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ABSTRACT 

 
Cis-regulatory variants that alter gene expression can modify disease risk, onset, and 

severity, but none have previously been identified in Huntington Disease (HD). Here we 

provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter 

are bidirectional modifiers of HD age of onset. HTT promoter analysis identified an NF- 

B binding site regulating HTT promoter transcriptional activity. A non-coding SNP, 

(rs13102260:G>A), within this binding site impaired NF-B binding, reduced HTT 

transcriptional activity and HTT protein expression. Presence of the rs13102260 minor 

(A) variant on the HD disease allele was associated with delayed age of onset in familial 

cases, while presence of the rs13102260 (A) variant on the wild-type HTT allele was 

associated with earlier age of onset in HD patients in an extreme case based cohort. Our 

findings provide a novel mechanism linking allele-specific effects of rs13102260 on HTT 

expression to HD age of onset, and have significant implications for HTT silencing 

treatments in development. 
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Huntington Disease (HD) is an autosomal dominant neurodegenerative disease caused by 

a polyglutamine-encoding CAG repeat expansion in exon 1 of the huntingtin gene (HTT). 

While huntingtin is ubiquitously expressed in most tissues
1,2

, the neuropathology of HD  

is characterized by relatively selective neuronal cell death in the striatum and cortex
3
. 

Wild-type huntingtin plays a crucial role in development of the nervous system and is 

protective against various forms of cytotoxicity, including neurotoxicity induced by 

mutant huntingtin
4,5

. The cytotoxicity of mutant huntingtin has been proposed to be the 

result of several mechanisms, including the disruption of axonal transport, mitochondrial 

dysfunction, imbalance in calcium homeostasis and excitotoxicity, altered proteolysis, 

impairment of the ubiquitin proteasome system and altered transcription
6
. The balance of 

expression between mutant and wild-type huntingtin may be an important modulator of 

pathogenesis and disease progression in HD. 

In HD, the length of the CAG repeat in the expanded HTT disease allele inversely 

correlates with age of onset (AO). Although CAG repeat length accounts for a large 

proportion of the variation in AO
7
, there is significant variability observed between 

expected and observed AO in HD patients
8
. HD patients with identical CAG repeat 

 

lengths, particularly those with CAG sizes between 40-44, can have AOs that differ by 

more than 20 years
9
. Increasingly, disease-associated non-coding single-nucleotide 

polymorphisms (SNPs) are being identified as potential modifiers of disease 

progression
10,11

. Cis-acting regulatory SNPs (rSNP) can alter the binding affinity of 

transcription factors to their binding sites, changing gene transcriptional activity and 

consequently modifying disease phenotype or progression. Other modifiers such as 

interacting genes and environmental factors likely also contribute to the variation in AO 
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observed in HD
12

. Both cis- and trans-acting factors that regulate HTT gene expression 

are likely to affect AO and disease progression in HD. 

Genetic variation in regulatory sequences can affect the binding of transcription 

factors (TF) and alter the rate of transcription; such regulatory sequence variations could 

affect the expression of the HTT gene leading to functional consequences in HD. The 

expression levels of both wildtype and mutant huntingtin have been shown to modify the 

disease phenotype in many HD models
13-16

. The partially characterized murine Htt and 

human HTT promoters have a high GC content and contain a number of consensus 

binding sites for known TFs such as Sp1, AP2 and p53
17-20

. 

To determine whether genetic variation in the human HTT promoter influences 

the transcriptional rate of HTT, we established a panel of HTT promoter reporter 

constructs originating from HD patients We identified a NF-B binding site containing a 

human SNP (rs13102260:G>A) that modulated the binding of NF-B, resulting in 

reduced transcriptional activity of the HTT promoter in reporter gene assays. In order to 

investigate this SNP for disease-modifying effects, we assessed HD patient cohorts. We 

applied family-based designs and extreme phenotype sampling (EPS) using case 

extremes to increase efficiency in testing this candidate SNP for effects on HD age of 

onset
21-26

. As we show here, familial case and EPS based designs compared to random 

 

sampling, provided more powerful strategies for testing low frequency variant effects by 

enriching for genetic effects. In familial cases, we observed that the minor (A) sequence 

variant phased to the HD disease allele was associated with delayed age of onset as 

compared to the (G) sequence variant. In contrast, in our EPS cohort, we found that the 

(A) variant associated with an earlier AO when phased to the wild-type allele. Finally, we 
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showed that the genotype at rs13102260 regulates HTT protein levels correlating with the 

observed SNP effects on HD age of onset. In this study we provide in vivo evidence that 

cis-regulatory variants in the HTT promoter region can act as bidirectional modifiers 

influencing age of onset in HD with allele-specific effects, and that this effect was 

predicted by our in vitro data showing the direct effect of rs13102260 on NF-B binding 

and huntingtin expression.  

 

RESULTS 

 
 

Cis-acting variants alter transcriptional activity of the human HTT promoter 

 
Genomic regulatory sequences and binding motifs play key roles in transcriptional 

regulation. Genetic variants within TFBS might affect the binding of TFs and subsequent 

up- or down-regulation of transcription. Recent studies suggest that transcription rate 

data is more informative than steady-state mRNA abundance to use in gene regulation 

analysis
27

. We engineered a panel of constructs to study the transcriptional activity of the 

human HTT promoter using the luciferase reporter system. DNA samples from four 

representative HD patient haplotypes were selected (Supplemental Data 1). The human 

HTT promoter from the YAC128 transgenic mouse model of HD was also cloned and 

included in the panel. This transgenic mouse carries the entire human HTT promoter and 

gene with an expanded CAG repeat inserted into a yeast artificial chromosome
28

. Twelve 

distinct HTT promoter constructs were generated, including the eight alleles from the four 

HD patients, three pseudo-alleles with random PCR-induced sequence variants, and one 

from the YAC mouse. Basal transcriptional activity of the twelve constructs was initially 

measured using the luciferase reporter system in a human embryonic kidney cell line 
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(HEK293A). Eleven constructs displayed similar levels of basal transcriptional activity, 

while construct 5 (a pseudo-allele) exhibited a significant reduction in transcriptional 

activity compared to the other constructs (t(10)=4.32, P<0.01) (Fig. 1a). Similar 

experiments were performed in the ST14A cell line, a conditionally immortalized rat 

striatal cell line displaying similarities to striatal medium spiny neurons
29,30

, with 

comparable results (t(10)=5.83, P<0.001) (Fig. 1b). The transcriptional activity of 

construct 5 was significantly reduced compared to the parental construct 4 

(approximately 50%) in both the HEK293A and the ST14A cells. We next sequenced the 

3.7 kb HTT promoter region for all twelve constructs (data not shown). Sequence 

comparison between constructs 4 and 5 identified ten sequence differences in the non- 

coding region of the huntingtin promoter (Fig. 1c). 

 

Reduced transcriptional activity by the proximal HTT promoter region 

 
We used a modified form of the RAVEN (Regulatory Analysis of Variation in 

ENhancers) bioinformatics software
31 

(http://www.cisreg.ca/RAVEN) to identify putative 

TFBS affected by the identified sequence variants. Our results prompted an investigation 

of known human SNPs overlapping the identified binding sites. Four human SNPs that 

overlap with the putative TFBS in this region were identified: rs35207696, rs28441493, 

rs184840072 and rs13102260 (Fig. 1c). rs35207696, rs28441493, and rs184840072 are 

rare genetic variations with no individual genotype data and no frequency submission 

(http://www.ncbi.nlm.nih.gov). In contrast, the rs13102260 (G>A) occurs in the human 

population with a minor allele frequency MAF (A)=0.158/792 (1000 Genomes Project 

Phase 3); (MAF) of 0.042 for CEU (Caucasian European); MAF=0.050 for CHB+JPT 

(Han Chinese; Japanese) and MAF=0.441 for YRI (African Yoruban) 

http://www.cisreg.ca/RAVEN)
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(http://www.ncbi.nlm.nih.gov). As the constructs 4 and 5 differed in several loci 
 

throughout the promoter region, a sequence-swapping procedure was used to identify the 

segment in the promoter of construct 5 responsible for the reduced reporter expression 

shown in Figure 1a and 1b. The 3.7 kb promoter was divided into three consecutive 

promoter fragments, A, B and C, with fragment C immediately proximal to the HTT 

translation initiation codon (Fig. 1c). Each promoter fragment was sequentially swapped 

between construct 5 and construct 4. Swapping the most distal A and B fragments did not 

alter the baseline transcriptional activity of construct 4 (Fig. 1d). However, when swapped 

from construct 5 to 4, fragment C significantly reduced the transcriptional activit              

y of construct 4 to the level of construct 5. In contrast, swapping fragment C from 

construct 4 into construct 5 conferred normal reporter expression, rescuing the reduced 

baseline transcriptional activity of construct 5 (F(5,12)=11.9, P<0.001, ANOVA with 

Bonferroni’s multiple comparison test). We next assessed if fragment C required the distal 

A and B fragments to be present in order to have this modulatory effect on        

expression. Isolated fragment C from both constructs 4 and 5 showed similar levels of 

transcriptional activity as the full-length constructs they originated from (F(3,8)=41.0, 

P<0.001, ANOVA with Dunnett’s multiple comparison test) (Fig. 1e). From these results 

we concluded that the proximal promoter region of fragment C (~1.1kb) contains cis- 

expression QTL (eQTL) that regulate gene expression, and that construct 5 contains 

genetic variation in this region that significantly reduces HTT expression. 

 

Cis-regulatory SNP in NF-B binding site reduces transcriptional activity 

 
The alignment between constructs 4 and 5 revealed only three sequence variants in the 

identified eQTL in the 1.1 kb proximal HTT promoter region. In silico analysis further 
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predicted these variants to overlap with binding sites for CF1/USP, AML-1 and NF-B 

(Fig. 1c). The predicted TFBS, the sequence variant position relative to the translation 

initiation codon start site, and the sequence variants for constructs 4 and 5 were, 

respectively: CF1/USP, -763 (T/C); AML-1, -392 (A/G); and NF-B, -139 (G/T) (Fig. 

1c). We next investigated the functional significance of altered binding of the identified 

TFs on transcriptional regulation of the HTT promoter. We performed site-directed 

mutagenesis to introduce the three identified construct 5 sequence variants into construct 

4. The resulting promoter constructs revealed that changes at the predicted CF1/USP and 

the AML-1 binding sites did not affect the transcriptional activity in the reporter assay 

(Fig. 1f). In contrast, the construct 5 variant of the NF-B binding motif significantly 

decreased the transcriptional activity of construct 4C to the levels observed for the 

construct 5 full-length and fragment C constructs (F(4,23)=43.6, P<0.001, ANOVA with 

Dunnett’s multiple comparison test). The single base pair difference in the NF-B binding 

sites of promoter constructs 4 and 5 was in the tenth and last nucleotide of the T          

FBS (Fig. 1g). These results suggested that the construct 5 variant of the NF-B binding 

site caused the reduction in transcriptional activity. 

We located the rs13102260 (G>A) at the first base position of the NFκB TFBS 

consensus motif from our database search on SNPs overlapping the identified putative 

TFBS in the HTT promoter region (Fig. 1g). We thus identified a human SNP that was 

present in the same NF-B binding site, but that was distinct from the nucleotide variation 

that we had originally investigated in vitro. Site-directed mutagenesis was           

performed to introduce the rs13102260 variant into construct 4C in order to study its 

effect on transcriptional activity. The rs13102260 (A) variant caused an approximate 50% 
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reduction in transcriptional activity similar to constructs 5 and 5C (F(5,14)=26.2, 

P<0.001, ANOVA with Dunnett’s multiple comparison test) (Fig. 1h). Thus sequence 

changes at both the first and last position of the NF-B binding site resulted in significant 

reduction in transcriptional activity of the HTT promoter. 

 

Activated NF-B binds to the HTT promoter in vitro and in vivo 

 
We next performed a series of biochemical experiments to determine the binding 

characteristics of the identified TFs and to functionally validate NF-B binding to the 

HTT promoter in vitro and in vivo. We performed chromatin immunoprecipitation (ChIP) 

analysis to study the putative NF-B occupancy of the huntingtin promoter. Enrichment 

of NF-B binding to the predicted TFBS was assessed using quantitative real-time PCR 

(qPCR). To investigate whether NF-B bound the site in vivo, we first performed ChIP 

using different brain regions of naïve mice (Fig. 2a-c). The mouse Htt promoter contains 

three putative NF-B TFBS within 1000 bp upstream of the translation initiation codon 

(Supplementary Fig.1a). There was a clear NF-B enrichment in all brain regions and at 

all analyzed TFBS regions comparable to what was observed for the IL6 promoter 

(positive control for NF-B binding) (striatum F(7,32)=1.75, P=0.134; pre-frontal cortex 

F(7,32)=2.44, P<0.05; cerebellum F(7,32)=7.22, P<0.001, one-way ANOVA). 

Interestingly, there was a significantly higher level of NF-B recruitment in striatum 

compared to pre-frontal cortex and cerebellum at TFBS2 (Tissue F(2,96)=5.53, P<0.01; 

TFBS F(7,96)=3.15, P<0.01; interaction F(14,96)=1.17, P=0.311, two-way ANOVA) 

(Fig. 2d). The similar level of enrichment at each TFBS is likely due to limited ChIP 

resolution (200-1000bp). To study the NF-B occupancy on the HTT promoter in a 
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human context, ChIP analysis was performed in lymphoblastoid cell lines (LCL) derived 

from HD patients (Supplementary Fig. 1b). There was an increased enrichment of NF-B 

at the single predicted NF-B TFBS (comprising rs13102260) in human LCLs 

(F(3,32)=4.28, P<0.05, one-way ANOVA with Dunnett’s multiple comparison test) 

compared to a region upstream in the HTT promoter region that we used as a control 

containing two putative NF-B TFBS (-2065; -2011bp from translation start site) (Fig. 

2e). Rat striatal ST14A cells, which is the system employed in the reporter assays, were 

then stimulated with TNFα to activate the NF-B pathway. The rat Htt promoter contains 

four putative NF-B TFBS within 1000 bp upstream of the translation initiation codon 

(Supplementary Fig.1c). We assessed the binding of NF-B to the distinct TFBS using 

three different primer sets. We observed an enrichment of NF-B for all three regions 

comparable to the IL6 promoter (F(7,16)=5.09, P<0.01, one-way ANOVA with 

Bonferroni’s multiple comparison test) (Fig. 2f). These results thus demonstrate an 

enrichment of NF-B occupancy at the predicted NF-B TFBS proximal to the TSS both 

in vitro in immortalized rat striatal ST14A cells and in LCLs derived from HD patients, 

as well as in vivo in mouse striatum, pre-frontal cortex and cerebellum. Notably, we 

observed a significantly higher level of NF-B recruitment in striatum compared to pre- 

frontal cortex and cerebellum. 

 

rSNP alters NF-B binding to the HTT promoter 

 
As shown in figure 1, sequence variants at both the first and the last position of the NF- 

B binding site resulted in significant reduction in transcriptional activity of the HTT 

promoter. We used electrophoretic mobility shift assays (EMSA) to more precisely 
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investigate the interactions between NF-B and the binding site harboring the rSNP. NF- 

B is predominantly cytoplasmic under normal conditions, but migrates to the nucleus 

upon activation by cytokines such as TNFα. We therefore performed TNFα stimulations 

to activate the NF-B pathway in ST14A cells prior to nuclear extract preparation. In the 

EMSA, NF-B bound more strongly to the allele 4 compared to the allele 5 

oligonucleotide in a concentration-dependent manner (Fig. 3a). The shifted band was 

abolished upon addition of unlabeled competitor oligonucleotide. The oligonucleotides 

(allele 5 oligonucleotide in particular) containing the NF-B binding site were prone to 

create secondary structures such as self-dimers or hairpin structures. The NF-B protein, 

however, also exhibited a high affinity to these secondary structures as well as to the 

duplexed oligonucleotide (data not shown). In the presence of recombinant human NF- 

B p50 protein, a single shifted band was observed that increased in intensity in a 

concentration-dependent manner (Fig. 3b). Addition of 0.9 gel shift units (gsu) produced 

a single band that was stronger for the allele 4 oligonucleotide than was observed for the 

allele 5 oligonucleotide. The allele 5 band was out-competed more efficiently with 

unlabeled competitor oligonucleotide, indicating lower binding affinity to the allele 5 

compared to the allele 4 oligonucleotide. EMSA confirmed that NF-B binding to the 

oligonucleotide containing the rs13102260 (A) variant was fully abolished, as assessed 

with both ST14A nuclear extract (Fig. 3c) and recombinant NF-B p50 protein (Fig. 3d). 

The binding of CF1/USP and AML-1 to the allele 4 and allele 5 target sequences was 

also assessed following incubation with ST14A nuclear extract. None of these showed 

decreased binding to the allele 5 target sequence (Supplementary Fig. 2). The p50/p65 

heterodimer is the most abundant of the NF-B dimers, displaying a very potent gene 
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regulatory function. Different DNA targets determine the final conformation of the 

heterodimer
32,33

. The p50/p65 dimer complex specifically recognizes the 5’- 

GGGRNYYYCC-3’ (R=unspecified purine; N=any nucleotide; Y= unspecified 

pyrimidine). The p50 subunit strictly recognizes 5’-GGGRN-3’, while the p65 subunit 

recognizes 5’-YYCC-3’, but at less stringency. These results suggest that the p50/p65 

heterodimer still binds to both the construct 4 and 5 variant at the tenth base position in 

the NF-B TFBS, but to a lesser extent due to reduced binding of the p65 subunit. In 

contrast, the rs13102260 (A) variant at the first position in the NF-B TFBS affects the 

binding of the p50/p65 heterodimer to a higher degree by abolishing the p50 binding to 

the HTT promoter. These findings demonstrate that sequence variants at the first as well 

as last base pair of the NF-B binding motif in the HTT promoter alter NF-B binding, 

subsequently reducing transcriptional activity of the HTT gene. 

 

Targeting of NF-B modulates HTT expression 

 
We next investigated whether the NF-B-mediated transcriptional activity on the HTT 

promoter was dynamic and therefore a potential therapeutic target. We first assessed 

whether siRNA knockdown of NF-B influenced HTT gene expression. This experiment 

showed that down-regulation of NFKB1 (specific for p105, precursor to the p50 subunit) 

and p65 mRNA levels, both of which encode critical components of the potent 

heterodimer p50/p65 complex, decreased the levels of HTT expression (t(6)=3.52, 

P<0.01) (Fig. 4a). The knockdown of NF-B was also associated with decreased p53 

mRNA to levels comparable with the decrease in HTT expression, p53 being an 

established NF-B target (t(6)=3.46, P<0.01, Supplementary Fig. 3a). We next stimulated 
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ST14A cells with TNFα to assess if the treatment would increase the transcriptional 

activity of the HTT promoter constructs. Upon TNFα-stimulation, construct 4 exhibited 

increased transcriptional activity (F(3,8)=29.7, P<0.001, one-way ANOVA with 

Dunnett’s test), in contrast to construct 5 that exhibited no change in expression 

compared to the untreated control (Fig. 4b). Caffeic acid phenethyl ester (CAPE), an 

active component of propolis from honeybee hives, is known for its anti-mitogenic, - 

carcinogenic, -inflammatory and immuno-modulatory properties
34

. CAPE blocks TNFα- 

induced activation of NF-B in a dose and time-dependent manner by preventing the 

translocation of the p65 subunit to the nucleus and by selectively inhibiting NF-B 

binding to DNA
35

. Stimulation of ST14A cells expressing construct 4 with TNFα in 

combination with CAPE treatment resulted in reduced transcriptional activity of the 

promoter in a CAPE dose-dependent manner (F(4,7)=6.24, P<0.05, one-way ANOVA 

with Dunnett’s test) (Fig. 4c). We next assessed the effects of CAPE treatment on the 

basal transcriptional activity of the HTT promoter constructs. Neither constructs 4 nor 5 

displayed changes in transcriptional activity levels when the ST14A cells were treated 

with CAPE in the absence of a NF-B-pathway activating treatment (Supplementary Fig. 

3b). Western blot analysis was performed to confirm a TNFα-induced increase in nuclear 

levels of NF-B protein in our experimental setting. TNFα-stimulated ST14A cell 

nuclear extract expressed all NF-B subunits, with the most dramatic increase in the p50 

subunit compared to untreated cells (Fig. 4d). The cytoplasmic fraction showed strong 

bands for the precursor subunits p100/p105, in addition to bands for the p50 subunit. 

There were, however, no bands for the p65, RelB and c-Rel subunits in the cytoplasmic 

fraction. Western blot analysis revealed that CAPE treatment did not affect the nuclear 
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p65 protein levels in the ST14A cells (Fig. 4d). Our results thus suggest that CAPE 

inhibits NF-B nuclear activity, perhaps through prevention of p65 binding to the HTT 

promoter. In summary, our results showed that siRNA knockdown of NF-B, TNFα and 

CAPE stimulations modulated the transcriptional activity of the HTT promoter. 

 

rs13102260 (A) variant on the HD disease allele is protective and associated with 

delayed age of onset 

Based on our in vitro findings we next studied the disease-modulatory effects of the 

rs13102260 (A) variant in HD patients. We previously showed that a specific HD 

haplotype was associated with later AO in Danish HD families
36

. Here we genotyped the 

familial cases to determine if the rs13102260 genotype was associated with delayed age 

of motor onset. We performed direct sequencing of HD subjects (n=98) originating from 

36 Danish HD families representing seven different haplotypes including the one 

associated with later AO. Direct sequencing revealed that all HD subjects with the 

haplotype that we previously showed to associate with later AO (B-haplotype), 

exclusively carried the rs13102260 (A) variant. Phasing of the (G) and (A) sequence 

variants was done in each HD family by segregation of affected and/or unaffected 

genotypes within the pedigree. We found that the (A) variant phased to the HD disease 

allele in all B-haplotype families (n=8). The other HD haplotypes that were not associated 

with later AO carried the (G) variant. We next performed association testing to further 

evaluate and quantify the effect of the rs13102260 (G/A) on AO in these HD        

patients. We restricted our analysis to HD subjects with a CAG-length of 41-55,  

including 35 (G/A) heterozygotes with the (A) phased to the HD disease allele, 41 

patients that were (G/G) homozygotes and six (A/A) homozygotes at rs13102260 (n=82) 
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(Supplementary Table 1). Analysis was performed using weighted least square models 

predicting observed ages of onset as a function of the (G/A) rs13102260 genotype, and 

expected age of onset based on the CAG repeat length as estimated by Langbehn et al
8
. 

Presence of the rs13102260 (A) variant on the HD disease allele had a clear association 

with age of HD onset, after first adjusting for expected age of onset based on CAG repeat 

length (Fig. 5a). The resulting mean delay of age of onset was 9.3 years for (A/G) 

heterozygotes at the mean expected age of onset in the data (40.1 years) compared to 

(G/G) homozygotes (t=5.08, 27.1 df, P<0.0001). The overall rSNP effect (main effect 

plus interaction) was statistically significant at P<0.0001 (F=14.40, df=2, 34.7). There 

was evidence for interaction between rs13102260 and the CAG-based expected age of 

onset (F=5.80, df= 1, 73.9, P=0.019) with the protective effect being stronger at lower 

CAG lengths (Fig. 5a, Supplementary Fig. 6). There was however no evidence of 

association in homozygous rs13102260 (A/A) individuals (adjusted mean difference: 

 

5.56 years, t=1.90, df=53.4, P=0.063) (n=6). Hence, our results showed that the 

rs13102260 (A) variant had a protective role and associated with delayed AO when 

phased to the HD disease allele. 

 

rs13102260 (A) variant on the wild-type allele associated with earlier HD age of 

onset 

We next genotyped an additional cohort of HD patients (UBC HD Biobank) in an effort 

to validate the observed disease-modulatory effects of the rs13102260 (A) variant on HD 

age of onset. We used a family-based design to collect the HD subjects. The patients 

included in this cohort were assessed individually for age of motor onset, in addition to 

being mapped into family pedigrees. We further applied an extreme phenotype sampling 
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approach in which we selected the most extreme subject from each pedigree i.e. on the 

basis of age of onset where the ratio between observed age of onset and expected (based 

on CAG-length)
8,37 

was used to identify early, mean or late age of onset HD subjects (see 

material and methods). This selection of case extremes, similarly to familial cases, 

enriches for alleles that contribute to disease, allowing detection of genotype associations 

in modest sample sizes. A total number of 459 HD subjects were genotyped for the 

rs13102260, of which only 28 out of 459 (approx. 6%, corresponding to MAF in 

Caucasians) were (G/A) heterozygotes, while the remainder where (G/G) homozygotes. 

We then genotyped relatives of the probands that were identified as (G/A) heterozygotes 

to phase the (A) variant to the wild-type or the HD disease allele. The rs13102260 (A) 

variant was almost exclusively 1) on the wild-type allele and thus 2) inherited from the 

unaffected parent (except for two subjects with the (A) variant phased to the HD disease 

allele) (Supplementary Table 2). As for the Danish cohort, we restricted our analysis to 

HD subjects with a CAG-length of 41-55, including 22 (G/A) heterozygotes with the (A) 

variant phased to the wild-type allele and 391 patients that were (G/G) homozygotes 

(n=413) (Supplementary Table 3). Analysis was performed using similar weighted least 

square models as for the Danish cohort. Presence of the rs13102260 (A) variant on the 

wild-type allele associated with age of HD onset, where subjects carrying the rs13102260 

 

(A) variant displayed on average an age of onset 3.88 years earlier than those with the 

rs13102260 (G) variant (t=-2.57, df=367, P=0.010) (Fig. 5a). There was no evidence for 

interaction between the rs13102260 and the CAG-based expected age of onset. In 

addition, given that the UBC data were collected on the basis of age of onset, with the 

SNP genotype as the unknown variable being predicted, we also used a logistic 
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regression model to predict SNP genotype as the outcome. The difference between the 

observed and expected age of onset (CAG-based) was the main predictor of allele 

frequency. Results from this logistic regression were consistent with the results from the 

above described analysis. The adjustment for expected age of onset produced estimates of 

the odds ratio. The odds of having the (A) variant decreased by a factor of 0.929 per year 

increase in observed age of onset (F=5.75, df=1, P=0.017, two-sided Wald test, 95% CI= 

0.875-0.987). In other words, the (A) variant phased to the wild-type allele was  

associated with an earlier age of onset regardless of CAG-repeat length. Our result thus 

suggests that the rs13102260 (A) variant is a genetic risk variant that accelerates AO in 

HD patients when phased to the wild-type HTT allele. 

It should be noted that we do not have access to additional HD patient data of 

comparable sample size that are also enhanced by family-based designs or oversampling 

extreme-phenotype cases. We did attempt a third association study of a random 

population sample obtained from the EHDN Registry (n=26 (G/A); n=418 (G/G)) for 

which we did not observe a significant association between age of onset and the presence 

of the rs13102260 (A) variant on the wild-type allele (t=0.58, 324 df, P=0.56) 

(Supplementary Fig. 4). To our knowledge, no other HD patient population except the 

Danish cohort has been described to display a high frequency of the rs13102260 (A) 

variant phased to the HD disease allele. We observed an enrichment of (A) variant 

carriers with extremely early AO in the UBC population: 41% (9/22) of the HD subjects 

that displayed extremely early AO (<15
th 

percentile) also carried the (A) variant (Fig. 5c), 

whereas 15% (4/26) of the subjects displaying an extremely early AO carried the (A) in 

the random EHDN Registry population of a similar size (Supplementary Fig. 4). 
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Genotyping familial cases in the Danish cohort also reflected enrichment effects with 

26% (9/35) of the (A) variant carriers on the HD disease allele displaying extremely late 

age of onset (>85th percentile) compared to 9% (40/432) in the (G/G) carriers (Fig. 5c). 

 

 

Estimation of rs13102260 (A) variant disease modifier effects on HD disease allele 

 

Association analysis of the UBC cohort showed that HD subjects with the rs13102260 

(A) variant displayed on average 3.9 years earlier age of onset compared to HD subjects 

with the (G) variant phased to the wild-type allele (Fig. 5b). In contrast to the UBC 

cohort, the relationship between CAG-repeat size and expected age of onset was non- 

linear for the Danish cohort as described (P=0.019) (Supplementary Fig. 6). This effect 

increased by 0.47 years per year of increased expected onset age (t=2.41, 73.9 df, 

P<0.05). The estimated disease-modifying effect of the (A) variant phased to the HD 

disease allele was greater in HD subjects with shorter CAG repeat lengths (Table 1). For 

example, (G/A) heterozygotes with CAG repeat lengths of 41 presented age of onset on 

average 17.3 years later than expected (extrapolation with no data for (G/A) 

heterozygotes), while (G/A) heterozygotes with CAG repeat lengths of 55, presented age 

of onset in average 2.7 years later. (G/A) heterozygotes with CAG repeat lengths of 43, 

which represent the shortest CAG-length with relevant data, presented a delayed AO with 

on average 13.1 years compared to (G/G) homozygotes. Here, to further show the effect 

of rs13102260 on age of onset, we calculated the ratio AO (=observed AO/expected 

AO)
8
. Compared to the (G/G) homozygotes, HD subjects with the (A) variant phased to 

the wild-type allele showed lower ratio AO values, while HD subjects with the (A) 

variant phased to the HD disease allele showed higher ratio AO values (Fig. 5d). 
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rs13102260 (A) variant correlates with distinct haplotype pattern 

 

We next performed sequence analysis of the 22 (G/A) carriers analyzed in the UBC 

cohort. Interestingly, sequencing confirmed two distinct haplotype patterns correlating 

with the rs13102260 (A) variant including the 6bp repeat VNTR in the HTT gene 

promoter and the polymorphic CCG region in exon 1, which have been previously 

reported
36,38-40

. Of all the HD subjects with the (A) variant on the wild-type allele, 55% 

(12/22) carried the two-repeat allele at the 6bp VNTR loci in conjunction with 

(CCG)7(CCT)3 at the CCG polymorphic region (alternately referred to as CCG8) 

(Supplementary Table 4) (Supplementary Fig. 5). Forty-five percent (10/22) carried the 

one-repeat allele of the 6bp VNTR locus in conjunction with (CCG)7(CCT)2 at the CCG 

polymorphic region (alternatively referred to as CCG7). Previous studies showed that the 

copy number at the 6bp VNTR loci in itself did not affect transcriptional activity
17

. 

Remarkably, the haplotype carrying the rs13102260 (A) variant, the two-repeat alleles at 

the 6bp VNTR loci and CCG8 on the wild-type HTT allele that was represented in the 

(G/A) heterozygotes in the UBC cohort that associated with earlier AO, corresponded to 

the haplotype on HD disease alleles in the Danish HD families that we previously 

reported to be associated with delayed AO
36

. 

Genotype at rs13102260 regulates allele-specific expression of HTT protein 

 
Finally, we assessed whether the genetic variation at rs13102260 modulates protein levels 

in HD patient fibroblast lines. We compared HD patient fibroblast lines with different 

genotypes at rs13102260: homozygous (G/G), heterozygous with (A) variant phased to 

the wild-type allele or heterozygous with (A) variant phased to the HD disease allele, 

respectively. The (A) variant significantly down-regulated HTT protein levels when 
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phased to the wild-type allele (t(3)=3.27, P<0.05) (Fig. 6a). The HTT levels were reduced 

by approximately 50%, which corresponds to the reduction observed in transcriptional 

activity (Fig. 1h). As expected, the (A) variant also significantly down-regulated mutant 

HTT (mHTT) protein levels when phased to the HD disease allele (~25% decrease, 

t(3)=2.46, P<0.05) (Fig. 6a). We observed a general reduction of mHTT protein levels 

compared to the wild-type protein regardless of genotype. This allele-specific expression 

difference might be explained by intrinsic tissue-specific effects, epigenetic modifications 

or HD haplotypes that might contain cis-regulatory elements influencing gene regulation. 

Thus, we showed that the (A) variant is a modifier of protein levels; the (A) variant 

phased to the wild-type allele significantly reduced wild-type HTT protein levels, while 

the (A) variant phased to the HD disease allele reduced the levels of mHTT protein. 

These results revealed functional consequences of this cis-acting regulatory variant that 

altered NF-B binding, reduced HTT protein levels and associated with modulation of 

age of onset in HD patients (Fig. 6b). 

 

DISCUSSION 

 
Genetic disease modifiers cause single gene diseases such as HD to display features of 

complex traits, by influencing the disease expressivity
41,42

. We here identify a cis-acting 

regulatory variant in the HTT promoter that acts in an allele-dependent manner as a 

bidirectional genetic modifier in HD. We show that the identified rs13102260 (G/A) SNP 

decreases NF-B binding to the HTT promoter resulting in reduced HTT expression and 

exerting allele-specific modifier effects on age of onset in HD patients. 

To put our results into clinical context, patients with the (A) variant phased to the 

HD disease allele develop motor symptoms on average 10 years later compared to HD 
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patients with the (G) sequence variant. Interestingly, the estimated disease-modifying 

effect was greater in HD subjects with shorter CAG repeat lengths and declined with 

increased CAG repeat length (Table 1). In contrast, we further show in an independent 

cohort that patients with the (A) variant on the wild-type allele are estimated to develop 

HD motor symptoms almost 4 years earlier than patients with the (G) variant. SNP 

analysis and genotype association tests thus demonstrated the disease-modulatory effects 

of rs13102260 (G/A) on AO in HD. Biochemical analysis further validated the potency of 

this cis-acting genetic variant by measuring its allelic-specific effects on transcriptional 

activity, binding- and protein expression. 

Several potential trans-acting disease modifiers which influence AO in HD have 

previously been reported
43-47

. Although, none of the reported findings has yet revealed 

the mechanism of action by which it contributes to disease pathogenesis, identification of 

genetic modifiers in HD is important for two reasons: 1) these genes and related 

pathways are excellent potential therapeutic targets in HD; and 2) these may provide 

improved prognostic information for HD gene carriers. 

Genome-wide studies have demonstrated that differential allelic gene expression 

is common i.e. allelic imbalance
48

. Cis-regulatory variants altering gene expression are an 

important potential source of phenotypic difference thought to play an important role in 

the pathogenesis of many complex diseases, but so far none have been identified in HD. 

Recently, a genome-wide study focusing on NF-B (p65) binding sites showed that 

genomic structural variants such as SNPs frequently caused differences in gene 

expression due to altered binding of NF-B
49

. 
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Although NF-B is nearly ubiquitously expressed, its role in neurons of the 

central nervous system is controversial
50 

(see Supplemental Discussion). We showed that 

NF-B regulation of the HTT promoter was dynamic both using siRNA knockdown of 

NF-B and with cytokine stimulations and inhibitors. Interestingly, we also showed an 

increased NF-B activity in striatum in naïve mouse brain, which is the brain region 

primarily affected in HD. Our overall findings demonstrate that NF-B directly binds to 

and increases the transcriptional activity of the HTT promoter; providing the potential for 

a toxic feed-back loop which could result in a detrimental increase in expression of 

mutant HTT in neurons in the striatum. Given the selective effects of HD pathogenesis in 

the striatum, our finding that NF-B activity is significantly increased in striatum in naïve 

mouse brain suggest that the interplay between NF-B and HTT merits additional 

investigation. We propose NFB to be further investigated as a therapeutic target in HD. 

Expression levels of mutant HTT contribute to neuropathology in HD, most 

probably in combination with an increased sensitivity in specific brain regions
13

. The 

expression levels of mutant Htt modulate both the onset and progression of the HD 

phenotype in the YAC128 mouse model of HD. Increased levels of mutant Htt are 

associated with increased sensitivity to excitotoxicity, earlier AO and more rapid disease 

progression
14

. Importantly, in this mouse model of HD, decreasing the levels of wild-type 

Htt increases the cellular toxicity of mutant Htt
15,16

, and over-expression of wild-type Htt 

ameliorates striatal neuronal atrophy
51

. 

 

Cis- and trans acting factors as well as different environmental exposures alter the 

balance of gene expression, and ultimately affect disease expressivity in HD patients
41,42

. 

Recent studies suggest allelic imbalance with mutant HTT mRNA more abundant 
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compared to the wild-type mRNA in post-mortem HD striatum and cortex, while there 

was no difference in the cerebellum
52

. Our human data suggest that reduced levels of 

mHTT delay the onset of HD, providing support for future HTT gene silencing 

therapeutic approaches. Our data also suggest that reduced levels of wild-type HTT may 

accelerate HD onset, although the effect of the rs13102260 genotype appears to be 

smaller. The balance between wild-type and mutant HTT could be thought of as a “yin- 

yang” relationship. We here demonstrated that the cis-acting rs13102260 sequence 

variant potently affects the regulation of the HTT promoter by altering the NF-B binding 

site, suggesting that the sequence (A) variant leads to increased allelic imbalance. 

Calculations on the estimated rSNP effect further suggest that the cis- regulatory (A) 

variant exerts a much greater disease-modifying effect on AO when phased to the HD 

disease allele compared to the wild-type HTT allele. Our in vivo results in HD patients 

thus suggest that reduction of mHTT is a more potent disease modifier of AO than 

reduction of wild-type HTT. HD subjects with CAG repeat lengths of 43 presented AO 

on average 13.1 years later than expected (Table 1). This has implications not only for 

our understanding of the interplay between wild-type and mutant HTT, but more 

importantly for the gene silencing strategies applied in HD. Our results thus highlight the 

importance of continued refinement of our understanding of allelic imbalance in HD 

patients. 

HD is a single gene disorder thought to be mediated by a toxic gain-of-function, 

and silencing of HTT expression is an attractive therapeutic approach. Non-allele-specific 

silencing of both the wild-type and the mutant HTT in HD fibroblast lines resulted in 

increased caspase-3-like activity, while knockdown of only the mutant HTT did not
53

. 
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Studies performed in mice have suggested that non-allele specific silencing alleviates HD 

symptoms
54-56

, while other studies have provided support for allele-specific silencing in 

HD
57-59

. Our results suggest a disadvantage of lower wild-type HTT levels, and as most 

HTT silencing studies have been relatively short-term and performed in mouse, an issue 

of potential concern is whether non-allele specific silencing may have undesirable effects 

by decreasing levels of wild-type HTT. Neuroprotective disease-modifying treatments 

will likely start in young adulthood and continue throughout life. Our study nevertheless 

provides the first clinical evidence that HTT gene silencing therapies for HD will be 

efficacious. If these therapies are non allele-specific, we predict that they will have a net 

beneficial effect, but that allele-specific approaches targeting only mHTT may have 

greater therapeutic efficacy. 

 

Identification of disease-modifying targets and/or mechanisms would be an 

invaluable and long awaited addition for drug development in HD as well as other 

neurodegenerative diseases. In this study, we have identified NF-B as a trans-acting 

factor that regulates HTT gene expression and rs13102260 to act as a bidirectional disease 

modifier. We thus refine the notion of allele-specific relationships between cis-         

acting regulatory elements, the transcriptional rate of HTT expression, and age of onset in 

HD subjects. In conclusion, this study has implications for therapeutic strategies aimed at 

silencing of the HTT gene in HD patients. Genotyping of rs13102260 may further provide 

prognostic information of significance for a subset of HD gene carriers. Continued 

identification of cis- and trans regulatory elements will provide insights into their impact 

on disease expressivity and identify novel targets for disease-modifying therapeutic 

interventions in HD. 
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METHODS 

 
Promoter constructs used in reporter assays 

DNA samples from four HD patients from the Huntington Disease BioBank at the 

University of British Columbia (UBC HD BioBank) were selected that represent a variety 

of different haplotypes observed in HD patients (Supplementary information). All of  

these haplotypes carried the rs13102260 (G) sequence variant. The HD promoter 

fragments were amplified together with the disease causal polymorphic region of exon 1 

to maintain the allelic linkage between the two elements. The PCR products were cloned 

to isolate individual clones of each allele in order to abrogate the possibility of 

monoallelic bias in sequencing. Furthermore, both strands of multiple clones per patient 

were sequenced using overlapping sequence reads to rule out any artefacts from 

amplification. Sequence analysis performed prior to cloning into the reporter constructs 

identified additional PCR-induced single base pair changes generated during the 

amplification process. Three pseudo-alleles displaying PCR-induced sequence changes 

were included in our panel to assess their potential effects on transcriptional activity 

(constructs 3, 5 and 8 were derived from parent constructs 2, 4 and 9, respectively). 

Human HD patient DNA was PCR-amplified using the following primers: forward 5’ 

CTC AGA GAC ACC ATG CCAGA 3’; reverse 5’AGC CCT CTT CCC TCT CAG AC 

3’. The PCR-amplified DNA was sub-cloned using the TOPO® XL PCR cloning kit 

(Invitrogen). PCR amplification of the CAG tract was used to determine if the clones 

originated from the wild-type or the CAG expanded allele. TOPO PCR vector plasmid 

was digested with NcoI (NEB) and fragments were purified before ligating DNA into the 

pGL3-basic promoterless luciferase reporter gene vector (Promega). Cloned full-length 

HTT promoter constructs were 3742 bp. The following restriction enzymes were used for 
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cloning: fragment A (HindIII-NdeI); fragment B (NdeI-PstI); fragment C (PstI-BstBI). 

Plasmid preparations were carried out using the endotoxin-free Maxi kit (Qiagen). 

Reporter assays 

 

HEK293A and immortalized striatal ST14A cells were used for the reporter assays. Cells 

were seeded onto 96-well white plates corresponding to ~80% confluency. Trans-LT1 

transfection reagent (Mirus Inc.) was used to co-transfect the HTT promoter reporter 

constructs, the renilla vector (internal reference control) and pGL3 vector to a total DNA 

amount of 200 ng per well 24 hours post seeding of cells. The results are presented as 

experimental sample ratio where firefly luciferase activity is normalized to Renilla 

luciferase activity as expressed in relative light units (RLU). Negative control wells 

constituted empty pGL3 vector and renilla plasmid. Constructs and the constructs with 

changed TFBS were assayed in three and six wells, respectively. Cells were treated with 

the luciferase substrate reagents 24 hours post transfection (Dual-luciferase assay, 

Promega). The results are presented as experimental sample ratio where firefly luciferase 

activity is normalized to Renilla luciferase activity and is expressed in RLU. TNFwas 

added to the cells six hours after transfection to a final concentration of 20 ng/ml where 

indicated. CAPE (TOCRIS bioscience) was diluted to different concentrations: 2.5ng/l, 

10ng/l, and 20ng/l and fixed volumes (1l) were added two hours prior to stimulation 

with TNF(eBioscience). 

In silico analysis 

 
The cloned DNA sequences were compared to the human build NCBI36, human hg18, 

March 2006 (http://www.ncbi.nlm.nih.gov). Identified sequence variants in the cloned 

constructs affecting the predicted TF binding sites were analyzed implementing a 
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modified version of the RAVEN software analysis (http://www.cisreg.ca/RAVEN). The 

construct sequences were scanned using position weight matrices obtained from the 

JASPAR database of high-quality transcription factor binding profiles 

(http://jaspar.genereg.net/)
60

. The binding site scores for each transcription factor in 

positions overlapping sequence variants were then compared between the two sequences. 
 

The parameters were set to high stringency, requiring binding site profile scores 

exceeding 80% of maximum on at least one of the two constructs. The highest scoring 

predicted TFBS overlapping a sequence variant position was compared to the highest 

scoring predicted TFBS overlapping the same sequence variant position on the other 

allele. TFBS affected by sequence variants were thus defined as any TFBS where the 

relative score of the TFBS profile matrix was at least 80% on either construct 4 or 5 and 

for which the absolute score difference between the binding sites on the two alleles 

exceeded 1.5. 

 

Electrophoretic mobility shift assays (EMSA) 

 
EMSA experiments were performed on nuclear extracts from ST14A cells and 

commercially manufactured biotinylated oligos (IDT). Nuclear extracts were prepared 

according to manufacturer’s protocol (NE-PER® Nuclear and Cytoplasmic Extraction 

reagents, Pierce Thermofisher). Commercially available recombinant p50 was used 

(Promega). EMSAs were performed using double-stranded oligonucleotides spanning 

each putative site. ~30 bp oligonucleotides were designed constituting the respective 

binding sites for CF1/USP, AML-1 and NF-B as described in Supplementary 

information. The forward oligo was biotinylated and duplexed to the unlabeled reverse 

oligo. EMSA reactions were performed according to manufacturer’s protocol 

http://www.cisreg.ca/RAVEN)
http://www.cisreg.ca/RAVEN)
http://jaspar.genereg.net/)60
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(Lightshift® Chemiluminescent EMSA kit, Pierce Thermofisher). ST14A cells were 

stimulated with TNF(eBioscience) (80 ng/ml for 24 hours) for the NF-B gelshift 

assay. 

 

Chromatin immunoprecipitation 

 
ST14A cells were stimulated with TNFα (80 ng/ml) for 24 hours prior to fixation. 

Experiments were performed according to manufacturer’s recommendations (Upstate, 

Millipore). Adult mice (NMR1 strain, 9 months of age; total n=5; male=3, female=2) 

were sacrificed and tissue from striatum, pre-frontal cortex and cerebellum was dissected 

out. Tissue was collected in PBS with protease inhibitors (Diagenode). Tissue samples 

were disrupted with syringe and needle and cells were fixed in 1% formaldehyde in PBS 

for 10 min before addition of glycine to a final concentration of 125 mM. Cells were 

pelleted by centrifugation at 500g for 5 min and washed twice in PBS. For human 

lymphoblastoid cells (LCLs); cells were harvested by centrifugation at 100g for 8 min  

and washed in PBS with protease inhibitors before fixation in 1% formaldehyde for 10 

min followed by addition of glycine to a final concentration of 125 mM. LCLs were 

pelleted by centrifugation and washed twice with PBS. Nuclear extracts were prepared 

from LCL pellets and brain tissue samples following the instructions using the “high 

Cell# ChIP kit” (Diagenode). Chromatin shearing by sonication was performed using a 

Bioruptor UCD 200 (Diagenode). Shearing efficiency and chromatin concentration was 

evaluated after reverse crosslinking and DNA isolation. NFκB antibody (SC-114X, Santa 

Cruz) and control IgG antibody from the High Cell# ChIP kit (Diagenode) was used in all 

ChIP experiments. Results were normalized to 1% input. DNA was analyzed by qPCR on 

the 7500 Fast Real-Time PCR System (Applied Biosystems). Analysis was performed 
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using the 7500 Software V2.0.1 (Applied Biosystems). Data was normalized to input 

DNA. Primers are described in Supplementary information. 

 

Site-directed mutagenesis 

 
PCR was performed using HiFi Taq (Invitrogen) with the construct 4 C plasmid as 

template. Primers used are described in Supplementary information. DpnI was used to 

digest the methylated template leaving only the unmethylated PCR product. Sequence 

analysis was performed to select for the clones with the correct inserted mutation. 

Mutagenized clones were cloned into the pGL3 plasmid and transformed into 

electrocompetent DH5α. 

 

Western blot analysis 

 
Western blotting was performed on protein samples extracted from ST14A cells 

according to manufacturer’s protocol (Thermofisher). ST14A cells were treated with 

either TNFα (eBioscience) (20 ng/ml) for 6 hours, or in combination with CAPE 

(TOCRIS bioscience) (175 ng/ml) that was added 1.5 hours prior to addition of TNFα. 

19µg of total protein was boiled for 5 minutes before being separated on 7.5% acrylamide 

gels, then transferred to Whatman Protran nitrocellulose membranes. Ponceau-staining 

was performed to ensure protein transfer. The membrane was blocked in 5% skim milk in 

TBST for 1 hour at RT, followed by primary antibody incubation at 4 ºC in 2% skim milk 

solution in TBST overnight utilizing a polyclonal antibody raised against a section of the 

NLS region of NFB p50 (SC-114X, Santa Cruz). After washing the membrane, 

secondary incubation was performed with a goat anti-rabbit IgG-HRP antibody (Santa 

Cruz) in 2% skim milk solution in TBST for 1 hour at RT. The membrane was washed 
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again and incubated in SuperSignal West Pico Chemiluminescent Substrate 

(ThermoScientific) for 5 minutes before being exposed to x-ray film. K562 whole cell 

lysate (Santa Cruz) was used as a positive control for the NFB-western blot analysis. 

PARP (9542, Cell signaling) and β-tubulin (G098, abm) antibodies were used as loading 

controls for the nuclear and cytoplasmic fractions, respectively. For HTT protein 

analysis, primary skin fibroblasts were cultured as previously described 
61 

and cell pellets 

were lysed by resuspension in SDP buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1% 
 

Igepal, 40 mM B-glycerophosphate, 10 mM NaF, 1X Roche complete protease inhibitor, 

1 mM sodium orthovanadate and 800 mM PMSF) containing 0.1% SDS. Protein samples 

were denatured in LDS sample buffer (Invitrogen) with 100mM DTT and incubated at 

70°C for 10min. Samples were resolved on 10% low-BIS acrylamide gels (200:1 

acrylamide:BIS) with tris-glycine running buffer (25mM Tris, 190mM glycine, 0.1% 

SDS) containing 10.7mM beta-mercaptoethanol added fresh using the BioRad Protean II 

xi Cell system with cooling unit. Gels were run at 160V for 60min through the stack, then 

250V for 16h. Proteins were then transferred to nitrocellulose at 24V for 2h with NuPage 

transfer buffer (Invitrogen). Membranes were blocked with 5% milk in PBS, and then 

blotted for HTT with anti-HTT antibody (Millipore mAb2166) and anti-Myosin (Abcam 

ab24762), which was the loading control used to normalize the data. Proteins were 

detected with IR dye 800CW goat anti-mouse (Rockland 610-131-007) and AlexaFluor 

680 goat anti-rabbit (Molecular Probes A21076) labeled secondary antibodies. The LiCor 

Odyssey Infrared Imaging system was used for signal detection. 
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siRNA transfection 
 

HEK293 cells (Sigma 85120602) were seeded in 12-well plates at 2.5 × 10
5 
cells/well. 

siRNA knock-down experiments were performed according to DharmaFECT 1 (#T- 

2001-02 GE Healthcare) Transfection Reagent manufacturer's protocols. Twenty-four 

hours after seeding, the cells were transiently transfected with control or NFKB-targeted 

siRNA for RELA (Smartpool 5970) and NFKB1 (Smartpool 4790) combined (final 

concentration of 50nM for each siRNA). Cells were collected for quantitative real-time 

PCR analysis (qPCR) after 72h treatment. 

 
Quantitative real time PCR analysis 

 

RNA was isolated from cells using the Qiagen RNeasy mini kit (Qiagen). 1000 ng of 

RNA was used for RT-PCR carried out with the Applied Biosystems High Capacity 

cDNA Reverse Transcription kit (Life Technologies). qPCR was performed with 

Invitrogen’s Fast SYBR® Green Master Mix according to manual (Life Technologies) on 

the 7500 Fast Real-Time PCR System (Applied Biosystems). Absolute quantification was 

used and analysis was performed using the 7500 Software V2.0.1 (Applied Biosystems). 

A normalization factor calculated on ACTB and HPRT1 results was used to normalize the 

data. Primers used are described in Supplementary information. 

 
HD patient materials 

 

The HD patients analyzed in the Danish cohort originated from 36 Danish HD families, 

and have previously been described
36

. The B-haplotype families (n=8) in Denmark are 

likely to be connected via a common ancestor, an HD founder carrying the B-haplotype, 

as their chromosome 4p16.3 haplotypes are similar, and the families all originate from 
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the same geographical area. The HD patients genotyped in the UBC cohort were 

primarily Canadians of European origin obtained from the Hayden lab and the UBC HD 

BioBank (UBC CREB H06-70467 and H05-70532). To enable identification of disease- 

modifying SNP variants, the UBC cohort consisted of samples collected from a single 

member from each family with the most extreme AO phenotype if present as defined by 

the Langbehn et al formula.
8,37 

In families with neither mean nor extreme outliers in 

terms of AO, a single randomly selected family member was used. The EHDN Registry 

cohort represented a random cohort with patient data obtained from sixteen different 

countries in Europe (with multiple sites within each country) with no specific selection 

strategies applied for inclusion. Ethical approval was obtained from the local ethics 

committee for each study site. HD subjects were categorized into percentiles based on 

their ratio AO (observed AO/expected AO); Mean (40-60
th

) percentile (ratio AO=0.93- 

1.05); early 15-40
th 

percentile (ratio AO=0.93-0.83); extremely early <15
th 

percentile 

(ratio AO<0.83); late 60-85
th 

percentile (ratio AO=1.05-1.17); extremely late >85
th 

percentile (ratio AO>1.17. AO reporting procedures differed between the cohorts. The 

EHDN Registry cohort involved historical self-reporting, whereas the same clinicians 

assessed the patients in the UBC and Danish cohorts longitudinally. 

 
 

Exclusion of HD patients in cohort data 

 

In the Danish cohort the total number of genotyped HD subjects were n=98: 36 (G/A) 

carriers with the (A) variant phased to the HD disease allele, three (G/A) carriers with the 

(A) variant phased to the wild-type allele, 53 (G/G) carriers and six (A/A) homozygotes. 

Due to the very low number the three (G/A) heterozygous patients in the Danish cohort 

with the (A) variant phased to the wild-type allele were excluded from analysis. Subjects 
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in the Danish cohort were excluded with CAG repeat lengths of 40 or less (n=6) due to 

clear evidence of biased observation towards those with early onset. Two subjects with 

CAG length 41 and genotype (G/G) were also excluded due to extremely early reported 

age of onset with 22 and 35 years prior to expected onset. This bias is consistent with the 

prior experience of Langbehn et al 
8
. Note that exclusion of these subjects decreases the 

estimated protective effect of the (A) sequence variant when in phase with the HD  

disease allele. Five (G/G) homozygotes with CAG lengths greater than 55 were also 

excluded. They add no evidence to the assessment of the SNP effect, their CAG- 

expected age of onset is not well-established using the same analysis techniques used for 

the CAG range 41-55, and their early onset ages only allows them to serve as potentially 

influential but irrelevant outliers. In the UBC cohort the total number genotyped HD 

subjects were n=459: 26 (G/A) carriers with the (A) variant phased to the wild-type allele, 

2 (G/A) carriers with the (A) variant phased to the HD disease allele and 431 (G/G) 

carriers. In the UBC cohort, four (G/A) heterozygotes and 40 (G/G) homozygotes with 

CAG lengths lesser than 41 or greater than 55 were excluded from primary analysis.   

Two (G/A) subjects with the (A) variant phased on the HD disease allele were also 

excluded from the UBC data analysis. In the EHDN Registry cohort, the total number of 

genotyped HD subjects including all CAG repeat lengths were (n=497): 32 (G/A) carriers 

with the (A) variant phased to the wild-type allele, 459 (G/G) carriers and 6 (G/A) 

carriers with the (A) variant phased to the HD disease allele. In the EHDN Registry 

cohort, six (G/A) heterozygotes with the (A) variant phased on the wild-type allele and 41 

(G/G) homozygotes with CAG lengths lesser than 41 or greater than 55 were excluded 

from primary analysis as well as the six (G/A) heterozygotes with the (A) variant phased 
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on the HD disease allele. There was no evidence for biased ascertainment at CAG repeat 

length 40 in the UBC and the EHDN Registry cohorts. However, for comparability and 

uniformity of analysis, all three data sets i.e the UBC, EHDN Registry and the Danish 

cohorts, were analyzed using the same cutoff of CAG lengths 41-55. Analysis was also 

performed including HD subjects with CAG repeat length 40 in the UBC and the EHDN 

Registry data set with no substantive changes in the results (data not shown). 

 

Statistical analysis of clinical data 

 
For analysis of the clinical human data, we studied the relationship between HD age of 

onset and the presence and phase of the human SNP rs13102260. For the Danish data, we 

fit weighted least square models predicting observed ages of onset as a function of the 

rs13102260 (G/A) genotype, and expected age of onset based on CAG length, as 

estimated by Langbehn et al 
8
. We controlled for a random effect of family pedigree. 

Because variance in age of onset tends to increase with higher expected age of onset 
 

(lower CAG length), we also included a random effect for expected age of onset, 

effectively turning this into a weighted least squares model based on CAG-predicted 

onset age. Analyses were performed using PROC Mixed of SAS 9.3, and the Kenward- 

Rogers procedure was used to estimate residual degrees of freedom. We used similar 

models for the UBC and Registry data, except that all subjects were from separate 

families in the UBC cohort and possible familial relationships were unknown in the 

EHDN Registry cohort. Thus, no random family effect could be used. Because the UBC 

data were collected on the basis of age of onset, with SNP genotype as the unknown 

variable being predicted, we also compared the linear model result to those from the 

corresponding logistic regression predicting SNP genotype as the outcome. The 
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difference between the observed and CAG-based expected onset age was the main 

predictor of allele frequency. For comparability to the mixed linear models, we also 

include expected age of onset as a covariate, though it lacked significance as a predictor 

of rs13102260 (G/A) genotype. 

 

SNP genotyping 

 
The Taqman® SNP Genotyping assay (C_31758132_10) (Applied Biosystems) was used 

for genotyping of the rs13102260 (G>A). TaqMan® Genotyping master mix (Applied 

Biosystems) was used and the reaction was set up according to manufacturer’s 

recommendations. PCR conditions: 95°C for 10 min; 92°C for 15 sec and anneal/extend 

at 62°C for 1 min for 40 cycles using the 7500 Fast Real-Time PCR system (Applied 

Biosystems). Analysis was performed using the 7500 Software V2.0.1 (Applied 

Biosystems). In the Danish cohort the rs13102260 (G/A) genotype was assessed using 

Sanger sequencing using the following primer sequences: Forward 5’- 

GCCTCACCCCATTACAGTCT-3’ and Reverse 5’-GGCAATGAATGGGGCTCT-3’ 

 

Phasing of (G/A) carriers 

 
In the Danish cohort phasing of the rs13102260 (G/A) genotype was done in each HD 

family by segregation of affected and/or unaffected genotypes within the pedigree, similar 

to the procedure applied in the UBC cohort. In the UBC cohort, all HD subjects were  

first genotyped for rs13102260. We then genotyped relatives of the heterozygous (G/A) 

carriers to phase the (A) variant to the wild-type or the HD disease allele. Relatives 

included asymptomatic or unaffected offspring, parents or siblings, or affected distant 

relatives such as cousins, nieces and nephews The unaffected parent was almost 
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exclusively (G/A) and the affected parent was (G/G) (26 out of 28). The (A) variant thus 

segregated with the wild-type allele inherited from the unaffected parent for all the (G/A) 

carriers that were included in the association analysis. For (G/A) carriers in the EHDN 

Registry we used a PCR-based approach for phasing. Human HD patient DNA was PCR- 

amplified using the following primers: forward 5’-ATTACAGTCTCACCACGCCC-3’; 

reverse 5’-GACAAGGGAAGACCCAAGTG-3’. The wild-type and the CAG-expanded 

HD disease alleles were separated by running the PCR product on a 0.7% agarose gel. 

DNA was extracted using a gel extraction kit (Invitrogen) and DNA concentrations were 

determined using the Nanodrop spectrophotometer (ThermoScientific). Capillary 

sequencing (Applied Biosystems) was performed using the same primers as for the initial 

PCR amplification. The obtained sequences incorporated the rs13102260 (G/A) and the 

CAG tract. Sequence Scanner v1.0 (Applied Biosystems) and ApE Plasmid editor 

software were used for sequence analysis. 

 

Statistical analysis of non-clinical data 

 
Student’s unpaired t-test was performed for comparison between two groups (GraphPad 

Prism5). One-way analysis of variance (ANOVA) with Bonferroni’s or Dunnett’s 

multiple comparison tests were used for data analysis of more than two groups 

(GraphPad Prism5). Significant differences were set at *P<0.05, **P<0.01, ***P<0.001. 
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FIGURE LEGENDS 

 
Figure 1 Cis-regulatory SNP in the NFκB binding site alters transcriptional activity 

of the HTT promoter. 

Reporter assays measuring basal transcriptional activity of twelve HTT promoter 

constructs. The transcriptional activity of construct 5 was reduced by (a) 57% (P<0.01, 

two-tailed unpaired t-test) in HEK293A cells and by (b) 51% (P<0.001) in ST14A cells 

compared to its parent construct 4. (c) Cartoon of the HTT promoter regions (A, B, C)  

that were investigated for regulation of expression activity. Construct 4 differed from 

construct 5 at ten sequence positions as indicated (relative to the translation start site). In 

silico analysis identified putative transcriptional factor binding sites (TFBS) potentially 

affected by the sequence variant differences. Genetic variants that overlap with putative 

TFBS were identified. Validated SNPs are indicated with blue triangle. Variants without 

frequency submission are indicated in gray. (d) The proximal promoter fragment C from 

construct 5 reduced transcriptional activity of the construct 4 promoter background, while 

the construct 4 fragment C rescued the transcriptional activity of construct 5 (P<0.001). 

(e) The 5 C fragment alone was sufficient for the reduced transcriptional activity 

(P<0.001). (f) Sequence variation in the NF-κB TFBS caused the reduced transcriptional 

activity observed in the construct 5 full-length and fragment C constructs (P<0.001). (g) 

TFBS motifs and respective construct 4 and 5 sequence variants. The identified NFκB 

TFBS in the HTT promoter comprises the rs13102260 (G>A). (h) Site-directed 

mutagenesis changing GA in the first position of the NF-κB TFBS in construct 4 C 

reduced transcriptional activity to similar levels as observed for the construct 5 full- 

length and C-fragment (P<0.001). Each construct was assayed in triplicate. The data is 
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pooled from two independent experiments (mean ± SEM, n=6) (One-way ANOVA with 

with Bonferroni’s multiple comparison test was used in (d) and Dunnett’s multiple 

comparison test was used in (e-h). 

 

Figure 2 NF-B binds to the huntingtin promoter in vitro and in vivo 

 

(a-c) ChIP on different brain regions of naïve mice was used to investigate whether NF- 

B bound the site in vivo. The mouse Htt promoter constitutes three putative NF-B 

TFBS within 1000 bp upstream of the translation initiation codon. There was a NF-B 

enrichment at all analyzed TFBS regions comparable to the positive control region for 

IL6 as assessed by qPCR (Striatum F(7,32)=1.75, P=0.133; Prefrontal cortex 

F(7,32)=2.44, P<0.05, Cerebellum F(7,32)=7.22, P<0.001, one-way ANOVA) (mean ± 

SEM, n=5). (d) There were significant increases in NF-B recruitment in striatum 

compared to pre-frontal cortex and cerebellum at TFBS2 (Tissue F(2,96)=5.53, P<0.01, 

TFBS F(7,96)=3.15, P<0.01, interaction (F(14,96)=4.28, P=0.311, two-way ANOVA). 

(e) To study the NF-B occupancy at the HTT promoter in a human context, ChIP 

analysis was performed in lymphoblastoid cell lines (LCL) derived from HD patients. 

There was an increased enrichment of NF-B at the predicted NF-B TFBS containing the 

rs13102260 in human LCLs (F(3,32)=4,28, P<0.05, one-way ANOVA with Dunnett’s 

test) compared to a control region upstream in the HTT promoter region containing two 

putative NF-B TFBS (-2065; -2011bp upstream from translation start site) (mean ± 

SEM, n=9). (f) Rat striatal ST14A cells stimulated with TNFα were assessed. Four 

putative NF-B TFBS were identified in the rat Htt promoter within 1000 bp upstream of 

the translation initiation codon (TFBS1 containing two predicted binding sites). We 
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observed an enrichment of NF-B for all three regions comparable to what was observed 

for the IL6 promoter (F(7,16)=5.09, P<0.01, one-way ANOVA with Bonferroni’s test) 

(mean ± SEM, n=3). Immunoprecipitation with a normal mouse IgG antibody was used 

as a negative control. 

 
Figure 3 Cis-regulatory variants in the HTT promoter alter NF-κB binding 

 

(a,b) Electromobility shift asays (EMSA) were performed to assess the binding of NF-κB 

to the putative NF-κB TFBS identified in constructs 4 and 5. Binding of nuclear extracts 

from TNFα-stimulated ST14A cells and recombinant NF-κB p50 protein were tested. 

NF-κB bound stronger to the allele 4 compared to the allele 5 oligonucleotide in a 

concentration-dependent manner. EMSA showed that NF-B binding to the 

oligonucleotide containing the rs13102260 (A) variant was fully abolished, as assessed 

with both (c) ST14A nuclear extract and (d) recombinant NF-B p50 protein. Lanes 1-2, 

no nuclear extract; lanes 3, 5, 7, allele 4 oligonucleotide and lanes 4, 6, 8, allele 5 

oligonucleotide incubated with ST14A nuclear extract or recombinant NF-κB p50, 

respectively; lanes 9-10, unlabeled competitor oligonucleotide added to labeled 

oligonucleotide + protein extract. (gsu=gel shift units). 

 

Figure 4 Targeting of NF-κB modulates HTT expression 

 

(a) siRNA knock-down of NF-B in HEK293 cells. Down-regulation of NFKB1 (specific 

for p105, precursor to the p50 subunit) and p65 mRNA levels, decreased the levels of 

HTT mRNA expression as measured by qPCR (t(6)=3.53, P<0.01) (mean ± SEM, n=7). 

siRNA knockdown efficiency was on average 83% for NFKB1 (t(16.8), p<0.0001) and 

70% for p65 (t(6)=7.95, P<0.0001). (b) ST14A cells expressing constructs 4 or 5 were 
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stimulated with TNFα. The TNFα-stimulation resulted in increased transcriptional activity 

of construct 4 compared to the untreated control (F(3,8)=29.7, P<0.001, one-way 

ANOVA with Dunnett’s test). No increase in transcriptional activity was detected for 

construct 5 upon TNFα-stimulation. (c) CAPE treatment of ST14A cells expressing 

construct 4 reduced the TNFα-induced increase in transcriptional activity in a dose- 

dependent manner by inhibition of NFκB activity (F(4,7)=6.24, P<0.05, one-way 

ANOVA with Dunnett’s test). One representative data set out of three independent 

reporter assay experiments is shown for each panel (mean ± SEM). (d) TNFα-stimulation 

of the ST14A cells resulted in increased protein levels of NFκB subunits as measured by 

western blot analysis. The p50 subunit increased the most in the nuclear fraction 

following TNFα-stimulation of ST14A cells. The p65 (65 kDa), RelB (68 kDa) and c-Rel 

(69 kDa) were also increased, but not to the same extent as p50. The cytoplasmic fraction 

showed strong bands for the precursor subunits p100/p105, in addition to bands for the 

p50 subunit, which were expressed at similar levels across the different treatments. CAPE 

treatment had no effect on expression of the NF-κB protein. PARP and β-tubulin show 

equal loading of protein across lanes for the nuclear and cytoplasmic fractions, 

respectively. 

 

Figure 5 rs13102260 (A) variant alters NF-κB binding and modulates HD age of 

onset. (a) Familial HD cases from Denmark were genotyped for the rs13102260. 

Presence of the rs13102260 (A) variant on the HD disease allele had a clear association 

with later age of HD onset (35 of 82 HD subjects were (G/A) heterozygotes) (t=5.08, 

27.1 df, P<0.0001). (b) HD patients from the UBC BioBank cohort were genotyped for 

the rs13102260 (G/A). Presence of the rs13102260 (A) variant on the wild-type allele 
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was associated with an earlier age of HD onset (22 of 413 HD subjects were (G/A) 

heterozygotes) (P= t=-2.57, df=367, P=0.010). (c) HD cases (Danish and UBC cohorts) 

were categorized according to the AO percentile, given their expected AO and the 

observed AO. A higher proportion of early AO cases was observed in (G/A) carriers with 

the (A) variant phased to wild-type allele (64%, of which 41% displayed extremely early 

AO below <15
th 

percentile) compared to the (G/G) (41%, of which 21% displayed 

extremely early AO below <15
th 

percentile), while a higher proportion of late AO cases 

was observed in (G/A) carriers (63%, of which 26% displayed extremely late AO above 

>85
th 

percentile) with the (A) variant phased to the HD disease allele compared to (G/G) 

carriers (24%, of which 9% displayed extremely late AO above >85
th 

percentile). (d) ratio 

AO (=observed AO/expected AO) showed the effect of rs13102260 on age of onset. HD 

subjects with the rs13102260 (A) variant phased to the wild-type allele showed lower 

ratio AO values, while HD subjects with the (A) variant phased to the HD disease allele 

showed higher ratio AO values, compared to the (G/G) carriers ((A) variant phased to 

wild-type allele n=22; (A) variant phased to the HD disease allele n=35; (G/G) carriers 

 

n=432). 

 

 

Figure 6 Genotype at rs13102260 drives allele-specific expression of HTT and 

modulates HD age of onset 

(a) The effect of the rs13102260 (A) variant on wild-type and mutant HTT (mHTT) 

protein expression levels was measured with western blot analysis in HD patient 

fibroblast lines. Wild-type HTT protein was reduced in the samples with the (A) variant 

phased to the wild-type allele compared to the (G) variant (G[WT] vs A[WT]) (t(3)=3.27, 

P<0.05, two-tailed unpaired t-test). Mutant HTT protein was reduced in the samples with 
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(A) phased on the HD disease allele compared to the (G) variant (G[HD] vs A[HD]) 

(t(3)=2.46, P<0.05). The data represents two different fibroblast lines per genotype group 

including two pellets per cell line (mean ± SEM, n=4). Alleles carrying the rs13102260 

(A) variant are labelled in red; (G) variant carriers are indicated in white. For each 

genotype group, the left bar indicates wild-type HTT levels, and the right bar indicates 

mHTT levels. (b) Model for rSNP rs13102260 (G/A) as a bidirectional genetic modifier 

of HD age of onset. rSNP rs13102260 (G/A) is located in the identified NF-B TFBS in 

the HTT promoter immediately proximal to the 5’UTR of the HTT gene. The rs13102260 

(A) variant impairs NF-B binding, reduces transcriptional activity of the HTT gene and 

HTT protein levels. Presence of the rs13102260 (A) variant on the wild-type allele was 

associated with reduced wild-type HTT protein levels and earlier AO, while the (A) 

variant on the HD disease allele was associated with lower mutant HTT protein levels 

and delayed AO in HD patients. 
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Table 1 

Estimation of rs13102260 genotype effects on AO in HD subjects with (A) variant 

phased to HD disease allele 

CAG Exp Model prediction Model prediction SD of SNP effect 
length AO

1
 (A)-HD allele- (A)-HD allele- ExpAO

1
 in years 

HD  ABSENT
2
 PRESENT

3
 (A)-HD (A)-HD 

allele    allele
4
 allele

5
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1
Expected age of onset (Exp AO) calculated as defined by Langbehn et al. 2004 

2
Estimated AO based on model for rs13102260 (G) variant phased to HD disease allele. 

3
Estimated AO based on model for rs13102260 (A) variant phased to HD disease allele. 

4
Increase in standard deviation (SD) when rs13102260 (A) variant phased to HD disease allele. 

5
Estimated number of years delayed onset with rs13102260 (A) variant phased to HD disease 

allele. 

41 57.0 51.4 68.6 1.7 17.3 

42 52.2 47.0 62.0 1.6 15.0 

43 48.1 43.2 56.3 1.5 13.1 

44 44.5 39.9 51.3 1.4 11.3 

45 41.3 37.1 46.9 1.3 9.9 

46 38.6 34.6 43.1 1.2 8.6 

47 36.3 32.5 40.0 1.1 7.5 

48 34.3 30.7 37.2 0.99 6.5 

49 32.6 29.1 34.8 0.89 5.7 

50 31.1 27.7 32.7 0.79 5.0 

51 29.8 26.5 30.9 0.71 4.4 

52 28.7 25.5 29.4 0.63 3.9 

53 27.7 24.6 28.0 0.56 3.4 

54 26.9 23.9 26.9 0.49 3.0 

55 26.1 23.2 25.9 0.44 2.7 

 


