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Abstract The PI3K lipid kinases are involved in signal transduction and intracellular vesicular traffic, 
endowing these enzymes with multiple cellular functions and important roles in normal physiology 
and disease. In this mini-review, we aim to distil from the vast PI3K literature the key relevant 
concepts for successful targeting of this pathway in disease. Of the eight isoforms of PI3K, the class I 
PI3Ks have been implicated in the aetiology and maintenance of various diseases, most prominently 
cancer, overgrowth syndromes, thrombosis, inflammation and autoimmunity, with emerging 
potential roles in metabolic, cardiovascular and other disorders. The development of class I PI3K 
inhibitors, mainly for use in cancer and inflammatory disorders, is a very active area of drug 
development. In 2014, an inhibitor of the p110δ isoform of PI3K was approved for the treatment of 
some human B-cell malignancies. The key therapeutic indications of targeting each class I PI3K 
isoform are summarized and discussed. 
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The PI3K family 
 

The common and defining feature of PI3Ks is their ability to phosphorylate the 3-hydroxyl group 
on phosphoinositides that reside on cellular membranes. All eight mammalian PI3Ks (Figure 1) share 
a conserved catalytic domain but differ in their regulation and preferred lipid substrate. PI3K activity 
is opposed by lipid phosphatases, such as PTEN, INPPs and SHIPs (class I PI3Ks) and myotubularins 
(class II and III PI3Ks). Loss-of-function of these phosphatases is of key importance in some diseases, 
such as cancer (the PTEN and INPPs are tumour suppressors) and certain myopathies 
(myotubularins). 

 
Class I PI3Ks are heterodimers formed of a regulatory and a catalytic (p110) subunit, further 

referred to as PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ. They are further subdivided into class IA (PI3Kα, PI3Kβ, 
PI3Kδ) or IB (PI3Kγ) depending on the type of regulatory subunit present in the complex (p85 or 
p84/p101 for class IA and IB, respectively). All class I PI3Ks couple to cell surface receptors at the 
plasma membrane where, upon activation, they phosphorylate phosphatidylinositol-4,5-
bisphosphate (PI(4,5)P2) into the short-lived second messenger PI(3,4,5)P3 (PIP3). Despite this 
apparent simplicity, the upstream activation of these isoforms is complex, and includes engagement 
with phosphotyrosines in receptors and adaptor proteins via the SH2 domains of the p85 regulatory 
subunit (PI3Kα, PI3Kβ, PI3Kδ), Gβγ subunits released by activated G protein-coupled receptors 
(GPCRs) (PI3Kβ, PI3Kγ) and small GTPases such as Ras (PI3Kα, PI3Kγ), Rac and cdc42 (PI3Kβ). Class I 
PI3K activity is transmitted into the cell through the localised accumulation of PIP3, which induces 
the recruitment of pleckstrin homology (PH) domain-containing effector proteins to the plasma 
membrane where they are activated. These effector proteins include protein kinases, adaptor 
proteins and regulators of small GTPases. The serine/threonine kinase Akt/PKB, a key class I PI3K 
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effector, is an important signalling node that regulates cell survival, cell cycle, glucose metabolism, 
protein synthesis and migration.  

 
Class II PI3Ks (PI3K-C2α, PI3K-C2β and PI3K-C2γ) and the class III PI3K (vps34) mainly associate 

with intracellular membranes where they produce the lipids PI3P and most likely also PI(3,4)P2 
(Figure 1). Their regulation is less well understood than that of class I PI3Ks, but they have been 
implicated in the regulation of vesicular traffic, such as in endocytosis and autophagy. The role of the 
class II/III PI3Ks in signal transduction by extracellular ligands is not clear, but their activities might 
directly or indirectly modulate such signalling. 
 
PI3K isoforms in disease 
 
In addition to their catalytic activity, several isoforms of PI3K and their adaptors have scaffolding 
functions[1,2]. In this review, we only describe the kinase-dependent functions of PI3Ks, given that 
these, in principle, could be regulated by small molecule pharmacological inhibitors. 

At present, only the class I PI3K isoforms have been firmly implicated in disease (Table I). This is 
not the case for class II/III PI3Ks, and these isoforms will therefore not be discussed in detail here. 
Interestingly, however, organismal inactivation of the kinase activity of PI3K-C2β in mice has recently 
been reported to result in enhanced insulin sensitivity and glucose tolerance, without detectable 
side effects[3], indicating that this particular PI3K isoform might be a potential drug target for 
metabolic disorders. The class III PI3K, vps34, has been implicated in the regulation of autophagy, a 
process that has been associated with a spectrum of diseases ranging from cancer to 
neurodegeneration. This has spurred the development of vps34 inhibitors (reviewed in Ref.[4]), but 
the potential of vps34 inhibition in a disease context still remains to be established. 

Below, we describe key features and functions of each class I PI3K isoform. 
 
PI3Kα 
p110α, the catalytic subunit of PI3Kα, is ubiquitously expressed. PIK3CA, the gene encoding p110α, 
is frequently amplified or somatically mutated in solid tumours/carcinoma but very rarely in soft 
tissue cancers/sarcoma or haematological malignancies. ‘Oncogenic’ PIK3CA mutations are found 
across the PIK3CA gene but mainly occur in hot-spots and lead to increased lipid binding and/or 
basal activity of p110α through a multitude of mechanisms that mimic and enhance the dynamic 
allosteric/intramolecular events that normally activate wild-type PI3Kα (Ref.[5]). 

PIK3CA and PI3K pathway components have recently been found to be somatically mutated in a 
spectrum of congenital or early childhood onset human overgrowth disorders[6-10]. PI3K pathway 
mutations in these disorders are almost exclusively found in tissue of mesodermal origin, with 
overgrowth frequently observed in adipose, muscle and skeletal tissue. Interestingly, despite the 
PIK3CA mutations associated with overgrowth disorders being similar to those observed in cancer, 
individuals with this condition do not appear to be predisposed to cancer. This suggests that the 
context in which the PIK3CA mutations occur determines its role in disease.   
 The prevalence of PIK3CA mutation and amplification in cancer suggest an important role for 
p110α in cancer development. Two recent reports[11,12] have revealed that expression of 
mutant Pik3ca induces multipotency in breast cancer progenitor cells, possibly contributing to 
intratumoural heterogeneity. At present, it is not entirely clear how critical PIK3CA alterations are in 
established cancer. Indeed, whereas the presence of PIK3CA mutation/amplification in cancer cell 
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lines has some predictive value in determining sensitivity to PI3K inhibitors, this correlation is not 
absolute and other genetic parameters also control this response[13]. This is in fact not surprising 
given that cancer cells have multiple ways of activating the PI3K pathway, other than through 
mutational activation of p110α, including through mutation of the p85 regulatory subunits, 
upstream activators such as tyrosine kinases and Ras, and downstream effectors such as Akt, or by 
loss of the PTEN tumour suppressor. Indeed, cancer cells almost invariably “hijack” the PI3K 
pathway, with mutation of PIK3CA being only one of several ways of achieving this. An overview of 
the genomic determinants of PI3K pathway inhibitor response in cancer is given in Ref.[14]. 
 Under normal physiological conditions, PI3Kα is a key effector molecule in insulin/IGF-1 signalling 
(Refs.[15,16]). Indeed, heterozygous genetic inactivation of p110α leads to insulin resistance and 
glucose intolerance in young mice[15]. Interestingly, upon ageing, the heterozygous genetic 
inactivation of p110α leads to better overall glucose homeostasis compared to that in control aged 
mice[17]. Similarly, sustained low-level pharmacological inactivation of p110α (together with p110δ) 
reduces obesity and ameliorates metabolic syndrome in obese mice and monkeys[18], uncovering 
pharmacological inhibition of PI3K/p110α as a potential anti-obesity intervention. 
 
PI3Kβ 
p110β, the catalytic subunit of PI3Kβ, also has a broad tissue distribution but is absent or expressed 
at low levels in some cell types, such as B- and T-lymphocytes (Ref.[19] and Klaus Okkenhaug, 
personal communication). 

p110β was the target of one of the first developed isoform-selective PI3K inhibitors[20], namely 
for antithrombotic therapy. p110β plays a specific role downstream of collagen and integrin 
receptors in platelet aggregation and p110β inhibitors interfere with thrombosis without inducing 
bleeding[20-22]; reviewed in Ref.[23]). 

Recently, mutations similar to those in PIK3CA have also been found in PIK3CB (the gene for 
p110β) in cancer, albeit at a much lower frequency[24,25]. It is important to keep in mind that non-
mutated p110β could be activated by mutations in p85 (Ref.[26]). PI3Kβ has been reported to be the 
main mediator of enhanced PI3K activity induced upon the inactivation and loss of PTEN in cancer 
(reviewed in Ref.[14]), but this appears to be dependent on the genetic context, as PI3Kα 
(Ref.[27,28]) and PI3Kδ (Ref.[29]) are also capable of contributing to biology induced by PTEN loss.  

There is increasing evidence for a role of PI3Kβ in prostate cancer, in which PTEN inactivation is a 
common event. PI3Kβ has been shown to positively regulate androgen receptor transactivation in 
prostate cancer cell lines[30] as well as in Sertoli cells in the regulation of mouse fertility[31]. In line 
with the contribution of PI3Kβ and PI3Kδ (Ref.[29]) to enhanced PI3K activity upon PTEN loss, a 
PI3Kβ/δ inhibitor was found to be very effective in a preclinical study of prostate cancer, particularly 
in combination with hormonal therapy[32]. Another study[33] showed that the combined inhibition 
of PI3Kα/β and androgen receptor is effective at inhibiting PTEN mutant prostate cancer cells. 

p110β is highly expressed in myeloid cells in which it has been shown to regulate Fcγ receptor-
driven responses, in concert with p110δ under certain conditions (Refs.[34,35]). This could be 
exploited in the context of inflammatory disorders resulting from the deposition of immune 
complexes, which, when not cleared effectively, lead to tissue damage and non-resolving 
inflammation. This therapeutic potential for p110β inhibition is illustrated by the observation that 
mice lacking PI3Kβ activity are protected in an experimental model of autoimmune skin blistering 
disease[34]. 
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PI3Kδ 
p110δ, like p110γ, is highly expressed in leukocytes[36,37] but is also present at intermediate levels 
in other tissues, such as neurons[38] and some transformed epithelial cells[39,40]. Its predominant 
expression in the haematopoietic compartment correlates with a variety of immune functions, 
mainly in the adaptive immune system, with important roles in B- and T-cells[41], but also in mast 
cells[42] and myeloid cells (such as neutrophils and macrophages)[43,34]. 

Recently, germline mutations in PIK3CD have been identified in a rare disease called APDS 
(Activated p110delta syndrome)[44] or PASLI (p110δ-activating mutation causing senescent T-cells, 
lymphadenopathy and immunodeficiency)[45] (reviewed in Ref.[46]). This disease is an autosomally-
dominant primary immune deficiency, which often (but not always) predisposes to respiratory 
infections and airway damage, and can lead to early death from infection-related causes and 
possibly lymphoma. The PIK3CD mutations in APDS are similar to the hot-spot mutations found in 
PIK3CA in that they activate the p110δ kinase. These patients could therefore benefit from the use 
of p110δ-selective inhibitors. 

Apart from a very low frequency mutation found in diffuse large B-cell lymphoma[47], the PIK3CD 
gene is mostly non-mutated in cancer. Like wild-type p110α and p110β, p110δ may become 
activated by mutations in its associated p85 regulatory subunit[26]. Whereas the expression level of 
p110δ in leukocytes does not appear to significantly increase upon transformation, some solid 
tumour cell lines express high levels of the p110δ protein, where it might contribute to migration 
and epithelial polarity[48,39,40,49,50].  
 Given the high expression levels of p110δ in leukocytes, p110δ inhibitors were developed to treat 
blood cancers in the hope that they would induce an anti-proliferative/cytotoxic effect across all 
haematological malignancies. However, the cytotoxic/cytostatic effects of p110δ inhibitors in 
transformed leukocytes turned out to be modest, at least in vitro. Despite this, p110δ inhibitors have 
shown impressive clinical impact in some human B-cell malignancies, such as CLL, and a PI3Kδ 
inhibitor (Idelalisib/Zydelig) from Gilead is the first approved (2014) PI3K inhibitor[51]. The 
mechanism of action of PI3Kδ inhibition in B-cell malignancies is based on interference with 
signalling by stimuli from the B-cell antigen receptor, co-stimulatory receptors, adhesion receptors 
and chemokines, on which some B-cell malignancies depend (reviewed in Ref.[52]). There is no 
evidence for a direct cytotoxic effect of PI3Kδ inhibition on leukaemic cells in patients. 

An interesting recent finding is that inhibition of PI3Kδ can stimulate immune responses against 
solid tumours, thereby broadening the utility of PI3Kδ inhibitors in cancer treatment beyond 
haematological malignancies[53], a concept that will be tested in human clinical trials in the near 
future (NCT02540928 and NCT02468557 on ClinicalTrials.gov). Mechanistically, inhibition of PI3Kδ in 
cancer preferentially reduces the immune-suppressive function of regulatory T-cells, allowing an 
anti-tumour cytotoxic T-cell response to develop[53]. PI3Kδ inhibition also dampens myeloid-derived 
suppressor cells in cancer[53]. As a potential therapeutic approach, it would be interesting to 
combine PI3Kδ inhibitors with surgery (which allows the immune system to deal with 
micrometastases once the primary tumour is resected, as was demonstrated in Ref.[53]), irradiation 
(which can generate neo-antigens) or other immuno-modulatory agents, such as immune checkpoint 
blockers or tumour vaccines. 
 
PI3Kγ 
As for p110δ, expression of this PI3K isoform is enriched in leukocytes, in which it mainly regulates 
the innate immune system. The literature on p110γ is complex, as it describes both scaffold-
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dependent and –independent roles of this PI3K. Below, we summarize what is known about the 
kinase-dependent roles of p110γ.  

There are multiple immune-related disease indications for p110γ (Table I; reviewed in 
Refs.[54,55]) but it has turned out to be challenging to make truly isoform-selective inhibitors for 
this PI3K. This means that the early promise of p110γ as a drug target in disease[56] has not (yet) 
been fulfilled. 

Other than in leukocytes, p110γ is also expressed at low levels (compared to leukocytes) in 
cardiomyocytes, smooth muscle cells and endothelial cells. Interplay between all these p110γ-
expressing cells has been implicated in cardiovascular biology. Indeed, interference with p110γ 
activity could be beneficial in cardiovascular disease under certain conditions, for example by 
alleviating myocardial inflammation and preventing maladaptive matrix remodelling (for a review, 
see Ref.[57]). 

Whereas a cancer-cell-intrinsic role for p110γ has not been clearly established, a role for this PI3K 
isoform in cancer-associated inflammation is emerging[58]. Indeed, p110γ regulates the recruitment 
and activation of myeloid cells by diverse tumour-derived stimuli, allowing these cells to invade into 
the tumour and stimulate tumour angiogenesis, growth and progression[58].  
 
Interference with PI3K activity in disease: isoform-selective or multi-PI3K-targeted inhibitors? 
 
PI3Ks play important roles in normal physiology and therefore identifying a suitable therapeutic 
window of PI3K inhibition at the organismal level is an important issue. This is disease-dependent, 
with different toxicity profiles accepted for example in cancer versus in more chronic conditions, 
such as in inflammatory, auto-immune and metabolic disorders.  
 
Pharma has been very effective in developing a range of inhibitors that target single or multiple PI3K 
isoforms. Given the importance of PI3K in cell biology, a consideration has been the toxicity profile 
of pan-class I PI3K isoform inhibitors. These have turned out to be reasonably well tolerated in a 
cancer setting, although the level of on-target inhibition that was achieved in these trials has not 
always been fully established. Toxicity of isoform-selective PI3K inhibitors is generally expected to be 
less wide-ranging than that of pan-PI3K inhibitors, allowing tolerance of higher drug doses, resulting 
in more complete PI3K target inhibition. However, as illustrated by the colitis induced by long-term 
PI3Kδ inhibition in CLL patients[59], drug tolerability can be an issue upon interference with a single 
PI3K isoform, as a result of mechanism-based, on-target side effects. Potential ways to overcome 
this is through topical application of a PI3K inhibitor, as exemplified by the ongoing development of 
an inhaled PI3Kδ inhibitor by GSK as an anti-inflammatory agent for the treatment of inflammatory 
airway diseases[60,61], avoiding systemic exposure to the drug. 
 
PI3K isoforms can also cooperate, especially under physiological conditions where cells are exposed 
to multiple stimuli, simultaneously signalling through different types of receptors. For example, 
some immune functions of p110δ are executed in concert with other class I PI3K isoforms, such as 
with p110γ in the respiratory burst of human neutrophils[43] or with p110β in FcRγ receptor 
signalling[34,35]. This interplay between class I PI3K isoforms in inflammation and immunity is 
complex (reviewed in Refs.[62,54,63,64]) and therapeutically explored by the ongoing development 
of dual PI3K inhibitors, such as dual PI3Kβ/δ or dual PI3Kγ/δ (IPI-145; Duvelesib)[65] inhibitors. A risk 
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of this strategy is the induction of overwhelming immune suppression, especially in cancer trial 
settings in which patients may have previously undergone immune-compromising therapies. 
 
PI3K isoforms can also compensate for each other, as best documented in cancer. A key way in 
which this phenomenon arises is through feedback mechanisms: these regulatory loops exist to 
counterbalance the PI3K pathway that is inhibited by an isoform-selective PI3K inhibitor, and lead to 
the activation of the remaining, non-inhibited PI3K isoform(s). Recently published examples include 
the ‘rebound’ of PI3Kα activity upon blockade of PI3Kβ (Refs.[48,33]). These data suggest that the 
use of pan-class I PI3K inhibitors may be needed to counterbalance class I PI3K-dependent 
compensatory mechanisms developed by cancer cells. Another key consideration for using PI3K 
inhibitors for cancer treatment is the finding that cells can survive and proliferate with very low 
levels of class I PI3K activity[66]. Moreover, because PI3Kα is critical for insulin signalling, a serious 
problem upon administration of PI3K inhibitors is the compensatory, increased systemic insulin 
production, which can stimulate cancer cell proliferation. Of course, upon sufficient inhibition of 
PI3K activity in the cancer cells, their responsiveness to insulin-stimulated PI3K would be expected to 
be blocked, but insulin could still activate other signalling pathways in the cancer cells, such as 
MAPK. 
 
Conclusion  
Despite extensive PI3K drug development efforts, only one PI3K inhibitor (Idelasib/Zydelig against 
PI3Kδ, for use in some B-cell malignancies) has been approved for human therapy to date[51], but 
this is expected to change in the near future, especially as part of combination therapies in cancer. 
Indeed, some promising combination treatments with PI3K inhibitors have recently been reported, 
such as with inhibitors of PARP (reviewed in Ref.[67]) or CDK4/6 (Ref.[68]) in breast cancer. Another 
exciting example is the observation that PI3Kα inhibitors can enhance the responsiveness of 
oestrogen receptor-positive breast cancer cells to hormone therapy[69]. The exploitation of the 
roles that PI3Ks play in the immune system is also likely to be a further fertile area of drug 
development, not only in chronic inflammation as initially intended (mainly PI3Kγ and PI3Kδ), but 
also in cancer, such as in immunotherapy (PI3Kδ) or modulation of cancer-induced inflammation 
(PI3Kγ). The use of PI3K inhibitors to interfere with angiogenesis[70] in cancer, for example by 
modulating the tumour microvasculature to increase chemotherapy delivery[71], remains to be 
more extensively explored. 
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Figure Legend: Shown are the different classes and isoforms of PI3K, their generic roles in cell 
biology and potential disease implications. 
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Table I - Therapeutic indications for class I PI3K isoforms: Key indications for interference with 
selected PI3K isoforms in disease. This is an oversimplification, given that PI3K isoforms could be 
targeted in combination, as described in more detail in the main text. 
 

PI3Kα PI3Kβ PI3Kδ PI3Kγ 
• Solid tumours 
• Overgrowth 

syndromes  
• Obesity, metabolic 

syndrome 

• Solid tumours (PTEN 
null?) 

• Thrombosis 
• Inflammation: 

antigen/antibody 
immune complex- 
driven immune 
dysfunction 

• B-cell malignancies 
• Solid tumours 

(through immune 
stimulation) 

• Autoimmunity/inflammatory 
disorders (rheumatoid 
arthritis, allergy, airway 
inflammation, …) 

• Activated 
p110delta 
Syndrome 

• Inflammatory 
disorders 
(rheumatoid 
arthritis, allergy, 
airway 
inflammation, 
obesity-related 
inflammation, 
atherosclerosis, …) 

• Cardiovascular 
disease  

• Cancer-associated 
inflammation 
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