
© 2015 Mirza et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Drug Design, Development and Therapy 2015:9 187–198

Drug Design, Development and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
187

O r i g i n a l  r e s e a r c h

open access to scientific and medical research

Open access Full Text article

http://dx.doi.org/10.2147/DDDT.S72794

glycyrrhetinic acid and e.resveratroloside act 
as potential plant derived compounds against 
dopamine receptor D3 for Parkinson’s disease: 
a pharmacoinformatics study

Muhammad Usman Mirza1

a hammad Mirza2

noor-Ul-huda ghori3

saba Ferdous4

1centre for research in Molecular 
Medicine, The University of lahore, 
lahore, Pakistan; 2Department 
of Bioscience, cOMsaTs institute 
of information Technology, sahiwal, 
Pakistan; 3atta-ur-rehman school 
of applied Biosciences, national 
University of science and Technology, 
islamabad, Pakistan; 4institute of 
structural and Molecular Biology, 
University college london, UK

Abstract: Parkinson’s disease (PD) is caused by loss in nigrostriatal dopaminergic neurons 

and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 

is considered as a potential target in drug development against PD because of its lesser side 

effects and higher degree of neuro-protection. One of the prominent therapies currently avail-

able for PD is the use of dopamine agonists which mimic the natural action of dopamine in the 

brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological 

therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of 

the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. 

Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, 

but also has few or no side effects. Since the past decade, much attention has been given to 

exploitation of phytochemicals and their use in alternative medicine research. This is because 

plants are a cheap, indispensable, and never ending resource of active compounds that are 

beneficial against various diseases. In the current study, 40 active phytochemicals against PD 

were selected through literature survey. These ligands were docked with dopamine receptor D3 

using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs 

approved by the US Food and Drug Administration against PD. The compounds were further 

analyzed for their absorption, distribution, metabolism, and excretion-toxicity profile. From 

the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds 

having high binding energies which should be considered as potential lead compounds for drug 

development against PD.

Keywords: AutoDock, AutoDockVina, molecular docking, parkinson’s disease, glycyrrhetinic 

acid, E.resveratroloside

Introduction
Parkinson’s disease (PD) is the most common form of Parkinsonism. It is a neurodegen-

erative disorder which notably causes rigidity, bradykinesia, tremor, stooped posture, 

dementia, and depression in PD patients. Due to unclear etiology this disease is also 

known as Idiopathic Parkinsonism. But certain factors ie, environmental chemicals, 

drinking water chemistry, pesticide exposure, and rural living are responsible for 

PD.1–3 Moreover, mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes 

are also found to be accompanied by PD.4

Degeneration of nigrostriatal pathway, noradrenergic locus ceruleus, motor 

vagal nucleus, the serotonergic raphe nuclei, cholinergic nucleus basalis of Meynert, 

pedunculopontine nucleus pars compacta, Edinger-Westphal nucleus, and many 
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peptidergic brainstem nuclei are characteristic of PD.5 

However, it is believed that the primary cause of the disease 

is loss in the nigrostriatal dopaminergic neurons, formation 

of intraneuronal, proteinaceous cytoplasmic inclusions called 

Lewy bodies, inability to produce dopamine, mitochondrial 

respiration defect, and oxidative stress. Consequently, 

a striatal dopamine-deficiency syndrome occurs being 

responsible for the classical motor symptoms of PD.6,7

PD is a progressive disorder, affecting one in every 

100 people older than 65 years of age. The symptoms usually 

appear when approximately 60% of the dopamine producing 

neurons are lost.8,9 PD is ranked as the second most common 

neurodegenerative disorder after Alzheimer’s disease.10 

Unfortunately, no therapeutic curative regimen has been 

devised yet.9 One of the most prominent treatments for PD 

is the use of dopamine agonists which mimic the natural 

action of dopamine in the brain and stimulate dopamine 

receptors directly.11 These dopamine agonists will meet the 

dopamine requirement of the brain and help in bringing 

about the restoration of normal functionality of the remaining 

dopaminergic neurons.

Biochemical and electrophysiological data suggest that 

dopamine acts on its very own special dopamine recep-

tors. They show variance in their anatomical localization, 

functional substantiality, and pharmacological importance.12,13 

This is why they are differentiated into five types of dop-

amine receptors (D1–D5). Dopamine receptor D3 (DRD3) 

serves as a potential target for drug development as several 

experimental data suggest that DRD3 agonists are involved 

in neuroprotection and alleviating motor dysfunctions.14 

Furthermore, neuroprotection and neurorestoration are also 

seen in animal models by using DRD3 agonist.15

Dopamine carries out cell cycle modulation in both 

developing and adult brain and DRD3 receptor play a vital 

role in dopaminergic neuronal development. Activation of 

these receptor subtypes leads to propagation of neurogenesis 

in substantia nigra in animal models. Moreover, a persistent 

recovery in the locomotor functions was also seen.16

Drugs with DRD3 receptor proffering behavior, when 

acting on their receptors, causes an increase in production of 

dopamine neurotrophic factor in tissue culture. This factor 

can also be the autotrophic factor for the dopaminergic 

neurons. This protein is oxidant labile, therefore, the drugs 

having DRD3 receptor agonistic activity that results in the 

increase of this protein and also having the antioxidant profile 

will provide a unique therapeutic strategy.17

In early and moderate PD, the dopamine receptor agonists 

have shown effectiveness as symptomatic monotherapy.18 

However, use of current pharmacological therapies such as 

bromocriptine, apomorphine, and ropinirole provides only 

temporary relief of the disease symptoms and is frequently 

linked with insomnia, anxiety, depression, and agitation.19 

Moreover, dose failure or wearing-off effects are common 

and high doses are required to overcome the problem. Usually 

elderly patients are highly sensitive to wearing-off effects.9,20,21 

Memory problems and confusion are associated with anticho-

linergics. Monoamine oxidase inhibitors precipitate many 

side effects when given in combination therapy. Psychiatric 

complications, pathological gambling, and depression is also 

reported with other anti-parkinsonian therapy.22,23 Thus, there 

is a need for an alternative treatment that not only hinders 

neurodegeneration but also has few or no side effects.

Since the past decade much interest has been seen 

in exploitation of phytochemicals. Phytochemicals are 

considered as a potential alternative cure for various 

neurodegenerative diseases including PD. This is because 

plants are a cheap, indispensable, and never ending resource 

of active compounds that are beneficial against various 

diseases. These phytochemicals belong to various classes of 

compounds such as phenolics, alkaloids, terpenoids, lignans 

etc. Several phytochemicals having beneficial affects against 

PD have been reported in literature. Many studies have also 

revealed promising results in decreasing levels of free radicals 

which is a major cause of neurodegeneracy.24–28 Therefore, the 

current study was designed to find potential lead compounds 

from different plants against PD that can be developed into 

commercial drugs.

In this investigation, various phytochemicals active 

against PD were identified through literature survey. They 

were screened through in silico docking analysis to find 

potential lead compounds for PD. The molecular docking 

tools, AutoDock and AutoDockVina (Scripps Research Insti-

tute, La Jolla, CA, USA) were used to dock 40 phytochemi-

cals against DRD3. The ligands were also analyzed for their 

absorption, distribution, metabolism, and excretion-toxicity 

(ADMET) profile. ADMET profile determines the absorp-

tion, distribution, metabolism and excretion efficiency of the 

drug. It also predicts the risk of toxicity upon consumption of 

the compound.29 Lead compounds having impressive phar-

macokinetics and pharmacodynamic properties have a better 

chance to be developed into commercial drugs. In vitro analy-

sis of ADMET properties is usually carried out during the 

end stage of drug development due to which several potent 

compounds fail to achieve drug status. In silico ADMET 

analysis not only decreases the cost of drug designing but 

also skips the risk of rejection of a compound.30
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From the results of the current study it is concluded that 

glycyrrhetinic acid, and E.resveratroloside showed high 

binding energy against dopamine DRD3 when docked with 

AutoDock and AutoDockVina. They also possess a good 

ADMET profile and should be considered potential lead 

compounds for drug development against PD.

Material and methods
Preparation of data set
The three dimensional (3D) structure of DRD3 was retrieved 

from the protein data bank (PDB ID: 3PBL with a resolution 

[Å]: 2.89, R-Value: 0.245).31 This structure was complexed 

with dopamine 2/dopamine 3 selective antagonist eticlopride 

(3-chloro-5-ethyl-N-{[(2S)-1-ethylpyrrolidin-2-yl] methyl}-

6-hydroxy-2-ethoxybenzamide). Phytochemicals for the 

study were collected after extensive literature survey. All 

phytochemicals included in this study have been reported to be 

active against PD after in vitro analysis in different studies.32–34 

Their respective structures were obtained from the publicly 

available database, Pubchem.35 Selected phytochemicals were 

sorted according to Lipinski’s rule. Only those structures were 

selected for docking that strictly followed the Lipinski’s rule 

(details for all selected compounds are given in Table S1).

Protein and ligand optimization
In order to figure out the equilibrium configuration of 

biomolecules and solids, energy optimization methods were 

used. Crystal structure of DRD3 was further processed for 

molecular docking studies. For this, all the hetero-atoms 

and water molecules were removed from protein structure 

followed by energy minimization in order to remove all the 

bad steric clashes using the UCSF Chimera (Resource for 

Biocomputing, Visualization, and Informatics, University of 

California San Francisco, San Francisco, CA, USA) for 1,000 

steepest descent steps at root-mean-square gradient of 0.02 

with an update interval of 10 and using AMBER ff12SB force 

field.36,37 The structure-data file two dimensional structures of 

phytochemicals were converted into MOL 3D structure using 

Open babel. It was followed by energy minimization through 

Hyperchem’s (Gainesville, FL, USA) MM+ force field.

Determination of binding site
Binding sites of proteins are often located in the structural 

pockets and cavities which show high affinity for selective 

drugs. The binding site of DRD3 was revealed by knowl-

edge based studies.31 The binding residues were further 

inspected by using Computed Atlas of Surface Topography 

of Proteins (CASTp) server and Q-Site Finder.38,39 CASTp 

server uses the weighted Delaunay triangulation and the 

alpha complex for shape measurements. It provides iden-

tification and measurements of surface accessible pockets 

as well as interior inaccessible cavities, for proteins and 

other molecules. It measures analytically the area and 

volume of each pocket and cavity, both in solvent acces-

sible surface and molecular surface. Q-Site Finder uses the 

interaction energy between the protein and a simple van 

der Waals probe to locate energetically favorable binding 

sites. Pocket Finder is another tool used for analysis of 

binding sites of a protein and uses Ligsite algorithm. Lig-

site algorithm is designed to heuristically search protein 

for probable interaction of ligand and generate profiles of 

best active sites.40

computational docking strategy between 
DrD3 and phytochemicals
All computational docking studies were carried out using 

AutoDock 4.0 and AutoDockVina41 installed in a single 

machine running on an OptiPlex 980 (Dell, Round Rock, 

TX, USA), Corei3-550/3.2 card GT-203 (Intel, Santa 

Clara, CA, USA) with LINUX (Ubuntu, Canonical Group 

Limited, London, UK) as an operating system.42 Automated 

dockings were performed using the AutoDock 4.0 tool to 

locate the proper binding orientations and conformations 

of various ligands. For DRD3 binding precisely, ligands 

and receptors were subjected to polar hydrogen atoms 

and Gasteiger charges and all torsions were permissible 

to rotate while docking. Grid maps were created using 

the AutoGrid program (Scripps Research Institute). The 

dimensions of the grid were defined with points separated 

by 0.375A°. A random approach of starting positions, 

torsions, and orientations was applied for all ligands and 

default settings of the AutoDock program were used for 

translation, quaternion, and torsion steps. Minimization was 

done by using default parameters by Lamarckian genetic 

algorithm. The standard docking protocol consisted of 100 

runs with an initial population of 150 randomly placed 

samples for rigid and flexible ligand docking with energy 

evaluations 2.5×105, mutation rate 0.02, crossover rate of 

0.80, maximum number of 27,000 iterations, and an elitism 

value of 1 used as standard. Root-mean-square tolerance of 

1.0A° was used for cluster analysis on the docked results. 

The cluster having a higher number of confirmation and 

a low binding energy was selected as the docked pose of 

the respective ligand; the binding energy of each cluster 

being the mean binding energy of sum of confirmations 

present in the cluster.
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AutoDockVina was employed to find the most probable 

ligands for target protein, and ligands were docked at DRD3. 

For this purpose, blind docking was performed by covering 

the whole protein under the grid to detect if there is any other 

binding site available other than provided by PDB crystal 

structure. Gasteiger charges were added to convert protein 

and all ligand molecules into PDBQT files. Protein was 

prepared with identical steps used for AutoDock 4 docking 

experiment. All ligands were docked by AutoDockVina and 

results were further analyzed in conjunction with results by 

AutoDock tools using Chimera. Potential ligands were sorted 

on the basis of making highest interactions with binding 

pocket and minimum binding energy values. The comparison 

of results from both of the tools was considered based on the 

minimum binding energy. 

Drug-likeness and aDMeT analysis
In-silico analysis of drug likeness was performed in order to 

check the potential DRD3 ligands for their ability to follow 

Lipinski’s rule of five.43 This was done by uploading ligands 

to Mcule,44 Molsoft, and Molinspiration server (http://www.

molinspiration.com/cgi-bin/properties) for calculation of 

their molecular properties (Table 1). The chemical structures 

of potential ligands were submitted to admetSAR (http://

lmmd.ecust.edu.cn:8000/) server for in-silico prediction of 

ADME-Tox (absorption, distribution, metabolism, excretion 

and toxicity) properties.45 Furthermore, online server Osiris 

Property Explorer (http://www.organic-chemistry.org/prog/

peo/) was used to predict the tumorigenic, reproductive, and 

mutagenic risks (Table 2).

Results and discussion
Molecular docking enables a scientist to virtually screen 

a number of candidate compounds based on their binding 

ability and binding orientation with a target molecule. It 

also allows one to select compounds with strong affinity for 

the target site. In the current study, phytochemicals have 

been docked in silico with DRD3 to find the best dopamine 

agonist candidates that can hinder neurodegeneration in PD. 

Saponins, flavonoids, alkaloids, lignin, and diarylheptanoids 

have shown high binding energy when docked with DRD3. 

Specifically, glycyrrhetinic acid (-7.11 and -12.7 kcal/mol) 

and E.resveratroloside (-7.03 and -11.7 kcal/mol) have 

shown stronger binding at the receptor’s binding site in exper-

iments when analyzed using AutoDock and AutoDockVina 

respectively (Tables 3 and 4).

Binding residues’ analysis
We performed binding site analysis of our protein through 

CASTp and Pocket Finder. CASTp results were analyzed 

through special plugin of Chimera for better understanding 

of active site. It was observed that the pockets provided by 

CASTp were similar to those found in DRD3 crystal struc-

ture. It also provided other pockets with measurements. An 

in-depth analysis of pockets demonstrated that the pocket hav-

ing residues similar to those found in DRD3 crystal structure 

could be the most potent active site. The results of CASTp 

were also compared with Pocket Finder results. The pockets 

generated through Pocket Finder were analyzed and compared 

with crystal structure of DRD3. It demonstrated residues 

already observed in crystal structure and also some additional 

potent active sites’ residues involved in the binding site of 

protein are shown in (Figure 1). The crystal structure and 

computational analysis of binding site support that Asp110, 

Ile183, Ser192, Phe346, His349, Thr369, Tyr373 act as active 

site residues in 3D crystal structure of human DRD3.31

Molecular interactions
The location of drug binding is a crucial site for designing 

viable drug molecules against any disease. Therefore, the 

Table 1 Lipinski’s rule of five drug-likeness properties of potential compounds by using Molsoft, Mcule, and Molinspiration web-servers

Ligand Glycyrrhetinic acid E.resveratroloside Genkwanin Protopine Naringenin Pergolide Magnolol

MW 470 390 284.26 353.36 272.25 341.4 266.3
logP 5.64 1.99 2.87 2.49 2.5 4.2 4.22
TPsa 74.3 138.5 79 57.23 86 44.3 40.4
reactivity 136 100 78 97 71.5 101.6 84.13
n On 4 8 5 6 5 2 2
n Ohnh 2 5 2 0 3 1 2
n rotb 1 5 2 0 1 1 5
n atoms 80 50 33 45 32 48 38
n violations 0 0 0 0 0 0 0

Abbreviations: MW, molecular weight; LogP, lipophilic efficiency; n ON, hydrogen bond acceptor; n OHNH, number of hydrogen bond donor; TPSA, topological polar 
surface area; n violations, number of Lipinski’s rule of five violations; n rotb, number of rotatable bonds; n atoms, number of atoms.

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://www.molinspiration.com/cgi-bin/properties
http://www.molinspiration.com/cgi-bin/properties
http://lmmd.ecust.edu.cn:8000/
http://lmmd.ecust.edu.cn:8000/
http://www.organic-chemistry.org/prog/peo/
http://www.organic-chemistry.org/prog/peo/


Drug Design, Development and Therapy 2015:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

191

Pharmacoinformatics studies of DrD3 ligands

binding site was further confirmed with the help of CASTp 

and Pocket Finder. It was observed that DRD3 crystal 

structure shows valuable information of interacting resi-

dues, located in the binding pocket such as Asp110, Ile183, 

Ser192, Phe346, His349, Thr369, and Tyr373, respectively 

which play an important role in phytochemical binding. 

Our docking result with phytochemicals showed that many 

potential compounds were actively involved in hydrogen 

bonding with five polar residues such as, aspartic acid, serine, 

histidine, threonine, and tyrosine. Other crucial hydrophobic 

interactions were also found to exist that increase binding 

of phytochemicals with protein binding pocket (Table 5). 

In the docking results however, Thr369 was frequently 

seen to be a common residue amongst phytochemicals with 

high binding energies in the docking results. This is seen 

to be followed by Tyr373, Asp110, and Ile183 residues 

which also occur frequently. Thr369 and Tyr373 were also 

found to be common amongst the binding site of synthetic 

drugs used in the study namely bromocriptine, apomor-

phine, and ropinirole. Further, docking studies revealed 

the results with a binding score up to a maximum of -7.11 

kcal/mol, which is higher than the binding energy range of 

Table 2 aDMeT properties of potential DrD3 compounds predicted from admetsar and Osiris Property explorer 

ADMET Glycyrrhetinic  
acid

E.resveratroloside Genkwanin Protopine Naringenin Pergolide Magnolol

BBB + + - + + + +
human intestinal  
absorption

+ + + + + + +

caco-2 permeable +  - + + + + +
aqueous solubility -4.09 -2.45 -3.17 -4.72 -2.64 -4.05 -4.53
P-gp        

substrate + + + + + + -
inhibitor - - - - - - -

cYP450 substrate        
cYP450 2c9 - - - - - - -
cYP450 2D6 - - - + - - -
cYP450 3a4 + - - + - - -

cYP450 inhibitor        
cYP450 1a2 - - + + + + +
cYP450 2c9 - - + - + - +
cYP450 2D6 - - - + - + -
cYP450 2c19 - - + + + - +
cYP450 3a4 - - + - + - +

cYP iP low low high low high low high
rOcT - - - - - + -
herg inhibition        

herg-i Weak Weak Weak Weak Weak Weak Weak
herg-ii - - - - - + -

aMes Toxicity - - + + - - -
Mutagenic - - - - + - -
Tumorigenic - - - - - - -
reproductive  
effective

- + - - - + -

carcinogens - - - - - - -
Biodegradation - + - + - - -
irritant - - - - - - -
raT, lD50 mol/kg 2.3773 2.1382 2.5626 2.3873 3.511 2.8857 2.0106
FT, plc50 mol/kg high, 0.6994 high, 0.9172 high, 0.5913 high, 1.0291 high, 0.7217 high, 1.1094 high, 0.14
TPT, pigl50 mol/kg high, 0.9506 high, 0.3495 high, 1.1785 high, 0.4287 high, 0.6757 high, 0.7614 high, 1.9675

Notes: raT, lD50 is the lethal dosage of drug when tested on mice; FT (fish toxicity) is environmental risk assessment of drug based on fish and TPT (Tetrahymena pyriformis 
toxicity) as environmental indicators.
Abbreviations: aDMeT, absorption, distribution, metabolism, and excretion-toxicity; DrD3, dopamine receptor D3; BBB, blood–brain barrier penetration; hia, human intestinal 
absorption; caco-2, caco-2 permeability; cYP, cytochrome P; iP, inhibitory promiscuity; rOcT, renal organic cation transportation; herg, human ether-a-go-go-related genes 
inhibition; raT, rat acute toxicity; P-gp, permeability glycoprotein; plc50, lethal concentration, 50%; pigl50, blood glucose; lD50, lethal dose, 50%; +, present; -, not present.
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US Food and Drug Administration (FDA) approved drugs 

(-4.88 to -5.81 kcal/mol). Analyses showed that the top 

nine compounds with considerable high affinity for DRD3 

share a somewhat common active site. After careful obser-

vation of molecular interactions, it was recognized that the 

H-bond interactions with Thr369 and Tyr373 were reported 

in many phytochemicals that were showing binding ener-

gies greater than -6.00 kcal/mol, such as, glycyrrhetinic 

acid, E.resveratroloside, genkwanin, protopine, naringenin, 

pergolide, magnolol, honokiol, and hirsutanone. However, 

glycyrrhetinic acid and E.resveratroloside neatly fit into the 

binding pocket of DRD3 hence (Figure 1), justifying their 

high binding values as compared to other compounds.

comparative studies with autoDockVina
The present comparative docking of phytochemicals with 

DRD3 using two different tools confirmed that AutoDockVina 

showed high binding energies as compared to AutoDock 

Tool. This is due to the fact that Vina uses a gradient opti-

mization method in its local optimization procedure and has 

better accuracy of the binding mode prediction. Our results 

suggested that binding energy between ligand and target 

molecule has been enhanced in AutoDockVina. Binding 

energies calculated using AutoDock tool for glycyrrhetinic 

acid, E.resveratroloside, genkwanin, protopine, naringenin, 

pergolide, and magnolol were in the range (-6.14 to -7.11 

kcal/mol). However, this range of binding energy increased 

(-8.3 to -12.7 kcal/mol) in the case of AutoDockVina and 

showed strong binding (Table 6). A varying trend of binding 

energies was seen amongst the phytochemicals docked in 

both tools. Flavonoids were observed to rank higher when 

docked in AutoDockVina as compared to AutoDock where 

a mixed trend of saponins, lignins, phenols, and alkaloids 

was seen to rank high. 

Table 4 AutoDockVina estimated binding energy (G) and different molecular interactions of phytochemicals in the binding site 
of dopamine receptor D3

Ligands–PubChem ID Binding energy 
G (kcal/mol)

Binding site  
interacting residues

No of H-bonds 
interactions

No of hydrophobic 
interactions 

Total no 
of bonds

glycyrrhetinic acid-10114 -12.7 Tyr373, Thr369 2 10 12
e.resveratroloside-6481477 -11.7 Thr369, Phe345, his349, ile183, asp110,  

ser192
2 6 8

curcumin-969516 -10.9 ile183, his349, Phe345, Thr369, asp110 0 11 11
hirsutanonol-9928190 -10.9 Phe345, ile183, ser192 0 8 8
glabridin_124052 -10.7 ser192, Phe345, asp110, ile183 2 8 10
alloin-313325 -10.6 ile183, Tyr373 0 8 8
Diacerein-26248 -10.3 Tyr373, Thr369 3 10 13
Bromocriptine-31101 -7.9 Ser192, Thr369 0 10 10
Apomorphine-6005 -7.7 Asp110, Thr369 1 9 10
Ropinirole-5095 -7.4 Ser192, Phe346, Thr369, Tyr373 0 5 5

Note: The bold font corresponds to Us Food and Drug administration approved drugs. 
Abbreviation: no, number.

Table 3 AutoDock estimated free energies of binding (G) of phytochemicals in the active site of dopamine receptor D3

Ligands–PubChem ID Inhibition  
constant (µM)

Intermolecular 
energy (kcal/mol)

Binding energy  
G (kcal/mol)

Docking energy 
(kcal/mol)

glycyrrhetinic acid-10114 6.11 -8.65 -7.11 -12.7
e.resveratroloside-6481477 11.65 -8.34 -7.03 -11.7
genkwanin-5281617 20.64 -6.95 -6.89 -9.5
Protopine-4970 17.94 -6.67 -6.59 -9.6
naringenin-439246 48.83 -7.07 -6.21 -9.8
Pergolide-47811 41.34 -7.05 -6.15 -8.3
Magnolol-72300 31.77 -8.16 -6.14 -9.1
Bromocriptine-31101 15.36 -7.71 -5.81 -8.7
Apomorphine-6005 11.99 -6.81 -5.71 -8.3
Ropinirole-5095 263.84 -6.76 -4.88 -8

Notes: The table demonstrates a comparison against our computationally selected drugs with US Food and Drug Administration (FDA) drugs that are currently being used 
in market. The bold font corresponds to FDa approved drugs.
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Table 5 Phytochemicals displaying different types of molecular interactions with dopamine receptor D3

Ligands–PubChem ID Binding site  
interacting residues

No of  
H-bonds 
interactions

No of 
hydrophobic 
interactions 

No of polar 
interactions 

No of 
non-polar 
interactions

Total no 
of bonds

glycyrrhetinic acid-10114 Tyr373, Thr369 2 11 3 4 20
e.resveratroloside-6481477 asp110, ile183, ser192, his349, Thr369,  

Tyr373
2 6 4 3 15

genkwanin-5281617 asp110, ile183, ser192, his349, Tyr373 1 10 2 5 18
Protopine-4970 Phe346, Thr369 1 9 2 8 20
naringenin-439246 asp110, ile183, ser192, his349 0 8 5 3 16
Pergolide-47811 ile183, his349, Thr369, Tyr373 1 9 4 2 16
Magnolol-72300 asp110, ile183, ser192, Phe346, Thr369 1 10 3 2 16
Bromocriptine-31101 His349, Thr369 1 11 2 3 17
Apomorphine-6005 Asp110, Thr369, Tyr373 3 9 3 4 19
Ropinirole-5095 Asp110, Ile183, Ser192, Phe346,  

Thr369, Tyr373
1 12 1 5 19

Note: The bold font corresponds to Us Food and Drug administration approved drugs. 
Abbreviation: no, number.

Figure 1 Molecular surface representation of binding pocket of dopamine receptor D3. 
Notes: Binding pocket residues within the deep groove are labeled as black text and signified with brown surface. Ligands (stick view) are shown with colors as evaluated by 
AutoDock 4.2 (in pink) and AutoDockVina (in sky blue) in both software programs. (A) Confirmation of E.resveratroloside; (B) confirmation of glycyrrhetinic acid.

Both AutoDock 4.0 and AutoDockVina use Monte-

Carlo algorithm. In our experiment, we tried to find the 

most probable small molecules that may act against DRD3 

to cure PD. Docking results were sorted and ranked on the 

basis of their binding energy values. The first ten compounds 

from each of AutoDock 4.0 and AutoDockVina results were 

chosen for further analysis. The comparison showed that 

four compounds were common that have higher binding 

energy values for DRD3. Except binding energy values, 

these four compounds were found to make more interactions 
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with DRD3. These compounds were also compared with 

FDA approved drugs. The comparison with drugs showed 

that the most potent compounds, glycyrrhetinic acid and 

E.resveratroloside, showed the highest binding energy values 

when analyzed using both software and also presented strong 

interactions with DRD3 (Table 6).

Although differing in precision and binding affinities, 

glycyrrhetinic acid and E.resveratroloside were popularly 

recognized as lead compounds in both the software programs 

(Figure 1A, B). Both ligands were found to bind inside a 

deep groove surrounded by seven amino acid residues with 

considerably high binding energy values regardless of the tool 

being used. Figures 1 and 2 illustrate a detailed interaction of 

glycyrrhetinic acid and E.resveratroloside with DRD3 inside 

a deep groove.

aDMeT analysis
The molecular structures of potential ligands, glycyrrhetinic 

acid, E.resveratroloside, genkwanin, protopine, naringenin, 

pergolide, and magnolol were submitted to Mcule, Molsoft, 

Molinspiration, admetSAR, and Osiris property servers to 

determine their different properties including drug likeness 

and ADMET properties. All these potential compounds 

followed the Lipinski’s rule of five without any viola-

tion with respect to an octanol-water partition coefficient 

(LogP 5), molecular weight (500 KDa), number of 

H-bond donors (5), number of H-bond acceptors (10), 

molecular refractivity (40–130) as tabulated in Table 1. In 

ADMET assessment, different pharmacokinetic and phar-

macodynamic parameters were considered such as aqueous 

solubility,46 human intestinal absorption,47 blood–brain 

barrier penetration, Caco-2 permeability, cytochrome P450 

inhibition,48 cytochrome P (CYP) inhibitory promiscuity, 

renal organic cation transportation, human ether-a-go-go-

related genes inhibition, rat acute toxicity, fish toxicity, Tet-

rahymena pyriformis toxicity, AMES toxicity, tumorigenic, 

reproductive, and mutagenic risks. The results have been 

summarized in Table 2. The bioavailability and toxicity risks 

of the potential compounds were predicted based on their 

ADMET properties. Interestingly, the analysis performed 

on admetSAR and Osiris property explorer revealed that 

only glycyrrhetinic acid, E.resveratroloside, and pergolide 

had no substantial ADMET properties that could cause 

adverse effects in humans. Whereas genkwanin, naringenin, 

and magnolol have the potential to show adverse effects 

in recipients. The analysis displays high CYP inhibitory 

promiscuity, as they inhibit most of the cytochrome P450 

isoforms containing CYP450 1A2, 2C9, 2C19, and 3A4.49 

The cytochrome P450 superfamily shows a significant 

role in metabolizing the drug and its clearance in the liver. 

Therefore, the inhibition of cytochrome P450 isoforms 

might affect the drug metabolism and elevate the toxicity 

level.50 The analysis also inferred that, except pergolide, 

none of the potential compounds were potential compounds 

of the human ether-a-go-go-related gene. In fact, other 

than pergolide, none of the compounds were carcinogenic, 

tumorigenic or irritant to humans. Most interestingly, it was 

noticed that both lead compounds, glycyrrhetinic acid and 

E.resveratroloside, indicated the most favorable ADMET 

properties. They were seen to show negative results for 

AMES toxicity, carcinogenicity, mutagenicity, and tumori-

genicity. Both compounds also showed promising human 

Table 6 Comparison of estimated binding energies (G) of first ten compounds from each of AutoDock 4.0 and AutoDockVina

AutoDock 4 AutoDockVina

Ligands–PubChem ID AutoDock 4 binding  
energy G (kcal/mol)

Ligands–PubChem ID AutoDockVina binding 
energy G (kcal/mol)

Glycyrrhetinic acid-10114 -7.11 Glycyrrhetinic acid-10114 -12.7
E.resveratroloside-6481477 -7.03 E.resveratroloside-6481477 -11.7
genkwanin-5281617 -6.89 curcumin-969516 -10.9
Protopine-4970 -6.59 hirsutanonol-9928190 -10.9
naringenin-439246 -6.21 glabridin_124052 -10.7
Pergolide-47811 -6.15 alloin-313325 -10.6
Magnolol-72300 -6.14 Diacerein-26248 -10.3
honokiol-72303 -6.04 Hesperetin-72281 -10.2
Hirsutanone-637394 -6.01 Hirsutanone-637394 -10.1
Hesperetin-72281 -6.01 luteolin-5280445 -10.1
Bromocriptine-31101 -5.81 Bromocriptine-31101 -7.9
Apomorphine-6005 -5.71 Apomorphine-6005 -7.7
Ropinirole-5095 -4.88 Ropinirole-5095 -7.4

Note: The bold font corresponds to Us Food and Drug administration approved drugs.
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intestinal absorption, blood–brain barrier ability and solu-

bility, and potential non-inhibitor of CYP450 1A2, 2C9, 

2D6, 2C19, 3A4, as these factors help in metabolizing and 

in flushing out the drugs from the body.49

Conclusion
The ascription of all the unique benefits to the DRD3 agonists 

is currently under investigation and there is a possibility of 

an increase in therapeutic index of regimes using these ago-

nists. However, an increase in potency of drugs is evident 

using DRD3 agonists. Anti-parkinsonian efficacy has also 

dramatically increased using DRD3 agonists via the auto-

trophic factor pathway. A profound therapeutic leap seems 

to be promising using these agonists.

In the current study 40 phytochemicals were retrieved 

from a literature survey and docked using AutoDock and 

AutoDockVina against DRD3 to find potent lead compounds 

for PD treatment. The compounds were also assessed for 

their ADMET properties. From this study it can be concluded 

that Thr369, Tyr373, Asp110, and Ile183 are likely target 

sites for designing drugs against PD. Also, glycyrrhetinic 

acid and E.resveratroloside have been identified as potential 

compounds that should be scrutinized for use against PD 

as potent drugs. These two compounds have shown strong 

binding affinity for DRD3. The ligand-receptor complex 

of glycyrrhetinic acid and E.resveratroloside shows strong 

hydrogen bonding as well as van der Waals forces between 

the two. It is apparent that this bonding firmly grips the 

Figure 2 Dopamine receptor D3 and ligands’ interactions. 
Notes: The seven binding residues of receptor are displayed (stick view) and ligands are represented in mesh form as evaluated by AutoDock 4.2 (in pink) and AutoDockVina 
(in sky blue). Binding residues are colored as: Asp110 in orange, Ile183 in green, Ser192 in red, Phe346 in cyan, His349 in magenta, Thr369 in yellow, and Tyr373 in blue. 
(A) top view, (B) back view, and (C) front view of E.resveratroloside. (D) Top view, (E) back view, and (F) front view of glycyrrhetinic acid.
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ligand into the receptor’s binding pocket. We performed an 

in-depth analysis of protein binding site and comparative 

docking to ascertain best docked poses of ligands. The best 

ligands we found were based on making high interactions 

with protein residues and had minimum energy values. The 

ligand docking results were compared with docking results 

of FDA approved drugs. Interestingly, a wide difference in 

affinity values was observed between glycyrrhetinic acid, 

E.resveratroloside, and FDA approved drugs. A consensus 

of result was observed when docking results of AutoDock 

and AutoDockVina were evaluated. Further, glycyrrhetinic 

acid and E.resveratroloside also exhibited good ADMET 

profiles and can be considered safe for development into a 

commercial drug. These results are certainly enlightening that 

glycyrrhetinic acid and E.resveratroloside can be considered 

as a template for future drug designing against PD. 
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Supplementary material

Table S1 Molecular properties of compounds under study

Ligands name–PubChem ID Molecular weight XLog3 H-bond donor H-bond acceptor Molecular formula

glycyrrhetinic acid-10114 470.6838 [g/mol] 6.4 2 4 c30h46O4

e.resveratroloside-6481477 406.38328 [g/mol] 0.2 5 8 c20h22O9

genkwanin-5281617 284.26348 [g/mol] 2.1 2 5 c16h12O5

Protopine-4970 353.36856 [g/mol] 2.8 0 6 c20h19nO5

naringenin-439246 272.25278 [g/mol] 2.4 3 5 c15h12O5

Pergolide-47811 314.48814 [g/mol] 4.2 1 2 c19h26n2s
Magnolol-72300 266.33432 [g/mol] 5 2 2 c18h18O2

honokiol-72303 266.33432 [g/mol] 5 2 2 c18h18O2

hirsutanone-637394 328.3591 [g/mol] 3.1 4 5 c19h20O5

hesperetin-72281 302.27876 [g/mol] 2.4 3 6 c16h14O6

Bromocriptine-31101 654.5945 [g/mol] 3.8 3 6 c32h40Brn5O5

Apomorphine-6005 267.32238 [g/mol] 2.3 2 3 c17h17nO2

glabridin_124052 324.3704 [g/mol] 3.9 2 4 c20h20O4

imperatorin-10212 270.27996 [g/mol] 3.4 0 4 c16h14O4

apigenin-5280443 270.2369 [g/mol] 1.7 3 5 c15h10O5

luteolin-5280445 286.2363 [g/mol] 1.4 4 6 c15h10O6

lisuride-28864 338.44664 [g/mol] 2.7 2 2 c20h26n4O
Polydatin-5281718 390.38388 [g/mol] 1.7 6 8 c20h22O8

emodin_3220 270.2369 [g/mol] 2.7 3 5 c15h10O5

Diacerein-26248 368.29378 [g/mol] 1.9 1 8 c19h12O8

rhein-10168 284.22042 [g/mol] 2.2 3 6 c15h8O6

coumarins_323 146.14274 [g/mol] 1.4 0 2 c9h6O2

hirsutanonol-9928190 346.37438 [g/mol] 2 5 6 c19h22O6

Ropinirole-5095 260.37456 [g/mol] 2.7 1 2 c16h24n2O
Kaempferol_5280863 286.2363 [g/mol] 1.9 4 6 c15h10O6

genistein_5280961 270.2369 [g/mol] 2.7 3 5 c15h10O5

elemicin-10248 208.25364 [g/mol] 2.5 0 3 c12h16O3

Pelargonidin-440832 271.24484 [g/mol] 1.2 4 4 c15h11O5
+

Oregonin-14707658 478.489 [g/mol] 0.5 7 10 c24h30O10

herniarin-10748 176.16872 [g/mol] 1.9 0 3 c10h8O3

Quercetin_5280343 302.2357 [g/mol] 1.5 5 7 c15h10O7

isoliquiritigenin_638278 256.25338 [g/mol] 3.2 3 4 c15h12O4

arecoline-2230 155.19432 [g/mol] 0.3 0 3 c8h13nO2

isohamnetin_5281654 316.26228 [g/mol] 1.9 4 7 c16h12O7

Pilocarpine_5910 208.25694 [g/mol] 1.1 0 3 c11h16n2O2

resveratrol-445154 228.24328 [g/mol] 3.1 3 3 c14h12O3

catechin-9064 290.26806 [g/mol] 0.4 5 6 c15h14O6

curcumin-969516 368.3799 [g/mol] 3.2 2 6 c21h20O6

Zingerone_31211 194.22706 [g/mol] 0.8 1 3 c11h14O3

Myricetin_5281672 318.2351 [g/mol] 1.2 6 8 c15h10O8

asarone-636822 208.25364 [g/mol] 3 0 3 c12h16O3

alloin-313325 418.39398 [g/mol] -0.1 7 9 c21h22O9

Mannitol_6251 182.17176 [g/mol] -3.1 6 6 c6h14O6

Note: The bold font corresponds to Us Food and Drug administration approved drugs.
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