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Hippocampal replay has been hypothesized to underlie memory consolidation and navigational 

planning, yet the involvement of grid cells in replay is unknown. During replay we found grid 

cells were spatially coherent with place cells, encoding locations 11ms delayed vs the 

hippocampus - with directionally-modulated grid cells and forward replay exhibiting the greatest 

coherence with CA1. This suggests grid cells are engaged during the consolidation of spatial 

memories to the neocortex.  

During exploration, the activity of place1 and grid cells2 represent self-location. Together these cells 

have been hypothesized to support spatial memory1,3 and navigation3,4. Hippocampal replay5,6 – the re-

activation of place cell sequences during immobility and sleep - has been proposed as a mechanism 

for consolidation5 and route planning7, yet the involvement of grid cells remains unknown. Potentially, 

spatially coherent place and grid cell activity may emerge during replay as the hippocampus broadcasts 

memory traces to the cortex8. To study the involvement of grid cells in replay we recorded concurrently 

from rodent medial entorhinal cortex layers 5/6 (MECV&VI) and hippocampus (CA1) during track-

running and subsequent rest. We report robust coherence between place and grid cell spatial 

representations during hippocampal replay.  

A total of 43 grid cells were recorded across 11 sessions from 6 rats.  Concurrently, 34-72 place cells 

were recorded in each session, 592 in total (Fig. 1a-d, Supplementary Fig. 1,2, Supplementary Table 

1). During subsequent rest, we identified putative replay events based on place cell activity (Figure 1e, 

see Online Methods). A Bayesian decoding algorithm9 and a trajectory-fitting procedure was used to 

reconstruct position and score the replay9 (Supplementary Fig. 3). Robust replay events exhibiting clear, 

straight trajectories (each p<0.2 vs own shuffle) were used for further analyses. On average, during 

replay events, grid cell activity was higher than during non-replay periods10 (2.19Hz (SD =1.74) vs 

1.33Hz (SD=1.61), t(43)=3.24, p=0.00023), with peak grid cell activity lagging that of place cells by 10ms 

(Fig. 1f, Supplementary Fig. 4). To investigate grid-place cell spatial coherence, we assessed the 

similarity of the grid and place cell representations during replay events in which both were active. 
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Specifically, we superimposed the trajectory derived from a hippocampal replay event onto the decoded 

representation from concurrently recorded grid cell spikes (Supplementary Fig. 5). The position 

represented by grid cells during replay events was similar to that represented by the place cell 

trajectories (Fig. 2a, Supplementary Fig. 6), exceeding the coherence obtained by pairing a grid cell 

event with a random place cell event from the same session (p<0.0001 area under the curve (AUC) 

test, see Online Methods, Fig. 2b, Supplementary Fig. 5); comparisons against shuffled distributions 

generated by permuting  grid cell ratemaps (p<0.0001 AUC) and spike times (p<0.001 AUC) 

corroborated this finding (Supplementary Fig. 7,8). Importantly, grid-place coherence also exceeded 

chance levels when analyses was limited to just the strongest (p<0.025 vs own shuffle) place cell replay 

events (p<0.0001 AUC, Supplementary Fig. 9) and did not exceed chance levels for the least robust 

(p>0.5) place cell events (p=0.17 AUC, Supplementary Fig. 10). 

To confirm these results, we constructed an ‘event-ratemap’ for each grid cell using the spikes emitted 

during replay events and the position decoded from concurrent place cell activity (see Online Methods). 

Event-ratemaps and ratemaps generated from track running were similar (mean Pearson correlation = 

0.10, SEM=0.033, Fig. 2c,d) and exceeded the correlations obtained from two shuffling procedures 

(ratemap shuffle W(78)=763, p=0.0079; grid spike times shuffle, W(78)=703, p=0.01). In summary, we 

employed two distinct methods to assess spatial coherence between grid and place cells during replay 

events, confirming that these cell types are closely coordinated during hippocampal replay.   

Forward replay – events that preserve place field sequences experienced during wakefulness - have 

been linked to consolidation and planning5,7 and reverse replay to reward learning6. Consequently, we 

assessed coordination between grid and place cells during forward and reverse replay events 

separately. Grid cells were more likely to be active during forward than reverse events (forward: 

639/1127(57%) vs reverse: 315/699 (45%), 2= 23.41, p<0.0001) and grid-place cell spatial coherence 

was greater for forward than reverse replay (p=0.0006 AUC, Fig. 3a). This difference did not result from 

the unequal number of forward and reverse events – equating the number of events by down-sampling 

did not eliminate the difference (p<0.0001). Forward and reverse events both exhibited grid-place 

coherence that significantly exceeded chance levels (Forward: p<0.0001 AUC, Reverse: p=0.0093 

AUC, Figure 3a). 

Next, we examined the temporal relationship between grid and place cell spatial coherence during 

replay events. If grid cell participation in replay results from a consolidation mechanism5, the location 

encoded by grid cells might lag the place cell trajectory – similar to the 10ms lag seen in peak rates 

between the two regions (Fig. 1f). We investigated grid-place cell coherence for time lags between 

60ms, finding a significant effect of time for forward but not reverse events (forward: F(24,4320)=9.26, 

p<0.0001, reverse: F(24,1464)=0.37, p>0.05). Moreover, for forward events we found the highest grid-

place cell coherence when grid cell spike times were shifted back by an average of 11ms relative to 

place cells (Fig. 3b) – analysis of the distribution of best time shifts across forward events revealed a 

unimodal distribution peaked at 8ms (Fig. 3c).  
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Finally, we investigated the relationship between the strength of replay coherence for individual grid 

cells (indexed by their mean spatial coherence) and the extent of their modulation by head direction 

and hexagonally symmetry in the open field (gridness11). Directional modulation was found to correlate 

with replay coherence (Spearman’s r=0.61, p=0.000093 fig. 3d) such that directional grid cells (KL 

divergence>0.15)12 exhibited higher coherence with place cells than non-directional grid cells (0.16 

(SD=0.082) vs 0.082 (SD=0.030), t(35)=3.57, p=0.0011, p<0.0001 AUC test). Yet, both cell types showed 

significant grid-place cell coherence (directional cells: p<0.0001 AUC, non-directional cells: p<0.0001 

AUC, Supplementary Fig. 11) as well as a lag relative to the CA1 encoded location (directional cells: 

F(24,1056) = 4.150 p<0.0001, non-directional cells: F(24,3312) = 3.060, p <0.0001, Supplementary Fig.  12). 

Grid-place cell coherence was not modulated by hexagonal symmetry (Spearman’s r=0.14, p=0.41, 

Supplementary Fig. 13).  

To conclude, we report that hippocampal place cells and MECV&VI grid cells are closely coordinated 

during replay, suggesting that replay may be a general property of networks encoding self-location. 

Moreover, grid cells are more active during forward replay events during which they exhibit greater 

spatial coherence with place cells. During these events the position encoded by MECV&VI lags behind 

CA1, suggesting replay sequences originate in the hippocampus and propagate to the MEC. As the 

coordination occurs in the absence of sensory cues it plausibly originates from the internal dynamics of 

the hippocampal network13. Together this supports the view that replay during rest is the mechanism 

by which memories are consolidated to the neocortex8 - MECV&VI being the primary cortical output 

target of the hippocampus. It remains to be seen if grid cells in superficial MEC are engaged during on-

track replay or navigational planning4.  
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Figure 1: Experimental procedure.  (a) Rats ran 20 laps on a Z-shaped track (Track Running), and 

were then placed in a rest enclosure (Rest) for an hour and a half, and finally completed an open field 

foraging session (Forage). (b&c) Replay analyses were based on linearized track ratemaps, single 

example grid (b) and place (c) cell shown. (d) Open field ratemaps were used to identify grid and 

directionally modulated cells, example grid cell shown. (e) Example event. Top: raster plot of place cell 

(red) and grid cell (blue) spikes recorded during rest. Dashed vertical lines mark start and end of replay 

event (x-axis: time, y-axis: arbitrary cell IDs). Bottom: smoothed multi-unit place (red) and grid (blue) 

activity (x-axis: time, y-axis: spike rate (Hz)). (f) Peri-stimulus time histogram (PSTH) of grid cell activity 

during replay events, centred on the middle of the event (x-axis, time, y-axis, number of spikes).  

Figure 2: Grid-place cell spatial coherence during replay. (a) Six example reconstructed replay 

events based on concomitant place cell (red boxes) and grid cell (blue boxes) spikes (x-axis time, y-

axis linearized position). White lines mark the extent of the line-fit based on place cell activity. Title 

indicates animal ID and strength of line-fit. (b) Bootstrapped cumulative distribution of grid-place 

coherence (place cell line-fit imposed on grid cells) obtained for all animals (blue line), shaded area 

shows 1SD (x-axis coherence scores, y-axis cumulative proportion of events).  (Black line) distribution 

from shuffle (random pairing of grid and place cell events). Inset, difference between data and shuffle; 

negative difference indicates greater coherence in the data distribution. (c) Cumulative distribution of 

correlations between track and event ratemaps for grid cells (blue, x-axis Person correlation (r), y-axis 

proportion of grid cells). (Black line) distribution from shuffle (event and track ratemaps correlated at all 

lags). (Green line) distribution of correlations between track ratemap and ratemaps derived from 

position decoded from place cell activity during track running. (d) Three example track (green) and 

event ratemaps (blue). Grid cell spikes in (a): Top row left: 2 cells, 3 spikes; middle: 3 cells, 4 spikes; 

right: 3 cells, 3 spikes. Bottom row left: 1 cell, 1 spike; middle: 1 cell, 1 spike; right: 2 cells, 2 spikes.  

Figure 3: Grid-place cell coherence is stronger for forward replay and directionally modulated 

cells. (a) Bootstrapped cumulative distribution of spatial coherence scores for forward (orange), reverse 

(grey) and both (blue) replay events, shaded area 1SD (x-axis grid-place cell coherence, y-axis 

cumulative proportion of events). Inset, difference between data and shuffle. (b) Mean grid-place cell 
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coherence vs time shift of grid cell spikes for forward (orange) and reverse (grey) events (x-axis, grid 

cell time shift, negative indicates grid spikes were moved back in time relative to place cell spikes, y-

axis, mean grid-place coherence, shaded area shows SEM). (c) Distribution of time shift associated 

with highest grid-place cell coherence (x-axis, grid cell time shift, y-axis, number of events). (d) Grid-

place cell coherence as a function of grid cell directional modulation (x-axis, KL divergence of each grid 

cell, y-axis, mean spatial coherence with place cells during replay, title, Spearman rank order 

correlation, open circles: grid cells with KL<0.15).   

Online Methods 

Animals and surgery 

Six male Lister Hooded rats were used in this study. All procedures were approved by the UK Home 

Office, subject to the restrictions and provisions contained in the Animals (Scientific Procedures) Act of 

1986. All rats (330-400g at implantation) received two microdrives, each carrying eight tetrodes of 

twisted 17µm HM-L coated platinum iridium wire (90% and 10%, respectively; California Fine Wire), 

targeted to the right CA1 (ML: 2.2mm, AP: 3.8mm posterior to Bregma) and left medial entorhinal cortex 

(MEC) (ML = 4.5mm, AP = 0.3-0.7 anterior to the transverse sinus, angled between 8-10º).  Wires were 

platinum plated to reduce impedance to 200-300kΩ at 1 kHz. After rats had recovered from surgery 

they were maintained at 90% of free-feeding weight with ad libitum access to water, and were housed 

individually on a 12-hr light/dark cycle.  

 

Recording  

Screening was performed post-surgically after a 1-week recovery period. An Axona recording system 

(Axona Ltd.) was used to acquire the single-units and positional data (for details of the recording system 

and basic recording protocol see Barry et al1). The position and head direction of the animals was 

inferred using an overhead video camera to record the location of two light-emitting diode (LED) 

mounted on the animals’ head-stages (50Hz). Tetrodes were gradually advanced in 62.5um steps 

across days until place cells (CA1) or grid cells (MEC) were found. 

 

Experimental apparatus and protocol  

The experiment was run during the animal’s light period, to facilitate rest during the rest session. During 

track running sessions animals shuttled back and forwards on a Z-shaped track comprised of 10cm 

wide runways covered with black paint, raised 75cm off the ground. The two parallel sections of the Z 

(190cm each) were connected by a diagonal section (220cm).  The entire track was surrounded by 

plain black curtains. Animals were pre-trained to run on the track, taking between 3 and 6 days before 

they would shuttle fluently from one end to the other. At the start of each session, rats were placed at 

one end of the Z-track. The same end was used as a starting location for every day of the experiment 

and for every rat. The ends and corners of the track were baited with sweetened rice to encourage 

running from one end to the other. In each session rats completed 20 full laps (30-45min).  
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Following the track session, rats were placed in the rest enclosure for an hour and a half. The rest 

enclosure consisted of a cylindrically shaped environment (18cm diameter, 61cm high) with a towel 

placed at the bottom and was located outside of the curtains which surrounded the Z-track. Animals 

were not able to see the surrounding room while in the rest enclosure. Prior to recording, rats had been 

familiarised with the rest environment for at least 7 days.  

Following the rest session, rats completed a 20min foraging trial in a familiar open field environment. 

Recording made during this period provided the basis on which spatially modulated cells were 

functionally classified.  

As we did not use experimental groups, randomisation and experimenter blinding were not applicable.  

 

Data inclusion/exclusion 

Once animals were experienced and ran well on the track (following 3-6days of training) we considered 

that any session with at least 30 place cells and 1 grid cell met our minimum requirements and hence 

were eligible for analysis. The number of sessions which fulfilled these criteria varied between animals 

(1-3).  Importantly, if multiple sessions were included from the same animal, we ensured the different 

sessions did not contain the same grid cells (based on history of electrode movement, waveforms, and 

spatial ratemaps in the open field screening sessions). 

The criteria for including place and grid cells are described below (‘Functional classification’ and ‘Data 

analysis’ sub-sections) as well as the criteria for including replay events (‘Data analysis’ sub-section).  

All data that met these criteria were included in all of the analyses.  

Functional classification 

Spatially modulated MEC cells were classified as grid cells using a shuffling procedure similar to that 

applied elsewhere2,3. Specifically, the hexagonal regularity of each cell was assessed using two 

methods, the ‘standard’ gridness measure4 and ‘modified’ gridness measure3. For each method the 

values calculated for each cell were compared with a null distribution of 100 values obtained by 

calculating the gridness values of data in which the cell’s spike train had been randomly permuted 

relative to the position of the animal by at least 30s. A cell was considered to be a grid cell and admitted 

to the main analysis if its standard or modified gridness value exceeded the 97.5th percentile of the 

matching null distribution (43 grid cells from 6 rats were identified). 

Following Doeller et al.5 the extent of directional modulation exhibited by each grid cell was assessed 

by calculating the Kullback-Leibler (KL) divergence between the cell’s polar rate map and a uniform 

circular distribution with equal mean: 

𝐷𝐾𝐿 =∑
𝜏1(𝑖)log⁡(𝜏1(𝑖))

𝜏2(𝑖)
𝑖

 

(1) 
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Where τ1(i) is the value in the ith bin of a polar rate map normalised to have area 1 (as a probability 

distribution) and τ2(i) is the ith bin of a uniform probability distribution with the same number of bins as 

τ1. Grid cells with KL divergence greater than 0.15 were considered to be directional5,6 (13 of 43 cells). 

 

Data analysis 

Ratemaps for runs on the Z-track were generated after first excluding areas in which the animals 

regularly performed non-perambulatory behaviours (e.g. eating, grooming) - the final 10cm at either end 

of the track and 5cm around each of the two corners. Similarly, periods when the animals’ running 

speed was less than 3cm/sec were also excluded. Each animal’s path was linearized and dwell time 

and spikes binned into 2cm bins, then smoothed with a Gaussian kernel (σ =5bins). Firing rate was 

calculated for each bin by dividing spike number by dwell time. Separate ratemaps were generated for 

runs in the outbound and inbound directions.  

Replay events from the rest session were identified based on the activity of hippocampal place cells 

using a similar method to Pfeiffer and Foster7 and Olafsdottir et al.8 Hippocampal cells were classified 

as place cells if their firing field’s peak firing rate exceeded 1Hz and was at least 20cm long. 

Interneurons, identified by narrow waveforms and high firing rates, were excluded from all analyses. To 

identify replay events, multi-unit (MU) activity from hippocampal place cells only were binned into 1ms 

temporal bins and smoothed with a Guassian kernel (σ = 5ms). Periods when the MU activity exceeded 

the mean rate by 3 standard deviations were identified as putative replay events. The start and end 

points of each putative replay event were determined as the time when the MU activity fell back to the 

mean.  Events less than 40ms long or which included activity from less than 15% of the recorded place 

cell ensemble were rejected (4382 events included in total). 

To analyse modulation of grid cell activity by replay events we firstly estimated the firing rate of each 

cell inside (‘event rate’) and outside (‘baseline rate’) events. Difference in event and baseline rates were 

then assessed using a paired t-test. Secondly, to assess the temporal synchrony between grid cell 

activity and replay events, we generated peri-stimulus time histograms (PSTH) for each event, centred 

on the temporal midpoint of the event (bin size = 10ms). Specifically, for each event the number of grid 

cell spikes emitted in a 2000ms window centred on the middle of the event were counted. Spikes were 

then summed across all recorded events to generate one PSTH per session. Finally, PSTHs for all 

sessions were combined into a single grand PSTH, the peak of which was identified. The same 

procedure was repeated for place cells. 

To analyse replay, place cell spikes from putative events were binned into 10ms temporal bins and a 

Bayesian framework9 was used to calculate the probability of the animal’s presence in each spatial bin 

given the observed spikes – the posterior probability matrix. This approach was validated using data 

from the track running session except that spikes were binned into 500ms temporal bins and location 

was decoded from the posterior probability matrix using a simple maximum likelihood method.  Within 

each temporal bin the animal’s location was decoded to the bin with the highest posterior probability 
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and this was compared with the known true location (mean decoding error 20cm). Note, two posterior 

probability matrices were generated for each event – one for inbound runs and one for outbound runs.  

To score the extent to which putative replay events represented a constant speed trajectory along the 

Z-track we applied a line-fitting algorithm8. Lines were defined with a gradient (V) and intercept (c), 

equivalent to the velocity and starting location of the trajectory. The goodness of fit of a given line 

(𝑅(𝑉, 𝑐)) was defined as the proportion of the probability distribution that lay within 30cm of it. 

Specifically where P is the probability matrix:  

𝑅(𝑉, 𝑐) =
1

𝑛
∑ 𝑃(|𝑥(𝑡) − (𝑉. 𝑡. 𝑇 + 𝑐)| ≤ 𝑑)𝑛−1
𝑡=0  

where t indexes the time bins of width 𝑇 and d is set to 30cm. 𝑅(𝑉, 𝑐)  was maximised using an 

exhaustive search to test all combinations of V between -50ms-1 and 50ms-1 in 0.5ms-1 increments 

(excluding slow trajectories with speeds > -2ms-1 and < 2ms-1) and c between -15m and 21m in 0.01m 

increments.  

To assess putative replay events for significance we carried out a spatial shuffle of the place cell 

ratemaps. Specifically, each ratemap was shuffled by shifting it relative to the track by a random number 

of bins drawn from a flat distribution between 1 and the length of the track minus 1 bin. The ratemap for 

each cell was rotated independently and in each case trailing bins were wrapped around to ensure an 

equal number of bins were used for each shuffle. This process was repeated 100 times for each event 

and for each shuffle we calculated a goodness of fit measure (as described above).  This enabled us 

to estimate the probability of obtaining a given event by chance. Robust events, with an individual p-

value of less than 0.2, were accepted as replay events and submitted to further analyses (1826 out of 

4382 putative events). Note, two shuffling distributions were generated for each event – one for inbound 

runs and one for outbound runs. An event was considered to be inbound run if the p-value for the 

inbound run was lower than that for outbound runs, and vice versa. Thus, only one event (either inbound 

or outbound) was submitted to further analyses. Finally, for all inbound events the grid cell ratemaps 

for inbound runs were used to assess grid-place cell coherence, and conversely for outbound events 

grid cell ratemaps for outbound runs were used.  

To investigate spatial coherence between grid and place cells during replay events we applied the same 

Bayesian framework to the grid cell spikes. Hence, for each replay event we also calculated a posterior 

probability matrix based solely on the observed grid cell spikes. Rather than fitting straight-line 

trajectories to the periodic grid cell posteriors, we compared the best-fit line from the concurrently 

recorded place cell posterior. Specifically, we fitted a line with the same intercept and slope as the 

concurrent place cell event and calculated the proportion of the probability distribution lying within x/2cm 

of the line. Where x was equal to the average size of the grid cell firing fields recorded from that animal 

on the linear track. This value we used to index grid-place cell replay coherence. To estimate statistical 

significance of the observed coherence scores we used three different shuffling procedures.  

In the first instance a shuffle distribution was generated by randomly pairing each grid cell posterior with 

100 non-concurrent place cell events from the same animal and from the same session; only place cell 

(2) 
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events that were also accompanied by grid cell firing were used. The line fitting procedure to estimate 

grid-place cell replay coherence, described above, was re-run. To assess the statistical significance of 

the obtained distribution of coherence scores against the shuffle we bootstrapped the data distribution 

10,000 times, computing the cumulative distribution and the corresponding area-under-the-curve (AUC, 

i.e. the sum of the cumulative distribution) for each bootstrap. Difference scores between each of the 

10,000 AUC scores obtained from the bootstrapped data and the shuffle distribution were computed 

and the 95% confidence interval estimated based on these difference scores (assuming a 2-sided test). 

A result was deemed statistically significant if the confidence interval did not contain 0.  

Second, we applied a spatial shuffling procedure. This procedure was similar to the shuffling procedure 

used for place cell events.  Specifically, each grid cell ratemap was shuffled by shifting it relative to the 

track by a random number between 10 and the length of the track minus 10 bins. The ratemap for each 

cell was rotated independently and trailing bins were wrapped around to ensure an equal number of 

bins were used for each shuffle. This process was repeated 100 times for each event. For each shuffle, 

the grid-place cell replay coherence score was calculated using the slope and intercept parameters of 

the best-fit line of the accompanying place cell event (unshuffled).  To assess statistical significance we 

used an AUC test as described above.  

Third, we applied a temporal shuffling procedure. Specifically, we shifted the spike times of grid cells 

active in replay events, by a random amount between 5ms and the length of the event minus 5ms. The 

relative timing of spikes from the same cell were maintained. Trailing spikes were wrapped around to 

the start of the event to ensure an equal number of spikes contributed to each shuffle. For each shuffled 

event, its posterior probability matrix was generated and the best-fit line from the concurrent place cell 

event (unshuffled) compared to the shuffled posterior and a grid-place cell replay coherence score 

computed, as detailed above. Statistical significance was again assessed using an AUC test.  

Finally, we employed a second, distinct approach, to validate our observation of coherence between 

grid and place cells during replay. Namely, for each grid cell we constructed an ‘event ratemap’ by using 

the timing of grid cell spikes during replay events and the decoded location based on the line fit to the 

place cell posterior probability matrix. Spikes and dwell time were binned into 2cm spatial bins and the 

resulting ratemap smoothed with a Gaussian kernel (σ = 5 bins). Each event ratemap was compared 

with the standard ratemap derived from normal track running using a Pearson correlation. As before, 

significance was established independently against two null distributions. First, for the ‘event ratemap’ 

the correlation between each event and standard ratemap was percentile ranked against correlations 

obtained between the same ratemaps but with the standard ratemap shifted incrementally to all possible 

lags relative to the event ratemap – trailing bins were wrapped around to ensure a constant number of 

bins were used in each comparison. A Wilcoxon signed-rank test was used to determine if the ranks 

observed for the grid cells differed significantly from an expected median rank of 50%. A second null 

distribution was generated by shifting the timing of the grid cell spikes within each replay event by a 

random period drawn from a flat distribution covering 0s to the length of the replay event. Spikes which 

exceed the duration of the event were ‘wrapped’ back to the start but otherwise the relative timing of 

spikes within each event were unaffected. This procedure was repeated for each event and the event 
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ratemap constructed as before and then compared with the standard ratemap. This entire procedure 

was repeated 100 times for each grid cell and in each case the correlation between the event ratemap 

and standard ratemap was percentile ranked against the correlations obtained from the shuffling 

procedure. A Wilcoxon signed-rank test was again used to determine if the observed ranks exceed that 

expected by chance.  

Forward and reverse replay events were identified on the basis of the gradient of the line fit to the place 

cell posterior probability matrix. For outbound events, events that progress down the track (e.g. from 

the start of the track to the end) were categorised as forward events, while events depicting runs in the 

opposite direction were categorised as reverse events. The converse was true for inbound events. To 

assess whether grid cells were more likely to be active in forward rather than reverse events a chi-

square test was used to assess the proportion of all forward events accompanied by grid spikes (57%) 

against the proportion of all reverse events accompanied by grid spikes (45%).  Moreover, we repeated 

the main AUC analysis, described earlier, for each event type to assess difference in grid-place cell 

coherence for forward and reverse events. Finally, as we recorded more forward events than reverse 

events (639 vs 315) we down-sampled the coherence scores for the forward events a 100 times to 

equal the number of reverse event coherence scores. For each iteration of the down-sampling 

procedure we computed the mean forward coherence score and compared it against that for the reverse 

events.  If the mean for 95/100 down-sampling iterations still exceeded that for the reverse events we 

deemed the obtained statistical difference between forward and reverse coherence scores not to be a 

confound of varying sample sizes.  

To analyse the temporal synchrony between grid and place cell representations during replay events, 

we applied a time shift to grid cell spikes (starting at -60ms then advancing in 5ms steps to +60ms).  

For each time shift we calculated the mean coherence between grid and place cells using the line fitting 

procedure. To assess whether the mean coherence varied as a function of time shift we used a 

Repeated Measures ANOVA for the forward and reverse events separately. To estimate the peak in 

this distribution it was mean normalised and fminsearch (Matlab 2015a, Mathworks) used to minimise 

the RMS difference between the data and a mean normalised Gaussian function in which the centre, 

height, and standard deviation were allowed to vary. The centre of the fitted distribution was used to 

define the peak lag.  

Finally, we compared the grid-place cell coherence exhibited by the grid cells against their directional 

modulation and hexagonal symmetry (i.e. gridness).  The mean coherence for each grid cell estimated 

from all events was compared against the KL5 divergence and modified gridness scores3 obtained from 

the foraging sessions using a Spearman rank order correlation.  Furthermore, we assessed the 

statistical significance of grid-place cell replay coherence scores for directional (KL divergence > 0.15) 

5.6 and non-directional (KL divergence <= 0.15) cells separately, using the same AUC test described 

above. Moreover, we carried out the aforementioned time-shift analysis separately for directional and 

non-directional cells as well. Finally, we also directly compared the replay coherence of the directional 

cells with the non-directional cells using a two-sample t-test.  
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Statistical test 

To assess place cell replay events for statistical significance we used a non-parametric spatial shuffle 

described above and percentile ranked each event against its own shuffle.  Similarly, to assess grid-

place cell coherence for significance we used a non-parametric area under the curve (AUC) test, using 

95% confidence intervals to assess statistical significance (if the confidence interval did not contain 0 

we deemed a result significant). For the alternative ‘event ratemap’ method (see above) we used the 

Wilcoxon signed rank non-parametric test. Spearman rank-order correlation were used to assess 

relationship between grid-place cell coherence and ‘gridness’ and directional modulation of grid cells. 

Finally, to assess bias for grid cell participation in forward (vs reverse) replay events we used a chi-

square test. None of the described non-parametric tests have any underlying assumptions (such as 

normality and equality of variance).  

Parametric test were only used to assess difference in grid cell rate during and outside replay events 

(paired t-test), grid-place cell coherence for directional and non-directional cells (independent samples 

t-test), and variation in grid-place cell coherence across different grid cell time shifts (repeated 

measures ANOVA). Data distributions for these tests were assumed to be normal but this was not 

formally tested.  

All tests were two-sided. A supplementary methods checklist is available on request. No statistical 

methods were used to pre-determine sample sizes but our sample sizes are similar to those reported 

in previous publications19,20.  

Histology 

Rats were anaesthetised (4% isoflurane and 4L/min O2), injected intra-peritoneal with an overdose of 

Euthatal (sodium pentobarbital) after which they were transcardially perfused with saline followed by a 

4% paraformaldehyde solution (PFA). Brains were carefully removed and stored in PFA which was 

exchanged for a 4% PFA solution in PBS (phosphate buffered saline) with 20% sucrose 2-3 days prior 

to sectioning. Subsequently, 40-50μm frozen coronal sections were cut using a cryostat, mounted on 

gelatine-coated glass slides and stained with cresyl violet. Images of the sections were acquired using 

a Leica microscope (DM5500) Sections in which clear tracks from tetrode bundles could be seen were 

used to determine the location of cells recorded.  

Data/code availability 

The data that support the findings of this study are available from the corresponding authors upon 

request. Analysis software novel to this study can been found in the Supplementary Software file.  
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