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Abstract: Previous studies on edge illumination (EI) X-ray phase-contrast 
imaging (XPCi) have investigated the nature and amplitude of the signal 
provided by this technique. However, the response of the imaging system to 
different object spatial frequencies was never explicitly considered and 
studied. This is required in order to predict the performance of a given EI 
setup for different classes of objects. To this scope, in the present work we 
derive analytical expressions for the contrast transfer function of an EI 
imaging system, using the approximation of near-field regime, and study its 
dependence upon the main experimental parameters. We then exploit these 
results to compare the frequency response of an EI system with respect of 
that of a free-space propagation XPCi one. The results achieved in this work 
can be useful for predicting the signals obtainable for different types of 
objects and also as a basis for new retrieval methods. 
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1. Introduction 

Edge illumination (EI) X-ray phase-contrast imaging (XPCi) has been developed and 
investigated during recent years at University College London [1–4]. Besides being applicable 
at synchrotron radiation (SR) facilities [5,6], EI is naturally suited for laboratory 
implementations, thanks to its applicability to divergent beams [2], its low coherence 
requirements [7,8], and the robustness to mechanical and thermal instabilities [9]. Therefore, 
the technique holds potential for a variety of applications in several fields, including clinical 
diagnostics. 

A number of publications have been dedicated to the modelling of the technique, which 
were aimed at studying the performance of the technique and its dependence upon the setup 
parameters (e.g. in terms of sensitivity and spatial resolution) on the one hand [6–8,10,11], 
and at developing efficient retrieval algorithms on the other [3,6,7,12,13]. However, the 
response of an EI setup to different object spatial frequencies has not been explicitly studied. 
A formalism based on the contrast transfer function (CTF), which describes how efficiently 
each object frequency is transferred to the image, is naturally suited to this scope. In this 
work, we demonstrate that, under the approximation of near-field regime, a CTF can be 
defined and calculated for EI. We then exploit this formalism to compare EI with a well-
known XPCi technique, free-space propagation (FSP) [14–17], which is currently widely used 
at both SR facilities and in laboratory setups with microfocal sources. 

The next section is dedicated to deriving an analytical expression for the EI CTF, while 
section 3 validates this approach through a comparison with the full wave optics formalism. 
An expression for the FSP CTF is obtained in section 4, and subsequently used in section 5 to 
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compare the performance of EI and FSP. Conclusions are given in section 6. See Table 1 for 
glossary. 

2. Contrast transfer function for edge illumination XPCi 

Figure 1 illustrates the working principle of the EI technique. The incoming beam is 
collimated by a slit of aperture a (henceforth named “pre-sample slit”) before hitting the 
sample. A second slit of aperture d is placed before the detector (the so-called “detector slit”). 
This is partially misaligned with respect to the first, so that a fraction of the beam can hit the 
detector, while the remaining part is stopped. A typical operating condition is represented by 
the so-called 50% illumination, where half of the beam is absorbed by the slit and the other 
half is incident on the detector. Assuming the detector aperture is sufficiently large, this 
condition is realized when one edge of the detector aperture, ey , is aligned with the centre of 

the aperture of the sample mask (see Fig. 1). In addition to attenuation, the presence of the 
object can introduce beam refraction, the latter being proportional to the spatial derivative of 
the phase shift φ  through 2y yθ λ π φΔ = ⋅∂ ∂ , where λ  is the X-ray wavelength. Refraction 

can alter the proportion between detected and undetected photons. In fact, photons previously 
incident on the absorbing region of the slit can be deviated onto the detector (increasing the 
recorded signal), or in the opposite case photons previously counted by the detector can be 
deviated out (decreasing the recorded signal). 

 

Fig. 1. Schematic diagram of the EI setup when implemented with a conventional X-ray tube 
(not to scale). 

A two-dimensional image is then formed by scanning the sample through the collimated 
beam, in the direction orthogonal to the slits. When extended beams like those generated by a 
conventional X-ray tube are used, however, this scan can be avoided, by replacing the slits 
with masks featuring a plurality of apertures, which replicate the EI principle all over the field 
of view. The distance between adjacent sampling points, in this latter case, is equal to the 
period of the pre-sample mask. If higher sampling rate is needed, a procedure known as 
dithering can be additionally performed: this consists in moving the sample in sub-pixel steps, 
in acquiring one image at every position, and in combining these to provide a final, more 
finely sampled image. This procedure leads to increased spatial resolution, down to the 
intrinsic limit of the imaging system [10]. Since from a point of view of the image signal the 
“single slit” and “mask” geometries are equivalent (as far as each aperture pair is sufficiently 
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far from the neighbouring ones, so that they can be considered independent), in the following 
we will consider the simple case of single sample and detector slits. 

If we neglect the direction parallel to the apertures (where the signal is not affected by the 
presence of the slits [10]), the signal recorded by the detector for each sample scan position p 
can be written as [18]: 

 ( ) ( ) ( ),;
e

e

y d

EI point s py
S p dy I y p g y

+
 = ∗   (1) 

i.e. as the integral of the beam intensity falling within the detector aperture region. ( ),s pg y  

represents the projected source intensity distribution, assumed for simplicity to be Gaussian. 

This is equal to ( ) ( ) ( )1
2 2

, , ,2 exp 2s p s p s pg y yσ π σ
−

= ⋅ − , where ( ), 2 1s p sz zσ σ= ⋅ , sσ  is the 

standard deviation of the source intensity distribution, 1z  is the source-to-sample distance and 

2z  the sample-to-detector distance. 

 ( ) ( ) ( ) ( )
2

1
0;

defpoint zI My p M I q y p m y h y−= − ⋅ ∗    (2) 

is the intensity (defined as the number of photons per unit length) incident on the detector slit 
in the case of an ideal point source [18]. 0I  is the intensity incident on the sample mask, 

( )1 2 1M z z z= +  indicates the geometrical magnification and 2defz z M=  is the so-called 

defocus distance. ( ) ( ) ( )1 2 2; exp exp 2zh y ikz i z iky zλ λ=     is the one-dimensional Fresnel 

propagator, where 2k π λ=  is the wave number. ( ) ( ) ( )( )expq y T y i yφ=  is the object 

complex transmission function, where T  is the transmission, and ( ) ( )am y rect y=  is a 

rectangular function describing the aperture of the sample mask, defined as 1 in the range 

[ ]2, 2a a−  and 0 elsewhere. 

In recent work [8], we demonstrated how the full wave optics treatment (represented by 
Eqs. (1) and (2)) can be substantially simplified in the case of near-field regime, if the well-
known transport of intensity equation (TIE) is used to approximate the intensity incident on 
the detector mask [19]. The TIE, which has been used extensively in the framework of FSP, is 
valid for sufficiently small propagation distances and sufficiently slowly varying object 
structures (i.e. for limited object spatial frequency) [17]. 

In particular it was found that, under these assumptions, the transmission and refraction 
signals can be calculated simply as a convolution between the relevant object property and 
appropriate point spread functions (PSF), i.e [8]: 

 ( ) [ ]( ) ( )1
0 0EI T RS p I T f p I k T f p

y

φ−  ∂= ∗ + ∗ ∂ 
 (3) 

where Tf  and Rf  are the position-dependent transmission and refraction sensitivity 

functions, respectively, which depend on the setup geometry through: 

 ( ) ( ) ( ), 2T s r d M e af y g rect y y M d M rect y = ∗ + + ⋅   (4) 

 ( ) ( ) ( ) ( ), ,R s r e s r e def af y g y M y g y M d M y z rect y = + − + + ⋅   (5) 
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( )2d M erect y y M d M− −  represents the detector aperture, while ( ) ( ), ,1 2s r s rg y σ π= ⋅  

( )2
,exp 2 s ry σ−  is the projected source distribution rescaled back to the object plane, with 

( ), 2 1 2 ,s r s pz z zσ σ= + ⋅ . Equations (3)-(5) will be the central focus of this work. 

In Fig. 2(a), we report examples of transmission and refraction sensitivity functions 

( )Tf y  and ( )Rf y , for a typical EI laboratory configuration. The following parameters were 

considered: z1 = 1.6 m, z2 = 0.4 m, source FWHM = 70 µm, a = 20 µm, d = 40 µm, and a 50% 
misalignment between sample and detector apertures (corresponding to the detector aperture 
edge being aligned with the centre of the sample aperture, i.e. a position 0ey = ). The two 

functions plotted in Fig. 2(a) represent the different weight of the various points within the 
illuminated region, in terms of producing the transmission and refraction signals on the image, 
respectively. As expected, the maximum weight for the refraction signal corresponds to the 
edge position ey  [8]. In Fig. 2(b), we report a typical signal profile obtained using the above 

TIE approach (Eqs. (3)-(5)) for a cylindrical object of 200 µm diameter. It can be seen that the 
edges of the object are highlighted by the positive and negative peaks due to refraction, while 
the object absorption produces a slight decrease of the measured signal within the wire. 

 

Fig. 2. (a) Examples of transmission and refraction sensitivity functions ( )
T

f y  and ( )
R

f y . 

(see text for the considered experimental parameters). (b) Example of EI signal measured in the 
case of a cylindrical object producing both absorption and refraction. 

Since we are mainly interested in determining how the phase contrast (rather than the 
attenuation contrast) varies at different spatial frequencies, we will consider here the case of a 
pure phase object. Equation (3) then reduces to: 

 ( ) ( )1
0 0EI T RS p I F I k f p

y

φ−  ∂= + ∗ ∂ 
 (6) 

where ( )T TF dyf y
∞

−∞
≡   is the so-called integral sensitivity function for the transmission 

signal. 
The image contrast for EI is then equal to: 

 ( ) ( ) ( ), 1 1

,

EI EI ref
EI T R

EI ref

S p S
C p F k f p

S y

φ− −−  ∂≡ = ∗ ∂ 
 (7) 

where ( ), 0EI ref EIS S yφ≡ ∂ ∂ =  is the signal recorded when no object is present in the beam. 

If the Fourier transform of both sides of Eq. (7) is taken, this convolution operation can be 
converted into a simple product, i.e.: 
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 { } { } { } ( ) { }1 1 2EI T y R EI yF C F k if F f F CTF f Fπ φ φ− −= ⋅ = ⋅  (8) 

where yf  is the spatial frequency along y, and where we have introduced a CTF for EI. The 

Fourier transform of the image contrast is thus simply equal to the product between the 

Fourier transform of the phase shift introduced by the object and the function ( )EI yCTF f . 

The latter function expresses how well each spatial frequency is transferred from the object to 
the image, and is thus very useful to estimate the performance of a given setup for different 
types of samples. 

Note that, in general, the refraction sensitivity function ( )Rf y  is not symmetric (see Eq. 

(5) and Fig. 4(b) in [8]). This, in turns, means that its Fourier transform is in general a 
complex function. However, we can make two simplifying approximations (which are quite 
easily satisfied in practice): 1) the detector aperture is larger than the beam incident on it, 2) a 
typical 50% illumination is considered. Under these conditions, the refraction sensitivity 
function can be approximated as: 

 ( ) ( ) ( ),R s r def af y g y z rect y= ⋅  (9) 

and is thus even. Therefore, its Fourier transform is also even and real. Since in this case 
2TF a= , the CTF is now equal to: 

 ( ) { }1 14EI y y RCTF f i a k f F fπ − −=  (10) 

Note that a purely imaginary CTF implies that the signal profile is shifted by one fourth of 
a period compared to the original phase profile (since a multiplication by ‘i’ in Fourier space 

corresponds to a shift of ( ) 1
4 yf

−
 in real space). If we take into account a sinusoidal phase 

profile, in fact, the maximum signal is not obtained at the position where the phase is 
maximum (at the peak of the sinusoid), but at the one where the refraction angle is (i.e. at the 
flank of the sinusoid). The explicit expression of the CTF can be obtained by developing the 
Fourier transform of the refraction sensitivity function: 

 ( ) { } { } ( ) ( ) ( )1 1 1 1 2 2 2
, ,

sin
4 4 exp 2

y

EI y def y s r a y def y s r y
y

af
CTF f i a k z f F g F rect f i a k z f f

f

π
π π σ π

π
− − − −

 
    = ∗ = ⋅ ∗ −     

(11) 

The CTF depends in a complicated way on the acquisition parameters, and in particular on 
the source blurring ,s rσ  and on the frequency yf . However, it is possible to study its 

behaviour in some limit cases, such as at low and high frequencies. 
In the case of low frequencies, the Fourier transform of the refraction sensitivity function 

tends to { }( ) ( )0R y R RF f f dyf y F= = ≡ , where RF  is the so-called integral sensitivity 

function for refraction [8]. The latter quantity was shown to be equal to [8]: 

 ( )2

,2

Ma

R def s r defMa
e

Ic
F z dyg y z Ma

y−

∂= =
∂  (12) 

where TIc F a=  is the so-called illumination curve [6]. Therefore, at low frequencies the 

CTF tends to: 

 ( ) 14EI y y def
e

Ic
CTF f i k f Mz

y
π − ∂=

∂
 (13) 
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and is thus proportional to the spatial frequency. By combining Eqs. (8) and (13), and noticing 

that { } { }12y yF if k Fθ π φ−Δ = , we see that: 

 ( ) ( )2

1
EI y

e

Ic
C p z p

Ic y
θ∂= Δ

∂
 (14) 

Equation (14) agrees with the expression obtained for the contrast in [6,7], if a linear 
approximation of the illumination curve is considered. This is not surprising: in fact, the 
refraction angle was assumed to be constant within the size of the sample aperture in [6,7], 
which indeed amounts to the same assumption of low object spatial frequencies employed to 
derive Eqs. (12)-(14). 

In the opposite case of high frequencies, instead, it can be proven numerically using Eq. 
(11) that the CTF does not converge to a constant value but keeps on oscillating around zero, 
with a constant amplitude (see also simulations in next section). In order to understand why 
the CTF does not converge despite the presence of source blurring, we need to remember that, 
in the expression for the refraction sensitivity function Rf  (Eq. (5)), the source blurring 

function multiplies (in real space) the rectangular function representing the pre-sample 
aperture. Thus, source blurring does not reduce the high frequencies content of Rf , as the 

sharp cut-off imposed by the pre-sample aperture is still present. On the contrary, the larger 
the source blurring, the larger is the step on the two sides of Rf  (see Fig. 2(a)) and thus the 

higher the CTF at high frequencies. However, this is not the case if the perfectly sharp mask 
apertures considered until now are replaced with mask apertures with smooth edges. This can 
be considered analytically by replacing, in Eq. (9), ( )arect y  with ( ) ( )a aprect y g y∗  and 

( ),s rg y  with ( ) ( ),s r apg y g My∗ , where ( )apg y  is a function that defines the smoothing of 

the edge transmission function (for simplicity here considered a Gaussian) [8]. We will see in 
the next section that this has the direct effect of damping high frequencies in the image, while 
leaving low frequencies almost unaffected. 

3. Comparison with full wave optics formalism 

In order to qualitatively evaluate the agreement between the CTF and wave optics formalisms, 
and appreciate the range of validity of the former, we carry out the following simulations. An 

object with sinusoidal phase profile ( ) ( )max sin 2 yy f yφ φ π=  is considered. The signal profile 

( )EIS p  is calculated through wave optics, using the code described in [18], for a wide range 

of object frequencies. The signal profile shows an oscillating trend, due to the input sinusoidal 
shape of the object. Examples of input phase profile and corresponding signal obtained using 
wave optics are reported in Fig. 3(a), in the case of a sinusoidal nylon object with 30 µm 
maximum thickness and 30 µm period. The following experimental parameters typical of 
laboratory implementations of EI were considered: z1 = 1.6 m, z2 = 0.4 m, source FWHM = 70 
µm, pixel size = 100 µm, a = 20 µm, d = 40 µm, E = 40 keV (refractive index of nylon at this 
energy is δ = 1.67 · 10−7 [20]). Mask edges are assumed to be perfectly sharp. A very small 
dithering step (0.1 µm) is used in the simulations, in order to exclude any artefact due to 
undersampling (e.g. aliasing). We see that a shift is present between the phase and signal 
profiles, as the maximum signal arises where the refraction angle (proportional to the first 
derivative of the phase profile), and not the phase itself, assumes its maximum value. 

At each frequency, the quantity ,max maxEIC φ , where ,maxEIC  is the peak contrast of the 

oscillating signal profile obtained using wave optics, can be calculated and compared with the 
absolute value of the CTF obtained in the near-field approximation (Eqs. (10)-(11)). Note that 
CTF  effectively represents the (phase) modulation transfer function of the imaging system 
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[21]. CTF  profiles calculated with TIE and wave optics approaches are compared in Figs. 

3(b) and 3(c), in the case of sinusoidal nylon objects of maximum thickness of 1 µm and 50 
µm, respectively. The profiles oscillate as a function of the frequency and, as predicted in 
previous section for the TIE case, do not converge to zero at high frequencies. It can be seen 
from inspection of Eq. (5) that, in the approximation of very large source blurring, the 
refraction sensitivity function Rf  becomes a rectangular function. Therefore, according to Eq. 

(11), the positions of the maxima of the CTF  correspond to the points ( ) 1 12yf a na
− −= + , 

with n = 0,1,2.., where the modulus of the sinus function is maximized. The minima, instead, 
correspond to ( )1 1yf a n−= + , where the sinus function is equal to zero. Intuitively, this can 

be understood by noting that, if the object period is a submultiple of the aperture size, half of 
the illuminated object refracts towards the detector aperture, and the other half towards the 

area covered by the detector mask, thus resulting in a contrast equal to zero. ( ) 1

,0 2yf a
−= , 

corresponding to the first maximum, can be considered as a fundamental frequency of the 
setup (note it is only dependent on the sample mask aperture). It separates, in fact, the low-
frequency region where the CTF is proportional to the frequency (approximation considered 
in [6,7] and shown here in Eq. (13)) from the high-frequency region where the CTF has an 
oscillating behaviour. Note also that, up to the first zero of the CTF at ,02 yf , the contrast 

maintains always the same sign. Every zero-crossing of the plot corresponds, however, to a 
contrast inversion in the image (this is better seen in profiles of CTF in Fig. 5(a)). 

 

Fig. 3. (a) Phase and signal profiles for a sinusoidal nylon object with 30 µm maximum 
thickness at 40 keV, calculated using rigorous wave optics (see text for details on experimental 

parameters). Comparison between CTF  calculated in near-field approximation and the 

corresponding quantity from wave optics simulations, for: a) maximum object thickness of 1 
µm, b) maximum object thickness of 50 µm. 

In our example, the source blurring is not very large and, as a consequence, the positions 
of the maxima and minima are shifted by a few µm with respect to the values calculated 
above in the approximation of very large source blurring. However, the same behaviour holds, 
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with the CTF  oscillating at high frequencies without converging to zero. It can be seen that, 

at low and intermediate frequencies, there is perfect agreement between the wave optics and 
the CTF formalisms, highlighting the validity of our approach. The two profiles, however, 
become increasingly different at high frequencies, as expected. This is due to diffraction 
effects not accounted for by the TIE formalism (which is indeed based on geometrical optics). 
It can also be noted that the level of disagreement is different for the two object thicknesses. 
As predicted in [8], in fact, the accuracy of the TIE formalism improves not only for 
decreasing frequencies, but also for smaller signal amplitudes. The effect of energy is also 
noteworthy: it can be shown (data not reported here), in fact, that the accuracy of the TIE 
approximation improves at high x-ray energies and becomes worse at low x-ray energies, as 
in the latter case diffraction effects are larger. 

The above simulations considered a fixed object thickness. However, in some cases it 
might be more useful to assume the object thickness and spatial frequency to be related, for 
instance as 1

ythickness f −= . In fact, at least for some classes of objects (such as cylindrical or 

spherical, like certain structures encountered in biological tissues), it is reasonable to assume 
that object details that are thin along the beam direction will also contain a larger proportion 
of high frequencies in the transverse direction. Note that this is equivalent to assuming a fixed 
refraction angle, as this is proportional to the first derivative of the phase and thus to 

ythickness f⋅ . This case is represented by simulations reported in Fig. 4(a). The agreement 

between wave optics and TIE profiles is improved compared to the case of a fixed object 
thickness of 50 µm, as the simultaneous presence of large object thicknesses and high 
frequencies is avoided. 

Until now we have considered the case of ideal, perfectly sharp mask apertures. However, 
the masks will in practice exhibit some degree of smoothing which, in turn, will tend to wash 
out the high frequencies. In order to show the importance of this effect, the profiles shown in 
Fig. 3(c) (maximum object thickness of 50 microns) are repeated for smooth apertures in Fig. 
4(b). The standard deviation of the Gaussian function describing the edge smoothing was 
assumed to be equal to 1 µm. Low frequencies are not affected by this smoothing, while high 
frequencies quickly vanish, leading to significantly improved agreement between the two 
profiles. 

 

Fig. 4. Comparison between CTF  calculated in near-field approximation and the 

corresponding quantity from wave optics simulations (laboratory setup, see text for details): a) 

in the case of a maximum object thickness dependent on the frequency, with 
1

y
thickness f

−= , 

b) in the case of a fixed maximum object thickness of 50 µm, but with smoothed mask 

apertures ( 1
ap

mσ μ= ). 

A few words need also to be spent on the effect of sampling. In the simulations presented 
above, a very small dithering step was considered, thus providing the CTF obtainable in ideal 
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conditions. In a practical experimental situation, however, the ideal signal profile (expressed 
by Eq. (3)) is only sampled in a finite number of points, with the distance between adjacent 
points in the final image being given by the period of the sample mask (or by the dithering 
step, if the dithering procedure is performed). This might give rise to so-called aliasing 
artefacts. In order to ensure that this effect does not take place, one should use a dithering step 
smaller than ( )1 2 maxf , where ( )min ,max o if f f= , of  is the largest non-negligible frequency 

in the object, and if  is the largest non-negligible frequency of the imaging system CTF. A 

detailed analysis on the effects of aliasing for EI, as well as an efficient strategy to eliminate 
them, are presented in [22]. 

4. Contrast transfer function for free-space propagation XPCi 

In analogy with what done for EI in section 2, we will consider here the case of the near-field 
regime. Under this condition, the TIE can be used to approximate the intensity incident on the 
detector as [17,19]: 

 ( ) ( ), ,FSP FSP point s pI y I g y = ∗   (15) 

The function ,s pg , defined in section 2, is the projected source intensity distribution, 

assumed to be Gaussian. ,FSP pointI  represents the intensity obtained with a point source, which 

is equal to [17,19]: 

 ( ) ( ) ( ) ( )
2

1 1 1
, 0 0 2FSP point defI My M I T y M I k z T y y

y

φ− − − ∂= −
∂

 (16) 

where 0I  is the intensity incident on the sample. Note that, in the above equation, we have 

made the assumption of slowly varying object attenuation, which enables us to neglect the 
phase-attenuation cross term in the TIE. 

The signal recorded at each detector pixel position p can then be expressed as a 
convolution of the FSP intensity with the pixel response function: 

 ( ) [ ]( )FSP FSP detS p I f p= ∗  (17) 

We will assume in the following that the detector point-spread function is of the form: 

 ( ) ( )det d pf y g rect yΔ = ∗   (18) 

where ( )dg y  indicates a normalized Gaussian function of standard deviation dσ , and 

( )prect yΔ  is a rectangular function of width equal to the pixel size pΔ , which is defined as 1 

in the range [ ]2, 2p p−Δ Δ  and 0 elsewhere. The Gaussian function expresses a possible 

blurring of the beam by the detector components (such as a scintillator, for instance), while 
the rectangular function expresses the subsequent binning process in the different detector 
pixels. 

Combining Eqs. (15)-(18), and assuming the transmission function to be approximately 
constant within each pixel, gives: 

 ( ) ( ) ( ) ( )
2

1 1
0 0 ,2FSP def s dS p I pM T p I k z T p f p

y

φ− −  ∂= Δ − ∗ ∂ 
 (19) 
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where ( ) ( ), , ,s d s r d r p Mf y g g rect yΔ = ∗ ∗   is the combined source-detector point-spread 

function referred to the object plane coordinates, and ,d rg  is a normalized Gaussian function 

of standard deviation d Mσ . 

Consistently with what done for EI, we consider here the case of no object absorption. The 
image contrast is then equal to: 

 ( ) ( ) ( )
2

, 1 1
,2

,

FSP FSP ref
FSP def s d

FSP ref

S p S
C p k M p z f p

S y

φ− −−  ∂≡ = − Δ ∗ ∂ 
 (20) 

where ( )2 2
, 0FSP ref FSPS S yφ≡ ∂ ∂ =  is the signal recorded with no object in the beam. Taking 

the Fourier transform of both sides of Eq. (20) allows transforming the convolution operation 
into the following product: 

 { } { } { } ( ) { }1 1 2 2
,4FSP def y s d FSP yF C k M p z f F F f CTF f Fπ φ φ− −= − Δ ⋅ = ⋅  (21) 

where we have introduced the following CTF for FSP: 

 ( ) { }1 1 2 2
,4FSP y def y s dCTF f k M p z f F fπ− −≡ − Δ  (22) 

By developing the Fourier transform of the FSP system response function in Eq. (22), we 
can rewrite the CTF as: 

 ( ) ( ) ( )1 1 1 2 2 2 2
, ,4 sin exp 2FSP y def y y d r s r yCTF f k M p z f f pM fπ π σ σ π− − −  = − Δ Δ ⋅ − +  (23) 

It is useful to note that, at low frequencies, 2
FSP yCTF f∝ , as a direct consequence of the 

fact that contrast in FSP is proportional to the second spatial derivative of the phase. Thus, 

FSPCTF  is equal to zero at 0yf = . At high frequencies, FSPCTF  also goes to zero, due to the 

damping effect of the exponential, representing the loss of spatial resolution due to the 
imaging system. 

Like for the EI technique, also for FSP the problem of aliasing might arise. In fact, in a 
practical experiment, the signal (expressed by Eq. (19)) is only sampled in a finite number of 
points p: in this case, the distance between adjacent points is equal to the demagnified pixel 
size, i.e. p MΔ . In order to ensure that this effect does not take place, like for EI, the 

sampling rate should be higher than 2 maxf , where ( )min ,max o if f f= , of  is the largest non-

negligible frequency in the object, and if  is the largest non-negligible frequency of the 

imaging system CTF. It is worth mentioning that a procedure similar to dithering in EI could 
be adapted to the case of FSP, whereby the sample is scanned in sub-pixel steps and multiple 
images are acquired and combined. This would enable correctly capturing the various object 
frequencies, and eliminate possible aliasing artefacts. 

5. Comparison between EI and FSP transfer functions 

We can now proceed to calculate the ratio between the EI and FSP contrast transfer functions, 
as a function of spatial frequency. Not only does this allow comparing the amplitude of the 
signals in the two techniques, but also how different object spatial frequencies are transferred 
to the image in the two cases. 

Using Eqs. (10)-(11) and (22)-(23), this ratio can be written, for perfectly sharp masks, as: 
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 ( ) { }
{ }

( ) ( )

( ) ( )

2 2 2
,

1

1 1 2 2 2 2
, , ,

sin
exp 2

sin exp 2

y

s r y
yREI

y
FSP def y s d y d r s r y

af
i p f

fia F fCTF
f

CTF M p z f F f aM f pM f

π
σ π

π

π π σ σ π

−

− −

 
  Δ ⋅ ∗ −   = = −
 − Δ Δ ⋅ − + 

(24) 

We first note that, within the near-field approximation considered here, the two CTFs are 
only dependent on the geometrical parameters of the employed setups and on the frequency, 
while they are independent of energy. This comes directly from the fact that the near-field 
approximation is based on geometrical optics. The expression in Eq. (24) and its dependence 
upon the various parameters is rather complicated. However, it is possible to identify some 
interesting limiting cases. In particular, it is instructive to look at the effect of low and high 
spatial frequencies. 

At low frequencies, we can exploit the result obtained in Eq. (12) for { }RF f  to get, from 

Eq. (24): 

 ( ) ( )
1 1

1sin
eEI

y y
FSP ey

i p Ic yCTF Ic
f i f M

CTF yf pM
π

π
− −

−

Δ ⋅∂ ∂ ∂= − −
∂Δ

 (25) 

It is easy to see that, for frequencies tending to zero, the modulus of this ratio tends to 
infinite. This means that the amplitude of the EI signal is much larger than the FSP one at low 
frequencies. Note that this follows directly from the fact that, to first approximation, EI 
contrast is proportional to the first derivative of the phase, while FSP contrast is proportional 
to its second derivative. 

In the opposite case of high frequencies, the ratio also goes to infinite, as the denominator 
quickly goes to zero due to the exponential, while it can be shown numerically that the 
numerator only goes to zero as 1

yf − . Whether this range of frequency is relevant in a given 

experimental situation will ultimately depend on both the sample (whether it contains 
structures with significant high frequencies) and on the level of stochastic noise in the image. 
Signals at these frequencies, in fact, are typically smaller in amplitude and will be measurable 
only if they are larger than the noise level. For intermediate frequencies, the value of the ratio 
between the two CTFs assumes finite values larger or smaller than 1, depending on the chosen 
parameters. 

If smooth mask edges are considered, however, Eq. (24) is rewritten as: 

 ( )

( ) ( ) ( )( )
( ) ( )

2 2 2 2 2 2 2 2
,

1 2 2 2 2
, ,

sin
exp 2 exp 2

sin exp 2

y

ap y s r ap y
y

EI
y

FSP y d r s r y

af
i p f M f

fCTF
f

CTF aM f pM f

π
σ π σ σ π

π

π σ σ π

−

−

 
  Δ ⋅ ⋅ − ∗ − +   = −
 Δ ⋅ − + 

(26) 

where apσ  represents the smoothing of the transmission function of both the sample and 

detector masks. Since typically 1
,ap s rM σ σ− , the effect on the low frequencies is negligible. 

Moreover, even if high frequencies are affected by the mask smoothing, the ratio between 

CTFs still goes to infinite as in the case of sharp apertures, since typically 2 2
, ,ap d r s rσ σ σ+ . 

Another interesting aspect to consider is the dependence on different system spatial 
resolutions. If the detector resolution is high ( 0pΔ →  and , 0d rσ → ) and the source blurring 

is small ( , 0s rσ → ) (but the geometrical optics approximation can still be used), then the ratio 

between EI and FSP CTFs goes to zero, i.e. FSP provides much larger signals than EI. 
Conversely, for large pixel sizes and large source blurring, the ratio tends to infinite as the 
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FSP signal decreases very rapidly. This is not surprising, as it is well known that FSP is 
highly sensitive to changes in the system spatial resolution [23–25]. 

The effect of sampling should also be taken into account. As mentioned in previous 
sections, in fact, the CTF approach implicitly assumes that the sampling rate is sufficiently 
high to prevent aliasing artefacts [22]. As we have seen, the necessary sampling rate will 
depend on both the frequency content of the imaging system CTF and the frequency content 
of the sample itself. The sampling rate is determined by the mask period for EI and by the 
pixel size for FSP, but for both techniques it can be artificially improved by introducing an 
additional scan of the object (in the case of EI, this procedure is known as dithering). 
However, this additional scan inevitably leads to longer acquisition times and higher doses to 
the sample, as a larger number of frames needs to be acquired. 

In the following, we will present calculations of CTFs for a range of different spatial 
frequencies, in order to exemplify the above findings. For EI, we consider the following 
experimental parameters, corresponding to typical laboratory implementations of the 
technique: z1 = 1.6m, z2 = 0.4m, source FWHM = 70 µm, d = 40 µm, apσ  = 0.5 µm (note that 

the contrast is independent of the pixel size, as long as cross-talk between two adjacent 
apertures is avoided). In Fig. 5(a), we show CTF profiles obtained using different sample 
aperture sizes: a = 15 µm, 20 µm, and 30 µm. The plots clearly show the strong dependence 
of the CTF upon the sample aperture. The overall amplitude of the CTF is modified, with 
smaller apertures corresponding to higher contrast. This agrees with previous findings 
obtained considering only the case of low frequencies [26]. Moreover, also the position of the 
minima and maxima is changed: for instance, the main maximum is shifted towards higher 
frequencies when the aperture size is decreased. Extrapolation for smaller aperture sizes than 
those presented here, however, should be done with care. It is expected, in fact, that TIE will 
lose accuracy for smaller aperture sizes, and as a result the real contrast improvement will be 
inferior to that predicted by TIE. Moreover, the use of small sample apertures reduces the flux 
on the sample and detector, thus requiring an increase in the exposure time to compensate for 
the decrease in the photon statistics. Therefore, an optimal value for the aperture is expected 
to exist, depending on the specific application. 

 

Fig. 5. CTFS calculated for different XPCi laboratory setups: a) EI with sample aperture sizes 
of 15, 20 or 30 µm (see text for the values of the other experimental parameters), b) FSP with 
different source-detector combinations: source FWHM = 70 µm and pixel size = 50 µm, source 
FWHM = 70 µm and pixel size = 20 µm, source FWHM = 40 µm and pixel size = 10 µm (see 
text for the values of the other experimental parameters). 

In Fig. 5(b), we show curves obtained for FSP. The same distances z1 = 1.6 m and z2 = 0.4 
m are used. Three different cases are considered: i) source FWHM = 70 µm, pixel size = 50 
µm, ii) source FWHM = 70 µm, pixel size = 20 µm, iii) source FWHM = 40 µm, pixel size = 
10 µm. In all three cases, the detector PSF is modelled as a box function (of width equal to the 
pixel size) convolved with a Gaussian function of standard deviation dσ equal to half the 

pixel size. By examining the plots, we can see that the CTF is always equal to 0 at 0yf =  
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(due to the dependence of the contrast upon the second derivative of the phase), and goes to 
zero again, rapidly, at high frequencies (due to the finite spatial resolution of the system). 
Moreover, as expected, the CTF is strongly dependent on the spatial resolution of the imaging 
system, determined by the source size and the detector PSF. Higher spatial resolution 
corresponds to higher image contrast, and also to a shift of the CTF peak towards higher 
frequencies. However this comes with a price, in particular lower photon flux (if a small 
source is used) and smaller field of view (for a small pixel size). We also would like to note 
that the arrangement here presented for FSP is not necessarily an optimized one, and has just 
been chosen for illustrative purposes. Comprehensive studies on the optimization of a FSP 
setup, depending on the required spatial resolution and contrast, can be found in the literature 
(see, for instance [16,17,24,25]). 

 

Fig. 6. Comparison of EI and FSP CTFs. a) EI setup with source FWHM = 70 μm and sample 
aperture = 20 μm sample aperture, “moderate resolution” FSP setup with source FWHM = 70 
µm and pixel size = 50 µm, “high resolution” FSP setup with source FWHM = 40 µm and 

pixel size = 10 µm. b) Ratio 
FSP EI

CTF CTF  in the case of the “moderate resolution” FSP 

setup. c) Ratio 
FSP EI

CTF CTF  in the case of the “high resolution” FSP setup. Note that, in the 

latter plot, the two peaks correspond to the zeros of 
EI

CTF . 

In Fig. 6(a), we compare CTF  profiles for the two techniques in a few selected cases: i) 

the “moderate resolution” FSP setup with source FWHM = 70 µm and pixel size = 50 µm, ii) 
the “high resolution” FSP setup with source FWHM = 40 µm and pixel size = 10 µm, and iii) 
the EI setup with FWHM = 70 µm, a = 20 µm. Since these profiles are symmetric with 
respect to 0yf = , only positive frequencies are shown in the graph. Plots of FSP EICTF CTF , 

obtained considering either the moderate resolution or the high resolution FSP setups, are 
shown in Figs. 6(b) and 6(c), respectively. We see that, in a system with low/moderate spatial 
resolution, EI outperforms FSP at all frequencies ( FSP EICTF CTF  is always less than 1). In 

order to achieve higher contrast than EI, a high-resolution system for FSP is needed. We need 
to note that, in this case, FSP also presents an advantage in terms of sampling with respect to 
EI. In fact, the same sampling rate necessary to avoid aliasing artefacts might be achieved in 
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one exposure using a small pixel size in FSP, but might require the acquisition of several 
frames (dithering procedure) for an EI system featuring a large mask period. For these 
reasons, a spatial resolution threshold therefore appears to exist, at which the signals provided 
by the two techniques are comparable: at values smaller than this, FSP gives the highest 
signal, while at larger values EI prevails. Besides providing larger signals for moderate 
system spatial resolution, EI also gives larger signals for low object frequencies, since the 
CTF goes to zero as EI yCTF f∝  while 2

FSP yCTF f∝ . This further confirms that EI might be 

more suited for imaging larger samples, while FSP might be advantageous for smaller ones. 

6. Conclusions 

We have developed the concept of a contrast transfer function for EI XPCi, under the 
geometrical optics approximation. The validity of this approach has been confirmed by 
comparison with more rigorous wave optics calculations. The agreement between the 
geometrical and wave optics methods depends on the experimental setup under consideration 
and on the object itself. In particular, it improves for high X-ray energies, larger mask 
apertures, larger source blurring, smaller phase variations in the sample and lower spatial 
frequencies. 

The expression obtained for the EI CTF was used to study the influence of the various 
experimental parameters. The CTF also enables estimating the contrast in the cases of both 
low and high object spatial frequencies. It was found that, at low frequencies, the CTF is 
proportional to the spatial frequency, which implies that the image contrast is proportional to 
the first derivative of the phase, or equivalently to the refraction angle. This agrees with 
previous models for phase retrieval in EI [6,7,13]. However, the situation is very different at 
high frequencies: the CTF does not grow linearly but, after a certain threshold frequency, it 
shows an oscillating behaviour. Since previous retrieval algorithms do not take this effect into 
account, they are prone to underestimating the high frequency components of the phase, 
effectively resulting in a blurring of the retrieved phase profile compared to the “true” one. 
The CTF should be taken into account for the correct quantitative retrieval of refraction 
angles generated by high frequency phase variations within the object. 

The expression for the EI CTF was then used to compare the frequency response of the EI 
and FSP XPCi techniques. It was found that the ratio between the two CTFs strongly depends 
on the spatial frequency. Low object frequencies provide much higher signals in EI than in 
FSP, which is due to FSP being to first approximation sensitive to the second derivative of the 
phase, rather than to the first derivative such as EI. Moreover, at high spatial frequencies the 
CTF tends to zero faster in FSP than in EI. At intermediate frequencies, the ratio between the 
two CTFs can assume values smaller or higher than 1, depending on the experimental 
parameters of the setup. In particular, the effect of the setup spatial resolution, driven by the 
detector and source blurring, is particularly strong. While the EI CTF is independent of the 
detector pixel size and decreases slowly with increased source blurring, FSP is very sensitive 
to changes in both quantities, with a sharp decrease of the signal at low resolutions. It thus 
appears that, provided a detector with a small pixel size and a source with a very small focal 
spot are available, the FSP technique can provide better results when high resolutions are 
needed (such as for small samples/details), while EI seems to be better suited for 
low/moderate resolutions (typically corresponding to larger samples/details). 

Besides being useful for predicting the performance and frequency response of different 
EI and FSP setups, we believe this formalism could also form the basis of novel phase 
retrieval algorithms aimed at extracting object variations on a scale smaller than the size of 
the aperture. Future work will be dedicated to this subject. 
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Table 1. Glossary. 
a: size of the aperture in the sample mask 
d: size of the aperture in the detector mask 

2z : sample-to-detector distance 

M: geometrical magnification 

defz : defocusing distance 

ey : position of the lower edge of the detector aperture 

p: sample scan position 

,s pg : source intensity distribution projected onto the detector plane 

,s rg : projected source intensity distribution rescaled back to the object plane 

apg : function defining the smoothing of the edge transmission function 

dg : function defining the detector blurring 

,d rg : function defining the detector blurring, rescaled back to the object plane 

detf : point-spread function of the detector, including both blurring from detector components and pixel 

binning. 

,s df : combined source-detector point-spread function referred to the object plane coordinates 

Tf : transmission sensitivity function 

Rf : refraction sensitivity function 

TF : integral sensitivity function for transmission signal 

RF : integral sensitivity function for refraction signal 

Ic : illumination curve 
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