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Older adults perform worse than younger adults in some complex decision-making scenarios, which is
commonly attributed to age-related declines in striatal and frontostriatal processing. Recently, this
popular account has been challenged by work that considered how older adults’ performance may differ
as a function of greater knowledge and experience, and by work showing that, in some cases, older adults
outperform younger adults in complex decision-making tasks. In light of this controversy, we examined
the performance of older and younger adults in an exploratory choice task that is amenable to
model-based analyses and ostensibly not reliant on prior knowledge. Exploration is a critical aspect of
decision-making poorly understood across the life span. Across 2 experiments, we addressed (a) how
older and younger adults differ in exploratory choice and (b) to what extent observed differences reflect
processing capacity declines. Model-based analyses suggested that the strategies used by the 2 groups
were qualitatively different, resulting in relatively worse performance for older adults in 1 decision-
making environment but equal performance in another. Little evidence was found that differences in
processing capacity drove performance differences. Rather the results suggested that older adults’
performance might result from applying a strategy that may have been shaped by their wealth of
real-word decision-making experience. While this strategy is likely to be effective in the real world, it is
ill suited to some decision environments. These results underscore the importance of taking into account
effects of experience in aging studies, even for tasks that do not obviously tap past experiences.
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As adults age, some will occupy positions of responsibility in
which they make decisions that affect government, business, and
finance; most will face complex choices related to health and
retirement planning. And, as is highlighted by the complex issues
concerning the disposal of their worldly assets (Peisah et al.,
2009), many older adults will be incapacitated by diseases that lead
to them losing their legal right to make choices. Understanding the
cognitive and neural basis of age-related changes in decision-
making, along with distinguishing healthy age-related changes

from neurodegenerative disease changes, represent important
questions for cognitive aging research.

Adult performance on various measures of cognition—such as
those testing reasoning, memory, and response speeds—changes
with normal aging (Salthouse, 2009). Decision-making is a partic-
ularly important domain in which age-related behavioral differ-
ences clearly manifest themselves and where understanding their
causes may be of considerable consequence (Chowdhury et al.,
2013; Denburg, Tranel, & Bechara, 2005; Samanez-Larkin, Kuh-
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nen, Yoo, & Knutson, 2010). Recent work has begun to focus on
decision-making in scenarios with a complex underlying task
structure, where goal-directed processes using a rich task repre-
sentation become necessary for optimal performance (Cooper,
Worthy, Gorlick, & Maddox, 2013; Eppinger, Walter, Heekeren,
& Li, 2013; Worthy, Cooper, Byrne, Gorlick, & Maddox, 2014;
Worthy, Gorlick, Pacheco, Schnyer, & Maddox, 2011; Worthy &
Maddox, 2012). The results of these studies have been mixed: in
some cases, older adults perform better than younger adults at this
type of decision-making (Cooper et al., 2013; Worthy et al., 2011;
Worthy et al., 2014; Worthy & Maddox, 2012); in other studies,
they do worse than younger adults (Eppinger, Walter, et al., 2013).
As yet, the reasons for these contradictory results are poorly
understood.

Age-related cognitive changes have traditionally been inter-
preted as revealing that these processes decline across the life span
(Burke & Barnes, 2006; Head, Kennedy, Rodrigue, & Raz, 2009;
Salthouse, 2004). For example, several studies have found reduced
striatal and frontostriatal representations of reward prediction er-
rors—a critical component of learning and decision-making—in
older adults (Eppinger, Schuck, Nystrom, & Cohen, 2013;
Samanez-Larkin, Worthy, Mata, McClure, & Knutson, 2014) and
interpreted these findings as evidence of a decline in the normal
dopamine function in the striatum. In a similar vein, these changes
are often explained in terms of compromised white matter integrity
in frontostriatal circuits (Samanez-Larkin, Levens, Perry, Dough-
erty, & Knutson, 2012).

However, it has recently been argued that changes in perfor-
mance on processing tests are difficult to interpret in the absence
of models of processes, and without controlling for the confounds
introduced by the extra knowledge that older adults can reasonably
be expected to have acquired (Li, Baldassi, Johnson, & Weber,
2013; Ramscar, Hendrix, Shaoul, Milin, & Baayen, 2014). Indeed,
in domains such as response speeds in lexical decision-making and
paired-associate learning, it has been shown that observed age-
related performance changes are consistent with the predictions of
standard processing models when knowledge effects—the extra
processing loads that can be expected as knowledge increases with
experience—are controlled for (Ramscar, Hendrix, Love, &
Baayen, 2013; Ramscar et al., 2014). As an example, suppose a
graphic designer and another person were asked to name the color
of an object. The graphic designer may know many different color
names, and so may take longer to search for a response than the
other person who simply and quickly responds “red.” The greater
amount of relevant knowledge may reduce the graphic designer’s
speed, but that does not mean she is impaired at color naming.

Accounts invoking capacity limitations due to cognitive decline
are common explanations of age-related decision-making changes,
but knowledge effects are rarely considered. That older adults
sometimes outperform younger adults in complex decision-making
tasks highlights the importance of considering the effects of ex-
perience and knowledge, because capacity limitations cannot ob-
viously account for these results. Knowledge effects likely also
come into play where older adults perform worse than younger
adults, particularly when the task violates expectations that are
based on prior experience.

In what follows, we examined the performance of older and
younger adults in an exploratory choice task. Exploration—actively
seeking more information in the face of choice uncertainty—is a

crucial aspect of many kinds of decision processes and yet has been
little investigated in the domain of aging.

Exploratory Decision-Making

Effective decision-making requires an appropriate balance of
exploration and exploitation, as well as some understanding of
when one is more beneficial than the other. It is important to get
both the amount and the timing of exploratory choices right in
order to explore optimally. To put it another way, we can evaluate
exploratory decision-making strategies in terms of both quantity
and quality. While the amount of exploration is important for
effective decision-making, the timing of exploration is equally if
not more important. Ideally, exploratory choices should be di-
rected when and where there is more uncertainty in the environ-
ment. As things change over time, the current state of parts of the
environment that have not been checked recently become more
and more uncertain. The most information is gained from explor-
ing when uncertainty is highest.

Reflective Versus Reflexive Strategies

To formally study these important aspects of decision-making in
the lab, we employed the leapfrog task (Knox, Otto, Stone, &
Love, 2012). This task has proven effective in distinguishing the
use of various strategies in exploratory decision-making (Blanco,
Otto, Maddox, Beevers, & Love, 2013; Blanco et al., 2015), and it
does not require or obviously invoke specific aspects of partici-
pants’ prior knowledge. In the task (which is described in more
detail below in the Procedure section), participants choose between
two options and receive a reward. During the task, the rewards
received for each of the two options leapfrog over one another,
alternating in superiority. This means that it is not clear on any
given trial whether an option that was previously lower in value
has increased, surpassing the option that was previously more
rewarding. Accordingly, exploration is necessary to determine the
currently higher option.

We distinguish two types of learning and decision-making that
differ crucially in how they influence the timing of exploratory
choices in this task: reflexive and reflective decision-making. Re-
flexive decision-making (which leads to “random” exploration) is
thought to be more habitual or automatic, computationally cheap,
and is analogous to “model-free” learning (Daw, Niv, & Dayan,
2005). Within the leapfrog task, reflexive participants will tend to
exploit the choice last observed to be most rewarding, and the
interspersed exploration choices will be unpredictable.

Reflective decision-making is more goal-directed, relatively
computationally expensive, depends on executive processing (Ba-
dre, Doll, Long, & Frank, 2012; Blanco et al., 2013; Otto, Knox,
Markman, & Love, 2014), and is analogous to “model-based”
learning. Reflective learning involves building a rich mental rep-
resentation of the environment. This representation can allow the
learner to use uncertainty in the environment to direct exploratory
choices when they will be more effective (Knox et al., 2012).
Maintaining the rich representation that enables tracking uncer-
tainty involves using greater cognitive processing resources. Re-
flective decision-making results in greater cognitive demand than
reflexive decision-making.

Otto et al. (2014) showed that when executive resources are
compromised by adding a secondary task to the leapfrog paradigm,
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reflective strategy use dropped substantially, providing evidence
that reflective processing is dependent on executive processing. In
summary, reflective decision-making is resource-dependent and
involves drawing on knowledge of the task environment. Available
cognitive resources may vary across the life span, which could
affect the ability of older adults to engage in reflective processing.

Reflective and reflexive decision-making strategies make
clearly divergent predictions about the sequential structure of
choices in the leapfrog task (see Figure 1c). To demonstrate this
difference, we looked at a measure we refer to as the hazard rate
of exploration, which is the exploration rate as a function of the
number of trials since the last time an exploratory choice was
made. Reflexive actors do not represent the dynamics of the
environment and so cannot base exploratory decisions on uncer-
tainty, resulting in no sequential structure in exploratory choices.
A reflexive strategy leads to an equal probability of exploring on
every trial, producing a flat pattern of hazard rates.

Reflective actors, on the other hand, lead to patterns that are not
flat. While any deviation from a flat pattern indicates some kind of
reflective strategy, a monotonically increasing pattern in the haz-
ard rate of exploratory choices is the hallmark of a good reflective
strategy for the standard leapfrog task (see Figure 1c). As one
continually exploits in this task, the probability that an unobserved
jump in reward values has occurred increases, which makes the

current state of the environment less certain and exploration more
valuable. A reflective actor can use this uncertainty to guide its
choices.

Knowledge Effects

Like many tasks used to study decision-making, the leapfrog
task is typically thought not to involve prior knowledge, but, in
light of the recent studies demonstrating knowledge effects, we
consider in our experiments ways in which prior experience and
knowledge may influence participants’ behavior in this task.

Effectively tracking and using uncertainty requires both the
cognitive capacity to reflectively track probabilities over time and
an accurate mental representation of the task. Lacking either one
may impair decision-making performance. It is possible to have
adequate cognitive processing capacity but underperform due to
having the wrong internal model of the task environment. And so,
when people perform suboptimally on decision-making tasks, it is
especially important to consider how they deviate from the optimal
strategy and what type of strategy they may be using.

It is likely that increased knowledge or experience influences
the environment representations that people tend to form, perhaps
by biasing their expectations toward environment structures that
occur frequently in daily life. In the standard version of the

Figure 1. The Leapfrog task. A sample participant’s choices over 100 trials (a). With a fixed probability of 0.075
per trial, the lower option can jump in reward by 20 points, surpassing the other option. A participant must explore
to discover that the jump has taken place. The two options “leapfrog” over each other, alternating as the currently
superior option. Lines represent the true reward values; dots represent a participant’s choices. Blue arrows point out
exploratory choices. The temporal dynamics of a single trial (b). Participants are given 2 s in which to make a choice,
after which the points received for the choice is displayed for 1.5 s. The patterns of choice characteristic of reflexive
and good reflective choice strategies in this task, produced by simulating the ideal reflexive and reflective models of
the task (see Appendix A) (c). See the online article for the color version of this figure.
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leapfrog task, the outcome of a trial (i.e., whether the lower option
jumped up in reward) is sequentially independent from other trials.
The probability that a jump has occurred depends only on the base
rate of a jump happening. But the sequentially independent nature
of the task may be difficult for participants to infer. In many
scenarios, humans tend to be poor stochastic reasoners, and appear
to be biased to see the effects of positive or negative autocorrela-
tion in sequences (i.e., the hot hand and the gambler’s fallacies;
Falk & Konold, 1997; Scheibehenne, Wilke, & Todd, 2011) even
when choice points are objectively independent, such as in the
tossing of a fair coin (indeed, other primates seem prone to the
same bias; Blanchard, Wilke, & Hayden, 2014). Interestingly,
the tendency to reason in this way seems to be influenced by
experience (Barron & Leider, 2010), and older adults may be
more likely to engage in this type of reasoning (Castel, Rossi,
& McGillivray, 2012).

An important point to consider is that whether it is fallacious to
base reasoning on perceived positive or negative autocorrelation in
sequences ultimately depends on the actual structure of the envi-
ronment (Alloy & Tabachnik, 1984; Fawcett et al., 2014). In fact,
we speculate that when estimating probabilities in the real world,
the gambler’s fallacy is often an effective assumption. Behavior
consistent with the gambler’s fallacy is reasonable in many sce-
narios where individual events are not sequentially independent,
where the probability of a change does increase with time. For
example, if you are checking to see if your milk has gone bad, even
if it was not yesterday, you would probably be right in concluding
that it is more likely to be bad today if you bought it 2 weeks ago
as opposed to 2 days ago. Similarly, it can be effective in predict-
ing outcomes in any system with a cyclical nature: If you are
waiting at a stop light and look up to see whether the light is still
red, the longer you wait increases the likelihood the light will turn
green, regardless of how recently you last checked it. Or, if you
start flipping through a deck of cards and the first 10 cards are all
black, you would be correct to believe that the next card is more
likely to be red than black. The probability of drawing a red card
continually increases with each consecutive black card that you
draw. The same type of reasoning is what makes card counting an
effective strategy in blackjack. In these scenarios, we can say that
the environment has “memory” in that the probability of each
outcome depends on the previous outcomes. In contrast, if you
shuffle each card back into the deck before drawing the next one
(i.e., sample with replacement), the environment is “memory-less”
and each sample is independent.

In most real-world tasks, events are rarely sequentially indepen-
dent, and sampling likelihoods often favor patterns that reinforce
apparent negative or positive correlations in sequences of events
(Hahn & Warren, 2009, 2010). Accordingly, it seems likely that
increased experience may bias this kind of strategic thinking.

Goals and Predictions

Our goal in this work was twofold: First, we examined whether
the performance of older and younger adults differed in this type
of exploratory decision-making, and, if so, we wanted to charac-
terize the nature of these changes. In Experiment 1, older and
younger adults completed the standard, sequentially independent,
version of the leapfrog task. Capacity limitations and a knowledge
effect both predict that older adults should perform worse than

younger adults at this task, but they make different predictions as
to the types of strategies that older adults will use. If limited
cognitive processing capacity impairs performance for older
adults, we would expect them to use reflexive strategies more often
than younger adults. If increased experience or knowledge influ-
ences performance, older adults may still tend to use reflective
strategies, but may adopt a strategy that is not optimal for the
environment (though would, presumably, be a well-learned strat-
egy often effective in real decision environments). Specifically, we
predicted that older adults would expect autocorrelation in the trial
outcomes (as in the gambler’s and the hot hand fallacies), even
though it is not there, and would make suboptimal choices based
on this belief. These possibilities are not mutually exclusive, and
both effects may be at work.

In Experiment 1, we found that older and younger adults dif-
fered in task performance, but not in the rate of exploratory
choices. Further analyses suggested that qualitative strategy dif-
ferences at least partially explain the performance differences.
Experiment 2 investigated further by manipulating the underlying
structure of the decision environment. Whether older adults exhib-
ited performance deficits compared with younger adults depended
crucially on the environment, supporting a qualitative strategy shift
rather than a capacity limitation explanation of the age differences
in this task. We speculated that these differences would arise from
increased experience with and knowledge of decision-making in
the real world.

Finally, we hoped to offer a more complete characterization of
the cognitive basis of the changes in decision-making across the
life span by comparing our findings and analyses with others in the
literature, and discussing the importance of modeling change
(Hills, Mata, Wilke, & Samanez-Larkin, 2013; Mata & Nunes,
2010)—and not merely measuring it—in our understanding of
lifelong development in cognitive and neural processes.

Experiment 1

Method

Participants. Participants were recruited from the general
Austin, Texas, community and were paid $10 per hour for partic-
ipation. Participants were 58 younger adults (age range: 17�32
years) and 52 older adults (age range: 60�88 years). The mean age
of the older adult sample was 67.02 years; the mean age of the
younger adult sample was 21.81 years. The lower bound of 60
years was chosen for our older adult sample to be consistent with
previous work (e.g., Cooper et al., 2013; Worthy et al., 2014;
Worthy & Maddox, 2012). The older adult sample was 59.62%
female; the younger adult sample was 60.34% female.

Neuropsychological testing. Prior to the main experimental
session, older adults were given a series of standardized neuropsy-
chological tests to assess general cognitive ability across attention
(Wechsler Adult Intelligence Scale, Third Edition [WAIS-III],
Digit Span; Wechsler, 1997), executive functioning (Trail-Making
Test [TMT] Parts A and B; Lezak, 1995; FAS and Wisconsin Card
Sorting Task [WCST]; Heaton, 1981), and memory (California
Verbal Learning Test [CVLT]; Fridlund & Delis, 1987). These
tests served as a screen to ensure that our older adult sample
included healthy, high functioning individuals.
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Table 1 shows the means, standard deviations, and ranges of
standardized z scores on each test for the older adults. Normative
scores for each participant were calculated for each neuropsycho-
logical test using standard age-appropriate published norms. All
WAIS subtest percentiles were calculated according to the testing
instructions and then converted to standardized z scores. The
CVLT and WCST standardized T scores were calculated according
to testing directions and converted to z scores. TMT standard z
scores were calculated according to the testing instructions. Only
participants who were within normative ranges were invited to
participate in the main experiment. Exclusion criteria included
scoring more than 2 SD below the standardized mean on more than
one neuropsychological test in the same area (memory, executive
functioning, or attention), though no participants were excluded
from participation based on these criteria.

Procedure. Each participant completed 200 trials of the leap-
frog task (see Figure 1a). On each trial, participants choose one of
two options and receive a reward. At the beginning of the exper-
iment, one option is worth 10 points and the other 20 points. As the
task progresses, on any trial, the previously lower option could
permanently increase in its reward value by 20 points, such that its
value would surpass that of the other option. This happened with
a fixed random probability (p � .075) per trial.

Over the course of the experiment, the reward values received
for each of the two options leapfrog over one another, which
means that the choice that is the superior option on any given trial
changes (see Figure 1a). On each trial, one option is always worth
10 more points than the other option, but exploration is necessary
to determine which option is actually the higher one at any given
point. The task thus effectively reduces participants’ choices on
each trial to deciding whether to explore or exploit (Blanco et al.,
2013; Knox et al., 2012). A participant can either choose the option
with the highest seen reward (i.e., exploit), or explore to see
whether the other option has jumped up in value.

On each trial, the word CHOOSE appeared on the screen, and
participants were given 2 s to respond by choosing one of two
options (see Figure 1b). They responded by pressing a designated

key on the keyboard. The chosen option was highlighted for the
remainder of the trial. The reward received for the choice (e.g., “�
60”) was then presented in the center of the screen for 1.5 s. If the
participant did not respond in time, a large red X was displayed in
place of the reward along with the message “TOO SLOW, TRY
AGAIN,” and the trial was repeated. Immediately following re-
ward presentation, the next trial began. Participants were given a
break after each block of 50 trials. Breaks lasted for 10 s, after
which the experiment continued.

Prior to the main task, participants passively viewed 200 train-
ing trials to acclimate to the rate of change in reward values. Each
training trial lasted 0.5 s, immediately followed by the next trial.
The current trial number was displayed at the center of the screen
at all times. Reward values for the options were not shown.
Instead, an arrow indicated when a jump in rewards occurred by
pointing to the option that changed. Before the second block of 100
training trials, participants were asked to estimate the number of
jumps they expected to see in that block.

Participants were informed that both options would increase in
points over the course of the experiment, that the two options
would alternate at being the better option, and that the only way to
know which one was currently better was to sample the options.
They were instructed that their goal was to earn as many points as
possible during the experiment.

Results

Performance, reaction times, and exploration rates.
Performance on the leapfrog task was measured as the propor-
tion of trials on which the participant chose the option that was
truly higher on that trial. Overall, younger adults scored higher
(0.696 vs. 0.664) than older adults, t(108) � 2.402, p � .018,
d � 0.459 (see Figure 2a). We also found that younger adults
responded more quickly (median reaction time [RT]: 432 ms vs.
593 ms) than older adults, as indicated by median RT, t(108) �
6.577, p � .001, d � 1.259 (see Figure 2b).

We defined an exploitive choice as choosing the option that had
the highest observed reward prior to the current trial (see Figure 1),
and thus selecting the other option (i.e., the option that was
previously observed to be lower of value) would be considered an
exploratory choice. Both older adults and younger adults explored
on approximately 17% of trials (16.69% for older vs. 16.74% for
younger adults), t(108) � 0.036, p � .971, d � 0.007, the remain-
ing proportion of trials constituting exploitative choices. See Ap-
pendix B for discussion of the distributions of performance and
exploration rate for both groups.

Reflective versus reflexive strategies. For each participant,
we applied two regression models to their hazard rates to deter-
mine whether their choices were more consistent with a reflexive
or a good reflective approach (see Figure 1c). The first was a
model that included only an intercept term (henceforth, the inter-
cept model). This model predicts a flat pattern of hazard rates and
corresponds to a reflexive strategy. The second model included
both an intercept and a linear term (the linear model), predicting
the probability of exploring as a linear function of the number of
trials since the last exploratory choice. We constrained the linear
model to have a linear term (i.e., slope) that was positive because
a negative slope would not correspond to a good reflective strategy
for this task. We compared the two regression models using the

Table 1
Neuropsychological Test Z Scores

Variables M (SD) Range

Neuropsychological test
Digit Span 0.487 (0.971) �1.00 to 3.00
CVLT Delayed Recall (Free) 0.509 (1.01) �1.50 to 2.50
CVLT Immediate Recall (Free) 0.625 (0.949) �1.50 to 2.50
CVLT Delayed Recall (Cued) 0.308 (0.986) �2.50 to 2.00
CVLT Immediate Recall (Cued) 0.442 (0.978) �1.50 to 2.50
CVLT Recognition False Positives �0.029 (1.29) �1.00 to 4.50
CVLT Recognition True Positives �0.058 (1.02) �4.00 to 1.00
FAS �0.029 (0.965) �2.56 to 2.48
Trail-Making Test Part A �0.483 (0.764) �1.42 to 1.95
Trail-Making Test Part B �0.544 (0.506) �2.07 to 1.01
WCST Errors 0.408 (0.921) �1.50 to 2.50
WCST Perseverative Errors 0.667 (0.851) �0.80 to 3.00

Demographic information
Age (years) 67.02 (5.13) 60 to 88
Years of education 16.60 (2.75) 10 to 25

Note. CVLT � California Verbal Learning Test; WCST � Wisconsin
Card Sorting Task.
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Bayesian information criterion (BIC; Schwarz, 1978) to find the
model that best characterized each participant. This revealed that
younger adults were more often best characterized by the reflective
linear model than were older adults, �2 � 5.576, p � .018, � �
0.225, though most participants in both groups were best fit by this
model (see Figure 3). Fifty of 58 younger adults were better
characterized by the linear model compared with only 35 of 52
older adults. Mean BIC values for older adults were 146.9
(SD�115.0) for the intercept model and 134.3 (SD�112.6) for the
linear model. Mean BIC values for younger adults were 166.6

(SD�62.3) for the intercept model and 144.1 (SD�57.5) for the
linear model.

We also examined exploration rates as a function of the number
of trials since a jump in reward values was observed (after con-
trolling for the number of trials since the previous explore
choice—i.e., the hazard rates) (see Figure 4a). This measure was
designed to determine whether participants seemed to expect pos-
itive or negative autocorrelations in the environment. Specifically,
we performed a mixed-effects logistic regression predicting ex-
ploratory choices from the number of trials since the last observed

Figure 2. Performance and response times. Experiment 1 performance (a). Younger adults performed better
than older adults. Experiment 1 response times (b). Younger adults responded more quickly than older adults.
Experiment 2 performance (c). Younger adults perform better than older adults on the independent condition,
replicating the results from Experiment 1, but performance did not differ between the groups on the dependent
condition. Experiment 2 response times (d). Younger adults responded more quickly in both conditions. Error
bars reflect standard errors. See the online article for the color version of this figure.
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jump, age group, and their interaction, with participant as a random
effect. Number of trials since the last exploratory choice and the
Age Group � Trials Since the Last Observed Jump interaction
were also entered into the regression to control for the hazard rates.
Crucially, we found an Age Group � Trials Since the Last Ob-
served Jump interaction (z � 2.68, p � .007), suggesting that the
two groups differed on this measure. We then looked within each
group to determine the nature of the interaction. There was a
significant effect of the number of previous trials since the last
observed jump on exploration rates for older adults (z � 3.429,
p � .001, odds ratio [OR] � 1.008), but not for younger adults
(z � �0.482, p � .630, OR � 0.999). This effect suggested that
older adults expect a jump to become more likely over time even
when the environment was recently sampled (i.e., they expected
negative autocorrelation in trial outcomes). In other words, they
acted as if the probability of a jump occurring depended on the
outcome of previous trials, while the actual probability of a jump
was constant and trials were sequentially independent.

We also examined performance as a function of the number of
trials since the last observed jump (while controlling for the
number of trials since the last explore choice) in order to determine
whether incorrectly expecting negative autocorrelation in trial out-
comes was hurting performance (see Figure 4b). A mixed-effects
logistic regression predicting performance from the number of
trials since the last observed jump, age group, and their interaction
(while controlling for the number of trials since the last explor-
atory choice and the Age Group � Trials Since the Last Observed
Jump interaction) was performed with participant as a random
effect. Again, we found an Age Group � Trials Since the Last
Observed Jump interaction on performance (z � �7.485, p �
.001). Looking within each age group, we found that the number
of trials since the last observed jump had a significant negative
effect on performance for both older adults (z � �13.077, p �

.001, OR � 0.975) and younger adults (z � �3.809, p � .001,
OR � 0.994), though the coefficient was much larger for older
adults than younger adults (�0.024 vs. �0.006). Both groups
performed worse as more trials pass since the last observed jump,
but older adults decreased at a faster rate, which could be due to
their increased levels of exploration.

Neuropsychological test measures. As an exploratory anal-
ysis, we assessed the extent to which executive function influenced
participants’ performance and strategies in the leapfrog task. A
capacity limitation account of our results would predict that higher
executive function scores would correlate positively with task
performance. We conducted separate logistic regressions with each
score on the neuropsychological tests related to executive function
(i.e., TMT, FAS, and WCST) as a predictor of leapfrog task
performance and of which model best characterized participants’
hazard rates. Surprisingly, task performance was not significantly
predicted by any of the neuropsychological test scores, suggesting
that differences in executive function do not explain differing task
performance among our older adult participants. WCST Persevera-
tive Error score was negatively related to being best characterized
by the reflective linear model (z � �2.018, p � .044). No other
neuropsychological test scores were related to the model fits.

Discussion

Experiment 1 investigated exploratory decision-making in older
and younger adults using a task designed to investigate exploratory
behavior that is ostensibly not highly reliant on prior knowledge.
In terms of task performance, our analyses revealed some reliable
differences: on average, older participants responded more slowly
than younger participants, and they made fewer optimal choices on
the task. We did not find a difference in raw exploration rates as
a function of age group, suggesting that the key difference between
the two groups would be best characterized in terms of differences
in strategy, rather than one group over- or underexploring. The
highly similar rate of exploratory choices exhibited by both
groups, despite the overall differences in performance, highlights
the importance of investigating qualitative differences in strategy
use between the groups.

Our analyses of participants’ choice strategies provided some
evidence against a strict capacity limitation account of the age-
related performance difference in this task. Younger adults were
more often characterized by the linear model that represents good
reflective strategy use compared with older adults, but most par-
ticipants in both groups were more often best characterized by that
model. Our analysis indicating that older adults expected negative
autocorrelation in the trial outcomes (similar to the gambler’s
fallacy) suggested that older adults may be using an alternative
reflective strategy based on a different mental representation of the
task. It is important to note that, although this strategy is subop-
timal in this specific task, it is relatively demanding of cognitive
processing resources. Indeed, this strategy may be even more
memory demanding than the optimal one for this task because,
under this strategy, uncertainty about task state does not return to
baseline levels following an exploratory choice, and it thus re-
quires that probabilities be tracked over longer periods of time.
Additionally, the finding that the neuropsychological test measures
relating to executive function did not positively relate to perfor-

Figure 3. Regression modeling results (Experiment 1). Most participants
in both groups were best characterized by the reflective linear model,
which represents a good reflective strategy, though a greater proportion of
younger adults were better characterized by the linear model than older
adults.
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Figure 4. Knowledge effect analysis. Experiment 1 exploration rates as a function of the number of times the
participant previously explored since the last time a jump was observed (a). An increasing pattern here indicates
behavior similar to the gambler’s fallacy—acting as though a jump becomes more likely the longer it has been
since the last jump occurred. Younger adults exhibited a relatively flat pattern while older adults produced a
reliably increasing pattern, suggesting that older adults often assumed an incorrect mental representation of the
environment. Experiment 1 performance as a function of the number of previously explored choices since the
last observed jump (b). Performance decreases for both groups, but particularly for older adults, as exploration
rates increase. The independent condition in Experiment 2 shows a similar pattern of results as Experiment 1,
though with a smaller difference between groups in performance (c, d). In the dependent condition in Experiment
2, where jumps do become more likely the longer it has been since the last jump, both groups appropriately
produce an increasing pattern in exploration rates (e, f). Performance shows a decreasing pattern. Error bars
reflect standard errors. See the online article for the color version of this figure.
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mance supported a knowledge effect rather than capacity limita-
tion account of the performance difference.

Experiment 2

Experiment 1 provided preliminary evidence supporting a
knowledge effect account of the age-related performance differ-
ences in our task, while finding little evidence supporting a capac-
ity limitation account. Experiment 2 directly tested an important
implication of the knowledge effect interpretation, namely, that the
relative performance of older adults to younger adults should
depend on the underlying structure of the environment. The knowl-
edge effect account would predict that older adults would do as
well, or perhaps better, than younger adults in an environment that
matches their expectations. In Experiment 2, we investigated this
prediction by manipulating the task environment. In one condition
(the dependent condition), trials were not independent, but instead
the probability of a jump steadily increased over time until the next
jump occurred. The other condition (the independent condition)
replicated the structure of the standard leapfrog task used in
Experiment 1, where each trial was sequentially independent.

A knowledge account predicts an interaction in performance
such that younger adults will outperform older adults in the inde-
pendent condition (as in Experiment 1), but not in the dependent
condition. A capacity limitation account predicts that younger
should perform better in both conditions.

Method

Participants. To recruit a large and diverse sample of older
and younger adults for Experiments 2, we used Amazon’s Me-
chanical Turk (http://www.mturk.com). Mechanical Turk has be-
come increasingly popular among psychology researchers, and
studies have validated it as a reliable methodology for collecting
data in cognitive studies (Crump, McDonnell, & Gureckis, 2013).
Participants over 60 years of age were recruited for our older adult
sample, and participants between 18 and 30 years of age were
recruited for our younger adult sample. Potential participants be-
tween the ages of 30 and 60 years were informed that they did not
qualify for participate.

One hundred thirty-nine younger and 137 older adults partici-
pated in the experiment in one of two conditions (see Procedure
section). There were 68 older adults and 70 younger adults in the
independent condition and 69 older adults and 69 younger adults in
the dependent condition. Younger adults’ mean age was 22.46
years (range: 18�30 years) in the independent condition and 23.45
years (range: 19�30 years) in the dependent condition. Older
adults’ mean age was 64.09 years (range: 60�75 years) in the
independent condition and 64.72 years (range: 60�77 years) in the
dependent condition.

Procedure. The task procedure was similar to that used in
Experiment 1, with two main differences. First, participants com-
pleted the task remotely through Amazon Mechanical Turk rather
than in the lab. PsiTurk (http//www.psiTurk.org; McDonnell et al.,
2012) was used to develop the experiment for use on Mechanical
Turk and as an interface for interaction with the Mechanical Turk
system. Second, the experiment included two conditions that dif-
fered in the underlying probabilities that determine when reward
jumps occur. In the independent condition, the probability of a

jump on a particular trial was independent of the outcome of other
trials, set at a constant 0.075 probability. This condition was a
procedural replication of Experiment 1. In the dependent condi-
tion, the probability of a jump started at 0.01 and increased linearly
by 0.01 on each trial until a jump occurred. When a jump occurred,
the probability reset to 0.01 for the next trial.

As in Experiment 1, after receiving instructions, participants
passively viewed 200 training trials to acclimate to the rate of
change in the reward values. Each training trial lasted for 0.5 s,
immediately followed by the next trial. The current trial number
was displayed at the center of the screen at all times. Reward
values for the options were not shown. Instead, jumps were indi-
cated by a yellow box highlighting the option that changed. At the
end of each block of 100 training trials, participants estimated the
number of jumps they had expected on the next block.

Following training, participants completed 200 trials of the main
task. On each trial, the word CHOOSE appeared on the screen, and
participants chose one of the two options using the keyboard. The
chosen option was highlighted and the reward received for the
choice was then presented in the center of the screen for 1.5 s.
Immediately after reward presentation, the next trial began. In-
structions did not differ between conditions and were the same as
used in Experiment 1.

Results

Performance, RTs, and exploration rates. The key measure
of Experiment 2 was a 2 � 2 (Age Group � Condition) analysis
of variance (ANOVA) on task performance since a knowledge
effect and a capacity limitation account produce different predic-
tions. This test revealed a significant interaction, F(1, 272) �
4.447, p � .036, and a main effect of condition, F(1, 272) � 5.719,
p � .018. Younger adults scored higher than older adults (0.667
vs. 0.638) on the independent condition, t(136) � 2.086, p � .039,
d � 0.356, but not on the dependent condition, (0.624 vs. 0.635),
t(136) � 0.856, p � .394, d � 0.146 (see Figure 2c). This result
was consistent with the prediction of a knowledge effect.

A 2 � 2 (Age Group � Condition) ANOVA on median RT
revealed only a main effect of age group, F(1, 272) � 128.813,
p � .001. Younger adults responded more quickly in both the
independent condition (201 ms vs. 357 ms), t(136) � 8.862, p �
.001, d � 1.509, and the dependent condition (235 ms vs. 370 ms),
t(136) � 7.227, p � .001, d � 1.231 (see Figure 2d). A 2 � 2 (Age
Group � Condition) ANOVA on exploration rate did not show
significant main effects of age group, F(1, 272) � 0.100, p � .752,
or condition, F(1, 272) � 0.700, p � .403, or a significant
interaction, F(1, 272) � 2.093, p � .149. Exploration rates did not
differ between younger and older adults for either the independent
condition (0.144 vs. 0.156), t(136) � 0.812, p � .418, d � 0.138,
or the dependent condition (0.168 vs. 0.149), t(136) � 1.226, p �
.222, d � 0.209.

Autocorrelation analysis. As in Experiment 1, we investi-
gated whether participants’ behavior was consistent with expecting
positive or negative autocorrelations in the environment. We ex-
amined exploration rates as a function of the number of trials since
a jump in reward values was observed (see Figures 4c�4f). We
first looked across both conditions. Mixed-effects logistic regres-
sions were performed predicting exploratory choices and perfor-
mance from the number of trials since the last observed jump,
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condition, age group, and their interactions (while controlling for
the number of trials since the last exploratory choice and its
interactions with group and condition), with participant as a ran-
dom effect. The three-way (Condition � Age Group � Trials
Since Last Observed Jump) interaction was not significant for
exploration rate (z � �0.42, p � .678). The regression on perfor-
mance did reveal a significant three-way interaction, though (z �
3.14, p � .002).

We then looked within the independent condition to see whether
the effect from Experiment 1 replicated in this population. We
performed a mixed-effects logistic regression predicting explor-
atory choices from the number of trials since the last observed
jump, age group, and their interaction (while controlling for the
number of trials since the last exploratory choice and its interaction
with age group), with participant as a random effect (see Figure
4c). We found a marginal Age Group � Trials Since the Last
Observed Jump interaction (z � 1.774, p � .076). The qualitative
pattern from Experiment 1 was replicated, but was not statistically
significant. The effect was not statistically significant within either
group (z � 1.505, p � .132, OR � 1.003, for older adults;
z � �0.715, p � .475, OR � 0.999, for younger adults).

We also looked at performance for the independent condition (see
Figure 4d). We performed a mixed-effects logistic regression predict-
ing performance from the number of trials since the last observed
jump, age group, and their interaction (while controlling for the
number of trials since the last exploratory choice and its interaction
with age group), with participant as a random effect. There was a
significant Age Group � Trials Since the Last Observed Jump inter-
action (z � �5.464, p � .001). Both older adults (z � �16.698, p �
.001, OR � 0.974) and younger adults (z � �10.15, p � .001, OR �
0.985) had significant negative relationships between performance
and the number of trials since the last observed jump, with a stronger
effect for older adults than younger adults.

In the dependent condition, the environment contained negative
autocorrelation, and both groups seem to have picked up on it. The
Age Group � Trials Since the Last Observed Jump interaction on
exploration rate was not significant (z � 0.854, p � .393), but
there was a significant main effect of trials since the last observed
jump (z � 7.121, p � .001, OR � 1.024; see Figure 4e). This
effect was also statistically significant in both the older adult group
(z � 10.04, p � .001, OR � 1.034) and the younger adult group
(z � 7.661, p � .001, OR � 1.026). Similarly, for performance,
the interaction was not significant (z � 0.51, p � .612), but the
main effect of trials since last observed jump was significant
(z � �29.55, p � .001, OR � 0.923; see Figure 4f). Again, this
effect occurred in both groups (older adults: z � �30.49, p � .001,
OR � 0.923; younger adults: z � �29.46, p � .001, OR � 0.922).
Overall, the results of Experiment 2 confirmed the central predic-
tions of the knowledge account—that older and younger adults
would not differ in performance when trial outcomes were nega-
tively autocorrelated, but that older adults would perform worse
when outcomes were sequentially independent (replicating the
results of Experiment 1).

General Discussion

We investigated exploratory decision-making in older and
younger adults to determine the extent to which age-related per-
formance differences reflect either knowledge effects or capacity

limitations due to cognitive decline. Cognitive decline is often
invoked as an explanation for age-related decision-making differ-
ences, whereas explanations based on the additional knowledge
and experience that older adults are likely to have acquired are less
often considered. A capacity limitation account predicts that older
adults should underperform and rely on less cognitively demand-
ing strategies than younger adults across the board. An account
based on knowledge effects predicts that whether older adults
perform equivalent to, worse than, or better than younger adults
depends on the nature of the task. Although these viewpoints are
not exclusive, we suspect that evidence is routinely interpreted as
favoring the capacity limitation interpretation when it may better
be explained in terms of increased knowledge and experience.

Experiment 1 provided some initial support for a knowledge-
related interpretation of the performance difference between the
older and younger adults. Analyses directed toward examining the
timing of exploratory choices revealed that younger adults used
more effective strategies for the current task, but both groups
showed signs of maintaining rich representations of the environ-
ment to track probabilities over time in a reflective manner. Older
adults used a cognitively demanding reflective strategy, just not
the optimal one for that decision environment. This is consistent
with other recent work that has shown older and younger adults
apply qualitatively different strategies in cognitive tasks (e.g.,
Vaportzis, Georgiou-Karistianis, & Stout, 2013). Older adults
seemed to expect a negative autocorrelation in the probability of a
jump occurring—that a jump would be more likely the longer it
had been since the previous jump—while younger adults did not.
Importantly, whether or not this type of behavior is suboptimal
depends on the underlying structure of the environment. This type
of reasoning is effective in many real-world decision-making
scenarios, and we speculate that the tendency to expect this type of
structure in the environment may result from real-world experi-
ence.

Experiment 2 provided further support for a knowledge-based
interpretation by testing one of its key interpretations—that the
underlying structure of the environment is critical in determining
the relative performance of older adults to younger adults. We
found that when trials were not sequentially independent—the
probability of a jump instead increasing over time—older adults
performed as well as younger adults. It is perhaps particularly
surprising that older adults performed as well as younger adults in
the dependent condition, but not the independent condition, be-
cause the optimal strategy for the dependent condition required
tracking probabilities over a longer period of time, making good
performance more dependent on processing capacity.

Experience, Processing, and Age

Taken together, the results of these two experiments indicate
that the different reflective strategies employed by older and
younger adults account for some of the differences in performance
observed, and that these differences are not simply indicative of
diminished cognitive capacities. It is perhaps worth reflecting on
the fact that, without our analyses investigating participants’ strat-
egies, we would likely have interpreted the lower performance of
the older adults as further evidence of their diminished cognitive
capacities, and taken our results to have shown that people’s ability
to engage in reflective decision-making declines with age.
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In doing so, we might have cited the work showing that atten-
tion, working memory, and executive control “decline” with age
(e.g., Salthouse, 2004, 2009). We could have noted that normal
dopamine function in the striatum, a critical component of learning
and decision-making, declines with age, and there is a reduced
striatal and frontostriatal representation of reward prediction errors
in older adults (e.g., Eppinger, Schuck, et al., 2013; Samanez-
Larkin, Worthy, Mata, McClure, & Knutson, 2014). We could
have observed that this may be related to compromised white
matter integrity in frontostriatal circuits (e.g., Samanez-Larkin,
Levens, Perry, Dougherty, & Knutson, 2012). And we might have
noted work that has shown older adults prefer fewer choice options
than younger adults (e.g., Reed, Mikels, & Simon, 2008), which is
consistent with a reduced ability to maintain and process informa-
tion related to a larger number of options, and which would have
been consistent with older adults’ “deficient capacities for reflec-
tive decision making.”

The question still remains why older adults are relying on one
particular strategy, even though it leads to suboptimal performance
in some scenarios. One hypothesis is that older adults have a lower
ability to flexibly adapt their strategy to the task at hand. This
hypothesis is consistent with studies that have found performance
deficits in task switching for older adults (Cepeda, Kramer, &
Gonzalez de Sather, 2001; Gold, Powell, Xuan, Jicha, & Smith,
2010; Kray & Lindenberger, 2000). One possibility is that the
beliefs about the environment that older adults seem to display
(i.e., expecting negative autocorrelation similar to the gambler’s
fallacy) represent a default expectation, and younger adults are
better at modifying their behavior when those expectations are
defied—as in the independent condition.

A related, yet slightly different hypothesis is that exploratory
decision-making in older adults may have been tuned by the
wealth of experience making decisions in the real world—where
probabilities do often depend on past outcomes and individual
events are rarely independent. Increased experience could make
older adults more likely to apply a strategy that may often be
effective in real-world exploratory decision-making scenarios, but
which fails in the relatively artificial environment of the standard
(sequentially independent) leapfrog task. This idea is consistent
with rational accounts of cognition (Anderson, 1990; Fawcett et
al., 2014), which propose that cognitive systems are optimized for
the statistical structure of the environment in which they operate.
We speculate that, when estimating probabilities in the real world,
the gambler’s fallacy is often an effective assumption. Behavior
consistent with the gambler’s fallacy is reasonable in many sce-
narios where individual events are not sequentially independent,
where the probability of a change does increase with time.

It should be noted that this hypothesis is somewhat speculative.
Real-world decision-making encompasses a large number of dif-
ferent decision environments with varying underlying probability
structures. While we believe that scenarios with negative autocor-
relation in event probabilities over time (i.e., where the gambler’s
fallacy is not fallacious) are particularly common, we have little
concrete evidence to support this claim, and it is likely impossible
to enumerate the various decision scenarios that a person encoun-
ters and to compare the frequency of different underlying proba-
bility structures. Second, this study provided no direct evidence
that experience caused the differences in strategy use between the
two age groups.

A major limitation of this study is its correlational, as opposed
to longitudinal, nature. As with all correlational studies of aging, it
is impossible to distinguish effects of cohort from true aging
effects. Determining the extent to which experience influences
beliefs and strategies underlying decision-making, and how it
contributes to age-related differences in cognition, is an important
topic for future research. Another limitation of the current study is
that we did not collect neuropsychological test measures on our
younger adult sample in Experiment 1, making it difficult to
compare the two age groups on general cognitive function or to
assess its effect on task performance.

What is interesting is that, even though we tried to model the
processes that appeared to be subject to age-related change, pro-
cesses usually are either not formally modeled at all or, where
models are offered, they usually failed to acknowledge or control
for potential knowledge or experience effects. Seeking to better
formally model the effects of experience on task and response
representations represents an important line of future research for
cognitive aging research. Experience effects may pervade many
domains of cognition studied in aging, and it is crucial that we
identify and understand these effects if we are to comprehend the
influence of normal aging on cognition.

Conclusion

Decision-making is a cognitive skill that is critical throughout
life, so it is important to understand how it changes over the life
span. Exploratory behavior is a key aspect of decision-making that
can give us insight into how decision-making changes with aging.
We found that older and younger adults engage in qualitatively
different exploration strategies. These differences led to worse
performance for older adults than for younger adults in one deci-
sion environment, but not another, more complex environment.
Our results highlight the importance of considering potential
knowledge effects, which may often be misinterpreted as further
evidence of capacity limitations due to neural decline, when in-
vestigating age-related differences in cognition. Our task is simpler
than many real-life decision-making scenarios, where the decision
environment is much more complex, and so age-related differences
in exploratory strategy use may manifestly differ outside of the
laboratory. Due to a lifetime of experience making decisions, older
adults may be able to rely on well-learned strategies to make
effective decisions in the real world.
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Appendix A

Models Used to Generate Reflective and Reflexive Predictions

To demonstrate the key patterns of behavior that characterize
reflexive and good reflective strategies in the leapfrog task, we
ran simulations of the ideal reflective and reflexive models.
These predictions are discussed in the Introduction, and the key
pattern of results is plotted above (see Figure 1c).

The best reflective strategy for this task is an ideal actor that
produces the optimal performance in the task, exploring when it is
most valuable (i.e., when there is more uncertainty) in order to
optimize long-term rewards. Optimal choices for the leapfrog task
used by this model are computed by specifying the task as a

partially observable Markov decision process (Kaelbling, Littman,
& Cassandra, 1998).

The best reflexive model in this task is a standard reinforcement
learning model with a learning rate of one. Exploration is a result
of a stochastic decision process, using a Softmax choice rule
(Sutton & Barto, 1998). The Softmax inverse temperature param-
eter was set to the optimal value for the model, as determined from
simulations of the task at various parameter settings. This model
exploits with equal probability on each trial. For full detailed
descriptions of these models, see Knox et al. (2012).

(Appendices continue)
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Appendix B

Distribution of Performance and Exploration Rate

Because individuals vary in terms of strategies in the leapfrog
task, and different strategies may lead to qualitatively different
patterns of performance, we examined the distributions of two key
measures (performance and exploration rate) within each group to

determine whether the mean statistics compared in the Results
section of Experiment 1 truly reflect the majority of individual
participants (see Figure B1). The distributions of both measures in
each group are clearly unimodal and centered on the mean value.
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Figure B1. Histograms of performance and exploration rates for older and younger adults in Experiment 1. See
the online article for the color version of this figure.
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