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While detailed pictures are emerging of the structures of ribosomes, little is known at the 

atomic level about the structural and co-translational folding properties of nascent 

polypeptide chains. Here we have used solution-state NMR spectroscopy to define a 

structural ensemble of a ribosome-nascent chain complex (RNC) formed during 

biosynthesis in E. coli, where a pair of immunoglobulin-like domains adopts a folded N-

terminal domain (FLN5) and a disordered but compact C-terminal domain (FLN6). To 

study how FLN5 acquires its native structure co-translationally, we progressively 

shortened the RNC constructs. We find that the ribosome modulates the folding process, 

as the complete sequence of FLN5 emerges well beyond the tunnel before acquiring native 

structure, while in isolation it folds spontaneously, even when truncated. This finding 

suggests that regulating structure acquisition during biosynthesis can reduce the 

probability of misfolding, particularly of homologous domains. 

 
The manner by which a protein acquires its correct tertiary structure, whilst avoiding alternative 

pathways which lead to aberrant folding, is a fundamental processes and one which underpins 

the biological activity of all living systems1. Our mechanistic understanding of the inherent 
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nature of protein folding has come predominantly from extensive studies of isolated 

polypeptides renatured in dilute aqueous solutions, and where the folding process can be 

elegantly described using energy landscapes2,3 but the extent to which such characteristics are 

shared during folding within the cell is a prominent question in contemporary biology4. For the 

vast majority of proteins, folding processes can begin in a co-translational manner during 

biosynthesis on the ribosome5-7, which leads to constant remodelling of the energy landscape as 

translation proceeds8. Co-translational folding is thought to be a vital means by which the cell 

can promote successful folding, particularly for polypeptide chains that would otherwise readily 

misfold7,9,10.  

 

A mechanistic understanding of protein biosynthesis is emerging through detailed structures of 

the functional ribosome11, but there is little structural understanding of the emerging nascent 

chain as its inherent dynamics has eluded most high-resolution techniques. During biosynthesis, 

the nascent chain is synthesized at a rate of ca. 10-20 amino acids per second in prokaryotes12, 

and its folding is at least under some form of translational control; thus, for example, the 

presence of synonymous codons within mRNA sequences has been observed to affect adversely 

the folding efficiency6,10 of nascent chains. As the nascent chain elongates, it emerges in a 

vectorial manner from the restricted environment of the ribosomal exit tunnel, enters the 

crowded cellular milieu and begins to explore conformational space and acquire its complex 

tertiary structure. A range of ancillary proteins such as molecular chaperones13 and those 

mediating processing and translocation14 are present, and the ribosome is a central hub for many 

of these proteins, which compete for the nascent chain15. Most notable of these proteins, is the 

ribosome-associated molecular chaperone, trigger factor16,17, which can bind to emerging 

polypeptide chains at the ribosomal exit tunnel18. In addition, the ribosomal surface itself has 

been suggested to influence this process through transient electrostatic interactions between the 

emerging nascent chain and the ribosomal surface9,19, that in some cases appear to alter the rate 

and efficiency of folding9. 

 

The manner by which nascent chains sample structural conformations has been investigated 

largely using translationally-arrested RNCs, and local compaction in nascent chains observed 

using FRET probes on the nascent chain has been used to propose structure formation10. 

Putative co-translational protein folding intermediates20 have also been identified using 

fluorescence measurements20 and biochemical studies21, suggesting that structural 

conformations formed on the ribosome may differ from those populated in vitro. Cryo EM 

analysis of RNCs22 shows that nascent chains remain largely extended as they are extruded 
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through the ribosomal exit tunnel, with additional structural23 and biochemical evidence24,25 

indicating that some amino acid sequences can promote the formation of incipient structure, 

such as α-helices, as well as a simple tertiary motif26 in distinct regions of the tunnel. Although 

it has been shown more recently that a simple tertiary motif can form within the exit tunnel26, 

higher-order structure appears to be formed only when a nascent chain has emerged. A detailed 

understanding of the progressive acquisition of the tertiary structure of the nascent chain outside 

the ribosome is absent. In this study, therefore, we set out to utilize the ability of NMR 

spectroscopy to report upon both structure and dynamics during folding at a residue specific 

level27,28, and produced a structural ensemble of a highly dynamic nascent chain of a pair of 

immunoglobulin-like domains emerging during biosynthesis. In addition, we have characterized 

in solution, a set of RNCs generated in vivo in E. coli, to produce a series of high-resolution 

snapshots that reveals structural details of co-translational protein folding.  

 

Results 

Isotopically-labelled RNCs produced in vivo within E. coli 

To explore the structure and dynamics of nascent chains as they emerge from the ribosome, we 

studied a polypeptide chain whose sequence is based upon a pair of immunoglobulin-like 

proteins, FLN5646-750 and FLN6751-857, the fifth and sixth filamin domains of the Dictyostelium 

discoideum gelation factor (FLN)27, respectively. We initially designed a FLN5-6 ribosome-

nascent chain complex (RNC), FLN5+11027, in which the C-terminus of the 105 residue FLN5 

domain is separated from the peptidyl transferase centre (PTC) by 110 residues, comprised of a 

folding-incompetent FLN6 domain (with an 18 amino acid truncation at its C-terminus (residues 

840-857)28, referred to here as FLN6Δ18), and the 17 amino acid SecM translation-arrest 

motif29. Supplementary Fig. 1 shows all RNC and isolated protein designations for FLN5 and 

FLN6 variants used in this study. The RNCs were all generated in E. coli27, where folding takes 

place within the cellular milieu, and the intact RNCs were purified in high yield as previously 

described27 (Fig. 1a).  

 

FLN5 acquires native-like structure near the exit tunnel  

To use NMR spectroscopy to probe folded and unfolded conformations of FLN5+110 RNC, a 

dual isotopic labeling scheme was developed, using both selective protonation and uniform 

labelling approaches. As methyl group resonances are highly sensitive reporters of changes in 

protein tertiary structure, we generated selectively-labeled RNCs on a perdeuterated (2H) 

background in which only the Ile-δ1 side chain of the nascent chain was labeled as 13CH3. The 
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replacement of all surrounding 1H by 2H nuclei results in longer relaxation times and more 

intense signals30. Samples of the uniform (U)-2H; Ileδ1-13CH3 labeled RNC were then examined 

via 1H-13C correlation spectra (using methyl TROSY NMR methods30). Resonances from all 

five FLN5 isoleucine residues could be identified in 1H-13C correlation spectra of FLN5+110 

RNC, and these were found to overlay closely (1H and 13C chemical shift changes < 0.01 and 

0.1 ppm respectively) with those of isolated FLN5 (Fig. 1b), indicating that in this nascent 

chain the FLN5 domain had folded into a native conformation. In parallel, we produced 

uniformly (U-) 15N-labeled FLN5+110 RNCs, in which the peptide backbone was isotopically 

labeled and we recorded 1H-15N correlation spectra via rapid acquisition SOFAST-HMQCs31. 

Examination of the 1H-15N correlation spectra of the U-15N-labelled FLN5+110 RNC showed 

nascent chain resonances within a narrow window of 1H chemical shifts, indicative of 

disordered structure. The chemical shifts of the nascent chain resonances corresponded closely 

to those observed of unfolded FLN6 (in spectra of isolated FLN5-6Δ1828), rather than unfolded 

FLN5 (in spectra of a 12-residue C-terminal truncation, FLN5∆12) (Fig. 1c).  

 

These combined NMR data are exquisite probes for both the folded and unfolded structural 

preferences of FLN5 and FLN6 tethered to the ribosome, and enabled us to use chemical shifts 

measured for FLN5+110 RNC as replica-averaged structural restraints in molecular dynamics 

simulations32 to determine a structural ensemble of the RNC (Fig. 1d,e and Supplementary 

Video 1). This ensemble showed folded FLN5 tethered to the ribosome by a disordered FLN6. 

Despite lacking persistent structure, FLN6 was compact and exhibits transient populations (of 

about 20% on average) of native-like secondary structure elements and inter-residue contacts 

(Fig. 1d-h). The ensemble also illustrated that FLN5 had substantial access to a broad region of 

the ribosomal surface, including forming transient contacts with both 23S rRNA and ribosomal 

protein L29, as a result of its tethering to the disordered FLN6 (Fig. 1d,e). We analyzed the 

regions of the ribosome in close proximity to FLN6, and observed transient interactions being 

made with both 23S RNA and several ribosomal proteins associated with the exit port (Fig. 1f). 

The most frequent degrees of contact are made with L24 (55%), specifically with a prominent 

loop in close proximity to the exterior of the exit port; such contact is further supported by 

nascent chain crosslinking studies33 and a cryo EM structure of a ribosome-SecYE complex34 

which shows that this loop can undergo marked conformational changes in the presence of a 

nascent chain derived from the periplasmic protein, FtsQ. In addition, FLN6 made transient yet 

substantial contacts with L23 (30%), whose position on the surface near to the exit tunnel is 

shown in structural studies15 to be an adapter site for ancillary proteins including the molecular 

chaperone trigger factor.  
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These RNC ensemble structures suggested that the conformational freedom of the nascent chain 

was likely to be tempered by its interactions with the ribosomal surface (Fig. 1d) and that these 

interactions had both structural and dynamical implications for the processes by which a 

vectorially emerging nascent chain sequence forms its complex tertiary structure beyond the 

ribosomal tunnel. Previous studies35 show that isolated FLN5 folds highly co-operatively via a 

low population of a folding intermediate, raising the question of a possible role for the ribosome 

itself modulating the folding of FLN5 nascent chains as they emerge during biosynthesis.  

 

Structural evidence for co-translational folding of FLN5 

In order to probe how FLN5 acquires its structure during biosynthesis, we extended our NMR 

approach to analyze a series of twelve RNCs, in which the FLN6 linker was progressively 

shortened (Fig. 2a,b); each of these NMR spectra represented then a unique snapshot during 

biosynthesis that reported on co-translational protein folding at equilibrium. The series of 

SecM-arrested nascent chains consisted of FLN5 with decreasing numbers of residues of the 

FLN6 sequence, ranging from 21 to 110 residues (Fig. 2b). The RNCs, denoted FLN5+L (with 

L = 21 to 110), were purified from E. coli cells in similar yields to that of the FLN5+110 RNC, 

and a series of biochemical and biophysical analyses showed that all were completely intact 

(Fig. 2c), and free of any extraneous proteins including, notably, the ribosome-associated 

molecular chaperone trigger factor, as well as DnaK (Supplementary Fig. 1). The continuous 

cycling of these ubiquitous cytosolic chaperones17,36 and others with the ribosome and nascent 

chains alike meant that the RNCs had considerable access to these during co-translational 

folding within the cell; but their absence following purification (< 1.5% occupancy, 

Supplementary Fig. 1) indicated, however, that FLN5 RNCs are relatively poor substrates16 for 

these particular species. Each of the FLN5 RNCs samples was isotopically-labeled as U-2H; 

Ileδ1-13CH3 or U-15N-labeled in the peptide backbone and we acquired 1H-13C and 1H-15N 

correlation spectra, respectively. For all samples, the acquisition of these spectra was 

accompanied by rigorous control experiments including interleaved NMR diffusion and cross-

peak intensity measurements, in conjunction with western blots (Fig. 2c and Supplementary 

Fig. 2), to ensure that the data used for structural analysis were derived exclusively from intact 

RNCs. 

 

As observed in 1H-13C correlation spectra of FLN5+110 RNC (Fig. 1b), resonances from all 

five FLN5 isoleucine residues could be similarly identified in [1H-13C correlation spectra of 

FLN5+67 and FLN5+47 samples, indicating that in these nascent chains the FLN5 domain had 
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also folded into a native or near-native conformation (Fig. 3a). The intensities of the dispersed 

resonances in FLN5+47 were, however, only 30% (±12%) of those within the corresponding 

spectra of FLN5+67 and FLN5+110, a feature that we discuss below. Moreover, in spectra of 

FLN5+45, only three of the five native-like isoleucine resonances are visible, all with very low 

intensity (Fig. 3a), and no such resonances at all could be detected in spectra of the RNC with 

the shortest linker length, FLN5+21.  

 

Using each of the FLN5 RNCs, 1H-15N correlation spectra were recorded to monitor in each 

sample the presence or absence of resonances of the unfolded form of the FLN5 domain. 

Examination of the spectra (Fig. 3b) revealed that when L is between 21 and 44 residues, all 

the resonances of the nascent chain appeared within a narrow window of 1H chemical shifts, 

indicative of disordered structure. The chemical shifts of the nascent chain resonances 

corresponded closely to those observed in spectra of unfolded forms of isolated FLN5 

generated by a C-terminal truncation, FLN5∆12 (Fig. 3b and Supplementary Fig. 3), or by a 

destabilizing mutation in the FLN5 variant, Y719E (Supplementary Fig. 3). The average 

intensities of these RNC cross-peaks were, however, found to be reduced substantially in 

spectra of FLN5+43 and FLN5+44 RNCs, and no comparable unfolded FLN5 resonances were 

visible in spectra of FLN5+45 to FLN5+110 RNCs. In addition, cross-peaks attributable to the 

emerging FLN6 sequence in an unfolded state could be identified (Supplementary Fig. 3) in 

spectra of FLN5+67 (Fig. 3b), as in the FLN5+110 RNC (Fig. 1c). These NMR data clearly 

showed the increasing population of the folded state of FLN5 relative to its unfolded state as 

the length of the sequence joining it to the PTC increased, and also the concomitant appearance 

of peaks from disordered residues from FLN6. 

 

To evaluate further the transition from the unfolded to the folded state as FLN5 emerged from 

the tunnel, three amide resonances of FLN5 were selected from the spectra of the U-15N-

labelled RNCs, that were particularly well resolved and not overlapping with other resonances 

(Fig. 3b, Supplementary Fig. 3). These resonances had comparable 1H linewidths (20 ± 3 Hz) 

in all RNCs from FLN5+21 to FLN5+42 (Supplementary Fig. 3), indicating that, for these 

residues at least, any differences in intensity associated with the nascent chain length could be 

attributed to changes in the population of the unfolded form of the nascent chain rather than to 

changes in relaxation behavior. Indeed analysis of the signal intensities indicated that the 

population of the unfolded state of FLN5 decreased substantially in samples for which L = 42 

to 45, and the length-dependent changes in the amide resonance intensities of the disordered 

FLN5 nascent chain were consistent with an unfolded-to-folded transition with a mid-point 
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between L = 42 and 45 (Fig. 4a). Also consistent with this conclusion, native-like resonances 

of the isoleucine methyl groups of FLN5 were observable in 1H-13C correlation spectra starting 

from FLN5+45 through to FLN5+110 RNCs. We attributed the weak intensity of the methyl 

resonances in nascent chains with L = 45 and 47 to the low mobility of the folded FLN5 

domain as a result of its proximity to the slowly tumbling ribosome, rather than to a reduction 

in the population of the folded state. In support of this conclusion, the increases in the intensity 

of these resonances, evident for nascent chains with L = 67 and 110, reflected the gain in 

mobility of the folded FLN5 domain as the length of the chain linking it to the PTC increased 

(Fig. 3a). 

 

Folding of FLN5 RNCs is offset relative to isolated FLN5  

To rationalize these spectral observations of folding as the nascent chain elongates, the 

accessibility to solvent of the emerging FLN5 domain was examined by probing the native 

cysteine residue (C747 in orange, Fig. 2a), which is located close to the FLN5-FLN6 

boundary, for its susceptibility to modification by methoxypolyethylene glycol maleimide 

(PEG-Mal) (Fig. 4a,b). Under the experimental conditions used, the 5 kDa moiety, as shown 

previously24, can only substantially (> 80%) modify a cysteine in a nascent chain if it is beyond 

the exit vestibule, i.e. more than ca. 100 Å from the PTC37. We used a series of RNCs of the 

folding incompetent variant, FLN5 Y719E (Supplementary Fig. 4), to monitor the emergence 

of Cys747 from the ribosomal exit tunnel, without the complication of the cysteine residue 

being shielded from solvent as a result of structure acquisition in the FLN5 domain. Under 

conditions analogous to those of the NMR experiments (and adapted from those well 

established24 to achieve PEGylation of a nascent chain entirely emerged from the vestibule), 

we observed complete PEGylation for L ≥ 31, i.e., when Cys747 was ≥ 34 residues from the 

PTC (Fig. 4a,b and Supplementary Fig. 4). This result showed that at these nascent chain 

lengths the entire FLN5 sequence had emerged from the tunnel to an extent that enabled it to 

be accessible by PEG-Mal, but well before the folding of the domain could be observed (L > 

44) by NMR spectroscopy as discussed above. 

 

We next generated a series of C-terminal truncations of the isolated FLN5646-750 domain so as to 

examine the length-dependence of folding of this domain in the absence of the ribosome. We 

analyzed 1H-15N correlation spectra of nine C-terminal truncations ranging from FLN5∆2 to 

FLN5∆21. The spectra indicated that FLN5∆12 and its shorter variants, in which the C-terminal 

β-strand G and its adjacent loop in the native structure were absent, were fully unfolded under 

the conditions used in this study (Fig. 4c and Supplementary Fig. 5). By contrast, the longer 
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variants FLN5∆2 and FLN5∆4 were fully natively folded, while sequences of intermediate 

lengths between FLN5∆6 and FLN5∆9 populated both folded and unfolded states at 

equilibrium. From these results, we concluded that the isolated FLN5 domain in bulk solution 

could tolerate truncation of up to nine residues and still populate a folded state to a very 

significant degree. 

 

The fact that FLN5Δ4 (residues 646 to 746 of FLN5) was fully folded in its isolated state was 

highly significant as the next residue, Cys747, in the RNC FLN5+31, was solvent accessible 

and hence clear of the exit vestibule as shown by the PEGylation experiments discussed above 

(Fig. 4a,b). Acquisition of native structure would therefore, in principle, be possible even in 

the case of FLN5+31, i.e. when L = 31 and where Cys747 has emerged from the tunnel, as 

indicated by its accessibility to PEGylation. The NMR data, however, showed that folding of 

the FLN5 domain takes place only when a further 11 to 14 residues of FLN6 have been added 

to the sequence (Fig. 4a). There is thus a substantial difference between the length of the FLN5 

polypeptide sequence required for the acquisition of native structure by the isolated domain in 

bulk solution, and by the domain when attached to the ribosome; indeed, the folding transition 

on the ribosome required, remarkably, the availability of an additional 17 residues compared to 

that observed for the isolated protein (Fig. 5).  

 

The origins of the offset between the solvent accessibility of the complete FLN5 domain and 

its folding during biosynthesis were explored, initially by examining the inter-domain 

interactions between the emerged FLN5 and sections of the successive FLN6 linking sequence 

(Fig. 1d,g) by substituting the FLN6 residues with a poly glycine-serine linker (LGS) to 

generate a series of FLN5+LGS RNCs (Supplementary Fig. 6). Using identical conditions to 

those used for the FLN5 RNCs, complete PEGylation of the FLN5+LGS RNCs occurred at LGS 

≥ 35 (Cys751, i.e. 34 residues from the PTC). NMR observations of LGS = 31, 37 and 42 

showed only disordered FLN5 resonances, suggesting that FLN5 folded independently, 

regardless of the linking sequence, and it is unlikely that inter-domain interactions alone were 

the cause of the offset observed for folding (Supplementary Fig. 6). 

 

The ribosome surface modulates the energy landscape of FLN5  

Our structural ensemble of the FLN5+110 RNC revealed that the emerging nascent chain 

interacted transiently with ribosomal surface proteins (Fig. 1d,f), and we assessed this issue 

further using high-resolution 2D 1H-15N correlation spectra (Fig. 6a). We reasoned that such 

interactions might influence the capacity for a nascent chain to acquire structure. Addition of 
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an equimolar concentration of 70S ribosomes to samples of the isolated unfolded variants 

FLN5 Y719E (Fig. 6b) and FLN5∆12 (Supplementary Fig. 7) resulted in moderate (ca. 30%) 

reductions in the intensities of the resonances of Lys663 to Val677 and Gly713 to Gly750. 

Analogous intensity changes were not, however, observed following addition of 70S ribosomes 

to a sample of full-length, folded FLN5 (Fig. 6b and Supplementary Fig. 7), indicating that 

the intensity changes were the result of broadening attributable to the binding of unfolded 

FLN5 to the slowly tumbling ribosome particle. Analysis of the spectra of the various FLN5 

RNCs showed that when L = 21 to 42, where the domain is unfolded, resonances of Phe665 to 

Val677 and Gly713 to Gly750 were similarly reduced in intensity. The effects were, however, 

much more substantial than those observed for the isolated domain, with the resonances of 

Phe665 to Val667 losing more than 70% of their intensities, and those of Gly713 to Gly750 

became completely undetectable (Fig. 6a,c).  

 

The same FLN5 residues showed similar reductions in intensity in analogous spectra of LGS = 

31 and 42 in the FLN5+LGS RNCs (Supplementary Fig. 6). These data indicated, therefore, 

that the specific stretches of sequence identified from the spectra of unfolded FLN5 interact 

with the ribosomal surface9,19. The greater extent of ribosome surface interactions of FLN5 in 

the RNCs, relative to the isolated FLN5 domain in the presence of the ribosome, can be 

attributed to a higher effective concentration of the ribosome as a result of its anchoring to the 

PTC. Such an effect will be most pronounced at short linker lengths (L = 21 to 42); indeed the 

effective concentration was estimated to be 20 mM for a C-terminal residue located 10 residues 

beyond the exit tunnel (see Online Methods). This effect will increase the magnitude of the 

interaction between unfolded FLN5 and the ribosomal surface, particularly at the C-terminus, 

which includes residues Gly713 to Gly750, a result consistent with our observations. As a 

consequence, the unfolded state will be stabilized relative to the native state8 at short RNC 

linker lengths, 21 < L < 44 (Fig. 7b), and will therefore inhibit folding of the domain when 

attached to the ribosome relative to its isolated state. As the nascent chain elongates, the 

interactions with the ribosome surface are progressively reduced, and only at L > 42 do they 

become insufficient to overcome the 7 kcal mol-1 free energy of folding measured for isolated 

FLN5 in bulk solution35 (Fig. 7a,b).  

 

The mechanism by which the ribosome-nascent chain interactions specifically acquire the 

capacity to modulate nascent chain folding and achieve the observed folding offset, is likely to 

be related to the effects of steric occlusion (particularly at short linker lengths) (Fig. 7b), as 

well as being directed by the sequence determinants inherent to the nascent chain. In the latter 
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case, the close homology between FLN5 and FLN6 suggests that the two domains are likely to 

form similar transient interactions with the ribosome in their disordered states (Fig. 1). As 

replacing FLN6 with a poly (GS) linker did not abrogate the folding offset (Supplementary 

Fig. 6), this result suggested that the transient interactions with the ribosome act independently 

on each emerging domain, rather than requiring a preceding domain to interact with a specific 

ribosomal protein or RNA at the ribosomal exit, and be responsible for transmitting a “folding 

trigger”. Therefore, for a multi-domain protein such as FLN, comprised of homologous 

domains, ribosome-nascent chain interactions to produce a folding offset may occur as each 

domain emerges sequentially, rather than in a coordinated intra-domain manner. 

 

Discussion 

In summary, we have used NMR spectroscopy to determine the structural ensemble of a folded 

multi-domain nascent chain on its parent ribosome. The ensemble provides clear insights into 

the dynamic process of co-translational folding: the globular FLN5 domain possessed a high 

degree of conformational freedom resulting from the presence of a compact, disordered FLN6 

domain, the latter showed transient yet significant interactions with both ribosomal RNA and 

the ribosomal proteins surrounding the exit site, in particular L24. Our studies of the changes 

to the structural ensembles formed by shortened RNCs further revealed a residue-specific 

understanding of how a nascent chain acquires native-like structure during its progressive 

emergence from the ribosomal exit tunnel. Indeed, in the case of the protein domain studied 

here, the folding of the tethered nascent chain did not take place as soon as a sequence of 

polypeptide chain that is capable of folding in bulk solution, emerges from the ribosomal 

tunnel. 

 

It appeared instead that a certain degree of compaction of the nascent chain along with 

contributions from specific interactions of the disordered state of FLN5 (that are likely to be 

analogous to those observed for FLN6 in the structural ensemble) with the ribosomal surface 

permitting persistent folding to occur only after an additional segment, here consisting of 11 to 

14 residues of the subsequent FLN6 sequence, has also emerged. Within living cells, however, 

co-translational folding is not an equilibrium process but occurs in parallel with the process of 

translation (10-20 a.a. s-1)12, which can result in an offset between the point at which folding 

occurs on actively translating ribosomes, compared to those that are stalled38. Thus, the 

continuous translation process would indicate that the folding of FLN5 may be completed at 

longer linker lengths than at the point at which we observed FLN5 folding to occur in stalled 

RNCs; folding in vitro on a timescale of ca. 1 s-1, typical of immunoglobulin domains39 could 
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produce an offset of 10-20 a.a. between the polypeptide chain length at which FLN5 folding 

becomes thermodynamically favorable, and the point at which folded populations can form 

kinetically. 

 

At least for this system, therefore, interactions with the ribosome during emergence from the 

tunnel inhibit the acquisition of stable structure by a nascent chain, rather than promote native-

like contacts in a progressive manner as suggested for other systems5,7,9,10. This phenomenon 

has apparent similarities to the behavior of some molecular chaperones described as holdases40 

that inhibit the formation of misfolded and potentially toxic aggregates by stabilizing more 

highly unfolded states41. We suggest that regulating the acquisition of partially folded 

structures within a nascent chain during co-translational folding of a protein may act in a 

similar manner to ensure efficient generation of functional proteins within living systems by 

reducing the probability of misfolding, particularly of multi-domain proteins with high 

sequence identities between domains42. Indeed, such a mechanism suggests that co-

translational folding of neighboring individual domains may be remarkably similar to the 

cooperative folding in vitro3, rather than the gradual acquisition of native-like structure during 

the process of biosynthesis.  
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Accession numbers 

Co-ordinates for the structural ensemble have been deposited in the RCSB Protein Data Bank 

(PDB) with accession ID 2N62 and NMR chemical shift restraints have been deposited in the 

Biological Magnetic Resonance Data Bank (BMRB) with accession ID 25748. 
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Figure 1 

Structural ensemble of a ribosome-bound nascent chain.  

(a) Schematic of the FLN5+110 RNC used for the ensemble calculations. The FLN5 sequence 

is tethered to the ribosome by a C-terminally truncated FLN6751-839 sequence and stalled using 

the SecM translational-arrest motif27,29. Anti-His western blots of purified FLN5+110 RNC, 

ribosome-attached with bound prolyl P-site tRNA, and also in its released form. (b) Overlay of 
1H-13C correlation spectra of [U-2H; Ileδ1-13CH3 labeled] FLN5+110 RNC (black) with isolated, 

natively folded FLN5 (pink) and isolated unfolded FLN5∆16 (orange). (c) Overlay of 1H-15N 

correlation spectra of U-15N-labelled FLN5+110 RNC with isolated FLN5∆12 (blue), and 

unfolded FLN5-6Δ18 (green). (d) NMR chemical shift restrained structural ensemble of 

FLN5+110 RNC, showing the disordered FLN6 linker (cyan) and the native fold acquired by 

FLN5 (pink). (Accession codes: PDB ID 2N62; BMRB ID 25748). (e) Close-up view of the 

ribosomal exit tunnel, highlighting three representative conformations of the nascent chain 

ensemble (left); the three representative conformations are also shown separately (right). (f) 

Transient interactions made between the disordered FLN6 linker in close proximity with the 

ribosomal proteins at the surface. (g) Probability of the formation of inter-residue contacts in the 

FLN5+110 RNC (shown above diagonal) and in the native state of full length (FL), isolated 
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FLN5-6 (below diagonal) (h) Secondary structure populations of the RNC depicting β-strands 

(red), α-helices (blue) and polyproline II regions (green); native β-strands are indicated (red 

arrows). 
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Figure 2 

Design and in vivo production of FLN5 ribosome-nascent chain complexes in E. coli.  

(a) Structure of isolated, natively folded FLN5 (PDB: 1QFH). Mapped onto the FLN5 structure 

are the five isoleucines (∂1 methyl groups) of FLN5 (Ile674, 695, 738, 743, 748, cyan) used as 

probes of native structure acquisition, and the amide groups of three residues (Val682, Ala683 

& Ala694, blue) selected for analysis of unfolded conformations (see text). (b) Design of the 

translationally-arrested RNCs27 to monitor nascent chain emergence and folding, in which the 

FLN5 sequence is tethered to the PTC via increasing lengths of the FLN6 sequence and the 

SecM translational arrest motif. (c) Anti-His western blots of the library of purified FLN5 

RNCs shown in ribosome-bound (upper panel, see also Supplementary Fig. 1) and released 

(lower panel) forms.  
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Figure 3 

Nascent chains of FLN5 emerging from the ribosome monitored by NMR spectroscopy. 

(a) 1H-13C correlation spectra of [U-2H; Ileδ1-13CH3 labeled] FLN5 RNCs (black), isolated, 

natively folded FLN5 (cyan) and isolated unfolded FLN5∆16 (orange). Resonances marked “R” 

arise from background labeling of 70S ribosomal proteins27. (b) 1H-15N correlation spectra of U-
15N-labelled FLN5 RNCs, isolated FLN5∆12 (blue), and unfolded FLN5-6Δ18 (green). 

Resonances used for the analysis of unfolded conformations are labeled in the FLN5+21 RNC 

spectrum. 
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Figure 4 

Folding of FLN5 on the ribosome monitored by NMR spectroscopy and PEGylation.  

(a) FLN5 nascent chain folding as measured by intensity changes of 15N amide resonances 

(blue) arising from the unfolded FLN5 domain (mean ± s.d. for n=4 (n=3 for +45 and n=2 +47); 

nascent chain concentration from western blot replicates), and intensity changes in Ile 13CH3 

resonances (cyan) arising from native FLN5 structure (mean ± s.d. of spectral noise, n=1). 

Intensities are normalized and scaled relative to L = 21 (unfolded) or L = 110 (folded). The 

solvent accessibility of the FLN5 domain from the ribosomal exit tunnel was probed using 

PEGylation (orange) (mean ± s.d) of folding-incompetent FLN5 Y719E RNCs, where the native 

Cys747 is close to the FLN5 and FLN6 boundary. (b) Cys747 PEGylation of FLN5 Y719E 

RNCs results in a band shift (PEG-RNC). (c) C-terminal truncations of isolated FLN5 as 

measured by NMR. Averaged cross-peak intensities of folded (black) and unfolded (grey) states 

of FLN5 (see Supplementary Fig. 5) are mapped against truncation length.  
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Figure 5 

FLN5 folding is offset on the ribosome. 

A comparison of FLN5 folding on the ribosome and in isolation as depicted by the 

conformational states observed for FLN5 RNCs with different linker lengths, L, from the PTC, 

and those of C-terminal FLN5 truncations: unfolded (blue), folded (cyan) and folding transition 

(pink). The sequence of the FLN5 nascent chains is solvent exposed, as monitored by 

PEGylation, at L ≥ 31 residues where Cys747 is 34 residues from the PTC yet the domain only 

acquires native-like structure upon addition of a further 11-14 residues, at 42 ≤ L ≤ 45 as shown 

by NMR spectroscopy. Isolated FLN5 truncations are shown alongside the RNC lengths with 

FLN5Δ4 a reference for L = 31, at which point complete PEGylation is observed. A folding 

offset (pink dotted arrow) is the difference observed between the initiation of FLN5 structure 

acquisition on the ribosome compared to that of the protein in isolation. 
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Figure 6 

Residue-specific mapping of RNC interactions.  

(a) An overlay of 1H-15N correlation spectra (recorded at a 1H frequency of 950 MHz) of 

FLN5+31 RNC (black) and unfolded, isolated FLN5∆12 (red) highlighting resonances that are 

significantly broadened in the RNC. (b) Relative intensities of 1H-15N resonances of folded 

FLN5 (5 µM) and unfolded FLN5 Y719E (8 µM) in the presence of 1 molar equivalent of 70S 

ribosomes. (c) Relative intensities of FLN5+21, FLN5+31, FLN5+42, FLN5+67 and 

FLN5+110 RNCs as compared to a reference, made up of a composite consisting of FLN5∆12 

and FLN5 Y719E, to monitor unfolded FLN5 (red), and FLN5-6Δ18 to monitor unfolded FLN6 

(green), and folded FLN5 from 1H-13C correlation spectra (cyan). A 5-point moving average is 

plotted as a guide; errors derived from spectral noise, n=1. The grey shaded area denotes 

occluded residues inaccessible to PEGylation. 
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Figure 7 

The ribosome modulates the folding landscape of FLN5 nascent chains. 

(a) Schematic of a free energy diagram for isolated FLN5, showing the difference in free energy 

of 7 kcal mol-1 between the folded state, F, and the unfolded state, U. (b) Schematic free energy 

diagram for isolated FLN5 in the presence of ribosomes shows a ribosome-bound state, UB, 

accessible from the unfolded state. A model for how the ribosome could alter this landscape and 

inhibit nascent chain folding is indicated (arrows): At short linker lengths, the tethered nascent 

chain is subject to high effective ribosome concentrations, favoring a ribosome-bound state UB. 

The native state, F, is also likely to be energetically unfavorable, due to steric interactions with 

the ribosome. As the nascent chain increases in length, the steric effects and ribosome-

associated interactions experienced by the tethered nascent chain are overcome by the stability 

of the folded FLN5 domain. 
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Online Methods 

 

Generation of ribosome-nascent chain complexes (RNCs) and isolated C-terminal truncations 

DNA constructs of RNCs of tandem domains FLN5-6 were derived from a FLN5+110 RNC 

construct described previously27. Site-directed mutagenesis was used to manipulate the length 

of the 110 amino acid FLN6 linker to generate a set of SecM-stalled FLN5 RNCs with linker 

lengths L, ranging from 21 to 110 residues (L = 21, 26, 31, 35, 37, 42, 43, 44, 45, 47, 67, 110). 

Selectively isotopically-labeled, His-tagged RNCs were generated in BL21(DE3) E. coli using 

an in vivo procedure described previously27 with modifications. Following growth in an 

unlabeled MDG medium at 37°C, the cells were washed and resuspended in an M9-based 

expression medium (“EM9”, adapted from43) enriched with the relevant isotopes. RNC 

expression was induced with 1 mM IPTG, and after 10 min, 150 mg/mL rifampicin44 was 

added and the cells were harvested 35 min later. Uniform 15N labeling was performed as 

described previously27. The production of 2H,13CH3-Ile-δ1 methyl-labeled perdeuterated (U-2H; 

Ileδ1-
13CH3) RNCs, in which the δ-CH3 group of the isoleucine side-chain was selectively 

protonated, was achieved by using perdeuterated conditions, employing the isoleucine 

precursor 2-ketobutyric-4-13C,3,3-d2 acid in a procedure adapted from that described 

previously for U-15N-labelled RNCs27, in which the cells were progressively adapted into the 

deuterated isotopes and precursors. Rifampicin was omitted during the induction period, and 

cells were harvested after 1.5 h. The purification of RNCs from E. coli was performed as 

described previously27, except the ribosomal material was recovered from the lysate using a 

35% (w/v) high salt sucrose cushion prior to purification using a Ni-IDA column followed by a 

10-35% w/v sucrose gradient. Site-directed mutagenesis was used to introduce the Y719E 

point mutation into FLN5 RNCs and into isolated FLN5, as well as the substitution of the 

FLN6 linker for a glycine-serine repeat sequence (poly (GS)).  Isolated C-terminal truncations 

of FLN5 (residues 646 to 750) were generated by removing between 2 and 21 amino acids 

(FLN5Δ2 Δ4, Δ6, Δ8, Δ9, Δ12, Δ16, Δ21), using mutagenesis and each of the FLN5 variants 

was expressed and purified as previously described for full-length FLN528. 

 

RNC integrity and the determination of nascent chain occupancy 

For evaluating RNC integrity, samples were run on denaturing 12% (w/v) polyacrylamide bis-

tris gels at neutral pH and using a sample dye at pH 5.7 to maintain the ester bond between the 

tRNA and the nascent chain. Released forms of the nascent chain were obtained by treatment 

of the RNC samples with RNase A. For determination of nascent chain occupancy, RNase A 
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treated RNCs were run alongside isolated protein concentration standards and anti-His western 

blots analyzed using ImageJ (Rasband, W.S., U.S National Institutes of Health) software.  

 

RNC integrity over the time course of NMR experiments as monitored by western blot 

Purified RNCs were incubated at 25°C and 5 pmol aliquots were collected periodically to 

examine the integrity of the tRNA-bound form of the nascent chain over time, in conjunction 

with NMR experiments being recorded on an identical sample. All samples were analyzed by 

western blotting and the intensity of the band corresponding to tRNA-bound nascent chain was 

assessed by densitometry. 

 

Trigger factor and DnaK detection and quantification within RNC samples 

Purified RNC samples were treated with RNase A and then were assessed by western blotting 

for the presence of trigger factor using a rabbit polyclonal anti-trigger factor antibody (Cat No. 

A01329, GenScript, UK). A similar procedure was employed for the detection of DnaK using 

an anti-DnaK antibody (Cat No. LS-C63274-50, Source Bioscience, UK). The residual amount 

of both trigger factor and DnaK present within the RNCs was determined using densitometry 

analysis using purified trigger factor and DnaK proteins as standards, as described for RNC 

integrity and the determination of nascent chain occupancy. 

 

Coupled transcription-translation of RNCs in vitro 

An E. coli S30 cell extract was prepared as described elsewhere25. A pair of primers: 5’ primer 

upstream of the T7 promoter (5’- CTCGATCCCGCGAAATTAATACG-3’) and a 3’ primer 

partially overlapping the SecM-stalling sequence (5’- AGGTCCATGGTTAAGGGCCAG-3’), 

was used to produce linear templates encoding SecM-stalled RNCs from the relevant plasmids. 

Reactions were performed in 25 µL volumes using an S30 extract and a translation premix25, 

containing 1.5 µg linear DNA, 0.04 mM L-amino acids, 20 µL, 10 units of T7 RNA 

polymerase, 5 µCi [35S]-methionine and 200 ng/µL anti-sense ssrA oligonucleotide. 

Transcription-translation reactions were incubated at 37°C for 30 min and the RNCs isolated 

from a 30% (w/v) sucrose cushions centrifuged at 100,000 rpm for 1 h. 

 

PEGylation gel shift assay of RNCs 

Pelleted in vitro derived RNCs, corresponding to approximately 6 pmol of 70S ribosomes were 

resuspended in buffer A (20 mM Hepes (pH 7.2), 100 mM NaCl, 5 mM MgCl2). Samples were 

divided, and in which the PEGylation reaction set were incubated in buffer A containing 1 mM 

methoxypolyethylene glycol maleimide (5 kDa). Samples were then incubated at 25°C for 1 h. 
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Following PEGylation reactions, the samples were run using PAGE conditions as described 

above for RNC integrity determination. The gel was exposed to film and the extent of 

PEGylation in each RNC was evaluated by densitometry using ImageJ software, in which the 

intensity of the PEGylated, tRNA-bound form was evaluated relative to the unPEGylated 

tRNA-bound form within the same sample. The PEGylation data reported are the average of at 

least six independent experiments.  

 

NMR spectroscopy of RNCs 

Prior to NMR spectroscopy, each sample was buffer-exchanged into Tico buffer27 at pH 7.5 

(containing d8-HEPES for 13CH3-labelled RNCs), supplemented with 1 mM EDTA and 

protease inhibitors. The samples also contained 7% (v/v) D2O (U-15N samples) or 100% D2O 

([U-2H; Ileδ1-13CH3] samples) as a lock signal and 0.001% (w/v) DSS as an internal reference. 

Sample concentrations were based upon the nascent chain content and ranged from 2 to 12 

µM. NMR data were acquired on a 700 MHz Bruker Avance III spectrometer (University 

College London) equipped with a TXI cryoprobe, and in specific cases using 800 and 950 

MHz Bruker Avance III HD spectrometers (NMR Centre, Crick Institute) and all spectra were 

recorded at 298 K unless otherwise stated and using an interleaved manner27. For samples of 

U-15N-labelled RNCs, 1H-15N SOFAST-HMQC spectra at 700 MHz were recorded with 1024 

points in the direct (1H) dimension (Taq=46 ms) and 64 points (128 points for poly (GS) linker 

RNCs) in the indirect (15N) dimension (Taq=14.1 ms) and using a recycling delay of 50 ms. 1H-
13C HMQC spectra of [U-2H; Ileδ1-13CH3]-labeled RNCs at 700 MHz were recorded with 3072 

points in the direct (1H) dimension (Taq=137.6 ms) and 128 points in the indirect (13C) 

dimension (Taq=12.1 ms). For all RNCs recorded at 700 MHz, either 15N XSTE45 or 1H STE-
1H,13C-HMQC46 diffusion measurements were acquired using a diffusion delay of 100 ms and 

bipolar trapezoidal gradient pulses (total length 4 ms, shape factor 0.9) with strengths of 0.028 

and 0.529 T m-1. Spectra recorded at 800 and 950 MHz were recorded with a non-uniform 

weighted sampling scheme, a 50 ms acquisition time in the direct (1H) dimension (spectral 

width 16 ppm), 160 points in the indirect (15N) dimension (spectral width 22 ppm), and a 

recycling time of 50 ms. The indirect dimension was acquired using a cosine non-uniform 

weighted scheme, providing an 11% increase in intensity47. These data were interleaved with 

SORDID diffusion measurements48 using a diffusion delay of 190 ms and trapezoidal gradient 

pulses (total length 4 ms, shape factor 0.9) with strengths of 0.058 and 0.387 T m-1. All data 

were processed and analyzed using NMRPipe49 and Sparky50. 
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RNC labeling efficiency and selectivity as assessed by 15N filtered/edited difference 

spectroscopy 

Isotopic labeling of the 70S ribosome particle was monitored in U-15N-labelled RNCs: A 15N-

edited 1D experiment was recorded using modified 15N-SOFAST-HMQC sequences with 500 

ms pre-saturation of water for suppression of the disordered nascent chain resonances that 

exchange rapidly with the solvent. The observed signals therefore arise predominantly from 

non-labile amides of folded domain of ribosomal protein L7/L1251. A 15N-filtered experiment 

was run identically, except with the phase-cycle of the receiver inverted to reject 15N-labelled 

magnetization (14N-bound 1H). The intensity of the 1H envelope of 70S ribosomal resonances 

bound to 14N (15N-filtered 1D) was matched by scaling to that of 15N-bound 1H (15N-edited 1D) 

in order to quantify the ratio of unlabeled to labeled ribosomal protons. From these 

measurements, the extent of background labeling arising from the ribosomal proteins was 

determined to range between 1 and 15% across all samples (ca. 50 samples) of 15N-labelled 

RNCs. An analogous approach was applied to purified, released nascent chains and the extent 

of nascent chain labeling was determined to be > 90%.  

 

Co-translational folding as monitored by 1H-15N correlation spectra  

Three well-resolved resonances with signal-to-noise ratio of 12 ± 2 (corresponding to residues 

Ala683, Ala694, Val682) within 1H-15N correlation spectra of RNCs L = 21 to 42 were used 

for lineshape analysis. Spectra were processed with exponential window functions and 1D 

cross-sections were fitted to Lorentzian lineshapes. The averaged calculated linewidths of the 

resonances of these residues were 12 ± 1 Hz for FLN5∆16 and 20 ± 3 Hz for FLN5 RNCs 

(error taken as the standard deviation). The similar linewidths measured for Ala683, Ala694 

and Val682 in disordered FLN5 RNCs (L = 21 to 42) indicated that these resonances have 

uniform relaxation properties and could therefore be used to monitor the populations of the 

disordered state. Peak intensities of FLN5+L RNCs (L = 21, 31, 37, 42, 43, 44, 45, 47, 67 and 

110) were determined using Sparky50, scaled for the number of scans and relative nascent chain 

concentrations, and averaged across the 3 peaks. Peak height errors were calculated as the 

standard deviation of 100 points randomly picked in the baseline of these RNC spectra. 

Nascent chain concentrations were determined using anti-His western blot analysis of the RNC 

(taken at t = 0 h), as described in RNC integrity and the determination of nascent chain 

occupancy. At least two independent experiments were performed for each RNC sample, and 

the error was determined from the standard deviation of these experiments. 
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Assignment of FLN5 Y719E and disordered FLN6 

FLN5 Y719E amide chemical shifts were assigned on the basis of an assigned FLN5∆12 

spectrum and using 15N-NOESY-HSQC (200 ms mixing time) and 15N-TOCSY-HSQC (70 ms 

mixing time) experiments recorded at 277 K. Unfolded FLN6 1HN and 15N chemical shifts were 

assigned (except for residues 810-832), using a FLN5-6Δ18 construct28, which gives rise to 

resonances that closely overlay with those of natively folded FLN5 and with additional 

resonances of characteristic disordered chemical shifts of unfolded FLN6. FLN5-6Δ18 amide 

chemical shifts were assigned at 283 K using uniformly 15N,13C-labelled samples via standard 

triple resonance experiments (HNCO, HN(CA)CO, HNCACB and HN(CO)CACB). 

 

Estimation of the effective ribosome concentration experienced by a nascent chain  

The effective local concentration of a binding site near the exit tunnel on the ribosome surface 

as experienced by a residue in a nascent chain, can be estimated using previously described 

methods52. Treating the unfolded polypeptide outside the exit tunnel using a random flight 

model, the mean distance from a residue at the end of the exit tunnel (taken here to be 31 

residues from the PTC based on PEGylation measurements, Fig. 4a,b) to a point N residues 

along the chain (i.e. N+31 residues from the PTC) is approximately <r2>=CNl2, where the Cα-

Cα distance l=3.8 Å and the characteristic ratio C=9 accounts for the stiffness of a typical 

polypeptide chain52. By modeling the ribosome surface as an infinite plane, the effective local 

concentration of a binding site situated close to the exit tunnel can be determined to be 

cL=2(3/2π<r2>)3/2/1000NA (in mol L–1), where NA is Avogadro’s number52. For residues 10 to 

20 amino acids beyond the exit tunnel (i.e. linker lengths L = 41-51), this corresponds to 

effective concentrations of between 8 and 23 mM.  

 

Structure calculations using chemical shift restrained molecular dynamics simulations 

Structural ensemble calculations of the FLN5+110 RNC were performed using the replica-

averaged metadynamics (RAM) method described32. In these calculations, chemical shifts are 

used as replica-averaged structural restraints in molecular dynamics simulations using 

GROMACS53 together with PLUMED254. We used the CHARMM22* force field55 with 

TIP3P water molecules56. A time step of 2 fs was used together with LINCS constraints57. The 

van der Waals and Coulomb interactions were cut-off at 0.9 nm, while long-range electrostatic 

effects were treated with the particle mesh Ewald method. All simulations were carried out in 

the canonical ensemble by keeping the volume fixed and by thermosetting the system at 300 K 

with the Bussi-Donadio-Parrinello thermostat58. 
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Supplementary Figures 

 

 
Supplementary Figure 1 

Design of isolated protein and RNC constructs, and homogeneity of purified RNCs 

(a) Schematic depicting the design and nomenclature used for all the isolated proteins and 

RNCs used in this study. Sequence boundaries are indicated. The isolated FLN constructs 

comprise:  a range of FLN5 C-terminal truncations in which between 2 and 21 amino acids have 

been removed, “FLNΔX”, in which X refers to the extent of the truncation, the folding 

incompetent variant “FLN5 (Y719E)” harboring a destabilizing Glu mutation at the site 

indicated in orange, and “FLN5-6Δ18” in which FLN6 has the removal of 18 amino acids from 

its C-terminus (Hsu, S.T. et al. Proc Natl Acad Sci U S A 104, 16516-21, 2007). (lower panel) 

In SecM-stalled FLN5 RNCs, the FLN5 sequence is tethered to the PTC via increasing lengths 

of the FLN6 sequence and the SecM translational arrest motif; for simplicity this will be 

referred to here as the “linker”. The linker, ranging from 21 to 110 amino acids, therefore 

corresponds to the distance (in residues) between its most C-terminal residue, G750, and the 

PTC. Folding-incompetent RNCs have the Y719E mutation in FLN5 and are referred to as 

“FLN5+L Y719E RNCs”. For the poly (GS) RNCs, FLN6 is replaced with a repeating poly 
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(GS) motif, GGGG/S, to generate equivalent linkers of between 21 to 67 residues in length, as 

present in the FLN5 RNCs. (b) Representative PAGE gel of a purified RNC (FLN5+42) and of 

70S ribosomes visualized with Coomassie blue stain (left) and silver stain (right). The gels 

show a banding pattern characteristic of ribosomal proteins and show that the RNCs are 

essentially free of extraneous proteins. The bands corresponding to ribosomal proteins L1, L2, 

L6, S5, L29, L31, L35 are highlighted. (c) An anti-His western blot of FLN5+42 RNC and of 

70S ribosomes, showing the tRNA-bound form of the RNC and the absence of any non-specific 

detection of ribosomal proteins in untranslating 70S ribosomes. The extent of nascent chain 

attachment to ribosomes was determined to be > 90% across all samples. (d) The amount of 

residual trigger factor (TF) and DnaK present within the purified RNC samples was assessed by 

densitometry analysis of anti-TF and anti-DnaK western blots, respectively. The purified 

samples are essentially free of the effects of TF and DnaK (≤ 1.2%). Highlighted in asterisks are 

the RNCs for which TF or DnaK levels were below levels of detection. (e) Representative 

western blots of RNC samples which were presented in a modified form in Fig. 2c are shown 

here for clarity, where the RNCs shown in Fig. 2c are marked by asterisks. 
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Supplementary Figure 2 

Monitoring of the integrity of RNCs 

An integrated approach using NMR and biochemical analyses was used to determine the 

integrity of the RNCs over time. (a) For each of FLN5+21, 45, 47, 67 and 110 RNCs, the 1H-
13C correlation spectrum is shown (identical to Fig. 3a), overlaid with that of isolated FLN5 

(cyan). Resonances arising from labelled 70S proteins can be observed in spectra at ca. ∂H=0.8 

ppm. (b) The integrity of these RNCs was monitored over time and the timeframe during which 

the nascent chain was determined to be attached in each RNC as derived by NMR methods is 

indicated by the shaded region: 13C-edited diffusion experiments (1H STE-1H,13C-HMQC) were 

used to determine the diffusion coefficient associated with the nascent chain in FLN5+67 and 

110 RNCs (cyan). The changes in intensities of the cross-peaks observed in the correlation 

spectra were used to monitor the FLN5+45 and 47 RNCs (green) and the diffusion coefficients 

(from 13C-edited experiments) of the combined ribosome-derived resonances were monitored 

for FLN5+21 RNC (yellow). (c) Western blots against either the N-terminal His-tag or C-

terminal SecM sequence report on both the tRNA-bound and released forms of the nascent 
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chain. (d) Densitometry analysis of the tRNA-bound form over time as assessed by the anti-His 

western blot. In the analyses shown in panels b, c and d, the shaded region represents the 

timeframe corresponding to an exclusively ribosome-bound nascent chain and for which the 2D 

correlation spectra are summed and presented in panel a. (e) As a representative example for 
15N-labelled RNCs, a 1H-15N SOFAST-HMQC spectrum (identical to that in Fig. 3b) of 

FLN5+21 RNC (black) is overlaid with a 2D correlation spectrum of isolated FLN5∆12 (blue) 

and a selection of unambiguously assigned resonances are indicated. (f) Diffusion coefficient 

for FLN5+21 RNC resonances assessed over time (calculated from 15N XSTE spectra; single 

spectrum shown on left). A signal attenuation (I95/I5) by a factor of > 0.62 corresponds to a 

diffusion coefficient of an intact ribosomal particle (D = 2.0 ± 0.3 10-11 m2 s-1) at 25°C. The 

timeframe during which the nascent chain is assessed as being intact is shaded in grey. (g) 15N 

XSTE spectra of FLN5+21 RNC recorded at gradient strengths 5% and 95% of the maximum 

gradient strength Gmax, 0.557 T m-1. (h) Anti-His and anti-SecM western blot analyses of 

FLN5+21 RNC. 
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Supplementary Figure 3 
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U-15N-labelled RNC spectra: assignments, chemical shift analyses and linewidth 

measurements on FLN5 RNCs and isolated FLN5 variants 
1H-15N correlation spectra and resonance assignments of: (a) FLN5Δ12 (b) FLN5-6Δ18 

(c) the 70S ribosome for which the ribosomal protein L7/L12 gives rise to most 

resonances that are observed (Christodoulou, J. et al. Proc Natl Acad Sci U S A 101, 

10949-10954, 2004). (d) 1H-15N correlation spectrum of FLN+21 RNC. (e) Overlay of 

the 1H-15N correlation spectra of FLN5+21 RNC (black) and isolated FLN5∆12 (blue), 

demonstrating that the disordered region of FLN5+21 RNC spectrum (7.9-8.6 ppm in 
1H dimension) overlays closely with that of disordered FLN5. (f) Overlay of FLN5+21 

RNC (black) and FLN5-6∆18 (green); the resonances in the disordered region of the 

RNC spectrum do not correspond to those of unfolded FLN6. (g) Overlay of the spectra 

of FLN5+21 RNC (black) and of the 70S ribosome particle (magenta), the limited 

overlap with ribosomal protein L7/L12 resonances indicating an essentially negligible 

level of background signal of ribosomal proteins in the RNC. (h) 1H-15N correlation 

spectrum of FLN5+110 RNC. (i) Overlay of 1H-15N correlation spectra of FLN5+110 

RNC (black) and FLN5∆12 (blue); the resonances in the disordered region of the RNC 

spectrum clearly do not correspond to those of unfolded isolated FLN5. (j) Overlay of 
1H-15N correlation spectra of FLN5+110 RNC (black) and FLN5-6∆18 (green); the 

unfolded region of FLN5+110 RNC overlays closely with that of disordered FLN6. (k) 

Overlay of 1H-15N correlation spectra of FLN5+110 RNC (black) and 70S ribosomes 

(magenta); there is a negligible contribution of resonances arising from the presence of 

labelled 70S ribosomal proteins. (l) 1H-15N correlation spectrum of FLN5 Y719E 

(orange), overlaid with that of a C-terminally truncated variant, FLN5∆12 (black). The 

close overlay demonstrates that the Y719E mutation (generated based upon predictions 

using the PoPMuSiC algorithm (Dehouck, Y., Kwasigroch, J.M., Gilis, D. & Rooman, 

M. BMC Bioinformatics 12, 151, 2011). results in an unfolded conformation that is 

highly comparable to that observed in FLN5∆12. 15N R2 relaxation rates (at 277 K, data 

not shown) averaged 2.8 ± 0.6 s-1 for the 81 residues analysed (error taken as the 

standard deviation), indicating a highly disordered protein. The 1H-15N spectra of both 

proteins were completely assigned and the key chemical shift changes between the two 

are indicated with dotted lines. (m) Chemical shift differences between FLN5 Y719E 

and FLN5∆12 are mapped against the amino acid sequence, as calculated by the 
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formula ∆∂= 𝜕"# + (𝜕&/5)#. This shows that the chemical shifts are closely similar between 

the two constructs apart from the mutation site (marked by an asterisk) and the C-terminus of 

FLN5∆12. (n) Comparison of linewidths between isolated FLN5∆16 and FLN5+21, +31, +37 

and +42 RNCs as measured for resonances Ala683, Ala694 and Val682. (o) 1H cross-sections of 

FLN5+21, 31, 37 and 42 RNC resonances used for lineshape fitting (as described in the Online 

Methods): Ala683 and Ala694 are fitted simultaneously to Lorentzian lineshapes. RNC 

linewidths (grey) are greater than those observed for isolated FLN5∆16 (blue). 
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Supplementary Figure 4 

PEGylation of FLN5 Y719E RNCs 

(a) Autoradiography of SDS-PAGE gels as presented in a cropped form in Fig. 4b is provided 

here for clarity. The arrows indicate the different forms of FLN5 RNCs observed: tRNA-bound 

nascent chain (green), PEGylated tRNA-bound nascent chain (red) and released nascent chain 

(cyan), PEGylated released nascent chain (blue). Approximate migration of molecular weight 

standards is indicated on the left. (b) RNase A treated FLN5 Y719E RNCs, showing the 

PEGylation characteristics of the released nascent chain (colour coding as in a). Approximate 

migration of molecular weight standards is indicated on the left. 
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Supplementary Figure 5 
1H-15N correlation spectra of FLN5 C-terminal truncations 

(a) Natively folded full-length FLN5 domain. (b) FLN5∆8. The removal of eight C-terminal 

residues results in FLN5 sampling both unfolded and native-like conformational states. (c) 

FLN5∆16, shows a characteristic spectrum of an unfolded polypeptide. Below, the regions 

removed by the C-terminal truncation are highlighted on ribbon diagrams of FLN5 (PDB: 

1QFH), in magenta for FLN5∆8 and blue for FLN5∆16.  
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Supplementary Figure 6 

FLN5 RNCs in which FLN6 is substituted with a poly (GS) linker 

a) Schematic of the poly (GS)-linker RNCs, in which the FLN6 domain is substituted with a 

poly (GS) sequence. The FLN6 residues that have been substituted in two RNCs analysed by 

NMR, FLN5+31 and +42 to generate FLN5+31 GS and +42 GS, respectively, are shown in the 

highlighted box. (b) Anti-His western blot of FLN5+31 GS and 42 GS RNCs in their released 

and tRNA-bound forms, respectively. (c) The emergence of FLN5 from the exit tunnel in a 

series of poly (GS)-linker RNCs was monitored by PEGylation of G751C variants of the FLN5 

RNCs in a manner similar to that shown in Fig. 4 for the FLN6 domain. (d) Overlay of 1H-15N 

correlation spectra of FLN5+42 GS RNC and FLN5+42 RNC. The latter was recorded at 950 
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MHz and with enhanced resolution, however FLN5+42 and +42 GS RNCs have similar intrinsic 

linewidths. The close overlay suggests shows the similar unfolded conformational preferences 

between the two nascent chains i.e. FLN5 is unfolded in the FLN5+42 GS RNC. (e) Overlay of 
1H-15N correlation spectra FLN5+42 GS RNC when it is intact (dark green) and released (after 

~20 h of NMR acquisition, light green), which shows the appearance of additional glycine 

resonances arising from the poly (GS) linker in the released nascent chain. (f) Relative 

intensities of FLN5+42 (upper panel) and FLN5+31 (lower panel) GS RNCs compared to 

isolated, unfolded FLN5 (the green trace represents a 5-point moving average). 5-point moving 

average plots of the relative intensities of FLN5+42 (upper panel) and FLN5+31 (lower panel) 

RNCs compared to isolated unfolded FLN5 are also shown for comparison (pink). The close 

overlay of the two indicates that that altering the linker does not seem to impart significantly on 

the conformation of unfolded FLN5. (g) Overlay of 1H-15N correlation spectra of FLN5+42 GS 

RNC after ~20 h of NMR acquisition and of natively folded FLN5: upon release from the 

ribosome, resonances corresponding to natively folded FLN5 are observed. 
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Supplementary Figure 7 

Interactions between folded and unfolded isolated FLN5 variants with 70S ribosomes 

Relative peak intensities of: (a) FLN5 in the presence of 1 molar equivalent of 70S ribosomes 

relative to FLN5 alone, at 5 µM (as presented in Fig. 6b) (b) FLN5∆12 in the presence of 1 

molar equivalent of 70S ribosomes relative to FLN5∆12 alone, at 5 µM. (c) FLN5 Y719E in the 

presence of 1 molar equivalent of 70S ribosomes relative to FLN5 Y719E alone, at 8 µM (as 

presented in Fig. 6b). Shaded areas highlight the peak broadenings observed. 
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