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Abstract  
 

Aim: Sickle cell disease (SCD) is the commonest cause of childhood stroke world-wide. Magnetic 

resonance imaging (MRI) is routinely used to detect additional silent cerebral infarction (SCI), as 

intelligence quotient (IQ) is lower in SCI as well as stroke. This review assesses the effect of 

infarction on IQ, and specifically whether, compared to healthy controls, IQ differences are seen in 

SCD children with no apparent MRI abnormality.  

 

Method: A systematic review was conducted to include articles with a SCD paediatric population, 

MRI information and Wechsler IQ. A meta-analysis of nineteen articles was performed to compare 

IQ in three groups: Stroke vs. SCI, SCI vs. no SCI, and no SCI vs. healthy controls.  

 

Results: Mean differences in IQ between all three groups were significant: Stroke patients had 

lower IQ than SCI patients by 10 points (6 studies), SCI patients had lower IQ than no SCI patients 

by 6 points (17 studies), and no SCI patients had lower IQ than healthy controls by 7 points (7 

studies).  

 

Interpretation: Children with SCD and no apparent MRI abnormality have significantly lower IQ 

than healthy controls. In this chronic condition, other biological, socioeconomic and environmental 

factors must play a significant role in cognition.  

 

 

What this paper adds: 

-Systematic review including recent IQ studies in SCD 

-Meta-analysis including previously underreported results comparing SCD and healthy children 

-Critical appraisal of SCI lesion size quantification studies 

-Critical appraisal of appropriate control comparison group 

-Discussion of non-radiological factors associated with lowered IQ 

 

 

Running foot: IQ in Sickle Cell Disease  
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Introduction 

 

Sickle cell disease (SCD) is a lifelong inherited genetic disease associated with a high prevalence of 

stroke and cognitive dysfunction in childhood. Approximately 10% of patients will experience an 

overt stroke
1
; however, in the first decade of life around one third of children with SCD will 

accumulate at least one silent cerebral infarct (SCI; i.e. an abnormality seen on T2-weighted MRI in 

the absence of overt stroke, or neurological symptoms lasting more than 24 hours)
2
. By definition, 

SCI are clinically silent and therefore age at which SCI occurred and time lapse between SCI and 

cognitive testing are unknown. Stroke and SCI have been associated with general cognitive 

dysfunction, including problems with sustained attention, cognitive flexibility and working 

memory
3–7

.  

 

Full-scale intelligence quotient (IQ) is the most commonly reported and widely studied standardised 

measure of general cognitive ability in SCD. Chodokoff & Whitten (1963) published the first study 

investigating IQ between patients with SCD and controls – finding no differences; however from 

the 1980s/early 1990s there were many studies suggesting that patients have lowered global 

intelligence scores than matched controls, even when excluding those with history of stroke or 

abnormal neurological examination
8–13

. The first study that used magnetic resonance imaging 

(MRI) to classify patients into groups based on whether SCI are present or absent was published in 

1996
14

; collaborators in the large Cooperative Study in Sickle Cell Disease (CSSCD) study in the 

United States linked presence of MRI abnormality and measurable global cognitive dysfunction.  

Since then, several studies have confirmed that children with SCI (SCI+) generally have lower IQ 

scores than those without evidence of SCI (SCI-)
15–20

. These findings established a potential link 

between presence of lesions and lesion size as a mediating factor in a child’s IQ score. 

 

The presence, nature and aetiology of any differences in IQ between children with SCD without 

SCI (i.e. normal MRI) and healthy controls have however, received less attention. These studies are 

necessary to elucidate differences in neurocognitive outcome that may be due to subtle aspects of 

the disease other than presence of SCI, such as chronic anaemia and hypoxia
21

 and school absences, 

and to attempt to separate them from socioeconomic
22

 and environmental effects. 

 

The purpose of this article is to evaluate the relationship between IQ and MRI status in children 

with SCD, through systematic review and a meta-analysis of published studies. A meta-analysis in 

2002
23

 found an overall difference of 4.3 standard IQ score points lower in children with SCD 

compared to controls, with a significant effect size. This review expands to separate the patient 

group by radiological status as seen on MRI (i.e. SCI+, SCI-), with a specific aim to answer the 

question of whether IQ differences are seen in children with no apparent MRI abnormality 

compared to healthy controls.  

 

 

Methods 

 

Literature searches were conducted on PubMed using the search terms “sickle cell” paired with 

either “intelligence” or “IQ” from 1980-2015. To be eligible for review, the peer-reviewed article 

must have been a cross-sectional design, included a paediatric SCD population, used MRI to define 

presence of absence of SCI and/or stroke, and used a Wechsler intelligence scale measure that 

reported IQ (e.g. WPPSI, WASI, WISC, WAIS). Systematic and other reviews were excluded, 

although references from those articles may have identified additional original articles. Additional 

articles that met inclusion criterion were also drawn from the references of each original article 

identified.  
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Seventy-three publications were identified through the literature search. From the aforementioned 

criteria, the following articles were excluded: 5 reviews and 1 letter to the editor, 3 articles with 

non-paediatric SCD populations, 28 articles without MRI information, and 6 articles without 

Wechsler scales. Additionally, 8 articles were excluded because the authors did not report IQ values 

or did not clearly state scores by MRI group, 1 article was excluded because of longitudinal design, 

1 article with two groups was excluded due to only having one subject in one of the groups, and 1 

article was excluded because patients only included those with HbA + SB0 thalassaemia. Nineteen 

articles were included in this review (see Figure 1 for flow chart). For each article, participant age 

and mean IQ and standard deviation were recorded for each MRI group (Table 1). 

 

Critical appraisal  

 

FSIQ was not the primary outcome measure of many of these articles; however, to assess quality for 

this review, the articles were evaluated for characteristics that may affect FSIQ; criteria included 

details of how the groups were identified (i.e. SCI identification on MRI), lesion size assessment (if 

applicable) and appropriateness of control group (i.e. sibling/community control, data from 

normative databases).   

 

Statistical analysis 

 

Each study analysed reported Wechsler full-scale IQ scaled for developmental stage with mean 100, 

standard deviation 15 and range 40-160. A meta-analysis was performed using the metafor
24

 

package in R (www.r-project.org). Three group comparisons were analysed: 1) mean difference 

between Stroke and SCI+ groups (n=6 studies), 2) mean difference between SCI+ and SCI- groups 

(17 studies), and 3) mean difference between SCI- and healthy controls (HC; n=7 studies).  

 

The 19 studies were drawn from different countries and were assumed to each contain a sample of 

the SCD population. The data was assumed to be heterogeneous (i.e. not every study showing the 

same true effect size in differences in mean IQ); therefore a random-effects restricted maximum-

likelihood estimator model, which estimates heterogeneity, was fitted to the data for each group 

comparison. Estimates and 95% confidence intervals of between-group mean differences were 

calculated and displayed on forest plots.   

 

 

Results  

 

Of the 19 studies included in this review, 6 included a Stroke group, 17 included a SCI+ group, and 

7 included a HC group. Mean IQ ranged between 65.9 to 76.9 in the Stroke group, between 70.6 to 

93.12 in the SCI+ group, between 78.9 to 103.12 in the SCI- group, and between 88 to 108.29 in the 

HC group (Table 1).  

 

Critical appraisal  

 

As presence of SCI has been shown to affect IQ, this study aimed to critically appraise how SCI are 

identified in these studies and how lesion size estimation was performed. Additionally, fewer 

studies employed a control group for comparison, and characteristics of these control groups were 

critiqued. 

 

Identification and measurement of SCI 

Definitions of SCI varied; most studies defined SCI as an area of abnormally increased signal 

intensity on T2-weighted or FLAIR sequences, without history of a focal neurological 
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event
14,17,19,25–28

. Some, however, defined patient groups by normal or ‘abnormal’ MRI, which may 

have included different aetiologies including lacunar infarction, leukoencephalopathy and 

encephalomalacia
15,18

. Other studies included MR angiography to discern major vessel watershed 

infarction from unilateral and bilateral high-signal lesions
16

. More recently, several US studies 

defined SCI as an MRI signal abnormality at least 3mm in one direction and visible on two views 

on FLAIR T2-weighted images
22,29,30

, as used in the Silent Infarct Transfusion trial
31

.  

 

Ten of 17 studies that included an SCI group did not describe any lesion size measurement for 

analysis, and three studies used a qualitative measurement (i.e. categorizing lesions into focal/small 

<0.5cm, medium 0.5-1.5cm, or large >1.5cm)
3,14,26

. The remaining four studies quantified lesion 

size as a continuous variable, either by manual tracing of hyperintense voxels and converting to 

mm
3
 by multiplying by slice thickness and gap

29,30
, manual tracing of T2-weighted images that have 

been registered to Montreal Neurologic Institute (MNI) space
19

, or using a semi-automatic method 

and multiplying segmented voxels by voxel volume
28

. The effect of lesion quantification method on 

results are mixed; one study did not provide any correlation result with IQ
19

, two studies found 

volume of SCI to be a significant predictor of IQ
28,29

 and one study found only patients with larger 

lesions had lower IQ
30

. 

 

Studies with healthy control group 

Seven studies included a healthy control group. However, ‘control group’ consisted of different 

characteristics depending on the study: group of siblings recruited contemporaneously with 

patients
3,16,32

, group of siblings as well as non-ethnically matched control subjects recruited 

contemporaneously with patients
19

, group of community controls matched for age, gender, race and 

socioeconomic status recruited contemporaneously with patients
29

, group of historical sibling data 

(not siblings of the patients recruited)
15

 and group of normative data from the WISC matched for 

age, race and gender
33

.  

 

The use of varied control groups gave mixed results when comparing with SCD patients with 

normal MRI. Two studies that included siblings as a comparison group found 5-
32

 and 6-point
3
 IQ 

reductions in patients, but results were non-significant, while one study did not specifically test 

those groups
16

. One study found SCI- patients had significantly lower IQ than controls, when the 

controls consisted of siblings and non-ethnically matched subjects
19

. No differences were found 

between SCI- patients and a sample of community controls
29

. When using historical sibling data
15

 

or normative database data
33

, SCI- patients scored significantly lower than the control comparison 

group. 

 

 

Meta-analysis 

 

The random-effects model estimated the amount of total heterogeneity (τ
2
) and performed 

Cochran’s Q-test for heterogeneity
34

. There was significant heterogeneity in the Stroke vs. SCI+ 

comparison, while non-significant heterogeneity in the SCI+ vs. SCI- and SCI- vs. HC 

comparisons; however, the random-effects model was used for consistency (Table 2). 

 

Mean differences in IQ between Stroke vs SCI+, SCI+ vs SCI- and SCI- vs HC groups were all 

significant (Table 2, Figure 2). For the Stroke vs SCI+ analysis, the model estimated stroke groups 

have a mean difference of 10.31 IQ points lower than SCI+ groups (p=0.0013). For the SCI+ vs 

SCI- analysis, the model estimated the SCI+ groups have a mean difference of 5.83 IQ points lower 

than SCI- groups (p<0.0001). For the SCI- vs HC analysis, the model estimated SCI- groups have a 

mean difference of 6.90 IQ points lower than healthy control groups (p<0.0001).  
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Discussion 

 

IQ, a representative of a child’s general cognitive ability, has been widely used in the SCD 

literature for more than 30 years. Many studies have established a trend for decreasing IQ with MRI 

status using age-appropriate Wechsler scales for children; this review analysed all studies that 

reported IQ by MRI status, to elucidate differences between those studies that grouped SCD 

patients together regardless of MRI abnormality.  

 

The results of the meta-analysis of 19 studies confirm this trend for decreased IQ: patients with 

history of stroke perform significantly worse than those with SCI by approximately 10 IQ points 

and children with SCI perform significantly worse than children without SCI (normal MRI) by 

approximately 6 IQ points. This meta-analysis also finds children with normal MRI perform 

significantly worse than healthy controls by approximately 7 IQ points. This is in contrast to some 

previous conclusions
28

; these findings suggest that presence of lesions, or lesion size alone, may not 

account for all differences in IQ in children with SCD. Other factors, whether biologic
22

, 

socioeconomic
22

 or environmental
35

, are likely to play an additional role in the child’s cognitive 

outcome.  

 

Effect of SCI on FSIQ 

 

Presence of SCI 

SCI have been reported to occur in at least 27% of children with SCD before 6 years of life
36

, and 

the number and size of lesions have been shown to increase over time in children with SCI who do 

not develop clinical stroke
37

. SCI in children with SCD are considered to be secondary to small 

vessel disease, mainly affecting the white matter in the frontal lobe borderzones between the 

anterior and middle cerebral artery territories
38

, but may also result from acute events, including 

posterior reversible encephalopathy syndrome
39

 and fall in haemoglobin
40

. Results from a previous 

meta-analysis published 13 years ago found that children with evidence of SCI on MRI have IQ 

scores approximately 4-7 points lower than children without evidence of SCI
23

, which is in line 

with the approximate 6 point reduction found between those two groups found in this meta-analysis.  

 

Size of SCI 

Previous reports have shown presence of SCI or lesion volume as an independent predictor of 

FSIQ
22,28,29

. However, there may be a threshold of lesion size before IQ is affected; in one study, 

small infarct volume appeared to have minimal impact on global cognitive ability but larger volume 

was associated with lowered FSIQ scores in eight patients with SCI
30

. It is of note that these articles 

showed discrepancies in lesion quantification methods. Quantitative lesion measurements from T2-

weighted or FLAIR images were 2D sequences with 3mm or 5mm thick slices, sometimes with 2-

3mm gaps between slices; a 3D sequence with isotropic voxel sizes would have been ideal to rule 

out potential partial volume effects.  

 

Neuroimaging correlates of FSIQ 

 

Quantitative neuroimaging has shown neuroanatomical correlates of decreased IQ in children with 

SCD. White matter density, as determined by voxel-based morphometry, was found to correlate 

with verbal IQ in the left hemisphere, as well as performance IQ in the right hemisphere, but not 

full-scale IQ
19

. Two studies
41,42

 were excluded from this review because the authors did not report 

FSIQ scores by MRI group; however, these authors found neuroimaging correlates of FSIQ of note. 

Steen and colleagues
41

 found an inverse relationship between basilar artery volume and FSIQ (r=-
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0.62, p<0.005), while Strouse and colleagues
42

 found an inverse correlation between right-

hemisphere cerebral blood flow and FSIQ (p=0.04) and performance IQ (p=0.01). 

 

Biological determinants of FSIQ 

 

Previous studies have shown SCD-related markers of disease severity to correlate with intelligence, 

which may explain differences in IQ between patients with normal MRI and healthy controls. There 

have been links with anaemia severity
16,18,43–45

; more specifically, haematocrit
16,43

 and the 

interaction between age and haematocrit
26

, that have also been shown in non-SCD populations
46–48

. 

This correlation between anaemia and IQ could be due to a direct impact on the brain (i.e. anaemia-

induced hypoxia/ischaemia) or due to indirect influences on processes such as the body’s response 

to anaemic hypoxia exposure
41

, which leads to increased cerebral blood flow
49–51

 and cerebral blood 

flow velocity
52,53

, reduction in cerebrovascular reserve
54

 and subsequent large and small vessel 

injury/ischaemia
55

. In a model for explanatory factors of IQ, each 1% decrease in haemoglobin 

oxygen saturation was found to be associated with 0.75 IQ point decrease
22

. Chronically altered 

cerebral circulation may lead to a cycle of long-term hypoxia
43

 and cognitive dysfunction
56

. Three 

studies included in this review find a negative association between chronologic age and FSIQ in 

cross-sectional study design
18,22,26

, while a longitudinal study from the CSSCD showed on average, 

FSIQ decreased 1.2 point per year with age
57

. Other SCD-related biomarkers previously linked to 

cognitive outcome include growth delays
11,58,59

, possibly linked to poor nutrition
11

, that may have 

an effect on the development and maturation of the brain
29,60

, but relatively few studies have 

included height as a predictor of IQ in SCD, despite the importance of this measure in the general 

population
61

. 

 

Environmental determinants of FSIQ 

 

SCD has been called a neurodevelopmental disorder, in which both biological and social factors 

impact cognitive functioning
44,62

. Like other chronic diseases, and in addition to chronic 

intermittent pain
63

, SCD is associated with frequent hospitalisations
64,65

 for a variety of 

complications including acute hypoxia due to chest crisis and acute anaemia (aplastic and 

sequestration), which have been shown to affect cognitive functioning
66

. The home environment 

with a child with SCD can be especially stressful for both the child
67–69

 and caregiver
70

. In an 

academic setting, children with SCD have been shown to demonstrate deficits in reading, writing, 

arithmetic and spelling compared to healthy peers and siblings
8,10,12,14,17,23,71

; this limited  academic 

achievement
72

 is likely due to high proportions of illness, school absenteeism and grade retention
73

. 

Poverty
35

/low socioeconomic status
74,75

 and lack of parent education
22

 are commonly found in SCD, 

and have been associated with lower IQ scores
22

. Living in cities may expose already vulnerable 

children to pollutants known to affect risk of cerebral infarction and to unfavourably alter brain 

structure in adults
76

. Lead exposure may have affected children born before 1985
77

, when few 

studies included sibling controls, and might still have a differential effect on children with a chronic 

condition making them vulnerable to brain damage
78

. Noise pollution from aircraft and traffic may 

also play a role
79

.  

 

Use of appropriate control groups 

 

An appropriate control group should be identical to the patient study group, with the exception of 

the specific variable under investigation. Siblings (recruited contemporaneously with patients) 

constitute the most appropriate comparison group, as many environmental factors attributing to 

cognition (i.e. socioeconomic status, parental education, ethnic background) are controlled
17,80

. 

Normative data from standardised Wechsler scales do not constitute a fair comparison
18,80

, and one 

can argue community controls, while perhaps matched for ethnic background and socioeconomic 
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status, do not share the characteristics of the home environment of a child with SCD. This review 

critically analysed the composition of the control comparison groups for studies investigating IQ in 

SCD. Of all the studies included in this review, only two studies recruited only siblings 

contemporaneously with SCD patients; both found lower, but non-significant IQ scores in SCI- 

patients
3,32

. We recommend careful consideration when interpreting results of studies with 

inappropriate control comparison groups. 

 

Limitations 

 

While the Wechsler scales are a reliable measure of general cognitive ability, some argue that they 

fail to relate to real-world performance
81

. Along with school difficulties, children can also be 

impaired in age-appropriate life tasks, such as chores and cultural activities
82

. Cognitive impairment 

continues into adulthood
83

, and effective education and social interventions to improve academic 

attainment/achievement and quality of life are necessary to ensure productivity and vocational 

success.  

 

It is possible some of the studies used overlapping participants in reporting IQ. Five studies 

included multicentre
14,17

 and single-centre
15,33

 data from CSSCD, and one study
25

 included data 

from participants enrolled in both CSSCD and Stroke Prevention in Sickle Cell Anaemia (STOP) 

trials.  

 

In summary, this systematic review and meta-analysis confirms a step-wise progression of declining 

IQ corresponding to presence of SCI and clinical stroke, but also significantly lowered IQ between 

children with SCD with no evidence of MRI abnormality and healthy controls. While presence of 

SCI affects cognitive outcome in children with SCD, it is likely that biological, socioeconomic and 

environmental factors play an important role in intellectual functioning.   
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*denotes articles included in meta-analysis 
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Author(s) Genotype Stroke 

group 

(n) 

SCI+ 

group 

(n) 

SCI- 

group 

(n) 

HC 

Group 

Age (years) Battery Stroke 

FSIQ: 

mean (sd) 

SCI+ FSIQ: 

mean (sd) 

SCI- FSIQ: 

mean (sd) 

HC FSIQ: 

mean (sd) 

Armstrong et 

al. (1996) 

 

HbSS/HbSC 

(n=194) 

 

9 24 161 none range: 6-12  WISC-R 70.8 (5) 82.8 (2.9) 90 (1.7) - 

Steen et al. 

(1998) 

SCD (n=22) - 10 12 30 patients = mean 10.5 

± 3.4, controls = 

mean 10.5 ± 3.0  

WISC-R 

WISC-III 

- 70.6 (12.1) 78.9 (8.9) 88 (16.1) 

Watkins et al. 

(1998) 

SCD (n=39) 5 4 30 15 range: 5.9-16.7  WISC-III 

WPPSI-

R 

67.6 (16.6) 79 (5.7) 86.03 (12) 92.07 (12.2) 

Bernaudin et 

al. (2000) 

SCD (n=173) 11 17 104 76 range: 5-15 WISC-III 

WPPSI-

R 

73.5 (14.4) 82.6 (15.7) 86.6 (17.1) 90.3 (14.3) 

Brown et al. 

(2000) 

HbSS/HbSC 

(n=63) 

22 11 30 none  WISC-III 75.05 

(15.53) 

81.91 (14.43) 81.67 (16.68) - 

Wang et al. 

(2000) 

HbSS/HbS β
0
-

thalassaemia 

(n=73) 

- 14 59 none range: 6-16 WISC-III - 73.0 (12.1) 86.0 (15.0) - 

Wang et al. 

(2001) 

HbSS (n=185) 20 43 122 none range: 6-12 WISC-R 

WISC-III 

76.9 (17.2) 77.2 (13.7) 84.8 (13.5) - 

Schatz et al. 

(2002) 

HbSS (n=27) - 18 9 none SCI+ patients = 

mean 12.4 ± 1.9, 

SCI- patients = mean 

11.6 ± 3.0  

WASI - 81.9 (12.4) 89.9 (7.9) - 

Steen et al. 

(2003) 

HbSS (n=49) - 16 33 none range: 4-19.7  WISC-R 

WISC-III 

- 78.6 (16.1) 81.1 (11) - 

Steen et al. 

(2005) 

HbSS (n=54) - - 30 30 10.9 ± 2.9  WISC-III - - 79.4 (11.9) 91.37 (12.19) 

Baldeweg et al. 

(2006) 

HbSS/HbSC 

(n=36) 

- 16 20 31 SCI- patients =17.1 

± 4.1, SCI+ 

patients= 18.2 ± 4.4, 

controls = 15.7 ± 3.6 

WISC-III 

WAIS 

- 82 (13) 92 (14) 101 (11) 

Hogan et al. 

(2006) 

SCD (n=30) - 17 13 none 17.4 ± 4.2 WISC-III 

WAIS-R 

- 82.5 (12.5) 87.4 (8.1) - 
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Kral et al. 

(2006) 

HbSS (n=27) - 5 22 none  WASI - 90.60 (3.05) 87.59 (11.42) - 

Schatz & 

Buzan (2006) 

HbSS (n=28) 8 8 12 16  WISC-III 65.9 (14.8) 92.9 (12.8) 94.5 (14.2) 97.9 (11.8) 

White et al., 

(2006) 

SCD (n=65) - 16 49 none 8.0-16.9 years WASI - 85.8 (12.7) 90.0 (12.9) - 

Hijmans et al. 

(2011) 

HbSS/HbS β-

thalassaemia 

(n=34) 

- 22 9 none 6-12 years WISC-III 

WAIS-III 

- 79 (14.4) 80 (9) - 

King et al. 

(2014) 

HbSS/HbS β-

thalassaemia 

(n=150) 

- 107 43 none 5-15 years WASI 

WPPSI-

III 

- 93.12 (12.5) 100.53 (13.08) - 

van der Land 

et al. (2015) 

HbSS/HbS β
0
-

thalassaemia 

(n=38) 

- 19 19 none 8.2-17.1 years WISC-

III/WAIS

-III 

- 81 (7) 89 (12) - 

Kawadler et al. 

(2015) 

HbSS (n=25) - - 25 14 8-18 years WASI - - 103.12 (11.95) 108.29 (11.69) 

WISC-R=Wechsler Intelligence Scale for Children – Revised (age 6 years, 0 months – 16 years, 11 months); WISC =Wechsler Intelligence Scale for Children (age 6 years, 

0 months – 16 years, 11 months); WPPSI= Wechsler Preschool and Primary Scale of Intelligence (age 2 years, 6 months – 7 years, 3 months); WASI=Wechsler 

Abbreviated Scale of Intelligence (age 6-89 years); WAIS= Wechsler Adult Intelligence Scale (age 16 years, 0 months – 90 years, 11 months) 

 

 

Table 1. Overview of original articles included in meta-analysis. 
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 Stroke vs. SCI+ group SCI+ vs. SCI- group SCI- vs. HC group 

Number of studies 6 17 7 

Random-effects model 

Estimated total heterogeneity (τ
2
) 35.11 4.49 2.37 

Cochran’s Q (p) 12.32 (p=0.03) 22.96 (p=0.11) 5.85 (p=0.44) 

Model estimate (95% CI) -10.31** (-16.58 - -4.04) -5.83*** (-7.70 - -3.95) -6.90*** (-9.74 - -4.07) 

**p<0.01, ***p<0.001 

 

Table 2. Results of meta-analysis.
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Figure Legends 

 

Figure 1. Systematic review flow chart. 

 

Figure 2. Forest plots of mean differences between groups of patients categorised by MRI status. 

Mean differences (estimates) were significant between patients with history of stroke vs those with 

SCI (left panel), patients with evidence of SCI vs patients with normal MRI (no evidence of SCI; 

middle panel), and patients with no evidence of SCI and healthy controls (right panel). 
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Figure 1. Systematic review flow chart.  
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Figure 2. Forest plots of mean differences between groups of patients categorised by MRI status. Mean 
differences (estimates) were significant between patients with history of stroke vs those with SCI (left 

panel), patients with evidence of SCI vs patients with normal MRI (no evidence of SCI; middle panel), and 
patients with no evidence of SCI and healthy controls (right panel).  
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