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Abstract 

Retinitis Pigmentosa GTPase Regulator (RPGR) gene sequence variants account for 

the vast majority of X-linked Retinitis Pigmentosa (RP), which is one of the most 

severe forms of RP. Symptoms of nyctalopia typically begin in childhood, with 

increasing loss of peripheral visual field during teenage years, and progressive 

central visual loss during the second to fourth decade of life. There is however 

marked intra- and interfamilial phenotypic heterogeneity both in affected males and 

carrier females. There is now a far greater understanding of the range of phenotypes 

associated with variants in this gene; including rod-cone dystrophy, cone-rod 

dystrophy, cone dystrophy, macular dystrophy and non-ocular phenotypes. There 

are also increasingly established genotype-phenotype associations and structure-

function correlations. RPGR is involved in ciliary function, with ciliary dysfunction 

now recognized as the mechanism underlying a large proportion of inherited retinal 

disease. There has been significant progress in both identifying naturally occurring 

animal models and developing novel models to define the underlying disease 

mechanisms and to test gene replacement therapy, in addition to advances in 

human retinal imaging, culminating in completed and planned clinical trials. These 

significant developments will be discussed.  
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Introduction  

Hereditary retinal disorders are now the leading cause of blindness in working age 

adults in England and Wales, and the second commonest in childhood [1]. Retinitis 

pigmentosa (RP), a group of genetically and phenotypically diverse disorders, affects 

~ 1:3000 to 1:4000 and is inherited as an autosomal dominant, recessive or X-linked 

(XL) trait; which are estimated to account for 30-40%, 45-60% and 5-15% of cases 

respectively [2-6]. X-linked retinitis pigmentosa (XLRP) is particularly severe, with 

early-onset in childhood, progressing to severe visual impairment by the third to 

fourth decade. Retinitis Pigmentosa GTPase Regulator (RPGR) gene sequence 

variants account for 70-80% of XLRP [7-9], RP2 variants for a further 5-20% [8-12], 

and a third gene, OFD1 has been identified as a rare cause of XLRP [13]. This review 

focuses on the molecular genetics and phenotypic features of RPGR retinopathy, 

animal models and therapeutic options.   

 

Molecular Genetics of RPGR  

RPGR was first identified as a cause of XLRP in 1996, composed of 19 exons and 

encoding a 90kDa protein product, with exons 2-11 coding for a structure similar to 

regulator of chromosome condensation 1 (RCC1) at the N-terminus [7 14]. RCC1 is a 

well-characterised protein that functions as a guanine nucleotide exchange factor for 

Ran (a Ras-related nuclear protein) and is thought to play an important role in 

nucleo-cytoplasmic transport and regulation of cell division [15 16]. Further analysis 

identified a transcript with a novel 3’ terminal exon known as exon open reading 

frame 15 (ORF15) that includes exon 15 and a portion of intron 15 [17]. Only 10-20% 

of patients with XLRP harboured disease-causing sequence variants in RPGR prior to 
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the discovery of ORF15. The ORF15 exon has an unusual repetitive sequence 

encoding 567 amino acids rich in glycine and glutamic acid residues that is a 

“mutational hotspot”, harbouring approximately 60% of all XLRP variants, thus 

underlying the majority of XLRP [17]. To date, over 300 variants have been identified 

in RPGR [18 19]. 

 There are multiple RPGR isoforms arising from alternative splicing [20-24] or 

post-translational modification [25].  These isoforms are expressed in different 

amounts in different tissues (lung, kidney, retina, brain, testis); suggesting tissue-

specific splicing with tissue-specific functions.  The two major RPGR isoforms are the 

constitutive RPGR exon 1-19 and RPGR ORF15 [16], with RPGR ORF15 representing 

the isoform that is most highly expressed in retina [17]. To the best of our 

knowledge, all disease-causing variants are found in exons present in isoform RPGR 

ORF15, with only one in exons 15-19 [26], supporting the importance of the RPGR 

ORF15 isoform in the retina.  

 

RPGR Interacting Proteins and Function 

RPGR comprises an RCC1-like domain at its N-terminus, and the predicted function 

of the unusual C-terminal ORF15 protein sequence is not known. As illustrated in 

Figure 1, RPGR is localised predominantly to the photoreceptor connecting cilium 

[24], which is the equivalent of the transition zone of motile and primary cilia. An 

RPGR protein interaction network has been established, either through genetic 

studies identifying disease genes with overlapping symptoms, or through targeted 

functional studies, or a combination of both [16 27-29]. Some of the principal 

interacting proteins will be alluded to herein. Retinitis pigmentosa GTPase regulator-
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interacting protein (RPGRIP1) localizes to the connecting cilia and is thought to hold 

RPGR in this locale [28]. Similarly, retinitis pigmentosa GTPase regulator-interacting 

protein-1 like protein (RPGRIPL1), delta subunit of rod cyclic GMP phosphodiesterase 

(PDEδ), structural maintenance of chromosomes 1 and 3 (SMC1/3), GTPase Rab8A, 

nephrocystin-5, and whirlin also have been shown to interact with RPGR [29-35].  

Although the function of RPGR is not fully understood, information from 

biochemical studies and the phenotypes in patients and animal models, strongly 

suggests that it plays a role in the transport of phototransduction components and 

other outer segment proteins across the connecting cilium. Biochemical studies have 

shown that RPGR-ORF15 localises to the connecting cilium of the photoreceptor and 

binds to the basal body and the axoneme [30 36]. Involvement of RPGR-ORF15 in 

transport is suggested in immunoprecipitation experiments that show that RPGR 

interacts with γ-tubulin, subunits of Kinesin II and dynein microtubule motor protein 

complexes, and intraflagellar transport polypeptide 88 (IFT88) [30]. However, these 

interactions do not exclude that RPGR-ORF15 may be involved as cargo in these 

processes, rather than as an active component.  

The most prominent and consistent evidence for a role in ciliary transport is 

provided by various post-mortem studies that have utilised immunohistochemical 

techniques to demonstrate opsin mislocalisation within the photoreceptor structure 

in human, canine and mice models of RPGR-deficient carriers and affected subjects 

[37-41]. Opsin molecules are G-protein coupled receptors integral to visual 

phototransduction. These are assembled within the organelles of the photoreceptor 

inner segment and systematically transported via the connecting cilium to their final 
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destination in the outer segment where they are contained within the disc 

membranes [42].  

Cone and rod opsin mislocalisation to photoreceptor inner segments, 

perinuclear regions and synaptic terminals has been shown in human and canine 

subjects [37 40 41]. Cone but not rod opsin mislocalisation to similar regions have 

also been found in mice models, together with a reduction in rhodopsin levels within 

the outer segments [38 39].  

The structure of the connecting cilium is not compromised in RPGR-deficient 

photoreceptors, and the presence of correctly localised opsins and relatively well 

preserved vision in the early stages of disease indicate that RPGR plays a facilitative 

rather than an essential role in the transport process [39]. A role in docking and 

selection of cargo at the basal body has been suggested [30 36]. 

How opsin mislocalisation affects photoreceptor viability to cause retinal 

degeneration remains unclear. A mechanism whereby ectopic G-protein activity is 

stimulated by mislocalised opsin molecules leading to photoreceptor apoptosis has 

been postulated but retinal degeneration has also been shown to occur despite G-

protein inactivation [43 44]. However, a causal link between opsin mislocalisation 

and subsequent retinal degeneration has not been proven and it is possible that 

photoreceptor viability is affected by other molecular pathways unrelated to opsin 

mislocalisation, which in itself may simply be a marker of ensuing retinal 

degeneration.  

The amino acid sequence of RPGR provides a clue to its function [14]. The 

main recognisable feature is its RCC1 homology domain that suggests a function as a 

guanine nucleotide exchange factor for Ran (a Ras-related nuclear protein) and 
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catalysis of RanGTP [15]. RanGTP serves as an energy source for molecular motors 

that move cargo through the nuclear pore complex. The resultant high local 

concentration of RanGTP in the connecting cilium as generated by RPGR could 

enable a putative RanGTP-dependent process that drives unidirectional movement 

of opsins across the connecting cilium to the outer segment [39 45]. 

 

RPGR Animal Models  

Two naturally occurring RPGR ORF15 mutations in the Siberian husky canine breed 

result in distinct phenotypes. A 5-nucleotide deletion in RPGR ORF15 (del1028-1032) 

gives rise to a premature stop codon and truncation of 230 residues, resulting in X-

linked Progressive Retinal Atrophy 1 (XLPRA1) secondary to loss of RPGR function 

[46]. This phenotype is characterised by gradual photoreceptor degeneration that is 

post-developmental in onset, affecting rods more than cones, in keeping with 

human RP, albeit with slower progression. Optical coherence tomography (OCT) 

demonstrates normal outer nuclear layer (ONL) thickness up to 28 weeks of age, 

while at older ages (from 56 weeks) ONL thickness starts to decline in the inferior 

retina while initially remaining preserved at the visual streak [47]. The second more 

severe phenotype, XLPRA2, is caused by a 2-nucleotide deletion in ORF15 (del1084-

1085), downstream to the first, resulting in frameshift and the inclusion of 34 basic 

amino acids with truncation of 161 residues [46]. OCT demonstrates a generalised 

decline in ONL thickness that is worse at the cone-rich central visual streak than the 

periphery [47].  

 It has been proposed that the early onset of disease in XLPRA2 from around 

5 weeks, with rapid progression affecting both rods and cones, may be caused by a 
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toxic gain of function from an accumulation of abnormal protein product in the 

endoplasmic reticulum [40 46]. However, the treatment effect shown after adeno-

associated viral (AAV) vector mediated RPGR gene transfer in these animals [47] 

argues against a gain of function mechanism. The finding that two distinct 

phenotypic expressions of XLPRA are related to the exact nature and position of the 

ORF15 mutations [46] appears to be confirmed by genotype-phenotype correlations 

in patients as discussed below [9].  

Three mouse models of RPGR deficiency exist. In the first, generated by the 

deletion of RPGR exons 4-6 [39], cone opsin mislocalisation to inner segments, 

nuclear and synaptic regions was seen and rhodopsin levels were reduced in rods 

when examined 20 days postnatally. Retinal structure however was comparable to 

wild-type and electroretinogram (ERG) function was within normal limits despite a 

lack of RPGR. However, by 6 months, photoreceptor cell loss was apparent [39]. This 

model demonstrates a slow retinal degeneration, not dissimilar to XLPRA1, and 

therefore does not emulate the severe degeneration in humans [46]. One of the 

major shortfalls of murine models to recapitulate human disease is a predominance 

of rods over cones. In addition, there may not have been a total absence of RPGR 

protein product as residual RPGR ORF15 isoform was reported to be present in this 

model [30]. However, two further mouse models, one a naturally occurring 32 base 

pair duplication in ORF15 [38], the other an engineered deletion of exon 1 [48], show 

very similar phenotypes to the original knock-out mice. As these models do not 

appear to have residual RPGR protein, it is unlikely that the putative presence of 

remaining protein causes the relatively slow rate of degeneration in the murine 

retina. 
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RPGR Clinical Phenotypes 

Disease-causing sequence variants have been identified in RPGR in association with a 

range of phenotypes including rod-cone dystrophy or retinitis pigmentosa (RP), cone 

dystrophy (COD), cone-rod dystrophy (CORD), macular atrophy, and rarely 

syndromic XLRP. RP and CORD are the commonest and best described conditions, so 

genotype-phenotype correlations will be discussed. The vast majority of retinal 

disease-causing mutations are loss-of-function alleles, with the majority of these 

being protein truncations in ORF15. 

 

RPGR Retinitis Pigmentosa (Rod-Cone Dystrophy)  

XLRP is one of the most severe forms of RP, with nyctalopia in most affected males 

before ten years of age and progression to legal blindness by the third to fourth 

decade [49]. Myopia, retinal and electrophysiological abnormalities are often 

present from childhood [49 50]. Most carrier females are asymptomatic or mildly 

affected, with a minority of females as severely affected as males [50-52]. A 

significant proportion of carrier females can be identified on the basis of a tapetal 

reflex seen clinically and/or with fundus autofluorescence (FAF) imaging, and/or 

generalised retinal dysfunction on electrophysiological testing. 

            A parafoveal hyperautofluorescent ring is present in some male patients on 

FAF imaging [53-55]. There is good correlation between ring radius and pattern ERG 

P50 amplitude (measure of macular function), indicating greater preservation of 

function with larger rings; this ring constricts over time and thereby may be a 



RPGR-associated Retinopathy 10 

measure of rate of progression both in the clinic and as an end-point for clinical trials 

[53-55].  

            An OCT-based ‘transition zone’ model has been described with progression 

from an intact foveal centre to diseased periphery, evidenced first by outer segment 

shortening, followed by decreased ONL thickness and further outer segment loss, 

preceding inner segment ellipsoid zone (EZ) band disappearance [56]. Annual width 

decrease of the EZ band was estimated at 248 μm/year in a group of 28 XLRP 

patients [57]. Functional correlates have been probed, using static perimetry, in 40 

patients with RPGR XLRP, with demonstration of greatest rate of decline in retinal 

sensitivity located at the edges of EZ band disappearance [58].  

Sharon et al [9] screened RP2 and RPGR in 187 unrelated male patients and 

their affected relatives, and identified disease-causing variants in 16 and 156 

patients respectively, with 71% (111/156) of RPGR mutations in ORF15. Age-

matched patients with RPGR ORF15 sequence variants had milder disease compared 

with patients with RPGR exon 1-14 variants, including larger intact visual fields and 

30Hz ERG amplitudes, suggesting that the truncated mutant protein is able to 

perform some function, for example through the intact RCC1-like domain, or that a 

role exists for constitutive RPGR within ORF15 mutant photoreceptor cells. It was 

also proposed that for patients harbouring ORF15 variants, disease severity varied 

according to the predicted length of the encoded abnormal amino acid sequence; 

with relatively better retinal function associated with longer wild-type ORF15 amino 

acid sequences secondary to more downstream variants [9]. Moreover, mutations in 

the first 14 exons that affect both constitutive RPGR and the RPGR ORF15 isoforms 

lead to the most severe disease. 
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Fahim et al [59] studied 98 affected males with 44 different RPGR mutations. 

Patients were grouped into 3 categories of disease severity based on ERG and 

Humphrey visual field findings. In keeping with Sharon et al [9], patients with exon 1-

14 variants (often predicted null alleles) had more severe disease than patients with 

ORF15 variants (predicted potentially translatable transcripts); with ORF15 disease 

being associated with far greater variability in disease severity. 

 Several studies have identified that ORF15 variants causing RP are far more 

frequently located towards the 5’ end, whereas variants located towards the 3’ end 

of ORF15 more often result in COD/CORD [60-64]. However, there remains 

significant intra- and inter-familial variability with examples of both RP and CORD 

within the same families despite the same underlying sequence variant in RPGR [61 

65 66], suggesting that genetic and/or environmental modifiers are also influencing 

phenotype.  

 

RPGR Cone and Cone-Rod Dystrophy 

Disease-causing sequence variants in RPGR are the commonest cause of XLCOD and 

XLCORD [62]. Multiple studies have reported detailed phenotypic findings in both 

affected males and carrier females [62-64 67-70]. Onset of central visual loss in 

affected males ranges from the second to the fourth decade, are often myopic, with 

significant inter- and intra-familial variability both in terms of onset, rate of 

progression, and rod involvement. This phenotypic heterogeneity is the hallmark of 

inherited retinal disease and suggests an important role for genetic modifiers and 

environmental factors. 
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In keeping with X-linked inheritance, most carrier females are asymptomatic 

or mildly affected, with a minority of females as severely affected as males [64]. 

Variability between and within families is believed to be primarily due to varying 

degrees of skewed X-inactivation, although other genetic modifiers have been 

proposed [62 64 67-71]. 

              Parafoveal hyperautofluorescent rings are present in some RPGR COD and 

CORD male patients on FAF imaging and can progressively increase in size over time. 

In contrast to RP rings, the size of CORD rings is inversely related to pattern ERG P50 

amplitude, indicating worse macular cone function with large rings [53 64 72]. 

 To date all reported patients with COD/CORD harbour variants in ORF15 – 

with ORF15 variants causing COD/CORD more frequently located towards the 3’ end 

of ORF15 compared to those causing RP [60-64].  

 

RPGR Associated Syndromic Ciliopathy 

Cilia defects cause a wide range of genetic conditions, collectively called ciliopathies.  

It is now well established that many important retinal proteins have a role in cilia 

function and retinal dystrophy represents a common phenotype in the clinical 

spectrum of disease [73]. Further evidence for RPGR having an important role in cilia 

function came from genetic studies where sensorineural hearing loss, bronchiectasis 

and respiratory tract infections were associated with XLRP caused by an RPGR 

mutation [74]. Additional families have been reported with variable penetrance of 

these phenotypes, confirming further cases of syndromic disease [50 75 76]. 

Interestingly, mutations causing syndromic XLRP, to date, are restricted to exons 1-

14, suggesting mutations in ORF15 may not be a cause of extra-ocular phenotypes.   
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Therapeutic Options  

Docosahexaenoic acid (DHA) and Vitamin A  

Lipids make up ~ 25% of photoreceptors’ dry weight, with photoreceptor outer 

segment membranes containing equal amounts of proteins and lipids, with 80% or 

more of lipid composition arising from phospholipids [77]. In human rod outer 

segments, 20-30% of fatty acids within phospholipids are made up of 

docosahexaenoic acid (DHA or 22:6ω3) [77]; thereby suggesting an important 

biochemical role in photoreceptors. DHA and vitamin A are both essential 

components of the visual cycle. Interphotoreceptor retinoid-binding protein (IRBP) 

can bind either palmitate or DHA resulting in an alteration in affinity for vitamin A 

isomers [78].  IRBP when located near the retinal pigment epithelium (RPE) 

predominantly binds palmitate, creating high affinity for 11-cis retinal, which is 

thereby bound and transported to rod outer segments. High levels of DHA in rod 

outer segments lead to a swap in IRBP fatty acid binding, with subsequent release of 

11-cis retinal to the outer segments where it forms rhodopsin. Following 

phototransduction, all-trans retinol in the outer segment is bound to IRBP and 

brought back to the RPE, where DHA is swapped with palmitate thereby resulting in 

a release of all-trans retinol for 11-cis retinal [78].  

It has therefore been suggested that a lack of DHA, secondary to outer retinal 

degeneration, may hinder the release of 11-cis-retinal, thus giving rise to the 

hypothesis that DHA levels around photoreceptor outer segments can be increased 

(in order to facilitate release of 11-cis retinal) with DHA supplements or alternatively 

by increasing retinal levels of 11-cis retinal with vitamin A supplementation [79]. 
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A Cochrane review [80] assessed 3 randomised controlled trials on the 

effectiveness of vitamin A or DHA in RP, including XLRP [81-83]. No clear evidence of 

benefit with either vitamin A or DHA supplementation was identified on the basis of 

visual field or ERG parameters. As a result, high dose vitamin A supplements are not 

routinely recommended to patients. It is generally accepted that eating a healthy 

and balanced diet, one that is rich in green vegetables and oily fish that will provide 

good amounts of lutein and omega-3 is instead likely to be of value.  

 

Neuroprotection 

There is evidence from animal studies that ciliary neurotrophic factor (CNTF) 

delivered either with intravitreal injection of CNTF protein or gene therapy mediated 

with adeno-associated viral (AAV) vectors exerts a neuroprotective effect on rods, 

with slowing or halting of retinal degeneration [84]. Recombinant human CNTF has 

been shown to stimulate cone outer segment regeneration in a rat model of 

advanced retinal degeneration where rods have already degenerated [85]. In 

addition, sustained CNTF delivery via implanted devices was shown to preserve cone 

ERG response and function in the same rat model. [85] 

 A phase II/III trial has been undertaken of intravitreal implants of 

encapsulated human retinal pigment epithelium cells engineered to continuously 

secrete CNTF protein in patients with early (n=68) and late-stage (n=65) RP [86]. 

Patients were randomly assigned to receive a high- or low-dose implant in 1 eye and 

sham surgery in the fellow eye. Primary endpoints were change in best-corrected 

visual acuity at 12 months for late-stage RP and change in visual field sensitivity at 12 

months for early RP.  Neither study showed therapeutic benefit – with some patients 
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experiencing loss of retinal sensitivity that was reversible on removal of the implant. 

However, a pilot study utilising adaptive optics imaging to investigate in vivo cone 

structure in 3 patients with CNTF implants over a 24 month period found that cone 

density remained stable in eyes with a CNTF implant whereas there was continued 

cone loss in untreated fellow eyes, suggesting that more sensitive metrics are 

needed as primary outcome measures in slowly progressive diseases such as RP [87]. 

 

Gene Therapy  

Successful photoreceptor rescue with RPGR ORF15 transgenes has been 

demonstrated in animal models. Hong et al [88] generated a transgenic mouse 

model that carried mouse RPGR ORF15 variant on an RPGR null background. The 

selected RPGR ORF15 variant had a 654 base pair deletion within the repetitive 

purine rich region. Protein expression levels 20% that of wild-type was observed 

with localisation to the connecting cilia, sufficient for structural and functional 

rescue of photoreceptors. Another more recent study in RPGR null mice has been 

carried out via subretinally injected AAV vector mediated delivery of two shortened 

human RPGR ORF15 transgenes [89]. The repetitive purine rich region was 

shortened by 378 base pairs for the first transgene and 942 base pairs for the second 

transgene. Protein expression followed with both versions of transgene. Appropriate 

subcellular localisation to the connecting cilia and comparable immunofluorescence 

signal intensity to wild type was seen with the longer protein, with structural and 

functional rescue of photoreceptors. A much weaker immunofluorescence signal 

was however obtained with the shorter gene. A greater efficacy is anticipated with 

the moderately shortened yet functional version of human RPGR ORF15 transgene 
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compared with the wild-type gene, as the long and repetitive purine rich region 

present in full length RPGR ORF15 is less stable and this may affect the efficacy of 

gene transfer to photoreceptor cell nuclei. The improved efficacy would be 

favourable for future human gene therapy trials.  

 XLPRA1 and XLPRA2 canine models have been successfully rescued with 

subretinal injection of AAV delivering human RPGR ORF15 [47]. Post-treatment 

monitoring with in vivo OCT imaging demonstrated a preserved ONL and greater 

inner segment ellipsoid layer integrity in the retina exposed to vector compared to 

adjacent un-injected retina, in both XLPRA1 and XLPRA2. These findings were 

confirmed with histopathology, whereby prevention or reversal of opsin 

mislocalisation was observed only in the subretinally treated areas. The 

development of retinal degeneration was prevented with early treatment in XLPRA1, 

whereas in XLPRA2, due to the earlier onset of this phenotype, intervention during 

disease progression allowed morphological restoration of remaining photoreceptors 

[47]. 

 

Conclusions  

The successful rescue in the aforementioned animal models and the safety and 

efficacy demonstrated in previous gene therapy trials for Leber Congenital 

Amaurosis associated with RPE65 deficiency [90-92] have paved the way for several 

groups around the world to prepare for Phase I/II gene replacement trials in the near 

future. However, there is a limiting lack of robust natural history data in large 

genetically proven groups of patients with XLRP and XLCORD due to RPGR. These 

data are needed in order to design clinical trials of planned gene replacement 
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therapy. As observed with the CNTF clinical trial, novel outcome metrics are needed 

in such relatively slowly progressive disease to sensitively detect change in a timely 

and robust fashion, which may include quantitative retinal imaging with OCT and 

adaptive optics scanning light ophthalmoscopy. The significant progress made in 

understanding disease-mechanisms and treatment modalities are exciting and make 

the aim of future targeted treatments a realistic possibility [93].  
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