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Abstract

Molecular dating of phylogenetic trees is a growing discipline using sequence data to

co-estimate the timing of evolutionary events and rates of molecular evolution. All

molecular-dating methods require converting genetic divergence between sequences

into absolute time. Historically, this could only be achieved by associating externally

derived dates obtained from fossil or biogeographical evidence to internal nodes of

the tree. In some cases, notably for fast-evolving genomes such as viruses and some

bacteria, the time span over which samples were collected may cover a significant pro-

portion of the time since they last shared a common ancestor. This situation allows

phylogenetic trees to be calibrated by associating sampling dates directly to the

sequences representing the tips (terminal nodes) of the tree. The increasing availability

of genomic data from ancient DNA extends the applicability of such tip-based calibra-

tion to a variety of taxa including humans, extinct megafauna and various microorgan-

isms which typically have a scarce fossil record. The development of statistical models

accounting for heterogeneity in different aspects of the evolutionary process while

accommodating very large data sets (e.g. whole genomes) has allowed using tip-dating

methods to reach inferences on divergence times, substitution rates, past demography

or the age of specific mutations on a variety of spatiotemporal scales. In this review,

we summarize the current state of the art of tip dating, discuss some recent applica-

tions, highlight common pitfalls and provide a ‘how to’ guide to thoroughly perform

such analyses.
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Introduction

The idea of molecular dating was first proposed in 1962

by Zuckerkandl & Pauling (1962) when they suggested

that the divergence time between two species could be

measured by the number of mutations accumulated

between molecular sequences (in their case, protein

sequences). As molecular sequence divergence can only

provide a relative timescale, calibration using an

external source of information is required to convert rel-

ative into absolute divergence times. Unless one

assumes the substitution rate to be known (which is a

strong hypothesis irrespective of the molecular

sequence under scrutiny), two sources of independent

age-related information can be exploited. One approach

is to assign dates to internal nodes representing the

most recent common ancestors (MRCAs) between lin-

eages using information from the fossil record or dated

biogeographical event (see box 1 in Ho et al. 2011a),

which are rarely known with great precision. An alter-

native strategy, which is the focus of this review, takes

advantage of the information about the age of the

sequenced samples themselves to calibrate the phy-
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logeny by assigning dates to the tips (sometimes also

called terminal nodes) of the tree, hence the term tip

dating. Tip dating is only possible when there is suffi-

cient spread in the age of the samples analysed and is

ideally suited for data sets of serially sampled fast-evol-

ving taxa, or those including ancient DNA sequences

(Drummond et al. 2003b).

The conceptual bases of tip dating were laid out in

the late 1980s when sequence data from samples with

associated dates of isolation started to accumulate in

public databases (Rambaut 2000). In order to obtain

accurate divergence time estimates for fast-evolving

genomes such as RNA viruses, the date of isolation

must be accounted for. Indeed, the number of new

mutations accumulated in each sequence is expected to

correlate with the date of isolation. The idea of exploit-

ing known isolation dates to conjointly estimate the rate

of evolution with the time since the divergence of other

internal nodes emerged by turning this reasoning

around (see principle in Fig. 1). With this principle, for-

malized and applied to HIV data by Li et al. (1988),

pairs of sequences must be chosen to be independent of

each other by ensuring that no two pairs share any evo-

lutionary history (branches on the tree) since their

respective common ancestors. Subsequent analyses per-

formed on hepatitis B virus data showed that the

stochastic nature of the substitution process can lead to

one sequence sampled earlier to exhibit more diver-

gence from the outgroup than one sampled later and

thus inflate the variance of the estimate (Bollyky &

Holmes 1999). To realistically express such uncertainty,

Rambaut (2000) and Drummond et al. (2001) introduced

new methods incorporating sequence dates into a maxi-

mum-likelihood (ML) tree reconstruction framework.

Those approaches were subsequently embedded into a

Bayesian statistical inference framework to jointly esti-

mate substitution rates, divergence times and demogra-

phy while accounting for the uncertainty in the

genealogy by using Markov chain Monte Carlo

(MCMC) integration (Drummond et al. 2002). Such

developments ultimately led to the release of BEAST

(Drummond & Rambaut 2007), which has been the

most popular tip-dating program developed so far

(Table 1). Early implementations were assuming a con-

stant rate of evolution throughout the tree. However,

the analysis of numerous data sets showing consider-

able departures from clockwise evolution led to the

development and incorporation of methods accounting

for rate variation among lineages (Bromham & Penny

2003; Welch & Bromham 2005; Ho & Duchêne 2014).

Concomitant with the development of increasingly

sophisticated and computationally efficient phylogenetic

inference algorithms during the last decade, the field of

ancient DNA (aDNA) research underwent its own revo-

lution (Millar et al. 2008; Der Sarkissian et al. 2015).

Although the field’s focus was initially limited to mito-

chondrial DNA and a few nuclear markers, numerous

whole-genome sequences from the deep past have now

been retrieved. This breakthrough is tightly connected to

the massive sequence throughput of modern sequencing

technologies and the ability to target short and degraded

DNA molecules. Additionally, the analytical power
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Fig. 1 Tip-dating principle. (a) In this simplified theoretical situation adapted from Rambaut (2000), sequences A and B were isolated

at different points in time (TA and TB, respectively) and C is an outgroup sequence. If we assume the rate of evolution to be the same

in lineages A and B, then the amount of molecular evolution expected to have occurred between TA and TB is equal to dAC – dBC
(dAC and dBC being the genetic distance between A&C and B&C, respectively). If the time X between TA and TB represents a signifi-

cant proportion of the time Y since A and B last shared a common ancestor, then one can use tip dates to conjointly estimate the rate

of evolution l = (AC�BC)/(TA�TB) and extrapolate the age of TMRCA(AB). (b) Top: Tree with modern samples only for which no

divergence time estimate is possible without calibrations on internal nodes or a strong prior on the rate of molecular clock. Middle:

Tree where tip dates may not be widely spread enough for accurate inferences. Bottom: Tree where tip date width should be suffi-

ciently broad to allow divergence time and rate of evolution estimates with a good degree of certainty, since the sample dates cover

a relatively large fraction of the total age of the tree.
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obtained through the analysis of billions of sequence

reads allows quantifying contamination issues that have

haunted aDNA research for decades. Whole genomes

have now been sequenced from ancient anatomically

modern humans (Fu et al. 2013a,b), archaic humans

(Briggs et al. 2009; Krause et al. 2010), ancient pathogens

(Bos et al. 2011, 2014; Rasmussen et al. 2015) and many

animals including megafaunal species (Shapiro et al.

2004; Gilbert et al. 2008).

Following the detection and removal of potential

recombining sites (see Section “To date or not to date –
when is tip dating appropriate?” and Appendix S1-A,

Supporting information for more details), such time-

stamped sequence data can be integrated into phyloge-

netic reconstructions and used as calibration points to

estimate the timing of divergence events, the rate at

which substitutions accumulate and reconstruct the past

demography of many species for which fossil data are

not available. Tip-based calibration represents far more

than a substitute when information to calibrate internal

nodes is not available, as it is expected to improve infer-

ence accuracy and robustness (Rieux et al. 2014; Sheng

et al. 2014). Indeed, the uncertainty associated with the

dates of time-stamped sequences simply mirrors the

uncertainty in the estimated age of the sequences (the

error associated with sampling time or the C-14 radiocar-

bon dating). This is a well-characterized source of error

that can be integrated into phylogenetic inference (Drum-

mond et al. 2006; Ho & Phillips 2009). In contrast, calibra-

tion of internal nodes relies on the assumption of an

association between an MRCA in the phylogenetic tree

and information such as fossil data or biogeographical

evidence. Those indirect hypothesized associations come

at a cost of considerable uncertainty which is additionally

much more difficult to model satisfyingly.

Besides allowing to estimating substitution rates and

divergence times, thoroughly time-calibrated phyloge-

netic trees represent a powerful tool for hypothesis test-

ing. As such, it is not surprising that tip-dating methods

have been widely adopted in the fields of ancient DNA

and microbial genomics (Biek et al. 2015). However, these

methods can be complex to implement and many tip-

based inferences in the recent literature are reported with

erroneously narrow confidence intervals or are even

wholly incorrect. In the following, we review the current

state of the art of molecular tip dating. We start with a

general overview of tip-dating methodologies and their

applicability. We then review some recent results

obtained through tip dating and discuss various ques-

tions that this methodology can address. Finally, we out-

line some future research perspectives and provide in

Appendix a ‘how to’ guide to assist users performing

thorough tip-dating analyses (see major steps summar-

ized in Fig. 5).

To date or not to date – when is tip dating
appropriate?

In this review, we restrict the term tip dating to analyses

in which dated sequences contain sufficient temporal

information for populations to be characterized as ‘mea-

surably evolving’ (see Drummond et al. 2003b and

description below) and can hence be used as the princi-

pal source for molecular clock calibration. Numerous

studies included ancient DNA sequences from extant or

extinct species into phylogenetic inference by both fixing

the age of the tips (to the sample radiocarbon ages) and

incorporating external information by specifying the age

of one or several internal node(s) (based on the fossil

record) and/or the rate of evolution (e.g. Briggs et al.

2009; Bunce et al. 2009; Rieux et al. 2014; Sheng et al.

2014; Heintzman et al. 2015). Among these studies, we

only consider as ‘tip dating’ those that performed specific

analyses to disentangle the signal coming from the differ-

ent calibration sources and were able to demonstrate that

tip dates had sufficient temporal spread to inform on the

molecular clock (e.g. Rieux et al. 2014; Sheng et al. 2014).

This definition of tip dating entails us to focus this

review on studies performed at the population (i.e.

intraspecies) scale. Indeed, despite recent progress in the

field of ancient DNA, aDNA sequences remain generally

too scarce and recent for thorough dating of ancient

events (i.e. millions of years) from molecular data and

tip-dating methods alone. In this context, it is worth

mentioning recent methodological developments named

‘fossil tip dating’ or ‘total evidence dating’ that allow

combining morphological and molecular data to simulta-

neously infer the placement of a fossil in the phylogeny

and calibrate trees at deeper geological times (Pyron

2011; Ronquist et al. 2012a). A major challenge in apply-

ing these approaches is the requisite to compile morpho-

logical character data for both extant and fossil taxa,

which is complicated by the fact that for many groups

the fossil record is extremely scarce and fragmentary

(Arcila et al. 2015).

Measurably evolving populations

Tip-dating calibration requires working on measurably

evolving populations (MEPs), a concept introduced over

a decade ago by Drummond et al. (2003b). MEPs are

populations exhibiting detectable amounts of de novo

nucleotide changes among DNA sequences sampled at

different time points. Our ability to capture measurable

amounts of evolutionary change from sequence data

depends on the evolutionary rate of the DNA/RNA

sequence analysed (l), its length (L) and the duration

over which samples were collected (t). The pioneering

research in tip dating that started around 20 years ago
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focused on fast-evolving RNA viruses as at the time

molecular sequences rarely exceeded 1000 bp and data

sets covering sampling over 20 years were scarce

(Drummond et al. 2003b). Progress in DNA sequencing

of both modern and ancient material has led to a mas-

sive increase in both sequence length (L) and time span

covered by the sequences (t). As a result, many popula-

tions from a diverse range of taxa can now be treated

as MEPs (Biek et al. 2015).

Before performing any calibration, it is crucial to test

whether there is temporal signal in the molecular data

(Firth et al. 2010). Many studies have relied on the ‘re-

gression method’ (Buonagurio et al. 1986; Shankarappa

et al. 1999; Korber et al. 2000; Drummond et al. 2003a)

which is based on the fit of a linear regression between

the age of the samples and their root-to-tip distance (i.e.

the number of substitutions separating each sample

from the hypothetical ancestor at the root of the tree)

(Fig. 2). Assuming statistical independence, a significant

positive correlation between root-to-tip distances and

sampling times would indicate the presence of detect-

able amounts of de novo mutations within the data set

timescale. However, this is a problematic test as there is

extensive pseudoreplication between samples. Indeed,

the same branches in the phylogeny will contribute to

multiple root-to-tip distances. While this problem can

be partly alleviated by the use of a nonparametric test

when assessing significance of the relationship, the non-

independence between distances cannot be completely

controlled for (Drummond et al. 2003a). Additionally,

the regression method can be misleading when there is

substantial rate variation among lineages. The test is

also likely to produce a spurious signal in the case of

nonuniform distribution of the sampling times (Ho et al.

2007a, 2011b), which can often be the case for studies

relying on aDNA for calibration where a handful of

ancient sequences are typically combined with a larger

number of modern samples.

A more robust method to investigate the extent of

genetic and temporal signal within a data set is the

‘date-randomization test’ (Ramsden et al. 2008; Duffy &

Holmes 2009). This test involves generating multiple

randomized data sets by permutation of sampling

times, and comparing parameter estimates obtained

with the initial data set vs. the randomized ones (See

Fig. 2). A recent simulation-based study (Duchêne et al.

2015b) recommends conducting at least 20 randomiza-

tions (this number is arbitrary and in principle it would

be preferable to run a far larger number of replicates).

By performing tip dating on the date-randomized data

sets, expectations of the rate and divergence time esti-

mates can be computed in the absence of temporal sig-

nal. To determine whether there is sufficient temporal

signal in a data set, one thus needs to verify that the

mean rate (or TMRCA) estimated with the original

sampling times is not contained within any of the 95%

Fig. 2 Testing for temporal signal. Flow chart for testing measurable evolutionary change in a data set prior to any tip-dating analy-

sis. The most robust method existing so far is the ‘date-randomization test’ which involves generating multiple randomized data sets

by permutation of sampling times, and comparing parameter estimates obtained with the initial data set vs the randomized ones (see

Section To date or not to date – when is tip dating appropriate? in the text for more details on how to perform this test and interpret

the results); visual evidence for a temporal signal can also be obtained by fitting a linear regression between the age of the samples

and their root-to-tip distances, which has to be computed from a tree built without constraining tip heights to their sampling times.

Different tools allowing computing date-randomized data sets and root-to-tip distances are listed in Table 1.
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credible interval of those obtained from the date-rando-

mized data sets. A more stringent criterion is to com-

pare the 95% credible interval of the original rate (or

TMRCA) instead of its mean. Importantly, the ‘date-

randomization test’ can accommodate nonrandom

sampling resulting in a nonuniform distribution of sam-

pling times by a modification of the randomization pro-

cedure. The latter involves identifying clusters of

samples with the same, or very similar, sampling times

and permuting the sampling times among but not

within these clusters (Duchêne et al. 2015b).

Finally, a distinct approach uses model selection and

compares the fit of models with the sampling dates

included or excluded (Rambaut 2000; Drummond et al.

2003a; Baele et al. 2012). Temporal signal is confirmed if

the inclusion of the sampling dates improves the fit. In

practice, to keep the two cases as similar as possible, tip

dates for the ‘no dates’ model are set to the most recent

sampling date in the original data set (Murray et al.

2015).

Two recent studies investigated the performance of

several of the above tests using both simulated and

empirical data sets. Murray et al. (2015) showed that

all of the standard tests of temporal signal can be mis-

leading for data where temporal and genetic struc-

tures are confounded (i.e. where related sequences are

more likely to have been sampled at similar times).

Duchêne et al. (2015b) demonstrated that the perfor-

mance of the date-randomization test can be affected

when the sampling times are not uniformly dis-

tributed throughout the tree. On a more positive note,

both studies show that the ‘clustered permutation’

date-randomization approach can successfully correct

for such confounders. Consequently, we highly recom-

mend performing the clustered date-randomization

test using the most stringent criterion prior to any

study aiming to applying tip calibrations. While the

regression approach is statistically unsatisfying, it can

still be used as a visual ‘sanity check’ for the reliabil-

ity of rate estimates since the slope coefficient corre-

sponds to the substitution rate under the assumption

of a strict molecular clock, and the R2 coefficient of

determination indicates the degree to which sequence

evolution followed a clocklike rate. For data sets fail-

ing to pass the DRT, the sampling and/or the

sequencing strategy should be modified to widen the

sampling time window (e.g. by including older sam-

ples, if possible) and/or increasing the number of sites

in the alignment (e.g. by sequencing more nucleotides,

if possible). Investigating the temporal signal of a data

set is crucial because in the absence of a temporal sig-

nal in the data, the result will be driven by the prior,

and is thus likely to be misleading.

Nonrecombining sequences

Central assumptions behind all phylogenetic models

developed so far are that sequences evolve neutrally,

and have not undergone genetic recombination.

Although deviation from neutrality can satisfyingly be

accommodated (see Appendix S1-C, Supporting infor-

mation), accounting for recombination in phylogenetic

inferences remains a difficult task and ignoring it leads

essentially systematically to misleading inferences

(Hedge & Wilson 2014). The rate of homologous recom-

bination has been shown to vary significantly between

species (Smukowski & Noor 2011), between lineages

within species (Didelot et al. 2012; Bauer et al. 2013) as

well as between regions within genomes (Everitt et al.

2014; Yahara et al. 2014). The influence of recombination

will hence vary from data set to data set. In addition to

its potential to distort tree topology, recombination can

also create a false signal of apparent mutational evolu-

tion by introducing additional divergence between sam-

ples taken at different time points (Sanchez-Buso et al.

2014). The easiest strategy to avoid such bias when ana-

lysing MEPs is to consider recombination-free genomic

regions such as mitochondrial DNA. An alternative

approach is to perform a preliminary analysis to detect

recombination events in the alignment based on con-

flicts in the topologic placement in the phylogeny and

exclude incriminated individuals and/or genomic

regions from subsequent dating inferences or partition

the data around recombination breakpoints (see

Appendix S1-A, Supporting information).

Applications of tip dating: hypotheses testing
and potential sources of errors

Once nonrecombining genomic regions have been iden-

tified, tip-dating inferences can be performed to test

various hypotheses while estimating evolutionary rates

and timescale-related parameters. This usually involves

considering phylogenetic methods based on molecular

clocks, which make assumptions about patterns of rate

variation among lineages (see Ho & Duchêne 2014;

Welch & Bromham 2005 for previous reviews on this

particular topic). In the following, we discuss various

recent tip-dating applications.

Estimating the age of internal nodes in a phylogenetic
tree

One of the most popular aims of dating analyses is to

convert the genetic divergence measured between

sequences of DNA into an absolute age for any internal

node of a phylogenetic tree. This estimated node age is
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referred to as the time to the most recent common

ancestor (TMRCA). Internal phylogenetic nodes repre-

sent such putative ancestors for all sampled individuals

within a clade defined by a node and can as such some-

times be associated with key chapters in a species’ evo-

lutionary history. In humans for instance, dating events

such as the dawn of humankind millions of years ago

or the expansion of anatomically modern humans from

an African cradle some 100 k years ago have received

tremendous interest. By using mitochondrial genomes

from ancient archaic and modern humans spanning

65 000 years as calibration points for the mitochondrial

clock, recent studies were able to date the divergence

between Chimpanzee, Homo neanderthalensis and

H. sapiens as well as the TMRCA of all modern human

mtDNAs with an unprecedented precision (Fu et al.

2013b; Rieux et al. 2014). Also, by assuming that the

coalescence of certain candidate haplotypes coincides

with discrete human expansion or migrations, tip-dat-

ing analyses allowed to date various other events such

as the ‘out of Africa’ exit or the initial colonization of

different islands such as Sahul, Japan, Remote Oceania,

Madagascar, New Zealand (Rieux et al. 2014).

Beyond simply reflecting a divergence event between

lineages and taxa, age estimates for internal nodes can

also provide information about the timing of emergence

of novel specific genetic variants (Holden et al. 2013;

Spagnoletti et al. 2014). For example, Eldholm et al.

(2015) used whole-genome sequences of the nonrecom-

bining bacteria Mycobacterium tuberculosis (Mtb) obtained

from isolates sampled over 13 years to reconstruct the

dynamic of antibiotic resistance-conferring mutations

during a major ongoing outbreak in Argentina. Their

results indicate that a multidrug-resistant Mtb strain

had been circulating for 15 years before the outbreak

was initially detected and about one decade before the

earliest documented transmission of Mtb strains with

such extensive resistance profile.

Dating internal nodes can also provide meaningful

information about pathogen host species jumps such as

those leading to novel emerging zoonotic, agronomic

and wildlife diseases (Parrish et al. 2008; Engering et al.

2013). By using a panel of whole-genome sequences of

Staphylococcus aureus representing the breadth of the

species’ diversity with known dates of isolation, Wein-

ert et al. (2012) were able to infer and map the different

host switches on the phylogenetic tree while accounting

for uncertainty about ancestral host associations. Their

results point to multiple jumps back and forth between

human and bovids with the first switch from humans

to bovids dating back to around 5500 BP, which coin-

cides with the time when cattle domestication started

expanding throughout the Old World, thus suggesting

a central role for anthropogenic change in the emer-

gence of new endemic diseases.

Estimation of evolutionary timescales from tip-cali-

brated phylogenies has become routine in biology,

forming the basis of a wide range of evolutionary and

ecological studies as illustrated above. However, it is

important to remember that various sources of error

can affect these estimates, including incorrect calibration

dates (Ho et al. 2008; Molak et al. 2013), misspecification

of the demographic, substitution and molecular clock

models (Navascues & Emerson 2009; Ho et al. 2011b;

Duchêne et al. 2015c) or the presence of tree imbalance

(Duchêne et al. 2015a). Whereas the effect of model mis-

specification is a common issue in biology, the influence

of tree imbalance is worth considering as in addition to

being affected by biological factors such as past demog-

raphy or natural selection, it is also directly related to

sampling effort and strategy. Tree imbalance refers to

the relative number of tips descending from internal

nodes in a phylogenetic tree. In a completely balanced

tree, each of the two lineages descending from any

internal node leads to the same number of tips. A com-

pletely imbalanced tree has a pectinate or comb-like

arrangement of branches. Imbalanced ultrametric trees

are characterized by an excess of long branches because

some of the lineages will have few descendants in the

sample. In their study based on both simulated and

empirical data sets, Duchêne et al. (2015a) found that

tree imbalance had a detrimental impact on dating pre-

cision and produced a systematic bias with overall

timescales being underestimated. A pronounced effect

was observed in analyses with shallow calibrations. The

greatest decrease in accuracy usually occurred in the

age estimates for medium and deep nodes of the tree.

Those results indicate that in case of tree imbalance,

molecular clock analyses can be improved by increasing

taxon sampling, with the specific aims of including dee-

per calibrations, breaking up long branches and reduc-

ing tree imbalance.

Estimating rates of evolution and their variation

Conjointly with the estimation of the TMRCA of two or

more sampled genomes, dating a phylogenetic tree also

allows inferring the rate at which mutations accumulate

on their connecting lineage (Fig. 1). Substitution rates

can be heterogeneous both between genomic regions

(Bromham & Penny 2003) and along evolutionary lin-

eages (Lanfear et al. 2010). Various partitioning algo-

rithms allow accounting for heterogeneity within

genomes (e.g. Lanfear et al. 2012) and dedicated molec-

ular clock models have been developed to deal with

variable substitution rates along lineages (see Ho &
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Duchêne 2014; Welch & Bromham 2005 for more details

on this topic).

Such developments allowed, for example revising the

rate at which the human mitochondrial DNA accumu-

lates mutations (Fu et al. 2013b; Rieux et al. 2014). By

pre-estimating the optimal partitioning scheme and the

best-fit nucleotide substitution model for each partition

of the mtDNA molecule (see Appendix S1-C, Support-

ing information), and taking advantage of the wealth of

sequenced ancient human mitochondrial genomes from

the last 65 000 years, it was possible to refine the mito-

chondrial substitution rates for different genomic

regions and codon positions (Rieux et al. 2014). In addi-

tion, the use of a relaxed molecular clock allowed inves-

tigating rate variation along evolutionary lineages.

There is an extensive debate in the literature on the

existence and significance of time-dependent rates of

molecular evolution (Ho et al. 2011a). In particular, one

common observation is for substitution rates to acceler-

ate in recent generations in several species including

humans (Ho et al. 2007b, 2011a; Henn et al. 2009; Duch-

êne et al. 2014). This phenomenon is generally ascribed

to the time needed for natural selection to weed out

deleterious mutations from the population. Consistent

with this pattern, the recent rates obtained for human

mitochondrial DNA recovered a subtle but significant

negative correlation between the age of the ancient gen-

ome used for calibration and the substitution rate esti-

mated (Rieux et al. 2014). Stronger evidence for

purifying selection was found in the form of a stark dif-

ference in the substitution rates of first and second

codons (PC1 + 2) versus third codon (PC3). Although

PC3 mutations accumulate linearly with time in

humans, a clear acceleration in the rate starting at

around 30 000 years was recorded for the mostly non-

synonymous mutations at PC1 + 2 (Rieux et al. 2014).

In addition to allowing to explore patterns of rate

variation in time, tip dating combined with the relaxed

molecular clocks also permits investigating variation in

substitution rates across lineages. One of the clearest

evidence for dramatic heterogeneity in substitution

rates has been reported for historical variation in substi-

tution rate in Yersinia pestis, the aetiologic agent of pla-

gue (Cui et al. 2013) with nearly 40-fold difference

between the slowest and the fastest evolving branches.

Like for any model-based inference procedure, infer-

ence quality of tip-based Bayesian coalescent analyses

will depend on how well the model captures the under-

lying processes that generated the data. In this context,

it has been shown using simulations that molecular rate

estimates obtained from ancient DNA-based calibrations

can be upwardly biased for populations evolving under

complex demographic scenarios and/or populations

with large effective sizes, as both situations tend to pro-

duce genealogies where ancient and modern DNA

samples segregate in different lineages (Navascues &

Emerson 2009; Emerson et al. 2015).

Reconstructing past demography

Conjointly with rates of evolution and divergence times,

effective population sizes (EPSs) through time can be

estimated from a time-calibrated tree using Bayesian

skyline plots (BSP) and related methods implemented

in coalescent-based algorithms such as BEAST (see Ho &

Shapiro 2011 for a recent review). The EPS corresponds

to the number of idealized individuals that contribute

offspring to the descendent generation and is almost

always smaller than the census population size. One

interesting feature of such reconstruction methods is

that they are well suited to detect population bottle-

necks. Such estimates of EPS variation have notably

allowed investigating the relative impacts of climatic

and anthropogenic factors on the widespread extinc-

tions of large mammals such as the steppe bison (Sha-

piro et al. 2004) or the cave bear (Stiller et al. 2010) at

the end of the Pleistocene epoch.

Skyline-plot-based demographic inferences also inten-

sively contributed to the field of molecular epidemiology

since EPS plots can help detecting when epidemics took

off. In a recent study published thirty years after the dis-

covery of HIV-1, Faria et al. (2014) made use of more than

800 concatenated RNA sequences obtained from individ-

uals infected by the virus between 1959 and 2004 in

Africa and the USA to shed light on the early transmis-

sion, dissemination and establishment of the virus in

human populations. Their findings indicate that Kin-

shasa in the 1920s was the epicentre of early transmission

and the source of pre-1960 pandemic viruses elsewhere

and that the demographic history of group M and non-

pandemic group O was similar until ~1960, when the M

group underwent an epidemiological transition and out-

paced regional population growth. Their results empha-

size the likely role of iatrogenic interventions and

changes in sexual behaviour in the emergence of HIV-1

group M. In addition to shedding light on the origins of

an epidemic, the combination of tip dating and demo-

graphic reconstruction also allows testing whether policy

changes for managing an epidemic have been effective.

This has notably been the case with the United Kingdom

HIV-1 epidemic and Egyptian hepatitis C virus (HCV)

epidemic (Stadler et al. 2013), 2009 influenza A (H1N1)

pandemic (Fraser et al. 2009) or 2014–2015 Ebola epi-

demics (Stadler et al. 2014).

The use of BSPs and related methods for the estimation

of past EPS has become increasingly common in the liter-

ature, covering a wide spectrum of taxa from viruses to

large mammals. Despite their appeal, EPSs are not
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always straightforward to interpret and to equate to

actual census sizes (Frost & Volz 2010). It is also impor-

tant to remember that BSP models are assuming a single

panmictic population and violation of this assumption

can lead to misleading inferences (Stack et al. 2010; de

Silva et al. 2012; Heller et al. 2013). Damage in ancient

DNA has also been shown to potentially distort infer-

ences of demographic histories (Axelsson et al. 2008;

Rambaut et al. 2009). Particular attention should thus be

given to those factors in future studies making use of BSP

models to study past demography (more details in

Appendix S1-B, Supporting information).

Estimating the age of a sample

Another application of tip-dating analyses is the estima-

tion of the age of a sample for which this information is

missing using phylogenetic molecular clock-based

methods. There are a number of circumstances under

which the leaf ages of sequences may be unknown or at

best, highly uncertain. First, ancient DNA sequences

may be amplified from specimens older than the

50–55 000 years BP radiocarbon limits. For example,

nearly 100 of the bison sequences reported in Shapiro

et al. (2004) were too old to be assigned finite radiocar-

bon ages. Second, for rapidly evolving taxa, the date of

sampling may be unknown due to the loss or absence

of accurate archival information. Even if the sampling

date is known to the nearest year, it may be critical to

estimate the isolation date more accurately. Finally, it

may also be important to independently assess the

authenticity of posited sampling dates due to their

extreme age or because they are contentious.

Shapiro et al. (2011) developed and implemented a

leaf-dating method that estimates the age or date of iso-

lation of individual sequences within the Bayesian

MCMC framework provided by the software package

BEAST (Drummond & Rambaut 2007). In this method,

the sequence’s leaf age is treated as a random variable

and an additional parameter for the age of the terminal

node is introduced and treated identically to the inter-

nal node age parameters in terms of proposals made by

the MCMC kernel. Methodologically, the leaf-dating

method is similar to relaxing the constraints of the

molecular clock on specific lineages within a phyloge-

netic tree. The method has been validated using both

simulated and empirical data sets (Shapiro et al. 2011)

and applied to different data sets to estimate the

unknown age of some specimens before integrating

them into classical tip-dating analyses (Gray et al. 2013;

Stadler et al. 2013; Alter et al. 2015). For example, Faria

et al. (2014) included a historical HIV strain from 1959

as an internal control and estimated its age, recovering

an estimate centred on 1958 (95% BCI: 1946–1970).
Although the estimated ages recovered are often associ-

ated with wide credible intervals, the leaf-dating

method provides a means to include in molecular clock

analyses sequenced samples for which little or no tem-

poral information is available. Incorporating additional

sequence data can improve the resolution of the phylo-

genetic, demographic and geographic history of the

sampled sequences and can significantly extend the

temporal range of the analysis.

Reconstructing transmission chains

Reconstructing transmission chains (i.e. who infected

whom) using phylogenetic reconstruction methods has

received considerable interest over recent time (Crou-

cher & Didelot 2015). Although it should be stressed

that while a phylogenetic tree and a transmission chain

are both mathematical graphs representing the

sequences as nodes connected by edges, they have

radically different properties and are not interchange-
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Fig. 3 Transmission graph vs. Phylogenetic tree. This figure adapted from Jombart et al. (2011) illustrates the difference between a

transmission chain and a phylogenetic reconstruction. Panel a represents the transmission chain of a pathogen as arrows connecting

hosts represented as circles, with grey circles representing sampled hosts. In panel (a, b) transmission graph (or network) is correctly

reconstructed from the sampled hosts. In panel (c), a time-structured phylogeny is reconstructed using the same samples with black

dots representing hypothetical ancestral isolates.
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able (Fig. 3) (Jombart et al. 2011; Didelot et al. 2014;

Hartfield et al. 2014). Phylogenetic trees are binary

graphs where the samples occupy the tips (terminal

nodes) with each pair of samples connected by one

node representing their putative most recent common

ancestor (MRCA). Conversely, transmission chains are

networks where each sample is represented by one

node (internal or terminal) that can be connected to an

arbitrary number of other nodes by edges representing

between-host transmission events of the pathogen.

Phylogenetic reconstruction can in some circum-

stances inform on the transmission chain. However, a

na€ıve phylogenetic analysis can lead to highly inaccu-

rate inference of transmission under a series of realistic

scenarios. If sampling is shallow so that only a small

proportion of infected individuals are sampled, isolates

connected in a phylogenetic framework are indirectly

linked via a chain of unsampled hosts, and the branches

in the tree will not represent direct transmission events.

Conversely, in the case of densely sampled outbreaks

and epidemics, another problem arises as some samples

(a)

(b)
(c)

(d)

(e)

Fig. 4 Different statistical distributions to model uncer-

tainty in tip calibrations inferences. Different distribu-

tions can be used to model the error associated with

sampling dates. Choosing the best-suited one depends

on the type of sample and the information associated

with the dating method (Ho & Phillips 2009). Point val-

ues (a) can be used if the age of a sample is exactly

known (e.g. sampling date). Modelling radiocarbon dat-

ing errors with a normal distribution (b) is common

practice in ancient DNA studies even though recent

improvement allow to use empirical description of the

probability density function directly measured on the

calibrated sample (c) (see Molak et al. 2015 for more

details on this topic). Uniform distributions with hard

minimum and maximum bounds (d) are suited to sam-

ples obtained from a well-defined stratum [e.g. ancient

DNA retrieved from ice cores (Willerslev et al. 2007) or

from samples associated with archaeological horizons

(Edwards et al. 2007)] or to model uncertainty in sam-

pling time accuracy (e.g. if the sampling month is

known for some samples but not for others). Finally,

uniform distribution with hard minimum and soft max-

imum bounds (e) can be suited to ancient DNA samples

beyond the 45–50 ka resolution limit of radiocarbon dat-

ing (thus yielding a minimum age) for which additional

information (e.g. from fossil data) exists and justifies

the use of a soft maximum bound. This figure is

adapted from Ho & Duchêne (2014).

Step 1: Assembling a dataset of non-

recombining sequences

Step 2: Assessing the quality of

ancient DNA sequences (optional)

Step 3: Estimating the best

partitioning schemes and the

substitution models.

Step 4: Setting up the tip-dating

analysis, testing for measurable

evolutionary change within a dataset,

determining the best-suited

molecular clock and tree prior.

Step 5: Performing the tip-dating

analysis, interpreting and extracting

the results.

Fig. 5 Major steps to conduct accurate tip dating. This figure

summarizes the five main steps that ought to be conducted

when performing tip-dating analyses. For each of those steps,

additional advices such as the important choices that must be

made or the software to be used are given in the form of a

practical guide available in Appendix S1 (Supporting informa-

tion).
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can be both ancestors and descendants of other samples.

This pattern is not well captured by a classical phyloge-

netic tree which considers all samples as descendants

(tips) connected by inferred ancestors (nodes) (Fig. 3c).

Additional problems arise for pathogens that remain

infectious over a period of time (i.e. chronic infections),

when a pathogen lineage continues to evolve within a

host after the latter has infected other individuals.

Finally, it has been shown that in the presence of within-

host pathogen genetic diversity, a hallmark of most

viruses and an increasingly widely recognized pattern in

bacteria alike, phylogenetic reconstruction struggles to

inform on the transmission chain (Worby et al. 2014).

While these represent major challenges, the field has

seen some recent exciting developments aiming at

adapting tip-based phylogenetic reconstruction to the

reconstruction of transmission chains. Didelot et al.

(2014) introduced a Bayesian inference scheme which

allows superimposing the transmission network upon

a phylogenetic tree applicable to well-sampled out-

breaks while accounting for within-host evolution.

Also of note, is the recently developed Bayesian

MCMC algorithm by Gavryushkina et al. (2014) to

infer sampled ancestor trees, that is trees in which

sampled individuals can be direct ancestors of other

sampled individuals. When analysing an HIV data set

from the United Kingdom, they were able to detect

sampled ancestors and estimate the probability that an

individual will be removed from the process upon

sampling (i.e. diagnosis). They could also demonstrate

that even if sampled ancestors are not of specific inter-

est in the analysis, failing to account for them leads to

significant bias in the branching model and clock rate

estimates.

Concluding remarks and future perspectives

Introduced over a decade ago, the concept of measur-

ably evolving populations (MEPs), along with the ana-

lytical methodology it has spawned, has revolutionized

our ability to study population dynamic and evolution-

ary processes using genetic data. Although only fast-

evolving taxa such as RNA viruses were initially classi-

fiable as MEPs, the recent rise in our ability to sequence

DNA at high throughput both from modern and

ancient material has opened up the field to a variety of

additional organisms (Biek et al. 2015). Crucially, the

sampling dates need to have sufficient temporal spread

to capture measurable amounts of evolutionary change

and perform tip dating thoroughly. In this context, we

hope this review will encourage users of tip-dating

methodologies (Fig. 5) to systematically investigate and
report the temporal signal existing in their data set (see Sec-
tion “To date or not to date – when is tip dating appropriate?”

and Appendix S1-D, Supporting information) to avoid rate
and divergence time estimates to be mostly driven by prior
information. We also hope to see more studies investigating
the performance of the currently available tests to identify
MEPs, such as the ones recently performed by Duchêne et al.
(2015b) and Murray et al. (2015). Compelling directions for
future research may target data sets with large number of
modern sequences and a small set of ancient sequences, for
which the date-randomization test might not be appropriate.
It is important to acknowledge that substantial

advancements have been made in the field of molecular

dating using heterochronous samples. Since the first

attempts of incorporating noncontemporaneous

sequences into maximum-likelihood (Rambaut 2000) and

Bayesian (Drummond et al. 2002) frameworks made

15 years ago, many refinements have allowed for

improved inference in a variety of biological systems.

Those comprise relaxed molecular clocks, more realistic

demographic models including the Bayesian skyline plot,

the possibility to explicitly model the error associated

with sampling times and the accumulation of post-mor-

tem damage of DNA with time. Current molecular-dat-

ing models still fail to fully allow for joint reconstruction

of the phylogeny and recombination patterns even

though progress is being made towards that direction

(McGill et al. 2013; O’Fallon 2013). However, such ances-

tral recombination graph (ARG) models will likely

always be limited to situations where the rate of genetic

recombination remains low as the phylogenetic para-

digm is in essence not applicable to taxa undergoing

extensive recombination. Additional compelling direc-

tions for future refinements may focus on spatially expli-

cit modelling of population structure as the latter has

been shown to be a factor distorting evolutionary rate

and divergence time estimates. Finally, computational

developments allowing for an improved use of highly

parallel processors are also required to reduce calcula-

tion time that can be enormous when dealing with

parameter-rich models and huge genomic data sets.
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