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Pupil size is often used to infer central processes,
including attention, memory, and emotion. Recent
research has spotlighted its relation to behavioral
variables from decision-making models and to neural
variables such as locus coeruleus activity and cortical
oscillations. As yet, a unified and principled approach for
analyzing pupil responses is lacking. Here we seek to
establish a formal, quantitative forward model for pupil
responses by describing them with linear time-invariant
systems. Based on empirical data from human
participants, we show that a combination of two linear
time-invariant systems can parsimoniously explain
approximately all variance evoked by illuminance
changes. Notably, the model makes a counterintuitive
prediction that pupil constriction dominates the
responses to darkness flashes, as in previous empirical
reports. This prediction was quantitatively confirmed for
responses to light and darkness flashes in an
independent group of participants. Crucially,
illuminance- and nonilluminance-related inputs to the
pupillary system are presumed to share a common final
pathway, composed of muscles and nerve terminals.
Hence, we can harness our illuminance-based model to
estimate the temporal evolution of this neural input for
an auditory-oddball task, an emotional-words task, and a
visual-detection task. Onset and peak latencies of the
estimated neural inputs furnish plausible hypotheses for
the complexity of the underlying neural circuit. To
conclude, this mathematical description of pupil
responses serves as a prerequisite to refining their
relation to behavioral and brain indices of cognitive
processes.

Introduction

Measures of pupil size have long been used to
enlighten the understanding of diverse psychological
processes (Granholm & Steinhauer, 2004), including
attention (Binda, Pereverzeva, & Murray, 2013; Wang
& Munoz, 2015; Wierda, van Rijn, Taatgen, &
Martens, 2012), perception (Einhäuser, Stout, Koch, &
Carter, 2008; Kloosterman et al., 2015), memory
(Goldinger & Papesh, 2012; Kafkas & Montaldi, 2011;
Qin, Hermans, van Marle, & Fernandez, 2012), and
emotion (Bradley, Miccoli, Escrig, & Lang, 2008; Prehn
et al., 2013; Preller et al., 2014). Recent research has
spotlighted the relationship between pupil size and
behavioral variables derived from formal decision-
making models (Browning, Behrens, Jocham, Reilly, &
Bishop, 2015; Nassar et al., 2012; Preuschoff, ’t Hart, &
Einhäuser, 2011) and with neural variables such as the
locus coeruleus–noradrenergic system in humans (As-
ton-Jones & Cohen, 2005; Eldar, Cohen, & Niv, 2013;
Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010) or
cortical activity in rodents (McGinley, David, &
McCormick, 2015; Reimer et al., 2014) and humans
(Yellin, Berkovich-Ohana, & Malach, 2015; Zekveld,
Heslenfeld, Johnsrude, Versfeld, & Kramer, 2014). The
analysis approaches of pupil measurements currently
used in the literature are rather diverse and lack formal
specifications. This is in contrast to the formal
biophysical models used for neuroimaging analysis
(Friston, 2005) and to the recent development of
principled approaches for psychophysiological model-
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ing (Bach, Flandin, Friston, & Dolan, 2009; Bach &
Friston, 2013; Paulus, Castegnetti, & Bach, 2016).

Specifically, most pupil-response studies report
baseline-corrected averages, or the relation of central
variables with pupil size, within specific time windows.
Choosing these time windows and baseline correction
or regression methods engenders implicit assumptions
on how central input generates pupil responses (Bach &
Friston, 2013). As these assumptions are not explicitly
stated or standardized, such procedures imply a risk of
ad hoc definitions. Here we sought to develop an
explicit psychophysiological model for the relationship
between neural input and pupil size. This model can be
empirically tested, and can be applied to constrain the
possible causes of observed data. For other psycho-
physiological measures, using explicit causal models
tends to improve the separation of noise from features
of interest, thereby increasing statistical sensitivity
(Bach & Friston, 2013).

In keeping with these approaches, we harness the
concept of linear time-invariant (LTI) systems, in which
time series of inputs are convolved with response
functions. Assuming such LTI systems, putative inputs
can then be inferred from observed data.

We make the assumption that pupillary responses
due to illuminance changes and ‘‘psychological’’ inputs
impinge on the same peripheral biophysical system of
nerve terminals and muscles. Illuminance changes elicit
pupil responses via a rather well-described midbrain
circuit (McDougal & Gamlin, 2008) comprising two
antagonistic systems: Pupil dilation (mydriasis) relies
on the radial M. dilatator pupillae, which receives
sympathetic innervation (via preganglionic neurons
from the spinal cord and postganglionic neurons from
the superior cervical ganglion). Pupil constriction
(miosis) is mediated by parasympathetic innervation of
the circular M. sphincter pupillae. In the parasympa-
thetic branch, the preganglionic neurons originate in
the Edinger–Westphal nucleus within the midbrain and
synapse on the postganglionic neurons in the ciliary
ganglion. The Edinger–Westphal nucleus indirectly
receives illuminance-mediated inputs from the retina
and also seems to constitute the target for upstream
inputs that are not related to illuminance, such as those
arising from the locus coeruleus (McDougal & Gamlin,
2008). Although the precise anatomical route for

nonilluminance inputs has yet to be firmly established,
it can be assumed that both illuminance and non-
illuminance inputs share a common final (neural and
muscular) pathway.

Therefore, it seems plausible to first establish a
model of pupil responses to illuminance changes within
the framework of LTI systems and to consequently use
this model to infer neural input related to other causes.
For this purpose, it is not necessary to capture all
biophysical details. Our approach thus complements a
recent attempt to describe the mechanical properties
and the neuromodulatory inputs of the pupillary
muscles (Fan & Yao, 2011). The biophysical realism of
this model comes at the cost of a substantial number of
free parameters (e.g., 10 parameters in the case of the
model by Fan & Yao) that need to be inferred from
empirical data. Our phenomenological approach iden-
tifies impulse response functions of the pupillary system
without reference to the underlying mechanism. This
approach therefore furnishes a parsimonious model
that can be readily applied to various psychophysical
experiments.

In sum, our model development follows two main
steps. In the first step, we derive a model of pupil
responses to illuminance changes within the framework
of LTI systems. In the second step, we harness the
obtained LTI systems to infer the shape of the inputs
that elicit pupil responses in three different perceptual
tasks.

Methods

Participants

Healthy participants who were not taking medica-
tions or drugs were recruited from the general and
student population for five experiments (two illumi-
nance tasks, three perceptual tasks) and received
monetary compensation (see Table 1 for details). The a
priori criterion for excluding sessions was more than
30% of data points missing (due to blinks, head
movements, or fixation breaks; see later). The study,
including the form of taking written informed consent,
was conducted in accord with the Declaration of

Task Initial sample Final sample Age (years; M 6 SD) Female/male

Continuous illuminance (5 s) 23 20 24.6 6 3.4 12/8

Illuminance flashes (200 ms) 14 14 24.6 6 4.8 6/8

Auditory oddball 92 66 24.2 6 3.9 40/26

Emotional word 37 27 26.3 6 4.6 20/7

Visual detection 21 13 23.2 6 3.4 8/5

Table 1. Overview of participants.
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Helsinki and was approved by the competent research
ethics committee (Kantonale Ethikkommission Zürich,
KEK-ZH-Nr. 2013-0328).

Illuminance tasks

All participants in the two illuminance tasks tested
negative for color-vision deficiency (von Broschmann,
2011). The samples in the continuous-illuminance task
and the illuminance-flashes task were independent. No
participant in the two illuminance tasks reported vision
impairments or a history of eye disease, except for two
with mild strabismus.

Two participants performed only four instead of five
sessions. Three participants were excluded completely
because fewer than three sessions remained in the
analyses (in the final sample, three participants had
three sessions and three had four sessions; all other
participants had five sessions). Four participants wore
glasses (diopter left: �3.1 6 3.9; diopter right:�2.6 6
3.6), and five wore contact lenses (diopter left: �1.2 6
3.4; diopter right:�1.7 6 3.4). The average percentage
of missing data points was similar when comparing
participants with glasses or with lenses to those without
eyesight correction (Wilcoxon rank-sum tests, all ps .
0.2).

In the illuminance-flashes task, three participants
wore glasses (diopter left/right: 0.3 6 2.0) and three
wore contact lenses (diopter left: �3.4 6 1.3; diopter
right:�3.6 6 1.1). For two participants, one session
was excluded because more than 30% of data points
were missing.

Auditory-oddball task

For the intertrial interval (ITI) of 1 s, seven
participants had a sampling rate of 250 Hz; in the
others it was 500 Hz. All data were down-sampled to
250 Hz. For the ITI of 2 s, six participants had a
sampling rate of 1000 Hz; in the others it was 500 Hz.
All data were down-sampled to 500 Hz.

Emotional-words task

All participants but two were native German
speakers; these two participants were fluent in German
and had learned it before the age of 5. Participants were
excluded if one of the two sessions had more than 30%
missing data points.

Visual-detection task

In six participants, the sampling rate was 250 Hz,
while in the others it was 500 Hz. All data were down-
sampled to 250 Hz.

Apparatus

Testing was performed in a dark, soundproof
chamber (with a background illumination of 3.4 lx
provided by the camera and the monitor lights).
Participants’ heads were positioned on a chin rest 70
cm in front of the monitor (Dell P2012H; 20 in., set to
an aspect ratio of 5:4; 60-Hz refresh rate). Pupil
diameters and gaze direction for both eyes were
recorded with an EyeLink 1000 system (SR Research,
Ottawa, Canada) at a sampling rate of 500 Hz unless
otherwise indicated. We used the nine-point calibration
implemented in the EyeLink 1000 software for cali-
brating gaze direction.

Illuminance levels were determined off-line by fixing
a luxmeter (Digital Luxmeter MS-1300, Voltcraft,
Hirschau, Germany) to the chin rest at the position of
participants’ eyes. Thus the total luminous flux
entering the eye is the product of these illuminance
levels and the measured pupil area. For our model
development, we used illuminance Ev rather than
luminance Lv, but we also provide all relevant
luminance values to allow comparison to previous
studies. For consistency, we thus use the term
illuminance throughout the article.

Experimental setup

Continuous-illuminance task

Each of five sessions started with a resting period of
45 s during which a medium-gray screen was shown
(width: 31.138 visual angle, height: 24.918; 46.1 cd/m2,
[128, 128, 128] in the RGB color scheme, 7.3 lx). In
each of 24 trials (six per illuminance level), a circle
appeared in the screen center on the medium-gray
background and disappeared after 5 s (diameter:
16.588; see Figure 1). The circles had one of four colors
(black: 33.5 cd/m2, [0, 0, 0], 5.3 lx; dark gray: 36.7 cd/
m2, [64, 64, 64], 5.8 lx; light gray: 60.7 cd/m2, [191,
191, 191], 9.6 lx; white: 84.1 cd/m2, [255, 255, 255],
13.3 lx), followed by a 5-s background screen. By
design, illuminance changed both when the circles
appeared and when they disappeared. Thus, there
were 24 illuminance changes from darker to brighter
(appearance of light-gray and white circles; disap-
pearance of dark-gray and black circles) and 24
illuminance changes from brighter to darker (appear-
ance of dark-gray and black circles; disappearance of
light-gray and white circles). A red fixation cross
(height/width: 1.478) remained on-screen throughout
and was taken into account for establishing the
aforementioned illuminance levels. Participants were
instructed to fixate this cross, but otherwise no
response was required.
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Illuminance-flashes task

The setup was the same as for the continuous-
illuminance task, with the sole difference that the circles
remained on-screen for 200 ms only. The ITI was 5 s.

Auditory-oddball task

Standard and oddball tones were sine tones (50-ms
length; 10-ms ramp; 440 or 660 Hz), delivered via
headphones (HD 518, Sennheiser, Wendemark-Wen-
nebostel, Germany) at approximately 60 dB and
counterbalanced across participants. During the entire
task a red fixation cross (height/width: 1.478) was
presented on a medium-gray background (46.1 cd/m2,
[128, 128, 128], 7.3 lx). Participants were instructed to
fixate and to press a key upon hearing the oddball tone.
If participants did not answer in time (i.e., before the
next tone) the words ‘‘No answer’’ appeared. Because
of the different ITIs, the number of oddballs and
standards differed between the three groups (1-s ITI: 30
oddballs, randomized number of standards, mean
number¼ 463.1 6 8.0; 2-s ITI: 40 oddballs, 160
standards; 3-s ITI: 30 oddballs, 120 standards). As
intended, participants’ performance was close to ceiling
(correctness: 99.9 6 0.6%). Mean reaction times were
similar for the three ITIs (1 s: 395 6 62 ms; 2 s: 383 6
80 ms; 3 s: 395 6 87 ms).

Emotional-words task

Participants were presented with 100 neutral and 100
negative five-letter nouns from the Berlin Affective
Word List Reloaded (Võ et al., 2009; see the next
subsection for stimulus selection). Each word was

presented for 1 s in the center of the screen using capital
letters in gray type (Lucida Console, [128, 128, 128];
height: 0.668, width: 3.278) on a gray background (48.7
cd/m2, [128, 128, 128]) followed by the letter string
‘‘XXXXX,’’ which was presented instead of a fixation
cross for a total of 4 s. Within the accuracy of the
luxmeter (65%), illuminance was constant throughout
the task (7.7 lx). Participants were tasked to judge the
word as negative or neutral. If they failed to respond in
time or pressed a wrong key, the prompt ‘‘Please
answer’’ appeared on-screen. As expected, participants
judged negative words to be more negative than neutral
words (negative words: 70.5% 6 11.6%; neutral words
9.9% 6 8.8%), t(26) ¼ 25.73, p , 0.001.

Emotional-words task: Stimulus selection

We first selected all five-letter nouns with two
syllables from the Berlin Affective Word List Reloaded.
Based on the list’s norm ratings, neutral words were
selected so that valence values lay between �0.5 and
þ0.5 on a 7-point scale from�3 toþ3 (0.08 6 0.26) and
arousal values lay between 2 and 3 on a 5-point scale
from 1 to 5 (2.40 6 0.24). Negative words were selected
so that valence values lay between�3 and�0.75 (�1.48
6 0.49) and arousal values lay between 2 and 5 (3.39 6
0.60). As intended, the pair-wise comparisons between
the two word sets were significant both for valence and
for arousal ratings (all Bonferroni-corrected ps ,
0.001). Words were randomly split into two matched
lists of 50 neutral and 50 negative words each.
Assignment of the two lists to the two sessions was
counterbalanced across participants, and word presen-
tation within the sessions was randomized.

Visual-detection task

A stream of 10 distractors (digits 0–9) was presented
in white font (Arial, [255, 255, 255]; height: 1.008,
width: 0.668) on a black screen (24.0 cd/m2, [0, 0, 0]).
Participants were instructed to press a key upon
detecting the target stimulus, a red cross that was
interspersed in the stream. In total, there were 11
crosses and 599 digits. Stimuli remained on-screen for
200 ms, followed by an ITI of 800 ms. Illuminance was
constant throughout the task (3.8 lx) within the
accuracy of the luxmeter. Participants’ performance
was at ceiling (100% 6 0%; RTs: 427 6 39 ms).

All experiments were programmed in MATLAB
using Cogent 2000 (http://www.vislab.ucl.ac.uk).

Data preprocessing

Saccades and fixations were detected using the online
parsing algorithm implemented in the EyeLink 1000

Figure 1. Outline of the illuminance tasks. After a baseline

period of 45 s, participants were presented with circles of four

different illuminance levels (diameter: 16.588). In the continu-

ous-illuminance task, these circles remained on screen for 5 s. In

the illuminance-flashes task, they remained on screen for 200

ms. Participants were asked to fixate a red cross throughout the

task. Both the onset and the offset of the circles elicited pupil

responses.
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system, which detects artificial changes in pupil
position caused by partial occlusion of the pupil.
Further analysis was performed after import of the
data into MATLAB (Version R2013a, MathWorks,
Natick, MA). We analyzed the time series from the
beginning of the first event until 5 s after the last event.
Missing data points, which could result from blinking
or from brief head movements, were linearly interpo-
lated. Participants were asked to fixate the center of the
screen in all tasks. Breaking fixation can distort the
pupil size measured by a video-based eye tracker due to
the dependence of the measurement on the gaze angle
(Hayes & Petrov, 2015). We therefore treated all data
points for which x or y gaze positions exceeded an a
priori threshold of 648 as missing data points and
interpolated them linearly. Including data points for
which fixation was broken resulted in quantitatively
very similar results. Within each participant, we
analyzed the pupil (left or right) for which more data
points were available. The pupil diameters of the two
eyes were highly correlated (mean Pearson’s r across
participants in the continuous-illuminance task: 0.98 6
0.05). Time series were z-scored within each session
after interpolating missing values. This accounts for
between-subjects variance in overall pupil size (includ-
ing variance related to corrective lenses).

Additionally, we report pupil diameter values in
millimeters for comparability. The pupil diameters are
recorded by the EyeLink 1000 system in arbitrary units,
which are proportional to true physical diameters
(Hayes & Petrov, 2015). To determine the numerical
relationship between diameters in arbitrary units and
millimeters for our setup, we adapted a procedure
described previously (Hayes & Petrov, 2015). Specifi-
cally, we printed a series of black circles with diameters
ranging from 2.5 to 7 mm (in 0.5-mm increments) on
white paper and verified their sizes using calipers. To
mimic the corneal reflection, small holes were pinched
into the black circles and silver foil added underneath
the holes. These artificial pupils of known diameters
were measured with the EyeLink 1000 system using the
same setup and specifications as for the experiments
(i.e., pupil diameter in the ellipse mode). The correla-
tion coefficient was 0.99 and the numerical relationship
was diameter (in millimeters) ¼ 0.07 þ diameter (in
arbitrary units)/1325.

Analyses of mean responses

We extracted data segments following trial onset and
averaged these segments first within and then across
sessions and participants. In the continuous-illumi-
nance task, these segments were 10 s long (i.e.,
including both appearance and disappearance of the
stimulus). In the other tasks, the segments were 4 s

(auditory-oddball task, visual-detection task) or 5 s
(illuminance-flashes task, emotional-words task) long.
Grand mean responses were baseline corrected by
setting the first data point to zero. Since pupil responses
to the oddball and to the standard overlapped in time,
we excluded the standards immediately before and after
the oddball.

Modeling steady-state pupil size

To obtain the steady-state relationship of pupil size
with measured illuminance, we averaged over the last
500 ms of the grand means of the 5-s segments for the
five illuminance levels (i.e., means for middle gray
resulted from averaging over the 24 fixation periods per
session; means for the other illuminance levels resulted
from averaging over the six respective trials per
session). A previous review article has used a sigmoid
function to model steady-state pupil size across a wide
range of luminance levels and stimulus areas (Watson
& Yellott, 2012). For the intended application of our
model, a more restricted range suffices. Within an
illuminance range of around 5–14 lx, the data had an
exponential (not a sigmoid) shape, which is in
qualitative agreement with the model by Watson &
Yellot:

dðEvÞ ¼ Cþ AexpðBEvÞ:
Here, d is the z-scored steady-state pupil diameter

and Ev is the respective illuminance level in lx (lm/m2).
Parameters were estimated using ordinary least-squares
minimization and a Nelder–Mead simplex search
algorithm as implemented in the MATALB function
‘‘fminsearch.’’

Modeling responses to illuminance changes

We used the grand means from the continuous-
illuminance task for deriving empirical response functions
(RFs). Since mean responses differed in shape between
dilations (illuminance changes from brighter to darker)
and constrictions (darker to brighter), the pupil responses
could not be fully described by a simple LTI system that
only takes a continuous illuminance input. We therefore
used a combination of two LTI systems: the first system
describes responses to continuous illuminance input and
the second system models the difference between
constriction and dilation. This second system receives a
brief input for any increase in illuminance.

Grand means were split into segments of 5 s,
following increases and decreases in illuminance. The
first data point was subtracted as a baseline, and data for
each segment were divided by the predicted steady-state
pupil response for this segment. These scaled grand
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means were then averaged separately for dilation and for
constriction, and represent the response of the pupillary
system to a sudden change in continuous illuminance
input. The RF can therefore be obtained from the time
derivative of the pupil response (see the Appendix). For
all approximations, we chose functional forms upon
visual inspection of the time series. Parameters were not
intended to reflect biophysical parameters.

To derive the RF of the first LTI system, we
approximated the dilation derivative with a gamma
probability density function (pdf; using ordinary least-
squares minimization and a Nelder–Mead simplex
search algorithm):

dðtÞ ¼ cðhkCðkÞÞ�1tk�1expð�t=hÞ;
where d is the z-scored steady-state pupil diameter, t is
time, C is the gamma function, and k, h, and c are free
parameters. Since the latency of the empirical responses
was around 200 ms, we only used data points after the
first 200 ms for fitting.

To derive the RF of the second LTI system, we
approximated the difference between the dilation and
constriction responses with another gamma pdf. To
suppress noise, we first approximated the constriction
derivative with a gamma pdf (parameters: k¼ 2.76, h¼
0.09 s�1, c¼ 0.31) and then used the difference between
the predicted dilation and predicted constriction
responses to approximate the RF of the second LTI
system with a gamma pdf. This second system models
the steeper onset and undershoot of the constriction
relative to the dilation.

As an alternative formulation of the first LTI system,
we approximated the empirical derivative of the
dilation with a Gaussian smoothed biexponential
function (Bach et al., 2010):

dðtÞ ¼ aNðtÞ*
�
E1ðtÞ þ E2ðtÞ

�
;

where * is the convolution operator, N(t) is a centered
Gaussian function

NðtÞ ¼ ð2prÞ�0:5expð�t2=2r2Þ
with standard deviation r, and E1(t) and E2(t) are
exponential functions of the form

E1ðtÞ ¼ expð�k1tÞ and E2ðtÞ ¼ expð�k2tÞ:
The final model will be implemented in the open-

source MATLAB toolbox PsPM, which is freely
available under the GNU General Public License and
obtainable from http://pspm.sourceforge.net.

Testing illuminance-response models

Our model was based on grand mean responses from
all participants. Thus, we sought to determine how

much variance this model can explain within individual
participants. To this end, we computed explained
variance per participant. Specifically, we used general
linear convolution models (GLMs) using routines in
PsPM. The explanatory variables (i.e., the regressors in
the design matrix X) were formed by convolving the
RFs with the assumed input. That is, the response of
the first LTI system, which models the general influence
of both dilation and constriction, was predicted by
convolving the illuminance time series, scaled by the
steady-state model, with the first RF. The second LTI
system models the additional contribution of the
constriction and was derived by convolving stick
functions with unit amplitude at each illuminance
change from dark to bright with the second RF.
Inverting this GLM yields estimates for the participant-
specific amplitude of the assumed input into the LTI
systems. Under these parameters, the ratio of explained
and observed variance was determined.

To assess baseline variance (i.e., variance in the
absence of illuminance input), we calculated the
proportion of variance during the 45-s baseline
period without illuminance changes at the beginning
of each block relative to the variance during the
remainder of the block. This 45-s baseline period was
not included in the GLMs. Periods with missing data
(e.g., due to blinks) were removed before model
inversion. We performed individual GLMs for each
session and averaged explained variance (and pro-
portion of baseline variance) across sessions and
participants.

Additionally, we investigated how different filter
settings influenced the proportion of explained variance
under the best model. We tested different low- and
high-pass frequencies using a unidirectional first-order
Butterworth filter. For each filter setting, the RFs were
fitted separately as described earlier. Within the range
of tested high-pass frequencies (from 0.01 to 0.1 Hz in
steps of 0.01 Hz), explained variance was smaller than
in the unfiltered data. Across the tested low-pass
frequencies (from 0.5 to 3.5 Hz in steps of 0.5 Hz),
explained variance remained basically unchanged with
respect to the results obtained from unfiltered data.
Hence all following analyses were based on unfiltered
data.

Modeling perceptual inputs

On the basis of the illuminance-response model, we
aimed at estimating the inputs that elicit pupil changes
in three different perceptual tasks. We assumed inputs
with the form of gamma pdfs with three free
parameters. In brief, we fitted the convolution of the
RF with the assumed input to the normalized pupil
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responses (using ordinary least-squares minimization
and a Nelder–Mead simplex search algorithm).

Results

Pupil responses to illuminance changes

As expected, pupil size was inversely related to
illuminance level in the continuous-illuminance task
(Figure 2A). The shapes of the pupil responses were
rather stereotypical across participants. The onset of
dilation and constriction occurred around 200 ms after
the appearance or disappearance of the stimuli. The
slope of the constriction was steeper than the slope of
the dilation (see Figure 2B for the time derivative of the
empirical pupil responses). Additionally, the constric-
tion showed an undershoot with a minimum at around
800 ms. Both for constriction and for dilation, pupil

size started to asymptote to steady-state level at around
1500 ms.

Modeling steady-state pupil size

In an intermediate step, we related steady-state pupil
size (in arbitrary units) to illuminance (in lux) with an
exponential function (parameters: A¼ 32.56, B¼�0.48
lx�1, C ¼�1.03; Figure 3; relating steady-state pupil
size in millimeters to luminance in candelas per square
meter resulted in the following parameters: A¼2.5 mm,
B ¼�1.1 m2/cd, C ¼ 2.9 mm). We also fitted
exponential functions to steady-state pupil sizes for
each individual. The mean parameter estimates across
participants were similar to those obtained from the fit
to the grand means, in particular also for B, which
determines the curvature (A¼ 49.79 6 47.29; B¼�0.50
6 0.15 lx�1; C ¼�1.05 6 0.28).

Modeling responses to illuminance changes

The difference in shape between dilation and
constriction prevented us from modeling them with a
single LTI system that takes illuminance level as
continuous input. This is physiologically plausible,
since dilation and constriction result from two antag-
onistic muscles with different innervation. Therefore,
we approximated pupil responses with a combination
of two LTI systems: a first that receives (scaled)
illuminance as continuous input and a second that
models the difference between dilation and constriction
(i.e., the steeper slope and the relative undershoot) and
receives a brief input for positive illuminance changes.
This arrangement is not supposed to reflect a bio-

Figure 2. Pupil responses in the continuous-illuminance task. (A) Mean responses show a reliable ordering according to illuminance

levels. Thick lines represent mean responses, and thin lines represent standard error of the mean (SEM). For comparability, the inset

shows mean responses in millimeters. (B) Derivatives of the mean response indicate a steeper slope for constrictions versus dilations.

Figure 3. Steady-state pupil model. The relationship between

steady-state pupil size and illuminance levels was predicted by

an exponential function. For comparability, the inset shows the

relationship between observed steady-state pupil sizes in

millimeters and luminance levels in candelas per square meter.
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physical reality, but rather to furnish a parsimonious
mathematical description.

The RF for the dilation response could be approx-
imated by a gamma distribution (parameters: k¼ 2.40,
h¼ 0.29 s�1, c¼ 0.77; Figure 4A) and accounts for slow
pupil responses to a change in illuminance input. In an
alternative approach, we approximated the dilation
response with a Gaussian smoothed biexponential
function (parameters: r¼ 0.27, k1¼ 2.04 s�1, k2¼ 1.48
s�1, a ¼ 0.004).

To account for the faster time course and relative
undershoot of constriction, we approximated the
difference between dilation and constriction with
another gamma pdf (k¼ 3.24, h¼ 0.18 s�1, c¼ 0.43;
Figure 4B). This second LTI system receives brief inputs
whenever an illuminance increase occurs. We assessed
whether illuminance levels scale the input to the second

LTI system. To this end, we used the first LTI system to
predict the pupil response in the four conditions that
entail a constriction, and analyzed the residuals for each
condition. The residual peak amplitudes were very
similar for the four illuminance levels (middle gray to
white: �1.4; middle gray to light gray: �1.2; dark gray
to middle gray:�1.4; black to middle gray:�1.4),
suggesting that the undershoot is not scaled by
illuminance level or size of illuminance change. Hence,
the second LTI system is assumed to receive a unit input
whenever an increase in illuminance occurs.

To enhance clarity, we present an example time
series for the two LTI systems in the continuous-
illuminance task (Figure 5A). The combination of the
two systems (scaled by the mean fitted parameter
estimates) constitutes the predicted pupil-size trace
(Figure 5B).

Figure 4. Model of pupil responses to illuminance changes. (A) The derivative of the mean dilation was well predicted by a gamma

pdf, which constitutes the RF of the first LTI system. (B) The difference between dilation and constriction was well predicted by

another gamma pdf, which constitutes the RF of the second LTI system. For completeness, the observed and predicted dilation

according to the first LTI system are plotted.

Figure 5. Illustration of the model for an example time series. (A) The time series is taken from the continuous-illuminance task, in

which luminance changes every 5 s. The first LTI system captures the overall changes in pupil size due to varying illuminance levels as

well as the shape of the dilation response. The second LTI system models the steeper onset as well as the undershoot of the

constrictions that occur for positive illuminance changes. In this example time series, illuminance increases at 0, 15, and 20 s, and

therefore the ‘‘peaks’’ of the second LTI system only occur following these time points. Please note that the two LTI systems are

defined to be positive for higher illuminance inputs. Thus, fitted parameter estimates into both systems are negative, because higher

illuminance inputs result in smaller pupil size. (B) The sum of the two LTI systems depicted in (A) (and the intercept) according to the

mean fitted parameter estimates constitutes the predicted pupil time series. Since both parameter estimates are negative, the traces

in (B) are changed in sign in relation to the traces in (A).
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Model accuracy

In the next step, we asked how much variance our
model explained. Across participants, the full model
explained 60.8% 6 13.6% of the variance in the data
(Figure 6; Table 2), and hence considerably more
variance than a simple steady-state pupil model that
used the scaled illuminance time series as a predictor or
a model that included only either the first or the second
LTI system. Using a Gaussian smoothed biexponential
function as the RF for the first LTI system resulted in
similar proportions of explained variance.

The explained variance can be seen in proportion to
the variance during the 45-s baseline period without
illuminance changes, which was 40.9% 6 14.8% of the
variance during illuminance changes and therefore
close to the residual variance of the full model. This
suggests that the full model explains approximately all
variance elicited by illuminance changes, while residual
variance stems from other processes.

Model validation

To validate our model, we assessed whether it predicts
the counterintuitive pupil contractions in response to
darkness flashes that have been observed previously
(Barbur, Harlow, & Sahraie, 1992). To illustrate this
prediction, we simulated a brief input of both a light- and

a dark-gray circle with the two LTI systems under
different relative contributions of the two systems.
Trivially, the model predicts a constriction after a light-
gray circle (Figure 7A). Importantly, it also predicts the
previously observed constriction following a darkness
flash (Figure 7B). (For this illustration, the first LTI
system was weighted by�1 and the second by�1.5.) This
is because the second LTI system, which models the
steeper slope of constrictions relative to dilations,
receives brief inputs to positive illuminance changes
regardless of the ensuing duration of the illuminance
input. In contrast, the first LTI system receives
continuous (positive and negative) illuminance inputs but
has a shallower slope. Loosely speaking, for a short flash
of a dark stimulus, the input to the first system is not
long enough to achieve a noticeable dilation. But the
offset of the dark stimulus entails a positive illuminance
change that elicits a sufficient input to the second system.

To test the prediction empirically, we presented an
independent sample with circles of five different
illuminance levels that were flashed on the screen for
200 ms (Figure 8A). In line with previous results
(Barbur et al., 1992) and the predictions of our model,
pupil traces were dominated by constrictions. On
average, the GLM using the two LTI systems explained
23.5% 6 9.6% of the variance in the data (Figure 8B;
Table 2). In contrast, the simple steady-state model that
included just the scaled illuminance input as a regressor
explained only a negligible variance proportion. A
model that included only the second LTI explained
most of the variance in the task, while the first LTI
system alone explained almost no variance.

Modeling perceptual inputs

In the previous sections, we derived a combination of
LTI systems that describes pupillary responses to
illuminance changes. In the following, we use this
model to estimate the shape of the neural inputs
generated by nonilluminance processes. This approach
makes the assumption of a common final pathway in
the peripheral pupillary system.

Auditory oddballs elicit reliable pupil responses and
are not confounded by illuminance changes (Hong,
Walz, & Sajda, 2014; Murphy, Robertson, Balsters, &
O’Connell, 2011). Participants attended to standard
and oddball tones with an ITI of either 1, 2, or 3 s. For

Figure 6. Model accuracy. The full model with both LTI systems

explained around 60% of the variance. A pure steady-state

model, as well as models with only one of the two systems,

explained considerably less variance. A model in which the first

LTI is described by a Gaussian smoothed biexponential function

explained the same of amount of variance as the model in

which both RFs are described by gamma pdfs.

Task

Both LTI

systemsa
Steady-state

input

First LTI

system only

Second LTI

system only

Both LTI

systemsb

Continuous illuminance (5 s) 60.8 6 13.6 47.4 6 11.6 53.4 6 14.0 7.9 6 3.7 60.5 6 13.5

Illuminance flashes (200 ms) 23.5 6 9.6 0.2 6 0.1 3.3 6 2.2 12.2 6 7.5 —

Table 2. Proportion of explained variance in illuminance tasks (%; M 6 SD). Notes: aBoth fillted with gamma probability density
function. bFirst fitted with Gaussian smoothed bi-exponential function.
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all three ITIs, the pupil dilated reliably more in
response to oddballs compared to standards in a time
window of roughly 0.5–2 s after stimulus onset (Figure
9A through C). Standards also modulated pupil size in
an ITI-dependent manner. Pupil responses to the
oddball were thereby influenced by the responses to the
standards that followed the oddball.

To fit the input relating to the oddball response
alone, we subtracted the grand means of the pupil time
series for standards from those for oddballs and then
baseline-corrected the resulting traces at 200 ms after
stimulus onset, because at this time point the inflection
to the oddball response occurred. Since oddballs
induced pupil dilation, we modeled these responses
with the first LTI system. For all three ITIs, the input
could be fitted well with gamma pdfs (Figure 9D, E).
These had their peaks at biologically plausible time
points—i.e., within the order of magnitude of around

300 ms in which oddball responses in the electroen-
cephalograph are assumed to occur (Friedman, Cyco-
wicz, & Gaeta, 2001).

Emotional words constitute a second type of stimulus
that elicits pupillary responses independent of illumi-
nance inputs (Bayer, Sommer, & Schacht, 2011; Võ et al.,
2008). Negative nouns led to a slightly more pronounced
and longer dilation than neutral nouns (Figure 10A).
These responses could be well estimated by gamma
inputs into the first LTI system (Figure 10B, C).

Detecting visual target stimuli in a stream of
distractors also elicited reliable pupil dilation that was
unrelated to illuminance changes (Figure 11A). The
time course of this pupil response was similar to that of
illuminance changes. Indeed, the estimation of a
gamma input into the first LTI system showed that the
neural input into the pupil system occurred at the same
time as an illuminance input (Figure 11B), which

Figure 7. Model predictions for brief luminance inputs. (A) For an illuminance increase of 200 ms duration, the model trivially predicts

a constriction. (B) Crucially, the model also predicts a constriction following a brief illuminance reduction. Please note the different

onset latency in (B) versus (A).

Figure 8. Model validation in the illuminance-flashes task. (A) Mean pupil responses were dominated by the constrictions following

the onset of bright stimuli and the offset of dark stimuli. Thick lines represent mean responses, and thin lines standard error of the

mean (SEM). For comparability, the inset shows mean responses in millimeters. (B) The second LTI system explained relatively more

variance than the first LTI system.
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suggests a neural processing stream that has a similar
latency as the illuminance response itself.

Discussion

In this work, we specify a psychophysiological model
for the temporal evolution of pupil responses, based on
two LTI systems. These LTI systems were modeled
according to the empirical relationship between pupil

size and illuminance. The model explained more
variance in the data than a baseline model, which took
only steady-state pupil size into account, and explained
all variance elicited by illuminance changes. In line with
previous empirical findings (Barbur et al., 1992), the
model makes the counterintuitive prediction that both
light flashes and darkness flashes elicit pupil constric-
tion. This prediction was confirmed quantitatively in an
independent data set. Importantly, the model could be
used to derive nonilluminance inputs into the pupillary
system from three different perceptual tasks. The

Figure 9. Auditory-oddball task. (A–C) Mean pupil responses to oddballs and standards in experiments with 1, 2, and 3 s, respectively.

Thick lines represent mean responses, and thin lines standard error of the mean (SEM). For comparability, the inset shows mean

responses in millimeters. (D–F) Fitted inputs of the oddball responses.

Figure 10. Emotional-words task. (A) Mean pupil responses to negative and neutral nouns. Thick lines represent mean responses, and

thin lines standard error of the mean (SEM). For comparability, the inset shows mean responses in millimeters. (B) Fitted input of the

responses to neutral words. (C) Fitted input of the responses to negative words.
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temporal evolution of this input furnished novel and
interesting hypotheses on the underlying neural cir-
cuits. Auditory oddball input elicited neural input into
the pupil with a similar latency as event-related
potentials in electroencephalography (Friedman et al.,
2001), underlining the plausibility of the approach.
Responses to emotional words, probably requiring
more complex neural processes (Bayer et al., 2011; Võ
et al., 2008), occurred later. This is was in contrast to
the neural input to visual targets in a distractor stream.
While these constitute oddball events just as in the
auditory experiment, we designed the targets to entail
high visual salience. Neural input into the pupil system
then had the same latency as illuminance inputs, and
therefore occurred much earlier than the response to
auditory oddballs. It is therefore plausible to assume
that the detection of these visual targets involved a
neural circuit with complexity similar to that of the
illuminance circuit. Hence, an analysis of estimated
neural input can provide insight into the underlying
neural circuits in relation to the well-known illumi-
nance circuit. Crucially, such conclusions could not be
drawn from merely analyzing the pupil traces in
cognitive tasks on their own.

In an intermediate step, we took into account the
fact that steady-state pupil size relates nonlinearly to
illuminance. An exponential function provided a good
mapping from illuminance levels to predicted steady-
state responses. This exponential function served the
purpose of scaling continuous illuminance time series in
order to model the time evolution of pupil responses.
The exponential function is in qualitative agreement
with a previous review article (Watson & Yellott, 2012)
that developed a relationship between steady-state
pupil size and corneal flux density (i.e., the product of
stimulus luminance and area) across a wide range of
conditions (including monocular versus binocular
illumination and age of the perceiver). The simple

exponential function used here served a more specific
aim. We intended to provide a parsimonious descrip-
tion of the pupillary dynamics in conditions that are
commonly employed in psychophysiological experi-
ments. Furthermore, we used z-scored pupil sizes (in
arbitrary units) for determining response functions
because analyzing psychophysiological data often
involves normalizing within participants.

LTI systems, which are commonplace in engineering,
have a number of useful properties and are widely
applied for analyzing neural and peripheral data. Our
model modifies a simple LTI system to suit the
biophysics of the pupil. The different shapes of positive
and negative illuminance inputs relative to baseline
precluded modeling both changes with a single system.
We expected such a difference, since dilation and
constriction are mediated by two antagonistic muscles,
innervated respectively by sympathetic and parasym-
pathetic afferents. For simplicity, we approximated this
pattern with a combination of two LTI systems such
that for each of the two, the linearity assumption holds
approximately. The first system specifies responses to
continuous illuminance input. The second system
receives an instantaneous input and describes the
undershoot of the constriction that cannot be ac-
counted for by the first system. Based on our data, we
took the parsimonious assumption of a constant input
to the second system. This appears reasonable under a
conjecture that the steeper and more pronounced
response to positive illuminance changes serves to
protect the retina from damage (McDougal & Gamlin,
2008). However, the precise relationship between
illuminance changes and the initial part of the
constriction response should be tested across a wider
range of illuminance changes.

LTI systems have the important property that the
response to two inputs is the sum of the responses to
the individual inputs. This linearity assumption will

Figure 11. Visual-detection task. (A) Mean pupil responses to distractor and target stimuli. Thick lines represent mean responses, and

thin lines standard error of the mean (SEM). For comparability, the inset shows mean responses in millimeters. (B) Fitted input of the

responses to the target stimulus.
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break down at the limits of the pupil’s dynamic range,
which lie roughly at 1.5 to 8 mm (McDougal & Gamlin,
2008). This would in practice only be a problem if one
tested at a fast event rate (i.e., ITIs ,5 s). Also, it is
likely that the time-invariance assumption will not hold
when testing at very high or low illuminance levels,
where the pupil is already at the limits of its dynamic
range.

Although the specific derivation of the two LTI
systems was initially based on mathematical parsimony
and not on principled physiological reasons, the model
made a prediction for the relative importance of the
two systems which is in line with previous reports
(Barbur et al., 1992). Our data validated the model by
showing that brief illuminance changes were mostly
described by inputs to the second system. Furthermore,
this showed that the model generalized to short inputs
(of 200 ms), which may be important given the short
stimulus duration in many perceptual tasks.

It has recently been shown that different pathways
are involved in the responses of the pupil to luminous
stimuli (e.g., rod-, cone-, or melanopsin-mediated
pathways; Park & McAnany, 2015). Here, we did not
aim at separating different illuminance-related path-
ways, but we did aim at a general approach. We
acknowledge that the current model relies on overall
illuminance (total flux arriving on the eye) and does not
capture effects related to eye movements or the contrast
and the spatial distribution of the light falling on the
retina. For example, a small bright and a large dark
stimulus of the same overall illuminance are treated the
same by the model. This assumption is motivated by
the well-described relationship between steady-state
pupil size and corneal flux density (Watson & Yellott,
2012). Pupil dynamics may at least to some degree
depend on the spatial distribution of the incoming light.
For example, inversing a checkerboard (i.e., changing
the white squares to black and vice versa) triggers pupil
constriction at constant illuminance (Mathôt, Melmi, &
Castet, 2015). This phenomenon can possibly be
explained by the faster time course of constrictions
versus dilations, under an assumption that signals for
controlling constriction and dilation are independently
computed at different points in retinal space and then
combined rather than computed from summed flux
density across the retina. Alternatively, it may be
induced by attentional effects similar to the ones
reported here for oddball responses. Our modeling
approach may be able to arbitrate between these
possible explanations. Overall, it is an empirical
question whether a more fine-grained characterization
of illuminance-related pupillary dynamics can provide
even more leverage in explaining pupil responses in
psychophysiological experiments.

Ultimately, our goal is to characterize nonillumi-
nance inputs into the pupillary system. The combina-

tion of two LTI systems, which we derived for
illuminance inputs, can serve two purposes towards
that goal. First, it can be used to remove illuminance-
related variance from data obtained in tasks that
entailed illuminance changes. Second, and more
important, neural input unrelated to illuminance can be
estimated in relation to the timing of the illuminance-
related input. For three perceptual tasks, we were able
to recover plausible neural inputs into the first system,
thus furnishing insights into the neural circuits medi-
ating these responses. Specifically, the estimated inputs
portend that pupil responses to emotional words and
auditory oddballs result from cortical influences, while
responses to visual targets may originate more proxi-
mately (e.g., in the brain stem). Hence, an important
application of our model is that it allows inference
regarding the level of processing from which the inputs
to the pupil arise. Therefore, our illuminance-based
model differs from a previous model that directly
inferred an LTI system from empirically observed
‘‘attentional pulses’’ and consequently uses this system
to deconvolve pupil time series (Hoeks & Levelt, 1993;
Wierda et al., 2012). This earlier approach assumes a
common shape of all attention-related pupil signals. In
contrast, we capitalize on the notion of a common final
pathway and are thus able to harness illuminance-
related dynamics.

Perceptual and cognitive tasks typically modulate
pupillary dynamics on a rather short time scale (i.e.,
in the range of seconds). It has been shown that pupil
responses also vary on longer time scales (i.e., in the
range of hours). For example, circadian rhythm (as
measured by subjective sleepiness and salivary
melatonin levels) modulates pupil responses to
luminance inputs (Münch, Léon, Crippa, & Kawa-
saki, 2012). Relatedly, task-induced fatigue reduces
stimulus-evoked pupil responses (Hopstaken, van der
Linden, Bakker, & Kompier, 2015). Our LTI-based
model could be easily used to quantify whether these
effects reflect different amplitudes of the same
response functions or whether the shapes of the
response functions themselves change. Elucidating
these effects may inform our understanding of the
noradrenergic system, since circadian rhythms and
fatigue depend in part on noradrenaline (Hopstaken
et al., 2015).

In sum, we provide an explicit psychophysiological
model for peripheral pupil responses. This is a
prerequisite for specifying the exact neural inputs that
drive cognitive pupil responses. If the pupil is a
window into cognition, we hope our model furnishes a
solid frame.

Keywords: psychological model, response function,
general linear convolution model, auditory oddball,
emotional words, visual detection
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Münch, M., Léon, L., Crippa, S. V., & Kawasaki, A.
(2012). Circadian and wake-dependent effects on
the pupil light reflex in response to narrow-
bandwidth light pulses. Investigative Ophthalmolo-
gy & Visual Science, 53(8), 4546–4555. [PubMed]
[Article]

Murphy, P. R., Robertson, I. H., Balsters, J. H., &
O’Connell, R. G. (2011). Pupillometry and P3
index the locus coeruleus-noradrenergic arousal

function in humans. Psychophysiology, 48(11),
1532–1543, doi:10.1111/j.1469-8986.2011.01226.x.

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh,
K., Heasly, B., & Gold, J. I. (2012). Rational
regulation of learning dynamics by pupil-linked
arousal systems. Nature Neuroscience, 15(7), 1040–
1046.

Park, J. C., & McAnany, J. J. (2015). Effect of stimulus
size and luminance on the rod-, cone-, and
melanopsin-mediated pupillary light reflex. Journal
of Vision, 15(3):13, 1–13, doi:10.1167/15.3.13.
[PubMed] [Article]

Paulus, P., Castegnetti, G., & Bach, D. R. (2016).
Modelling event-related heart period responses.
Psychophysiology, E-pub ahead of print, doi:10.
1111/psyp.12622.

Prehn, K., Kazzer, P., Lischke, A., Heinrichs, M.,
Herpertz, S. C., & Domes, G. (2013). Effects of
intranasal oxytocin on pupil dilation indicate
increased salience of socioaffective stimuli. Psy-
chophysiology, 50(6), 528–537, doi:10.1111/psyp.
12042.

Preller, K. H., Herdener, M., Schilbach, L., Stämpfli,
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Appendix: Mathematical rationale
for approximating pupil responses
with LTI systems

To motivate our approach, we derive here a well-
known result from linear systems theory. Inputs f are
convolved with impulse response functions (RFs) g to
obtain the predicted time series (in continuous time).
To derive the impulse RFs from observed responses

elicited by a sudden change in illuminance, we have to
perform the inverse operation (i.e., taking the time
derivative of the observed response).

Recall that the definition of the convolution is

ðf*gÞðtÞ ¼
def
Z ‘

�‘

fðsÞgðt� sÞ ds:

Here, t is time and s is a dummy variable. Let f be the
input into the LTI system and g be its characteristic
impulse RF. According to the differentiation rules for
convolution, the derivative of the convolution of f and
g equals the convolution of g and the derivative of f:

d

dt
ðf*gÞðtÞ ¼

df

dt *g:

Combining these two equations gives

d

dt
ðf*gÞ ¼

Z‘
�‘

dfðsÞ
ds

gðt� sÞds:

A sudden change in illuminance can be described
with a step RF

fðtÞ ¼ HðtÞ ¼ 0; t, t0
1; t � t0

;

�

with

d

dt
HðtÞ ¼ dðtÞ;

where d(t) is a Dirac delta function. According to the
definition of a delta function, inserting this yields

d

dt
ðf*gÞðtÞ ¼

Z‘
�‘

d

ds
HðsÞgðt� sÞds

¼

Z‘
�‘

dðsÞgðt� sÞds ¼ gðtÞ:

This shows that the derivative of the response to a
step input is the RF g.
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