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Abstract
Motor neuron disease (MND), also known as amyo-
trophic lateral sclerosis, is a relentlessly progressive 
neurodegenerative condition that is invariably fatal, 
usually within 3 to 5 years of diagnosis. The aetio-
pathogenesis of MND remains unresolved and no 
effective treatments exist. The only Food and Drug 
Administration approved disease modifying therapy is 
riluzole, a glutamate antagonist, which prolongs survival 
by up to 3 mo. Current management is largely sympto-
matic/supportive. There is therefore a desperate and 
unmet clinical need for discovery of disease mechanisms 
to guide novel therapeutic strategy. In this review, we 
start by introducing the organizational anatomy of the 
motor system, before providing a clinical overview of 
its dysfunction specifically in MND. We then summarize 
insights gained from pathological, genetic and animal 
models and conclude by speculating on optimal 
strategies to drive the step change in discovery, which is 
so desperately needed in this arena.
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Core tip: Motor neuron disease (MND) is a fatal neuro-
degenerative disorder with no known cure. Here we 
discuss the organization of the motor system and the 
clinical presentation of MND. We detail the diagnostic 
criteria for MND including electrophysiological studies 
and potential future diagnostic markers of disease. We 
discuss the staging of disease progression in MND. We 

Rubika Balendra, Rickie Patani

Rubika Balendra, Department of Neurodegenerative Disease, 
Institute of Neurology, University College London, London 
WC1N 3BG, United Kingdom

Rubika Balendra, Institute of Healthy Ageing, Genetics, Evolution 
and Environment, University College London, London WC1E 
3BT, United Kingdom

Rubika Balendra, Rickie Patani, Department of Molecular 
Neuroscience, Institute of Neurology, University College London, 
London WC1N 3BG, United Kingdom

Rickie Patani, Department of Clinical Neurosciences, University 
of Cambridge, Cambridge CB2 0QQ, United Kingdom

Rickie Patani, Euan MacDonald Centre for MND Research, 
Edinburgh EH16 4SB, United Kingdom 

Author contributions: All authors contributed to this paper with 
conception and design of the study, literature review and analysis, 
drafting and critical revision and editing and final approval of the 
final version.

Supported by A Wellcome Trust Research Training Fellowship 
(107196/Z/15/Z); Wellcome Trust Clinician Scientist and an 
Anne Rowling Fellow in Regenerative Neurology.

Conflict-of-interest statement: No potential conflicts of 
interest. 

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Correspondence to: Rickie Patani, MD, PhD, Department 
of Molecular Neuroscience, Institute of Neurology, University 
College London, Queen Square, London, WC1N 3BG, 
United Kingdom. rickie.patani@ucl.ac.uk
Telephone: +44-20-72780661

Received: November 28, 2015

REVIEW

56 March 26, 2016|Volume 6|Issue 1|WJM|www.wjgnet.com

Quo vadis motor neuron disease?

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5662/wjm.v6.i1.56

World J Methodol  2016 March 26; 6(1): 56-64
ISSN 2222-0682 (online)

© 2016 Baishideng Publishing Group Inc. All rights reserved.

World Journal of 
MethodologyW J M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79502837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


then provide an overview of disease management and 
end with insights into molecular pathogenesis of the 
disease and the use of disease models.
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ORGANIZATIONAL ANATOMY OF THE 
MOTOR SYSTEM
The staggering complexity of the vertebrate nervous 
system is directed largely at the generation and 
regulation of movement by the careful choreography of 
muscles responsible for walking, talking and breathing. 
The motor system can be categorized most simply into 
upper and lower divisions. Betz cells within both frontal 
lobe motor cortices are classically large pyramidal upper 
motor neurons (MNs). Their smaller cortical counterparts 
densely populate the motor and premotor cortices. 
Upper MNs control lower MNs in the spinal cord either 
directly (monosynaptic input) or indirectly (through 
spinal interneurons). Descending MNs in the spinal 
cord travel in laterally partitioned corticospinal tracts, 
most of which cross the midline at the level of the lower 
brainstem medullary pyramids to synapse contralate
rally within the spinal cord. There are also anterior 
corticospinal tracts, which do not cross at the medullary 
pyramids but remain ipsilateral. Notably, a minority of 
spinal cord regions are innervated by these anterior 
corticospinal projections, which branch and innervate on 
both sides of the spinal cord, crossing at the appropriate 
spinal segment. Direct synaptic connection between 
upper and lower MNs is likely a recent development in 
evolution, given that it is exclusive to higher primates.

Lower MNs are anatomically positioned in the ventral 
horns of the spinal cord and motor nuclei within the 
brainstem; these in turn synapse at neuromuscular 
junctions and muscle spindles forming a final common 
pathway for voluntary movement. Spinal MNs are large, 
polarized cells with long axons, and are the conduit 
through which the motor cortex in the brain activates 
contraction of skeletal muscles. These multipolar cells 
can project axons over a meter long and each innervate 
up to 1000 muscle fibres. Remarkably, their extensive 
dentritic arborisation can accommodate up to 10000 
synaptic terminals, receiving input from descending 
upper MNs and spinal interneurons. Despite certain 
generic properties, distinct molecular phenotypes of 
MNs exist. Even seemingly simple motor actions require 
collaboration and coordination of multiple MN subtypes, 
which are anatomically organized into motor columns 
and further grouped into motor pools in a muscle-specific 
manner. The generation of MN subtype diversity is an 
absolute prerequisite to survival. In total, the human 

body has more than 100000 spinal MNs, which innervate 
600 peripheral muscle targets organized into bilateral 
pairs. MNs can be classified according to the type of 
motor unit they generate into alpha, beta, and gamma. 
Alpha MNs abound in the motor system and innervate 
extrafusal skeletal muscle to generate contractile force 
and movement. Alpha MNs can be further codified by 
the contractile properties of muscle fibers they innervate 
into fasttwitch fatigable, fast twitch fatigue resistant, 
and slow twitch fatigue resistant[1]. Beta MNs innervate 
both intra- and extrafusal fibres, although these are the 
least wellunderstood MN class. Gamma MNs innervate 
intrafusal muscle fibers of the spindle, modulating 
their sensitivity to stretch[2,3]. Compared to alpha MNs, 
gamma MNs possess smaller cell somae, slower axonal 
conduction velocities, less complex dendritic arrange
ments and they lack monosynaptic input from proprio
ceptive sensory neurons[48]. This degree of structural and 
functional diversity commands distinct developmental 
lineage restriction programs for each different class of 
MN. 

MN subclasses are spatially allocated into groups 
that reflect both their developmental origins and also 
their adult function. This coupling of developmental 
origin to adult function is depicted in Figure 1. MNs are 
developmentally partitioned into discrete motor columns, 
which extend along the rostrocaudal (RC) neural 
tube. Within a column, the group of MNs responsible for 
innervating a single skeletal muscle is termed a motor 
pool, each of which is also arranged by an anatomical 
logic related to the muscle target(s) of its projections. 
The medial motor column (MMC) contains MNs that 
innervate dorsal epaxial muscles, which mainly subserve 
postural functions. Hypaxial motor column (HMC) MNs 
project to the ventral hypaxial muscles, which are 
mainly involved in respiration. The lateral motor columns 
(LMC) are responsible for innervating limb muscles. 
The preganglionic motor column (PGC) is present at 
thoracic levels and MNs originating from here innervate 
sympathetic ganglia. The MMCs run throughout the 
RC extent of the spinal cord, while the LMCs, HMCs 
and PGCs occur only at brachiolumbar (LMCs) and 
thoracic (HMCs and PGCs) foci (Figure 1). Against this 
background, the simple term “MN” thus fails to capture 
myriad subtype differences including rostrocaudal 
position, motor column and axonal trajectory. This 
striking complexity is an absolute prerequisite to normal 
motor function. 

MN dISEASE - A cLINIcAL pERSpEcTIvE
MN disease (MND) causes progressive MN degeneration 
in the anterior horn of the spinal cord, brain stem and 
motor cortex[912], invariably leading to fatal paralysis 
usually through respiratory failure[13,14]. The lifetime 
risk of MND is 1:400 in those of European ancestry[15]. 
Most cases (90%) are sporadic and affect men more 
than women. It can present at any age, but with a peak 
incidence in the sixth to seventh decades of life. Familial 
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MND is caused by mutations in a variety of genes, 
about 60% of which are now identified[1618]. Clinically, 
the patient history and examination typically suggest 
evidence of upper and lower MN dysfunction in the 
absence of sensory or autonomic symptoms or signs. 
A striking clinical feature of this condition is the near 
universal sparing of the oculomotor nerves and the MNs 
in the sacral spinal cord that are responsible for pelvic 
sphincter control, called Onufrowicz nucleus. 

Although initial presentation is quite variable, limb 
muscle weakness often begins focally (over 60% of 
cases, approximately equally distributed over upper 
and lower limb) and spreads in an orderly/stereotyped 
fashion, although overall patterns of motor weakness 
do vary quite widely between patients. While not patho
gnomonic, the so called “splithand phenomenon” is 
certainly a wellrecognized feature of MND, clinically 
presenting as lateral hand muscle atrophy (i.e., thenar 
eminence and first dorsal interosseous) with comparative 
normality of the medial hand muscles. Approximately 
30% of patients present with bulbar symptoms, which 
include dysarthria, dysphagia and sialorrhoea. Sialorr

hoea is caused by inability to swallow secretions due 
to a combination of tongue spasticity, weakness of 
the facial, mouth and pharyngeal muscles, and loss 
of oropharyngeal coordination and function[19]. Pseu
dobulbar palsy is also a recognized feature of MND, 
which can manifest clinically with spasticity of the tongue 
or of speech, a brisk jaw jerk, a positive gag reflex 
and mood incongruent emotionality. Muscle cramps 
and hypersalivation are common symptoms, and head 
drop, bilateral tongue wasting and widespread fascicula
tions important physical signs. Fasciculations can be a 
prominent and early sign in the disease[20]. Although only 
a minority of patients with MND initially present with 
acute respiratory failure, the majority do progress to 
this; indeed it is often the cause of their ultimate demise. 
The El Escorial criteria can facilitate diagnosis of MND. 
Combined upper MN and lower MN dysfunction can be 
difficult to detect in early disease, sometimes explaining 
diagnostic uncertainty both between conceivable diffe
rential diagnoses (Table 1) and different MND subtypes 
(Table 2). Although a period of observation can be 
valuable for diagnostic clarification in this context (as 
concurrent upper MN and lower MN involvement will 
typically become more evident as the disease pro
gresses), one must take into careful consideration the 
importance of making a timely diagnosis. Most MND 
patients who present with predominantly upper MN 
pathology will develop lower MN signs within 3 or 4 
years. The clinical diagnosis of MND is usually fairly self
evident, however it is critical not to miss any possible 
differential diagnoses listed in Table 2, as suggested by 
the history, examination and paraclinical tests. 

The Revised El Escorial diagnostic criteria and the 
Awaji electrodiagnostic criteria are well established for 
the clinical diagnosis of MND and evaluate evidence for 
progressive degeneration of upper MNs and lower MNs in 
the absence of other disease processes that could explain 
the clinical findings[2123]. There are three diagnostic 
categories: Clinically definite, probable or possible MND. 
Importantly, the Awaji criteria established equivalent 
importance of both clinical and electrophysiological 
findings when detecting chronic neurogenic changes[24]. 
A study prior to the introduction of the Awaji criteria 
found that 29% of MND patients died without a dia
gnosis of definite MND[25]. The Awaji diagnostic criteria 
have been shown to increase the sensitivity of MND 
diagnosis[24,26]. As the diagnosis is made on the basis 
of upper MN and lower MN involvement in bulbar and 
spinal regions, the addition of electrophysiology for more 
sensitive detection of lower MN involvement facilitates 
the diagnosis. Evidence for neurogenic changes on the 
electromyography (EMG) should be sought[23]. Chronic 
neurogenic change may be demonstrated by motor 
unit potentials (MUPs) of increased amplitude and 
duration usually with increased number of phases and 
decreased motor unit recruitment or using a narrow pass 
filter to detect unstable or complex MUPs. Fibrillation 
potentials with positive sharp waves may be observed 
and fasciculation potentials with complex morphology, 
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used to measure corticomotoneuronal function with 
the parameters of motor threshold, motor evoked 
potential amplitude, central motor conduction time, 
cortical silent period, intracortical inhibition and facilita
tion[28]. Early cortical hyperexcitability, which may reflect 
glutamate excitotoxicity, precedes lower MN involve
ment in MND, and through the course of the disease 
this hyperexcitability decreases[2832]. Threshold tracking 
TMS has the potential for use as a diagnostic marker 
and distinguishes MND from nonMND disorders with 
a sensitivity of 73.21% and specificity of 80.88% at an 

in the presence of chronic neurogenic change on needle 
EMG, may also be seen. The Revised El Escorial and 
Awaji criteria have proved very useful for diagnosis, 
especially for determining patient inclusion for clinical 
trials, however for use in clinical practice it is proposed 
that these criteria should be updated, to reflect the 
phenotypic heterogeneity of MND, the stage of disease 
and the presence of familial disease[27]. 

Similarly the use of investigations to support upper 
MN involvement would add further diagnostic certainty. 
Transcranial magnetic stimulation (TMS) is a technique 

Table 1  Possible differential diagnoses and diagnostic clues to discriminate from motor neuron disease[23]

Alternative diagnosis Diagnostic clue

Cervical (myelo) neuropathy Cervicalgia, osteopaenia/osteoporosis, abnormal cervical MRI
Benign fasciculations Absence of weakness, limited distribution, young age
Nutritional (B12 or Cu deficiency) Usually have sensory impairment
Motor predominant CIDP Relapsing-remitting course, evidence of demyelination on NCS, IVIG-responsive
Multifocal motor neuropathy with conduction block Weakness with little wasting, distal and slowly progressive, absent bulbar involvement, 

conduction block on NCS 
Autoimmune and paraneoplastic e.g., stiff person’s syndrome: GAD, amphiphysin, gephyrin antibodies, EMG differences
HIV, HTLV1 HIV: History, sensory neuropathy, opportunistic infections
Parsonage-Turner syndrome (or brachial neuritis) Preceded by pain, preceding vaccination/viral illness, process arrests and followed by recovery, 

usually upper limb
Inclusion body myositis Distribution - forearm and quadriceps, raised CK, muscle biopsy 
Hirayama’s disease Upper limb, young males from Asia, unilateral, may arrest after a few years
Radiation-induced motor neuropathies History and distribution of radiotherapy
Kennedy’s disease Family history (X-linked), gynecomastia 
Spinal muscular atrophy Only affects lower MNs
Primary progressive multiple sclerosis MRI and/or cerebrospinal fluid (oligoclonal bands)
Adrenoleucodystrophy Family history (X-linked), adult onset, slowly progressive, usually have sensory ataxia and 

sphincteric involvement
Hexosaminidase A deficiency Family history, dystonia, ataxia, psychosis
Poliomyelitis or post-polio syndrome Clinical history and NCS/EMG 
Hereditary spastic paraparesis Family history and genetic testing

Cu: Copper; CIDP: Chronic inflammatory demyelinating polyneuropathy; NCS: Nerve conduction studies; IVIG: Intravenous immunoglobulin; GAD: 
Glutamic acid decarboxylase; EMG: Electromyography; HIV: Human immunodeficiency virus; HTLV: Human T-cell lymphotropic virus; MRI: Magnetic 
resonance imaging; CK: Creatinine kinase.

Table 2  Motor neuron disease subtypes, discriminating features and possible differential diagnoses 

MND subtype Clinical features Possible differential diagnoses

ALS Affect both upper MNs and lower MNs Cervical myeloneuropathy 
Onset 50 or 60 s HIV

Median survival 3 to 5 yr
PLS Only affect upper MNs 3 yr from onset Cervical myelopathy 

Onset 50 s Nutritional (B12 or Cu deficiency)
Profound spasticity Primary progressive multiple sclerosis

Progressive quadriparesis Hereditary spastic paraparesis 
Late cranial nerve involvement Stiff person syndrome

Rarely bulbar onset Tropical spastic paraparesis (HTLV1)
Slow progression Adrenomyeloneuropathy

Median survival 5 to 10 yr Hexosaminidase A deficiency
Corticobasal degeneration

PMA Only affect upper MNs 3 yr from onset Benign fasciculations
Focal asymmetric distal weakness, followed by proximal involvement Post-polio syndrome

Late bullar/respiratory involvement Adult onset spinal muscular atrophy 
Earlier onset than ALS Inclusion body myositis

Raised CK (< 10 × normal)
Median survival 3 to 5 yr

HIV: Human immunodeficiency virus; Cu: Copper; CK: Creatinine kinase; ALS: Amyotrophic lateral sclerosis; PLS: Primary lateral 
sclerosis; HTLV: Human T-cell lymphotropic virus; PMA: Progressive muscular atrophy.
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early disease stage[33]. Three hypotheses for MN death 
have been proposed: (1) a “dyingforward” pheno
menon, where diseases initiates in upper MNs, leading 
to excitotoxic death of lower MNs; (2) a “dyingback” 
phenomenon, where disease begins at the lower MN 
level and progresses back to  the upper MNs; or (3) an 
independentdegeneration phenomenon. The finding 
that cortical hyperexcitability starts below lower MN 
involvement supports the “dyingforward” hypothesis. 
Furthermore neuroimaging techniques, such as diffusion 
tensor magnetic resonance imaging, are showing 
promise for determining motor cortex and corticospinal 
tract involvement in disease, and could be used as 
biomarkers of disease and predictors of prognosis[34]. 

Various staging systems have been devised to 
measure disease progression in MND[3540]. Individuals can 
progress through the disease at very variable rates[41,42], 
and as each clinical stage is reached at a consistent 
proportion through the disease process, staging can 
be used to make more useful comparisons between 
patients[35,36]. Furthermore, incremental stages correspond 
to decreasing function and health utility, and can be 
used in costbenefit analyses of new treatments[38]. An 
important application of staging is as an endpoint in 
clinical trial design. The goal is to develop therapies which 
would prolong time in the earlier stages of disease, when 
function and quality of life are better, as compared to the 
later stages. 

Cognitive impairment is recognized in up to half 
of patients with MND, usually detectable on neuro
psychological testing rather than from routine clinical 
evaluation. However, frank dementia of the fronto
temporal lobar degeneration (FTLD) type is increasingly 
diagnosed against the background of pathological and 
genetic discoveries that have mechanistically linked 
these two conditions together over the last decade[43]. 
Conversely, some patients presenting with FTLD will 
have clinical and paraclinical evidence of MND and the 
mode of presentation here is likely determined by the 
same pathomechanistic process starting/predominating 
at different neuraxial sites. Approximately 15% of MND 
patients have a clinical diagnosis of FTLD and 15% of 
FTLD patients have a diagnosis of MND[43,44].

Both European Federation of Neurological Societies 
and American Academy of Neurology guidelines for the 
management of MND patients have guided management 
to some degree in the United Kingdom[4548]. Following a 
review decision in November 2014, the national institute 
for health and care excellence (NICE) is currently 
developing a guideline for the management of MND. 
This will ultimately replace the current NICE guideline on 
noninvasive ventilation in MND. The MND Association 
website offers a comprehensive list of available regional 
and national/international guidelines in specific MND
related areas, with direct links to documents. Indeed 
the support of the MND Association in all respects is 
frequently fed back as being highly valued by patients 
and carers. Most patients will experience hypoventilation/
orthopnea as the disease progresses, justifying proactive 

interval monitoring of respiratory performance (including 
nocturnal oximetry, dynamic forced vital capacity, and 
maximal inspiratory pressure). Noninvasive positive 
pressure ventilation should be accessible when needed. 
Importantly, the management of MND should be in a 
multidisciplinary clinical setting, including experts in 
neurology, respiratory medicine, nutrition, psychology/
psychiatry, speech therapy, physical and occupational 
therapy, social work, and case management. Other 
supportive measures include reactive and proactive 
interval examination of swallowing function as MND 
increases risk of aspiration. It is noteworthy that parotid/
submandibular botulinum toxin injections can be helpful 
for sialorrhoea[19,49]. Consideration of a percutaneous 
gastrostomy tube can help to maintain body weight and 
hydration in MND. Pseudobulbar affect is often treated 
offlicence with selective serotonin reuptake inhibitors 
or tricyclic antidepressants. In October 2010, Food and 
Drug Administration approved a dextromethorphan
quinidine combination for symptomatic relief of pseu
dobulbar affect.

LESSONS FROM pATHOLOGIcAL, 
GENETIc, ANIMAL ANd cELLuLAR 
MOdELS 
Various experimental strategies including in-vivo studies, 
cell based in-vitro approaches and human postmortem 
neuropathological specimens from MND patients have 
been employed in order to improve understanding of 
this disease. Human stem cell strategies are becoming 
an increasingly important component of the armoury of 
investigative tools used to study disease mechanisms 
and identify potential therapeutic targets[50,51].

Historically, the most intensively studied cause of 
familial MND has been mutations in the copper/zinc 
superoxide dismutase (SOD1) gene, which account 
for approximately 15% of cases of familial MND and 
less than 5% of sporadic MND cases. The mutant 
SOD1 protein characteristically maintains its dismutase 
function, but appears to cause MN degeneration through 
alternative mechanisms, including a possible toxic gain 
of function[52]. Well over 100 individual point mutations 
located throughout the primary structure of SOD1 are 
sufficient to cause disease, suggesting proteinfolding 
abnormalities as a possible initiating event. Transgenic 
mice globally expressing mutant forms of human SOD1 
exhibit selective MN degeneration, which broadly mirrors 
the pathology of human sporadic and familial MND. 
Unfortunately, despite countless preclinical and clinical 
trials based on SOD1 models, not one of these has led 
to a significant therapeutic advance in MND. A landmark 
study in 2006 then discovered that the pathological 
hallmark of > 95% MND cases (sporadic and familial) 
is cytoplasmic misaccumulation of ubiquitinated and 
hyperphosphorylated transactive response DNAbinding 
protein (TDP43)[53], a highly conserved, ubiquitously 
expressed and multifunctional nuclear protein with 
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both DNA and RNA binding capacities[5456]. A striking 
observation made in this work was that TDP43 appe
ared mislocalised from the nucleus to the cytoplasm 
in MND and FTLD, although the pathophysiological 
significance of this remains incompletely understood. 
Interestingly, TDP43 immunoreactive inclusions are 
found in both neurons and glia in MND and FTLD, hence 
their proposed taxonomic reclassification as TDP43 
“proteinopathies”. SOD1 mutations do not produce this 
common hallmark of MND and may not therefore be 
pathomechanistically representative of the majority of 
MND. Different subtypes of FTLD are based upon the 
protein found in pathological inclusions: In 45% of cases 
this is TDP43, in another 45% of cases this is tau, and 
in 10% of cases this is fused in sarcoma (FUS)[43,57]. 

Other recent discoveries identified MNDcausing 
gene mutations in TDP43 and FUS[58,59]; findings that 
both complement and extend previous pathological 
studies. Furthermore, two recent contemporaneous 
studies have identified another MNDcausing intronic 
mutation that introduces long hexanucleotide repeats 
into C9orf72 premRNA[60,61], which is the most frequent 
genetic cause of MND and a common cause of FTLD. 
TDP43 and FUS are both RNAbinding proteins. Colle
ctively, these discoveries implicate a dysregulation of 
RNA metabolism as playing a crucial role in MND patho
genesis. In addition to these genes, several further 
mutations have been discovered including in the follow
ing genes: PGRN, UBQLN2, SQSTM1, PFN1, ANG, VCP, 
MATR3, TUB4A. Taken together, gene mutations and 
pathological studies implicate both protein misfolding/
aggregation and perturbed RNA regulation as key 
underlying pathways in the molecular pathogenesis of 
MND[43,58,59,6266]. 

A widely held view regarding the pathogenesis of 
neurodegenerative disease posits that selective injury to 
a disease-specific subclass of neurons is mechanistically 
cell autonomous. This “neuroncentric” view has been 
increasingly challenged by pivotal micechimera studies 
using lineagespecific expression of mutant SOD1 and 
subsequent related investigation, which confirmed a 
major non cellautonomous role for astrocytes and 
microglia in SOD1related MND pathogenesis[6769]. Non 
cellautonomous injury has also recently been implicated 
in sporadic MND, raising the possibility of common 
pathogenic mechanisms[70,71].

The discovery of induced pluripotent stem cells 
(iPSC) enables patientspecific fibroblasts to be virally 
transduced with up to 4 transcription factors and “re
programmed” into embryoniclike stem cells[72]. Using 
insights from developmental neurobiology, these cells 
can subsequently be treated with a programme of 
extrinsic cues to direct their differentiation into a range of 
regionally defined neurons and glia for further study[7376]. 
Importantly, a variety of studies have confirmed the 
capacity of these terminally differentiated cells to 
recapitulate key pathological hallmarks of a range of 
different neurodegenerative diseases[71,7779]. In particular, 
several important studies have already demonstrated 

that iPSCderived neurons and glia from patients 
with monogenic and sporadic MND show pathological 
phenotypes when compared to their control counterparts. 
Furthermore, this reductionist and human in vitro model 
system allows assays that directly elucidate non cell 
autonomous mechanisms of disease[80]. Several studies 
have also confirmed the utility in this model system as 
a preclinical testbed for drug discovery[8183], including 
the practical feasibility of high throughput automated 
approaches[84]. 

FuTuRE STRATEGIES
We conclude that the integration of human experimental 
approaches is required to drive the desperately needed 
discovery of disease mechanisms and therapeutic 
strategy in MND. Unfortunately animal models have 
failed to deliver a significant therapeutic advance in MND, 
despite numerous efforts and important discoveries. 
Human iPSC models can better approximate clinical 
MND not only by virtue of species, but also because they 
express mutations at accurate pathophysiological levels 
and thus bypass the need for artificial overexpression, 
knock down or knock out experiments. A multitude of 
studies have now validated the human iPSC technology 
for disease modeling of both developmental and adult
onset conditions and drug discovery. However, this 
remains an in vitro system and thus lacks the dynamic 
cellular and signaling environments of an in vivo model. 
The integration of transgenic animal models that reca
pitulate MND pathogenesis together with patient-specific 
iPSCs represents an unprecedented opportunity to 
capture the complexity of pathogenic events underlying 
this devastating condition. By combining these appro
aches at the preclinical phase, we firmly believe that 
the translational yield of clinical trials will increase in 
MND. 
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