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What is the key question? 

Does the presence of active tuberculosis increase bio-aerosol production during normal tidal 

breathing in a particle size range that could plausibly transport Mycobacterium tuberculosis?  

What is the bottom line? 

Our study provides the first evidence that intra-thoracic tuberculosis increases bio-aerosol particle 

production in a particle size range that could plausibly transport M. tuberculosis and that there is 

substantial variation in production within tuberculosis patients that may plausibly relate to the degree 

of infectivity.  

Why read on? 

Our findings suggest that measures of bio-aerosol production may contribute to assessments of 

infectiousness and TB transmission risk. 
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ABSTRACT 

Background: The size and concentration of exhaled bio-aerosols may influence tuberculosis 

transmission risk. This study piloted bio-aerosol measurement in patients with tuberculosis and 

assessed variability in bio-aerosol production during normal tidal breathing. Understanding this may 

provide a tool for assessing heterogeneity in infectivity and may inform mathematical models of 

tuberculosis control practices and policies.   

Methods: Optical particle counter technology was used to measure aerosol size and concentration in 

exhaled air (range 0.3-20µm in diameter) during 15 tidal breaths across four groups over time: 

healthy/uninfected, healthy/M.tuberculosis-infected, patients with extra-thoracic tuberculosis and 

patients with intra-thoracic tuberculosis. High-particle production was defined as any 1-5µm-sized bio-

aerosol count above the median count among all participants (median count=2 counts/L). 

Results: Data from 188 participants were obtained pre-treatment (baseline). Bio-aerosol production 

varied considerably between individuals. Multivariable analysis showed intra-thoracic tuberculosis 

was associated with a three-and-a-half-fold increase in odds of high production of 1-5µm bio-aerosols 

(adjusted OR: 3.5; 95%CI: 1.6-7.8; p=0.002) compared to healthy/uninfected individuals.  

Conclusions: We provide the first evidence that intra-thoracic tuberculosis increases bio-aerosol 

production in a particle size range that could plausibly transport M. tuberculosis. There is substantial 

variation in production within tuberculosis patients that may conceivably relate to the degree of 

infectivity. Further data is needed to determine if high bio-aerosol production during tidal breathing is 

associated with infectiousness.  

[WORD COUNT: 215 WORDS] 
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INTRODUCTION 

An estimated 9.1 million tuberculosis cases occurred worldwide in 2013 and global incidence is 

declining at less than 2% per year [1]. There are a reported 450,000 new cases of multi-drug-resistant 

(MDR) tuberculosis (defined as Mycobacterium tuberculosis resistant to at least rifampicin and 

isoniazid) worldwide who remain infectious for longer periods of time[1]. This highlights the 

importance of identifying better markers of infectivity which would particularly relevant for informing 

control. Molecular typing studies have shown some individuals generate high numbers of secondary 

cases [2]. This may be due to: behavioural factors; increased transmissibility of infecting strains; or 

host biological/clinical factors affecting how many infectious particles each patient generates. Aside 

from sputum-smear positivity, presence of cough, pulmonary cavitatory disease and laryngeal 

disease, which are known to be strongly associated with infectivity, other determinants of tuberculosis 

infectivity are poorly defined.  

The size and concentration of exhaled particles may influence respiratory infection transmission risk 

[3]. Defining a particle diameter cut-off at which aerodynamic particle behaviour changes is not 

possible, although the WHO uses 5µm to distinguish between droplet and airborne transmission [4]. 

Bio-aerosols (<5µm) are responsible for airborne transmission. These smaller bio-aerosols once 

expelled remain suspended in air for long periods of time exposing a greater number of contacts at 

greater distances to potential infection [3 5-7]. They are formed in the lower respiratory tract and 

contain lung mucus, surfactant and pathogens [8-10]. Whilst a single cough predominantly produces 

large droplets measuring greater than 5µm [7] it also produces large numbers of bio-aerosols [8 11 

12]. However as normal breathing is continuous, the majority of bio-aerosols are in effect produced by 

normal breathing,[11-14] with some studies reporting up to 10,000 bio-aerosols per litre[15].  

Evidence suggests bio-aerosols contribute to infectious disease transmission [10 15-19]. Bio-aerosols 

with a critical size range of 1-5µm, once inhaled, have a higher probability of reaching and depositing 

in alveolar regions than those greater than 5µm [20]. The Mycobacterium tuberculosis bacillus is 0.2-

0.5µm wide and 2-4µm long and so it is bio-aerosols measuring 1-5µm that may plausibly serve as 

vehicles of this pathogen, permitting infection of alveolar macrophages in distal portions of lungs [8]. 

Given tuberculosis transmits via bio-aerosols and most bio-aerosols measuring less than 5µm are 
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produced during normal breathing, variations in bio-aerosol production during normal tidal breathing 

may be a determinant of infectivity.  

Nicas et al [21] defined  super-spreaders, “as those infrequently encountered persons with high cough 

and/or sneeze frequency, elevated pathogen concentration in respiratory fluid, and/or increased 

respirable aerosol volume per expiratory event such that their pathogen emission rate is much higher 

than average”. Modelling studies suggest super-spreading is a normal feature of many infections and 

have demonstrated substantial heterogeneity in transmission for various respiratory infections [22 23]. 

Yet this feature had until recently been largely neglected in transmission models. The lack of data to 

inform parameters on individual variability in infectiousness over time has been highlighted [24]. 

Tuberculosis control is highly reliant on transmission models to inform national guidance. Such 

models may provide more accurate predictions if variations in infectiousness are explicitly considered.  

Contact tracing decisions are often guided by perceived infectiousness of index cases and may be 

based on presence of sputum smear-positive disease and extent and duration of cough [25]. 

Additional criteria to identify particularly infectious cases could help target contact tracing activities.  

Large-scale prospective studies of tuberculosis cases and their contacts are required to assess the 

importance of variations in bio-aerosol production on transmission. We have already shown the 

feasibility of measuring bio-aerosols in healthy volunteers using optical particle counter (OPC) 

technology that measures the size and concentration of particles in exhaled breath during normal tidal 

breathing [5]. This study makes an important next step by piloting OPC technology in patients with 

intra-thoracic, extra-thoracic, and latent tuberculosis compared to healthy controls.  

 

METHODS FOR DATA COLLECTION 

Bio-aerosol production measurements were obtained from four groups:  healthy/un-infected 

volunteers recruited as a convenience sample of university personnel (group 1); 

healthy/M.tuberculosis-infected patients: non-infectious with no evidence of active tuberculosis as 

evidenced by a significant reaction (≥10 mm induration) to a Mantoux tuberculin skin test and/or a 

positive interferon-γ-release assay (IGRA) result (group 2); patients with active extra-thoracic 

tuberculosis (clinical, radiological and pathological evidence of granulomatous lesions external to 
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thoracic cavity and  positive cultures for M. tuberculosis but with no clinical or radiological evidence of 

pulmonary or hilar or mediastinal involvement) (group 3); patients with active intra-thoracic 

tuberculosis (radiological and pathological evidence of lung cavitation and/or caseating and non-

caseating granulomas, tubercles and fibro-caseous lesions in lung and/or hilar and/or mediastinal 

lymph nodes) confirmed by positive cultures and/or PCR for M. tuberculosis(group 4). We grouped 

those classified as pulmonary or intrathoracic as there was a high degree of overlap and it can be 

difficult to exclude pulmonary involvement in mediastinal disease.   

Group 1 was recruited during the previous study measuring bio-aerosol production by  healthy 

volunteers [5]. Groups 2-4 were recruited from University College London NHS Foundation Trust 

(UCLH) TB service. Active tuberculosis patients were enrolled at the start of anti-tuberculous 

treatment (at baseline) and followed-up every 4-8 weeks over the course of treatment. Bio-aerosol 

measurements were also obtained from active cases during the course of treatment and similarly 

followed up. Repeated cycles of bio-aerosol measurements were obtained from all participants 

(healthy volunteers and tuberculosis patients).   

Data on age, smoking history, height, weight, immunological markers (C-reactive protein (CRP) and 

Erythrocyte Sedimentation Rate (ESR), HIV status, sputum-smear status, presence of prior BCG 

vaccination, anti-tuberculous treatment start and end dates and any chronic illness were extracted 

from patient notes. Presence or absence of latent tuberculosis infection (based on Mantoux testing 

and/or IGRA testing) in contacts was obtained through record review. 
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Bio-aerosol measurement procedure  

The OPC device (Exhalair [model 102580-AK], Pulmatrix Inc. Lexington, Massachusetts, USA), 

measured aerosol size and concentration using OPC coupled with respiratory flow rate and volume 

measurements.  

Participants breathed into a disposable mouthpiece whilst wearing a nose clip to prevent nasal 

breathing. One-way valves and bacterial/viral High Efficiency Particulate Air (HEPA) filters in 

disposable tubing prevented inhalation of infectious particles from the environment. Exhaled particles 

(range of 0.3 to 20µm in diameter) over the course of 15 tidal breaths were measured (marked in 

green in Figure 1).  

 

Three bio-aerosol measurement cycles were obtained at each participant session from the start of 

anti-tuberculous treatment (at baseline) and at repeated follow-up sessions every 4-8 weeks (during 

normal scheduled out-patient visits) over treatment course. Each measurement cycle commenced 

with an initial calibration to reduce measurement error. Following initial calibration, a washout period 

followed (which included three deep breaths to clear any ambient particles from the respiratory tract). 

Exhaled bio-aerosols were collected and arranged into four channels according to size ranges: ≥0.3 

to ≤0.5µm; >0.5 to ≤1µm; >1 to ≤5µm; >5µm. Each cycle lasted up to two minutes to complete.  

Ethical approval for the initial cohort study for group 1 participants was received by University College 

London Ethics Committee (reference number 1564/001).  Ethical approval for groups 2-4 was secured 

from National Research Ethics Service (NRES) – City & East (REC study reference number 

11/LO/1601) and R&D approval from UCLH/UCL/RF Joint Research Office (reference number 

11/0256). All participants provided written informed consent. 

 

 

STATISTICAL ANALYSIS STRATEGY 
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The dataset included up to 3 bio-aerosol measurement cycles per participant per session, each 

representing the average number of bio-aerosols exhaled over the course of 15 tidal breaths. Given 

the right-skewed distribution of the 1-5µm bio-aerosol count/L, the data were log transformed and 

normality was assessed using kernel density plots. The correlation between repeated measurement 

cycles (1st vs. 2nd, 1st vs. 3rd and 2nd vs. 3rd) were calculated using linear regression models of log-

transformed bio-aerosol count data using the Stata regress command. Since this indicated greater 

correlation between 2nd and 3rd readings than between first readings and subsequent readings we 

used the mean of the second and third readings as the main measure of bio-aerosol production for 

each session. 

The distribution of 1-5µm bio-aerosol counts and log transformed counts across the four clinical 

groups were explored using histograms. The geometric mean counts and 95% confidence intervals 

for these groups were also compared.  We focused on this particle distribution size as an 

M.tuberculosis is 0.2-0.5µm wide and 2-4µm long so this size of bio-aerosol particles would be 

plausibly expected to be involved in transmission of M.tuberculosis bacilli. Comparison of bio-aerosol 

counts in each of the four groups was explored further by comparing geometric means counts and 

95% confidence intervals. 

We explored the effect of demographic, clinical, and microbiological risk factors on 1-5µm and 

submicron bio-aerosol production patterns at baseline using stepwise selection for logistic regression 

models, using bio-aerosol counts as a binary outcome variable (above and below the median count) 

to control for confounders. The explanatory variables considered included gender, age, ethnicity, 

immigrant status (i.e. UK-born or not), current smoking status, BCG vaccination status, sputum smear 

status and environmental factors including season, indoor and outdoor temperature and humidity. 

Univariate models were initially built and variables which predicted the outcome and were associated 

with the main exposure of interest (as defined by the 4 clinical groups’ disease category) at p<0.05 

were retained for multivariable analysis if they appreciably altered the crude odds ratios.  

Clustering between repeat measurement sessions within individuals was adjusted for in the final 

multivariable model using robust standard errors. 

Based on our previous work showing that the first reading within a measurement session was poorly 

correlated with second and third readings in the session, we excluded the first reading from 
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subsequent analyses [5])  All analyses were performed using STATA 13.0, IC (College Station, 

Texas, USA). 

 

RESULTS 

Baseline characteristics 

A total of 188 participants were analysed at baseline (Table 1), of which 86 (45.7%) were healthy/un-

infected individuals (group 1), 27 (14.4%) were healthy/M.tuberculosis-infected patients (group 2), 11 

(5.9%) were diagnosed with extra-thoracic tuberculosis (group 3) and 64 (34.0%) were diagnosed 

with intra-thoracic tuberculosis (group 4). More than half of the cohort, 108 (57.5%) were female. The 

median age of participants was 33 years old.  
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Table 1: Descriptive characteristics of 188 individuals at baseline 

 All (%) 
 

 
 

n=188  
n (%) 

Healthy/uninfected  
 
 

 
n=86  
n (%) 

 

Healthy/M.tuberculosis-infected  
 

 
 

n=27 
n (%)  

Extra-thoracic tuberculosis 
 

 
 

n=11 
n (%) 

Intra-thoracic tuberculosis  
 

 
 

n =64 
n (%) 

Explanatory variable 

Sex      

Male 80 (42.6)   24 (27.9) 15 (55.6) 6 (54.6) 35 (54.7) 

Female 108 (57.5) 62 (72.1)  12 (44.4)  5 (45.5) 29 (45.3) 

      

Age group      

18-29 71 (37.8)  33 (38.4) 13 (48.2) 6 (54.6) 19 (29.7) 

30-39 57 (30.3) 24 (27.9) 8 (29.6) 4 (36.4) 21 (32.81) 

40-49 36 (19.2) 17 (19.8) 4 (14.8) 1 (9.1) 14 (21.9) 

≥50 21 (11.2) 10 (11.6) 2 (7.4) 0 (0.0) 9 (14.1) 

Missing 3 (1.6) 2 (2.3) 0 (0.0) 0 (0.0) 1 (1.6) 

      

Ethnicity      

White 96 (51.1)) 70 (81.4) 9 (33.3)) 0 (0.0) 17 (26.6)) 

Non-white 87 (46.3) 16 (18.6)) 17 (63.0)) 11 (100.0) 43 ( 67.2)) 

Missing 5 (2.7) 0 (0.0) 1 ( 3.7) 0 (0.0) 4 (6.3) 

      

Immigrant statusb      

UK born 33 (17.6) 2 (2.33) 11 (40.7) 2 (18.2) 18 (28.1)) 

Non-UK born 65 (34.6) 6 (6.98) 15 (55.6) 6 (18.2) 38 (59.4) ) 

Missing 90 (47.87) 78 (90.7) 1 (3.7) 3 (27.3) 8 (12.5) 
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 All  
 

n=188 
n (%) 

Healthy/uninfected 
 

n = 86 
n (%) 

Healthy/M.tuberculosis-infected  
 

n = 27 
n (%) 

Extra-thoracic tuberculosis 
 

n = 11 
n (%) 

Intra-thoracic tuberculosis 
 

n = 64 
n (%) 

Explanatory variable 

Current smoking status      

Non-smoker 109 (58.0) 36 (41.9) 18 (66.7) 8 (72.7) 47 (73.4) 

Smoker 79 (42.0) 50 (58.1) 9 (33.3) 3 (27.3) 17 (26.6) 

      

Previous BCG vaccinationb      

No 41 (21.8) NA NA 3 (27.3) 38 (62.3) 

Yes 30 (16.0) NA NA 7 (63.6) 23 (37.7) 

Missing 117 (62.3) 86 (100.0) 27 (100.0) 1 (9.1) 3 (4.7) 

      

Sputum smear statusa      

Negative  31 (16.5)   NA 4 (36.4)) 27 (42.19) 

Positive 8 (4.3) NA NA 0 (100.0) 8 (12.5) 

Missing 63 (33.5) 86 (100.0) 27 (100.0) 7 (63.6) 29 (45.3) 

      

Comorbidity      

No 164 (87.2) 86 (100.0) 27 (100.0) 7 (63.6) 44 (68.8) 

Yes 24 (12.8) 0 (0.0) 0 (0.0) 4 (36.4) 20 (31.3) 

      

Season      

Winter, Dec-Feb 57 (30.3) 43 (50.0) 5 (18.5) 0 (0.0) 9 (14.1) 

Spring, Mar-May 32 (17.0) 5 (5.8) 5 (18.5) 4 (36.4) 18 (28.1) 

Summer, Jun-Aug 48 (25.5) 25 (29.1) 4 (14.8) 2 (18.2) 17 (26.6) 

Autumn Sep-Nov 51 (27.1) 13 (15.1) 13 (48.2) 5 (45.5) 20 (31.3) 
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NA = data was not collected; asputum smear status – this is only routinely obtained for suspected intra-thoracic patients; bdata on immigrant status and previous BCG vaccination were not 

collected from convenience sample of healthy volunteers  
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Distribution of 1 to 5µm diameter bio-aerosols in exhaled air  

Bio-aerosols in the 1-5µm diameter range expired during normal tidal breathing at baseline by all participants 

formed a highly right-skewed log-normal distribution. Correlation coefficients from linear regression models 

showed second and third bio-aerosol measurements from within a single session were most strongly correlated, 

where the correlation coefficient was 0.6 (95% CI: (0.5 - 0.7; p<0.001). Subsequent analyses focus on these 

measurements as the first measurements within a session appeared to be less consistent. The first 

measurements were excluded from subsequent analyses 

Comparison of distributions of log transformed 1-5µm bio-aerosol counts across all clinical groups showed 

participants diagnosed with active tuberculosis (irrespective of intra-thoracic or extra-thoracic disease) had 

higher baseline bio-aerosol counts than those of healthy/M.tuberculosis-infected or healthy/uninfected 

participants (Figure 2). On comparison, the geometric mean for healthy/uninfected participants 36.3 counts/L 

(95% CI: 30.1 - 43.8); for healthy/M.tuberculosis-infected participants 29.7 counts/L (95% CI: 16.9 - 52.4); for 

active extra-thoracic cases was 52.6 counts/L (95% CI: 16.7 - 166.3); for active intra-thoracic cases was 67.6 

counts/L (95% CI: 46.3 - 98.8). 

 

Risk factors associated with 1 to 5µm diameter bio-aerosol production   

High particle production was defined as any particle count above the median particle count among all study 

participants (median 1-5µm count = 2 counts/L). Table 2 shows the relationship between 1-5µm bio-aerosol 

count as a dichotomous outcome variable and risk factors. In multivariable analysis, intra-thoracic tuberculosis 

was strongly associated with substantially increased odds of being a high-particle producer (adjusted OR: 3.5; 

95% CI: 1.6 - 7.8); p=0.002) compared to healthy uninfected controls. There was also a suggestion that those 

with extra-thoracic or latent infection had increased odds of high particle production, although these trends were 

not significant and larger studies would be needed to investigate this further. Age group also remained 

significantly associated in the final model with those aged 40-49 being most likely to have high bio-aerosol 

counts (adjusted OR: 6.0;  95% CI: 2.5 - 14.2; p<0.001).  There was insufficient data to examine trends in bio-

aerosol production over treatment course. 
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Table 2: Final multivariable model: Relationship between 1 to 5µm bio-aerosol production and baseline characteristics across all groups 

Risk factor 
Number of study 

participants 

Low particle-
producers n 

(%) 

High particle-
producers n (%) 

Crude odds ratio 
(95% CI) 

Crude odds ratio 
p-value 

Adjusted odds 
ratioa(95% CI) 

Adjusted odds 
ratio p-value 

Healthy/uninfected controls 83 59 (71.1) 24 (28.9) 1  1  

Healthy/M.tuberculosis-infected 27 13 (48.2) 14 (51.9) 2.6 (1.2 - 5.8) 0.021 2.5 (1.0 - 6.5) 0.062 

Extra-thoracic tuberculosis 11 5 (45.5) 6 (54.6) 3.1 (0.9 - 11.3) 0.086 2.7 (0.6 - 12.0) 0.184 

Intra-thoracic tuberculosis 63 19 (30.2) 44 (69.8) 4.5 (2.3 -  8.6) <0.001 3.5 (1.6 - 7.8) 0.002 

 
Sex  

Male 81 39 (48.2) 42 (51.9) 1    

Female 107 58 (54.2) 49 (45.8) 1.1 (0.6 - 1.9) 0.823   

 
Age group  

18-29 70 41 (58.6) 29 (41.4) 1  1  

30-39 56 30 (53.6) 26 (46.4) 1.2 (0.6 - 2.3) 0.614 1.3 (0.7 - 2.6) 0.458 

40-49 38 13 (34.2) 25 (65.8) 3.4 (1.6 - 7.3) 0.002 6.0 (2.5 - 14.2) <0.001 

≥50 21 12 (57.1) 9 (42.9) 2.1 (0.8 - 5.1) 0.121 2.2 (0.9 - 5.8) 0.096 

 
Ethnicity  

White 94 62 (66.0) 32 (34.0) 1  1  

Non-white 89 33 (37.1) 56 (62.9) 2.93 (1.68 - 5.12) <0.001 2.2 (1.0 - 4.7) 0.045 
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Risk factor 
Number of study 

participants 

Low particle-
producers n 

(%) 

High particle-
producers n (%) 

Crude odds ratio 
(95% CI) 

Crude odds ratio 
p-value 

Adjusted odds 
ratioa(95% CI) 

Adjusted odds 
ratio p-value 

Current smoking status  

Non-smoker 109 53 (48.6) 56 (51.4) 1    

Smoker 79 44 (55.7) 35 (44.3) 1.0 (0.5 -  1.8) 0.913   
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DISCUSSION   

This is the first time bio-aerosol size distribution and variation during normal tidal breathing in intra-thoracic and 

extra-thoracic tuberculosis patients has been studied using OPC technology. Our findings demonstrate marked 

variability in bio-aerosol production by tuberculosis patients and provide evidence that those with intra-thoracic 

tuberculosis are more likely than healthy controls to produce high levels of bio-aerosols in the 1-5µm range. 

Substantial variation in bio-aerosol production between patients with intra-thoracic tuberculosis may, plausibly 

be associated with variations in infectivity, since M.tuberculosis is an obligate aerosol transmitter.  Given that 

M.tb has been found in cough-generated aerosols of the same size range as measured in this study during 

normal breathing [16] and so it is conceivable that bio-aerosols produced during continuous tidal breathing 

could transport M.tb within a size range that could be inhaled by a susceptible contact and deposited in the 

distal portions of the lung eliciting M.tb infection. More research, however, is needed to define how such 

variations correlate with infectivity and transmission risk.  Such research may include, for example, studies of 

the comparative contribution of normal breathing and explosive respiratory events such as cough or sneezing to 

bio-aerosol production, concentration of pathogen-laden and/or infectious bio-aerosols in exhaled breath, and 

larger studies assessing how baseline measures of bio-aerosol production in index cases relate to risk of 

infection in contacts.  There is also a need to conduct larger scale research to assess whether bio-aerosol 

counts change through the course of treatment. 

The mechanics of bio-aerosols generation vary depending upon respiratory manoeuvres, namely coughing, 

sneezing and normal tidal breathing. Bio-aerosols are formed through a rapid passage of airflow over the 

respiratory surfaces leading to shear forces along the mucous layer, creating wave-like disturbances hence bio-

aerosol formation.  In a healthy individual a typical cough has a bi-phasic profile, starting with an initial high 

velocity phase and followed by diminishing flow rate, lasting approximately 0.5 seconds. Coughing is likely to be 

infrequent and whilst it results in higher flow velocities, the predictive value of cough-generated aerosols over 

time and outcomes in susceptible contacts is not fully understood. Furthermore explosive respiratory 

manoeuvres like coughing predominantly generate larger bio-aerosols, depositing in the upper respiratory tract 

than in alveolar regions and so the assessment of cough alone may be a poor index of infectiousness. By virtue 

of low inertia, pathogen-laden bio-aerosols measuring less than 5µm produced by continuous normal tidal 
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breathing will travel greater distances potentially reaching a wider range of susceptible contacts than that 

produced by infrequent coughing.   

It is widely accepted that the spread of M.tuberculosis from an index case with pulmonary or laryngeal 

tuberculosis to susceptible contacts underpins transmission of tuberculosis. Our findings show that the 

presence of intra-thoracic disease was associated with high bio-aerosol production during normal breathing. 

This offers additional insights into the pathophysiology of active tuberculosis and presents implications for the 

risk assessment of suspected index cases. Persistence of bio-aerosol production during normal tidal breathing 

over treatment course in tuberculosis patients may serve as an additional determinant of infectivity but more 

large-scale work to explore the relationship between bio-aerosol production and treatment needs to be done.   

There are some study limitations: our study measures variations in bio-aerosol production but did not measure 

infectious particle concentration, limited numbers of cases with extra-thoracic disease limited conclusions in this 

group, the study was also not sufficiently powered to explain how additional clinical features affected bio-

aerosol production, whether bio-aerosol production changed through treatment or to assess the impact of bio-

aerosol production on risk of infection in contacts. We only assessed bio-aerosol production during normal tidal 

breathing and not during coughing and we do not know if the bio-aerosols we detected contained viable M. 

tuberculosis bacilli. There would also be valuable in repeating the work in high incidence settings and in settings 

where HIV is highly prevalent to determine if findings are generalizable. Due to the highly skewed nature of the 

data we chose to categorise bio-aerosol counts as above and below median rather than model it as a 

continuous variable. There is no prior literature on what level of bio-aerosol count should be considered high, so 

this cut-off is to some extent arbitrary.  However it has the advantage of being a common and well understood 

measure of central tendency and one which helped maintain reasonable sized groups for comparison. . 

Nevertheless the study provides the first evidence that intra-thoracic tuberculosis increases bio-aerosol particle 

production in a particle size range that could plausibly transport M. tuberculosis and that there is substantial 

variation in production within tuberculosis patients that may plausibly relate to the degree of infectivity.   

Further research on this phenomenon could inform tuberculosis control policy, for example through better 

mathematical model parameterisation, improved clinical risk assessment of index cases, targeting of infection 

control and outbreak investigation strategies and case management decisions for isolation of patients with 

newly emergent strains, and contact tracing measures.    

[WORD COUNT: 3,449 WORDS] 
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Figure legend 

Figure 1: Respiratory bio-aerosol measurment using optical particle counter technology using Exhalair system 

 

Figure 2: Log-transformed distribution of 1 to 5µm bio-aerosol production across all 4 groups: healthy/uninfected 

individuals, healthy/M.tuberculosis-infected, patients with extra-thoracic tuberculosis and patients with intra-

thoracic tuberculosis at baseline 
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