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ABSTRACT 

Silicate weathering is a key process by which CO2 is removed from the atmosphere. It 

has been proposed that mountain uplift caused an increase in silicate weathering, and led to the 

long-term Cenozoic cooling trend, although this hypothesis remains controversial. Lithium 

isotopes are a tracer of silicate weathering processes, which may allow this hypothesis to be 

tested. Recent studies have demonstrated that the Li isotope ratio in seawater increased during 

the period of Himalayan uplift (~45 Ma), but the relationship between uplift and the Li isotope 

ratio of river waters has not been tested. Here we examine Li isotope ratios in rivers draining 

catchments with variable uplift rates from South Island, New Zealand. A negative trend between 

7Li and uplift shows that areas of rapid uplift have low 7Li, whereas flatter floodplain areas 

have high 7Li. Combined with U activity ratios, the data suggest that primary silicates are 

transported to floodplains, where 7Li and (234U/238U) are driven to high values due to 

preferential uptake of 6Li by secondary minerals, and long fluid-mineral contact times that enrich 

waters in 234U. In contrast, in mountainous areas, fresh primary mineral surfaces are continuously 

provided, driving 7Li and (234U/238U) low. This is the opposite trend to that expected if the 

increase in Cenozoic 7Li in the oceans is driven directly by mountain uplift. These data suggests 
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that, rather than weathering of mountain belts, the increase in seawater 7Li reflects the 

formation of floodplains and the increased formation of secondary minerals. 

 

INTRODUCTION 

Chemical weathering of silicate rocks is one of two removal processes of carbon from the 

ocean/atmosphere system (the other being Corg burial) and therefore a critical component of long-

term climate (Berner, 2003; Kump et al., 2000). Chemical weathering of continental rocks is also 

one of the main suppliers of material to the oceans, and hence exerts significant influence on 

ocean chemistry. There is an on-going debate about the factors most significant in controlling 

chemical weathering rates, with climate – temperature and runoff – (Berner et al., 1983; Gislason 

et al., 2009; Walker et al., 1981), supply of fresh material (Hilley et al., 2010; Raymo and 

Ruddiman, 1992; Raymo et al., 1988), or some combination thereof  (Li et al., 2014; West et al., 

2005) thought to be important in different settings in the modern environment (Jacobson and 

Blum, 2003). Understanding the controls on weathering is critical to determining the behaviour 

of the long-term carbon cycle. A climate-dominated control would yield a feedback process that 

could explain how the long-term climate has maintained itself within relatively narrow bands 

through Earth history, whereas a supply-dominated cycle has been suggested to link Cenozoic 

cooling to uplift of the Himalayas (Raymo and Ruddiman, 1992). 

Marine carbonate strontium isotopes were initially used to examine changes in 

weathering associated with mountain building, but anomalously radiogenic Himalayan 

carbonates are thought to dominate the riverine Sr flux (Oliver et al., 2003). Lithium (Li) 

isotopes are a potential alternative tracer of weathering processes, and may be the only tracer 

available whose behaviour is solely dominated by silicate weathering processes. Li isotopes are 
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not fractionated by biological processes or plant growth (Lemarchand et al., 2010), and are not 

affected by carbonate (low temperature or hydrothermal) weathering (Kisakűrek et al., 2005; 

Millot et al., 2010; Reyes and Trompetter, 2012). This gives 7Li a significant advantage over 

tracers such as Ca isotopes, which tend to be dominated by carbonate dissolution and formation 

(Moore et al., 2013). The 7Li of primary silicate rocks defines a narrow range, with an average 

for continental crust of ~0 ± 2‰ (Burton and Vigier, 2011; Teng et al., 2004), compared to the 

high variability in rivers draining these rocks (6–42‰ (Huh et al., 1998; Kisakűrek et al., 2005; 

Millot et al., 2010; Pogge von Strandmann et al., 2006, 2010, 2012; Vigier et al., 2009). Fluvial 

7Li is thus effectively independent of primary lithology, and these highly variable 7Li in rivers 

are controlled by weathering processes, particularly by the extent of uptake of Li into secondary 

minerals, which preferentially remove 6Li (Pistiner and Henderson, 2003; Wimpenny et al., 

2010). Riverine 7Li therefore reflects the ratio of primary rock dissolution (driving rivers to 

low, rock-like, 7Li with high [Li]), relative to secondary mineral formation (driving rivers to 

high 7Li, and lower [Li]) (Pogge von Strandmann et al., 2010). River 7Li is thus controlled by 

the fraction of Li dissolved, relative to the fraction incorporated into secondary minerals. The 

less Li in solution, the more there is in clays, and the higher the solution 7Li becomes. This 

behaviour has also been described as weathering congruency: if riverine 7Li is low (closer to the 

primary rock value), then less Li is being taken in secondary clays, and weathering is described 

as congruent (i.e. direct reflection of rock chemistry by water chemistry) (Misra and Froelich, 

2012; Pogge von Strandmann et al., 2013). The riverine input to the oceans is combined with the 

hydrothermal input, and removal by low-temperature clays, to determine the oceanic 7Li (Misra 

and Froelich, 2012).  
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Recently, a history of the Li isotope ratio of Cenozoic seawater has been assessed, which 

shows increasing 7Li values from ~40Ma to present (Hathorne and James, 2006; Misra and 

Froelich, 2012). The latter study interprets this increase as due to Himalayan uplift, increased 

denudation, and more incongruent weathering in the mountain belt (i.e. an increasing amount of 

clay formation). A problem with this interpretation, however, is that rivers draining the high 

Himalayas have 7Li values lower than the global average (Kisakűrek et al., 2005), implying that 

Himalayan weathering is more congruent, so that Himalayan uplift should have driven seawater 

7Li to lower values rather than higher. 

In this study, we examine Li isotope ratios in rivers from New Zealand terrains for which 

uplift rates have been determined, to assess the effect of uplift on riverine Li isotope ratios, and 

hence the effect of orogeny on riverine 7Li. 

 

SAMPLES  

Rivers were sampled from multiple catchments around South Island, New Zealand, 

divided between the East and West of the island (Fig. S1). These samples were collected and 

analysed for (234U/238U) (where parentheses indicate activity ratio), and were used previously to 

define the interaction between weathering, erosion and U activity ratios (Robinson et al., 2004). 

In general, the individual catchment areas are small, so rivers flow through a narrow range of 

rainfall and uplift environments. Robinson et al. (2004) developed a hydrologically accurate 

digital elevation model, which allows estimates of the average rainfall and uplift rate for each 

catchment, by using digitised rainfall and uplift maps. The western coast has significantly more 

rainfall than the east (an average of 8000 compared to 1600 mm/yr), and a higher uplift rate (5.8 

± 1.5 compared to 1.9 ± 0.8 mm/yr). Overall there is a positive correlation (r2 = 0.61) between 
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uplift and rainfall, and uplift/rainfall ratios are higher in the East. Hydrothermal springs were 

sampled at Hanmer Springs, to assess the effects of hydrothermal processes, although these 

springs do not drain into any of the studied rivers. Weathering lithologies have a relatively 

uniform bulk lithology, dominantly composing Mesozoic greywackes and schists (Rattenbury et 

al., 2006; Jacobson et al., 2003), with relatively low groundwater contributions (Mongillo and 

Clelland, 1984). Analytical methods are described in the supplement 

RESULTS 

Element concentrations are within the range shown by other studies of South Island rivers 

(Jacobson et al., 2003). Molar Ca/Na (11.8 ± 5.5) co-vary with Mg/Na ratios (0.36 ± 0.16), as 

expected for rivers draining the continental crust. Lithium concentrations vary between 35 and 

540 nmol/l, within the range of rivers draining similar terrains in the Mackenzie Basin (Millot et 

al., 2010). Li isotope ratios (7Li) vary widely between 7.6 and 34.7‰ (Table S1, Fig. 1a). In 

general, rivers from the west of the island have lower 7Li than the eastern rivers, and, overall, 

there is a negative trend between [Li] and 7Li. Lithium concentrations show positive co-

variations with uplift rates, while 7Li is negatively correlated to uplift (Fig. 1b; r2 = 0.67, 

significant >99%, Spearman-Rank correlation), as well as less significantly to rainfall (r2 = 0.44).  

DISCUSSION 

Lithium Isotopes and Uplift 

The observed trend between 7Li and [Li] (shown as 1/Li in Fig. 1a) is typical for the Li 

system in rivers (Pogge von Strandmann et al., 2010) and relates to the congruency of 

weathering: Li isotopes in rivers are controlled by the ratio of primary mineral dissolution to 

secondary mineral formation (Kisakűrek et al., 2005; Pogge von Strandmann et al., 2006, 2012). 

The range of global rivers extends to lower concentrations and higher 7Li than the New Zealand 
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rivers, but the latter follow this trend well (Fig. 1a), suggesting that the results of this study can 

be extrapolated more generally. The similarity between different rivers suggests that, globally, 

the fractionation caused by clay formation remains similar, allowing behavior approaching 

mixing.  

The primary significance of these New Zealand data is the negative relationship between 

uplift rate and 7Li (Fig. 1b). This correlation implies that higher uplift rates rapidly provide 

fresh primary material, resulting in relatively more dissolution of primary rock material relative 

to secondary mineral formation. The weaker relationship between 7Li and rainfall suggests that 

the hydrological cycle is a less important control on silicate weathering. These data show that, in 

areas of steep relief where there is continuous supply of fresh rock by uplift and rapid runoff, 

secondary mineral formation is relatively inhibited. In contrast, in the flatter eastern catchments 

of South Island, uplift and runoff are lower, waters become more supersaturated, and secondary 

minerals precipitate, driving 7Li to higher values. These data therefore indicate that 7Li values 

are linked to orogenic processes, showing that in mountainous terrains with high uplift rates, 

chemical weathering processes are relatively congruent. This observation is consistent with those 

of High Himalayan rivers, which have relatively low 7Li values (Kisakűrek et al., 2005). 

Uranium Isotopes and Weathering Regimes 

The weathering processes can be further elucidated by comparing (234U/238U) and 7Li 

data for these streams, with the two systems providing rather complementary information. 

Uranium activity ratios are controlled by the ratio of physical erosion to mineral dissolution 

(Henderson 2002; Andersen et al., 2009; Chabaux et al., 2003; Pogge von Strandmann et al., 

2006, 2010, 2011; Robinson et al., 2004). Relatively high physical erosion rates increase mineral 

surface area, promoting -recoil of 234U and the leaching of 234U from recoil-damaged lattice 
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sites, and driving riverine (234U/238U) to high values. In contrast, relatively high dissolution rates 

will drive river water (234U/238U) towards the secular equilibrium value of 1, the value of the bulk 

silicate rock. Unlike 7Li, (234U/238U) is not expected to be impacted by formation of secondary 

minerals. These isotope systems are therefore both driven to low values by dissolution, but to 

high values by different processes: physical erosion or residence time for (234U/238U), and 

secondary mineral formation for 7Li. Therefore coupled use of Li and U isotopes in weathering 

studies can yield complementary information on dissolution vs. clay formation vs. erosion 

(Pogge von Strandmann et al., 2006, 2010).  

Rivers from the west coast have (234U/238U) close to 1, and variable but low 7Li. This 

implies high dissolution rates and variable and low secondary mineral formation (Fig. 2). The 

implication is that the high uplift rates in these mountainous catchments result in rapid 

dissolution of the host rocks, but, due to swift removal of material, rivers rarely reach 

oversaturation with regard to secondary minerals, which therefore do not form. In contrast, the 

eastern rivers have higher 7Li and (234U/238U) indicating both an increase in secondary mineral 

formation, and an increase in grain surface area, from physically eroded material transported to 

the floodplain. Thus eroded grains settle on the flat topography, where the waters dissolving 

them become oversaturated decreasing the dissolution rate and leading to precipitation of 

secondary minerals which increases the 7Li. 

Consequences for silicate weathering reconstructions 

The conclusion that higher uplift drives more congruent weathering, and hence riverine 

7Li to lower values, is consistent with the observation that High Himalayan river 7Li is almost 

ubiquitously lower than the global mean (Kisakűrek et al., 2005). The weathering of mountain 

belts should therefore have driven seawater 7Li lower during the Cenozoic, rather than towards 
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the higher values observed (Misra and Froelich 2012). In contrast, it is the tectonically stable 

areas such as floodplains, associated with and supplied by high-relief tectonically active terrains, 

that exhibit incongruent weathering and high clay formation (West et al., 2002; Jacobson and 

Blum, 2003; Moore et al., 2013), and which drive riverine 7Li high. The few river 7Li data that 

currently exist from the Himalayan floodplain show higher 7Li relative to rivers of the High 

Himalayas (Huh et al., 1998), supporting this conclusion. Therefore, while Misra and Froelich 

(2012) are likely correct that orogeny is responsible for the increase in seawater 7Li (Wanner et 

al., 2014), the locus of the dominant Li isotope fractionation is the floodplain and foreland 

surrounding the mountains, rather than the mountains themselves, possibly coupled to a shift in 

the oceanic Li sink (Li and West, 2014). This conclusion agrees with modelling of the 7Li 

record, which suggests a significant increase in retention of Li by clays during the Cenozoic (Li 

and West, 2014; Wanner et al., 2014). It is possible that this increase in clay retention is linked to 

Himalayan/Tibetan Plateau and/or Andean uplift (e.g. Hoorn et al., 2010).  

For a given denudation rate, congruent weathering provides more cations to the ocean 

than incongruent weathering (where a proportion of cations are retained in clay minerals). 

Cenozoic uplift increased the surface area available for weathering and might be expected to lead 

to an increase in the dissolution of silicates and drawdown of CO2. The formation of significant 

floodplains associated with this mountain building would, however, have led to retention of a 

higher fraction of the released cations on the continents, thus limiting the effectiveness of uplift 

in driving CO2 removal. By recording the extent of this cation retention, and thereby the overall 

congruency of weathering, lithium isotopes are a record of the efficiency of continental 

weathering in driving CO2 removal, rather than the overall amount of CO2 removal.  
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The use of Li isotopes to assess past cation retention is is predicated on the assumption 

that Li is similarly retained in clays as Ca or Mg. In the well-studied example of Iceland, such 

behavior is indeed seen, with the mobility of Li, Ca and Mg being almost identical, indicating 

similar clay retention (Gislason et al., 1996; Pogge von Strandmann et al., 2006; Hindshaw et al., 

2013). Icelandic data also show that Li and Ca isotopes correlate with one another in rivers 

where Ca is being removed into clays (Hindshaw et al., 2013), further supporting the use of Li 

isotopes to assess the retention of cations during clay formation. On a global scale, if weathering 

of uplifted areas did lead to Cenozoic cooling, then the increase in primary dissolution caused by 

mountain building must have outweighed the greater retention of cations on the continents 

recorded by changes in seawater Li isotopes. 

 

CONCLUSIONS 

Rivers from South Island, New Zealand, show a strong, negative correlation between the 

uplift rate of their catchments and their Li isotope ratio. This implies that when uplift rates are 

high, fresh primary material is continuously supplied for dissolution, leading to highly congruent 

weathering with a relative absence of secondary mineral formation, and 7Li that reflects the 

original rock. In contrast, when uplift rates are lower, in tectonically stable areas, formation of 

secondary minerals preferentially enriches rivers in 7Li. The correlation we observe between 7Li 

and uplift rates is in the opposite sense to that required if uplift of the Himalayas directly caused 

the increase in seawater 7Li during the Cenozoic. The results instead indicate that it may have 

been the formation of large floodplains associated with uplift that explains the increase in 

seawater 7Li. By recording the congruency of weathering, lithium isotopes may provide a 
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record not of the overall rate of dissolution on the continents, but of the efficiency of this 

dissolution in driving uptake of CO2. 
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FIGURE CAPTIONS 

Figure 1. A) Li mixing diagram, showing data from this study. The small grey boxes are river 

studies from other locations (Iceland, Azores, Himalayas, Orinoco, Mackenzies, global large 

rivers – see text for references). B) Li isotope ratios for New Zealand rivers as a function of local 

uplift ratios. Low 7Li values imply relatively greater primary rock dissolution, while high 7Li 

implies relatively greater secondary mineral formation. 

Figure 2. Uranium activity ratios compared to lithium isotope ratios. The arrows show the 

controls associated with both tracers (phys. er. = physical erosion; diss. = dissolution). 

Additional data are from the Azores (Pogge von Strandmann et al., 2010) and Iceland (Pogge 

von Strandmann et al., 2006; Vigier et al., 2009).  
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