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The discovery that transient elevations of calcium concentration occur in astrocytes, 

and release “gliotransmitters” which act on neurons and vascular smooth muscle, led 

to the concept of astrocytes being powerful regulators of neuronal spiking, synaptic 

plasticity and brain blood flow. These findings were challenged by a second wave of 

reports that astrocyte calcium transients did not mediate functions attributed to 

gliotransmitters and were too slow to generate blood flow increases. Remarkably, the 

tide has now turned again: the most important calcium transients occur in fine 

astrocyte processes not resolved in earlier studies, and new mechanisms have been 

discovered by which astrocyte [Ca2+]i is raised and has its effects. Here we review how 

this third wave of discoveries has changed our understanding of astrocyte calcium 

signalling and its consequences for neuronal function. 

Few topics in neuroscience are as controversial as the idea that calcium concentration 

elevations in astrocytes release transmitters that regulate neuronal and vascular function. As 

an example, highly respected scientists in the field have stated on the one hand that1 

astrocytes show “Ca2+-dependent quantal glutamate release...previously considered to be 

specific to synapses” and on the other hand that2 “the case for regulated release of glutamate 

from astrocytes onto neurons...is not convincing” and3 “it is very difficult to conclude that 

astrocytes possess the...machinery required for Ca2+-dependent release of glutamatergic 

vesicles”. How could these mutually incompatible views arise? In this Perspective we will 

review briefly the turbulent history of the field, survey recent data suggesting a way out of 

some of the reported contradictions, and speculate on the future direction of research in this 

area.  

The first wave - astrocytes also process information 

 The discovery that glutamate evokes a calcium concentration rise in astrocytes4-8 (in 

culture, in brain slices, in whole retina and in vivo), which can propagate along astrocyte 

processes and even between glial cells4,5,7,9,10, raised the possibility that glial Ca2+ waves might 

constitute an extra-neuronal signalling system in the CNS7. The subsequent demonstration 
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that rises in astrocyte [Ca2+]i, in turn, induce a [Ca2+]i rise in adjacent neurons11,12 sparked a 

flurry of studies that generated the concept of “gliotransmission” from astrocytes to neurons.  

Increases of astrocyte [Ca2+]i evoked by receptor agonists such as glutamate and 

GABA, or by uncaging of Ca2+ or IP3 (inositol trisphosphate), were reported to release 

gliotransmitters from astrocytes, including glutamate11,13-18, ATP19-21, D-serine22-24, and 

GABA25-28. (It is unknown whether [Ca2+]i also regulates the release of slower acting astrocyte-

derived factors that regulate receptor expression at synapses, such as TNF-

necrosis factor ), TGF-1 (transforming growth factor-1) and glypicans29-31).  The release 

of these gliotransmitters has been reported to generate a wide range of effects on neurons 

(summarised in Fig. 1 and described at length in ref. 32),. Glutamate release evokes an inward 

membrane current in neurons, mediated by NMDA receptors, that regulates excitability and 

synchronises action potential firing15-17,33,34. Release of glutamate and GABA, and of ATP 

which is converted to adenosine by extracellular ectoATPases, regulates synaptic vesicle 

release probability by activating presynaptic receptors18,35-38. The resulting effects on synaptic 

strength regulate whether synaptic plasticity can occur39-41, as does the release of D-serine 

which controls the amount of NMDA receptor activation occurring when glutamate is released 

at synapses22,24. These changes of neuronal function will modify information processing in 

circuit-specific ways, but a major high-level function of gliotransmitter release was suggested 

to be modulation of sleep induction, produced by the accumulation of adenosine derived from 

astrocyte-released ATP42.  

In addition to altering neuronal information processing, calcium-evoked release of 

messengers from astrocytes was suggested to regulate the energy supply to the brain in three 

important ways. First, increases of astrocyte [Ca2+]i lead to the release of arachidonic acid-

derived messengers (such as prostaglandins, epoxyeicosatrienoic acids and 20-

hydroxyeicosatetraenoic acid (20-HETE)) that modify the contraction of vascular smooth 

muscle43-45. This provides a mechanism by which the polarized morphology of astrocytes - 

with many processes around synapses, and endfeet apposed to blood vessels - could regulate 
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cerebral blood flow and energy supply46 according to the activity of synapses, the main 

consumers of energy in the brain47. Second, glutamate-evoked rises of astrocyte [Ca2+]i trigger 

the insertion of more glucose transporters into the cell membrane, facilitating glucose uptake 

from the blood when synapses are active48. Third, regulation of oxygen supply to the whole 

body may involve CO2 acidifying brainstem astrocytes, which leads to a [Ca2+]i rise and ATP 

release, which in turn increases breathing rate49.  

All this work led to the idea that astrocytes constitute a network of cells that process 

information and regulate brain energy supply in parallel with neurons. It culminated in the 

proposal that an increase in astrocyte size and complexity was crucial for the increase in 

central neural processing power that has occurred during hominid evolution50. This idea was 

reinforced by an increase in synaptic plasticity and learning seen in mice seeded with human 

astrocytes51, which propagate calcium waves four-fold faster than do rodent astrocytes50. 

Astrocytes therefore seemed to have come of age as players in information processing, and 

it was anticipated that disruptions of astrocyte calcium signalling might be important in 

diseases including epilepsy52, inflammation53, Alzheimer’s54, Huntington’s55 and HIV 

infection56.   

The second wave - the controversies 

 Throughout these exciting developments, an increasing number of conceptual 

problems were arising with the mechanisms by which [Ca2+]i is raised in astrocytes, the time 

course of that elevation, and the mechanisms by which gliotransmitters are released (Fig. 2).  

These problems and, as we shall see later, their resolution, arose in part from the methods 

used to study all of these phenomena. Demonstrating a role for gliotransmission in brain 

function requires the use of methods that manipulate astrocytes specifically. This has involved 

the use of drugs thought to alter [Ca2+]i specifically in astrocytes (which is hindered by the fact 

that many receptors, while being expressed preferentially in astrocytes, are also expressed in 

neurons), the introduction into astrocytes of agents that manipulate signalling pathways (such 

as caged calcium or IP3, and tetanus or botulinum toxin), genetic manipulations that are 
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astrocyte-specific, or the use of agents that disrupt astrocyte metabolism. It turns out that none 

of these provide a magic bullet to test the functional role of astrocyte [Ca2+]i transients32. 

 Gq-coupled metabotropic glutamate receptors (mGluRs, particularly mGluR5), which 

generate IP3 that releases calcium from internal stores, were suggested to initiate astrocyte 

calcium signalling6,13,15,43 in the developing brain, because antagonists for these receptors 

blocked astrocyte [Ca2+]i transients but not neuronal [Ca2+]i transients43 or synaptic activity6,57 

evoked by afferent stimulation. However, neurons also express mGluR5 and astrocyte 

expression of mGluR5 decreases as astrocytes mature58. Furthermore, despite originally 

reporting that in adult mice astrocyte [Ca2+]i transients are evoked by  synaptically released 

glutamate activating mGluR5 and mGluR18,57, Nedergaard’s group later reported that mRNA 

expression for these receptors in astrocytes was undetectable after three weeks postnatally59 

(see also ref. 60). Consequently, mGluR5 agonists did not raise [Ca2+]i in adult astrocytes, and 

it was concluded59 that synaptically released glutamate is insufficient to raise astrocyte [Ca2+]i. 

Caveats for this work59 include the fact that older, more ramified, astrocytes may be less easily 

isolated with all their mRNA (some of which may be in their processes), that mRNA level may 

not predict protein level, that Ca2+ signals appear to have been studied in the cells’ somata 

rather than their processes, and hence that some mGluR5 may be present in the processes 

of adult astrocytes61. 

 The intracellular signalling pathway often supposed to translate increases of 

extracellular neurotransmitter concentration into astrocyte [Ca2+]i transients, i.e. the release of 

calcium from intracellular stores downstream of mGluR5 (or other Gq-coupled receptors), has 

similarly been criticised.  Astrocyte processes very close to synapses have been reported to 

lack intracellular calcium stores62 (although this may depend on fixation conditions63), and so 

may be unable to respond to synaptic transmitter release with a [Ca2+]i transient produced by 

store release. Furthermore, when the type 2 receptor for IP3 (which is expressed far more in 

glia than in neurons64) was knocked out, although this greatly reduced the number of [Ca2+]i 

transients occurring in astrocyte somata65,66, it had no effect on neuronal excitability66, synaptic 

currents66, synaptic plasticity67
 (although ACh-evoked LTP [long term potentiation] was 
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abolished68,69), neurovascular coupling70,71 or various behavioural assays72. Although it is hard 

to rule out developmental compensation in response to this lifelong deletion, these data 

challenged the notion that astrocyte [Ca2+]i transients driven by IP3-evoked Ca2+ release from 

internal stores release gliotransmitters which have a major influence on neuronal function.  

Raising astrocyte [Ca2+]i, by expressing in astrocytes a non-mammalian Gq-coupled 

receptor that could be activated by an exogenous molecule (a Designer Receptor Exclusively 

Activated by a Designer Drug, DREADD)65,70, had no effect on neuronal [Ca2+]i or excitability 

and did not modulate excitatory synaptic currents or evoke vascular effects. This is hard to 

reconcile with experiments showing that dialysis of astrocytes (from a patch pipette) with the 

calcium buffer BAPTA suppresses effects attributed to gliotransmitters18,35,37. To further 

complicate matters, raising [Ca2+]i with a Gq-coupled receptor can fail to evoke gliotransmitter 

release even when uncaging of calcium within astrocytes does73, and different Gq-coupled 

receptors can have a very different efficacy for evoking gliotransmitter release74, suggesting 

that the subcellular localization of receptors with respect to internal calcium stores may be a 

crucial determinant of gliotransmitter release.  

 The mechanism by which [Ca2+]i is raised in astrocytes will have an important influence 

on the speed of the [Ca2+]i rise, which has become a disputed issue when considering how 

astrocyte [Ca2+]i changes regulate the vasculature. Although rises of astrocyte [Ca2+]i dilate 

arterioles43,45,57, it appears that astrocyte [Ca2+]i rises may be too slow71,75,76, or occur in too 

few astrocytes77 , to produce the rapid increase of blood flow evoked by neuronal activity that 

generates BOLD fMRI signals. 

 Downstream of [Ca2+]i transients, prolonged controversy has existed over whether the 

release of gliotransmitters is mediated exocytotically1,37 (as reported in freshly dissociated and 

cultured astrocytes78,79) or by ion channels27,73,80 (as has been reviewed in detail32). We will 

return to channel-mediated release below. Exocytosis, in the case of glutamate and GABA, 

requires the presence of vesicular glutamate and GABA transporters in astrocytes. Although 

these were detected for glutamate using immunocytochemistry and single cell PCR1, this has 

been disputed on the basis of a lack of overlap of vesicular glutamate transporter (VGLUT) 
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labelling with astrocyte markers (for the plasma membrane glutamate transporter GLT-1, the 

Ca2+-binding protein S100 and the water channel aquaporin 4)81 and transcriptome data do 

not detect VGLUT1, VGLUT2, VGLUT3 or VGAT (the vesicular GABA transporter) in 

astrocytes64. RNA-seq data can exhibit false negatives, but these transporters are detected in 

neurons, suggesting that VGLUT expression is genuinely low in astrocytes, although it is hard 

to rule out a highly spatially localised expression in astrocyte compartments that do not 

express GLT-1, S100 or aquaporin 4.  

Exocytosis also requires the formation of a SNARE (Soluble NSF Attachment 

Protein REceptor) complex which mediates Ca2+-dependent release of transmitter-filled 

vesicles. Although transcriptome data64 suggest that some SNARE complex proteins are 

relatively selectively expressed in astrocytes (SNAP-23, VAMP3) or in neurons (SNAP-25, 

SNAP-47, VAMP2, syntaxin), there is no exclusively astrocytic component that could be 

knocked out to prevent transmitter exocytosis from astrocytes. Similarly, the potential calcium 

sensor for vesicle release which has the highest expression64 in astrocytes, synaptotagmin XI, 

is also expressed at a high level in neurons. An innovative approach to suppressing astrocyte 

vesicle release was provided by expressing part of the SNARE molecule VAMP2 in astrocytes, 

driven (in a doxycyclin-suppressible manner) by the GFAP (glial fibrillary acidic protein) 

promoter, to inhibit exocytotic release of transmitters from astrocytes39. This was found to alter 

synaptic transmission and plasticity39, and to reduce the pressure to sleep42, by suppressing 

the release from astrocytes of ATP, which is converted to adenosine by ecto-ATPases. The 

interpretation of this experiment depends crucially on expression of the transgene being 

specific to astrocytes, since VAMP2 is also involved in neuronal exocytosis. A paper re-

examining this issue82 suggested that the transgene was also expressed at a lower level (in a 

doxycyclin-suppressible manner) in some neurons (defined by PSA-NCAM expression), 

disagreeing with control experiments in the original reports39,42, and raising the question of 

whether the effects seen were dominated by alterations of exocytosis in astrocytes or in 

neurons83. The vigorous response published with ref. 82 

https://en.wikipedia.org/wiki/N-ethylmaleimide_Sensitive_Factor_or_fusion_protein
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(http://www.jneurosci.org/content/34/50/16594/reply#jneuro_el;112097) shows that this 

debate is not over yet, and the new data need to be confirmed by an independent laboratory 

(ideally using further neuronal markers), nevertheless the data in ref. 82 emphasise the 

importance of checking that supposedly astrocyte-specific transgenic lines are truly astrocyte-

specific84. An alternative approach, injection of SNARE-cleaving toxins into astrocytes has 

been shown to decrease gliotransmitter release37,85, but it is hard to rule out the possibility that 

these agents also affect trafficking to the surface membrane of ion channels that mediate 

release (see below).  

These controversies, over the receptors raising astrocyte [Ca2+]i in response to 

neuronal activity, the involvement of internal calcium stores in producing [Ca2+]i transients and 

the mechanism (if any!) by which astrocytes release transmitters in response to [Ca2+]i rises, 

left the field in a prolonged state of uncertainty, with some dismissing all the evidence as 

unsatisfactory83.  

The third wave - partial resolution of the controversies 

 The first hint of a possible explanation for some of these controversies came with the 

realisation that, just like neurons, astrocytes must be considered as comprising many different 

subcellular compartments, and that (easily detected) calcium transients occurring in the soma 

may not be telling the experimenter very much about what is happening in the fine astrocyte 

processes near synapses. Indeed, different astrocyte processes generate [Ca2+]i transients at 

different times86, and spatially localised [Ca2+]i transients in the cells’ processes occur much 

more frequently than in the somata87-89. The advent of two-photon fluorescence imaging, with 

its improved vertical spatial resolution and decreased excitation light scatter and photon 

damage, combined with the presence of Ca2+-sensing molecules in single astrocytes 

(achieved either by expressing genetically-encoded calcium indicator (GECI) proteins, or by 

dialysing cells from a patch pipette with Ca2+-sensing dyes), resulted in the characterisation of 

different types of calcium transient in different parts of the astrocyte86,90-93.  

By targeting a GECI to the membranes of astrocytes, where changes in [Ca2+]i would 

be most relevant to controlling the release of gliotransmitters, it was shown90 that [Ca2+]i 

http://www.jneurosci.org/content/34/50/16594/reply#jneuro_el;112097
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transients can differ in the bulk cytoplasm from those occurring just under the cell membrane. 

Indeed some [Ca2+]i transients occur mainly near the membrane, and were attributed to the 

spontaneous opening of TRPA1 (Transient Receptor Potential Ankyrin type 1) channels in the 

astrocyte membrane91, consistent with the finding that some [Ca2+]i transients in astrocyte 

processes are independent of neuronal activity86. The TRPA1 contribution to the resting [Ca2+]i 

was found to promote the insertion of GABA transporters into the astrocyte membrane, and 

thus to regulate GABAergic inhibition91. Characterization of [Ca2+]i transients at different 

locations along astrocyte processes using AM ester-88 or pipette-loaded dyes92,93 (which 

combine greater sensitivity with greater response speed than currently-available GECIs94) 

revealed [Ca2+]i elevations occurring on different spatial and temporal scales: in hippocampal 

dentate gyrus astrocytes, spontaneous synaptic transmitter release produces brief duration 

(~0.7 s) spatially-localised (~4 m) transients in astrocyte processes, while action potential 

driven release triggers larger, longer-lasting (~3 s) spatially broader (~12 m) events92. [Ca2+]i 

transients in astrocyte processes can sometimes propagate along the process86,89, into the 

soma89 and even between cells88. Both in dentate gyrus92 and in hippocampal area CA193, 

introducing the Ca2+ chelator BAPTA into an astrocyte led to an increase in the rate of synaptic 

failures (but see ref. 95 where a stronger stimulation strength was used; although the BAPTA 

concentration was high - 75 mM - in one of these studies92, 10 mM BAPTA had the same 

effect79,93). Since these studies did not add any Ca2+ to the internal solution, the resting [Ca2+]i 

is ill defined (contrast with ref. 24), and it is not possible to say whether the change of synaptic 

activity reflects BAPTA lowering the resting [Ca2+]i or buffering synaptically-evoked [Ca2+]i rises 

in the astrocyte. Despite this problem, and the fact that these studies attributed the [Ca2+]i rises 

in astrocytes and the subsequent effects on neurons to different neuro- and glio-transmitters 

(ATP and glutamate92, or glutamate and ATP or adenosine93, respectively), this work was a 

crucial step forward in the recognition that compartmentation of astrocyte [Ca2+]i rises may 

explain some of the discrepancies in the literature.  
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The best example of the importance of astrocyte Ca2+ compartmentation concerns the 

effect of knocking out IP3R2 receptors. Whereas the earlier reports65-67,70-72 discussed above 

seemed to imply that most astrocyte [Ca2+]i transients were abolished when IP3R2 was 

knocked out, it turns out that loss of this store release receptor has much less effect in the fine 

processes of astrocytes than in the soma89,96. While IP3R2 knock-out abolished all but ~10% 

of somatic [Ca2+]i transients, it spared ~40% of the [Ca2+]i transients occurring in the cells’ 

processes and, for the sites of [Ca2+]i rise that remained, there was little change in the 

frequency of transients96. Furthermore, while removal of extracellular Ca2+ had little effect on 

[Ca2+]i transients at the soma, in nearly half of the locations in processes where transients 

were generated it reduced the frequency of the transients by 50-75%. This suggests that a 

release of Ca2+ from internal stores is the main source of [Ca2+]i transients at the soma, while 

in the astrocyte processes transmembrane entry of Ca2+, presumably through endogenously 

active channels like TRPA191 or receptor-gated Ca2+-permeable ion channels, generates 30-

40% of [Ca2+]i elevations96. Interestingly, when IP3R2 receptors were knocked out, [Ca2+]i rises 

evoked in astrocytes by endothelin were greatly reduced in the somata of the cells but much 

less affected in the processes, suggesting that Ca2+ signalling evoked by this agonist may be 

mediated by release from internal stores in the soma but by direct coupling to a plasma 

membrane ion channel in the processes. Thus, there are major differences between Ca2+ 

signalling in the somata and processes of astrocytes, and overall there are at least eight-fold 

more Ca2+ transients in processes than in somata96,89. Consequently, previous conclusions65-

67,70-72, based on knocking out IP3R2 receptors and assuming (on the basis of a lack of somatic 

Ca2+ responses) that astrocyte Ca2+ signalling then has little functional effect on neurons, 

require re-examination.  

 The importance for understanding function, of characterising [Ca2+]i rises in the 

processes of astrocytes, is illustrated by papers examining whether astrocyte [Ca2+]i rises are 

fast enough to drive the local increases of blood flow evoked by neuronal activity. While [Ca2+]i 

rises in astrocyte somata may be too slow71,75,76 to generate rapid blood flow increases, 

examination of [Ca2+]i transients in astrocyte processes suggests that they are faster than in 
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somata97, and occur before or with a similar time course to the increase of blood flow88,98,99.The 

lack of effect of IP3R2 receptor knockout on blood flow responses70,71, together with data 

showing that 30-40% of astrocyte process [Ca2+]i rises are initiated by transmembrane Ca2+ 

entry96, suggests that active neurons release agents that gate Ca2+-permeable ion channels 

in astrocyte processes (for example AMPA98,100, NMDA100,101 or P2X100-102 receptors, or 

TRPA191 channels). This raises the question of how [Ca2+]i rises evoked in astrocyte 

processes around synapses lead to the release of vasoactive messengers at the spatially-

distant endfeet made by astrocytes onto vessels. The lack of effect on blood flow responses 

of knocking out IP3R2 receptors rules out the possibility that a [Ca2+]i wave produced by 

regenerative IP3 generation and Ca2+ release from endoplasmic reticulum stores propagates 

through the cell. Instead, either vasoactive messengers (NO, arachidonic acid derivatives) 

generated in astrocyte processes near synapses may diffuse to the nearest vessel, or a [Ca2+]i 

wave generated by Ca2+-induced Ca2+ release from stores mediated by ryanodine receptors103 

or by Ca2+-induced ATP release and activation of ATP receptors104 may transmit the signal 

from the astrocyte’s synapse-wrapping processes to its endfeet. 

 Other novel pathways that can raise [Ca2+]i in astrocytes have also been suggested. 

For glutamate, the canonical Gi signalling pathway activated by mGluR2 and mGluR3 

receptors inhibits cAMP production, however activation of these receptors (the expression of 

which, unlike mGluR5, has not been questioned in the adult59) has been suggested to raise 

[Ca2+]i in the processes of astrocytes105. This may involve activation of Ca2+ release from 

stores or entry to the cell mediated by the G protein’s subunits. In addition, glutamate75 and 

GABA106 transporters have been suggested to raise astrocyte [Ca2+]i in response to neuronal 

activity. This may be mediated by reversed operation of Na+/Ca2+ exchangers106, following an 

uptake-evoked rise of [Na+]i. Astrocyte [Ca2+]i is also regulated by the modulatory 

neurotransmitters noradrenaline107 (via 1 receptors) and acetylcholine108 (via muscarinic 

receptors), which are released from wide ranging axons with somata in the locus coeruleus (a 

region involved in arousal, attention and memory) and the nucleus basalis of Meynert (an area 
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involved in arousal, learning and reward), respectively. These responses are developmentally 

regulated in the opposite direction to those generated by mGluR5, being barely detectable 

before the end of the first post-natal week108. Recent in vivo work has revealed that locomotion 

or an aroused state evoke a large noradrenaline-mediated astrocyte [Ca2+]i elevation over a 

broad spatial area109,110, while stimulation of the nucleus basalis of Meynert evokes similar 

acetylcholine-mediated [Ca2+]i elevations69,111. Importantly, the noradrenaline results were 

obtained in unanaesthetized animals, and so were not compromised by the suppressive effect 

of anaesthetics on astrocyte Ca2+ transients112. The significance of these results is discussed 

below. 

As indicated above, in our view the jury is still out on whether gliotransmitters are 

exocytosed from astrocytes, but new developments make that issue less crucial. First, recent 

work has provided molecular candidates for ion channels that have been suggested80 to 

release neurotransmitters from astrocytes: both GABA and glutamate can be released from 

astrocytes via Ca2+-activated bestrophin-1 anion channels (despite the apparently low 

expression of mRNA for this channel in astrocytes58,64) and, surprisingly, normally K+-selective 

TREK (Tandem of P-domains in a Weakly Inward rectifying K+ channel - related K+ channel) 

two-pore domain channels27,113,114. Furthermore, raising the proton concentration within 

cerebellar astrocytes (Bergmann glia) using channelrhodopsin evokes glutamate release via 

an as yet unidentified H+-gated mechanism (cf. ref. 49 on brainstem astrocytes) and this 

mechanism contributes to glutamate release during ischaemia115. Second, there is increasing 

awareness that changes of astrocyte [Ca2+]i can have effects on neurons not by releasing 

substances but via changes in the activity of transporters in the astrocyte membrane. 

Astrocyte [Ca2+]i rises via TRPA1 channels increase the insertion of GABA transporters into 

the astrocyte membrane and thus regulate GABAergic effects on neurons without a need for 

the astrocyte to release GABA91. Similarly, Gq-coupled mGluRs increase glutamate uptake 

currents116 and membrane-insertion of GLAST glutamate transporters117, and thus decrease 

glutamate effects on nearby neurons117 (but see ref. 118), and conceivably the surface mobility 

of glutamate transporters119 could be altered by [Ca2+]i changes. Alterations of astrocyte 
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morphology driven by [Ca2+]i changes120,121 will also contribute to altering the efficiency of 

astrocyte transporters in regulating neurotransmitter effects on neurons. Finally, the increase 

of Na+/Ca2+ exchange activity that is generated by increases of astrocyte [Ca2+]i following 

transmitter-induced calcium release from internal stores has been reported to raise [Na+]i 

sufficiently to increase sodium pump activity, leading to a decrease of [K+]o (or less increase 

during neuronal activity) and local hyperpolarization of neurons122. This reduced spontaneous 

excitatory (but not inhibitory) synaptic activity, but decreased failures of action potential evoked 

excitatory synaptic transmission122. The discovery of these mechanisms for modulating 

neuronal synaptic currents by altering astrocyte transmitter uptake or sodium pump activity 

implies that future studies wishing to attribute the effects of changes of astrocyte [Ca2+]i to 

altered gliotransmitter release will first need to rule out  (as in ref. 79) changes in the activity 

of a range of astrocyte membrane transporters. 

Outlook for the future 

  With the discovery of a plethora of astrocyte [Ca2+]i transients with different spatial 

locations and temporal dynamics, new ways in which [Ca2+]i can be raised, and novel 

mechanisms by which astrocytes can modulate neuronal function downstream of the [Ca2+]i 

rises, the field is on a more secure footing than it was 10 years ago (Fig. 3). In this section we 

will highlight what we see as the most important questions to be resolved in the future. 

Methodological advances needed for this progress have been dealt with in three recent 

reviews123-125. 

How do locally and globally-evoked [Ca2+]i changes interact? In brain slices, astrocyte 

[Ca2+]i transients generated locally either spontaneously86,91 or by local release of 

transmitters41,92,93 such as glutamate, GABA and ATP, are readily detected. In vivo, however, 

these can be greatly outweighed by noradrenaline- and ACh-mediated [Ca2+]i transients 

evoked by movement or attention changes (or nucleus basalis stimulation)69,109,110, which 

potentiate the [Ca2+]i rise produced by the locally released transmitters. These [Ca2+]i 

transients evoke a long-term potentiation of local neuronal responses (which depends on 

store-mediated release of Ca2+ in astrocytes, and subsequent D-serine and ATP 
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release)69,103,111. The locus coeruleus and nucleus basalis of Meynert comprise a relatively 

small number of cells (~35,000 for the locus coeruleus in humans), with widely ranging axons, 

which cannot mediate very specific modulation of the neural circuitry, and so their activation 

evokes an astrocyte [Ca2+]i rise more or less globally, in many brain areas109. It therefore 

seems likely that these pathways serve to prime astrocytes to globally modulate neuronal 

function in certain behavioural states. The underlying mechanisms, and how they are 

modulated in disorders of noradrenergic or cholinergic function, are important questions for 

the future. 

How are astrocyte [Ca2+]i transients decoded? In other cell types it has been shown that 

the frequency and time course of [Ca2+]i transients determines their downstream effect126. At 

present we have no information on how the variety of [Ca2+]i transients seen in astrocytes, with 

different spatial and temporal characteristics86,88-93, are decoded into functional effects that are 

short term (e.g. modulation of synaptic transmission) and long term (e.g. modulation of 

synaptic existence by release of factors like glypicans or regulation of synaptic pruning). Is it 

the mean [Ca2+]i that matters, the amplitude of [Ca2+]i transients, their duration, or all of these? 

As noted above, it is common for studies probing the role of astrocyte [Ca2+]i transients to 

introduce BAPTA into astrocytes with a solution lacking added Ca2+, producing a reduction of 

baseline [Ca2+]i in addition to an increase of buffering power. Future work will need to 

determine which of these has the dominant effect on the release of gliotransmitters or the 

activity of proteins in the astrocyte membrane. A related issue is that, conceivably, some 

BAPTA could leak out of astrocytes via gap junctional hemichannels and have an effect by 

lowering the local [Ca2+]o and suppressing synaptic transmission (although dyes of a similar 

molecular weight do not appear to leak out of the cells): this could be tested by conducting 

such experiments in the presence of hemichannel blockers. 

Which other major factors regulate astrocyte [Ca2+]i? We have restricted our review to the 

most well known neurotransmitters that may regulate astrocyte [Ca2+]i. However, new 

modulators of astrocyte  [Ca2+]i are likely to be discovered, and a case has already been made 

for protons49, cannabinoids127,128, polyphosphate129 and endothelin130 in this regard. Although 
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it has been widely assumed that the majority of neuronally-evoked astrocyte [Ca2+]i transients 

reflect release of neurotransmitters at presynaptic terminals, neuronal depolarization may 

instead raise astrocyte [Ca2+]i by action potential evoked release of substances from 

postsynaptic dendrites, including glutamate, ATP and cannabinoids128,131. Astrocyte Ca2+ 

signalling and its effects are also, as for neuronal signalling, likely to show plasticity 

themselves95. 

Which is more important: release of gliotransmitters or alteration of astrocyte 

membrane proteins? A gliotransmitter-sceptic might assert that many of the phenomena 

attributed to gliotransmitter release can in fact be explained by astrocyte-intrinsic effects, 

specifically changes in the activity or expression of membrane transporters. Thus, increases 

in the failure rate of action potential evoked synaptic transmission seen when astrocyte [Ca2+]i 

is buffered might theoretically reflect a reduction of the astrocyte Ca2+-evoked decrease of 

[K+]o produced by increased sodium pump activity122, while changes in the amplitude of 

synaptic currents might reflect Ca2+-driven changes of neurotransmitter transporter level in the 

surface membrane of astrocytes91,116,117. Although occlusion experiments, showing that 

signalling to transmitter receptors on neurons is downstream of astrocyte [Ca2+]i changes, can 

argue against the former idea, we believe that future research will increasingly need to 

consider astrocyte-intrinsic explanations of changes in neuronal function induced by astrocyte 

[Ca2+]i transients. Astrocytes may also release factors other than small molecule transmitters, 

including the calcium-binding protein S100132. 

Does cyclic nucleotide signalling have similar effects to Ca2+? Most research is done on 

astrocyte Ca2+ signalling because of the easy availability of indicators to monitor [Ca2+]i. Yet 

many astrocyte neurotransmitter receptors evoke changes of cAMP (cyclic AMP) 

concentration rather than [Ca2+]i. There is almost certainly a whole world of cAMP-mediated 

effects in astrocytes, influencing membrane proteins, astrocyte morphology and thus neuronal 

function, which is waiting to be discovered. 

Does all this happen in other glia? While more than a decade of research has now been 

carried out on astrocyte Ca2+ signalling, this area of research has barely begun for 
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oligodendrocytes and microglia. The lessons learnt from the pioneering studies of astrocyte 

[Ca2+]i transients will surely be helpful to those studying whether Ca2+ signalling is involved in 

regulating myelination or immune cell function. 

Conclusion 

 From our perspective, the astrocyte Ca2+ signalling field seems in robust good health. 

Controversies remain, but if one examines fields of neuronal physiology that are at a similar 

developmental stage (e.g. the role of neuronal oscillations in brain function, determining what 

fMRI really measures, assessing how the cortical canonical circuit works, defining what the 

cerebellum does) they seem to show similar growing pains to the astrocyte Ca2+ field. 

Constructively handled disagreements are a useful stimulus to further research. We look 

forward to the fourth wave! 
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Figure Legends 

Figure 1. The first wave. Elevations of astrocyte [Ca2+]i evoked by G protein coupled 

receptors activated by glutamate, GABA and ATP (or ADP) have been reported to evoke the 

release of the gliotransmitters ATP, glutamate, D-serine and GABA. These can modulate 

neuronal activity postsynaptically, notably by glutamate and D-serine inducing NMDA receptor 

mediated currents. They can also modulate transmitter release probability by acting on 

presynaptic receptors. Astrocyte P2X and NMDA receptors represent other channel mediated 

sources of [Ca2+]i elevation in astrocytes. Ca2+ waves can spread through the astrocyte’s 

processes to the soma, and to its vascular endfeet where vasoactive messengers are released 

(PG, prostaglandin; 20-HETE, 20-hydroxyeicosatetraenoic acid; EETs, epoxyeicosatrienoic 

acids). Astrocyte morphology has been distorted to define the location of signalling processes. 

Figure 2. The second wave controversies. 1. mGluR5 is absent in adult astrocytes, but they 

still show glutamate-evoked [Ca2+]i transients. 2. Knock-out of the gene for IP3R2 receptors on 

astrocyte calcium stores suppresses calcium transients at the soma, but does not affect many 

functions attributed to [Ca2+]i-driven transmitter release from astrocytes. 3. Raising astrocyte 

[Ca2+]i using a DREADD did not evoke functions attributed to [Ca2+]i-driven transmitter release 

from astrocytes. 4. [Ca2+]i transients seem too slow to account for rapid blood flow increases. 

5. There is debate about whether astrocytes express the VGLUTs and VGAT needed to 

package glutamate and GABA into vesicles for exocytosis. 6. Inhibiting SNARE-driven 

exocytotic release from astrocytes with a dominant negative construct (dnSNARE) suppresses 

effects attributed to gliotransmitter (GlioT) release (6a), but the dnSNARE may also be 

expressed in neurons and suppress their release of neurotransmitter (NeuroT) (6b).  

Figure 3. The third wave and the future. 1. [Ca2+]i transients in the processes of astrocytes 

(1a) differ from those in the soma (1b) in terms of frequency, kinetics and spatial spread. 2. 

[Ca2+]i transients in the processes of astrocytes (2a) depend roughly equally on Ca2+ entry 

from the extracellular space via ion channels (40%) and on Ca2+ release from intracellular 

stores (60%), while those in the soma (2b) depend largely (90%) on Ca2+ release from the 

intracellular stores. 3. [Ca2+]i transients can be generated by Ca2+ entry through spontaneously 
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opening TRPA1 channels or neurotransmitter-gated channels (3a), by mGluR2 or mGluR3 

(3b), and by neurotransmitter uptake raising [Na+]i and reversing Na+/Ca2+ exchange (3c). 4. 

[Ca2+]i rises may release transmitters via ion channels like Best-1 as well as via exocytosis. 5. 

[Ca2+]i rises alter the surface expression of neurotransmitter transporters. 6. Activation of 

Na+/Ca2+ exchange by a [Ca2+]i rise can raise [Na+]i and activate the sodium pump, lowering 

[K+]o and hyperpolarizing nearby neurons. This increases the release probability (Prelease) 

for action potential driven vesicle release, and thus decreases synaptic failure rate. 7. ATP 

released by a [Ca2+]i rise may act on P2X or P2Y receptors to raise [Ca2+]i further along the 

cell, propagating a Ca2+ wave along the cell (7a), or be converted to adenosine which acts on 

presynaptic receptors to increase (A2A) or decrease (A1) transmitter release (7b). 8. 

Noradrenaline released from locus coeruleus neurons, and ACh released from nucleus basalis 

neurons produce large [Ca2+]i rises in astrocytes. 
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