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Abstract

We study decentralized mechanisms for allocating firms into search pools. The

pools are created in response to noisy preference signals provided by consumers, who

then browse the pools via costly random sequential search. Surplus-maximizing search

pools are implementable in symmetric Nash equilibrium. Full extraction of the maxi-

mal surplus is implementable if and only if the distribution of consumer types satisfies

a set of simple inequalities, which involve the relative fractions of consumers who like

different products and the Bhattacharyya coeffi cient of similarity between their condi-

tional signal distributions. The optimal mechanism can be simulated by a “keyword

auction”with “broad matching”. (JEL D02, D47, D82).
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Consider a consumer who has a certain need and looks for a product that will satisfy

it. When confronted with a particular product, the consumer can identify whether he wants

it. However, when he first embarks on the search process, he is unable to provide an exact

description of his need, and can only submit an imprecise “query”that fits several product

types. How should a benevolent planner react to the consumer’s query? If he gives the

consumer a single item, he risks ending up with a poor match. Instead, the planner may

provide the consumer with a set of options to browse. If search is time-consuming, the plan-

ner should design the set in order to balance two considerations: maximizing the probability

that the consumer will find what he is looking for, and minimizing the amount of time it

will take him to find it. In other words, the planner’s problem is to design the consumer’s

“search environment”.

The consumer’s predicament is prevalent in other environments. When an employer

approaches a Human Resource agency with an intention to hire a new worker, the most

he can usually do is list a few characteristics that vaguely describe the kind of worker he

is looking for. Likewise, when we look for a rental apartment through a real-estate agent,

we typically describe only broad characteristics (location, size, amenities). A more modern

example is online search, where users submit queries that often contain general and imprecise

keywords. Imagine that you look for a specific piece of instrumental music on YouTube, but

you forgot its name. You would recognize it instantaneously if you heard it, but the only

information you can supply to YouTube is the piece’s genre. Finally, there are cases in which

the consumer passively conveys information. For instance, in contemporary online platforms,

the “cookies”on users’computers describe their navigation history, which may be correlated

with their current needs.

We attempt to capture situations of this kind with a simple model, in which every

consumer is interested in only one type of product and can provide only one particular de-

scription or “query”concerning this product. Each product type is supplied by a continuum

of firms; and when the consumer is given a subset of firms, he browses it using the most
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basic search technology in the literature: random sequential search. In our model, a cen-

tral planner aims to associate with each query a “search pool” (an infinite and typically

heterogeneous collection of firms) so as to maximize expected social welfare, defined by the

gross surplus created when consumers and suppliers transact minus the search costs that

consumers incur. An effi cient search pool is one in which it takes consumers little time on

average to find what they want.

If consumers could provide a perfectly informative query, there would be no design

issue: when a consumer says he is interested in product type x, the planner will respond

with a homogenous search pool consisting of many suppliers of x. The design problem arises

when the consumer’s query is a noisy signal of his need. The planner could still reach his

objective if he could directly identify the type of product offered by each supplier: the optimal

composition of product types in the search pool associated with each query is determined

by a simple first-order condition that reflects the preference distribution among consumers

who submitted the query.

The problem becomes economically interesting when the planner wishes to decentralize

the allocation of suppliers into search pools (because it is too costly for him to directly

verify product types, or because he wants to automatize the allocation procedure). In this

case the planner needs to make sure that suppliers’assignment into search pools is aligned

with their incentives. This is an object-allocation problem, where the allocated objects are

unusual: entitlements to enter consumers’ search pools. A supplier’s ultimate evaluation

of this allocation is a function of the joint distribution of consumers’needs and queries (as

well as the assignment of other suppliers). The incentive problem arises because consumers’

queries are noisy signals of their needs, which encourages suppliers to present themselves as

relevant to many queries. In the absence of appropriate design, consumers’search pools will

be ineffi ciently composed, resulting in excessively prolonged search.

Our first result is that as long as the planner has no budget constraints, there is a direct

(anonymous) mechanism that Nash implements the effi cient search pools for any underlying
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joint distribution over consumers’ needs and queries. Next, we ask whether the planner

can design a direct mechanism that maximizes social surplus and fully extracts it. If the

planner were a perfect monopolist trying to maximize profits, this would be his first-best

outcome. This objective turns out to be implementable if and only if every pair of product

types satisfies a simple inequality, which incorporates two quantities: the product types’

relative popularity, and a conventional measure (known as the Bhattacharyya Coeffi cient) of

the similarity between the query distributions that characterize consumers who look for these

two product types. As consumer preferences become more uniformly distributed and queries

become more Blackwell-informative of consumers’preferences, the perfect monopolist’s ob-

jective is more easily implementable. When it is implemented, the “price per impression”

that firms of any given type pay obeys a simple formula. These prices decrease with the

Blackwell informativeness of consumers’queries.

Can the optimal mechanism be mimicked by an indirect mechanism in which suppliers

engage in competitive bidding for the right to be included in search pools? In other words, can

some form of a competitive market implement effi cient search environments? We propose

an auction format in which each firm submits a “bid-per-impression” for one query of its

choice, and where the highest bidder for one query can enter with some probability into search

pools associated with other queries that it did not bid for. We refer to this last feature as

“broad matching”, hijacking search-engine jargon. Thus, when a consumer submits a query,

he receives a potentially mixed search pool that includes firms that bid for other queries.

We show that when the perfect monopolist’s objective is implementable, our broad-match

auction has an essentially unique symmetric pure-strategy Nash equilibrium, in which social

surplus is maximized and fully extracted. Furthermore, the optimal auction has a simple

specification of the “broad match function”that determines the probability with which the

highest bidders for a query enter the search pool associated with any given query.

Our notion of broad matching captures an intuitive function of real-life institutions that

match agents in two-sided markets. This function can be described as “vocabulary expan-
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sion”. When a prospective buyer looks up “road bikes”in a classified directory, he may see

items listed by sellers under “racing bikes”, “hybrid bikes”or “fixed gear bikes”. Although

the buyer and seller used different terms, the directory bridges the gap between their vocab-

ularies in the interest of a potentially good match. Likewise, “organic”online search engines

respond to keyword-based queries by taking into account typos and semantically related

terms. The broad-match function plays a similar role in our indirect mechanism.

The main contributions of this paper are thus threefold: formulating the problem of

decentralized implementation of effi cient search environments, elucidating the forces that

shape the relevant incentive constraints, and the novel broad-matching auction format. Al-

though this project has been inspired by modern online search engines, the model obviously

abstracts from some of their key features and therefore cannot be viewed as a faithful model

of this real-life institution. We do hope, however, that our abstraction will help researchers

conceptualize the problem of “search design” in various economic settings, which include

search engines, but - as we demonstrate in the concluding section - are not restricted to

them.

I. The environment

Let X be a finite set of product types, |X| ≥ 2. Let W be a finite set of signals, where

|W | ≥ |X|. For every x ∈ X, there is a measure one of firms that offer only this product

type (as many units as required, at zero cost). We sometimes refer to them as x firms. Each

firm is informed of its own type only. A firm gets a fixed payoff of 1 from any unit it sells

(we abstract from product prices).1

On the other side of the market, there is a measure one of consumers. A consumer

type is defined by the pair (x,w), where x is the (only) type of product he is interested in,

and w is the signal he can convey about what he is looking for. In line with some of the

potential applications we have in mind, we often refer to w as a “query”, a “keyword”or

“the consumer’s vocabulary”. Let µ ∈ ∆(X ×W ) be the distribution of consumer types
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in the population. The marginals of µ on X and W have full support. As usual, denote

µ(x) =
∑

w µ(x,w) and µ(· | x) = (µ(w | x))w∈W . The latter is referred to as the conditional

signal/query distribution that characterizes the preference type x.

When a consumer of type (x,w) consumes a product of type y 6= x, he gets a sure

payoff of 0. When he consumes a particular product of type x, he gets a payoff of π > 0

with independent probability θ and a payoff of zero with probability 1− θ. The parameter θ

captures idiosyncratic heterogeneity among consumers and firms of a given type. Products

are “inspection goods”: when a consumer encounters a particular product, he immediately

recognizes the payoff it generates. However, all he can communicate ex-ante about what he

is looking for is encapsulated in the signal w. Note that w does not represent the consumer’s

information about his own preferences, but the information he can provide to others. Thus,

when the consumer inspects a particular product, this does not cause him to revise his beliefs

about other products.

Consumers decide ex-ante, before their type is realized, whether to engage in search. If

a consumer opts out, he gets a payoff of zero. If a consumer decides to search, his type (x,w)

is subsequently realized and he automatically submits the signal/query w. He does not get

to revise his search decision in this interim stage. In response to his query, the consumer is

given access to an infinite collection of products. We refer to this collection as the search pool

associated with w, and define it formally as a probability distribution (λ(x | w))x∈X , where

λ(x | w) is the fraction of products of type x in the pool. Denote λ = (λ(· | w))w∈W . The

consumer repeatedly draws independent random samples from this pool (with replacement),

where each draw carries a fixed cost c ∈ (0, θ). As soon as the consumer finds a product that

satisfies his need, he transacts with its seller and terminates his search. If λ(x | w) > 0, a

consumer of type (x,w) will find what he wants in finite time with probability one (because

the pool contains infinitely many products).

The consumer’s ex-ante participation decision maximizes his expected utility according

to "rational expectations". In fact, all we need to assume is that the consumer’s decision
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is based on a correct estimate of: (1) the probability he will find a product that satisfies

his (yet to be realized) need; and (2) the expected duration of his search. These are broad

features of the overall quality of a search platform, and consumers can plausibly learn them

in the long run.

An example: Mozart vs. Stravinsky

The following specification illustrates the primitives of our model and serves as a running

example. Our consumer population consists of people who had a previous chance encounter

with some piece of classical music - while listening to the radio, watching a film or attending

a public ceremony - and are now trying to retrieve it (different consumers are looking for

different pieces). Suppose that all relevant pieces have been composed by either Mozart or

Stravinsky. Accordingly, let X = {moz, str}. The set of signals consists of three keywords,

“Mozart”, “Stravinsky”and “Classical Music”, denoted MOZ, STR and CL respectively.

A consumer type (moz,MOZ) ((str, STR)) is interpreted as someone who recognizes that

the piece he once heard was by Mozart (Stravinsky). In contrast, the types (moz,CL) and

(str, CL) are unable to describe the composer of the piece they are looking for, and all they

can say ex-ante is that they are looking for some piece of classical music. Each consumer

can recognize whether a particular music file he listens to is a rendition of the piece he is

looking for. However, the inspection never reveals the piece’s composer, and consequently

the consumer is never able to revise his query. Assume µ(moz, STR) = µ(str,MOZ) = 0 -

that is, when a consumer can name the composer, he never makes an error.

Optimal search pools

Consider a central planner who aims to allocate firms into search pools in order to

maximize total surplus. Since consumers make their participation decisions before their

types are realized, we can assume that they either all participate or all opt out. Conditional

on participation, social surplus is given by the following function of the collection of search

pools λ:

U(λ) ≡
∑

(x,w)|λ(x|w)>0

µ(x,w) · (1 + π)−
∑
(x,w)

µ(x,w) · c

θ · λ(x | w)
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It is clear from this expression that the planner will set λ(x | w) > 0 whenever µ(x,w) > 0, to

prevent a positive mass of consumers from incurring infinite search costs. Thus, conditional

on participating, all consumers eventually find what they want, such that firms earn a total

payoff of 1, consumers earn a total gross payoff of π, and the expected search cost of a

consumer of type (x,w) is c/θλ(x | w).

Define λ∗ = arg maxλ U(λ). This means that λ∗ minimizes consumers’expected search

duration. First-order conditions imply

(1)
λ∗(x | w)

λ∗(y | w)
=

√
µ(x,w)

µ(y, w)

whenever µ(x,w)µ(y, w) > 0. Since
∑

x∈X λ
∗(x | w) = 1, we obtain

(2) λ∗(x | w) =

√
µ(x,w)∑

y∈X
√
µ(y, w)

In the “Mozart vs. Stravinsky”example, λ∗(str, STR) = λ∗(moz,MOZ) = 1, because

the signals MOZ and STR are perfectly informative of the consumer’s preferences. The

fraction of moz products in the search pool associated with the query CL is

(3) λ∗(moz,CL) =

√
µ(moz,CL)√

µ(moz,CL) +
√
µ(str, CL)

From now on, we will assume that c is suffi ciently small, such that U(λ∗) > 0 - i.e., it is

socially optimal for consumers to participate.

Discussion

Before turning to the analysis, we comment on the way we model consumer search. Since

this paper is the first to formulate the “search design”problem, we were guided by simplicity,

and opted for the simplest (and arguably most common) search protocol in the literature:

random sequential sampling from an infinitely large pool of items. Important applications

of this protocol to consumer-market settings include Wolinsky (1986) and Armstrong et al.
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(2009). Thanks to this simplification, we can afford not to sacrifice generality in modeling

the novel friction at the heart of our paper, namely consumers’limited ability to describe

their needs. Modifications of the search protocol that assume large finite pools or introduce a

small exogenous stopping probability (capturing “search fatigue”) would lead to very similar,

but less elegant characterizations.

The random-sampling assumption means that the planner is unable to control the order

by which consumers inspect products in their search pool. This is a reasonable assumption

for search environments in which inspection is done “offl ine”. For instance, when a consumer

obtains a list of specialists from a “Yellow Pages”directory, he can verify whether a specialist

is a good match only by physically contacting him. The order in which he will examine the

specialists will depend on their availability, which lies beyond the control of the directory’s

planner. Even in the case of online search - where search results are ordered - the platform’s

ability to control the order of inspection is imperfect. Athey and Ellison (2011) list a number

of reasons why web users may disobey the order in which links appear on their computer

screen: advertisers attract their attention away from prominent links; some links are slow or

broken; and they may distrust the motives behind the search engine’s suggested order. From

this point of view, our random-search assumption fits a worst-case analysis for the design of

search environments. We further discuss ordered search in Section 5.

Taking the random-sampling assumption as given, the social value of having infinitely

many firms in search pools arises from our twin assumptions that θ < 1 and that the

sampling process is with replacement. If we assumed that θ = 1, there would be no need for

search pools to include more than one firm of each type. Likewise, if the random sampling

procedure were without replacement (an admittedly more realistic assumption), one could at

least construct examples in which a one-of-a-type pool dominates an infinite pool. However,

an infinite pool is socially optimal when sampling is with replacement.

Finally, consider our restriction that consumers make a single, ex-ante participation

decision. As long as π is suffi ciently large, it is easy to extend our analysis to the case in
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which the consumer can revise his search decision after his type is realized (in particular, he

can choose to stop searching at any point); the results are essentially the same (the difference

is that effi cient search pools may now exclude consumer and firm types). A deeper challenge

is that in reality, query-based search typically proceeds via successive alterations of the initial

query. The reason is that after encountering several items in the search pool, consumers get

a better sense of how they ought to describe their need, and consequently revise their query.

Constructing richer models of query-based search that incorporate this idea is an important

project for future research, even outside the context of “search design”.

II. Mechanism Design

We are interested in situations where only the consumer can verify whether a particular

product satisfies his need. Moreover, the only means of verification is personal inspection

via sequential search. In these situations, the planner cannot monitor the composition of

search pools. In order to design search pools with a particular composition, firms need to

be incentivized to enter the appropriate search pools.

A mechanism requires each firm to choose an element from some message space (the

firm can also opt out, in which case it earns 0). For every profile of messages, the mechanism

allocates firms probabilistically to the search pools associated with each w ∈ W , and specifies

a (possibly negative) transfer that the firm pays to the planner. In addition, the mechanism

specifies a (possibly negative) transfer to consumers conditional on participation. The mech-

anism induces a simultaneous-move game, in which consumers choose (before their types are

realized) whether to participate, and each firm submits its message or opts out. Following

this game, consumers’ types are realized and they automatically submit their queries (if

they chose to participate), and the search pool associated with each query is induced by the

mechanism and firms’strategies. The solution concept we use is symmetric Nash equilib-

rium - i.e., all consumers play the same strategy, and all firms of a given type play the same

strategy.
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In this section, we focus on direct mechanisms - i.e. the firms’message space is X.

We also restrict attention to anonymous mechanisms: the outcome for each firm is purely a

function of its own report and the overall distribution of firms’reports.

What can the planner monitor?

Our definition of direct mechanisms specifies lump-sum transfers that are independent

of events that unfold inside each search pool. Taken literally, this fits situations in which the

planner can only monitor whether firms access search pools. This is the case of a “Yellow

Pages” directory, for example. However, our specification is also consistent with the case

in which the planner can monitor “impressions”- i.e., he can condition the firm’s transfer

on the number of draws it receives in each search pool (online search engines fall into this

category). To see why, note that in our model firms are risk-neutral, hence all they care

about is the total number of transactions minus the total payment induced by any message

they submit. Therefore, our reduction to lump-sum transfers is a mere simplification that

carries no loss of generality.

Things are different when the planner can monitor transactions. This assumption is

sensible in environments like real-estate intermediation, where transactions are verifiable

and subjected to exclusive-dealership arrangements. In our model, it would completely

trivialize the planner’s problem. By assumption, all firms earn a payoff of 1 conditional on a

transaction, regardless of the transacting parties’types. Therefore, the planner could simply

set a uniform price-per-transaction of 1, and thus implement any outcome he wishes. It

follows that the interest in our problem arises only when the planner is unable to monitor

transactions.

A. Implementing Effi cient Search Pools

In this sub-section we assume that the planner’s sole objective is to maximize social

surplus. He has an unlimited budget and can therefore satisfy the participation constraints

of consumers and firms. By the Revelation Principle, we assume w.l.o.g that conditional on
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participating, each firm truthfully reports its type in equilibrium. In addition, we restrict

attention to equilibria in which all firms choose to participate with probability one (we show

in the Appendix why this restriction is w.l.o.g). We are now able to reduce any anonymous

direct mechanism to the pair 〈q, T 〉 = 〈(q(x,w))x∈X,w∈W , (Tx)x∈X〉, such that an individual

firm that reports x̂ enters the search pool associated with w with probability q(x̂, w), and

pays the transfer T (x̂) to the planner.2 Because consumers have no private information at

the time they make their decision, we omit their transfer from the description and take it

for granted that it ensures their participation.

The planner’s problem is to find an anonymous direct mechanism that sustains the

optimal collection of search pools λ∗ in symmetric Nash equilibrium. By the assumption

that all firms participate and report truthfully, the allocation rule q must satisfy

(4) λ∗(x | w) =
q(x,w)∑
y q(y, w)

for every (x,w) in the support of µ. It follows that the planner’s problem is to find a

pair 〈q, T 〉 that induces λ∗ according to (4), subject to the firms’ incentive compatibility

constraint: for every x, y ∈ X,

(5)
∑
w∈W

q(x,w) · µ(x,w)

q(x,w)
− Tx ≥

∑
w∈W

q(y, w) · µ(x,w)

q(x,w)
− Ty

To understand this inequality, recall that when a firm of type x submits the report

x̂, it enters the search pool associated with any query w with probability q(x̂, w). Let us

calculate the number of transactions the firm expects in the pool. The total measure of

consumers at the pool who are interested in the firm’s type of product is µ(x,w). All of

these consumers eventually find a desirable product; hence, they are equally shared by the

x firms in the pool. The total measure of these firms is q(x,w), by the assumption that all

firms participate and report truthfully. The number of transactions that the firm expects

to get in the pool associated with w is thus µ(x,w)/q(x,w). The firm’s total number of
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transactions is then calculated by summing over all consumer queries. To get the firm’s

payoff, we subtract the transfer Tx̂ induced by the firm’s report. Note that the firm’s net

equilibrium payoff is the L.H.S of (5), which is equal to µ(x)− Tx.

Plugging (1) and (4) into (5) and rearranging, we obtain the following lemma.

Lemma 1. An anonymous direct mechanism defined by 〈q, T 〉 implements λ∗ in a symmetric

Nash equilibrium if and only if

(6) µ(x)−
∑
w∈W

√
µ(x,w)µ(y, w) ≥ Tx − Ty

for every x, y ∈ X.

We are now ready for our first main result.

Proposition 2. There is an anonymous direct mechanism that implements λ∗ in symmetric

Nash equilibrium.

Proof. We prove a stronger result: the first-best is implementable by independent mecha-

nisms for each w, as if W consisted of w alone. This result is stronger because we continue

to assume the same equilibrium behavior by firms (participation and truthful revelation)

and the same implemented outcome, but there are more constraints to satisfy (separate

participation and IC constraints for each signal, compared with single participation and IC

constraints in the grand mechanism).

Consider some w ∈ W and some pair of product types x, y ∈ X. When the relevant set

of signals is a singleton, {w}, the constraint that prevents type x from pretending to be y,

denoted IC(x, y), is given by the following inequality (derived from (6)):

(7) µ(x,w)−
√
µ(x,w)µ(y, w) ≥ Tx − Ty

Let φ(x, y) denote the L.H.S. of (7), and rewrite IC(x, y) as φ(x, y) ≥ Tx−Ty. For any cycle
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of products (x1, x2, . . . xm, x1),

φ(x1, x2) + · · ·+ φ(xm, x1) =
m∑
i=1

(
µ(xi, w)−

√
µ(xi, w)µ(x(i+1)modm, w)

)
≥

m∑
i=1

(
µ(xi, w)−

µ(xi, w) + µ(x(i+1)modm, w)

2

)
= 0

Then, by Rochet (1987), there is a collection of transfers (Tx)x∈X that satisfies IC(x, y) for

all x, y ∈ X.

To illustrate the argument underlying the proof, let X = {x, y}, W = {w}. Suppose

the function q is designed to induce an effi cient search pool under truthful reports. If type x

reports truthfully, he gets µ(x) transactions. If he misreports, then by Lemma 1, the number

of transactions he will get is the geometric average of µ(x) and µ(y). The mutual incentive

compatibility constraints are then reduced to the requirement that the arithmetic average

of µ(x) and µ(y) is weakly greater than their geometric average, which is always true. In

the Appendix, we explicitly derive transfers that implement λ∗, using Vohra’s (2011) flow-

network technique.

B. Full Surplus Extraction and Bhattacharyya Similarity

In this sub-section we assume that the planner does not settle for maximizing social sur-

plus, but also wants to fully extract it. If the planner were a monopolistic, profit-maximizing

search platform, that would be its ideal outcome. Accordingly, we refer to the planner’s goal

in this sub-section as the “perfect monopolist’s objective”. We focus on the firms’behavior

and take it for granted that the planner sets consumers’transfer such that their participation

constraint holds bindingly.

Before characterizing the implementability of this more stringent objective, we need to

introduce a new concept. When a firm contemplates misreporting its type, it realizes that it
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may be allocated to search pools associated with different queries. However, since consumers’

queries are noisy signals of their needs, the firm may still get a fair number of transactions

despite its misallocation. Thus, the firm’s potential gain from misreporting depends on the

distinctiveness of the signal distributions that characterize consumer preference groups. It is

therefore useful to measure the similarity between the conditional query distributions µ(· | x)

and µ(· | y), for any given x and y. Of course, there are multiple ways to measure similarity

between probability distributions. However, one particular measure turns out to be relevant

for our exercise. For any pair of products x, y ∈ X, define

S(x, y) ≡
(∑
w∈W

√
µ(w | x)µ(w|y)

)2

In the statistics literature,
√
S(x, y) is known as the Bhattacharyya Coeffi cient that

characterizes the distributions µ(· | x) and µ(· | y).3 From a geometric point of view, this

is an appropriate similarity measure, because
√
S(x, y) is the direction cosine between two

unit vectors (
√
µ(w | x))w∈W and (

√
µ(w | y))w∈W . The value of S(x, y) increases as the

angle between these two vectors shrinks; S(x, y) = 1 (0) if the two vectors are identical

(orthogonal). More importantly, the following observation establishes that S(x, y) is an

appropriate similarity measure given our interpretation of µ(· | x) and µ(· | y) as conditional

signal functions.

Remark 3. Regard the stochastic matrix (µ(· | x))x∈X as an information system in Black-

well’s sense. When (µ(· | x))x∈X is subjected to Blackwell garbling, S(x, y) weakly increases

for all x, y.

Thus, Bhattacharyya Coeffi cients decrease with the Blackwell-informativeness of con-

sumers’queries. This is consistent with the intuition that the distance between conditional

query distributions captures consumers’ability to describe their needs. In our “Mozart vs.

Stravinsky”example, S(moz, str) = µ(CL | moz)µ(CL | str).

Our next result establishes a necessary and suffi cient condition for the implementability
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of the perfect monopolist’s objective.

Proposition 4. There exists an anonymous direct mechanism that implements the perfect

monopolist’s objective if and only if

(8)
µ(x)

µ(y)
S(x, y) ≤ 1

for every x, y ∈ X.

Proof. As pointed out in the discussion below (5), the net payoff of a firm of type x when

all firms report truthfully is µ(x) − Tx. Consider any x, y ∈ X. Full surplus extraction

means that µ(x) − Tx = µ(y) − Ty = 0. Thus, IC(x, y), as given by (6), is reduced to

µ(y) ≥
√
µ(x)µ(y)S(x, y), which is equivalent to (8).

Thus, the forces that obstruct the perfect monopolist’s objective are large popularity

gaps between products and uninformative signals. Consider two consumer preference types,

x and y. If x is significantly more common than y in the consumer population, and the con-

ditional signal distributions that characterize x and y are relatively similar, then IC(x, y)

will fail to hold. In the “Mozart vs. Stravinsky” example, IC(moz, str) is violated when

µ(moz)/µ(str) is far from 1 and µ(CL) is large. At the other extreme, the perfect mo-

nopolist’s objective is implementable when the marginal of µ over X is uniform (because

S(x, y) ≤ 1 for every x, y), or when consumers’signals are fully informative (because in this

case, S(x, y) = 0 for all x 6= y).

To get an intuition for condition (8), let X = {x, y} and µ(x) > µ(y), and let firms play

an equilibrium that sustains the first-best. Now suppose that a firm of type x deviates by

pretending to be y. On one hand, the firm’s transfer to the planner drops from µ(x) to µ(y).

On the other hand, the firm’s probability of entering the search pool associated with any

w drops less in relative terms, because by (1) and (4), the ratio q(y, w)/q(x,w) is equal to

the square root of the ratio µ(y, w)/µ(x,w). Thus, there is a sense in which, relative to the

transfer rule, the allocation rule is biased in favor of the minority preference group, and this

15



boosts the x firm’s incentive to deviate. If consumers’signals are suffi ciently noisy, there

will be many consumers who want x in the search pools to which the firm is misallocated,

and IC(x, y) will be violated.

We saw that when the planner only cares about effi ciency, signal-by-signal implementa-

tion of his objective is possible. In contrast, for generic µ, signal-by-signal implementation

of the perfect monopolist’s objective is impossible. The reason is that in a single-query en-

vironment, S(x, y) = 1 for all x, y. Hence, Inequality (8) is violated by product types x, y

for which µ(x) > µ(y).

Prices per impression

The price-per-impression that a firm pays is the total transfer the firm pays to the

planner, divided by the total number of times it is drawn by consumers in search pools. In

any equilibrium that implements the perfect monopolist’s objective, the price-per-impression

of a firm is equal to its average “conversion rate” - i.e., the ratio of the total number of

transactions the firmmakes to the total number of draws it gets. The next result characterizes

this quantity.

Proposition 5. A direct anonymous mechanism that implements the perfect monopolist’s

objective induces the following price-per-impression for every product type x:

(9) p∗(x) =
θ
√
µ(x)∑

y

√
µ(y)S(x, y)

Bhattacharyya Coeffi cients play an important role in this price function: p∗(x) increases

as the conditional query distribution that characterizes consumers who look for x becomes

more distinctive. The price-per-impression of all x is weakly increasing in the Blackwell

informativeness of consumers’queries.

To illustrate the comparative statics, suppose that X = W and that the marginal of

µ over X is uniform. Consider two extreme cases. First, let µ(x | x) = 1 for all x - i.e.,

consumers can perfectly describe their needs. Then, p∗(x) = θ for every x. Second, suppose
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µ is uniform over X × X. In this case, consumers’signals are entirely uninformative, and

we have p∗(x) = θ/ |X| for every x.

Finally, in the “Mozart vs. Stravinsky”example,

p∗(str) =
θ

1 +
√
µ(moz,CL)/µ(str, CL)

p∗(moz) =
θ

1 +
√
µ(str, CL)/µ(moz,CL)

Note that p∗(moz) (p∗(str)) is an increasing (decreasing) function of the fraction of moz fans

among consumers who submit the query CL.

C. Uniform-Price Mechanisms

Suppose that the planner is not interested in extracting surplus. Instead, he wishes to

implement λ∗ using a mechanism in which transfers are independent of the firms’reports

- i.e., Tx = Ty for all x, y ∈ X∗. In particular, the mechanism may be required to involve

no transfers at all. We refer to anonymous direct mechanisms that satisfy this additional

requirement as uniform-price mechanisms.

Proposition 6. There exists a uniform-price mechanism that implements λ∗ in symmetric

Nash equilibrium, if and only if (8) holds for every x, y ∈ X.

Proof. Let x, y ∈ X. Impose the uniform-price requirement Tx = Ty. Then, IC(y, x), as

given by (6), is reduced to µ(y) ≥
√
µ(x)µ(y)S(x, y), which is equivalent to (8). (Note

that the result follows from examining IC(y, x), whereas in the proof of Proposition (4) it

followed from examining IC(x, y).)

Thus, the condition for implementability of effi cient search pools by a uniform-price

mechanism is the same as the condition for implementability of the perfect monopolist’s

objective. To appreciate this coincidence, consider an abstract single-agent mechanism-

design setting with two agent types, 1 and 2, and two possible outcomes, O1 and O2. Suppose
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that the planner’s objective is to assign the outcome Ok to type k. The gross payoff of type

i from outcome Oj is denoted dij. Let tk denote the transfer the agent pays when he reports

his type to be k. The IC constraints that ensure truthful reporting are d11− t1 ≥ d12− t2 and

d22−t2 ≥ d21−t1. Full surplus extraction implies tk = dkk, and the IC constraints are reduced

to d22 ≥ d12 and d11 ≥ d21. Alternatively, uniform prices mean t1 = t2, and the IC constraints

are reduced to d11 ≥ d12 and d22 ≥ d21. Obviously, these systems of inequalities need not

coincide. And indeed, in general settings, the conditions for implementing an outcome with

full surplus extraction and with a uniform-price mechanism are different. However, if d12

and d21 happen to be the same, the two systems do coincide. This is precisely what happens

in our setting: we saw that under λ∗, the number of transactions that a firm of any type x

expects when it pretends to be any other type y is
∑

w∈W
√
µ(x,w)µ(y, w).

III. Competitive Bidding and Broad Matching

Is there a plausible indirect mechanism that implements the perfect monopolist’s ob-

jective when condition (8) holds for every x, y ∈ X? We are particularly interested in

mechanisms based on competitive bidding, because they are natural benchmarks for object-

allocation mechanisms and commonly used by online search engines. Moreover, they shed

light on a key question: can “competitive forces”generate effi cient search environments?

We propose a mechanism referred to as a “broad-match auction”. Each firm simulta-

neously chooses exactly one signal in W to bid for. Bids are “per impression”, according

to a rule we explain below. We introduce a broad-match function b : W ×W → [0, 1] that

assigns to each signal v ∈ W a measure b(w | v) of “(w, v) tickets”for every w ∈ W . Each

of these (w, v) tickets is uniformly assigned to the firms that submitted the highest bid for

v. When a consumer submits the query w, he gets access to a search pool consisting of a

measure
∑

v∈W b(w | v) of (w, ·) tickets, originating from all signals v via the broad-match

function. The consumer then sequentially samples random tickets from this pool. Each time

a consumer draws a (w, v) ticket, he incurs a search cost c and inspects the firm holding the
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ticket, and the firm pays to the planner the (winning) bid-per-impression it submitted for

v. As to the consumer’s transfer, assume it makes him indifferent to participation under the

effi cient allocation of firms to search pools.

From consumers’point of view, the broad-match function plays the role of “vocabulary

expansion”. When a consumer submits the query w, he receives a search pool consisting of

“tickets”that originate from various signals v. Therefore, the broad-match function mimics

an environment in which the consumer has a richer vocabulary. Real-life intermediaries

regularly fulfill this role, in order to generate matches that otherwise would not occur due to

the different language that parties on the two sides of the market use to describe themselves

or what they are looking for. Our innovation will be to show that when this role is explicitly

integrated into the design of the search platform, it can augment a conventional competitive-

bidding mechanism and go beyond its limitations.

The search process under the broad-match auction is slightly different from the descrip-

tion in Section 2, because here consumers repeatedly sample tickets rather than suppliers.

The conversion rate that a (w, v) ticket generates for the individual firm that holds it is the

probability that a consumer who draws the ticket will transact with that firm. The average

conversion rate that the signal v generates for an individual firm that submitted the highest

bid for v is the probability that a consumer who draws any of the (·, v) tickets the firm holds

will transact with it.

The broad-match auction admits the possibility that all tickets in a search pool will be

held by a single firm. This possibility will not be realized in the equilibria we will analyze,

but it can occur off the equilibrium path - e.g. when a single firm outbids all others for some

signal. The firm’s payoff in this case is ill-defined because it receives infinitely many draws.

All we need to assume in this case is that if the conversion rate that the signal generates for

that firm is above (below) the firm’s bid, the firm’s payoff is arbitrarily high (low).

As a benchmark for our analysis, let us consider two extreme specifications of b.

Exact matching
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Suppose that b(w | w) = 1 and b(w | v) = 0 for all w 6= v. In this case, we have

an “exact-match auction”: consumers who submit the query w are brought into contact

only with firms that submitted a winning bid for w. This reduces our mechanism to a

signal-by-signal first-price auction. If consumers’signals were perfectly informative, it could

implement the perfect monopolist’s objective in symmetric pure-strategy Nash equilibrium.

The diffi culty with exact matching arises when signals are noisy, such that optimal search

pools are required to be diverse. Consider the “Mozart vs. Stravinsky” example. If we

restrict attention to symmetric pure-strategy profiles, exact matching only allows λ(· | CL)

to take the values 0, 1
2
, 1, and therefore it is mechanically unable to generate λ∗(· | CL) for

generic µ.

However, the diffi culty with exact matching extends to mixed-strategy equilibria. Let

m(x) denote the measure of x firms in the CL search pool that is induced by some symmetric

(and possibly mixed) Nash equilibrium. Then,

(10)
m(moz)

m(str)
=
λ(moz | CL)

λ(str | CL)

In order for λ to coincide with λ∗, it must be the case that m(moz) > 0 andm(str) > 0 - i.e.,

both moz and str firms must submit the winning bid for CL. In order for the firms’surplus

to be fully extracted, the winning bid must be equal to the conversion rate they expect at

CL. Therefore, they must expect the same number of transactions in the pool. This number

for an individual x firm is µ(x,CL)/m(x), because all consumers of type (x,CL) search and

eventually find a product they like, and all x firms in the pool equally share this clientele.

Plugging (10), we obtain
λ(moz | CL)

λ(str | CL)
=
µ(moz,CL)

µ(str, CL)

which contradicts the effi ciency condition (3).

Fully broad matching

Suppose that b(w | v) = 1 for all w, v. This reduces our mechanism to exact matching,
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defined for a fictitious environment that consists of one signal w∗, such that the fraction of

(x,w∗) consumers is µ(x). Therefore, fully broad matching is weakly dominated by exact

matching. In particular, there are distributions µ for which the former fails to implement

the perfect monopolist’s objective while the latter succeeds. The reason is that fully broad

matching effectively eliminates all the information contained in consumers’signals.

We now construct a broad-match function b∗ that lies somewhere between the two

extremes of exact and fully broad matching. It will be convenient to present X as a subset

of W . This is more than a notational convenience: as in the “Mozart vs. Stravinsky”

example, it is natural to assume that the name of a product type is itself a possible query.

For every w, v ∈ W ,

b∗(w | v) =


√
µ(v, w) if v ∈ X

0 if v /∈ X

This broad-match function has a natural interpretation. The signals in W − X are

“dummy keywords”with no value for bidders, because they grant no tickets to any search

pool. The signals in X are “working keywords”worth bidding for. The strength of the broad

match from v = x to w increases with the fraction of (x,w) types among consumers.

Unlike the analysis in Section 3, here we are interested in characterizing the entire class

of symmetric pure-strategy Nash equilibria in the game that is induced by the mechanism.

Note that there are trivial equilibria in which consumers choose not to participate. The

following result neglects these equilibria.

Proposition 7. Suppose condition (8) holds for every x, y ∈ X. Then, the game induced by

the broad-match auction defined by b∗ has a Nash equilibrium, in which all firms of type x bid

p∗(x) for the signal x, where p∗ is given by (9). Moreover, for generic µ, this is the unique

symmetric pure-strategy equilibrium in which all consumers participate. In this equilibrium,

firms surrender their entire surplus to the planner, and the induced collection of search pools

is λ∗.

Thus, b∗ addresses the incentive problem due to broad matching, to the extent possible
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given Proposition 4. On one hand, allocation of keywords to firms is based on competitive

bidding. In equilibrium, x firms’bid-per-impression for the “working keyword”x is equal

to their average conversion rate, such that their surplus is fully extracted. On the other

hand, b∗ ensures that the consumers’ search pools are effi ciently diversified, given firms’

equilibrium behavior. For this, it is crucial that b(w | x) is proportional to
√
µ(x,w). The

relation between the broad-match auction and the direct mechanism is quite transparent:

when a firm bids for x, it effectively reports that this is its type, and the broad-match

function executes the role of the function q in the direct mechanism. As usual, however, the

indirect mechanism generates more potential deviations, and therefore verifying equilibrium

- let alone its essential uniqueness - is more intricate.

A rather restrictive feature of the broad-match auction is that firms are not allowed to

bid for more than one keyword. When we relax this restriction and allow firms to bid for

as many keywords as they wish, a weaker version of Proposition 7 holds: under the same

conditions, the modified mechanism admits a symmetric pure-strategy Nash equilibrium that

implements the perfect monopolist’s objective. However, there is potentially a continuum of

other equilibria, in which some firms earn positive profits.

Comment: Broad matching in sponsored ad auctions

Although our model borrows the term “broad matching”from online search, it does not

mean quite the same thing, and we believe that the differences are instructive. Historically,

broad matching was introduced in pursuit of two goals:4 (1) simplifying advertisers’bidding

task, because under exact matching they need to bid for many keywords (involving typos

and semantically related terms); (2) thickening markets in order to raise auction revenues.

Both goals are supply-side oriented - broad matching was not designed with the vocabulary-

expansion role in mind. In practice, vocabulary expansion relies on explicit attempts by

the “organic”search engine (which coexists with sponsored search) to help users refine and

correct their queries. In our model, goals (1) and (2) are irrelevant: if the mechanism allowed

firms to bid for multiple keywords, it would be costless for them to do so; and since there are
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infinitely many firms of each type, markets are already thick under exact matching. Finally,

in our model the design of consumers’search environment is entirely decentralized, hence no

“organic”search engines can help consumers refine their queries. Thus, broad matching in

our model is exclusively a vocabulary-expansion instrument.

As to the way broad matching interacts with the auction design, our “tickets”mechanism

differs from real-life practice in two important qualitative dimensions. First, broad matching

is optional in practice: bidders can choose to stick with exact matching. Second, in our

model the winners in the auction for v are broad-matched with other queries w, whereas in

practice, broad matching means that whenever a firm bids for v and selects broad matching,

its bid enters auctions for other queries w. Despite these differences, the idea that broad

matching mimics the vocabulary-expansion role of search intermediaries may be relevant to

future work on sponsored ad auctions.

In our broad-match auction, a firm of one type does not want to kick firms of an-

other type out of the market (by topping their bid), because this would flood the firm with

“unwanted traffi c”of consumers that do not generate any transactions. The possibility of

receiving many impressions with infrequent conversions is a real concern in online search

markets. As the following quote from Even Dar et al. (2009) shows, this concern is most

profound when relying on a search engine’s broad match: “While giving more expressiveness

to advertisers, this feature makes it challenging to optimize bids to maximize their returns:

choosing to bid on a query as a broad match because it provides high profit results in one

bidding for related queries which may yield low or even negative profits.”5 Of course, in our

stylized model the “irrelevant traffi c”takes an extreme form (infinitely many impressions),

but this motive would be present in some form in a more realistic model that allows for

“search fatigue”or consumer learning.
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IV. Concluding Remarks

This paper addressed the following general question: under what conditions can a de-

centralized mechanism be effi cient in helping individuals find what they want? In most of

our discussion, we interpreted consumers’signals as keyword-based queries, and this linked

our model to the problem of search-engine design. In this context, our question could be

rephrased as follows: would a search intermediary’s performance (measured in terms of prof-

its or social welfare) deteriorate if it switched from a centralized matching algorithm to a

decentralized mechanism?

However, our framework accommodates a wider range of environments, including ones

which have yet to establish an organized marketplace for allocating firms to search pools. For

example, online recommender systems give users access to search pools according to their

navigation history, which serves as an imperfect signal of their current needs. In contrast

to search engines, recommender systems do not purely rely on queries initiated by the web

user.6

To see how the broad-match auction of Section 4 fits the recommendation-system inter-

pretation, suppose thatW represents a set of possible past purchase profiles of the consumer.

In particular, we can setW = XK , whereK is the number of past purchase opportunities the

consumer had. An element in W is a platform for “personalized advertising”, augmented by

broad matching: when an advertiser pays for a particular profile of past purchases, he poten-

tially gets access to other profiles. In this context, our question can be rephrased as follows:

suppose that a recommender system abandons its centralized recommendation algorithm in

favor of a “market for sponsored recommendations”; will its performance deteriorate as a

result? Propositions 2 and 4 can be viewed as partial answers to this question.7

Ordered search pools

Suppose that the planner can perfectly control the order in which consumers inspect

search results. Thus, he can choose which type of firm the consumer will encounter at each

draw, as a function of his search history. The effi cient ordering of items in a search pool

24



follows simple maximum likelihood: the product type displayed in the k-th position of a w

consumer’s list, denoted xk(w), is the most likely to be preferred by the consumer, given that

he rejected all the k−1 firms whose types are x1(w), . . . , xk−1(w). This ordering can be easily

implemented because the firm type with the highest willingness to pay for the k-th position is

the one that is most likely to transact with the consumer, which is by definition xk(w). The

feature that trivializes the problem is the lack of substitutability between product types: if a

consumer wants x, he will never transact with y 6= x. Relaxing this assumption is necessary

for an interesting model with ordered search pools.

Related literature

We are not aware of precedents for our formulation of the “search design” problem.

One related body of work studies mechanisms for allocating sponsored links by online search

engines (e.g. Edelman et al. (2007)). Typically, the literature assumes that links have

exogenous values to advertisers. Athey and Ellison (2011) explicitly model how these values

are determined by consumers’endogenous search decisions. Chen and He (2011) and Eliaz

and Spiegler (2011) model explicitly the interaction between keyword and product prices

(ignoring auction-theoretic considerations). This literature almost invariably assumes exact

matching; two exceptions are Dhangwatnotai (2011) and Chen et al. (2014). The first

study uses the “price of anarchy” framework to analyze the performance of a mechanism

in which advertisers can submit a bid to multiple generalized second-price auctions at once.

The second paper analyzes the worst equilibrium of a mechanism that randomly samples

a keyword according to a predefined probability distribution and only runs the generalized

second-price auction for this sampled keyword.

This paper is also related to the literature on intermediation in two-sided markets (see

Caillaud and Jullien (2001,2003), Rochet and Tirole (2003) and Armstrong (2006)). Some

works within this tradition (e.g. Hagiu and Jullien (2011)) explicitly address search plat-

forms. One can view the consumer’s signal in our model as a (sole) platform to which he has

access. In this context, broad matching can be viewed as a “directed network of platforms”:
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a consumer who is attached to one platform is able to interact with firms that attach them-

selves to another platform. The papers we are aware of implicitly assume exact matching:

interaction between a consumer and a firm requires that they are both attached to the same

platform.8

Finally, in the last decade there has been much writing, both academic and popular,

about the “long tail”phenomenon (see Brynjolfsson et al. (2006) or Anderson (2007)). In

many industries, a large segment of the consumer population consists of numerous small

taste niches. Online commerce facilitates the flourishing of the “long tail”, because it lowers

barriers to entry that characterize brick-and-mortar commerce. The key friction that re-

mains (indeed, becomes magnified) is consumers’limited awareness of products that fit their

peculiar tastes, and their limited ability to describe these tastes in order to locate relevant

products on the internet. The “long tail”phenomenon means that search design can have

substantial welfare implications.
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A Appendix

A. An explicit direct mechanism for Proposition 2

We construct a mechanism for each signal w (independently of all other signals), using

Vohra’s (2011) graphical representation of IC constraints. Consider a weighted directed

graph, whose set of nodes is X, and the weight on the link x → y is φ(x, y) = µ(x,w) −√
µ(x,w)µ(y, w). Add a link from any x to itself, whose weight is φ(x, x) = 0. A path from

x to y is a sequence of nodes that begins with x and ends with y. Define the length of a path

to be the sum of the weights on the directed links along the path. Let δ(x, y) be the distance

from x to y, namely the length of the shortest path from x to y. Since the sum of weights

along any cycle is non-negative, the distance is always well-defined and non-negative, and

by definition it satisfies the triangle inequality: for any x, y, z, δ(x, z) ≤ δ(x, y) + δ(y, z). Fix

some x∗ ∈ X. For any x ∈ X, define Tx = δ(x, x∗)−L, where L > 0 is large enough to ensure

that firms’participation constraints hold. By the triangle inequality, φ(x, y) + δ(y, x∗) ≥

δ(x, x∗) for any x, y ∈ X. This implies that for any pair of distinct products x, y in X,

φ(x, y) ≥ Tx − Ty, hence IC(x, y) is satisfied.

Let us illustrate these transfers in the “Mozart vs. Stravinsky”example. The problem

for the signalMOZ is trivial, because all consumers who submit this signal wantmoz. Thus,

the planner can prescribe Tmoz = ε > 0 = Tstr, and if ε is small enough, no firm would have

an incentive to opt out or misreport. An analogous argument holds for STR. Let us turn

to the mechanism associated with CL. Note that

φ(moz, str) = µ(moz,CL)−
√
µ(moz,CL)µ(str, CL)

φ(str,moz) = µ(str, CL)−
√
µ(moz,CL)µ(str, CL)

Set Tstr = 0 and Tmoz = φ(moz, str), and all participation and IC constraints will hold. �
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B. Remark 3

Denote µ(k | i) = βik, such that (βik) is a stochastic matrix with Σkβik = 1 for every i.

Let

δik =
∑
h

βihmhk

where (mhk) is a |W | × |W | bi-stochastic matrix. That it, (δik) is a Blackwell garbling of

(βik). Fix i, j. Then,

∑
k

√
δikδjk =

∑
k

√√√√(∑
h

βihmhk

)(∑
h

βjhmhk

)

By the Cauchy-Schwarz inequality, this expression is weakly greater than

∑
k

∑
h

√
βihmhkβjhmhk =

∑
h

√
βihβjh

∑
k

mhk =
∑
k

√
βikβjk

Since this inequality holds for every i, j, it follows that

∑
i

∑
k

√
δikδjk ≥

∑
i

∑
k

√
βikβjk

which completes the proof. �

C. Proof that Proposition 4 extends to mixed participation decisions

When the mechanism fully extracts firms’surplus, they are indifferent to participation.

In our analysis, we restricted attention to equilibria in which all firms participate and report

truthfully. The latter is w.l.o.g by the Revelation Principle. However, it is not obvious

that insisting on full participation is w.l.o.g. Put differently, can we relax condition (8) by

allowing firms to play a mixed participation strategy? Let α(x) be the probability that a

firm of type x participates. A participating x firm has no incentive to report that its type is

30



y if and only if

∑
w∈W

q(x,w) · µ(x,w)

α(x)q(x,w)
− Tx ≥

∑
w∈W

q(y, w) · µ(x,w)

α(x)q(x,w)
− Ty

which reduces to

(A1)
µ(x)

α(x)
− Tx ≥

∑
w∈W

q(y, w)

α(x)q(x,w)
· µ(x,w)− Ty

Because firms earn zero profits, Tx = µ(x)/α(x) and Ty = µ(y)/α(y). The ratio between

the measures of y and x firms in the pool associated with w is α(y)q(y, w)/α(x)q(x,w). Since

the equilibrium is required to induce effi cient search pools, this ratio equals λ∗(y | w)/λ∗(x |

w) =
√
µ(y, w)/µ(x,w). It follows that inequality (A1) can be written as

1

α(y)

∑
w∈W

√
µ(y, w)√
µ(x,w)

· µ(x,w) ≤ µ(y)

α(y)

which is equivalent to condition (8). �

D. Proof of Proposition 5

In the first-best outcome, all consumers who look for x eventually find a product they

like, and they are equally shared by a measure one of x firms. Therefore, the number of

transactions that an individual firm of type x expects is µ(x). The number of draws it

obtains is equal to ∑
w

q(x,w)
∑
y

µ(y, w)

θ · λ∗(y | w)
· 1∑

y q(y, w)

After we plug (2) and (4) into λ∗ and q, this expression becomes

1

θ

∑
y

√
µ(x)µ(y)S(x, y)
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The ratio between the number of transactions and the number of draws is the average

conversion rate experienced by x firms. Note that it is equal to p∗(x). Because firms earn

zero profits in the first-best outcome, the average conversion rate is equal to the amount

that x firms pay on average per draw. �

E. Proof of Proposition 7

We break the proof into three parts.

Part 1: The strategy profile induces λ∗.

Recall there is a measure one of every firm type x ∈ X. Since all x firms bid for x,

the measure of tickets held by x firms in the search pool associated with any w is b∗(w | x).

Therefore, for every w ∈ W ,

λ(x | w) =
b∗(w | x)∑
y b
∗(w | y)

=

√
µ(x,w)∑

y

√
µ(y, w)

= λ∗(x | w)

Part 2: The strategy profile constitutes a Nash equilibrium.

We make two preliminary observations. First, by the definition of p∗, firms earn zero

profits under the assumed strategy profile. Second, the strategy profile implies that if a

consumer who submits the query w draws a ticket held by an x firm, it must be a (w, x)

ticket. In other words, all the tickets held by x firms in the search pool associated with w

originate from the signal x. This means that if a firm of type y 6= x deviates by bidding

p > p∗(x) for x, it will hold all the (w, x) tickets in some search pool w for which µ(x,w) > 0.

As a result, consumers of type (x,w) will search indefinitely without finding a product they

want, and therefore the y firm will get infinitely many draws in the search pool associated

with w; the average conversion rate that the y firm will experience thanks to winning the

signal x will drop to zero, and the firm’s deviation will be unprofitable.

In addition, no firm has a strict incentive not to participate or to bid for a dummy

signal. The former gives a payoff of zero, while the latter gives a payoff of at most zero
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(when the bid is zero).

It follows that the only deviations we need to examine are of two types: (I) a firm of

some type y submits p∗(x) for some signal x 6= y; (II) a firm of some type x changes its bid

for x to p > p∗(x). Consider type-I deviations. Because the deviation is by a non-atomic

firm that joins a measure-one set of highest bidders for x, there is a measure one of firms that

hold all (w, x) tickets both before and after the deviation. Therefore, all we need to do is

verify that submitting the winning bid for x generates fewer transactions for the deviating y

firm than it does for the x firms that bid for x. The number of transactions for the deviating

y firm is

(A2)
∑
w

b∗(w | x)

1
· µ(y, w)

b∗(w | y)

because the firm gets b∗(w | x)/1 tickets to any pool associated with w. In every such

pool, there is a measure µ(y, w) of consumers who are interested in y. Every such consumer

eventually finds a product he wants, and this clientele is shared equally by all y firms in the

pool, the measure of which is b∗(w | y). By a similar calculation, the number of transactions

for an x firm is ∑
w

b∗(w | x)

1
· µ(x,w)

b∗(w | x)
= µ(x)

We need this to be weakly greater than (A2). Plugging the definition of b∗, we obtain

µ(x) ≥
∑
w

√
µ(x,w)µ(y, w)

which is equivalent to the inequality (8). Thus, the condition that prevents type-I deviations

coincides with the condition for general implementability of the planner’s objective, which

was assumed to hold at the outset.

Let us turn to type II deviations. Suppose that an x firm deviates by submitting a bid

p > p∗(x) for the signal x. The firm receives all the (w, x) tickets. However, both before
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and after the deviation, all (w, x) tickets are held by x firms. Therefore, the composition of

all search pools remains intact, and the number of transactions and draws per every (w, x)

ticket remains unchanged. It follows that the average conversion rate associated with the

signal x remains p∗(x), which is below the price-per-impression that the deviating firm pays.

Therefore, the firm’s deviation is unprofitable.

Part 3: There are no other equilibria with full consumer participation.

We restrict attention to the generic case in which µ has full support.9 Let us first rule

out two cases.

Case 1 : The firms of at least one type x do not submit a winning bid for a working

signal. This means that consumers who look for x will never be serviced. As a result, their

net payoff conditional on participation is negative due to the infinite search costs, and they

can profitably deviate by opting out.

Case 2 : All firms submit a winning bid for some working signal, but there are two firm

types x and y that bid for the same signal v. Therefore, there must be a “vacant”working

signal v′ that no firm bids for. Suppose that an individual x firm deviates by submitting

a bid of zero for v′. Because µ has full support, b∗(w | v′) > 0 for every w. Prior to the

deviation, the signal v granted b∗(w | v) tickets for every w, and these tickets were allocated

uniformly to a population of firms of measure 2 at least. After the deviation, the deviating

x firm holds all the b∗(w | v′) tickets granted by v′. The deviating firm thus holds infinitely

many more (w, ·) tickets than prior to the deviation, for every w. As a result, it generates

infinitely more transactions. Both before and after the deviation, all consumers eventually

find a product they want, hence the number of draws that each consumer contributes is

finite. Finally, thanks to the deviation, the firm pays nothing per impression. Therefore, its

deviation must be profitable.

It follows that any symmetric pure-strategy equilibrium in which all consumers partici-

pate is characterized by a permutation f : X → X, such that all x firms bid for the working

signal f(x). Then, all firms must earn zero profits. Assume the contrary - i.e., firms of some
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type x submit a bid for f(x) which lies strictly below the conversion rate they experience at

f(x). Then, a standard “Bertrand”argument applies: an individual x firm can deviate to a

slightly higher bid for f(x), thus acquiring an infinite number of tickets, at a slightly lower

net profit per ticket than prior to the deviation. It follows that in equilibrium, the winning

bid for each y ∈ W ∗ = X must be equal to the conversion rate experienced by the firms that

submit this bid.

Our objective is to show that the permutation f must be the identity function. Assume

the contrary. Then, there is a collection of firm types, x1, ..., xm, m ≤ |X|, such that

f(xk) = xk+1modm. To sustain the equilibrium, it must be the case that no firm of type

k ∈ {1, ...,m} would want to deviate by mimicking the winning bid for xk - i.e., mimicking

the equilibrium behavior of firms of type k−1 modm. If the firm did so, it would experience

the same number of draws as each of the firms whose behavior it mimics. Because all firms

earn zero profits prior to the deviation, this means that all we need to check is that the

deviating firm receives weakly fewer transactions.

In the putative equilibrium, each firm type x receives µ(x) transactions. The reason is

that all firms of a given type x submit a winning bid for f(x), and the full-support assumption

implies that all consumers who look for x eventually transact with one of these firms. Let us

calculate the number of transactions that a firm type y = f(x) would obtain if it deviated

by mimicking the behavior of x firms (i.e., mimicking their winning bid for y):

∑
w

b∗(w | y)

1
· µ(y, w)

b∗(w | f(y))
=
∑
w

µ(y, w)
√
µ(y, w)√

µ(f(y), w)

Thus, the condition that will prevent firms of type k = 1, ...,m from deviating by

mimicking the behavior of k − 1 modm firms is

(A3) µ(xk−1modm) ≥
∑
w

µ(xk, w)
√
µ(xk, w)√

µ(xk+1modm, w)

By assumption, the necessary condition for the implementability of the perfect monopolist’s
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objective is satisfied. In particular, for every k, j,

µ(xk) ≥
∑
w

√
µ(xk, w)µ(xj, w)

Adding up a suitable selection of these inequalities, together with the inequalities (A3), we

obtain the following condition:

2
m∑
k=1

µ(xk) ≥
m∑
k=1

∑
w

µ(xk, w)

[√
µ(xk, w)

µ(xk+1modm, w)
+

√
µ(xk+1modm, w)

µ(xk, w)

]

For generic µ, the expression in the square brackets is strictly above 2, hence the inequality

is violated. �
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1We assume this symmetry purely for notational simplicity; it is easy to adapt our analysis

to the case of profit margins that vary across firm types.

2More generally, each firm is assigned a probability distribution over subsets of search

pools. However, because firms’ payoff is separable across search pools, it is w.l.o.g. to

associate with each report a probability distribution over individual search pools.

3See Basu, Shioya and Park (2011) and Theodoris and Koutroumbas (2008). A related

concept is the Hellinger distance between distributions, given by H2(x, y) = 1−
√
S(x, y).

4This historical account is informed by discussions with David Pennock (a pioneer of

sponsored-link auction formats, which employed broad matching) and Justin Rao. We are

grateful to them for sharing their knowledge and insights, and apologize for any imprecision

in this rendering.

5In a similar spirit, an account manager at Bing Ads writes in a blog post titled “The

People vs. Bing Broad Match”that one of the most common complaints levied against Bing

broad match is that "it drives irrelevant traffi c". See http://www.ppchero.com/the-people-

vs-bing-broad-match/

37



6Netflix automatically displays movie recommendations for its subscribers on its home-

page; when a consumer buys a particular product on Amazon, the checkout screen displays

recommended products, even though the consumer was not actively searching for these prod-

ucts; and when a researcher views a scholarly article on ScienceDirect, the side panel displays

links to other recommended articles.

7For a model of pricing of targeted ads, see Bergemann and Bonatti (2013).

8Some papers in the literature on two-sided markets have taken a mechanism-design

approach. Spiegler (2000) examines contract design by an intermediary who aims to match

agents who could interact elsewhere, and extract their joint surplus. Gomes and Pavan

(2014) study mechanisms for implementing effi cient many-to-many matching when agents

are privately informed about their "vertical" characteristics.

9This genericity requirement can be weakened, at the cost of having a considerably longer

proof.

38


