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ABSTRACT

Intensive studies have been conducted to understand the anisotropy of solar wind turbulence. However, the
anisotropy of Elsässer variables (Z) in 2D wave-vector space has yet to be investigated. Here we first verify the
transformation based on the projection-slice theorem between the power spectral density k kPSD ,2D( )^ and the
spatial correlation function r rCF , .2D( )^ Based on the application of the transformation to the magnetic field and
the particle measurements from the WIND spacecraft, we investigate the spectral anisotropy of Elsässer variables
(Z), and the distribution of residual energy E ,R Alfvén ratio RA, and Elsässer ratio RE in the k k,( )^ space. The
spectra k kPSD ,2D( )^ of B, V , and Zmajor (the larger of Z) show a similar pattern that k kPSD ,2D( )^ is mainly
distributed along a ridge inclined toward the k⊥ axis. This is probably the signature of the oblique Alfvénic
fluctuations propagating outwardly. Unlike those of B, V , and Z ,major the spectrum k kPSD ,2D( )^ of Zminor is
distributed mainly along the k⊥ axis. Close to the k⊥ axis, ER∣ ∣ becomes larger while RA becomes smaller,
suggesting that the dominance of magnetic energy over kinetic energy becomes more significant at small kP. RE is
larger at small kP, implying that k kPSD ,2D( )^ of Zminor is more concentrated along the k⊥ direction as compared to
that of Z .major The residual energy condensate at small kP is consistent with simulation results in which ER is
spontaneously generated by Alfvén wave interaction.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence in the solar wind
is considered to evolve a cascade of energy over different
scales caused by the nonlinear interaction between counter-
propagating Alfvén waves, which has been studied in detail by
asymptotic solution (Howes & Nielson 2013) and numerical
simulation (Nielson et al. 2013). The cascade is anisotropic
with the cascading direction mainly perpendicular to the local
mean magnetic field (e.g., Goldreich & Sridhar 1995). When
the oppositely directed Alfvén waves carry unequal energy, the
turbulence is imbalanced. Imbalanced weak (Galtier
et al. 2000; Lithwick & Goldreich 2003) and strong (Lithwick
et al. 2007) turbulence have been studied intensively. In some
theoretical studies, the energy spectrum of the Elsässer
variables (Z V b,=  b B

0
=

m r
) E have the same scaling

with different amplitudes. The scaling is E E k 3 2µ µ+ -
^
-

with the phenomenon of dynamic alignment (Perez &
Boldyrev 2009), and E E k 5 3µ µ+ -

^
- without the phenom-

enon of dynamic alignment (Lithwick et al. 2007). In the solar
wind, especially in fast streams, imbalanced turbulence is
usually observed (one of Z is dominating). We define the
dominant mode as Zmajor, which is typically the Alfvén wave
propagating outward from the Sun, while the nondominant
mode Zminor is weak and complicated. The nondominant mode
has been suggested to be the inward propagating Alfvén wave
at high frequencies and to be compressive events at low

frequencies (e.g., Bruno et al. 1996), or magnetic structures (Tu
& Marsch 1992, 1993).
Without temperature anisotropies and relative drifts, if the

MHD turbulence is only composed of counterpropagating
Alfvén waves without nonlinear interaction, the residual energy
E bR

2 2u= - would be zero. However in the solar wind,
outward propagating Alfvén waves are often observed, while
inward propagating Alfvén waves are rarely observed. Besides,
there are also many structures like tangential discontinuities in
the solar wind that may contribute more to magnetic
disturbances than the velocity fluctuations. These factors would
lead to the residual energy being nonzero. In the solar wind
turbulence, the residual energy at small scales near the
dissipation range is usually less than 0 (e.g., Belcher &
Davis 1971; Matthaeus & Goldstein 1982; Boldyrev
et al. 2012; Chen et al. 2013). This is also noted in simulations
(e.g., Grappin et al. 1983; Müller & Biskamp 2005; Gogober-
idze et al. 2012). The residual energy exhibits a power-law
behavior in the inertial range with a spectral slope of −2, as
revealed from observation (Chen et al. 2012) and simulation
(Boldyrev et al. 2011; Franci et al. 2015). In recent simulations,
the residual energy is concentrated at small kP (Boldyrev &
Perez 2009; Wang et al. 2011), which is probably sponta-
neously generated by interacting Alfvén waves (Wang
et al. 2011). Bavassano et al. (1998), Roberts et al. (1987),
and Wicks et al. (2011) showed a high residual energy at a low
frequency/small k from observation, however, they have not
investigated whether this is parallel to the magnetic field. The
distribution of the residual energy in the wave-vector space will
allow us to compare with these simulation results.
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The presence of a mean magnetic field may lead to spectral
anisotropy of MHD turbulence (Shebalin et al. 1983). Gold-
reich & Sridhar (1995) investigated the anisotropy in a
balanced strong MHD turbulence with vanishing cross-helicity,
revealing a spectrum perpendicular to the magnetic field of

k kE ,5 3( ) ~^ ^
- a parallel spectrum k kE ,2( ) ~ -

  and a scaling

relation k k2 3~ ^ based on the critical balance assumption, i.e.,
linear wave periods are comparable to the nonlinear turnover
timescales. The anisotropic power and scaling of magnetic field
fluctuations in the inertial range of high-speed solar wind
turbulence was first reported by Horbury et al. (2008), who
introduced the method to estimate the scale-dependent local B .0
The reduced spectrum has an index near −2 when 0BVq  and
an index near 5 3- when 90BVq  where BVq is the angle
between the magnetic field and the flow. Podesta (2009) gave
similar results using magnetic field measurements from
STEREO. Luo & Wu (2010) and Chen et al. (2011) also found
a similar conclusion for the magnetic structure function. When
the second-order structure function of the magnetic fluctuations
is decomposed into components perpendicular ( B2d ^) and
parallel ( B 2d  ) to the mean field, both components show
spectral index anisotropy between the ion and electron
gyroscales in the fast solar wind (Chen et al. 2010). At these
small scales the spectral index of B2d ^ is −2.6 at large angles
and −3 or steeper at small angles. This kind of spectral
anisotropy of solar wind turbulence in the inertial range is
probably related to the intermittency (Wang et al. 2014). Wicks
et al. (2011) studied the anisotropy of the Elsässer variables in
fast solar wind based on the reduced spectrum, finding that the
dominant Elsässer mode is isotropic at low frequencies but
becomes increasingly anisotropic at higher frequencies, while
the nondominant mode is anisotropic throughout.

The spectral anisotropy has been studied extensively based
on the reduced spectrum, while the anisotropy in wave-vector
space is relatively rarely studied. The K-filtering method has
been applied to the Cluster observations to investigate the
anisotropy in wave-vector space (e.g., Narita et al. 2010;
Sahraoui et al. 2010). However, this method is sensitive only to
a limited number of wave modes and the scales comparable to
the inter-spacecraft distance (Horbury et al. 2012). Based on
single spacecraft measurements, He et al. (2013) first
constructed the normalized power spectral density (PSD) of
magnetic field fluctuations (B) in 2D wave-vector space. They
found that the PSD of B shows an anisotropic distribution,
which is mainly characterized by a ridge distribution inclined
more toward k⊥ as compared to kP. The spectral anisotropy of
velocity and Elsässer variables in wave-vector space has not
been previously investigated. We will study them in this paper
using the method contributed by He et al. (2013). Moreover,
we will investigate the distribution of residual energy
E E E ,v bR = - Alfvén ratio R E

EA
v

b
= , and Elsässer ratio

R
E

EE
Z

Z

minor

major

= in the wave-vector space.

2. BENCHMARK TEST OF THE CONVERSION
BETWEEN CF2D AND PSD2D

To test the conversion between CF2D and PSD2D based on
the projection-slice theorem, we first assume a double Gaussian
distribution, a strong parallel component and a weak
perpendicular component, for CF2D using the formula given

below:
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Based on this assumption, there are three ways to obtain the
PSD .2D The first way is to get the PSD2D directly from the
corresponding formula:
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The second way is to do the transformation (PSD tomography
method) based on the projection-slice theorem. First, we make
the one-dimensional integration (1D-INT) of CF2D along the
direction (u¢) normal to k to get 1D-CF at each angle:

r r

u r u du

CF , CF cos

sin , sin cos . 3

k k

k k k

1D 2D( ) (

) ( )
òq q

q q q

=

- ¢ + ¢ ¢
-¥

+¥

Second, we calculate the Fourier transformation (FT) of the
1D-CF to get the corresponding slice of 2D-PSD at each angle:

k r ikr drPSD , CF , exp . 4k k2D 1D( ) ( ) ( ) ( )òq q= -
-¥

+¥

Finally, the PSD2D is assembled by putting the slices of 2D-
PSD at each angle together. The third way is to do the two-
dimensional FT (2D-FT) of r rCF , :2D ( )^

k k r r

i k r k r dr dr

PSD , CF ,

exp . 5

2D 2D( ) ( )

( ( )) ( )
ò ò=

´ - +

^
-¥

+¥

-¥

+¥

^

^ ^ ^

 

  

Here, we set 0.25,1s = 2.0,1s =^ 2.0,2s = and
0.25.2s =^ The origin CF2D and the transferred PSD2D

obtained by the three methods are given in Figure 1. From
Figure 1, the PSD2D obtained by the three different ways are in
accordance with each other. This confirms that the PSD
tomography method based on the projection-slice theorem is
credible.

3. DATA ANALYSIS AND RESULTS

Four fast solar wind streams, with their magnetic fields
measured by the Magnetic Field Investigation (MFI; Lepping
et al. 1995) and particle distribution measured by the Three-
Dimensional Plasma Analyser (3DP; Lin et al. 1995), are
investigated at a time cadence of 3 s. The time intervals for the
four fast solar wind streams are from 12:00 UT 1995 January
30 to 00:00 UT February 4 (stream 1), from 06:00 UT 2007
January 17 to 06:00 UT January 20 (stream 2), from 00:00 UT
2008 February 11 to 12:00 UT February 14 (stream 3), and
from 12:00 UT 2008 July 12 to 12:00 UT July 15 (stream 4),

2
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respectively. The four streams are typical fast streams, with a
speed more than 600 km s−1, a density of 2–4 cm−3, a
temperature around 20 eV, and a magnetic field of 4–6 nT.

Based on the second-order structure function

B Bt tSF ,
2 2

2( )( ) ( )( )t = + - -t t the correlation func-

tion B Bt tCF ,
2 2( ) ( )( ) ·t d d= - +t t and the angle

between the radial direction and local magnetic field, we can
get the 2D correlation function CF2D (see He et al.2013 for
detailed derivations). Then, the transformation from CF2D to
PSD ,2D based on the projection-slice theorem suggested by He
et al. (2013), is conducted to B, V, Z ,major and Zminor to get
PSD ,B2D, PSD ,V2D, PSD ,Z2D, major and PSD ,Z2D, minor respectively.
This method yields the relative normalized values
(PSD2D,relative). To get the absolute values, we use the following
formula:

k kPSD , PSD ,
Power

Power
,

6

k k2D,absolute 2D,relative
absolute

relative
( ) ( ) ·

( )

q q=

with dfPower PSD
f

f
absolute FFT

0

1ò= and Powerrelative =

fdfdPSD .
f

f

0

2
2D,relative

0

1 ·ò ò q
p

f0 and f1 stand for the lower and

upper limits of the frequency range used to calculate the power,
respectively. Here, f0 and f1 are set to 10−4 and 0.067Hz.
PSDFFT is obtained by the fast Fourier transformation of the
whole time sequence. Then the residual energy
E PSD PSD ,V bR 2D,absolute, 2D,absolute,= - Alfvén ratio

RA
PSD

PSD
V

b

2D,absolute,

2D,absolute,
= , and Elsässer ratio RE

PSD

PSD
Z

Z

2D,absolute, minor

2D,absolute, major

= in

wave-vector space are investigated consequently.
Here we use the scale-dependent local mean magnetic field

to define the parallel direction (Horbury et al. 2008). While this
introduces higher order correlations into the measurement of
the spectrum (Matthaeus et al. 2012), in recent turbulence
theories the parallel direction is associated with Alfvén wave
packet propagation, for which the relevant direction is the local
mean field. It is the local mean field coordinate system that
helps us to reveal the presence of two-component kinetic
waves, ion-cyclotron waves, and kinetic Alfvén waves, which
propagate quasi-parallel and quasi-perpendicularly to the local
mean field direction, respectively (He et al. 2011). Here we
only consider the same average flow speed for different
magnetic field directions. In the future, it would be helpful to

include the solar wind speed difference in different magnetic
field directions, e.g., larger average speeds when the local mean
field direction is perpendicular to the flow than when it is
radial, which has been reported by Matteini et al. (2014).
Therefore, it is expected that the wave-vector anisotropy would
be weaker when adopting the angle-dependent flow speeds,
although this would not be a large effect at 1 AU.
Figure 2 displays the spectra PSD2D of magnetic field B

(upper panels) and velocity V (lower panels) for the four fast
streams. The spectra PSD2D of B behave similar to that
obtained by He et al. (2013). The spectra PSD2D of B for the
four fast streams show a similar anisotropic distribution in
wave-vector space. The PSD is distributed mainly along a ridge
that is inclined toward the k⊥ axis. Besides the similarity, the
distribution of PSD2D also shows some difference between
different streams. For example, stream 1 and stream 2 show a
component that is aligned with the k⊥ axis. We are currently
not sure whether the difference between different streams is
caused by some underlying physical difference, by the method
uncertainty, or by both. In the future, more effort needs to be
done to quantitatively estimate the method uncertainty and
distinguish it from the physical signal. The PSD2D of V shows
a similar anisotropy pattern as that of B, suggesting the
signature of oblique Alfvén waves.
To investigate the spectral anisotropy of Elsässer variables,

the Elsässer spectra in wave-vector space are obtained
(Figure 3). The PSD2D of Zmajor and Zminor both show
anisotropy in the wave-vector space. However, the anisotropy
pattern is different for Zmajor and Z .minor The PSD2D of Zmajor
share a similar anisotropic pattern with that of B, and V, while
the PSD2D of Zminor show a very different anisotropy with the
main features of PSD2D distributed along the k⊥ axis. The
PSD2D of Zminor normalized to the PSD2D with the same k⊥, but
with k 0= (upper panels in Figure 4), reveal further evidence
that the PSD2D of Zminor is mainly distributed at small kP. These
results suggest that the anisotropy of the nondominant mode
Zminor is stronger than that of the dominant mode Z ,major which
is consistent with the observational result based on the reduced
spectrum (Wicks et al. 2011) and the simulation result (Cho &
Lazarian 2014).
The residual energy ER for all of the four fast streams is less

than 0, meaning that the magnetic energy is dominant over
kinetic energy. The residual energy ER is normalized to the k⊥
axis (lower panels in Figure 4), using the formula
E .

E k k

E k kR,norm
,

0,
R

R

( )
( )

=
=

^

^




As seen from the normalized residual

Figure 1. Benchmark test of the conversion from CF2D to PSD .2D From left to right: the original CF ,2D PSD2D calculated from Equation (2), PSD2D obtained from the
transformation based on the projection theorem that involves 1D-INT and FT, and PSD2D obtained by 2D-FT.
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Figure 2. Spectra PSD2D of B (upper panels) and V (lower panels) that are normalized to the maximum value for the four fast solar wind streams.

Figure 3. Spectra PSD2D of Zmajor (upper panels) and Zminor (lower panels) that are normalized to the maximum value for the four fast solar wind streams.
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energy E ,R,norm ER is concentrated at small kP. This result gives
the clear observational support to the simulation results of
Boldyrev & Perez (2009) and Wang et al. (2011), which
showed a condensate of magnetic energy during the cascading

of Alfvén waves due to the breakdown of the mirror symmetry
in nonbalanced turbulence.
The distribution of RA (upper panels in Figure 5) and RE

(lower panels in Figure 5) both show anisotropy. Close to the

Figure 4. Normalized spectra of Zminor ( ;
Z

Z

k k

k k

,

0,

minor

minor

( )
( )=

^

^




upper panels) and residual energy ( ;

E k k

E k k

,

0,

R

R

( )
( )=

^

^




lower panels) for the four fast solar wind streams.

Figure 5. Wave-vector distribution of Alfvén ratio RA (upper panels) and Elsässer ratio RE (lower panels) for the four fast solar wind streams.
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k⊥ axis, RA becomes smaller, suggesting that the dominance of
magnetic energy over the kinetic energy becomes significant at
small kP. RE close to the k⊥ axis is much larger than at other
angles, suggesting that the difference between the energy of
Zmajor and that of Zminor is larger close to the k⊥ axis.

4. SUMMARY AND DISCUSSIONS

In this paper, we first did a benchmark test of the conversion
between CF2D and PSD ,2D confirming that the conversion
obtained directly from the corresponding formula, by the
transformation (PSD tomography method) based on the
projection-slice theorem, and by the transformation based on
two-dimensional inverse Fourier transform are in accordance
with each other. This experiment corroborates the applicability
of the transformation (PSD tomography method) based on the
projection-slice theorem to estimate PSD .2D

Based on the transformation, we investigated the spectral
anisotropy of Elsässer variables in 2D wave-vector space for
the first time. We also studied the distribution of residual
energy E ,R Alfvén ratio RA, and Elsässer ratio R ,E which have
not been studied in the k k,( )^ space before. Four fast streams
observed by the WIND spacecraft were studied in this work.

The spectra PSD2D of Zmajor and Zminor both show anisotropy
in the wave-vector space. However, the anisotropic patterns of
Zmajor and Zminor are different and the anisotropy of Zminor
seems stronger than that of Z ,major which is consistent with the
observational results from the reduced spectrum (Wicks
et al. 2011) and the simulation result (Cho & Lazarian 2014).

For each of the four fast streams, the spectra PSD2D of B, V ,
and Zmajor share an anisotropic pattern similar to that obtained
by He et al. (2013). PSD2D spectra are mainly distributed along
a ridge that is inclined toward the k⊥ axis. This suggests that
Zmajor probably corresponds to oblique Alfvénic fluctuations
propagating outward.

Differently from that of B,V , and Z ,major the PSD2D of Zminor
is distributed mainly along the k⊥ axis. The Elsässer ratio RE is
larger at large kBq angles than at other angles, suggesting that
the difference between the spectra PSD2D of Zmajor and that of
Zminor becomes more evident when it gets close to the k⊥ axis.
The spectra PSD2D of Zminor normalized to the PSD2D with the
same k⊥ but with k 0= further demonstrates that the power of
Zminor is concentrated at small kP. The Alfvén ratio RA close to
the k⊥ axis is much smaller compared to that at other angles. If
the plasma is thermally anisotropic and component-drifted, the
Alfvén ratio will be very low, even when Zminor stands for the
inward propagating Alfvén wave. So, the presence of inward
propagating Alfvén waves can not be excluded. If the cascade
of Zminor is driven by Z ,major this may suggest that the cascade
is anisotropic and probably mainly along the k⊥ direction. The
magnetic structure without velocity fluctuations and the non-
Alfvénic fluctuation with k 0= both could lead to the power
concentration of Zminor and the low Alfvén ratio. Further work
is required in the future to understand what Zminor mostly
represents.

Though the spectra of B and V share a similar spectral
anisotropic pattern, there are still differences between them as
revealed by the anisotropic distribution of ER and R .A Close to
the k⊥ axis, RA becomes smaller and ER∣ ∣ becomes larger,
suggesting that the dominance of the magnetic energy over
the kinetic energy becomes significant. The residual energy
condensate at small kP confirms observationally the findings in

the simulation results of Boldyrev & Perez (2009) and Wang
et al. (2011).
It should be noted that Zminor may be anti-correlated with

Zmajor due to the dominance of magnetic energy over kinetic
energy. The unequipartition between magnetic and kinetic
energy may be the case for Alfvén waves with kinetic effects if
the plasma is thermally anisotropic and component-drifted. We
have tried to re-estimate the spectra PSD2D of Zmajor and Zminor
after correcting for kinetic effects from the thermal anisotropy.
The recalculated distribution of PSD2D of Zmajor remain almost
unchanged. However, the PSD2D of Zminor after correcting the
thermal anisotropy cannot be reconstructed with good quality,
which might be due to the possible over-correction of the
thermal anisotropy on the weak signal of Z .minor
In the critical balance theory of Goldreich & Sridhar (1995),

the eddies are filament shaped. In simulations, the eddies
usually have a ribbon shape (Biskamp 2000; Müller &
Biskamp 2000; Maron & Goldreich 2001) rather than a
filament. Boldyrev (2006) extended critical balance theory to
account for this 3D anisotropy. Chen et al. (2012) investigated
the local three-dimensional structure functions of the inertial
range plasma turbulence based on observation for the first time.
They found that the Alfvénic fluctuations are three-dimension-
ally anisotropic dependent on the scales. Recently, the spectral
properties has been investigated in 3D MHD simulations by
Dong et al. (2014) and Verdini & Grappin (2015). They found
many spectral anisotropy properties, including the 3D structure
functions anisotropy as reported by Chen et al. (2012), could be
explained in part by the solar wind expansion, which would
lead to different fluctuation levels in the different magnetic field
components. In the future, we intend to extend this method to
three dimensions to investigate the PSD in 3D wave-vector
space and compare the result with former theoretical and
simulation results. To promote the usage of this method, it is
necessary to conduct further calibrations of this procedure on
numerical data of turbulence by comparing the reconstructed
PSD with the known PSD (Oughton et al. 2015).
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