcano plots showing differentially expressed genes for the individual 

pairs of conditions: (A) HG vs C; (B) LG vs C; (C) HG vs LG ; (D) NG vs C. 
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Figure 6: Venn diagram of differentially expressed genes for the different condition 

pairs. The Venn diagram summarizes the number of distinct and overlapping 

differentially expressed genes found in the four condition pairs: HG vs C (Gene List 

1), LG vs C (Gene List 2), NG vs C (Gene List 3), and HG vs LG (Gene List 4). 
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Figure 7: Canonical pathways with corrected B-H p-value <0.05 identified by IPA 

for the four different condition pairs: (A) HG vs C, (B) LG vs C, (C) HG vs LG and 

(D) NG vs C. The significant pathways are shown along the x-axis of the bar charts. 

The ratio defined the proportion of differentially expressed genes from a pathway 

related to the total number of genes that make up that particular pathway (line 

graph, z-axis). The height of the bar represents the -log (B-H corrected p-value). 

The orange colour bar indicates a positive z-score (predicted activation), the blue 

colour bar indicates a negative z-score (predicted inhibition), the grey colour bar 

indicates no predicted activity and the white bar was given a z-score of zero. Colour 

intensity indicates prediction confidence (light to dark represents less to more 

confidence). 
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Figure 7(A): Canonical pathways with corrected B-H p-value <0.05 as identified by 

IPA for the HG vs C pair. 
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Figure 7(B): Canonical pathways with corrected B-H p-value <0.05 as identified by 

IPA for the LG vs C pair 
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Figure 7(C): Canonical pathways with corrected B-H p-value <0.05 identified by 

IPA for the HG vs LG pair. 
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Figure 7 (D): Canonical pathways with corrected B-H p-value <0.05 identified by 

IPA for the NG vs C pair. 
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Figure 8: Venn diagram of canonical pathways. The Venn diagram summarizes the 

number of distinct and overlapping pathways found in the 4 condition pairs: HG vs 

C (Pathway List 1), LG vs C (Pathway List 2), NG vs C (Pathway List 3), and HG vs 

LG (Pathway List 4). 
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Figure 9: Heat Map of selected differentially expressed genes for the 4 different 

conditions. 
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Model Median Mean 

1 0.11830 0.17220 

2 0.110700 0.163200 

3 0.11180 0.16360 

4 0.1540 0.1882 

 

Table 7: Median and mean adjusted r
2
 values for models 1-4 
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Condition HG vs C LG vs C HG vs LG NG vs C 

Total no. of 

genes 

 

1055 2708 1629 82 

Upregulated 

genes 

 

479 713 1287 56 

Downregulated 

genes 

 

576 1995 342 26 

 

Table 8:  Summary list of significant differentially expressed genes for the 4 pairs of 

conditions 
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 HG vs C 
HG vs 

LG 
LG vs C NG vs C 

Total number of pathways 4 9 46 1 

 

Table 9. No. of significant pathways for each pair of conditions with a corrected B-H 

p-value of <0.05 

 

 

 

Table 10: List of pathways with a corrected B-H p-value <0.05 for the 4 condition 

pairs: (A) HG vs C, (B) HG vs LG, (C) LG vs C and (D) NG vs C 

 HG vs 

C 

HG vs 

LG 

LG vs 

C 

NG vs 

C 

Actin Nucleation by ARP-WASP Complex   ✓  

Acute Phase Response Signaling  ✓ ✓  

Agranulocyte Adhesion and Diapedesis   ✓  

Allograft Rejection Signaling   ✓  

Altered T Cell and B Cell Signaling in 

Rheumatoid Arthritis 
✓  ✓  

Atherosclerosis Signaling  ✓ ✓  

B Cell Development   ✓  

CCR5 Signaling in Macrophages   ✓  
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Cholecystokinin/Gastrin-mediated Signaling   ✓  

Clathrin-mediated Endocytosis Signaling  ✓   

Coagulation System  ✓   

Communication between Innate and Adaptive 

Immune Response Cells 
✓  ✓  

Crosstalk between Dendritic Cells and 

Natural Killer Cells 
✓  ✓  

Cytotoxic T Lymphocyte-mediated Apoptosis 

of Target Cells 

  ✓  

Dendritic Cell Maturation   ✓  

Eicosanoid Signaling   ✓  

Ephrin B Signaling   ✓  

FXR/RXR Activation  ✓ ✓  

Germ Cell-Sertoli Cell Junction Signaling   ✓  

Glioma Invasiveness Signaling   ✓  

Graft-versus-Host Disease Signaling   ✓  

Granulocyte Adhesion and Diapedesis   ✓  

Granzyme A Signaling   ✓  

Hepatic Fibrosis / Hepatic Stellate Cell 

Activation 

 ✓  ✓ 

HGF Signaling   ✓  

IL-8 Signaling   ✓  

IL-12 Signaling and Production in 

Macrophages 

  ✓  

IL-17A Signaling in Airway Cells   ✓  
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Integrin Signaling   ✓  

LXR/RXR Activation  ✓ ✓  

MSP-RON Signaling Pathway   ✓  

NF-κB Activation by Viruses   ✓  

OX40 Signaling Pathway   ✓  

PEDF Signaling   ✓  

PKCθ Signaling in T Lymphocytes   ✓  

Primary Immunodeficiency Signaling   ✓  

Production of Nitric Oxide and Reactive 

Oxygen Species in Marcrophages 

  ✓  

Reelin Signaling in Neurons   ✓  

Regulation of Actin-based Motility by Rho   ✓  

RhoGDI Signaling   ✓  

Role of IL-17A in Psoriasis   ✓  

Role of Macrophages, Fibroblast and 

Endothelial Cells in Rheumatoid Arthritis 
✓    

Role of NFAT in Regulation of the Immune 

Response 

  ✓  

Role of Tissue Factor in Cancer  ✓   

Sertoli Cell-Sertoli Cell Junction Signaling   ✓  

Signaling by Rho Family GTPases   ✓  

Small Cell Lung Cancer Signaling   ✓  

Superoxide Radicals Degradation  ✓   
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Tec Kinase Signaling   ✓  

TGF-β Signaling   ✓  

T Helper Cell Differentiation   ✓  

Thrombin Signaling   ✓  

 

 

 

 

Table 11. Detailed list of pathways with corrected B-H p-value <0.05 and with 

significant differentially expressed genes for the 4 pairs of conditions. 

Table 11(A): HG vs C 

Ingenuity Canonical 

Pathways 

-log(B-H p-

value) 

Genes 

Role of Macrophages, 

Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 

1.72E00 CAMK4, FZD3, PRSS2, IL6R, CEBPD, 

PIK3R5TLR8, IL17RC, FZD9, IGHG1, IL6, 

IRAK3, IL1R1, CEBPE, FOS, TLR10, 

WNT10A, LEF1, TLR3, TNF, TNFSF13B, 

PRSS3, WNT5A, TRAF1 

Altered T Cell and B Cell 

Signaling in Rheumatoid 

Arthritis 

1.72E00 TLR10, HLA-DOA, SLAMF1, PRTN3, 

TLR8, CD79A, IL, TLR3, TNFRSF13C, 

TNF, TNFSF13B 

Crosstalk between Dendritic 

Cells and Natural Killer Cells 

1.52E00 HLA-G, KIR3DL1, PRF1, KIR2DL2, 

FSCN2, NCR3, KIR2DL4, IL6, TLR3,TNF, 

ITGAL 

Communication between 

Innate and Adaptive Immune 

Cells 

1.32E00 HLA-G, TLR10, CCL4, TLR8, IGHG1, 

IL6,TLR3,TNFRSF13C, TNF, TNFSF13B 
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Table 11(B): LG vs C 

Ingenuity Canonical 

Pathways 

-log(B-H p-

value) 

Genes 

Atherosclerosis Signaling 1.82E00 APOE, CCR3, ABHD3, COL2A1, ALOX12, 

CCR2, IL6, NFKB2, IL1F10, SAA4, 

PLA2G2A, ALOXE3, ITGB2, COL1A1, 

ALB,IL18, ALOX15B, PLA2G4D, TGFB, 

SERPINA1, S100A8, TNF, RBP4, APOC3 

IL-12 Signaling and 

Production in Macrophages 

1.82E00 APOE, IL12RB1, MAF,  PIK3R5, MST1, 

ALOX12, TGFB1, SERPINA1, S100A8, 

NFKBIB, PRKD1, PPARG, NFKB2, 

MAPK12, SAA4, PIK3R3, FOS, ALB, IL18, 

PIK3R6, MAP3K8, MST1R, TNF, APOC3, 

RBP4 

OX40 Signaling Pathway 1.82E00 B2M, HLA-DOA, TNFRSF4, CD3E, CD4, 

NFKB2, MAPK12, BCL2, CD3G, HLA-

DRB1, HLA-DQB2, FCER1G, HLA-DOB, 

NFKBIB 

Signaling by Rho Family 

GTPases 

1.82E00 CDC42EP5, GNA11, PIK3R5, GNG13, 

ARHGEF1, LIMK1, MAP3K10, CDH7, 

ITGA3, GNB3, PPP1R12B, GNA15, RHOU, 

MRAS, PIP5KL1, CDH13, RND2, SEPT14, 

CFL1, RHOC, ARPC5L, ARHGEF15, 

ITGA2, GNAI1, WASF1, NFKB2, GNAZ, 

MAPK12,MYL9,PIK3R3, FOS, RHOV, 

PIP5K1C, WAS, NCF2, PIK3R6, SEPT6 

LXR/RXR Activation 1.82E00 APOE,ABCG5, NR1H4, C9, SERPINF,1 

IL6NFKB2, IL1F10, SAA4, SERPINF2, 

HPR,IL18, ALB, CD14, S100A8, 

SERPINA1, NCOR1, PTGS2RXRB, TNF, 

AGT, RBP4, APOC3 

Tec Kinase Signaling 1.82E00 GNA11, PIK3R5, GNG13, ITGA3, GNB3, 

GNA15, RHOU, MRAS, TNFRSF10A, 

PRKD1, RND2, STAT5A, RHOC, ITGA2, 

GNAI1, BMX, GNAZ, NFKB2, MAPK12, 

PIK3R3, FOS, RHOV, WAS, VAV3, 
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FCER1G, PIK3R, TNF 

Granulocyte Adhesion and 

Diapedesis 

1.82E00 CLDN11, SELL, IL1F10, CXCL5, CLDN7, 

ITGB3, ITGA3, CLDN4, CCL3L3, CXCL1, 

CLDN9, CLDN10, HRH2, C5AR1, MMP28, 

ITGA2, GNAI1, ITGAL, ITGB2, CXCL16, 

IL18, CLDN5, CCL4, CXCL2, CX3CL1, 

TNF, CLDN3, HSPB1 

Primary Immunodeficiency 

Signaling 

1.82E00 IL7R, IL2RG, AIRE, CD3E, CD4, IGKC, 

IGLL1/IGLL5, ICOS, RAG1, CD79A, 

IGHG1, TNFRSF13C 

B Cell Development 1.82E00 IL7R,HLA-DOA,HLADRB1,CD79B, IGKC, 

CD86,HLA-DOB, RAG1,CD79A 

Altered T Cell and B Cell 

Signaling in Rheumatoid 

Arthritis 

1.82E00 HLA-DOA, SLAMF1, CD79B, CD79A, IL6, 

IL1F10, NFKB2, TNFRSF13C, IL18, HLA-

DRB1, TLR5, TGFB1, PRTN3, FCER1G, 

HLA-DOB,CD86,TNF 

Role of IL-17A in Psoriasis 1.82E00 S100A7,IL17RC,S100A8,CXCL1,CXCL5DE

FB4A/DEFB4B 

T Helper Cell Differentiation 1.82E00 IL2RG,HLA-DOA, IL12RB1, IL6, BCL6, 

TBX21, IL18,HLA-DRB1, TGFB1, ICOS, 

FCER1G,HLA-DOB,CD86,GATA3,TNF 

PKCθ Signaling in T 

Lymphocytes 

1.77E00 HLA-DOA, CD3E, CD4, PIK3R5, NFKB2, 

PIK3R3, FOS, MAP3K10, CD3G, HLA-

DRB1, GRAP2, VAV3, SOS1, MRAS, 

PIK3R6, FCER1G, HLA-DOB, CD86, 

MAP3K8, NFKBIB, MAP3K3 

Actin Nucleation by ARP-

WASP Complex 

1.67E00 RND2, ARPC5L, RHOC, ITGA2, WASF1, 

NCK2, RHOV, ITGA3, PPP1R12B, WAS, 

SOS1, RHOU, MRAS 

Role of NFAT in Regulation 

of the Immune Response 

1.66E00 HLA-DOA, PLCB2, CD3E, CD4, GNA11, 

PIK3R5, GNG13, FCGR2B,      HLA-DRB1 

GNB3, GNA15, SOS1, MRAS, NFKBIB, 

CD79B, GNAI1, CD79A, GNAZ, NFKB2 

,PIK3R3, CD3G, FOS, MEF2D, FCER1G, 

PIK3R6, CD86, HLA-DOB 
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Small Cell Lung Cancer 

Signaling 

1.66E00 TP53, NOS1, FHIT, PIK3R5, CDK4, 

NFKB2, BCL2, MYC, PIK3R3, PIK3R6, 

PTGS2, NFKBIB, RXRB, CDK2, TRAF1 

Reelin Signaling in Neurons 1.65E00 APOE,ARHGEF15,ITGA2,PIK3R5,ARHGE

F1,MAPK12, DAB1, ITGAL, ITGB3, 

PIK3R3, ITGB2, MAP3K10, ITGA3, 

CNR2,PIK3R6,MAP4K1 

Graft-versus-Host Disease 

Signaling 

1.65E00 PRF1,IL18,HLA-DOA,HLA-DRB1, 

GZMB,FCER1G,CD86,HLA-DOB, IL1F10, 

IL6, TNF 

Dendritic Cell Maturation 1.63E00 B2M,HLA-DOA, PLCB2, IL32, PIK3R5, 

IL6, IL1F10, IGHG1, FCGR2B, CD1D, 

HLA-DRB1,CD1A,FSCN2,LY75,NFKBIB, 

COL2A1, NFKB2, MAPK12, PIK3R3, 

COL1A1,  IL18, PIK3R6, FCER1G, HLA-

DOB, CD86,TNF, CCR7 

NF-κB Activation by Viruses 1.63E00 CCR5, CD4, ITGA2, PIK3R5, NFKB2, 

ITGAL, ITGB3, PIK3R3, ITGB2, ITGA3, 

PIK3R6, MRAS, NFKBIB, PRKD1,CR2 

HGF Signaling 1.63E00 ITGA2, PIK3R5, IL6, MAPK12, MET, 

PIK3R3, FOS, MAP3K10, ITGA3, SOS1, 

PIK3R6, MRAS, MAP3K8, PTGS2, ELF5, 

MAP3K3, ELK3, PRKD1,CDK2 

Crosstalk between Dendritic 

Cells and Natural Killer Cells 

1.61E00 KIR3DL1, IL2RG, KIR2DL2, NCR3, IL6, 

NFKB2, ITGAL, CSF2RB, PRF1, IL18, 

HLA-DRB1, FSCN2, CD226, CD86, 

KIR2DL4, TNF,  CCR7 

MSP-RON Signaling Pathway 1.59E00 PIK3R3, CSF2RB, ITGB2, F12, KLK3, 

PIK3R6, PIK3R5 ,MST1 ,MST1R, CCR2, 

TNF 

Sertoli Cell-Sertoli Cell 

Junction Signaling 

1.57E00 NOS1, SPTBN1, CLDN11 ,CLDN7, 

TUBB2B, MAP3K10, ITGA3 ,CLDN4, 

CGN, MRAS, TUBB4A, JUP, CLDN9, 

CLDN10, GUCY1A3, TJP1, ITGA2, YBX3, 

MAPK12, CLDN5, WAS, MAP3K8, 

ACTN4, A2M, MAP3K3, TNF, CLDN3 
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Eicosanoid Signaling 1.5E00 ALOX15B, PLA2G4D, PTGIR, DPEP3, 

LTB4R2, PTGDR, ABHD3, TBXA2R, 

ALOX12, PTGS2, PTGDS, TBXAS1, 

PLA2G2A 

Integrin Signaling 1.5E00 MYLK2, PIK3R5, ITGB3, NCK2, PARVB, 

ITGA3, PPP1R12B, ITGA11, SOS1, RHOU, 

MRAS, ITGB4, RND2, CAPN6, RHOC, 

ARPC5L, ITGA2, RALB, BCAR3, ITGAL, 

PIK3R3, MYL9, CAPN8, ITGB2, RHOV, 

WAS, PIK3R6, ACTN4, CTTN 

Allograft Rejection Signaling 1.5E00 B2M, PRF1, HLA-DOA, HLA-DQB2, HLA-

DRB1, GZMB, FCER1G, CD86, HLA-DOB, 

IGHG1,TNF 

Acute Phase Response 

Signaling 

1.5E00 FN1, C9, SERPINA3, IL1F10, IL6, RBP1, 

C1RSOS1, MRAS, OSMR, SERPINA1, 

NFKBIB, AGT, SERPINF1, NFKB2, 

MAPK12, SAA4, SERPINF2, PIK3R3, FOS, 

ALB, IL18, HP, A2M, TNF, RBP4 

Granzyme A Signaling 1.49E00 GZMA, HIST1H1A, PRF1, HIST1H1E, 

HIST1H1D, H1F0 

PEDF Signaling 1.48E00 TP53, PPARG, GDNF, SERPINF1, PIK3R5, 

NFKB2, MAPK12, BCL2, PIK3R3, PIK3R6, 

MRAS, DOCK3, NFKBIB, CASP8 

Production of Nitric Oxide 

and Reactive Oxygen Species 

in Macrophages 

1.48E00 APOE PIK3R5, MAP3K10, HOXA10, 

RHOU, SERPINA1 ,S100A8, NFKBIB, 

PRKD1, RND2, RHOC, PPP1R14A, NFKB2, 

MAPK12, SAA4, PIK3R3, FOS, ALB, 

RHOV, CAT, NCF2, PIK3R6, MAP3K8, 

MAP3K3,TNF, RBP4APOC3 

Regulation of Actin-based 

Motility by Rho 

1.48E00 RND2, PFN1, CFL1, RHOC, ARPC5L, 

ITGA2, WASF1, LIMK1, MYL9, RHOV, 

ITGA3, PPP1R12B, WAS, PIP5K1C ,RHOU, 

PIP5KL1 

TGF-β Signaling 1.48E00 FOXH1, SKI, SMAD6, ACVR1 ,INHBC, 

MAPK12, INHBB, ACVR1B, BCL2, FOS, 

PIAS4, AMH, TGFB1, SOS1, MRAS, 
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MAP4K1 

IL-17A Signaling in Airway 

Cells 

1.48E00 PIK3R3, PIK3R6, PIK3R5,MUC5AC, 

IL17RC, MUC5B, CXCL1, IL6, NFKB2, 

CXCL5, NFKBIB, MAPK12, 

DEFB4A/DEFB4B  

Glioma Invasiveness 

Signaling 

1.47E00 RND2, PIK3R3, TIMP3, RHOV, TIMP4, 

RHOC, PIK3R6, MRAS, PIK3R5, RHOU, 

PLAU, ITGB3 

RhoGDI Signaling 1.46E00 GNA11, GNG13, ARHGEF1, LIMK1, 

ITGA3, CDH7, PPP1R12B, GNB3, GNA15, 

RHOU, MRAS, PIP5KL1, CDH13, RND2, 

CFL1, ARPC5L, RHOC, ARHGEF15, 

ITGA2, GNAI1, WASF1, GNAZ, MYL9, 

DGKZ, RHOV, PIP5K1C 

Ephrin B Signaling 1.44E00 EPHB4, RGS3, CFL1, GNA11, GNAI1, 

GNG13, GNAZ, LIMK1, NCK2, EFNB2, 

GNB3, GNA15, VAV3, MRAS 

Germ Cell-Sertoli Cell 

Junction Signaling 

1.43E00 RND2, CFL1, RHOC, TJP1, ITGA2, 

PIK3R5, MAPK12, TUBB2B, LIMK1, 

PIK3R3, MAP3K10, RHOV, ITGA3, 

TGFB1, MRAS, PIK3R6, RHOU, MAP3K8, 

TUBB4A, JUP, ACTN4, TNF, MAP3K3, 

A2M 

IL-8 Signaling 1.42E00 PLCB2, PIK3R5, GNG13, ITGB3, LIMK1, 

BCL2, GNB3 ,RHOU, MRAS, CXCL1, 

NFKBIB, PRKD1, CR2, RND2, RHOC 

,GNAI1, IRAK3, MAPK12, AZU1, PIK3R3, 

MYL9, ITGB2, FOS, RHOV, NCF2, 

PIK3R6, PTGS2 

Agranulocyte Adhesion and 

Diapedesis 

1.41E00 CLDN11 ,SELL, FN1, IL1F10, CXCL5, 

CLDN7ITGA3, CLDN4, CCL3L3, CXCL1, 

CLDN9, CLDN10, C5AR1, MMP28, ITGA2, 

GNAI1, MYL9, ITGB2, CXCL16, IL18, 

CLDN5, CCL4, CXCL2, CX3CL1, TNF, 

CLDN3 

Communication between 

Innate and Adaptive Immune 

1.41E00 B2M, CD4, IL1F10, IGHG1, IL6, 

TNFRSF13C, IL18,HLA-DRB1, CCL4, 
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Cells TLR5, CCL3L3, FCER1G, CD86, TNF, 

CCR7 

Cytotoxic T Lymphocyte-

mediated Apoptosis of Target 

Cells 

1.41E00 B2M, CD3G, PRF1, CD3E, GZMB, 

FCER1G, CASP8,  BCL2 

CCR5 Signaling in 

Macrophages 

1.4E00 FOS,CD3G,CCR5,CCL4,GNB3,CD3E, 

CD4,FCER1G, MRAS, GNAI1, GNG13, 

MAPK12,PRKD1 

FXR/RXR Activation 1.36E00 PPARG,APOE,ABCG5,CYP27A1, NR1H4 

C9, SERPINF1, IL1F10, SAA4, MAPK12, 

SERPINF2, HPR, ALB, IL18, FABP6, 

SERPINA1, TNF, RBP4, AGT, APOC3 

Thrombin Signaling 1.35E00 PLCB2, CAMK1, GATA1, GNA11, PIK3R5, 

GNG13, ARHGEF1, PPP1R12B, GNB3, 

GNA15, SOS1, MRAS, RHOU, PRKD1, 

RND2, RHOC, ARHGEF15, GNAI1, GNAZ, 

NFKB2, MAPK12, PIK3R3, MYL9, RHOV, 

ADCY1, PIK3R6, GATA3 

Cholecystokinin/Gastrin-

mediated Signaling 

1.33E00 RND2, PLCB2, RHOC, EPHA4, IL1F10, 

CCKMAPK12,  FOS, RHOV, IL18, MEF2D, 

SOS1, RHO, MRAS, PTGS2, TNF, PRKD1 

 

Table 11(C): HG vs LG 

Ingenuity Canonical 

Pathways 

-log(B-H p-

value) 

Genes 

Acute Phase Response 

Signaling 

3.05E00 ITIH3, TTR, FN1, APOH, AMBP, 

SERPINF1, IL6, SAA4, MAPK12, F2, 

SERPINF2, SERPIND1, PIK3R3, ALB, 

APOA1, ITIH2, TF, SOS1, SERPINA1, 

OSMR, CRABP2, A2M, AGT, RBP4 

FXR/RXR Activation 3.05E00 ABCG5, TTR, APOB, CYP27A1, APOH, 

AMBP, SERPINF1, APOC2, SAA4, 

MAPK12, SERPINF2, CYP8B1, APOL1, 

ALB, APOA1, TF, APOC1, SERPINA1, 

AGT, RBP4 
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Superoxide Radicals 

Degradation 

3.04E00 TYRP1, CAT, NQO1, CYGB, SOD3 

LXR/RXR Activation 2.99E00 ABCG5, TTR, APOB, APOH, AMBP, 

SERPINF1, APOC2, IL6, SAA4, SERPINF2 

,APOL1, ALB, APOA1, TF, APOC1, 

SERPINA1, NCOR1, RBP4, AGT 

Clathrin-mediated 

Endocytosis Signaling 

2.81E00 MYO6, AP2A1 UBB, APOB, PICALM, 

ARPC5L,RAB7A,PIK3R5, APOC2, SAA4, 

F2, VEGFA, APOL1, PIK3R3, ARRB2, 

ALB, APOA1, TF, PIP5K1C, AAK1, 

APOC1, SERPINA1, ITGB4, RBP4 

Coagulation System 1.7E00 SERPINA5, SERPINA1, F7, A2M, 

SERPINF2, F2 ,PLAT ,SERPIND1 

Hepatic Fibrosis / Hepatic 

Stellate Cell Activation 

1.7E00 VCAM1, FN1, MYH14, IL6, BAX, BCL2, 

COL1A2, COL16A1, VEGFA, COL5A1, 

CXCL3, COL1A1, IGF2, COL6A1, 

COL13A1, TGFB1, MYH3, EDNRA, A2M, 

COL7A1, EGFR, AGT 

Atherosclerosis Signaling 1.7E00 VCAM1, APOB, APOC2, IL6, SAA4, 

PRDX6, APOL1, COL1A2, COL1A1, ALB, 

ALOX15B, APOA1, TGFB1, APOC1, 

SERPINA1, RBP4 

Role of Tissue Factor in 

Cancer 

1.34E00 STAT5A, CFL1, PIK3R5, F7, MAPK12, F2, 

LIMK1, VEGFA, PIK3R3, ARRB2, ITGA3, 

CXCL1 ,CYR61, EGFR 

 

 

 

Table 11(D): NG vs C 

Ingenuity Canonical 

Pathways 

-log(B-H p- 

Value) 

Genes 

Hepatic Fibrosis / Hepatic 

Stellate Cell Activation 

1.46E00 IL1R2, IL1R1 ,COL9A2, MMP9 
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Condition Regulation of 

expression 

Genes Fold change (from 

GeneSpring 

analysis) 

NG vs C Upregulated MMP9 2.35 

LG vs C Upregulated MAP3K8 2.46 

LG vs C Downregulated TP53 

SOS1 

2.81 

2.62 

HG vs C Upregulated FOS 

IL6 

2.28 

4.06 

HG vs C Downregulated TNF 2.90 

HG vs LG Upregulated EGFR 

VEGFA 

2.44 

2.13 

HG vs LG Downregulated MAPK12 4.09 

 

Table 12: Final list of genes selected for validation 
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Condition 

 

Gene Fold 

change 

from 

GeneSpring 

Fold 

change 

from 

ddPCR 

p-value 

 

Bonferroni 

correction: 

new 0.05 

threshold, 

10 tests 

Result 

(p-value) 

NG vs C 

 
MMP9 +2.35 +6.49 0.0068 0.005 False 

LG vs C 

 

 

 

 

MAP3K8 

 

TP53 

 

SOS1 

 

+2.46 

 

-2.81 

 

-2.62 

+1.61 

 

+2.00 

 

-1.69 

0.00003 

 

0.00007 

 

0.00362 

0.005 

 

0.005 

 

0.005 

True 

 

True 

 

True 

HG vs C 

 

 

 

 

FOS 

 

IL6 

 

TNF 

 

+2.28 

 

+4.06 

 

-2.90 

+3.55 

 

+3.05 

 

+1.60 

0.00853 

 

0.00001 

 

0.00620 

0.005 

 

0.005 

 

0.005 

False 

 

True 

 

False 

HG vs LG 

 

 

 

 

EGFR 

 

VEGFA 

 

MAPK12 

 

+2.44 

 

+2.13 

 

-4.09 

-1.25 

 

+1.36 

 

+1.19 

0.43 

 

0.24 

 

0.27 

0.005 

 

0.005 

 

0.005 

False 

 

False 

 

False 

 

Table 13: List of significant genes after Bonferroni correction 
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CHAPTER 4: DISCUSSION 

 This study has advanced the idea of using blood-based gene expression studies as 

an indicator of neoplastic changes occuring in brain tissue. This idea was based upon the 

sentinel principle and extrapolated to the study of brain tumours. However, in the very 

first study, the sentinel principle was used to identify subjects with an increased risk of 

colorectal cancer compared to normal subjects (74). In this study, we have used the 

sentinel principle not only to identify patients with a glioma but also to differentiate 

between high grade, low grade, non-glioma and control subjects. 

 The unsupervised hierarchical clustering and principal component analysis clearly 

showed that the four groups of subjects clustered into 3 statistically significant groups as 

represented by the ellipses, which showed a distinct directionality in the different groups 

based on similarities in gene expression (see Results Section, Fig.4). The fact that the 

non-glioma and control subjects clustered together and were distinct from the high and 

low grade tumour patients, indicated that the changes in gene expression in blood in these 

2 groups were clearly different from that of the glioma patients indicating specificity of 

expression. This lends further credence to the sentinel principle that substances are 

released from the tumour into the bloodstream (67,68) and may be  distinct for each 

tumour subtype. Although the blood samples in our study were taken from patients after 

presentation to the hospital with neurological symptoms, it is highly likely that these 

substances were released during the early stages of tumour formation (67) and continued 

to persist in blood even as the tumour enlarged based upon the theory and evidence from 

the sentinel principle (67,68,74-76). 
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 The brain, as an immunologically privileged site, is protected by the blood-brain 

barrier which restricts the movement of water soluble molecules by tight junctions (116) 

and a low level of transcytosis (117). The breakdown of the blood-brain barrier in brain 

tumours can be visualized by either freeze fracture electron microscopy (118) or contrast 

enhanced magnetic resonance imaging (MRI) using gadolinium (119). The normal blood-

brain barrier is impermeable to contrast medium but there is a gradual increase in the 

degree of disruption of the blood-brain barrier corresponding to the grade of the tumour. 

WHO grade II tumours show little or no contrast medium enhancement, WHO grade III 

tumours enrich more contrast medium than grade II tumours while WHO grade IV 

tumours (GBM) show the greatest gadolinium enhancement (100). This observation fits 

well with our postulation that substances from the brain are able to cross the blood-brain 

barrier and enter the circulation due to the varying degrees of disruption of the blood-

brain barrier during glioma formation.  

 The differentially expressed genes for the four different conditions were unique, 

but  also  had some commonality. Most of the unique and common genes in the HG and 

LG tumour samples were transcription factors, cytokines, proto-oncogenes, oncogenes, 

growth factors and tumour suppressor genes. These genes are involved in inflammation, 

tumour signalling pathways, glioma formation, tissue necrosis, apoptosis, homeostasis, 

cytoskeletal architecture, maintenance of the extracellular matrix and determination of 

cell fate. Interestingly, there were also a substantial number of genes involved in the 

innate and adaptive immune system suggesting that modulation of the immune system 

plays a critical role in tumour response. In addition, genes known to be involved in the 

pathogenesis of GBM were also upregulated in blood.  These genes included  EGFR, 
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VEGF and IL-6. This evidence implied that some of the changes occurring in the tumour 

tissue may be reflected in blood, suggesting that these substances may be released into 

the circulation through disruption of the blood-brain barrier or through complex 

signalling mechanisms. 

  The canonical pathways for the 4 sets of conditions mirrored to a certain extent 

the differential gene expression pattern. These included pathways involved in the innate 

and adaptive immune response, interleukin, acute phase response, glioma invasiveness, 

NF-κB activation and TGF-β signalling. The latter 3 pathways are also involved in the 

pathogenesis of gliomas. Again, we see much commonality between the signalling 

pathways in tissue and blood taken from glioma patients. One of the reasons for this 

could be the fact that peripheral blood cells share more than eighty percent of the 

transcriptome with 9 different tissue types including brain (67). More importantly, is the 

fact that blood cells express organ specific genes and also genes that are responsive to 

physiological changes and stimuli that were previously thought to be exclusive to certain 

tissue types (67,120). In the pathogenesis and formation of gliomas, these interactions 

between blood and tissue, together with disruption of the blood-brain barrier, could 

possibly explain some of the similarity observed in gene expression between gliomas and 

peripheral blood cells. 

 However, the results have to be viewed with caution too. The canonical pattern is 

calculated based on the activation state of one or more key genes when the pathway is 

activated. It also depends on the causal relationships with each other (activation and 

inhibition edge between the genes based on findings in the literature) to generate activity 
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patterns for the genes and also the end-point function. In the HG vs C pair (Figure 6A), 

there were only 4 pathways that passed the corrected B-H p-value <0.05 as identified by 

IPA. In addition, a z-score could not be assigned to any of these 4 pathways thus no 

prediction could be made about them. However, they may have biological significance as 

the majority of these pathways are involved in the innate and adaptive immune responses 

that are altered in cancer.  

 Another weakness with the IPA is that one gene may be activating and inhibiting 

at the same time, albeit more commonly on different targets in the same pathway. This 

may result in ambiguous data from the 2 conflicting gene expression values. If the target 

were the same, the effects would cancel out if the magnitude of expression were the 

same, if not, the effect with the larger expression would predominate. This would result 

in inaccurate, incomplete and a masked effect on gene expression. 

 The validation of selected genes was done by ddPCR. As mentioned previously, 

these genes were selected because they were known to be involved in signalling 

pathways that played an important role in tumourigenesis including the pathogenesis and 

formation of gliomas. In the selection of 10 genes for validation, 4 of the 10 genes, 

namely TP53, TNF, MAPK12 and EGFR showed fold changes that were reversed to that 

seen in the microarray experiment. TP53, TNF and MAPK12 were downregulated in the 

microarray experiment but upregulated by validation and EGFR was upregulated in the 

microarray experiment but minimally downregulated by validation. The reason for this 

could be multifactorial. Firstly and most importantly, the probes used for the microarray 

experiment are different from the primers used in ddPCR. As genes very commonly have 



 

96 

 

isoforms, it is likely that the primers in ddPCR may be amplifying an isoform of the gene 

resulting in alternative transcripts. These transcripts may have expression levels that are 

different from the parent gene. In addition, there may be a negative feedback loop where 

one transcript inhibits the expression of the alternative transcript of the same gene or vice 

versa. This could result in reversal of expression as seen during ddPCR validation. 

Secondly, we selected GUSB as the housekeeping gene to normalize our ddPCR data. 

Although GUSB showed the least variation with samples compared to TBP and HuPO, it 

might still have shown some variation in gene expression in the tumour samples. This 

could result in reversal of gene expression after validation. Thirdly, microarray analysis is 

generally used to screen large numbers of genes and the possibility arises that there may 

be false positives. Fourthly, human samples have huge technical and biological 

variability and it is likely that the presence of substances such as activators or inhibitors 

within the samples could be contributing to the differences observed. This is because 

ddPCR, being far more sensitive and quantitative, is able to detect the expression of 

genes affected by either inhibitors or activators, that may not be detected by microarray 

analysis. Fifthly, not all samples were used for validation by ddPCR. Only 3 to 6 samples 

were used for each set of conditions and this may have affected the level and pattern of 

gene expression as well. 

 The initial p-values obtained showed that 7 of the 10 genes chosen for validation 

had statistically significant p-values <0.05. The genes with initial p-values >0.05 were 

EGFR, VEGFA and MAPK12. After applying the Bonferroni correction for the p-value, 

only 4 of the 10 genes passed this stringent statistical test. The 4 genes were MAP3K8, 

IL6, SOS1 and TP53. Although the other genes were not considered to be statistically 
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significant, they could be clinically significant. In addition, p-values are dependent on 

many factors including sample size, with a larger sample size giving rise to a more 

reliable p-value (121). In our case with a limited sample size, the p-value could vary by 

adding or removing even one value. Thus a larger sample size would definitely add more 

confidence to the p-values that were obtained in our experiments. 

 Besides the confidence needed in p-values to take forward a panel of genes to 

establish a reliable biomarker, other factors are also important. A biomarker for a disease 

has to be highly sensitive and specific. It must also be reliable and reproducible. A 

biomarker should be able to screen individuals in the preclinical stage of the illness, in 

other words it should be able to detect individuals at risk for developing the disease. It 

should also be diagnostic and prognostic, and able to detect changes in the disease state 

after treatment or recurrence of the disease in cases of relapse (122-124). Therefore, do 

gliomas lend themselves to be suitably detected by a blood-based biomarker?  

 In order to answer this question, we need to look at several variables. Firstly, for a 

biomarker to be used as a screening test in the general population, the incidence of the 

disease should not be extremely low as we would need to screen an excessively large 

number of subjects and this would not be cost effective. Gliomas have a low incidence in 

the population, in the range of 2-3 new cases per 100,000 population per year (115). 

However, if we take into account all the genetic syndromes that involve brain tumours in 

known high risk cancer families such as  neurofibromatosis types 1 and 2, von Hippel-

Lindau disease, tuberous sclerosis complex, Li-Fraumeni syndrome and Turcot 

syndrome, although individually rare causes of brain tumours, but collectively could be 
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important and add to the increased incidence of gliomas. Thus in these cases, a simple, 

non-invasive blood test which involves RNA profiling in whole blood, can be used as an 

addition to the more traditional methods of cancer screening and detection, which in these 

syndromes and disease complexes, involves genetic testing.  

 Secondly, most patients with gliomas especially those with primary GBM, present 

to the hospital after a relatively short history of symptoms which commonly includes 

headache, vomiting, seizures, and motor and sensory loss. This was also the case for all 

the high and low grade glioma patients involved in our study. This is because the tumour 

has enlarged to the point that it has compressed on brain structures and affected particular 

regions of the brain involved in specific neurological function. So, it would be reasonable 

to assume that detection of a small tumour which would be far more amenable to 

complete surgical resection, would portend to a better prognosis. No one has shown thus 

far, that patients with a small tumour have a better prognosis simply because the vast 

majority of patients with gliomas, including the patients in our study, present to hospital 

when they have neurological symptoms. At the time of presentation, the tumour is 

relatively large in size and has diffusely invaded into surrounding brain tissue, making 

complete surgical resection and a cure virtually impossible. In addition, small tumours 

are less likely to be diffuse and thus less infiltrative into surrounding brain tissue. In 

many cases, early symptoms of brain tumours are likely to be mild and very non-specific, 

so a means of stratifying patients for further investigations such as MRI, could be 

determined by using a blood-based biomarker. Conversely, if a patient had an MRI for 

some other reason and a suspicious area was detected suggesting a brain tumour, a watch 

and wait approach could be instituted. The patient could be monitored using a blood-
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based biomarker or followed by MRI, although the frequency of initiating such 

investigations may be difficult to determine. Besides using the blood-based biomarker 

panel as a screening tool, we could also observe how the differential expression of genes 

within the panel change in response to treatment or recurrence of the disease. This is an 

area that needs to be explored further in our study. 

 One of the criteria mentioned earlier about a reliable biomarker is the fact that it 

should be able to diagnose patients at the preclinical stage of the illness, in other words it 

should be  able to detect individuals at risk for developing the disease. Recently, a group 

from the Ohio State University, Columbus, Ohio, USA have found changes in certain 

cytokines and other immune system components that are altered within 5 years of a 

patient developing GBM. There were decreased interactions among cytokines, namely 

between IL4 and sIL4RA within 5 years of the patient being diagnosed with a glioma or 

GBM. This weakened signalling indicated that the tumour was beginning to suppress the 

local immune system, thus predisposing the patient to the development of cancer (125). 

In our case, the differential gene expression pattern observed in the high and low grade 

tumour samples, could be used to predict the risk or probability of a person developing a 

glioma based on the sentinel principle. 

 There are limitations to the use of the sentinel principle and that of a blood-based 

biomarker to detect changes in a disease state in another tissue. The main limitation is 

that the blood transcriptome is susceptible to a vast array of changes such as that due to 

tobacco smoke, environmental pollutants and toxins, and to diseases such as 

hypertension, diabetes, cardiovascular disease, ischaemic stroke and asthma (69-72, 126-



 

100 

 

128). Many cancer patients, including the patients in our study, have these comorbidities 

and this could have a confounding effect on the differential gene expression pattern 

observed. In addition, the drawing of blood, temperature and storage conditions can all 

have an effect on gene expression levels of peripheral blood cells. 

 This is a preliminary study to assess the possibility of using a blood-based 

biomarker to differentiate between high grade, low grade, non-glioma and control 

samples and therefore the results must be interpreted with caution. The main drawback of 

this study is the small sample size. In order to take this study forward to a blood-based 

biomarker panel for gliomas, we would need a much larger sample size to give this study 

more power and to obtain more reliable p-values for the genes selected.  

  This study would also need to be validated in an independent data set. The 

purpose of this would be to estimate how accurately our blood-based biomarker (training 

set) will perform in practice. Therefore, the inclusion of a test set would be needed to 

"test" our blood-based biomarker in the training phase to limit problems like overfitting. 

Ultimately, this would give us an insight on how our biomarker panel will perform in an 

independent data set. 

 Finally, the data in this thesis will be freely available. As the sample number, n, in 

this study is small, this will enable those who are interested to verify the results of this 

study, to use the data as a starting point. They may wish to replicate this study using a 

similar or larger sample size. 
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