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Thesis Abstract 
 
 
Non-invasive brain-computer interfaces (BCIs) seek to enable or restore brain 

function by using neuroimaging e.g. functional magnetic resonance imaging (fMRI), 

to engage brain activations without the need for explicit behavioural output or 

surgical implants. Brain activations are converted into output signals, for use in 

communication interfaces, motor prosthetics, or to directly shape brain function via a 

feedback loop. 

 

The aim of this thesis was to develop cognitive BCIs using realtime fMRI (rt-fMRI), 

with the potential for use as a communication interface, or for initiating neural 

plasticity to facilitate neurorehabilitation. Rt-fMRI enables brain activation to be 

manipulated directly to produce changes in function, such as perception. 

 

Univariate and multivariate classification approaches were used to decode brain 

activations produced by the deployment of covert spatial attention to simple visual 

stimuli. Primary and higher order visual areas were examined, as well as potential 

control regions. The classification platform was then developed to include the use of 

real-world visual stimuli, exploiting the use of category-specific visual areas, and 

demonstrating real-world applicability as a communications interface. Online 

univariate classification of spatial attention was successfully achieved, with individual 

classification accuracies for 4-quadrant spatial attention reaching 70%. Further, a 

novel implementation of m-sequences enabled the use of the timing of stimuli 

presentation to enhance signal characterisation. 

 

An established rt-fMRI analysis loop was then used for neurofeedback-led 

manipulation of category-specific visual brain regions, modulating their functioning, 

and, as a result, biasing visual perception during binocular rivalry. These changes 

were linked with functional and effective connectivity changes in trained regions, as 

well as in a putative top-down control region. 

 

The work presented provides proof-of-principle for non-invasive BCIs using rt-fMRI, 

with the potential for translation into the clinical environment. Decoding and 
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neurofeedback applied to non-invasive and implantable BCIs form an evolving 

continuum of options for enabling and restoring brain function. 

 
 
 
Key words: 
 
Realtime fMRI (rt-fMRI), Non-invasive brain computer interfaces (BCI), decoding, 

neurofeedback 
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PREFACE  

Themes and Concepts 

	
The aim of this thesis is to investigate the basis of a cognitive brain-computer-

interface (BCI) using realtime functional magnetic resonance imaging (rt-fMRI), that 

could be developed for patient benefit either as a prosthesis for communication, or 

as a means of engaging neural plasticity more directly for the purposes of 

neurorehabilitation. 

 

In order to achieve this goal, I attempt to answer two related but distinct questions. 

The first is technical - can a cutting edge technique, rt-fMRI, be implemented for the 

purposes of decoding and neurofeedback training, utilising higher order visual 

areas? 

 

The second question is biological- can rt-fMRI be used to manipulate cognitive 

processes in real time, and thus gain mechanistic and causal insights into human 

brain function? Rt-fMRI enables brain activation to be manipulated directly; brain 

activation can be treated as an independent variable to produce changes in brain 

function, such as perception. 

 

In the first three experimental chapters, I examine the decoding of the direction of 

spatial attention from higher order visual cortex, using both univariate and 

multivariate approaches, leading to the implementation of a rt-fMRI framework for the 

detection of covert spatial attention from brain activity. In the fourth chapter, I 

examine neurofeedback training of category-specific visual areas, and its effect on 

structural and functional plasticity. I set out to test whether high-level visual 

perception can be selectively biased by neurofeedback training. The studies in this 

thesis provide proof-of-principle of a non-invasive BCI using rt-fMRI, with the 

potential for translation into the clinical environment. In the final chapter I conclude 

with a discussion of developing the findings in this thesis for applications in the 

clinical environment.  
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1. GENERAL INTRODUCTION 

 

1.1 Theme 1 

Developing a cognitive brain-computer interface  
 
 

1.1.1 Introduction 
 
 

Cognitive BCIs aim to provide control of external devices or computers, using 

physiological signals related to brain activation only. The basis of the physiological 

signal can be acquired invasively, such as through implanted electrodes which 

record brain activity, using electrocorticography (ECoG), or noninvasively using 

imaging modalities such as functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG) and magnetoencephalography (MEG) (1–9). The 

latter has the advantage of not requiring surgery, and its attendant risks, and may in 

fact be used to optimise surgical targets for neural interfaces. 

 

BCI technology for restoration of function in patients uses two principal types of 

neural signal – 1) sensorimotor output for rehabilitation or control of a motor 

prosthesis, or 2) cognitive output from high order sensory cortex for communication 

and perceptual enhancement. This thesis is exclusively concerned with the latter 

approach, using signals associated with cognitive processes in higher order visual 

areas with the non-invasive modality of rt-fMRI.  

 
 

1.1.2 BCIs- an overview 
 
 
Rt-fMRI was selected as the basis for the development of a non-invasive BCIs due to 

a specific combination of attributes. FMRI provides superior spatial specificity and 

resolution, as compared to other comparable non-invasive imaging modalities e.g. 

MEG/EEG based devices (2). Functional brain regions can be identified, and 
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investigated in relation to task-based activations, and can be used to hone activation 

profiles, to increase signal strength, and improve decoding accuracy (10). The 

selection of an imaging technique such as fMRI for this thesis, which enables a fine-

grained mapping of anatomical structure to function, was motivated by a long-term 

investment in BCI development. To begin, cortical structures at a high degree of 

spatial resolution, can be examined. Subsequently, the neurobiology of the region 

can be explored, enabling more complex assessments such as network connectivity 

between cortical and subcortical brain areas to be investigated (11,12). This is of 

particular importance in the eventual clinical translation of the work presented here, 

in diseases such as Parkinson’s disease (PD) and Huntington’s disease (HD). These 

disease processes affect basal ganglia structures, and may be addressed by 

targeting cortical structures such as the supplementary motor area (SMA) for 

neurofeedback based therapies, causing linked network changes in deep brain 

structures such as the subthalamic nucleus (STN) (13). The use of computer 

software which enables the rapid analysis of fMRI data in relation to task-related 

brain activation, such that it can be acted upon while the experiment is progress, 

allows an interactive facility for the patient or participant being scanned. This in 

particular allows brain activity to be used in relation to a set goal to produce a 

surrogate communication or motor signal i.e. an open loop BCI, or to be modulated 

adaptively in relation to a feedback signal i.e. a closed loop BCI (see Fig 1.1). Neural 

activity which could serve as a putative target for a communication signal might be 

an unrelated surrogate i.e. motor cortex activation extracted for a ‘yes’ signal, and 

visual cortex activation extracted for a ‘no’ signal (14). An alternative, more intuitive 

approach is to use activations linked to cognitive tasks which are more directly 

related to the process of communication. ‘Cognitive’ BCIs using neural activation 

related to the deployment of visuospatial and object based attention have been 

proposed (9,15), and are specifically investigated in this thesis. A specific example of 

how such a BCI might function practically is with a participant or patient using their 

neural activation to navigate a visual interface by deploying shifts of spatial attention, 

and then to select specific relevant visual exemplars such as a glass of water to 

indicate thirst, a particular face to indicate a desire to see a specific individual or to 

select a body part to indicate the need for attention or for a clinical assessment. I 

investigate the use of attention-driven BCIs, utilising visuospatial as well as object 

category-specific attention in Experiments 1, 2 and 3. 
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Fig 1-1. BCI schematic 
 
A. Basic components of a BCI 
B. Open loop BCI – brain activation is extracted form the participant, either 
invasively or non-invasively, without the participant being required to alter 
his/her neural activity.  
C. Closed loop BCI – the participant actively engages with a visual interface 
which is linked to his/her extracted neural activity. The participant gains 
control of the visual interface by learning to control his neural activity in a 
target brain region/s. 
 

Neural activation may be manipulated adaptively using neurofeedback, in order to 

train specific brain regions to modulate their functional output. This type of closed-

loop BCI might be used to alter function in health e.g. increasing the ability to identify 

a particular face in relation to a detection task(16,17), or for the purpose of 

supporting or restoring function following a pathological insult e.g. engaging neural 

plasticity in a brain region affected by stroke(18), or a neurodegenerative disease 

BCI design
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(13). In the final experiment of this thesis I examine the modulation of category-

specific perception using neurofeedback training of higher order visual areas, and its 

effects on functional and structural plasticity. 

 

As mentioned earlier a long-term goal of this research is to produce a BCI for 

therapeutic intervention, with the intended benefits of being practicable and portable. 

Rt-fMRI based BCI technology being non-invasive, can be used to optimise a 

specific brain- computer interaction, prior to conversion into a smaller, implantable 

invasive BCI for long term use. The use of rt-fMRI to delineate an anatomical 

substrate for direct implantation of intracortical BCIs has recently been demonstrated 

(10). Rt-fMRI ‘verified’ implantable BCIs e.g. (19) provide an optimal means of 

validating BCI technology prior to surgical implantation (20–23), increasing the safety 

and specificity of the BCI technique, as well as the likelihood of long-term success. 

 
Target patient populations who may benefit from this type of BCI technology include 

those lacking the ability to communicate directly, either verbally and/or through the 

use of their limbs (24). Neuromuscular diseases such as amylotropic lateral sclerosis 

(ALS), a progressive disease of lower and upper motor neurones, ultimately lead to 

complete paralysis, whilst preserving cognitive capacity – a condition known as 

locked-in syndrome (25). All muscular control is lost, except for eye movement or 

minimal muscular activity, which is insufficient for independent communication. 

There are about 5000 people in the UK living with ALS, and it affects 1:100,000 

people each year. Initially patients may use remaining muscular control to operate 

assistive communication devices, although as the disease progresses this become 

increasingly difficult. BCI technology has been successfully demonstrated as being 

useful in this patient group (26), as well as those developing LIS due to ischaemic 

brainstem strokes, with brain signals being used to control and enable the patient to 

communicate with their environment (27) .  

 
 

1.1.2 fMRI as a tool for brain- computer interface 
 

Following its introduction in 1990 (28,29), fMRI led to a revolution in cognitive 

neuroscience. It is based on the high structural resolution of MRI, with the ‘functional’ 
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element obtained from superimposed haemodynamic changes,  thought to be 

produced by increased neural activity, linked to changes in brain function. Neuronal 

activity is tightly coupled with blood flow as a result of its dependence on oxygen. 

The magnetic susceptibility of oxygenated blood and deoxygenated blood differs, 

resulting in measurable differences in the magnetic signal produced when blood 

passes through a magnetic field. The governing principle of fMRI is the 

measurement of the Blood Oxygen Level Dependent (BOLD) signal of blood, a 

surrogate of neural activity – it is used when investigating cognitive processes, 

correlating it with processes related to concurrent performance of a specific task. 

 

A challenge of conventional cognitive fMRI studies is that they only permit 

correlational inferences to be drawn between behaviour and BOLD activity. Stated 

more formally, in conventional fMRI studies, brain activity is the dependent variable, 

with behaviour being the independent variable. If this dependency were to be 

reversed, it might enable more direct links to made regarding behaviour and brain 

function. Seitz (30) states: 

 

“A central goal of cognitive neuroscience is to understand how brains give rise to 

behaviour. The holy grail of many fields of cognitive neuroscience is to make causal 

links between the processing within, or between, various brain regions and people’s 

perceptions, decisions or actions”. 

Taking this further, in the context of practical BCIs, fMRI might then allow brain 

states to be observed and manipulated to produce a specific behaviour. 

Rt-fMRI, first described by Cox et al. (31), may be one way in which fMRI can be 

applied in order to allow for causal inferences. Rt-fMRI enables concurrent analysis 

and display of fMRI data, a process that is normally performed offline, over at least a 

period of days. The development of rt-fMRI arose from a number of concurrent 

advances in data processing including online motion correction (32,33), online 

multiple linear regression (34), cortex based analysis and visualisation (35), online 

analysis (36) and real-time paradigm control (37) 

Aside from the attendant advantages of the technical innovations, rt-fMRI enables 

brain activation to be read ‘on-the-fly’. The first opportunity that this provided was for 
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reading-out online brain activity in relation to specific cognitive actions i.e. an open 

loop BCI (see Fig 1-1B). This ‘decoding’ approach enabled a putative BCI based on 

the classification of brain activations to be conceived, and forms the first 

experimental thread of this thesis. The second opportunity that developed from the 

online analysis and representation of brain activation was its direct manipulation, 

with the aim of adaptively altering the level of brain activation (Fig 1-1C). This 

‘neurofeedback’ loop can be used to train specific brain regions, with the aim of 

producing changes in brain function. It forms the second experimental thread of this 

thesis. Both of these approaches can be considered in the context of BCIs (17), and 

come under the stated aim of this thesis - to enable development of non-invasive 

communication and adaptive brain interfaces, for the translation of cognitive 

neuroscience techniques into the clinical arena.  

 
1.1.3 Decoding 
 

Decoding BCIs are conceptually the most direct application of a rt-fMRI based BCI. 

The character and pattern of brain activations have been shown to contain 

information relating to the function of the brain region being studied (38). Once a 

particular behaviour or cognitive process has been robustly linked with a particular 

brain activation, whether regional, or as a whole brain pattern of activity, the neural 

activations can be converted into bits of data which, for the purposes of a BCI, can 

serve as units for communication or information transfer (5). From here there is no 

requirement for an explicit behavioural output, as the imaging data can be used as a 

surrogate for communication. Using this principle, rt-fMRI allows haemodynamic 

brain activations linked to timed cognitive tasks, performed by a patient being 

scanned, to be interpreted ‘on-the-fly’ and used to power a communication BCI. A 

recent example of this was a spelling device, which linked brain activations produced 

by timed motor imagery, mental calculation and inner speech tasks performed by a 

patient, to the dynamic selection of letters from a virtual keyboard (39). Other 

practical applications of this method using rt-fMRI have included movement of 

robotic limbs (7), and computerised navigation devices (40).  
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For the purposes of this thesis, I investigated decoding of brain activations using rt-

fMRI, as a means of communication in relation to the deployment of visuospatial 

attention. Attention is an ideal cognitive process for the implementing of a decoding 

BCI (15). Specific populations of neurons activate in response to the volitional 

direction of attention to circumscribed regions of space or features of objects in the 

real world i.e. endogenously directed spatial or feature-based attention. Objects and 

real-world stimuli at these locations also activate category-specific cortex, often in a 

‘spatiotopic’ fashion (41).   

 

The deployment of spatial attention occurs at the level of visual cortex, serving to 

enhance populations of neurones associated with retinotopically-represented regions 

of space in the outside world.  As such, two potential sources of neuronal activity can 

be targeted for decoding in relation to driving an attention-based BCI. The first can 

come from representations of space in primary visual cortex, based on the 

underlying retinotopy, which are selectively acted upon by higher-order visual cortex. 

The neuronal populations in primary visual cortex are specifically enhanced, 

producing a signal which can be decoded and utilised (19,42–44).  Andersson et al. 

(10) have previously shown that brain activations in primary visual cortex can be 

used to drive a rt-fMRI attention-based BCI. Participants maintained central eye 

fixation while deploying shifts of attention in four directions. The resulting brain 

activations were used to control the movement of a robot avatar (45). They further 

demonstrated that a non-invasive BCI could be used as an optimisation tool prior to 

implantation of a ‘invasive’ BCI, targeting the specific cortical location identified by 

the rt-fMRI paradigm for the implantation of an ECoG-based BCI (10). 

 

An alternative approach could be to identify top-down ‘command signals’, produced 

in higher order visual cortex in relation to the control of internally driven processes 

e.g. endogenous attention. Candidate regions for the production of these signals 

include the parietal lobe, which has been suggested to have a ‘salience map’ 

(46,47). A cognitive BCI could potentially target such a region in the higher tiers of 

the visual hierarchy, in an attempt to provide surrogate control of this attention 

‘command signal’. In the experiments presented in this thesis, I find that regions with 

an intermediate position in the visual hierarchy such as the lateral occipital complex 

(LOC), for which there is also evidence of retinotopy and object-category information 
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representation, may provide higher rates of decoding accuracy for the direction of 

spatial attention, and serve as a potential target for a BCI-based intervention (48,49). 

An attention-driven BCI would be useful for patients who are unable to speak or 

move, but have preserved cortical brain function i.e. locked-in syndrome following 

brain stem strokes, or amyotropic lateral sclerosis. An implantable, intracortical BCI, 

using decoding of hand motor signals to control reach-and-grasp with a robotic arm, 

has been demonstrated in two tetraplegic patients with some success, although the 

long-term maintenance of these devices is an issue (22,50). Non-invasive BCIs have 

the benefit of being low-risk, with none of the attendant morbidity of surgical 

implantation, and could serve as a bridge to a portable system, by training and 

validating the use of specific brain activation decoding. 

 

Following the identification of these brain activations for use in a BCI, the strength of 

the signal can be increased by training the BCI-user to volitionally modulate the level 

of brain activity. Andersson et al. (10) also used this in conjunction with the attention-

driven BCI, encouraging patients to actively regulate the level of brain activation, 

while decoding was being performed. This second use of rt-fMRI as a ‘closed loop’ 

BCI system is called neurofeedback, which I examine in detail in the next section.  

 
 

1.1.4 Neurofeedback 
 

The other principal BCI application utilising a rt-fMRI framework is neurofeedback. 

Neurofeedback may be defined as the voluntary regulation of a neural signal in 

response to feedback of that signal, with a contingent reward for control of the signal. 

It was first established in the 1960s, building on work with biofeedback control of 

systemic autonomic measures, such as bidirectional control of heart rate (51). 

Control of a physiological measure led to the possibility of modulating the function of 

the effector organ, or in the case of neurofeedback, a target brain region, to produce 

long-term changes. For brain-based signals, early animal studies demonstrated that 

they could be controlled via neurofeedback to the animal. Fetz et al. (52,53) showed 

that for a reward, monkeys could selectively produce firing in neurones from which 

microelectrode recording were taking place and being fed back visually to the 

monkeys, i.e. without effecting whole brain function. Similarly Wyrwicka and Sterman 
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(54) showed that cats could self-regulate EEG activity from sensorimotor cortex. In 

humans, Kamiya showed that aspects of alpha band activity measured with EEG 

could be voluntarily regulated (55,56). However, these EEG-based BCIs for the 

purpose of neurofeedback, despite successful translation into the clinical 

environment, were limited by relatively poor spatial localisation of the electric source, 

even in the presence of modern multi-channel systems. FMRI-based neurofeedback, 

providing whole brain coverage and spatial localisation in the order of 1-2mm, was 

facilitated by the advent of realtime analysis software. Neurofeedback using rt-fMRI, 

is based on the online analysis of a participant’s brain activation in the scanner, and 

concurrent presentation of a signal related to this activation back to the participant 

using a visual interface. This enables the voluntary training of one’s own brain 

activity. Training a participant to voluntarily activate specific brain regions allowed 

neurofeedback studies to pursue altering a brain region’s functional output, leading 

to associated cognitive and behavioural changes. Rota et al. (57) trained healthy 

participants to selectively increase the level of activation in the right inferior frontal 

gyrus, a brain region involved in the emotional processing of speech. Following 

training, participants were more accurate as compared with controls, in identifying 

the prosody of a speech task. No change was noted with regards to syntactic 

processing, confirming the specificity of the training effect. Other examples of 

neurofeedback success in healthy participants include modulation of sensitivity to 

pain with anterior cingulate and insular cortex control (58–61), memory performance 

after training of parahippocampal (PPA) activity (62), control of emotion and mood 

following modulation of amygdala (63) and anterior cingulate (ACC) activation (64), 

and motor performance with up-regulation of motor cortex activity (65). 

 

The work in this thesis is intended to ultimately be used for translation into the 

clinical arena. Recent work with neurofeedback has shown promise with regards to 

its effectiveness in clinical application. An important study illustrating the strength of 

the technique in patients was conducted in five early-stage Parkinson’s disease (PD) 

patients. Modulation of brain activation with neurofeedback training over a month, 

specifically of the supplementary motor area (SMA), led to clinical improvements in 

the patients’ motor symptoms. Further, neurofeedback has been shown to result in 

enhanced network connectivity (66). This could be used to produce changes in 

functional brain regions related to but remote from pathology, enabling function by 
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engaging compensatory pathways. Disease processes involving cortical-subcortical 

networks such as PD are optimal candidates for this (13).  

  

Other clinical conditions to which neurofeedback has been applied include chronic 

tinnitus control following down-regulation of auditory cortex (67), anterior insula 

control in criminal psychopathy (68), improvement of chronic pain measures with 

ACC modulation (59), and clinical improvement of unipolar depression following 

prefrontal cortex up-regulation (69).  

 

As with the decoding approach with an attention-based BCI outlined above, the use 

of neurofeedback training can engage brain regions at various tiers of the cortical 

hierarchy. I specifically investigate the use of higher order visual brain regions for 

neurofeedback training in relation to biasing perception. Modulation of primary 

sensory cortex with neurofeedback has been shown to cause alterations in 

perceptual biases, although it was very tightly linked to the task used for 

neurofeedback training. For example, unconscious visual perceptual learning for 

specific orientations of contrast gratings was produced by exposing participants to 

the same grating orientations and then linking a feedback signal to the associated 

brain activity produced in primary visual cortex. Similarly, auditory discrimination was 

improved by neurofeedback training of participants on an auditory tone mismatch 

task (70). An open question, which I seek to answer, is whether perception can be 

biased using a more unconstrained approach, engaging higher order visual areas. In 

doing so, transfer gains produced by neurofeedback training may more generalised, 

and less limited. Additionally, I attempt to establish the role of higher order cortical 

regions in the control of neurofeedback training. This may provide further insights 

into the underlying mechanisms by which neurofeedback works (see next section). 

From a clinical perspective, neurofeedback-induced enhancement of higher order 

cortex may provide an alternative focus for therapeutic intervention. Neural recovery 

and rehabilitation are correlated with domain-general network activations in midline 

cortical structures, as compared to more localised changes. For example, speech 

recovery after stroke is linked to midline cortical structures (regions involved in the 

salience networks) (18,71), rather than more focal speech-related brain regions. 

These studies implicate the integral role of top-down ‘control’ regions, which may 

serve as a useful target in neurofeedback-directed enhancement of brain function. 
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1.1.5 What neural mechanisms underlie neurofeedback ? 

 
The mechanism/s by which neurofeedback training results in learned self-regulation 

of brain activity is incompletely understood and is likely to be multifactorial, involving 

bottom-up and top down processes (see Fig. 1-1, and Table 1-1 below). The act of 

controlling a ‘remote’ feedback signal arising from contingent brain activation may 

engage multiple types of ‘learning’ and brain regions (18,72,73), and could be better 

described as a ‘meta-learning process’. 

 

An important unanswered question is whether there are brain regions which guide, 

or control neurofeedback learning. These putative brain regions would be commonly 

activated across multiple neurofeedback learning paradigms, and would interact with 

the specific brain region being modulated. Although some studies have examined 

the role of functional and effective connectivity (i.e. the directional coupling of brain 

regions determined a priori to be involved in a specific functional task) during 

neurofeedback training (e.g. 63–65) , very few have investigated the role of a 

possible control region or network which might co-ordinate the production of the 

neurofeedback training effect. Enriquez-Gueppert et al. using structural MRI and 

diffusion tensor imaging (DTI), demonstrated mid-cingulate volumes, as well as its 

white matter connectivity, predicted the ability of participants to control frontal-midline 

theta activity during EEG neurofeedback (77). The importance of white matter 

integrity, and therefore white matter structural connectivity was also illustrated by 

Halder et al., in relation to EEG based neurofeedback modulation of the 

sensorimotor rhythm using motor imagery (78). This has been supported by similar 

findings in behavioural training, with language acquisition (79) and video gaming 

skills acquisition (80). In Chapter 6, I explore the potential effective connectivity 

between trained regions and a putative control region, specifically the superior 

parietal lobe (SPL), using dynamic causal modelling (DCM). The role of SPL in the 

control of rt- fMRI neurofeedback training of visual areas has been recently 

suggested by Scharnowski et al. (81), who demonstrated improved visual detection 

of targets, following learned up-regulation of activity in primary visual cortex. 
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Most recently, a meta-analysis of individual participant data across 12 studies, 175 

participants and 899 neurofeedback runs identified two specific regions, the basal 

ganglia and bilateral anterior insula, as being consistently activated (82). A 

subsample analysis in this study across 8 studies and 103 participants with an 

extended field of view, identified activation in a number of brain regions, including the 

dorsolateral prefrontal cortex, bilateral temporo-parietal areas including the SPL and 

lateral occipital areas. Deactivation was observed in the precuneus and the posterior 

cingulate cortex. Examining these activations within the context of known brain 

networks may help to shed light on the underlying mechanisms involved in 

neurofeedback. Some of the activated regions form part of the dorsolateral-parietal 

network also known as the central executive network (18,71), which is activated 

during demanding cognitive tasks, involving moment-to-moment monitoring of task 

performance, and manipulations of working memory and decision making. The 

anterior insular cortex and cingulate, together with the ventral striatum constitute part 

of the cingulo-opercular or salience network. This is a limbic- paralimbic system 

which deals with competitive, context-specific, stimulus selection, helping to focus 

the ‘spotlight of attention’ and enhance access to targeted neural resources required 

for goal-directed behavior (83). The third network which may be implicated here is 

the the fronto-parietal network, or ‘dorsal attention network’, and includes the 

dorsolateral prefrontal cortex, the frontal eye fields and the intraparietal sulcus. This 

network is responsible for maintaining a priority map of the visual environment, and 

may interact with higher order visual areas during processing of visual imagery and 

visual feedback.  

 

Theories of the manner in which biofeedback control is developed  have been put 

forward, and can be applied more specifically in the context of neurofeedback 

learning. ‘Operant’ or ‘instrumental conditioning’ (84) is frequently invoked as a key 

process in neurofeedback training (85,86). Learning occurs through a process of 

guided association, with a contingent reward for desirable behaviour, and/or 

punishment for undesirable behaviour. In rt-fMRI neurofeedback, the ‘reward’ can be 

provided by the feedback signal itself (e.g. through a visual interface), or by more 

explicit reward such as social affirmation (87) or monetary gain (88).  In addition to 

the cortical regions used to provide the feedback signal, activation in the reward 

network has been reported. This includes anterior cingulate, orbital and dorsal 
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prefrontal cortex, and subcortical regions, including amygdala, caudate, and the 

putamen (i.e. (87,89). 

 

Lacroix’s ‘two-step process’ (90) suggests involvement of higher order brain regions 

and cognitive processes, with bottom-up control of a salient feedback signal during 

the active phase of learning. Repeated matching of the feedback signal with 

successful mental imagery strategies is mediated through interoceptive awareness. 

As this internal model improves in efficiency, it is maintained, and subsequently 

stored in implicit memory (72). In the final step the neurofeedback control becomes 

automatic (91). 

 
Fig 1-2. Types of learning engaged during neurofeedback 
 

 

‘Classical conditioning’ is thought to be required for transfer of learnt regulation, and 

is likely to occur through an intrinsic or interoceptive cue that the participant learns to 

associate with the voluntary regulation of brain activity. In this regard neurofeedback 

may be a co-ordinated metacognitive processes, i.e. the participant learns by being 

aware of the specific associations between self-generated thought processes and 

control of the visual representation of the feedback signal. Garrison et al. (92) 

demonstrated differential levels of activation in posterior cingulate cortex (PCC) 
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during mind wandering and meditation; the PCC is regarded a central hub in the 

default node network, and is activated during mind wandering and self-referential 

processing. Using neurofeedback modulation, successful meditators were able to 

selectively down-regulate activation of the PCC. This study suggests evidence for 

the link between metacognitive, self-referential processes and learned modulation of 

brain activity using neurofeedback. 

 

The involvement of corticostriatal regions as neurofeedback control regions has 

been suggested, supporting a ‘motor theory’ of neurofeedback (93). The original 

motor theory of learning is based on the observations of Lang and Twentyman, who 

taught participants to control their own heart rate using analogue biofeedback (51). 

The sequential or procedural element required (i.e. activity - movement – systematic, 

repetitive use of symbolic information) was conceptualised as being similar to 

learning a motor skill. Support for this theory in animals has recently been provided 

by Koralek et al. (94), by training rats to control a bi-directional auditory pitch in 

relation to two types of food reward. Food pellets were provided in response to a 

high pitch, and a sucrose drink was provided in response to a low pitch (see Fig. 1-

2). The rats became proficient in both tasks. However, retaining the reward but 

removing feedback did not result in learning, nor did onset of satiety or removal of 

the food reward in the presence of accurate auditory feedback. Increased coupling 

between motor cortex and striatum in the 4-8Hz range, was associated with learning 

in the rats. Repeating the experiment with NMDA-receptor knockout rats, showed 

that despite intact overt movement, they were unable to learn voluntary self-

regulation of brain activity. NMDA receptors are required for long-term potentiation in 

striatal neurons. These rats did not demonstrate increased firing in motor cortex and 

striatum with learning. This landmark experiment elegantly demonstrates the 

potential requirement of the motor system in the process of learning. 
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Fig 1-3. Implanted brain-computer interface 
 
Rodents with electrodes implanted in their motor cortex, learned to control 
activity in relation to a bi-tonal pitch to secure either a liquid or a solid food 
reward (86,94).  
 

In summary, neurofeedback is a powerful but incompletely understood process. It is 

likely that the mechanism by which neurofeedback training produces neuroprosthetic 

control of a visual interface, engages multiple types of neural mechanisms, which 

differentially contributes at various stages of neurofeedback skill acquisition. Table 1-

1, adapted from Strehl (72) relates each of the existing theories of neurofeedback 

control to each of the steps that are proposed to take place during neurofeedback 

training and learning. 

 

In this thesis, I therefore set out to establish if the function of a specific brain region 

could be exposed in ‘realtime’ through first, decoding activity patterns from these 

areas, and then submitting them to the participant for training with neurofeedback.  

 

 

 

 

 

 

not learn the self-regulation task, despite intact movement
(for the role of motor mediation in neurofeedback, see Box
1). Pharmacological blockade of NMDARs in the dorsal
striatum also impaired the task in the same way.

These compelling data are complemented by earlier
fMRI-brain imaging evidence in humans during learning
of self-regulation of slow cortical potentials (SCP). Com-
paring good learners with poor learners in this neurofeed-
back task revealed activity of the basal ganglia and cortical
motor structures in proficient learners [18].The partici-
pants received visual feedback of the amplitude of their
SCP: increased cortical negativity (indicating stronger
activation of the brain at central sites) moved a cursor
up on the screen and decreased negativity moved the
curser down, both movements being proportional to the
change in amplitude of the SCP. Using neurofeedback and
brain–machine interface (BMI) training of sensorimotor
(8–15 Hz) rhythms, Halder et al. [19] demonstrated that
learned control of sensorimotor areas, which are an essen-
tial part of the cortico-basal-ganglia-loop, can be predicted
from BOLD-response increase in those areas during pre-
training motor imagery, particularly while observing
movement in others. Overall, this converging evidence
from animal and human neurofeedback paradigms
strengthens the theoretical position that brain self-regula-
tion and BMI-control can be viewed as skill learning.
Whereas an intact subcortical extrapyramidal motor sys-
tem and dorsal striatum seem to be a conditio sine qua non
for brain-regulation skill acquisition, the impact of the
peripheral and central ‘pyramidal’ voluntary motor system
remains an open question (Box 1).

Implicit nature of brain-regulation learning
Several human studies using neurofeedback of BOLD
responses with rt-fMRI have demonstrated that neither
explicit instructions nor explicit imagery and particular
mental strategies are mandatory for learned BOLD con-
trol. Shibata et al. [20] asked their healthy participants ‘to

increase the size of a green disc as much as possible’ over 6–
10 daily sessions. The size of the feedback stimulus was
determined – unknown to the participant – by the BOLD
response belonging to one of three target line orientations
of Gabor patches of the discriminative stimulus. Post-
experimental questioning clearly showed that none of
the participants was aware of the contingency between
line orientation and the feedback. However, they all
learned to improve discrimination of line orientation
through BOLD neurofeedback. Even more impressive
seems to be a demonstration by Kim and colleagues (see
[5], for a discussion of this work) that subliminal perception
of emotional faces becomes conscious after rt-fMRI train-
ing to upregulate the fronto-parietal brain network, in-
cluding visual cortex, fusiform face area, insula, and
prefrontal cortex, without any instructions. Learned down-
regulation in the same network was also possible in the
same participants, this time leading to reduced conscious
recognition of the emotional stimuli.

Behavioral effects of learned brain regulation
The emphasis in recent rt-fMRI studies has shifted from an
earlier focus on ascertaining self-regulation capability in
different brain regions to investigating the behavioral
consequences of learned regulation. Motor regions have
received much attention in these studies, indicating that
volitional modulation of motor regions could be achieved by
rt-fMRI training, with some studies showing changes in
motor function as a consequence of training [21–28].

A series of rt-fMRI experiments on manipulating emo-
tions trained individuals to up- or downregulate activity in
the anterior insular cortex [14,29] and showed that upre-
gulation leads to increase in the valence ratings of aver-
sion-inducing images, but not neutral images [30], increase
in the recognition of faces displaying the emotion of disgust
emotion, and decrease in the recognition of faces showing
happy emotion, as well as an increase in connection
strength in the emotion network [31]. Self-regulation of

Food pellet

Sugar water
Brain–machine

interface Sugar water

Food pellet

?
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Figure 3. Skill learning in rodents. Koralek et al. [12] implanted electrodes into the brains of live rats to record the neuronal activity of the motor cortex and the striatum.
Depending on certain features of motor cortex activity, a tonal sound with a specific pitch was automatically generated. The rats learned to make the pitch of the sound rise
or fall by modifying their brain activity, because they were rewarded with sugar water or food pellets if the pitch changed successfully. By using genetically modified mice in
similar experiments, the authors showed that activity of the striatum was required for the animals to learn the task. Reproduced, with permission, from [12]..
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Table 1-1. Mechanisms involved in skill acquisition during neurofeedback 
learning. (Adapted from Strehl (72)). 
 

Paradigm Mechanism Component of 
Neurofeedback training 

Operant conditioning Trial and error Reinforcer 

Shaping 

Procedural learning Motor repetition Mental imagery Repetition 

Perceptual learning Percept repetition Mental imagery Repetition 

Learning outcome of a behaviour  
 

Classical conditioning Target behaviour  

associated with 

conditioned stimulus 

Transfer 

Learning to predict contingency 
 

Motivation Intrinsic +/- extrinsic Individual differences 

Two process theory 1/ Operant conditioning of 

adequate behaviour 
Knowledge of result 

Instruction/ Strategy 

2/ Interoceptive 

association 

Practice 

Feedback 
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1.2. Theme 2 
 

Investigating higher order visual function 

 
1.2.1. Introduction 
 
A second theme in this thesis is the online investigation of the voluntary regulation of 

activity in visual brain areas to examine brain functions such as awareness and 

attention. Turning now to the mechanisms underlying human vision, the ‘act’ of vision 

and the epiphenomena that arise from it rests on three foundations (95):. 

 

1. Optical information 

2. Physiology and anatomy of the visual system 

3. Phenomena of visual perception 

 

The visual processing stream begins with retinal stimulation by photons emitted or 

reflected from the surface of objects in the environment. This ‘optical information’ is 

encoded and transferred along the optic tracts, to the superior colliculus and lateral 

geniculate nucleus, and then via the optic radiations, to the primary visual cortex at 

the occipital pole (95). Visual information can be categorised along a number of 

different dimensions (e.g. colour, space, form) and this is reflected by functional 

specialisations in a number of participating visual brain regions. Control of visual 

processing, together with the phenomenological aspects of vision, engage brain 

regions along a visual hierarchy, with higher order brain regions, such as the parietal 

lobe and frontal eye fields (FEF), acting upon incoming visual information being 

processed in the lower tiers, such as primary visual cortex. (See next section). 

 

Two specific cognitive processes investigated in this thesis for the purposes of a 

BCI, targeting communication and neurofeedback respectively, are attention and 

perception. These processes are related, and frequently interact - the former 

provides a selective gating process for the brain-environment interaction, and the 

latter provides context and meaning to the information entering awareness/ 

consciousness. Higher order visual control processes are engaged in both of these 
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processes, although the manner in which they act upon lower order targets is 

incompletely understood, and has implications for the design of neuroprosthetic BCIs 

that seek to harness these processes. The construction of a rt-fMRI BCI allowed me 

to non-invasively investigate and manipulate higher order brain processes in relation 

to particular cortical regions in the visual hierarchy.  

 

Before discussing these processes in more detail, I will expand upon the role of top 

down processes, and associated cortical regions in the context of the visual 

hierarchy. 

 

 

1.2.2 Organisation of the visual hierarchy  
 

Top-down processing in the brain works in the reverse order to the standard feed-

forward sensory processing pathways. Progressively complex and anatomically 

distributed processing acts on simpler functions taking place in antecedent regions. It 

reflects a hierarchical organisation, and with some areas demonstrating functional 

subspecialisation (96).  

 

Functional specialisation within the visual system includes colour, depth (V3a), 

motion sensitivity (areas V5/MT, MST, hMT+), and differentiation of object categories 

i.e. body parts (extrastriate body area, EBA), faces (occipital face area, OFA, FFA), 

places (PPA) (97–99). 

 

More abstract and ‘gestalt’ visual processes are co-ordinated from ‘higher’ cortical 

locations in the hierarchy (100). Processes which require the involvement of higher 

order visual cortex, acting on lower and intermediate tiers of the visual hierarchy 

include attention, perception and prediction (96,101). The hierarchy of visual cortical 

areas begins in the primary visual cortex, and ‘feeds-forward’ information through 

two parallel circuits. The ventral circuit, including the inferior temporal cortex is called 

the ‘what’ pathway, and the dorsal circuit, which includes the parietal regions, is 

called the ‘where’ pathway (102). These two pathways are responsible for the 

processing of object and spatial-based information, respectively.  
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In a recent update to this two-stream model (103), Weiner and Grill-Spector (104) 

proposed a three-stream hierarchical model of the visual system (Figure 4) in which 

information processing pathways are extended beyond visual areas. According to 

this model, to convert vision to action, a dorsal occipito-parietal system connects the 

primary visual cortex with posterior parietal cortical regions. Regions implicated 

include the intraparietal sulcus (IPS), and are involved in position, motion, spatial 

working memory, form, attention and action. The traditional ventral occipito-temporal 

pathway is further divided into lateral and ventral pathways. The lateral stream 

passes through the lateral occipital sulcus/ middle occipital gyrus (dealing with 

position, form, shape), the posterior inferior temporal sulcus (dealing with position, 

motion), and the middle temporal gyrus (dealing with form, visual dynamics, touch, 

haptics, action and language). The ventral temporal cortex forms the first hub of the 

ventral occipito-temporal stream. This further subdivides, passing laterally to the 

occipital temporal sulcus (recognition of form, objects and faces) to the mid fusiform; 

medially is the mid-fusiform  (convergence of perception to memory) to the 

parahippocampal gyrus. This model is therefore appealing because it attempts to 

‘complete’ the processing pathways that start with the input of visual information and 

result in action, higher-order processing and/or storage in long-term memory. 

 

 
Fig 1-4. 3-stream model of the ventral hierarchy (proposed by Weiner and Grill-
Spector (104)) 

Scalaidhe, & Gross, 1993; Rodman, Skelly, & Gross, 1991)

raise the possibility of an early maturation of these activations
or even an innate bias for these stimuli. A related question is

whether adjacent face- and limb-selective patches reflect two

neighboring but separate cortical systems for face and limb
processing, or a single system of alternating (but intercon-

nected) face- and limb-selective regions that share connec-

tions at their boundaries. Some clues regarding this question
come from microstimulation experiments, where microstim-

ulating face-selective clusters in monkeys yields activation in
other face-selective sites, but also extends outside their

boundaries (Moeller et al., 2008)—where the present data

would suggest a limb-selective region. Future work using a
combination of methods such as fMRI, microstimulation, and

single unit recording may address the transition between each

stage of organization from single neurons to columns, to
functional regions, to adjacent and alternating networks in IT

cortex. These future studies will shed light on the organiza-

tional mechanisms across micro- and macro-level scales.

A new three-stream model of high-level visual cortex

Why might high-level visual cortex contain multiple

face- and limb-selective regions?

In this section, we propose a model of high-level visual

cortex explaining the multiplicity of face- and limb-

selective regions in different anatomical locations

(Fig. 11). Specifically, we elaborate on how the fine-scale
organization summarized here and explored relative

to visual field maps in our prior papers (Weiner & Grill-

Spector, 2010, 2011) illustrates three anatomically and
functionally distinct (but interacting) pathways extending

ventrally, laterally, and dorsally in human high-level visual

cortex.

The ventral stream: the role of ventral temporal cortex
in recognition and memory

The ventral stream extends from early visual areas to
ventral aspects of the occipital and temporal lobe (Fig. 1).

It is well known that VTC is involved in visual recognition

from lesion studies in monkeys and neuropsychological
studies in humans documenting that damage to different

portions of the temporal lobe produces specific deficits in

object and/or face recognition (Damasio et al., 1982; Farah,
1990; Goodale, Milner, Jakobson, & Carey, 1991; Rossion

et al., 2003; Sergent & Signoret, 1992; Ungerleider &

Mishkin, 1982). Consistent with these reports, functional
neuroimaging studies show that activations in VTC are

correlated with successful recognition (Bar et al., 2001; Grill-

Spector, Kushnir, Hendler, & Malach, 2000; Moutoussis &
Zeki, 2002). For example, face-selective regions in

lateral VTC show higher responses for the successful

perception of faces during illusory and ambiguous stimuli

IPS: Vision           Action

pIPS: 
Position, motion, spatial working 

memory, form, attention, and action

Early 
visual 

LOTC: Vision             Multimodal Processing 

MTG: 
Form, visual dynamics, 

pITS: 
Position 

LOS/MOG: 
Position, 

areas

VTC: Visual Perception             Long-term memory

tactile, haptics, action, 
and language

and 
motion

form, and 
shape

Lateral (OTS to mFus):
Recognition of form, objects, and faces 

Medial (mFus to PHG): 
Convergence of perception to memory

Fig. 11 A three stream model of high-level visual cortex. The model
is divided into three pathways, dorsal, lateral, and ventral, extending
from early visual cortex. The parcellation of each pathway is guided

by specific anatomical boundaries and functional differences, either
visual or multimodal in nature. Gray arrows indicate interactions
between pathways, while black arrows indicate transitions of function

90 Psychological Research (2013) 77:74–97
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Intermediate regions in the visual hierarchy may serve to integrate aspects of the 

dorsal and ventral visual streams. As such these regions are likely candidates to 

host a salience or priority map of environmental targets, and importantly for 

consideration of a BCI, are ideal regions for extracting information. The parietal lobe 

for example has been shown to contain both spatial and feature-based information; 

anterior IPS (105) and the superior parietal lobe (106) have been implicated in the 

attentional binding processes (107–109) and  can be activated during spontaneous 

and automatic ‘gestalt’ perception (110), a process which has been suggested to 

occur prior to attentional selection (111). Lateral Occipital Cortex (LOC), and 

ventrally placed object category selective cortex such the FFA and PPA, have been 

shown by some studies to demonstrate retinotopy (41,49,112). Further, these three 

regions preferentially respond to specific object categories but will demonstrate a 

range of sensitivities, albeit with a reducing gradient of activity. That is, FFA does 

respond weakly to non-face stimuli compared to face stimuli, and similarly PPA also 

responds to non-scene/house stimuli more weakly than scenes and houses. The 

presence of spatial as well as category-based information in regions such as LOC 

and FFA (113) may indicate a more significant role in more complex perceptual 

actions (100, 91). Having established a possible functional structure of the visual 

hierarchy, I will next consider the manner in which the two processes examined in 

this thesis, attention and perception, interact with this functional assembly. 

 

 

1.2.3 Attention and top-down control 
 

Attention is cognitive process that enables directed processing of specific aspects of 

sensory signals evoked by environmental stimuli. It may selectively involve any 

sensory modality, and may serve to ‘bind’ component information. The dominant 

view of how attention works mechanistically is summarised by Noudoust et al. (116): 

 

“The objective of attention can be viewed as increasing the signal-to-noise ratio 

(SNR) of the readout from sub-populations of neurons encoding the selected 

representation” 
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This preferential processing can be facilitated through bottom-up, or salience driven 

processes and top-down, or stimulus-driven processes. Top down attention can be 

separated into spatial attention, which utilises cortical retinotopic topographical 

representations of the external world, and feature/ object based attention that 

enhances visual features of an object, or whole objects. Although specific cortical 

circuits sub-serve the different aspects of top-down attentional control (117–120), 

there is a significant degree of overlap (48,112). It has been suggested that one or 

more high order regions may generate an ‘attentional command signal’ which biases 

spatial and non-spatial features, as well as integrating emotional and motivational 

valencies, by acting on a attentional priority map. Such a map would contain top-

down weighted salience-based representations (101).  

 

Candidate cortical regions for generating a ‘command’ signal for the allocation of 

visuospatial attention include frontal and parietal regions, although work in this area 

is still very much on-going. FEF has been shown to have a causal role in both spatial 

and feature based attention (121). Microstimulation and lesion studies in monkeys 

(122), and  fMRI studies in humans (105,118,123) have identified the FEF as a 

potential source of an ‘ultimate attention command signal’. Parietal regions 

implicated include the intraparietal sulcus (117), shown in studies on normal 

participants (124), lesion patients (125–127) and with TMS (128–130). The 

directionality of the frontoparietal relationship is contentious, with evidence for IPS 

directing information to the FEF (131) and vice versa (129,132,133).  

 

Identifying a ‘control’ region for visuospatial attention is not only of neurobiological 

significance, but is advantageous in the implementation of an attention-based 

decoding BCI (15).  Decoding brain activations from such a region in relation to the 

deployment of attention may be more likely to yield successful results, as a result of 

a higher signal-to-noise ratio.  
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1.2.4 Visual Perception  
 

Perception encompasses a number of interlinked processes that produce the 

contents of consciousness, and give rise to visual awareness (134–136). The act of 

processing visual information from the environment is influenced by expectation, and 

previous exposure (e.g. priming, training) (30,137–140).  The manner in which these 

processes alter perception, by acting on perceptual brain regions prior to the 

subsequent act of perception can be linked by the changes in the level of brain 

activations (141). This is particularly relevant to the neurofeedback study in this 

thesis (Chapter 6), which aimed to alter perception by modulating the levels of 

activation in brain regions involved in visual perception.  Electrophysiological and 

neuroimaging techniques have been used to quantify the levels of neural activity and 

its link to the mechanisms underlying perceptual phenomena (142). Single neuron 

and local neuronal population activity, as measured with increases or decreases in 

spike rates, have provided insights into perception (143), but are constrained by 

being limited to very small cortical locations. Perceptual phenomena are likely to 

result from dynamic, hierarchical interactions between multiple cortical and 

subcortical regions; fMRI, by measuring across the whole brain, has been useful in 

demonstrating changes in brain activation in primary retinotopic cortex, category-

specific brain regions, as well as high order regions, in relation to visual perception 

(144,145). 
 

Increased brain activity in primary visual cortex, linked to the occurrence of specific 

percepts, results in improved visual discrimination (17). The effect of prior exposure 

on subsequent perception may serve to preferentially enhance a specific perceptual 

state.  For example, previous exposure to similar stimuli via priming with degraded 

objects results in increased functional activation in visual areas as compared to 

priming with intact stimuli; the latter results in repetition-related decreases in BOLD 

signal (146,147). Mental imagery of stimuli produces activation in category-specific 

areas similar to the physical presentation of the stimulus, although the level of 

activation is quantitatively lower (148,149).  

 

Activation in areas such as category-specific regions and the involvement of top-

down control areas may facilitate category-specific changes in perceptual state – a 
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concept fundamental to the study presented in Chapter 6. During bistable perception 

of faces and houses, prestimulus activity in FFA but not PPA predicted which of the 

two percepts would subsequently be perceived (150,151). A top-down influence over 

object identification was demonstrated by Eger et al. (152) who showed that the 

threshold for the identification of gradually-revealed visual objects was lowered by 

providing verbal cues, and was associated with an earlier rise of mean BOLD activity 

in ventral visual areas, as well lateral parietal and prefrontal cortex. The authors 

concluded that recognition was facilitated by fronto-parietal coupling with ventral 

visual areas, indicating top-down control of perception.  Effective connectivity 

analyses, using both Dynamic Causal Modelling and Granger causality, revealed 

directional BOLD signal flow from parietal to occipital cortices that is, feedback 

during a visual imagery task. Flow reversal, that is, feed-forward signalling, instead 

occurred during a viewing/ simple perception task (153). Previous work by Mechelli 

et al. (154) demonstrated segregation of top-down effective connectivity in relation to 

different perceptual states. Superior parietal cortex demonstrated increased effective 

connectivity during both imagery and perceptual tasks, whilst prefrontal cortex was 

implicated only during visual imagery, with specificity for category-specific cortex. 

These findings suggest that more demanding perceptual phenomena increase top-

down involvement. In keeping with this, bistable perception involving ambiguous 

stimuli engages top-down processes more than simple, unambiguous perception 

(155). 

 

Attempting to successfully modulate perception, as I set out to do in Chapter 6, 

benefits from a conceptual understanding of the mechanisms that underlie it. 

Helmholtz proposed an inferential process, with the requirement for ‘unconscious 

inference’ to inform visual input through the eyes, in order for the brain to make 

sense of the visual scene (156,157). The idea was successively refined (158,159), 

and subsequently set out within a Bayesian hierarchical model (160–169), where 

prior knowledge of the environment is stored in the brain and modulates incoming 

sensory input to produce the perceptual experience. The level of brain activation in 

neurons sensitive to expected knowledge has been associated with short term 

learning of expectations and perceptual ‘priors,’ with findings of increased efficiency/ 

decreased activations in fMRI studies, and higher levels of activity in 

neurophysiological studies. Taken together, the level of activity within a brain region 
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may represent prior distributions of neural activity, which have been shaped by 

sensory input and expected sensory inputs; modulation of the level of this activity 

using for example neurofeedback, may therefore impact on the subsequent 

processing by that region, and its resulting output. Therefore, considering perception 

as an inferential process, one approach to producing perceptual changes would be 

to alter the prior state of the brain regions involved in perception. This is supported 

by evidence demonstrating the influence of expectations on perception. The 

interaction of neurofeedback and visual perception in Chapter 6 provides a direct 

means of doing this, as well as providing a novel insight into the relationship 

between the brain and visual perception. 

 
  
 

1.3 Summary of experimental aims 
 
 
The thesis sets out to develop a non-invasive BCI, powered by cognitive processes, 

which target higher order visual cortex. Over the course of the experiments in this 

thesis, I utilise novel technical innovations to achieve this and gain insights into the 

neurobiology of the underlying neural processes. 

 

The first aim of this thesis was to decode visual information in higher order visual 

cortex to identify the focus of an individual’s spatial attention. In Experiments 1 to 3, I 

establish offline, and then online methods for achieving this, resulting in the 

implementation of an attention-based BCI. 

 

The second aim of this thesis was to implement rt-fMRI for the purposes of a 

neurofeedback BCI, in order to bias visual perception by training participants to 

modulate category-specific visual brain regions. In Experiment 4, I test this aim using 

a binocular rivalry paradigm with face and house stimuli, employed before and after 

participants learned to modulate a neurofeedback signal based on the activation 

levels in FFA, and PPA. Face and house stimuli robustly activate FFA and PPA 

respectively, and these brain regions were selected on account of their well -
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documented role in face and house processing, both during the deployment of object 

based attention (99,170) and in category-specific perception (151,171).  

 

In anticipation of the experimental findings, I demonstrate that higher order visual 

areas can be successfully used as the basis for a rt-fMRI BCI. I was able to 

successfully decode covert deployment of spatial attention across four quadrants on 

a single trial basis using a novel automated decision criterion. I also show that 

participants’ perception of faces or houses was biased following rt-fMRI 

neurofeedback training of PPA and FFA. The perceptual biasing was consistent with 

the specificity of the each participant’s neurofeedback training signal. In sum, the 

results from these experiments inform the construction of effective patient BCIs.  
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2. GENERAL METHODS 

2.1 MR PHYSICS 
 
 

2.1.1 Introduction 
 
Magnetic Resonance Imaging (MRI) was first independently demonstrated in 1946 

by Bloch (172) and Purcell et al.(173). This work was based on the observation that 

atomic nuclei (of which all matter is composed) have magnetic properties, produced 

by a charged particle, namely a proton, spinning around is own axis (174). Following 

on from this, pioneering work by Lauterbur (175), Mansfield (176), and Damadian 

(177) enabled the formation of two-dimensional images, by identifying  MR signal 

location, and heralding the application of topographical methods to MRI imaging in 

humans. The first image took 5 hours to perform in a human.  

 

 
2.1.2 Superconducting magnets and coils 
 
MRI scanners used today rely on the production of a magnetic field by running an 

electric current through a super cooled (i.e. -269 C) wire. The coolant used is 

cryogenic liquid helium. The wire is housed around a large diameter open bore, 

together with a number of other components related to maintaining the appropriate 

temperature conditions. 

 

Another important hardware component of the MRI scanner are the radiofrequency 

coils (RF), which transmit and receive the radio-frequency waves used in image 

acquisition. There are a variety of coils e.g. volume coils, surface coils, which are 

generally shaped to ensure uniformity of the RF field inside the coil. The coils maybe 

receive only, or as in the case of a head coil, transmit-and-receive coils. 

 

The aim of an MRI scanner is to produce a constant and relatively homogenous 

magnetic field inside the bore. The field is termed B0 and it provides optimal 
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conditions for the excitation of protons, found in all organic matter likely to be placed 

in the scanner including humans, and allows optimal measurement of the energy 

transactions which occur as a consequence (178).  

 

The RF field is referred to as the B1 field. It combines with the B0 field to generate 

MR signals that are spatially localised, and further encoded by the gradient magnetic 

fields to create an MRI. 

 
The homogeneity of the scanner’s B0 field is important specifically for field 

localisation when scanning participants. Placing an object into the B0 field however 

creates local perturbations/susceptibility effects. To counter this, shim coils provide 

field correction through active shimming (cf. passive shimming which is performed 

during installation using sheets of metal). Shimming therefore refers to changes 

made to the magnet in order to optimise field homogeneity. 

 

 

2.1.3 The magnetic field, protons and ‘wobbling’ 
 
The magnetic field to which the participant or patient is exposed to inside the 

scanner is measured in Tesla (T) – one T is approximately 20,000 times the strength 

of earth’s field. All experiments in the thesis were performed in a 3T field (Allegra 

Siemens 3T magnet). 

 
The source of the MR signal in the majority of human imaging studies is from the 

hydrogen atom, or more specifically a hydrogen nucleus. This consists of a single 

positively charged particle, a proton ‘spinning’ around the nucleus. This ‘spin’ is an 

intrinsic quantum mechanical property of elementary particles, and is an angular 

momentum, rather than a simple rotation. It is determined by two quantum numbers, 

one for magnitude (nuclear spin quantum number) and the other for the direction in 

the z-axis (azimuthal quantum number). Protons essentially behave as miniature 

superconductors in which the spinning positive charge produces an electric current, 

which in turn generates a miniature magnetic field. When atomic nuclei are placed in 

the scanner’s magnetic field, the magnetic moments of the nuclei, which are 
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normally random, tend to align parallel or antiparallel to the scanner field, B0, the axis 

of which is parallel to the bore of the magnet (z-axis). 

 

The optimal state is at the lowest potential energy i.e. parallel. However, when 

placed in the B0 field, the group of protons, regardless of their individual alignment,  

‘wobble’ in a particular way (the classic analogy is a spinning top which wobbles but 

does not fall). This is called ‘precession’, and the rate at which this occurs is termed 

the precession frequency or ‘Larmour’ frequency, for a particular magnetic field, B0. It 

is dependant on B0, and this relationship is realised in the Larmour equation:- 

 

ω0 = γB0 
 

ω0 is the angular frequency of precession of protons in an external magnetic field, γ 

is a constant for a specific nuclear species (e.g. hydrogen), and is termed the 

gyromagnetic ratio. Its value for a proton is 42.6 MHz/T. Therefore, the Larmor 

frequency f0 for a 3 T magnet is 3(T)*42.56(MHz T-1) = 127.68 MHz. 

 

 

2.1.4 Longitudinal magnetisation 
 
Protons ‘precessing’ parallel to B0 gradually come into alignment to create a sum 

longitudinal magnetisation i.e. along the z-axis of the external magnetic field, which 

is termed M0. Given that the participant contains the bulk of these protons, they 

essentially become a ‘magnet’. The stronger the magnet, the more protons will align 

in the direction of B0. However, in order to measure these specific protons, 

magnetisation, which lies at an angle to B0, must be produced. 

 

 

2.1.5 RF pulses and transverse magnetisation 
 
An RF pulse applied across the B0 field (and the participant in the scanner) knocks 

the protons out of alignment with the z-axis. This is due to a transfer of energy from 
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the RF pulse, and can only occur at the precession frequency of the protons – this 

provides for the ‘resonance’ term in MRI. 

 

The RF pulses in fact produce two changes in protons, which give way to the images 

typically used i.e. T1 and T2 images. The transfer of energy results in some protons 

gaining a higher energy state (‘up’ state), being antiparallel to B0 – this will result in 

net cancellation of the longitudinal magnetisation in some regions. Correspondingly, 

some protons will move in phase - this produces a transverse magnetisation i.e. x-y 

plane. This transverse magnetic field rotates at the Larmour frequency, inducing an 

alternating voltage in a neighbouring conductive (RF) receiver coil. This generates 

an electric current, which leads to the MR signal. 

 

An important effect is produced by now switching the RF pulse off – the excited, 

‘wobbling’ protons, relax, fall out of phase, and return to a lower energy state. 

 

 

2.1.6 T1 and T2 relaxation 
 
T1 relaxation occurs when the longitudinal magnetisation reduces, with the T 

denoting the time taken for the protons to recover thermal equilibrium. The T1 value 

is tissue specific, and is longer at higher field strengths. The value is dependent on 

the ‘tumbling’ rate or degree of molecular motion of different molecules. Free water, 

being unbound, and of a small molecular size has a very rapid tumble rate, indeed 

too fast to have efficient T1 relaxation. Large macromolecules e.g. membrane lipids, 

which have highly bound hydrogen, tumble slowly. Both free water and bound 

hydrogen have long T1 relaxation times. On other hand partially bound water, or 

substances such as fat have short T1 values i.e. close to the Larmour frequency 

(179,180). 

 

A T1 curve describes the continuous and exponential process of the return of a 

proton to its original energy state – ‘T1’ is the time taken for longitudinal 

magnetisation to return from 0 to (1-e-1) or 63% of its final value. 
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T2 relaxation occurs when transverse magnetisation reduces. It is once again 

tissue-specific, but unlike T1 relaxation, is unaffected by field strength, and may 

proceed with or without overall energy loss. 

 

Two processes cause loss of transverse phase coherence in the x-y plane. One is 

inhomogeneity in local magnetic fields within tissue, which produces loss of phase 

coherence within a group of protons, so-called spin-spin relaxation. 

 

There is also inhomogeneity within B0, resulting from slightly different Larmour 

frequencies at different locations within the field. The dephasing that is caused by 

these field imperfections is a constant phenomenon, and is potentially reversible. T2 

‘star’ (T2*) relaxation describes the combination of these effects, and determines the 

actual rate of decay of a signal, which is not affected by a gradients i.e. free 

induction decay (FID). FID is occurs in relation to decay by a number of processes 

including the magnetic field gradients used to localise and encode the MR signal. It 

is more usual to generate the MR signal using the application of a RF pulse, and 

measuring the signal produced in response by the spin of the protons – termed the 

‘echo’. 

 
T2 is the time taken for transverse magnetisation to decay to e-1, 37% of its initial 

value. The major determinant of this value is spin-spin interactions. Free water, 

which has its molecules relatively far apart, will have fewer of these interactions- it 

has a longer T2 value compared to tissue containing water e.g. the brain. Transverse 

relaxation occurs rapidly in human tissue and therefore T2 values are less than or 

equal to T1. 

 
 

2.1.7 T1 and T2 weighted images 
 
T1 images are produced when signal intensities are governed principally by 

differences in tissue T1 relaxation time – the manner in which this is achieved is by 

changing the time between two RF excitation pulses, the repetition time (TR). 
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T2 images typically have long TRs and are influenced by the differences in proton 

density and T2 relaxation times. 

 
After the initial 90 degree RF pulse, the application of a further 180-degree RF pulse 

rotates the protons through 180 degrees – they precess in the same plane but the 

opposite direction. The signal amplitude of the MR signal is determined by the 

number of protons that are in phase following an application of an RF pulse- the 

maximum amplitude is reached at the echo time (TE), where TE is the time interval 

between the initial 90 degree RF pulse and the echo. In order to achieve the 

maximum signal the 180 degree RF pulse must be applied at time TE/2. 

 

The signal produced following the application of the 180-degree RF pulse is termed 

the spin echo (SE) – that is the signal caused by the echo or spin of the protons in 

relation to the RF pulse. Persisting inhomogeneities in B0 cause protons to continue 

losing phase coherence following a 180-degree RF pulse; repeated RF pulses will 

produce further SE’s, which reduce in amplitude due to the T2 effects described. The 

T2 curve is formed by connecting the SE intensities as compared to the T2* curve, 

which shows the de-phasing effects in the absence of the 180 degree RF refocusing 

pulses. 

 
Alterations in TE and T2 weighting alter signal contrast, but can also potentially alter 

the signal-to-noise ratio. 

 
 

2.1.8 Contrast 
 
The term contrast in this context applies to the process of differentiating adjacent 

tissues. It is determined by signal intensities, which relate to a number of variables 

including blood flow, the pulse sequence, TE, inversion time, TR, proton density and 

to tissue T1 and T2 relaxation times. 

 

The relationship between these variables and signal intensities is complex. For 

example a much stronger signal is achieved with shorter TEs. However, when this is 
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less than 32 milliseconds, differences in T2 have less influence on tissue contrast. 

T2 images, as produced for cognitive neuroimaging are obtained using long TEs. 

Heavily weighted T2 images are useful for delineating tissue/water interfaces in 

diagnostic neuroimaging e.g. to image the trigeminal nerve. 

 

Contrast media can also be used, and differences in magnetic susceptibility can be 

taken advantage of e.g. blood products, and iron content (181). 

 

 

2.1.9 SE and GRE 
 
The emergent concept is that the RF signal is not measured directly, rather MR 

imaging exploits the ‘echo’ that is produced in relation to it.  I have discussed the 

formation of the spin echo and the relevant related measures above. 

  

SE sequences have relatively long TR and TE values, and as a result are time 

consuming. Gradient echo (GRE) sequences provide an alternate approach.  A 

single RF pulse is used, with smaller flip angles (5-40 degrees) compared to the 90-

degree RF pulse used in SE. The 180 refocusing pulses are replaced with magnetic 

field gradients, which change field strength and alter the Larmour frequency in a 

specific direction. Protons in this direction rapidly fall out of phase, causing a sharp 

decline in the FID signal. The gradient ‘echo’ is produced by applying a second 

magnetic field of the same amplitude to the opposite direction, pushing the 

‘dephased’ protons back into phase. 

 

The combination of short TE and a RF with flip angles <90 degrees means that the 

preceding longitudinal magnetisation is not entirely abolished, enabling good signal 

quality with short TRs. GRE sequences are however quite vulnerable to magnetic 

susceptibility effects, with greater signal loss compared to SE sequences. 

 

A final important point with GRE imaging as compared to SE, is that the gradient 

reversals (as opposed to the 180 refocusing pulses) do not minimise local field 

inhomgeneities – it only acts to refocus those protons that have been dephased by 
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the gradient itself. The result is that GRE sequences are more influenced by T2* 

effects, as compared to T2 relaxation only (181). 

 

 

2.1.10 Image construction – localisation and encoding 
 
A three-dimensional MR image is produced using 3 gradient fields (181). The 

position of the protons in the object being imaged are spatially localised in three 

dimensions using these fields, allowing an MR image to be constructed. 

 

Slice-selection gradient 

A single slice is localised by altering B0 along a chosen axis using a gradient field; 

the Larmour frequencies of the protons varies within this gradient field. Manipulating 

the ‘steepness’ of the gradient field, or the bandwidth of the RF pulse can change 

slice thickness. Usually the RF pulse is applied as range of bandwidths, which 

excites a specific slice thickness. The following two gradient fields allow pixels within 

a ‘slice’ to be spatially encoded.  

 

Phase-encoding gradient 

Protons may be differentiated according to their phase following the application of a 

gradient magnetic field and despite having the same precession frequency, they will 

no longer be in phase. The gradient field, Gp is therefore applied in the ‘phase-

encoding’ direction; the resultant spin phases will vary linearly across the phase-

encoded direction. 

 

Frequency-encoding gradient 

In a similar fashion, the ‘frequency-encoding’ gradient is applied orthogonal to the 

phase-encoding gradient. Protons may now be differentiated according to their 

rotation frequencies in this plane. 

 

To summarise, the slice selection gradient produces the slices that comprise the 

brain volume, and the phase encoding and frequency encoding gradients are 
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orthogonally applied to spatially document the position of the protons in each slice 

volume, to produce the final 3D MR image. 

 

To ensure sampling signal i.e. the maximum ‘echo’, and to counteract de-phasing 

produced by transverse magnetisation, additional gradient pulses are used, just 

before the slice-selection gradient and immediately before the frequency-encoding 

gradient. 

 
 

2.1.11 K-space 
 

This term relates to the data matrix produced through successive and incremental 

applications of the ‘pulse sequence’. It is composed of image localising gradients. 

Each pulse generates a single echo signal, enabling all of the pixels within a slice to 

be systematically localised; at each step, although the phase-encoding gradient is 

increased, the slice selection and frequency-encoding gradients are maintained. It is 

this data-matrix of spatial frequencies that is converted into an image using a Fourier 

transform (179). 

 
2.1.12 Image acquisition 
 
The total image acquisition time is the product of the time interval between pulse 

sequences (TR) and the number of phase encoding steps (Np). Conventional pulse 

sequences e.g. SE and GRE, acquire one phase encoding step per TR, which is a 

single line of k-space. Faster image acquisition can be implemented, with multiple 

lines of k-space per TR being acquired e.g. Turbo SE or Echo-planar imaging (EPI) 

(181). 

 

2.1.13 Echo-planar imaging (EPI) 
 

EPI is one such rapid sequence, with the generation of multiple GREs per TR, 

through high amplitude gradients and rapid oscillation. Single-shot EPI acquires all of 
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the requisite phase-encoding steps in a single TR, whereas multi-shot EPI uses a 

few TRs. EPI sequences are useful for functional neuroimaging, as the T2* contrast 

is sensitive to blood-oxygen level dependent signal (BOLD) – all of the functional 

imaging in this thesis was performed with EPI sequences. 

 
 

2.1.14 Magnetic susceptibility 
 

The term denotes the extent to which a substance becomes magnetised when 

placed in an external magnetic field. Electrons within a substance, specifically those 

that are delocalised, or in nuclear orbit, interact with the magnetic field to produce 

circulating currents. These currents in turn generate local internal magnetisation, 

which either augments or opposes the external magnetic field. This results in either 

positive susceptibility in the first instance, or negative susceptibility in which the local 

magnetic field is reduced. Materials with positive susceptibility are termed 

paramagnetic, whereas those with negative susceptibility are termed diamagnetic. 

 

Living tissue and water are very weakly diamagnetic, as compared to iron and other 

metals, which are very susceptible and are called ferromagnetic materials. 

Superparamagnetism describes an intermediate state of positive susceptibility that 

lies between paramagnetism and ferromagnetism. 
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2.2 The BOLD signal 
 
 

2.2.1 Applying MR physics to produce a functional signal 
 
Susceptibility, as introduced above, is exploited to deliver the functional component 

of neuroimaging, utilising the molecular relationship of oxygen to haemoglobin, the 

oxygen-carrying component of blood. This gives rise to the BOLD signal (182,183), 

which is the basis of fMRI. 

 

Oxygen, a primary requirement for aerobic metabolism, is reversibly bonded to an 

iron atom at the centre of the haem component of haemoglobin. When haemoglobin 

arrives in tissue from the arterial circulation, oxygen separates from the haem 

molecule, exposing electrons from the iron atom. These unpaired electrons alter the 

susceptibility of the deoxygenated haemoglobin molecule, making it paramagnetic 

(28). Deoxygenated haemoglobin increases the spin phase dispersion, thereby 

increasing local field inhomogeneities. T2 and T2* relaxation is reduced, resulting in 

a decreased T2* weighted signal, and a reduced BOLD signal. Oxyhaemoglobin on 

the other hand, is diamagnetic, and consequently does not interact significantly with 

the magnetic field (184). Note the described susceptibility effects relate to 

intravascular changes. Although susceptibility effects will occur inside blood vessels 

and adjacent tissue, at field strengths of 1.5 T and above, more than half the BOLD 

contrast is due to the intravascular signal (185).  

 

Briefly considering the extravascular component, the largest BOLD changes (i.e. 

changes in T2*) occur near veins in the region of an ‘activated’ area – this is related 

to the comparatively reduced water diffusion around veins, as compared to 

capillaries. With diffusion, water molecules move randomly, sampling a range of 

spatially differentiated magnetic fields.  The net phase dispersion between different 

spins is reduced, leading to a comparatively smaller change in T2* relaxation. 

Capillaries allow for rapid water diffusion, and so BOLD changes are less 

pronounced (186,187). Note, however that despite this, capillary dilatation accounts 

for 85% of the increase in blood flow linked to neuronal activity, and provides the 
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trigger for arteriolar dilatation (see next section). It becomes apparent that while the 

term BOLD implicates oxygen, it is better regarded as a measure of 

deoxyhaemoglobin washout, and the magnetic susceptibility changes that 

accompany it. 

 

Aerobic metabolism, which is closely linked to neuronal activation, should result in a 

rapid fall in the level of oxygenated haemoglobin through oxygen extraction for 

cellular metabolism – the assumption that follows is that increased neural activation 

would cause a decrease in the T2* derived MR signal. However the converse is 

observed i.e. increased BOLD signal/ brighter T2* weighted images (28,188). This is 

because there is a disproportionate delivery of oxygenated blood as compared to 

that required for cellular metabolism, in response to increased neural activation 

(189). 

 

 

2.2.2 Physiological basis of BOLD 
 

The link between neural activity and the measured changes in deoxygenated 

haemoglobin is complex and is underpinned by the following: 

- the type of neural activity and the cells generating it 

- the link between activity and energy demands 

- the processes coupling  demand, supply and energy metabolism 

I examine these steps in detail below. 
 
 

2.2.2.1 The haemodynamic response and the haemodynamic response 
function 
 

The time course of the BOLD response is termed the haemodynamic response. This 

can be modelled using the haemodynamic response function (HRF). The function, 

which in SPM is a linear combination of two gamma functions, is convolved with a 

stimulus function to produce a task-related regressor (see chapter 2.4 for how this is 

achieved in general linear modelling.) In terms of the underlying physiology which 
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gives rise to the haemodynamic response, it is thought to arise in the following way: 

in response to a task, neural activity occurs very rapidly, on the order of milliseconds. 

The associated vascular changes occur more slowly, in three stages listed below, 

giving rise to a HRF that peaks 4-6 seconds after the onset of neuronal activity (190).  

 

 
 

Fig. 2-1: Illustration of the HRF. Each of the stages described below are 
labelled. 
 

1) INTIAL DECREASE IN HRF 

(due to increased oxygen consumption i.e. the primary inflow and 
volume effects) 

Recent, work (191) suggests that an initial decrease is produced by capillary 

dilatation, which precedes arteriolar dilatation,  in response to neural activity. 

Transient reduction in blood volume is produced by the very rapid capillary dilatation, 

which is mediated by capillary pericytes actively relaxing in response to neuronal 

activity  

 

Following this, on-going capillary dilatation may generate as much as 84% of the 

subsequent steady-state increase in blood flow evoked by neuronal activity. 

  

2)  LARGE INCREASE IN HRF above the baseline 
This has been explained by capillary dilatation, and the slightly later arteriolar 

dilatation, which is then accommodated by venous and venular vasoldilatation – the 



 58 

latter, due to their ‘balloon-like’ elasticity, results in the housing of a large volume of 

predominantly deoxygenated blood. 

 

3) DECREASE IN HRF with an UNDERSHOOT below baseline i.e. ‘post-
stimulus undershoot 

The undershoot lasts for several seconds, and can go on for as much as half of the 

haemodynamic response. However, it is inconsistently observed in the average 

response, due to factors such as variability in its shape and amplitude, which can 

vary on a trial-by-trial basis.  

 

The origins of the undershoot are incompletely understood (192). It has  been 

suggested to reflect the metabolic rate of the tissues, measured in terms of oxygen 

consumption (CMRO2), with neuronal activity producing a sustained increase in 

CMRO2. The ‘metabolic’ theory suggests that the raised CMRO2 then causes a 

reduction in the levels of oxygenated haemoglobin, resulting in a drop in the BOLD 

signal. A ‘compliance’ theory suggests that the dip is due to a persistence of 

increased blood volume following the cessation of brain activity. It is likely that there 

is a contribution of delayed vascular compliance (192). 

 

Interestingly, both post-stimulus ‘overshoots’ and ‘undershoots’ have also been 

recorded. Current work indicates the post-stimulus undershoot is accompanied by 

cortical inhibition, and reductions in cerebral blood flow (CBF) and CMRO2, with the 

opposite being true in the event of a post-stimulus overshoot (193). 

 

 

2.2.2.2 Energy coupled blood flow, and blood volume changes  
 

As discussed, the BOLD signal, in response to a stimulus (and the resulting neural 

activity), is produced by a decrease in deoxygenated haemoglobin, reflecting 

regional oxygenation. In order for this to take place, commensurate changes occur in 

CBF, cerebral blood volume (CBV) and cerebral oxygen metabolism CMRO2, itself a 

surrogate measure of glucose metabolism (194). The manner in which these 

measures are effected is related in part to the relative contributions of the neural 



 59 

activity, which include spiking and synaptic activity, and may be excitatory or 

inhibitory activity (195). The interaction of aerobic and anaerobic metabolism in 

neurones and their neighbouring cells (e.g. glia), impacts on this, as well as on the 

time courses of these processes, relative to the HRF. Two important dissociations 

also occur- 1/ the increase in glucose metabolism is larger than the oxygen 

consumption rate (CMRO2) with increased neural activity (196); 2/ the level of 

oxygen presentation far outstrips the rate of aerobic metabolism. The combined 

effect of this is a net drop in deoxygenated haemoglobin, an increase in oxygenated 

haemoglobin, and therefore an increase in the BOLD signal strength. 

 

 

2.2.2.3 A conceptual framework for interactions involved in the BOLD 
response 
 

Buxton et al. (195) suggested that the BOLD response is driven by a change in CBF, 

with strong modulation by the level of coupling with CMRO2. They propose the 

following relationship: 

  

 
Fig 2-2. The physiological basis of the BOLD response. (See below) 
 

Buxton et al. Variability of flow/metabolism coupling and neural activity

parallel by neural activity, but potentially by different aspects of
that activity.

These physiological considerations emphasize the difficulty of
interpreting the BOLD response in a quantitative way. Most fMRI
investigators would support the view that if a local BOLD sig-
nal change is detected in response to a stimulus, it suggests that
there is some underlying change in neural activity, the basis of
using the BOLD response as a mapping signal. However, if we
focus on questions comparing BOLD responses under different
conditions, the interpretation becomes more problematic: does a
change of the underlying neural activity in response to a stimu-
lus necessarily lead to a BOLD signal change? Or, if the BOLD
response is different comparing two conditions, does the mag-
nitude of the difference reflect the magnitude of the underlying
physiological differences? These are more difficult questions to
answer, and reflect a key shift from simply asking where activa-
tion occurs to asking how much activation occurs. The difficulty
in making this shift is part of the reason for the lack of clinical
impact of fMRI, despite the clear potential to provide informa-
tion on brain dysfunction. The most established fMRI application
in a clinical setting is in pre-surgical planning (Chakraborty and
McEvoy, 2008), where the basic question is with regard to the
location of activity, reflecting the success of fMRI as a mapping
tool. For many clinical and neuroscience applications, though, the
part of the brain of interest is already known, and the important
question is: what is the level of neural activity of that brain area
under different conditions?

We take this as the fundamental challenge for fMRI: how can
we interpret the magnitude of the BOLD signal in a quantita-
tive way in terms of the underlying physiological activity? Based
on the studies discussed below, our conclusion is that the BOLD
response alone is ambiguous, and cannot be interpreted reli-
ably as a quantitative reflection of the underlying physiology.
Fortunately, though, the combination of BOLD imaging with

arterial spin labeling (ASL) methods and a calibrated BOLD
approach makes it possible to isolate the effects of CBF and
CMRO2 (Davis et al., 1998; Hoge, 2012; Pike, 2012). This quanti-
tative fMRI approach provides a much richer context for assessing
the underlying physiology of brain activation and offers the
potential of revealing more about the underlying neural activity
than BOLD imaging alone.

THE COMPLEXITY OF THE BOLD RESPONSE
From a quantitative viewpoint, we can look at the BOLD response
as driven by a CBF change, but strongly modulated by two addi-
tional physiological factors: the CBF/CMRO2 coupling ratio n,
discussed above, and the amount of deoxyhemoglobin present
in the baseline state (Figure 1). In order to clarify the complex-
ity of the BOLD signal, we introduced a simple heuristic model
for the BOLD response (!S), based on a more detailed model
(Griffeth and Buxton, 2011), that approximately captures the
different factors involved (Griffeth et al., 2013):

!S = A (1 − 1/n − αV ) (1 − F0/F) (1)

The scaling factor A is proportional to the total amount of deoxy-
hemoglobin present in the baseline state, and so depends on
the baseline oxygen extraction fraction and venous blood vol-
ume, and also depends on technical factors related to the data
acquisition (magnetic field strength and echo time). The base-
line CBF is denoted F0, and the activated CBF is denoted F.
The nonlinear dependence on F reflects the ceiling effect on
the BOLD response: even a very large flow is limited in its
effect because it can only reduce the finite amount of deoxy-
hemoglobin present in the baseline state. The parameter αV
describes the effect of a change in venous blood volume with
activation, which changes the total blood volume containing
deoxyhemoglobin. Typical values of the parameters for a strong

FIGURE 1 | The physiological basis of the BOLD response. A stimulus
evokes increased excitatory and inhibitory neural activity, with the
energy cost of the net evoked activity met primarily by an increase in
oxygen metabolism (CMRO2), with increased blood flow (CBF) driven by
aspects of the neural response. The BOLD response is primarily driven

by the CBF change (F /F0), but strongly modulated by the ratio n of the
fractional changes in CBF and CMRO2 and the baseline state (A), and
to a lesser degree by venous blood volume changes (αV ). Equation (1)
is a simple model for the BOLD response in terms of these
physiological changes.
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 60 

Conceptualisation of the possible relationships underlying the BOLD 
response, between cerebral blood flow, CMRO2, venous blood volume 
changes and the baseline haemoglobin state (from Buxton (195). 
 
A = scaling factor, proportional to the total amount of deoxyhaemoglobin 

in the baseline state 
Fo = baseline CBF 
F = activated CBF 
αv F = effect of change of venous blood volume with activation 
 
NB: There is nonlinear dependence on F; even with large flow rates, the BOLD 
response cannot increase beyond a certain point (i.e. there is a fixed amount 
of deoxygenated haemoglobin).  
 
 

2.2.3 Where and how is this energy used: glia versus neurone? 
 
The principal use of the energy in neural activity is the restoration of sodium and 

calcium gradients (183,197). Most of the energy cost is thought to be related to 

excitatory neural activity, and recovery from synaptic activity, rather than action 

potential production. Attwell and Iadecola (197) estimated that approximately 74% of 

the energy budget of the brain is devoted to post-synaptic potentials. Inhibitory 

neural activity, which primarily relates to the opening of chloride ion channels in 

relation to gamma-aminobutyric acid (GABA) release, is not thought to incur a 

significant energy cost. 

 

At the cellular level, neurones and glial cells such as astrocytes engage in activity in 

response to a functional stimulus. Based on observations, that astrocytes are 

involved in recycling glutamate released into the synaptic cleft, and CMRO2 

correlates with neural activity, a cellular compartmentalisation of activity was 

proposed. Lower energy producing anaerobic glycolysis was suggested to occur in 

glia, while higher energy producing oxidative phosphorylation was thought to occur in 

neurones. This is likely to be a simplification- aerobic metabolism has been 
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demonstrated with radiolabelled carbon magnetic resonance spectroscopy, occurring 

in glia; neurons undertake aerobic metabolism during periods of high demand, as is 

likely to occur in the decoupling of CMRO2/CBF (198). 
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2.2.4 Why does blood flow increase? 
 

I have established that neural activity is linked or ‘coupled’ to vascular changes, 

which produces a characteristic increase in blood flow in relation to increases in 

neural activity. However, it is not clear what requirement of neural metabolism 

increased blood flow serves to address. An unanswered question is whether it is a 

glycaemic or an oxygen demand that is being resolved. Animal models of hyperoxia 

and hyperglycaemia have demonstrated stimulus-induced functional hyperemia in 

the relevant parts of the cortex (199,200). Conversely hypoglycaemia in humans did 

not affect the regional blood flow in response to neural activation (201). It has further 

been suggested that waste removal and heat regulation may contribute to the 

witnessed changes in blood flow (202). 

 

The CBF increase provides oxygen levels significantly in excess of that required by 

active neurones. A number of theories have been put forward to explain this. Gjedde 

suggested the hyper-oxygenation state helps to maintain a high oxygen tension 

gradient from blood capillaries to brain tissue, and that this is necessary for active 

cells (203). It has been proposed that the increase in CBF is not driven directly by 

energy metabolism, but rather the neural activity itself (197) – this mechanism 

increases CBF in anticipation of a greater need of oxygen (189), providing a 

protective energy redundancy. 

 

The delay in the haemodynamic peak relative to the neural activity implies that the 

changes in blood flow (and volume) are not directly linked to the initial metabolic 

needs of the firing neurones. One possibility is that the peak may be a consequence 

of the surge in blood flow that is produced by the initial metabolic demand of the 

firing neurones. This would mean that the haemodynamic peak is less important than 

the rising gradient of the peak – the latter relating more directly to neural firing, and 

the former representing a lag effect. On the other hand, as has been proposed by 

Heeger and Ress (190), sufficient stores of nutrients may already be available in the 

neurones or associated support cells to provide for the initial neuronal metabolic 

demand – this would be essential if the speed of the vascular response was limited. 
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A later blood flow would then serve to replenish depleted stores, and provide energy 

(glucose and oxygen) for on-going firing. 

 

One model has attempted to explain both the early requirement for neuronal energy 

and the delayed haemodynamic response peak utilising a cellular mediator. The 

‘lactate shuttle’ model proposes that the neighbouring astrocytes undergo anaerobic 

glycolysis in response to elevated glutamate levels, prioritising local oxygen reserves 

for neuronal activity. The lactate that is produced by anaerobic metabolism is utilised 

as an energy source by neurones. 

 

 

2.2.5 What are the cellular determinants of blood flow increase? 
 

Stimulus evoked positive BOLD may be driven by neurovascular coupling at a 

cellular level, and the properties of the brain’s vasculature. Astrocytes are an obvious 

candidate cell for the interaction between neuronal activity and vascular changes. 

These glial cells ensheath arterioles, capillaries and ascending venules throughout 

the cortex (204). The mechanism for coupling metabolism with vascular changes 

may be linked with the presence of glutamate, a by-product of neuronal metabolism. 

Metabotropic glutamate receptors (mGluR5s) on astrocytes identify the increase of 

glutamate, leading to a rise in intracellular calcium, and calcium-activated enzymatic 

processes. This, in turn, causes the production of local vasodilators (e.g. arachidonic 

acid derivatives such as prostaglandins, PGI2) which cause vasodilatation through 

direct action on perivascular smooth muscle. However, a number of inconsistences 

in the glutamate-mediated astrocyte activation pathway remain unaddressed. These 

include the potential absence of mGlusR5s receptors in the adult brain (205), the 

lack of astrocytes on pial arteries on the cortical surface, and the observation of 

functional hyperemia dissociated from intracellular calcium changes in mice models 

(206,207).  

 

The capillary bed forms the primary vascular-tissue interface for metabolic activity in 

various parts of the body, including the brain. Therefore, despite the identified 

discrepancies between capillary blood flow, and those linked to BOLD changes, it is 
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relevant to consider its potential role in neurovascular coupling (191). Most neurons 

are closer to capillaries (8.4µm in hippocampus) than to arterioles (70 µm), leading 

Hall et al. to propose neurons may adjust their energy supply by initially signalling to 

pericytes. Capillary pericytes are contractile cells, which wrap around the 

endothelium, and regulate blood flow, phagocytosis of cellular debris, and the 

permeability of the blood-brain barrier (208). Capillaries dilate more rapidly than 

arterioles, facilitating their dilatation - pericytes actively relax to generate capillary 

dilatation. Glutamate once again acts as the signal, causing the generation of PGE2, 

which dilates the capillaries by activating an outward K+ current in pericytes. This 

hyperpolarising current may serve as the vasodilatory signal, passing to the 

arterioles via gap junctions (209,210). Hall et al. demonstrated in vivo findings that 

pericytes are the first vascular elements to dilate during neuronal activity (1s before 

penetrating arterioles), being responsible for 84% of the increase in blood flow 

generated by neuronal activity. This provides compelling evidence for ‘pericyte-

mediated capillary dilatation’ being responsible for the BOLD signal. 

 

Rapid propagated vasodilatation may provide a further local mechanism for 

neurovascular coupling (211,212). It has been shown to occur in the cortex during 

functional hyperemia (213–215), and is mediated via a rapid endothelial 

hyperpolarisation. This propagates electrically within the endothelium (distances > 

10mm) – it causes self-dilatation via myoendothelial coupling to encircling smooth 

muscle cells, via gap junctions in the myoendothelium, and potentially a nitrogen 

oxide/ cyclo-oxygenase independent pathway utilising a putative endothelium-

derived hyperpolarising factor. 

 

Brain regions and networks have been proposed as being implicated in controlling 

and constraining local neurovascular coupling. Cholinergic afferents from the basal 

forebrain have been shown to modulate regional blood flow (207,216–218). 

Paracrine effects in association with local and distributed neuronal networks may 

provide for local coupling (219,220). This may involve fine-tuning of local neuronal 

vasculature, with interneurons acting on pericytes (197,221). Vasoactive substances 

released by cortical interneurons have been demonstrated, including Vasoactive 

intestinal Peptide, Nitrous Oxide, Neuropeptide Y, and somatostatin (222). At the 

macroscopic end of the spectrum, norepinephrine release by the locus coerulus 



 65 

causing wider cerebral vasoconstriction, and has been proposed to modulate 

functionally induced hyperemia (223,224). 

 
2.2.6 An integrated model  
 
In a recent review article (225), Hillman suggested that the most parsimonious 

explanation of the BOLD response was explained by incorporating propagated 

vasodilatation, mediated at the endothelial level, incorporating EDHF and NO 

mechanisms (225). She further hypothesises that the fast and slow components of 

propagated vasodilatation provide a physical basis for the non-linearities of the 

BOLD response (e.g. influences of stimulus frequencies, amplitude, and anaesthesia 

on the HRF). This dovetails well with the documented role of capillary endothelial 

pericytes (191) (see above), and paves the way for a cohesive view of the cellular 

basis of functional hyperemia, underpinning the BOLD effect. 

 

 

2.2.7 How does electrical activity match up to BOLD imaging 
 

Neural activity can separated into single neuron activity, multiple neurone spiking 

activity and synaptic activity. In electrophysiological terms, high frequency spiking 

activity is measured using multi-unit spiking activity (MUA). MUA is thought to 

represent the average spiking of small neuronal populations close to the vicinity of 

the placed microelectrode. It is obtained by band-pass filtering the recorded signal in 

a frequency range of 400 to a few thousand Hz. On the other hand low frequency 

range of neural activity, i.e. local field potentials (LFPs), reflect synaptic activity, 

being the synchronised synaptic inputs of a given neural population. An LFP is 

an electrophysiological signal generated by the summed electric current flowing from 

multiple nearby neurons within a small volume of nervous tissue. Voltage is 

produced across the local extracellular space by action potentials and graded 

potentials in neurons in the area, and varies as a result of synaptic activity. 

"Potential" refers to electrical potential, or voltage, and particularly to voltage 

recorded with a microelectrode embedded within neuronal tissue Utilising combined 
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MR imaging and electrophysiology experiments, Logothetis confirmed that LFPs are 

the most reliable indicator of BOLD activity (226). From a neuronal perspective, the 

BOLD signal primarily reflects incoming specific or association inputs to a brain 

region, as well as processing by both excitatory and inhibitory interneurons 

(194,226–228). 

 

A further consideration is that the BOLD signal may become uncoupled from 

electrophysiological responses in superficial cortical layers (i.e. demonstrated using 

comparative measures of LFP and MUA, versus depth electrode measurements in 

rat somatosensory cortex, (229)). 

 

 

2.2.8 What is the spatial resolution of the BOLD signal? 
 

This is a complex issue, with the BOLD response representing various neural and 

vascular determinants, which occur on different timescales. It bears reiterating that it 

is fundamentally a haemodynamic measure, and surrogate of the underlying neural 

activity. At a macroscopic level, the BOLD signal may be limited by microvascular 

density, which is less than the neural mass. The influence of large draining veins is 

another confounding factor, which is in part addressed by spin-echo techniques. 

Currently, it has been suggested that the resolution of fMRI BOLD is at the level of 

one cortical column, which contains 105 neurones (230). Lengthening acquisition 

times may result in increased spatial specificity, with a potential reduction in signal-

to-noise ratio. Increased field strength, i.e. 7T scanning, has increased capillary 

specificity as compared to lower field strengths, and may therefore be weighted 

towards the metabolic demands of active neural tissue, revealing microvascular 

change in grey matter (231). 

 

 

2.2.9 Volitional control of the BOLD signal: training a vascular signal?  
 

This thesis is concerned with the voluntary self-modulation of the BOLD signal, 

which provides an interesting context in which to consider the underpinnings of the 
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neurovascular signal. My work, and other neurofeedback studies confirm that 

volitional control of BOLD signals is possible and can be achieved rapidly i.e. within 

one day, over 30-45 minutes (232). This is in contrast to EEG neurofeedback, which 

typically requires multiple sessions that corresponds to e.g. several hours of training.  

 

Assuming that global effects such as arousal are accounted for (see rt-fMRI section) 

the question arises – what exactly are participants learning to control when they self-

modulate their regional BOLD signals?  The BOLD signal is a fundamentally 

metabolic signal, which is likely to be modulated by capillary vascular tone (i.e. 

pericyte-mediated). Given previous studies demonstrating biofeedback mediated 

control of cardiac vasomotor tone (51), and the proposed involvement of 

procedural/motor learning processes, it is possible that neurofeedback training is 

facilitated by control of intracranial vasomotor tone. This might set-up a positive 

feedback loop between locally increased neural activity (e.g. in response to 

activation of specific representations) and increased oxygenated blood flow. The 

latter could be both activity-dependent, and driven by a trained vasomotor response. 

 

A corroborative finding is that changes in the structural plasticity of the brain in 

response to interventions which purport to stimulate neural growth and 

reorganisation such as learning, in addition to the increases in neural mass by 

axonal enlargement and sprouting, are also accompanied by substantial increases in 

non-neural tissue such as glial cells and vasculature. Indeed, it has been previously 

argued that vascular changes could occur even in the absence of neurogenesis 

(233), implicating an important role for dynamic vascular changes in response to 

learning. The issue of plasticity is central to the motivation and findings of 

Experiment 4, and I return to it in the discussion of fingdings in which structural 

changes were produced by neurofeedback training. 
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2.3 FMRI data analysis 
 

 
 

Fig.2-3: Schematic of a typical fMRI preprocessing pipeline. The component of 
this are discussed in sections on ‘FMRI data analysis’ and the ‘General linear 
model’. 

 

2.3.1 Preprocessing 
 

This section covers the standard steps, known as preprocessing, that are utilised to 

prepare fMRI data for further analysis. The major steps are 1/ slice timing correction, 

2/ spatial realignment, 3/ co-registration of structural to functional images 4/ spatial 

normalisation of the functional data to canonical template as necessary, and 5/ 

spatial smoothing (234). 

 

2.3.2 Slice timing correction  
 

Neuroimaging data, which is often based on the entire three-dimensional volume of 

the brain being imaged, is acquired in a series of axial slices, with each slice being 
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made up of an array of voxels. In subsequent data analysis, the assumption is made 

that the whole brain volume is acquired simultaneously. In reality there are a number 

of options that can be implemented. The time taken to acquire a brain volume, i.e. 

TR, is on the order of seconds ( typically~2s). In this thesis, slice acquisitions were 

acquired in an ascending order, starting with caudal slices. However, an additional 

consideration is if interleaved slice acquisition is used, where odd-numbered slices 

are collected first, in an ascending order; even-numbered slices are then collected, in 

a descending order. This means that the BOLD responses in contiguous slices are 

separated in time, sometimes several seconds apart (235), with implications for 

voxels in neighbouring slices. In all such cases, slice timing correction enables each 

voxel’s time course to be considered simultaneously. The approach takes two forms. 

Firstly during preprocessing, temporal interpolation is used. The most common forms 

are linear, spline (i.e. non-linear) and the use of the cardinal-sine function i.e. sinc 

interpolation. During task-related analysis, the HRF can be altered to account for 

moderate differences in timing. Popular methods include using a weighted sum of 

two terms, where one term is the standard HRF (e.g. sum of two gamma functions), 

and the other is temporal derivative of that same HRF (236). 

 

 

2.3.3 Realignment (Motion Correction) 
 
Minor head movements during scanning can significantly corrupt imaging data. For 

example a movement of 5 mm may increase ‘activation’ values in a voxel by a factor 

of 5 (237). Indeed if head movements are too great, participants may need to be 

removed from the study altogether. The aim of realignment is to correct any small 

motion changes across a series of functional images by aligning them to a reference 

image, such that each voxel will have the same co-ordinate throughout a time series, 

and all images will have the same orientation. The first image is chosen as the 

reference image, having discarded the first 5 images to allow for field equilibration. 

Every subsequent image will be registered and re-sampled to be in the same 

orientation as the first image. Six parameters are typically used for a rigid-body 

transformation (i.e. maintaining the size of the brain as a constant) of the data into 

the first functional image. The three rotation parameters are along the x, y and z-
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axis, and the three translation parameters are left-right ‘roll’, up-down ‘pitch’, and 

forward-backward ‘yaw’. These values are calculated iteratively using an 

optimisation algorithm to minimise the sum of the square of the differences between 

the reference image and each subsequent image (238). It is occasionally necessary 

to manually correct for differences between images, which may still occur, 

particularly in the context of multiple session/ day scanning. This situation occurs 

with rt-fMRI neurofeedback studies, which may have as many as 6 scanning days 

per participant. 

 

Non-linear movement artefacts may persist, as a consequence of the position of 

each voxel in the B0. The image intensity depends on the spin-excitation history (i.e. 

previous positions of the brain volume in the field) and movements between slice 

acquisitions. Correction of persistent movement artefacts may be achieved during 

the model estimation, by regressing the estimated movement parameters from the 

specified data matrix i.e. as specified in the general linear model (239). This was the 

approach used for univariate analyses in this thesis. 

 
 

2.3.4 Unwarping and the use of field maps 
 
In order to reduce the distortions in image quality produced by susceptibility to field 

inhomogeneities, a further sequence of imaging is performed which can be used to 

weight and exclude field deviations. These inhomogeneities are most pronounced at 

brain tissue/air interfaces e.g. air sinuses. 

 

The field map acquires two T2* gradient echo images, with each image having 

different TE times to produce different weightings. A field map is then calculated 

based on the phase difference of the signal at each voxel, relative to the 3D field 

variation in that voxel. This can be used to work out how much to ‘un-distort’ each 

voxel i.e. how much to the spatially shift each voxel, resulting in the production of a 

voxel displacement map. An inversion of this is applied to the EPI images to produce 

a ‘corrected’ image (240). 
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2.3.5 Spatial normalisation  
 
Normalisation is used to warp whole brain imaging data from several participants into 

a standardised anatomical space, utilising established templates such as the 

Montreal Neurological Institute template (241), and the Talairach space (242). This 

allows for group level statistical tests to be applied at specific anatomical co-

ordinates. Although this is not essential for group level analysis, it is useful for 

alleviating inter-participant anatomical variance, particularly in the context of complex 

modelling, and more recently, real-time functional localisation (243). 

 

Normalisation consists of two steps. The determination of optimum 12-parameters, 

consisting of 3 translations, 3 rotations, 3 zooms and 3 shears, to affine transform 

the mean image of the individual participant created during realignment, to the 

anatomical standard template (see Fig 2-4 A). This is then followed by a non-linear 

estimation of deformations, required to address differences in head/ brain shape not 

accounted for by the affine transform parameters. In the latter step, the application of 

a choice of discrete cosine basis functions minimises the residual square of the 

differences between the images and the template (244). 

 

 
 

Fig.2-4: Illustration of the mechanics of spatial normalisation. (See below) 

A

B

C
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A, B Illustration of the 12 affine transformations (3 translations, 3 rotations, 3 
zooms, 3 shears), and non-linear transformation (consisting of linear 
combination of smooth basis functions, obtained from a discrete 3D cosine 
transform) utilised in spatial normalisation C. Anatomical brain (top) and a 
functional image (bottom) shown in standard space after spatial normalisation.  
 

The application of the 12 parameter affine transform and warping is constrained 

within an empirical Bayesian framework (238), using prior knowledge of head shape 

and size. In addition to the reduction in the square of the differences between the 

images and the template, the distance between the parameters and the prior 

expectation is also reduced, which prevents deviation of the transform from its 

expected value. This is necessary to avoid the introduction of unnecessary warping 

(i.e. ‘over-fitting’), by enabling the ‘fit’ that is most likely given prior information, as 

compared to a standard rigid-body transformation where the constraints are explicit. 

 

 
 

The equation above summaries the Bayesian regularisation step, which makes use 

of a maximum a posteriori scheme (MAP), and ensures that non-linear normalisation 

does not introduce any unnecessary warps. A MAP inference is the problem of 

finding an assignment to the variables of a probabilistic model that maximises their 

joint posterior probability (245). For spatial normalisation, it is achieved by minimising 

the sum of the squared differences between the template and the source image, and 

minimising a function of the deformation field by minimising the squared difference 

between the deformation parameters and the deformation priors. It is worth noting 

that normalisation corrects for gross differences, with spatial smoothing being used 

to address residual variability. The mathematical basis of this process is beyond the 

scope of this thesis with a full instruction on spatial normalisation found here (244). 
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2.3.6 Co-registration 
 
High-resolution T1 structural images (1mm isotropic voxels) are used to align a 

particular participant’s functional EPI images (2-3mm isotropic voxels), using a rigid-

body transformation to the mean functional image. This is more involved than that 

used for realignment (described above), due to the differences in image intensities of 

the structural T1 and the functional T2 sequences respectively. A two-dimensional 

histogram is created for each image by grouping voxels according to their intensity 

values. An optimisation algorithm is then applied which relies on mutual information 

theory - it attempts to match the two histograms such that the amount of uncertainty 

between any two voxels in the two images is minimised, thereby establishing the 

appropriate transform parameters. 

 

That said, EPI scans may also be registered to a participant’s own ‘averaged over 

time’ EPI image – this provides fewer obstacles than those required by intensity 

correspondence. Although this approach is less spatially specific, it may be more 

sensitive to detecting activity differences. 

 
 

2.3.7 Spatial Smoothing 
 
Spatial smoothing is performed prior to data analysis to improve inter-participant 

registration, and to reduce noise in the BOLD signal by blurring residual anatomical 

differences. This also serves to ensure assumptions of random field theory are 

upheld in relation to correction for multiple comparisons i.e. by reducing the number 

of resolution elements regarded as being independent. In regions that are spatially 

larger than the imaged spatial resolution, smoothing may reduce random variance in 

individual voxels, helping to increase the signal-to-noise ratio within the region, by 

providing a weighted average of the local signal (237). 

 

Spatial smoothing involves convolving the functional data with a Gaussian kernel, 

described by the full width of the kernel at half its maximum height (FWHM). Typical 
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values for kernel widths range between 6-12mm FWHM – all of the experiments in 

this thesis employed a 6mm smoothing kernel. 

 

 
Fig.2-5: Gaussian smoothing kernel. Image of a 3D Gaussian smoothing 
kernel, which is convolved with the imaging data at each voxel (left hand 
image). The Gaussian kernel is a normal distribution, with the shape of the 
kernel being described by the width of the distribution at half its maximum 
value (right hand image). 
 

 
 
Fig.2-6: Functional statistical maps, with and without smoothing. The 
application of a smoothing kernel results in the measured BOLD signal at each 
voxel being replaced by the weighted average of its neighbours. Depending on 
the size of the kernel used, the BOLD signal is variably smoothed as shown 
above, with clear differences in the statistical data for smoothing at 4 versus 8 
mm. 
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2.3.8 High Pass filters and low frequency drifts 
 
Voxel timecourses show low frequency fluctuations or ‘drift’, caused by physiological 

noise, as well as scanner related fluctuations, such as those caused by minor 

changes in temperature. These drifts demonstrate characteristic low frequency 

‘rising’ and ‘falling’ over the course of a task block. This was observed in the 

experimental work presented in Chapters 4 and 5. Signal drifts substantially reduce 

the power of statistical analysis. They can be removed using ‘frequency filters’, with 

the caveat that condition-related signal change may also be inadvertently removed. 

The application of a high pass filter is applied separately at each individual voxel – 

neighbouring voxels may have different rates of drift (235). 

 

In SPM there are default settings for the implementation of the high pass filter, which 

is set at a cut-off point of 128 Hz. I specifically altered this to 256 Hz in the ‘attention 

decoding’ experiments presented in Chapters 4 and 5, to ensure task related signal 

was not removed. 

 

 

2.3.9 Grand mean scaling 
 
Grand mean scaling eliminates global differences across sessions or participants, 

once again due to physiological and scanner-related fluctuations. This step, in a 

similar manner to the aforementioned filtering, adds a further correction for slower 

fluctuations in field strength that may occur over hours or days, or in the cerebral 

blood oxygenation differences between participants. Grand mean scaling is 

performed routinely in fMRI preprocessing, and normalises the overall mean BOLD 

signal to the same numerical value, correcting for session-to-session differences. 

There are other methods which constrain data further, such as proportional scaling - 

the term for these processes is global normalisation (237). 
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2.4 General linear model 
 

 

2.4.1 Overview 
 

The general linear model (GLM) is the most commonly used multiple regression 

model in univariate fMRI data analysis. The fundamental premise is that a prediction 

informs the design of the model which best explains the experimentally modulated 

neural activity, taking into account timing and duration of the events; the predictions 

are weighted in order to minimise the influence of error in the subsequent 

measurements (239). 

 

The data in this case is contained in a volumetric space, contiguously mapped by 

tens of thousands of isotropic voxels. Importantly, the model testing is performed on 

an individual voxel basis – this forms the basis of the univariate approach. The 

spatial structure of fMRI data is in fact not used in the model. Instead the voxels are 

treated independently of one another, and are arranged along a single dimension per 

time point for ease of calculation. An expression to describe this is formulated by the 

following: 

 

                                                   Y = BX+e 
 

The data matrix is expressed by Y- made up of V voxels, by n time points. The 

design matrix, X, identifies the linear model to be evaluated, and is made of the 

regressors M, each n time points in length. The weights of each regressor is 

combined into a parameter matrix B. Finally an error matrix, e, is included. 

 

Regressors associated with specific experimental hypothesis are termed 

‘experimental regressors’. These are usually covariates, which have a continuous 

range of values, or may be ‘indicators’ which have integral values, and mark a 

qualitative difference. The latter can be important in session comparisons. A typical 

model used for neural activation is the ‘boxcar’ function in block-design fMRI, where 

the response is either zero or one (i.e. present or absent). This is then convolved 
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with the HRF. The HRF is modelled in SPM, using a multivariate Taylor expansion of 

a combination of gamma functions (246). 

 

 

ℎ 𝑡 = 𝐴
𝑡𝛼1−1𝛽)

*+𝑒-.+/

Γ(*+))
− 	
𝑡𝛼2−1𝛽5

*+𝑒-.6/

Γ(*6))
	  

 

 

t references time, α1 = 6, α2 = 16, β1 = β2 = 1 and c = 1/6.  Γ represents the gamma 

function, which acts as a normalizing parameter. The unknown parameter in the 

model is the amplitude A. This function is convolved with the stimulus function to 

obtain a task related regressor to enter into the design matrix. In order to 

accommodate small jitter that may exist in the onset and duration of responses, a 

temporal derivative or a dispersion derivative, respectively, may be included in the 

model (247,248). 

 

An important consideration in the construction of regressors is to avoid their ‘co-

linearity’, in which they are not able to be statistically disambiguated. This can be 

achieved by ensuring that each regressor has minimal overlap with another, either 

by introducing large temporal gaps, as for slow event-related designs ,or for rapid 

event-related designs, by ordering conditions such that they can be deconvolved.  

 

Examples of the importance of producing optimised regressors in this thesis, are 

explored in the experiments presented in Chapters 4, and 5. Multiple streams of 

stimuli were presented concurrently in each of four quadrants on a visual display, 

with the participant being required to direct their attention to one stimulus steam per 

session block. In order to efficiently model the neural activity related to the 

deployment of spatial attention in these two experiments, the regressors for each 

quadrant included quadrant- specific information. This was partly achieved by the 

spatial location of the visual information being modelled, as well as the category of 

visual stimuli used i.e. house, faces etc. In block design fMRI, individual events 

within a task block are not taken into account. For the purpose of the experiments in 

Chapter 4, and 5, within a block each stimulus presentation would represent an 

event, with each one lasting for 500 ms – too rapid to be identified individually in  a 
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standard block design. Nonetheless, the stimulus presentations for each quadrant 

were interspersed with a set number of blank stimuli randomly interspersed with the 

stimulus presentations, such that attention to each quadrant-specific stimulus stream 

would produce quadrant-specific neural activity with distinguishable haemodynamic 

responses. The optimal presentation of these blank stimuli was achieved through the 

use of m-sequences (maximum length shift-register sequences). M-sequences 

specify an optimal order of events that allows for zero autocorrelation and therefore 

maximal statistical efficiency for disambiguating different stimulus events presented 

close together in time. This is achieved in two ways: m-sequences are nearly 

orthogonal to cyclically time-shifted version of themselves, and they maximize the 

number of presentations for all event types (249).  

 

Nuisance regressors, which model known non-experimental sources of variability, 

are also included in the design matrix. These may be general e.g. movement related 

to respiration or specific to an experiment e.g. change in day, movement related to a 

button press.  Commonly, six movement parameters are included, and are used to 

remove variance in the data associated with the three directions of translation and 

three axes of rotation (237). As with many aspects of experimental design and 

analyses, there are considerations with respect to the inclusion of nuisance 

regressors, and they may also be excluded. On one hand, nuisance regressors 

reduce the amount of residual variation, and improve the validity of the GLM. On the 

other hand, experimental events may correlate with movement e.g. movement 

related to a button press may be correlated with neural activity of interest, occurring 

at the same time. As such the motion regressor would remove from the BOLD signal, 

activity of interest as well as activity related to movement. Finally, as introduced 

earlier, temporal filters are used to remove physical and physiological artefacts prior 

to fitting of the model. 

 

 

2.4.2 Parameter estimates, T and Z values  
 

The solution to a GLM are parameter estimates (also known as beta values) for 

regressors of interest. Converting the parameter estimate into a useful statistic 
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requires taking into account the level of uncertainty in its estimation – this is an 

important step (250). A commonly used test stastic in fMRI is the t-value, which is 

calculated by dividing the parameter estimate by the standard error i.e. the residual 

error. Under the null hypothesis, the error follows a statistical distribution called the F 

distribution, and it can be evaluated as a function of the available degrees of 

freedom (which are effected by the number of time points and the number of 

regressors). Therefore, if the value of the parameter estimate is low as compared to 

its uncertainty/ error, the fit is unlikely to be significant. The t-value provides a 

measure of whether the activation recorded is ‘real’. These transactions are 

performed at a voxel level.  

 

The following is utilised to calculate the t- value: 

 

t  = explained variance ÷ unexplained variance 
 

t is taken from a t-distribution with degrees of freedom equal to the number of 

images minus the β parameter estimates. 

 

𝐭 =
𝐜′𝛃

𝐒𝐄𝐌(𝐜′𝛃)
 

 

c = vector of the contrast of β parameter estimates 

SEM = standard error of the mean 

 

 

To convert this into a probability p, a Z statistic2 requires a further transformation – p, 

t and Z values all provide a measure of how well the data fits the model at a specific 

voxel co-ordinate. 
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2.4.3 Contrasts 
 
In order to compare parameter estimates (e.g. towards the relevance of a particular 

hypothesis), a ‘contrast’ of the parameter estimates in question is created. One 

parameter estimate can be subtracted from another, the standard error for the new 

value is calculated, and a new t-value image is created. 

 

A simple contrast is prepared by denoting a 1 for one parameter estimate of interest, 

and a -1 for the other parameter estimate. This answers the question of where the 

stimulus response is greatest for the first parameter estimate relative to the other. 

The contrasted parameter estimate, expressed as [1 -1] provides an assessment of 

the linear interaction of the two individual parameter estimates. More complex 

contrasts can be created, to model for example, non-linear interactions by the 

addition of an explicit interaction variable, or to model graduated changes in the data 

i.e. parametric contrasts. In Chapter 6, parametric contrasts were used initially to 

interrogate the data to look for the effect of training across multiple training days. 

 

 

2.4.4 ‘Thresholding’, inference and the problem of multiple comparisons  
 

The resulting probability map produced by calculating voxelwise t-values (or Z 

values) will need to be thresholded in order to best infer which parts of the data 

matrix (i.e. representing the whole brain) are significantly associated with the 

experimental manipulation. This is done by applying a significance threshold e.g. a 

specific p-value, across the map. The multiple comparisons problem is due to the 

brain volume being composed of approximately 20,000 voxels. In this situation, using 

a p-value threshold of < 0.01 would result in a chance activation of 200 voxels (the 

size of many brain regions of interest), even in the absence of stimulation (189). 

 

The most stringent method of addressing this problem of ‘multiple comparisons’ is 

the Bonferroni correction. This divides the significance level at each voxel by the 

number of voxels – this is considered a conservative approach, and can result in a 

loss of sensitivity. It was not used in this thesis. SPM solves the multiple 
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comparisons problem through the application of Gaussian Random Field theory 

(RFT). The spatial smoothness of the statistical map is considered. The spatial 

correlation of image intensities results in the number of independent observations 

(resels) being considered rather than the number of voxels. The number of resels in 

the image are estimated, and the probability of their exceeding the requisite 

threshold e.g. p < 0.05 is calculated under the null hypothesis (251). 

 

An alternative approach is the False Discovery Rate (FDR). This establishes the 

proportion of positive results that are false positives; its principal advantages are that 

it uses a less stringent correction (increasing alpha power) and controls for the 

proportion of false claims i.e. errors in activation clusters, rather than false tests, that 

is, errors in statistical tests performed for each voxel. The disadvantage of using an 

FDR approach is an increase in Type 1 errors i.e. false positives, which is balanced 

against the increase in experimental power (250).   

 

This leads to the consideration of cluster-level inference, which is an extension of the 

RFT-based approach. Here the spatial extent of the activations is taken into account, 

prior to estimating the significance threshold. ‘Clusters’ of voxels are selected on the 

basis of an arbitrary initial threshold, and assigned a p-value, which may or may not 

pass the final test of significance. An important point is that the probability can be 

expressed as a function of the cluster size, allowing for the threshold to be set in 

relation to a minimum cluster size, as well as the initial cluster -forming threshold. 

Cluster-size thresholding works, because the cluster size increases more slowly than 

the probability that a cluster is significantly active. This approach can be more 

sensitive than voxel-based approaches, although the initial thresholding needs to be 

carefully applied (250).  

 

 

2.4.5 Random effects and fixed effects analyses 
 

Specific considerations are required when applying statistical tests to multiple 

sessions, and/or multiple participant imaging data. Provided the data has been 

aligned using spatial intensity normalisation to a standardised anatomical template 
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(or group ‘mean’ template), analyses can be performed at the ‘second level’, 

considering individual data as a group. There are two main approaches to this, 

termed ‘fixed’ and ‘random’ effects analyses. 

 

Fixed effects analyses assume that all participants within a group during a scanning 

session will have similar levels of brain activations (i.e. ‘fixed’); its primary concern is 

therefore to identify within-session errors. ‘Random effects’ analyses consider 

between-session errors, and allow inferences to be made about the population from 

which the participants are drawn.  

 

‘Mixed effects’ analyses combine aspects of both approaches. A further point is that 

‘random effects analyses’ of multiple participants will incorporate individual 

participants data that have treated independent variables as having fixed effects at 

earlier stages of the analyses – it is often considered under the bracket of mixed 

effect analyses. For the studies in this thesis, mixed effects group level analyses 

were performed on the fMRI data. This approach accounts for inter-scan error 

variance and inter-participant variance. This therefore allows for inference to the 

population from which the participants were drawn (252,255). 

 

A final consideration is the number of participants required for statistical inferences 

to produce valid and significant results in the context of imaging studies. There are a 

number of factors to be considered, including scanner characteristics, brain regions, 

functional response to the experimental stimulus, and inter-participant variability. The 

number of participants required is currently considered to be between 16-32, with 

higher numbers being desirable (252–254). However this issue is controversial, and 

a power calculation can be conducted to determine appropriate sample size.  

 

 

2.4.6 Assumptions of the general linear model 
 
It is worth stating the explicit assumptions of the GLM (235):- 

 

- BOLD signal arises from a linear, time invariant system. 
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- Use of the same design matrix throughout the brain and also regions of interest 

(ROIs). 

- Noise varies with a normal distribution that has similar properties at all time-    

  points i.e. does not vary with time, is independent of the experimental task. 

- Data is homoscedastic 

- All voxels represent independent statistical tests 

- All time points are independent of the others 

 
These assumptions,  as they relate to the application of the GLM to fMRI  analysis, 

have been validated in the landmark paper by Friston et al. (239). 
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2.5 Multivariate analyses 

 
2.5.1 Overview 

The BOLD signal of an imaged voxel approximately 3mm3 in size reflects the 

averaged activity of hundreds of thousands of neurons, which may be 

heterogeneous with regards to the task under study. This ‘blurring’ of neural 

information is increased further by the application of traditional univariate analysis 

techniques that spatially average across only those voxels that contain responses 

that are statistically significant with respect to the experimental task. While this has 

the advantage of reducing ‘noise’ it also reduces ‘signal’ by ignoring the fine-grained 

spatial patterns across voxels and by excluding voxels with weaker (i.e. non-

significant) but potentially contributory information. This may be important when 

examining neuronal populations that intrinsically encode topographical space in a 

contiguous manner.  

The use of multivariate analysis on a voxel-wise basis seeks to avoid these concerns 

by using pattern classification techniques to examine the spatial patterns of 

responses across multiple voxels, including those which have non-statistically 

significant responses to the task when analysed with a univariate approach. When 

taken on aggregate, these otherwise non-informative voxels may provide useful 

information in relation to task-related brain activity. 

Multivariate analyses employ machine-learning techniques including classification 

algorithms to examine distributed patterns of brain activations. Multivariate pattern 

analysis (MVPA) together with machine learning algorithms have been widely used 

to examine the representational content in patterns of neural activity (38,256–263).   

 

2.5.2  ‘Classification’ and ‘classifiers’ 

Classification in the context of neuroimaging data analysis, refers to the process of 

predicting parts of the GLM design matrix, such that a relationship between discrete 
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parts of the imaging data can be established with specific behaviours or task 

performance by the participant undergoing the imaging experiment. ‘Multivariate’ 

classification is performed on groups of voxels, rather than treating voxels 

independently, therefore utilising the spatial relationships in the imaging data.  

Prior to defining what a classifier is, it is useful to review the terms describing the 

preparation of data for the application of classification analysis. The groups of voxels 

are gathered together to produce specific predictors, which are thought to be linked 

to a particular part of the imaging experiment. These predictors are independent 

variables termed ‘features’, and the dependent variable of the imaging paradigm is 

termed a ‘class’. Each ‘class’ is then given a ‘label’. A classifier will take various 

features (i.e. independent variables) as an ‘example’, (the set of independent 

variables), and predict the class that the example belongs to (the dependent variable 

i.e. the stimulus used to generate task-based BOLD activations). The classifier will 

have a set of parameters that are ‘learned’ from the training data effectively building 

a model defining the relationship between the features and the class ‘label’ in the 

training set. The trained classifier can then determine whether the voxels being 

tested, e.g. from a ROI, have information about the class of the example. The 

classifier is used to the test the feature/class relationship by applying its function to 

different sets of examples, the ‘test data’. The latter assumes that the training and 

test examples are being independently drawn from the example distribution. 

Prior to training the classifiers, the fMRI data must be transformed into examples. 

There are a number of ways of doing this, ranging from using the activity signal itself 

from one or more voxels, to utilising the linear model activity estimate from the GLM 

to predict each voxel- so called ‘single voxel responses’. These maybe beta or t-

values for a given condition.  
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Fig 2-7. FMRI data analysis using multivariate classification. a)+b) A fMRI time 
series is separated into discrete patterns of brain activity across the selected 
voxels (i.e. ‘features’) at a specific time point. Each brain pattern is labelled 
with one of two experimental conditions and divided into a ‘training’ and 
‘testing’ set. c) Patterns from the training set are used to train a classifier that 
maps the brain patterns to each of the two experimental conditions. d) The 
trained classifier defines a decision boundary (red dashed line) in a high-
dimensional space of voxel patterns. Each dot corresponds to a pattern. The 
background colour of the figure corresponds to the guess the classifier makes 
for patterns in that region. The trained classifier is then used to predict 
category membership for patterns in the test set (264).  
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2.5.3 Feature selection 

Feature selection involves determining which voxels will be used in the classification 

analysis. The principle is to select voxels or groups of voxels that provide the most 

information with regards to the ‘decision boundary’. This is an important aspect of the 

multivariate technique, as it allows inclusion of voxels that do not meet the 

conventional univariatecriteria for statistical significance. 

The other factor to be considered is avoiding inclusion of voxels with some 

information, but comparatively higher levels of noise. This prevents the phenomenon 

of ‘over-fitting’- in which essentially a multiple comparisons problem in that it may be 

possible to find a classification function that accurately classifies the examples in the 

training set, without it being effective when applied to the test data. Simple linear 

classifiers also have less tendency to over-fit the data (265,266) 

There are a number of established techniques for ensuring the appropriate type (in 

terms of what they represent) and amount of voxels are selected for multivariate 

classification analyses. I introduce the key concepts utilised in this thesis, and 

provide further detail in the experimental chapters for Experiments 1, 2,  and 3. 

i) Regions of Interest 

Rather than looking at all the voxels in the brain, analyses can be limited to those in 

a specific ROI. Anatomical ROIs or functional ROIs e.g. voxels that demonstrated 

activity (threshold) during task trials relative to the baseline (as modelled by rest) 

may be used to select voxels in this way. 

ii) Dimensionality Reduction 

Dimensionality reduction is another approach to selecting relevant features for a 

multivariate classification analysis. This involves reducing the original feature space 

into a new, lower dimensional feature space, yielding a dataset matrix with the same 

number of rows but a reduced number of columns. A typical approach is to apply 

principal component analysis (PCA) to whole-brain fMRI data prior to classifier 

training (267). 
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iii) Ranking 

This is an application of the ‘scoring/filtering’ method involving ranking each of the 

features by a given criterion. Each feature is scored in an analogous way to 

univariate tests of a voxel. The ‘best’ voxels are subsequently selected.  

iv) Cross-validation 

To establish a useful estimate of a classifier’s accuracy, the optimal situation is to 

train and test on as many examples as are available (assuming ideally that the 

classes of data are balanced, and that the training data a each fold contains 

examples of all classes. In this regard the method of ‘leave-one-out’ cross-validation 

is useful, as it produces as many classifiers as there are examples (268). 

 

2.5.4 Types of ‘Classifier’ 

All classifiers have in common the use of a ‘training data set’ to define a decision 

boundary in the space of response patterns i.e. the space spanned by the activity 

levels of the voxels in the ROI (269). Classifiers differ in the shapes they allow for the 

decision boundary (e.g. hyperplanes in linear classifiers; more complex non-planar 

boundaries in nonlinear classifiers) and in the way the boundary is placed on the 

basis of the training data. For example, the Linear Discriminant Analysis (LDA) 

classifier places the decision hyperplane so as to optimally discriminate two equal-

covariance Gaussians; a linear support vector machine (SVM) places a decision 

hyperplane so as to maximise the margin separating patterns on either side. Each 

classifier has certain strengths and weaknesses in relation to the shape of the 

decision boundary e.g. more flexible decision boundaries lead to better separation of 

data, but introduce the risk of over fitting (266). Further, each classifier must be 

considered with respect to the brain region being studied, the use of ROIs, single 

voxel response estimates (beta estimate or t-value) and categorical dichotomy. 

There is recent empirical evidence to suggest that linear classifiers perform better 

than non-linear classifiers, with some preference for LDA and pattern correlational 
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classifiers on account of simplicity, robustness, interpretability and ease of 

application. 

The two commonly used simple linear classifiers, as successfully implemented in this 

thesis, are the Correlational classifier and Linear Discriminant Analysis (LDA) 

classifier with PCA (270). They are robust, and reliable, with relatively rigid 

hyperplanes, for ease of application, comparison and avoidance of over-fitting.  

1. Correlational Classifier 

For each task condition the mean is calculated across all runs in the training set. To 

decode using the classifier, a linear correlation is calculated between each sample in 

the test set and the mean samples from the training set. A test sample is then 

assigned to the condition that produces the greatest correlation coefficient.  

2. Linear Discriminant Analysis 

A LDA classifier determines the discriminant dimension response pattern space, on 

which the ratio of between-class over within-class variance of the data is maximised 

(269,271). After projection of the data into the linear discriminant dimension, a 

classification threshold is placed at the midpoint between the two class means. The 

classifier is Bayes-optimal in that it ignores estimation error, and assumes Gaussian 

within-class distributions. 

In a two-class classification problem, the normal vector of the decision boundary is 

estimated as a product of the within-class covariance matrix and the mean vectors of 

each class. Depending on which side of the hyperplane a discriminant value falls 

then determines which of the two classes it belongs to (i.e. after establishing its 

distance from the hyperplane in relation to the mean value of all samples, and the 

vector of voxel values, whether it is a positive or negative integer). 

 
 

2.5.5 Classifier performance 
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The performance of a classifier is determined by how accurately it correctly assigns 

a class label to examples of the imaging data, represented by features, which are 

selected to best discriminate the data in relation to the experimental conditions. A 

common metric of classifier performance in fMRI to assess for mutual information 

between experimental conditions and regional fMRI response patterns is termed 

‘decoding’. Above-chance ‘decoding accuracy’ with any classifier, indicates that the 

functional response patterns contain information about the experimental condition or 

stimulus category being tested for (269).  

 

The relative performance of different classifiers on fMRI data is incompletely 

understood. Pereira et al (272) attempted to provide a roadmap of the potential 

choices for the preparation of data for use in classification, and the relative benefits 

of specific classifiers.  Misaki et al(269) extended this work comparing more 

classifiers, including all of those used in Chapter 4 of this thesis, such as simple 

linear classifiers such as the correlation classifier, and LDA, as well as more complex 

non-linear classifiers such as K –nearest neighbour and radial support vector 

machines. The study validated the use of ROIs for voxel selection, t-values rather 

than betas as response estimates, and leave-one- run out cross validation as an 

optimised approach to ensure better overall classifier performance. Linear classifiers 

such as LDA and correlational classifier had the best performance, in keeping with 

previous work (257,273). FMRI neuroimaging data has been suggested to be suited 

to linear classification, with there being insufficient data for the efficient application of 

non-linear decision boundaries.  

 

A practical consideration of classifier performance is the purpose to which it will be 

applied. The use of multivariate classification in the experiments in Chapters 4 and 5 

was to explore the possibility of accurately decoding the deployment of spatial 

attention, for use in a non-invasive, attention-driven BCI for communication(15,274). 

The current recommendation for operational accuracy of a BCI in order for it to be of 

utility to patients has been proposed to be 70-80% (78), although the interaction of 

cognitive task on classification accuracy as well as, individual differences in brain 

activation responses, and imaging modality remains to be established. 
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2.6 Retinotopic mapping of the visual cortex  
 

 

2.6.1 Introduction 
 
In view of the biological and evolutionary importance of the spatial arrangement of 

physical features in a visual scene (e.g. a tiger jumping down, off a tree on the left) it 

is not surprising that topographical representations of the world are represented at 

multiple locations in the brain.  
 
To begin with, information encoded by light entering the eye stimulates neurones on 

the retina in a spatiotopic fashion. More specifically, the receptive fields of the retinal 

output neurons (i.e. ganglion cells) form an orderly mosaic of the visual hemi-field in 

each eye. The resulting space-to-retina mapping is preserved in part in the axons of 

the optic nerve (275,276), and is fully represented along the visual pathway, through 

the lateral geniculate body, to the primary visual cortex. The presence of retinotopic 

maps in primary visual cortex, or primary retinotopic cortex was first documented by 

turn-of-the-century lesion studies (277–280). 

 

Structural MRI enabled these early observations in humans to be unified with a large 

body of animal work confirming the presence of retinotopic maps in visual cortex 

(281). However a systematic approach for mapping retinotopic cortex a priori and 

non-invasively, in the absence of lesions of the visual cortex, was formalised far 

more recently, using fMRI (282,283). Sereno et al. (41,284) have subsequently 

demonstrated the presence of retinotopic maps throughout extrastriate visual areas, 

in higher order visual cortex such as the IPS, lateral occipital cortex and ventral 

visual areas. I shall discuss the first of the approaches, phase encoded retinotopic 

mapping, which was used in the experimental work reported in Chapter 3. This 

technique has evolved further following on from the studies presented in this thesis, 

into ‘population receptive field mapping’, a technique that has not been used in this 

thesis, and therefore will not be discussed further. I used retinotopic mapping in 

order to create retinotopic ROIs. Given the spatiotopic organisation of the retina, and 

the corresponding cortical retinotopic maps, I explored the degree to which spatial 
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information can be decoded from a retinotopic region relative to higher order visual 

areas. 

 

 

2.6.2 Phase-encoded mapping and cortical flattening 
 
Phase-encoded retinotopic mapping is a reliable approach to systematically defining 

visually responsive brain areas. The mapping procedure requires participants are 

required to maintain central eye fixation while viewing dynamic high contrast stimuli. 

The stimuli travel across the visual field in a phase-controlled cycle, so as to create a 

travelling wave of excitation across the visual cortex. Two stimuli are used – the first 

is an expanding ring containing high visual contrast e.g. a flickering checkerboard. 

This allows measurement of eccentricity i.e. distance from the centre of gaze (which 

itself will map to the centre of the macula). The second stimulus is a rotating wedge, 

with its tip at the centre; this enables measurement of the polar angle i.e. orientation 

with respect to the centre of gaze. Stimulus presentations are repeated multiple 

times, in both directions (e.g. expansion and contraction for the first stimulus, 

clockwise/anticlockwise for the second stimulus).  

 

The phases of stimuli presentation will ensure different regions of the visual field are 

stimulated, with different polar angles and eccentricities occurring during separate 

phases. Activated voxels will show peaks corresponding to the cycling frequency of 

the stimulus. The phase lag of these responses will measure the spatial preference 

of the voxels. The responses are convolved with the haemodynamic lag, averaged 

across sessions, and specified for cycle directions (i.e. expansion vs. contraction for 

the first stimulus, clockwise vs. anticlockwise for the second stimulus). A fast Fourier 

transform is applied to the time course of each voxel in order to determine which 

voxels are maximally activated at the implemented stimulus frequency, and the size 

of the phase lag. 
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2.6.3 Freesurfer visualisation and meridian mapping 
 
For typical three-dimensional rendering of the brain, activations that take place within 

a sulcus may be obscured, or invisible. To visualise this, software packages exist to 

inflate, and/or flatten the cortical surface. With regards to retinotopic information this 

is advantageous, as adjacent points on a cortical surface map to adjacent points in 

the visual field. Further, the functional activations generated by the contrast for the 

horizontal and vertical meridians can be displayed on the inflated cortical surface, 

allowing rapid and intuitive delineation of primary visual cortex. For this, the 

FreeSurfer software package (http://surfer.nmr.mgh.harvard.edu) developed at 

Harvard was used in this thesis (285). FreeSurfer automatically performs cortical 

reconstruction and volumetric segmentation. First, non-brain tissue e.g. skull is 

removed using a deformation procedure (286), followed by automated Talairach 

transformation, and segmentation of the subcortical white matter and deep grey 

matter structures (287,288), intensity normalisation (289) and tessellation of the 

grey/ white matter boundary. Topology correction (290,291) and surface deformation 

is performed, following intensity gradients to optimally place the grey/white and 

grey/CSF borders (285,292,293). A cortical model is generated, which can be 

manipulated to visualise the sulci e.g. through cortical inflation. 

 

Curvature information is added using intensity and continuity information from the 

segmentation and deformation procedure (293). Functional data in the form of 

activations responding to horizontal and vertical meridian stimuli are superimposed 

onto the inflated cortical surface. These are used to delineate the boundaries of the 

primary visual areas; surface regions are then converted to volumetric ROIs using 

FreeSurfer. The placement of the meridian lines delineates primary visual regions 

i.e. V1, V2, V3 on both hemispheres, and both ventral and dorsal surfaces i.e. V1 

dorsal, V1 ventral, right and left; similarly for V2 and V3.  

 



 94 

2.7 DARTEL analysis and Tensor Based Morphometry 
 

 

In Chapter 6, I used a combination of two novel techniques to investigate longitudinal 

structural changes in pre-specified brain regions. In order to conduct a structural 

analysis, the structural brain data (which is collapsed across time) must be optimally 

aligned. Ashburner (294) proposed a more elaborate registration process, which has 

advantages over traditional approaches. The DARTEL (Diffeomorphic Anatomical 

Registration Through Exponential Lie Algebra) algorithm for diffeomorphic image 

registration improves interparticipant registration and alignment of smaller central 

structures. 

 

The preprocessed high-resolution T1 structural images are orientated to specifically 

place the anterior commissure at the origin of the standardised Montreal Neurologic 

Institute (MNI) co-ordinate system. Segmentation of the images into grey matter, 

white matter and CSF in native participant space is then performed, using the tissue 

probability maps. A rigid body transformation based on six parameters is then 

performed, with the DARTEL algorithm passing through six iterations of alternating 

between the creation of an average template of all the individual maps (i.e. a median 

image), and warping the individual participant images to the median image. This 

averaging and registration process simultaneously minimises a measure of 

difference between the image and the warped template, and the ‘energy’ measure 

(squared geodesic distance) of the deformations used to warp the template. The 

result of this process is to create a series of flow fields for each participant, which 

parameterise the deformation through non-linear registration of each individual 

image to the template for grey matter and white matter. The final average template 

can be registered to a standard anatomical template, enabling anatomical labelling. 

 

Tensor based morphometry (TBM) can now be performed. TBM is an emerging 

computational analysis technique (295–299), which enables longitudinal quantitative 

assessment by identifying the region structural differences from the gradients of the 

deformation fields that nonlinearly warp each individual image to the template. TBM 

makes inferences based on Jacobian matrices of the deformation fields – these 



 95 

values correspond to the relative volumes of tissue before and after warping. These 

matrices vigorously track local structural changes such as contraction (Jacobian 

determinant < 1) or expansion (Jacobian determinant > 1). The use of Jacobian 

determinants makes TBM advantageous as compared with voxel-based 

morphometry (VBM), particularly for small numbers of participants. 

 

The data can then be transformed from participant ‘median’ space to standardised 

MNI space, with or without spatial smoothing. TBM analyses can be constrained 

using a ROI approach, as performed in Chapter 6, in order to increase the sensitivity 

of the statistical tests performed on the data. 
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2.8 Real-time fMRI methods 
 
 

2.8.1 Overview 
 

When designing a neurofeedback experiment using rt-fMRI, there are several factors 

that influence experimental design. These relate to the number of days of training, 

how long each training session should be, and over what period of time training 

should be distributed. Further, there are multiple options with regards to 

experimental set-up. It remains to be established what the optimum experimental 

designs are. 

 

I have organised the methodological approaches I chose for both my rt-fMRI 

experiments into themes, including ‘Computer factors’, ‘Physical factors’, ‘Brain 

factors’ and ‘Cognitive and behavioural factors’. I discuss the decisions made within 

the context of existing practices, and justify my choices in relation to alternative 

approaches. 

 

 
Fig 2-8. Real-time work-flow schematic. (See below) 
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There are four ubiquitous steps in a rt-fMRI BCI loop, which are:  
1/ Participant instruction  
2/ Imaging/data acquisition  
3/ Online analysis  
4/ Visual feedback 

 
2.8.2 Computer factors 

 
2.8.2.1 Setup and implementation 
 
A popular software package for rt-fMRI experiments is the Turbo BrainVoyager 

(TBV) package in BrainVoyager QX v3.0 (Brain Innovation, Maastricht, The 

Netherlands) (300). I used this package in my experiments along with custom real-

time image export tools programmed in ICE VA25 (Siemens Healthcare, Erlangen, 

Germany) (301), and custom MATLAB scripts (MathWorks, Natick, USA). 

 

The real-time data preprocessing was performed with TBV and encompassed 3D 

motion correction with realignment to the preselected template, spatial smoothing, 

incremental linear detrending of the time series and SPM. The ROI timecourses 

were extracted from the prescribed ROI masks, then averaged and exported by TBV. 

Signal drift, spikes and high frequency noise were further removed in real time from 

the exported time courses with custom MATLAB scripts (302). The feedback signal 

was calculated and displayed to the participants in the form of a fluctuating 

thermometer bar. This display was produced using the Cogent toolbox  

(www.vislab.ucl.ac.uk/Cogent). 

 

 

2.8.2.1 Delay of feedback 

 
As discussed previously the haemodynamic signal related to neuronal activity occurs 

with a delay, necessarily introducing a delay in the BOLD signal relative to the 

cognitive processes that it reflects. Advances in computing power, and TBV 
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software, have reduced any additional processing delay associated with image 

acquisition, preprocessing and display, to 1 second, as was the case in my 

experimental set-up. (In neurofeedback studies, this delay has ranged from 2 

minutes to a few seconds (40,232,301)).  

 

Other options that may affect signal processing in real time include providing 

intermittent feedback, which may be presented at the end of a task block, or at serial 

points during the task block e.g. following the acquisition of several TRs, enabling 

averaging of the feedback signal. The suggested benefit of this is that more time 

points are available for filtering and signal averaging, and the participants therefore 

do no need to consider the haemodynamic delay. This approach also separates task 

strategy from interaction with, and evaluation of, the feedback signal, thus reducing 

distractor interference and increased cognitive load that this may cause. Although 

preliminary data (303,304) suggests that there maybe a more significant voluntary 

increase in brain activation with this method, it has not been consistently borne out 

(88,305). Current evidence supports the advantages of feedback being presented as 

soon as is possible after signal acquisition (72,85).  

 

I opted to use a ‘continuous, near real-time’ presentation of the neurofeedback signal 

– I felt this to be more intuitive to the participants despite the presence of the 

haemodynamic delay. In the neurofeedback experiment presented in Chapter 6, all 

participants learned to control the signal, and did not report having difficulties with 

the associated haemodynamic delay. 

 

 

2.8.2.2 Computation of feedback signal  
 

In order to generate an online feedback signal, the time series must be sampled and 

analysed for which a number of approaches have been documented. 

 

An incremental GLM was initially utilised (31). At any point during the scanning 

session, if an offline univariate analysis was computed on all the data collected up to 

that point, it would produce a similar result. Correlation analysis can be performed 
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cumulatively using the recursive least squares regression algorithm, and linear 

detrending can be performed incrementally by adding a linear predictor as a 

confound to the GLM (232). There have been subsequent optimisations (306,307) 

resulting in more rapid, and accurate online analyses, although the principle has 

remained the same. A further refinement of this technique has been instituted, with 

removal of high frequency noise, signal drift and spikes performed on the exported 

time series (302). I used this approach in my neurofeedback experiment (Chapter 6). 

 

An alternative to the incremental GLM approach computes parameter estimates over 

a short temporal subsection of the data (308). Posse et al. (309) performed this 

‘sliding window’ approach to calculate the time series over 22 second blocks. The 

window progresses to keep pace with incoming scans, with the analysis performed 

after the completion of each block. The advantage of this method was an improved 

temporal resolution of the neurofeedback signal. I used this approach in the real time 

attention decoding experiment (Chapter 5). 

 

 

2.8.2.3 Measures of the level of activity 
 

A further consideration is how to use the timeseries data to produce the 

neurofeedback signal. In the majority of neurofeedback experiments, the participant 

is required to increase (or decrease) the level of activation related to a brain region, 

or a relative measure between brain regions e.g. an absolute difference or 

connectivity measures. The signal can be based on the mean percentage signal 

change (PSC) (58) as was the case in this thesis; other summary measures of 

activity can be used such as the median PSC. While these measures are 

comparable, the mean PSC is less affected by undesirable white noise, but can be 

susceptible to outlier voxel activation, which can occur in fMRI experiments. Hinds et 

al. (310) used a weighted average of the activity in modulated brain regions, 

explicitly modelling non-neural portions of the MR related signal (drift, white noise, 

head motion). They compared this against the aforementioned summary statistics 

including mean PSC. All measures were well correlated with the neurofeedback 

signal, but they found the best correlations with the actual neural signal, when using 
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a weighted average approach. The latter was specifically created using the voxels 

within the localiser defined ROI, but now taking into account voxel-specific efficiency 

estimates, by modelling the contribution of noise variance. 

 

I used mean PSC as the dependent variable, and then calculated the difference in 

the levels of activation between two brain ROIs in the neurofeedback experiment 

(Chapter 6). In the online decoding experiment (Chapter 5) I examined the use of 

mean, mode, and median PSC as summary statistics. The mean PSC produced the 

most accurate online decoding of spatial attention deployment when I tested the 

procedure in an offline analysis of the data, providing the rationale for the use of 

mean PSC in both rt-fMRI experiments in this thesis. 

 

2.8.2.4 Other measures of brain activation 

 
Classifiers 
 
Multivariate classification utilising spatially distributed activation patterns have also 

been applied in rt-fMRI paradigms. An initial timeseries is used as a training set, 

which is then compared to the task-related timeseries for similarity – the signal for 

neurofeedback is a measure of whole brain pattern comparison. A potential benefit 

of this approach is that it is more flexible. It does not need a priori hypotheses about 

functional localisation, enabling adaptive translations of brain activations in relation 

to individual strategies. 

 

In Chapter 5, I describe an attention based rt- fMRI BCI, which decoded covert shifts 

of spatial attention on a single trial basis. In the preparation for this work, I applied 

multivariate classification approaches. However univariate decoding approaches 

were the most accurate, and therefore only these were used in the real time 

paradigm. 

 

Connectivity measures 
 
Although connectivity measures themselves can be used to produce the online 

neurofeedback training signal, I investigated offline DCM analyses to explore 



 101 

network interactions underlying functional and behavioural changes following 

neurofeedback training in Chapter 6. In other studies, participants have been trained 

on the correlation coefficient between the BOLD time series in the two brain regions, 

to increase the functional connectivity between them (74). Kush et al. (12) 

implemented a neurofeedback approach utilising an online DCM package. 

Participants were trained to control the effective connectivity between ipsilateral 

primary visual cortex and superior parietal lobe, by using a covert attentional task to 

modulate a signal that was based in a Bayesian model comparison between two 

prior models of connectivity.  

 

 
2.8.3 Physical/Scanning factors 

 
2.8.3.1 Strength of the static magnetic field 
 
The sensitivity of the BOLD signal and the signal-to-noise ratio can increase linearly 

with increasing field strengths i.e. according to the Boltzmann-distribution, 

magnetisation increases with field strength. Potentially, rt-fMRI paradigms may 

benefit from the increased signal-to-noise ratios at higher magnetic field strengths 

(19). However the gain may be offset by more field distortions and signal dropouts in 

the image due to larger frequency offsets in the object. 

 

The rt-fMRI experiments in this thesis were all performed at 3T, which is currently the 

standard field strength for cognitive investigations. Rt-fMRI, however, has been 

performed successfully at 7T, in both decoding of brain signals, and neurofeedback 

control of brain activation in motor cortex (10,19,43–45,311).  

 

2.8.3.2 Signal acquisition 
 
For the rt-fMRI experiments in this thesis, whole brain functional images of the 

participant during task performance were recorded using EPIs, reconstructed and 

stored on the scanner console hard drive.  
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2.8.3.3 Echo time 
 

The BOLD signal is dictated by the echo time, such that shortened echo times (as 

close to the T2* relaxation as possible) are optimal. Single RF shot multiple echo 

acquisition increases the BOLD contrast-to-noise ratio, while avoiding increased 

readout bandwidth (301). This multi-echo EPI sequence is optimal for rt-fMRI 

scanning as correction for image distortions is immediate, and not dependent on 

reference scans. 

 

2.8.3.4 Image resolution 
 
In terms of the resolution of an image, a compromise can be reached between 

reducing thermal noise by decreasing spatial resolution and increasing image read-

out time, and keeping signal dropout and image distortions to a minimum. A typical 

fast fMRI protocol will use a 64 x 64 image matrix, with a 2-3mm in-plane resolution, 

as was used in the rt-fMRI paradigms in this thesis. 

 

2.8.3.5 Head motion 
 
Minor movements in the millimetre range can cause signal changes mimicking 

significant brain activation. Motion correction requires at least 3 slice acquisitions to 

reduce movement size to less than 1% of the voxel size in the case of a 64 x 64 

matrix. Currently, ultra-fast motion detection camera technology is being developed 

to better detect motion for subsequent correction. This has particular value for 

realtime scanning of clinical populations e.g. movement disorders (Huntington’s 

disease, (HD) (312) and translation of the experimental paradigms developed in this 

thesis. 

 

 2.8.3.6 Online spatial normalisation 
 

This is an optional step in the TBV preprocessing package that I used, which 

typically consists of head motion correction, linear detrending, and spatial smoothing. 

As discussed earlier, it is used to address inter-individual differences, by warping 
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individual brains into a standardised anatomical space, utilising established 

templates such as the MNI template. 

 

Standard offline spatial normalisation computations cannot be accomplished in the 

time frame of a single TR. Previous reported online techniques, have attempted to 

determine normalisation parameters offline following an initial preparatory run (313).  

A new advance in the technique, reported by Li et al. (243), has implemented a true 

online spatial normalisation method that can be accomplished with a short TR e.g. 

2s. The method utilised an affine registration and a nonlinear registration based on 

cosine transforms. 

 
 

2.8.3.7 Return of online data to the participant 
 
The extracted data time series was exported via a customised visualisation interface 

to the participant inside the scanner. A delay is incurred during the course of the 

preceding two steps, and is ideally minimised to 1s (< 2s in my study). Note the data 

analysis and the feedback analysis together with visualisation are performed by two 

separate computers connected by a local area network. 
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2.8.4 Brain factors 
 

 

2.8.4.1 Choice of brain region 
 

Brain regions used most commonly in rt-fMRI studies have been those related to 

emotion processing e.g. amygdala (63,309,314), anterior cingulate (ACC) (64,232), 

posterior cingulate (PCC) (92) and anterior insula (315,316). Somatosensory regions 

are the next most commonly used, in healthy (58,65,303,317–319) and clinical 

populations (13,67). Sensory regions have been used and include auditory (66,320), 

and visual regions (12,19,17,16), and language (57) has also been tested. Higher 

order perceptual regions have, to date, only been used by Weiskopf et al. (301), and 

in my neurofeedback study (Chapter 6). 

 

Brain activation utilised in the rt-fMRI workflow may be extracted in a number of 

ways. Regional brain activation can be used from an a priori determined ROI, usually 

identified with a functional localiser (85,321) as performed in both of my rt-fMRI 

experiments. Other options include connectivity  measures and multivariate 

measures (see ‘computer factors’) 

 

 

2.8.4.2 Predicting BCI control 
 
Attempting to identify which participant volunteers are likely to achieve BCI control 

(i.e. voluntary control of brain activations) is important for establishing a successful 

study, but also has implications for clinical translation and patient selection. Although 

no predictive factors exist in the current rt-fMRI neurofeedback literature, some 

authors have attempted to predict BCI control in relation to anatomical structure. 

Halder et al. (78) found a positive correlation between individual SMR-BCI 

performance and deep white matter myelination. The mid-cingulate, and related 

white matter structure volume has been associated with EEG-BCI neurofeedback 

control of frontal theta activity. In clinical populations such as patients with 

amyotrophic lateral sclerosis, P300 attentional control was correlated with EEG-BCI 
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control. An important implication of predicting BCI performance would be targeting 

patients most likely to benefit from non-invasive BCI training, potentially serving as a 

prelude to the insertion of invasive BCIs. This could be combined with optimised 

neurofeedback training protocols. 

 
 

2.8.4.3 Closed loop neurofeedback 
 
An alternative neurofeedback approach is to covertly link a specific cognitive task 

with on-going brain activation in regions whose functional output is related to the 

task. By linking the task to the level of brain activation in a brain region (322), or to a 

whole brain pattern of brain activity using multivariate classification (323),  a specific 

cognitive action can be trained. In both of these studies, category-specific attention 

(e.g. attending to house or faces) was trained by modulating a visual stimulus in 

relation to the strength of activation in the brain. This is termed closed-loop 

neurofeedback, and is a form of exogenous neurofeedback – the feedback signal is 

not directly presented to participant as in endogenous neurofeedback. Rather, it is 

used to trigger a linked stimulus which is not a direct representation of the 

neurofeedback signal, in order to manipulate brain activity and/or behaviour. In 

contrast, with endogenous neurofeedback as used in my own experimental 

neurofeedback work (Experiment 4 in Chapter 6) the participants are made explicitly 

aware that the visual interface (e.g. a fluctuating thermometer bar) is a direct 

measure of the neurofeedback signal. 

  

 
2.8.5 Cognitive and behavioural factors  
 

 

2.8.5.1 Role of mental imagery 
 

Mental imagery is considered to be a critical component of neurofeedback learning. 

Brain regions related to visual mental imagery e.g. SPL, have recently been shown 

to undergo effective connectivity changes as measured with DCM,  with trained brain 
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regions after neurofeedback (81).  Whether or not a explicit instruction is provided to 

guide the participants, almost all studies documenting the manner in which 

participants gained control of the neurofeedback signal reported the use of 

visualisation and mental imagery techniques (232,301).  Importantly, some well-

controlled clinical and healthy volunteer studies have demonstrated a lack of a 

training effect when mental imagery alone is used, with or without follow-up practice 

(13,59), suggesting a qualitative difference between neurofeedback training that is 

mental imagery ‘assisted’ and mental imagery training alone. Practical examples of 

this difference have been provided with motor related mental imagery, as compared 

to actual movement. Overt hand movement leads to robust BOLD signal in motor 

cortex and supplementary motor cortex, whereas imagining motor activity frequently 

does not illicit any activation in some participants (324), and significantly less when 

its does (e.g. less than third of that related to overt movement (325)). In comparison, 

neurofeedback-led modulation of motor cortex activation, utilising mental imagery, 

was shown to achieve similar levels of activation to overt movement in motor regions 

(58). I provided participants with an explicit instruction to use of mental imagery in 

my neurofeedback experiment. 

 
 

2.8.5.2 Neural underpinnings of the neurofeedback signal 

 
The modulation of the neurofeedback signal has been primarily concerned with 

increasing or decreasing the overall level of BOLD activation within a target brain 

region, with a majority of studies focusing on increases in the level of activation 

(exceptions:- decrease/ increase (59), or decrease only (64,67,326)). A fundamental 

assumption is that, by increasing the overall level of BOLD activation in a specific 

task-related brain region, the underlying function of that brain region will change in a 

directional and predictable fashion. This assumption leads to a further series of 

rolled-up assumptions e.g. increased BOLD signals correspond to increased 

neuronal function, appropriate and non-conflicting neuronal populations have 

increased firing rates. Clearly this is likely to be a simplification – a particular brain 

region may have a variety of functions, only one or some of which are being targeted 

by neurofeedback training. A speculative explanation of the documented success 
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with neurofeedback in producing specific behavioral and perceptual changes may be 

suggested. Increased metabolic brain activity in the target brain region may serve to 

prime groups of neuronal representations related to a specific function of that brain 

region. By doing so, related task-based utilisation of these representations will occur 

in a more efficient and rapid manner, resulting in altered behavioural outputs. 

 

It is possible that neurofeedback training of a specific regional BOLD signal results in 

learned control of the haemodynamic signal in a procedural manner e.g. control of 

capillary-arteriole-neuronal units (191) within a targeted brain region, to produce 

increased and co-ordinated neuronal activation, resulting in a more efficient, pruned 

neuronal responses and related functional output. 

 
Control of the neurofeedback signal provides its own source of contingent reward. 

Although not performed in my own study, the neural activity underlying the 

neurofeedback signal can be more precisely ‘shaped’ online, either by providing an 

explicit reward e.g. monetary (88,327), or punishment, or by increasing the task 

difficulty associated with producing an increase in the level of the neurofeedback 

signal (323). Feedback can be provided during the task performance itself, helping to 

improve it. Andersson et al. (43,311) attempted online classification of covert shifts of 

spatial attention (right vs. left), with classification accuracy being fed back to the 

participants using changes in the colour of an arrow cue. 

 

 

2.8.5.3 Showing the specificity of neurofeedback-based activation modulations 

 
A fundamental requirement in neurofeedback studies is providing a means of 

confirming that the modulation of brain activity is specific to the targeted brain region, 

and is tightly correlated with the cognitive strategy employed to control the feedback 

signal. Effects that are not specific to the trained brain region/ strategy may arise 

from global increases in blood flow, or non-specific increases in arousal; this may 

result in anatomically widespread increases in the BOLD signal. Such changes can 

be mitigated by comparing the level of brain activation (cf. activity) in the modulated 

brain region against activation levels in another, carefully selected brain region. This 
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second brain region, a ‘control’ brain region (59,328), can be selected based on a 

the prior hypothesis is that it will not activate during the neurofeedback modulation 

task. The participant receives a feedback signal, which is based on the difference 

between the target region and the second region (59). An alternative to this is to 

utilise a second brain region that is activated by an orthogonal task. Here, 

participants can modulate the levels of activation in the two brain regions in a 

number of different ways, whilst still producing the same change in the direction of 

the neurofeedback signal1. This can result in a slightly complex biological interaction 

since the use of a differential signal can be manipulated in two directions i.e. 

bidirectional control. This can produce two mutually exclusive physiological 

responses, therefore providing a further internal control (329). This method has been 

used previously (57,58,315), and was utilised in the work presented in this thesis. 

 
Further, the level of activation in the modulated brain region must be adjusted 

relative to a standardised baseline in order to measure changes in brain activation 

during neurofeedback. This can be done in one of two ways – it can be compared to 

a global mean, or it can be compared to activation levels in the target brain region 

during rest. The advantage of the former method is that it reduces the possibility of 

global brain activation changes during up/down regulation of the neurofeedback 

signal. As a consequence, I opted to compare the level of activation in trained brain 

regions with the global mean (Chapter 6). 

 

2.8.5.4 Control group selection 
 

An important consideration is confirming the effect of the neurofeedback training by 

selecting an appropriate control group. This is necessary, as the volitional 

engagement of the participants with a task may contribute to training effects, which 

                                            
1Five potential activation states which could increase the difference between the two 

brain regions (R1 and R2) are possible, and will lead to up-regulation of the 

differential training signal (i.e. training signal = R1 - R2): 1) An increase in R1; 2) A 

decrease in R2; 3) a combination of 1) and 2); 4) a relatively greater increase in R1 

as compared to R2; or 5) a relatively greater decrease in R2 as compared to R1. 
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are not specific to increased modulation of the neurofeedback signal. De Charms et 

al. (59) examined possible options for an appropriate control group. In a 

neurofeedback study on pain, four types of control groups were investigated. In a 

yoked control group, brain activation taken from participants in the experimental 

group was used as the neurofeedback signal. Although participants in the control 

group receiving this ‘yoked’ activation would be unable to gain control of the signal, it 

provided a constrained, and ordered dataset, potentially avoiding problems 

associated with failure of participants to engage with the experiment. This form of 

yoked control allows for the exclusion of effects related to expectation or suggestion.  

 

In a second control group, the effects of attention were examined by providing 

instructions to overtly focus on, or away from an aversive stimulus. This group 

received no rt-fMRI feedback, engaging in behavioural training for twice as long as 

the experimental group. A third group learned to control activation levels in an 

alternative, unrelated brain region. Autonomic biofeedback was provided to a fourth 

group, with participants attempting to control skin conductance, heart rate and 

respiration. This group attempted to induce a more relaxed state by decreasing 

arousal, as compared to the experimental group who were trained to decrease the 

level of activation in a target brain region. In this study, only the group receiving 

feedback from the target brain region learned control of activation levels in this 

region, and demonstrated a reduction in pain perception. None of the control groups 

demonstrated a significant change in pain perception, with the yoked control group 

showing significant opposite effects. Although there are no other studies which 

provide an exhaustive exclusion of potential confounds, several studies have 

confirmed the lack of a training effect in relation to a yoked control signal, and mental 

imagery and behavioural training e.g. (13). 

 

The use of an alternative brain region as described above, may provide the best 

neurobiological ‘control’, given that the two experimental groups can be matched for 

all variables, leaving only the neurofeedback signal as the differentiating variable. 

Thus, this approach has been utilised in previous studies (62,232) and was the 

approach I selected for the neurofeedback study in this thesis.  
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2.8.5.5 Selecting the number of neurofeedback training sessions 
 
Control of the neurofeedback signal can be achieved after one day of training 

(2,301). The number of days used in rt-MRI neurofeedback paradigms typically 

varies from 1-5, with evidence of a training effect in all studies (Sitaram et al. (330): 3 

days, Caria et al. (315): 1 day, Haller et al. (67): 4 days, De Charms et al. (59): 2-3 

days). Within a training day, the number of sessions used has varied from 1-4, with a 

total in-scanner time of approximately 30-40 minutes. Feedback runs typically have 

task blocks of between 30-60 seconds, with interleaved rest blocks of 20-30 

seconds, and are repeated between 3-5 times. Further considerations are the 

relative spacing of training days, and what, if any, behavioural training should take 

place between training days. Haller et al. (67) had 1 week between each of the 4 

training days. Subramanian et al. (13) had 2 training days, with as much as 2-6 

months between training sessions although during the interval, participants were 

required to practice the specific mental strategies that they engaged to control the 

neurofeedback signal. 

 

It may be important for the consolidation of skill learning acquired during 

neurofeedback training sessions to be separated by a few days. Gulati et al. (331) 

showed that sleep, specifically slow-wave activity, helps to reinforce task-related 

neuronal ensemble activity after successful learning of neuroprosthetic skills. The 

authors of this study proposed that following neuroprosthetic skill learning, sleep 

helps in the offline processing of newly developed procedural skills and in the 

subsequent formation of a ‘neuroprosthetic procedural memory’. In my 

neurofeedback study (Chapter 6), the most significant changes in the control of the 

neurofeedback signal occurred between training days, potentially supporting a role 

for sleep. Although there has been no strong proposal for a benefit or lack thereof in 

multiple rt-fMRI neurofeedback training days (although see (332), a suggestion can 

be made based on my own study i.e. 3-4 training sessions, containing 3-4 training 

blocks, and lasting no more than 45 minutes, and spread over the course of 3-4 

days. This may provide an increased likelihood of a significant training effect, while 

remaining practical in terms of scanning time and what can be demanded/expected 

of participants and patients. 
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2.8.5.6 The training related ‘learning’ curve 
 
The term relates to the graphical representation of learning effects with increasing 

training experience, first coined in 1885 by Herman Ebbinghaus (333). In rt-fMRI 

neurofeedback, this provides an indication of the levels of brain activation as a 

function of the amount of neurofeedback training e.g. mean PSC in a trained ROI, 

plotted across training runs or sessions i.e. each time the scanner is switched on/off. 

It therefore can provide an indication of how successfully a brain region was trained 

with neurofeedback. While intuitively a linear trend would be expected as training 

increases, a number of possible patterns may be observed e.g. cuboidal, which may 

be influenced by the occurrence of breaks, or the effects of intervening sleep e.g. 

consolidation vs. forgetting. For the work presented in this thesis, I plotted the mean 

PSC of the neurofeedback training signal across the 9 training runs, to examine for a 

training effect. 

 

 

2.8.5.7 Use of instruction 
 

This is potentially the most important component of a neurofeedback study 

(72,90,334). The provision of instructions on signal control strategy have been 

shown to produce steeper learning curves (62), as well as enabling learning in 

participants who were previously showing no signs of voluntary self-regulation. This 

has been supported by a head-to-head comparison between participants learning to 

control language areas. Subjects who received instructions on specific mental 

imagery strategies learned voluntary modulation of brain activity, whereas 

participants who received no instruction were unable to learn at all (335). 

Scharnowski et al. (62) confirmed participants gained control of the neurofeedback 

signal more rapidly when provided with an explicit instruction linking the functionality 

of the brain region being modulated to the cognitive strategy employed, resulting in 

an in-experiment change of methodology. However, Caria et al. (315) have 

demonstrated that participants can learn voluntary self-regulation in the absence of 

explicit instructions, within one day of training. Previous healthy volunteer studies 

(186, 220) and recent rodent work (94) confirmed learnt self-regulation of brain 

activation as a function of operant conditioning, with a lack of explicit guidance. 
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Therefore, control of the neurofeedback signal in the absence of instruction linking 

metal imagery with the function of the brain region to be trained is possible. 

Nonetheless from an operational point of view, accelerated and more robust learning 

of voluntary modulation of the neurofeedback signal is aided by explicit instruction. 

This formed the basis of my reasoning to include this as part of the methodology in 

my neurofeedback experiment. 

 
 

2.8.5.8 Feedback signal settings – modality, parametric, delay 
 
The substrate of the feedback signal can be any sensory modality e.g. auditory, 

tactile, or a combination e.g. auditory interfaces (309,337). EEG feedback studies 

have indicated that visual feedback is the most successful e.g. (338). A variety of 

visual interfaces can be used, such as simple scrolling graphs (232,301), ‘mercury’ 

thermometers (58,315,316,16,339), circles of changing diameter (17,340), and 

numerical values (304), to more representative displays such as fires of differing 

sizes (59), and emotional faces for social reinforcement (89). With regards to the 

latter class, virtual reality interfaces have also been attempted (341–344). Most 

recently de Bettencourt et al. (323) utilised the stimulus that drove the target brain 

area as the display itself, strengthening either face or house stimuli in an overlapping 

display depending on the type of attentional feedback control required. Finally, visual 

feedback is considered to be superior to auditory feedback (345), and should be 

presented parametrically, rather than in a binary form (346), the former of which was 

selected for my neurofeedback experiment. 

 

 

2.8.5.9 Modulating brain activation after neurofeedback training 
 

Following neurofeedback training, it is often desirable to show that participants can 

continue to control the level of brain activation in the trained brain region/regions 

without concomitant neurofeedback. On the other hand, participants may only be 

able to increase the activation levels in the presence of a feedback signal 
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(155,165,185,186). The ability modulate without feedback can be tested with the use 

of a transfer task, or by asking participants to attempt to concurrently ‘up-regulate’ 

brain activation while performing a behavioural task. 

 

A transfer task can assess a central question in the brain training literature as to 

whether neurofeedback training can fundamentally alter the output of a trained brain 

region after training (349). It involves the application of a task, which can be motor or 

cognitive, to test related but not identical functional domains of the trained brain 

region/s. It is also possible that the transfer task is performed while the participant 

modulates brain activity as learned during neurofeedback, but now in the absence of 

a neurofeedback signal (16). This was the approach I used, in which a transfer task 

was administered, with and without concurrent modulation of brain activity following 

neurofeedback training.  

 

Successful post-training transfer should be evident as an individual’s ability to 

modulate the trained brain region on the transfer task. It should, however, be 

considered that the absence of a transfer effect may be as a result of methodology 

or training regime (e.g. single training sessions vs. multiple sessions) or related to 

the neurobiology of the specific brain region being trained. 
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ABSTRACT: Experiment 1 
 
Multivariate classification of spatial attention in higher order visual areas 
 
Introduction 
 
I explored classification of brain activations associated with the deployment of covert 

attention to cued spatial locations. Region-specific activations were used including 

primary retinotopic cortex, and high order visual areas i.e. parietal cortex, FEF, and 

lateral occipital cortex (LOC). I tested the hypothesis that this information could be 

‘decoded’ using multivariate approaches, with accuracies that would be comparable 

to classification with standard univariate techniques. 

 
Methods 
 
Thirteen neurologically normal adult volunteers underwent fMRI scanning during 

which they were cued to attend stimuli were presented simultaneously in each of the 

four visual quadrants. Central eye fixation was required and monitored with an 

eyetracker. BOLD responses to the task versus rest were used to generate 

functional ROIs representing retinotopic and higher order visual areas responsive to 

the stimuli. These ROIs included primary visual cortex, parietal cortex, FEF, SMA 

and LOC. For the attentional conditions, I used multivariate classifiers (Correlational 

classifier (CC), Linear Discriminant Analysis (LDA), with/ without principal 

components analysis (PCA), on the spatial patterns of activation produced within 

each ROI. This generated classification accuracies for the deployment of spatial 

attention for each of the conditions i.e. ‘four directions’, ‘left versus right’, ‘up versus 

down’, ‘diagonals’.  

 
Results 
 
The three multivariate classifiers performed significantly above chance in 

distinguishing ‘left versus right’, and for four quadrants attention; this was most 

robust in primary visual areas e.g. bilateral ‘occipital’: 4 directions classification 

accuracy; CC: 30% p<0.01 t (12)=4.74, LDA: 31% p=0.01 t(12)=2,78, LDA with 
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PCA: 30% p<0.01, t(12)= 3.12, and in higher visual areas i.e. bilateral ‘LOC’ CC: 

31% p<0.01 t (12)= 3.90, LDA: 30% p=0.04 t(12)=1.96, LDA with PCA: 28% 

p=0.02, t(12)= 2.39.  Bilateral parietal, CC: 29% p=0.02 t (12)=2.44, LDA with PCA: 

27% p=0.08, t(12)= 1.53. Examining ‘diagonals’ and ‘up versus down’ conditions 

provided above chance classification for both only with the bilateral Occipital ROIs 

using CC, and LDA with PCA classifiers.  Both CC and LDA with PCA classifiers 

performed best, as compared to LDA, using the univariate approach, no significant 

classification accuracies were achieved in any studied regions.  

 
 
Conclusions 
 
I was able to apply multivariate analyses to classify the direction of spatial attention 

deployment to stimuli in four quadrants using task-related spatial patterns of BOLD 

activation in visual regions including high order visual areas. I provide evidence for 

the presence of spatial information in the LOC. This work provides the basis for 

establishing a ‘decoding’ algorithm for the deployment of spatial attention, with a 

view to developing practical applications such as an ‘attention driven’ BCIs. The 

purpose of this would be to provide a communication platform for patients who may 

be unable to speak and/or move. 

 

Key words: 
 
rt-fMRI, BCI, covert spatial attention, classification, decoding, 
  



 116 

3. EXPERIMENT 1 

Multivariate classification of spatial attention in higher 
order visual areas 
 
 

3.1 Introduction 
 
In the stimulus-rich visual world, our brains must ensure that limited cognitive 

resources are appropriately allocated. One of the processes for doing this is visual 

attention.  The importance of visual attention in the processing of relevant perceptual 

input has been well documented. For example, psychophysical experiments on 

participants with change blindness, requiring them to identify changes in a scene in 

the absence of a cue, have reported the difficulty participants experience in 

identifying change, unless attention is directed to the locus of change. In terms of the 

neurological underpinnings of attention, patients with strokes affecting the fronto-

parietal cortex with damage to putative components of the dorsal circuit of attention 

i.e. FEF and IPS (350–352), show significant deficits in spatial attention. Lesions 

specifically of parietal regions demonstrate profound supramodal attentional deficits 

as a result of both contralateral and ipsilateral lesions (353–356). 

 

Attention may be saccade-mediated i.e. overt attention, or may take advantage of 

the peripheral representation of the visual field on the retina i.e. covert attention 

(357). Both processes may be voluntary or involuntary (358). Examining the 

voluntary deployment of attention more specifically,  it relies on intrinsically driven 

top down processing (i.e. ‘endogenous attention’ as compared to ‘exogenous 

attention’ which is driven by an external stimulus). The mechanisms governing ‘top-

down attention’ have implicated the possibility of a putative ‘attention command 

signal’ , which may direct or drive the entire process. Identification of such a neural 

command signal, if it exists, has practical value. It provides direct, and potentially 

time-critical information on the manner in which an organism interacts with its 

environment. Extracting such an attention command signal, might enable it to be 
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used as surrogate for explicit verbal or motor communication, potentially paving the 

way towards targeted therapeutic interventions. This could, for example, be an 

interactive communication prosthesis that relies on manipulations of visual attention 

(15). Such a prosthesis might use a classification algorithm to read targeted brain 

activation, serving to ‘decode’ the direction of the attention command signal as 

covertly directed by the user. This translated signal could be used to navigate a 

visual interface through a selection of choices linked to real-world actions i.e. a 

speller(39,340,359), images of food or drink objects. This device might additionally 

help in the clinical domain, by bypassing brain injuries, downstream cortical 

processing, and disabled or damaged target organs e.g. paralysed limbs, 

dysfunctional speech. 

 

In this chapter, I seek to establish the basis for an attention-driven communications 

interface. In setting out to do this, an understanding of the neural circuitry of attention 

is indicated, together with examination of its interaction with the subject of attentional 

deployment i.e. spatial attention, object based attention. I introduce key findings from 

the attention literature below, and then outline analysis methods which may be best 

suited to optimise the identification and use of neural information for the purposes of 

an fMRI based, attention-driven communication interface. 

 

An existing conceptualisation of attentional circuitry separates it into dorsal and 

ventral streams, with the fronto-parietal network acting as a ‘source’ of top-down 

signals exerting influence over the ’sink’ of the occipito-inferotemporal cortex (360). 

Lesion studies in patients have provided support for the anatomical segregation of 

these systems. Right parietal damage has been associated with impairments in the 

endogenous orienting of contralateral spatial attention, with a relative sparing of 

exogenous orienting (361); in contrast, damage to the temporo-parietal junction 

results in extinction-like patterns, which are related to exogenous orienting. Corbetta 

and Shulman (105) put forward a model of spatial attention, where goal-driven 

control is reliant on the activity of a bilateral fronto-parietal network, whereas a 

ventral fronto-parietal network is responsible for salient attentional capture.  (NB: 

There is, however, recent work by Vossel and Geng (362), offering an alternative to 

this model). 
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The deployment of visual attention implies the presence of representations of visual 

space in those cortical areas under the influence of visual attention. The neuronal 

organisation of primary sensory cortex reflects the close spatial proximity of neurons 

that are involved in the same sensory computations. Considering the domain of 

visual attention, primary visual cortex (including V1, V2, V3, V4 (284),V3a (363), V3b 

(364)) has retinotopic organisation, based on neurons with small well defined 

receptive fields. Higher order visual areas tend to be smaller in size, and have 

neurons with larger receptive fields (365,366). The amplification effect of attention 

increases along the visual hierarchy i.e. V1 to V4 and beyond, with increasing 

signals associated with sensory processing, to create an attentional gradient. This 

effect is greater in higher visual areas than in primary visual cortex, potentially 

because the widening summation across progressively larger visual fields in higher 

areas, results in increasingly steeper contrast response functions (367). Spatially 

specific modulations of visual attention have been identified in a number of higher 

order visual areas - in particular those regions in the dorsal fronto-parietal network 

classically considered to serve as command centres in the top down organisational 

hierarchy. These include the FEF, precentral gyrus, inferior frontal sulcus, IPS 

(differentiated into 6 subunits from IPS0 to IPS5) and the SPL (112,368–378).  

 

Higher order visual brain regions such as the LOC and inferior temporal cortex, have 

shown evidence of multiple retinotopically organised areas, giving rise to the 

possibility of their role in spatial attention, linked to their roles in object 

processing(379). These areas are part of the ventral ‘what’ pathway, and have 

general purpose (e.g. object selectivity in LOC (380,381)) and category-specific roles 

(e.g. face selectivity in the FFA (382)) in object processing, in the absence of 

attention. The LOC was first described functionally in 1995, located on the 

posterolateral aspect of the fusiform gyrus, extending ventrally and dorsally (380). 

Object selectivity was demonstrated in this region, which was subsequently 

confirmed as being independent of low level visual cues and specific stimulus 

categories (381). Retinotopy in the LOC was demonstrated using phase-encoded 

mapping techniques in functionally defined ROIs(112). A more direct illustration of 

retinotopy in the LOC was provided by the application of electrical cortical stimulation 

in epilepsy patients with subdural electrodes- the authors elicited phosphenes in 

patients in a pattern demonstrating retinotopic representation (383). Recent additions 
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to this literature have delineated both central (foveal) and peripheral representations 

of objects in the LOC such that while position invariance may occur (48,384) there is 

evidence for a co-ordinate system which is retinotopically organised, and may 

provide differential information about where a particular object is in space. The 

emergent neurobiological question which arises, given the presence of retinotopic 

circuitry in LOC, is whether ‘attentionotopy’ and the application of spatial attention 

can be identified in this region. The concept of ‘attentionotopy’ relates to topographic 

maps of spatial attention in higher order visual regions, based on the presence of 

retinotopic maps in these regions. While retinotopic maps have been demonstrated 

throughout the visual pathway, early visual areas show predominantly stimulus –

driven retinotopy, higher order visual in frontal and parietal areas demonstrate 

predominantly attention-driven retinotopy (38,369). These higher order areas may 

send spatially-specific top-down attentional command signals which act on early 

visual areas. In addition to higher-order brain regions known take part in the neural 

action of spatial attention, I specifically investigate the presence of neural signals 

related to the deployment of spatial attention in the LOC in this experiment. Bilateral 

ROIs are explored for all brain regions, as retinotopy in both dorsal and ventral visual 

areas have been consistently shown to be present bilaterally, and/or in both 

hemispheres with no clear lateralisation (41,374,379). 

 

The accuracy with which spatial information present in higher order visual areas 

such as LOC, can be identified from fMRI imaging poses a challenge given the 

spatial resolution of MRI. The BOLD signal of an imaged voxel (in the case of the 

studies in this thesis, 3mm3) reflects the averaged activity of several thousands of 

neurones (385) which may reflect heterogeneous neural activity in relation to the  

cognitive task and behaviour under study. This ‘blurring’ of neural information is 

increased further by the application of traditional analysis approaches that spatially 

average across only those voxels that contain responses that are statistically 

significant with respect to the experimental task. While this has the advantage of 

reducing ‘noise’, it also reduces ‘signal’ by excluding voxels with weaker (i.e. non-

significant) but potentially contributory information, and ignoring fine-grained spatial 

patterns that exist across voxels (264). This may be of relevance when examining 

neuronal populations that encode topographical space in a contiguous manner. The 

use of multivariate analysis on a voxel-wise basis seeks to avoid these concerns by 
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using pattern classification techniques to examine the spatial patterns of responses 

taking place across multiple voxels, including those which have non-statistically 

significant responses to the task, when measured using univariate methods. I 

specifically use multivariate analysis of the imaging data in this experiment, and 

compare it with traditional univariate analysis techniques, in order identify which is 

the optimal means of confirming neural activity linked to the covert deployment of 

spatial attention in dorsal and ventral higher order visual regions. 

 

MVPA employs machine-learning techniques, including classification algorithms, to 

examine spatially distributed patterns of brain activations. The use of classifiers aims 

at establishing above-chance ‘decoding’ or ‘classification accuracies’ - that is reliable 

patterns of activations that contain information that can be used to determine the 

specific experimental condition. There are, however, several types of classifier, each 

with differences in how the data is treated, and which can therefore produce different 

levels of classification accuracy relative to one another. All classifiers have in 

common the use of a training data set to define a decision boundary in the space of 

response patterns e.g. the space spanned by the activity levels of the voxels in the 

ROI (269). Classifiers can differ in the shapes they allow for the decision boundary 

(e.g. hyperplanes in linear classifiers; more complex non-planar boundaries in 

nonlinear classifiers) and in the way the boundary is placed on the basis of the 

training data. For example, LDA places the decision hyperplane so as to optimally 

discriminate two equal-covariance Gaussians; a linear SVM places a decision 

hyperplane so as to maximise the margin to the patterns on either side. Each 

classifier has certain strengths and weaknesses along this axis of interest (e.g. more 

flexible decision boundaries lead to better separation of data, but introduce the risk 

of over fitting (266)). Further, each classifier must be considered with respect to the 

brain region being studied, the use of ROIs, single voxel response estimates (beta 

estimates or t-values) and categorical dichotomy. There is recent empirical evidence 

to suggest that linear classifiers perform better than non-linear classifiers, with some 

preference for LDA and pattern correlational classifiers on account of simplicity, 

robustness, interpretability and ease of application (269).  

 

MVPA together with machine-learning algorithms have been widely used to examine 

the representational content in patterns of neural activity (38,256–258,261–264). 
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However it is currently unknown as to what approach might be best suited to 

classification of a particular cognitive behaviour of interest that relies on specific 

ROIs. This is particularly important for the design and implementation of a neural 

communication device in which accurate, robust ‘decoding’ from selected brain areas 

is critical for the success of communication. The aim of this study was therefore to 

examine whether the deployment of spatial attention can be classified or ‘decoded’ 

using multi-voxel pattern classification techniques, at above chance level in higher 

order visual areas. 

 

In this experiment, I examined brain activations in higher order visual areas including 

LOC, associated with the deployment of covert, 4 quadrant spatial attention to cued  

locations. I was specifically interested in testing the hypothesis that region-specific 

activations could provide information with regards to the deployment of spatial 

attention, and that this information could be successfully extracted by using 

univariate and multivariate classification techniques. I predicted that across the 3 

different classifier approaches tested, multivariate approaches with prior feature 

reduction (e.g. LDA with PCA) would decode with the highest levels of classification 

accuracy, the location of an individual’s covertly deployed spatial attention, in higher 

order visual areas. 

 

 

3.2 Methods 
 
 

3.2.1 Participants 
 

Thirteen neurologically normal adult volunteers (24–32 years of age; mean age = 28; 

8 females) with normal or corrected-to-normal visual acuity were recruited from the 

general population to participate in the experiment. Each participant was provided 

with written informed consent approved by the local ethics committee (UCL Ethics 

Committee approval number: 09/H0716/14) and passed a MRI safety medical 
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screening approved by the Wellcome Trust Centre for Neuroimaging (where MRI 

scanning was performed). 

 
 

3.2.2 Experimental set-up 
 

Stimuli were back projected (NEC Lt Projector) onto a screen mounted to the top of 

the magnet bore behind the participant’s head. All visual stimuli described below 

were generated and displayed via MATLAB using the Cogent toolbox 

(http://www.vislab.ucl.ac.uk/cogent_2000). Participants viewed the screen (via a 

mirror mounted to the head coil) at an optical distance of 52cm. The participants 

responded via a pair of custom-built, MR-compatible, fiber-optic push button 

response boxes. 

 
 

3.2.3 Experimental procedure 
 

The experiment was divided into 12 runs. During the course of one run, there was a 

cue presentation (1s) followed by 16 presentations of the stimuli (0.5s each), each 

followed by a response interval (1.5s) and an interstimulus interval of 1.5s. Each 

block of ‘cued’ presentations (i.e. 16) was followed by a rest interval (16s) (See Fig 

3-1). Each run included cues to all 4 quadrants in the visual field (upper and lower 

right and left quadrants) displayed in a pseudo-randomised order. 

 

The stimuli consisted of 4 black-and-white spirals of identical size (diameter 2 

degrees of visual angle (VA)) and set at identical eccentricities (6 degrees VA) from 

the centre, in 4 separate quadrants of the display. The spirals differed in their 

chirality. During the course of a cued run, all 4 quadrants displayed spirals, with the 

participant attending the spiral (and its associated chirality) in the cued quadrant 

only. To ensure attention was maintained, the participants were asked to indicate on 

each trial whether the attended spiral was right or left handed through a two-button 

box press. 
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The sequence of the chirality of the spirals was pseudo-randomised through the use 

of a balanced Latin square. The sequence of the attentional cues across the 12 runs 

was pseudo-randomised such that each cue was used four times in a non-sequential 

fashion. 

 

 

3.2.4 Eye tracking 
 

Throughout the experiment the participants were instructed to maintain central eye 

fixation at all times, centred on an oval dot at the centre of the screen. This was 

present throughout the task and the rest interval. Central fixation was ensured 

through the use of eye tracking, with eye movements being recorded for all thirteen 

participants, throughout each scanning run. Eye position and pupil diameter were 

sampled at 60 Hz using long-range infrared video-oculography (ASL 504LRO Eye 

Tracking System, MA, USA). 
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Fig 3-1. Experiment 1 task presentation, as visualised in scanner display. 
 
A schematic of the task requiring participants to attend to a quadrant, cued at 
the start of a block, followed by 16 trials in which the chirality of a spiral in the 
cued quadrant only was indicted by a button-press response. The block of 
trials were followed by a 16s rest block, at the end of which the spatial cue was 
re-presented, indicating attention to another quadrant. 
  

  
 

Block: 32s 

Rest:16s 

32 s 

Cue: 1s 

1s 

16s 

Time 

(16 trials/ 2s each) 
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3.2.5 Data acquisition 
 

FMRI data were acquired on a 3T Allegra scanner (Siemens, Erlangen, Germany). 

Structural images were acquired using a T1-weighted sequence (in the sagittal 

plane, 176 partitions, TR= 7.92s, TE=2.4ms, FOV=256x240). Functional images 

were acquired with a gradient-echo EPI sequence (TR= 60ms, TE=30 ms, 

FOV=64x64, matrix=64×72, interleaved acquisition, no gap, 3mm isotropic 

resolution, 32 slices). Slices were positioned along the slope of the temporal lobe 

and covered ventral visual cortex and parietal cortex. The sessions of the experiment 

consisted of 205 volumes each. Fieldmaps were acquired to correct for geometric 

distortions in the EPI images related to inhomogeneities in the magnetic field. 
 
 

3.2.6 fMRI Data analysis 
 
 

3.2.6.1 Basic Pre-processing 
 

To allow for T1 equilibration, the first five images of each run were discarded. Pre-

processing of the data involved mean bias correction, realignment (of each scan to 

the first scan of each run), unwarping, and co-registration of the functional data to 

the structural scan. Data were smoothed with a 6mm FWHM Gaussian kernel. The 

data were filtered with a standard 128s cut-off, high-pass filter to remove low-

frequency noise including differences between runs, while at the same time 

preserving as many of the spontaneous fMRI fluctuations as possible (386). I used 

session specific grand mean scaling, with no global normalisation when preparing 

the GLM in SPM 8 (Wellcome Trust Centre for Neuroimaging, UK). Movement 

parameters in the three directions of motion and three degrees of rotation were 

included in the GLM as confound variables. 
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3.2.6.2 Defining functional ROIs 
 

For each participant, the parameter estimates resulting from the fit of the GLM to the 

fMRI time series were used to calculate a t-statistic at each voxel indicating a 

statistical probability of task-related activation. This resulted in participant-specific 

statistical maps of t-values summarising activations associated to the task (in this 

case summed across all conditions) compared to rest. The t-maps were overlaid 

onto each inflated cortical hemisphere (reconstructed from the anatomical images) 

using Freesurfer (http://surfer.nmr.mgh.harvard.edu/fswiki) (285,292). Specific ROIs 

were then defined and included the parietal cortex (superior and inferior), FEF, polar 

occipital cortex and LOC. 

 

 

3.2.7 Data analysis- Eye tracking 
 

Eye tracking data were analysed with in-house scripts utilising MATLAB and SPM8. 

After eye blinks and periods of signal loss were removed from the data, mean and 

median eye position, expressed as a distance from central fixation were calculated. 

This was performed for each trial type and for all thirteen participants. A repeated 

measures analysis of variance (ANOVA) was used calculate whether mean eye 

position deviated significantly from fixation, for and between conditions. 
 
 

3.2.8 Multivariate analysis  
 
 

3.2.8.1 Preprocessing 
 
FMRI data were spatially smoothed (6 mm kernel FWHM). As has been outlined by a 

number of authors, the spatial pattern information exploited by many multivariate 

pattern classification analyses is represented on a relatively coarse spatial scale 
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(387–390). Consequently, spatial smoothing at an appropriate level improves 

classification performance (391).  

 

I modelled each of the attentional conditions, together with regressors for ‘cue’ and 

for ‘rest’ (across the course of a whole run). The resulting parameter estimates for 

each condition, and every run were used to generate t-maps, created using contrasts 

of each condition against the global mean. The voxels belonging to each ROI were 

identified by projecting the labelled surface vertices back into voxel space. For each 

ROI, the t-values for each voxel were extracted and made into a vector. 

 
 

3.2.8.2 Overview 
 
In a manner similar to the application of regression when setting up a GLM in SPM, 

in order to establish the time series associated with each voxel (from many columns 

in the design matrix), classifiers work in the opposite direction, predicting parts of the 

design matrix from groups of voxels. A particular classifier will take various features 

(independent variables or predictors in regression; in this experiment it would be 

voxels) in an ‘example’ (the set of independent variables), and predict the ‘class’ that 

example belongs to (the dependent variable i.e. the stimulus used to generate task-

based BOLD activations). The classifier will have a set of parameters that are 

‘learned’ from the training data effectively building a model defining the relationship 

between the features and the class ‘label’ in the training set. The trained classifier 

can then determine whether the voxels being tested (e.g. from an ROI) have 

information about the class of the example; the classifier is used to the test the 

feature/class relationship by applying its function to different sets of examples, the 

‘test’ data. The latter assumes that the training and test examples are being 

independently drawn from the example distribution. 

 

Prior to training the classifiers, the fMRI data must be transformed into examples. 

There are a number of ways of doing this, ranging from using the activity signal itself 

from one or more voxels, to utilising the linear model activity estimate from the GLM 

to predict each voxel- so called ‘single voxel responses’. These may be beta or t-
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values for a given condition. As outlined in the pre-processing steps, I opted to use t-

values, as previously supported by Kriegeskorte (269). 

 

3.2.8.3 Feature selection 
 

Given the typically large number of features in relation to the number of examples in 

a fMRI study, feature selection or feature reduction is often applied to the data set. 

This prevents the phenomenon of ‘overfitting’- essentially a multiple comparisons 

problem, in that it may be possible to find a classification function that accurately 

classifies the examples in the training set, without it being effective when applied to 

the test data.  Simple linear classifiers also have less tendency to over-fit the data 

which is the rationale behind the use of correlational and LDA classifiers in this 

experiment. This has been supported more formally in the literature (265,266,269). I 

addressed feature selection in a number of ways :- 

 
1. Regions of Interest 
 

Rather than considering all the voxels in the brain, I limited the search to within a 

specific ROI. Furthermore, I used functional ROIs rather than anatomical ROIs, 

restricting analysis to those voxels that demonstrated above-threshold activity during 

task trials relative to the baseline (modelled as rest). I defined ROIs from within high 

order and primary visual cortex, including frontal, parietal, lateral occipital and 

occipital regions. Bilateral ROIs were created, with all conditions being decoded 

using these ROIs. I did not create ROIs based on voxels that specifically 

distinguished an attentional condition i.e. to one particular quadrant, although this 

has been done within the context of operational brain-machine interfaces 

(19,43,44,311,340). 

 
2. Dimensionality Reduction 

 

This involves reducing the original feature space into a new, lower dimensional 

feature space, yielding a dataset matrix with the same number of rows but a reduced 

number of columns. I used a PCA/ singular value decomposition (392) with an LDA 
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classifier, selecting eigenvectors that explained more than 5% of the variance in the 

data. 

 
3. Ranking 
 

An application of the ‘scoring/filtering’ method involved ranking each of the features 

by a given criterion- each feature was scored by itself in an analogous way to 

univariate tests of a voxel. The ‘best’ voxels were selected- I picked the best 60 

voxels for the multivariate classifiers. In the present study, ranking was performed on 

the data in the training set, and then applied to the data in both the test and training 

set. An F-test was used to compare the two conditions being classified for each 

voxel (e.g. left vs. right etc.); following this all voxels were ranked in descending 

order in relation to their F-statistic. This would then be dependent on the number of 

voxels from a particular ROI that were used in the classification procedure. 
 

3.2.8.4 Cross-validation 
 

To establish a useful estimate of the classifier’s accuracy, the optimal situation is to 

train and test on as many examples as are available (assuming ideally that the 

classes are balanced, and that the training data in each fold contains examples of all 

classes (266). I used a ‘leave-one-out’ cross-validation (268), effectively producing 

as many classifiers as there were examples. 

 

3.2.8.5 Experimental Analysis 
 
Multivariate classification was established by using a leave-one-run-out cross-

validation procedure in which samples from all except one session were assigned to 

a training set and the remaining samples were used as a test set. This step was 

repeated across all possible run combinations, such that each run was used as the 

test set. Classification performance for each cross-validation was estimated as the 

percentage of correct classifications, and the final classification accuracy was 

calculated by averaging performances from all cross-validations. 
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I classified, in separate analyses, the following attentional conditions: - left vs. right, 

up vs. down diagonals (i.e. top-left plus bottom-right vs. top-right plus bottom-left) 

and four-way. For the binary classifications I disregarded the irrelevant dimensions 

i.e. when classifying left vs. right, upper and lower visual field attention was 

disregarded. 

 

I determined a priori the number of voxels to be considered in the classification step. 

All results presented were based on the use of 60 voxels (considered to be broadly 

representative of the ROI). Previous authors have demonstrated that fewer, but 

visually more responsive voxels, lead to improved classification accuracy (269,393). 

Although accuracies degraded at larger numbers of voxels, this was also the case 

with fewer voxels i.e. under 30. There is likely to be a threshold related to the 

volumetric size of the anatomic ROI, and its task-related functionally defined 

analogue. 

 
 

3.2.9 Choice of classification technique 
 

3.2.9.1 Multivariate approaches: 
 

 

All classifiers have in common the defining of a decision boundary (hyperplane) in 

the space of response patterns (that is the space spanned by the activity levels of 

the voxels in the ROI). I used simple linear classifiers with relatively rigid 

hyperplanes, for ease of application, comparison and avoidance of over-fitting. 

 

The specific classifiers used were a correlational classifier, LDA, and LDA with PCA. 

The use of PCA with the LDA classifier was because there were not enough 

examples to estimate its covariance matrix reliability (270). 

 
1. Correlational Classifier 
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For each attentional condition I calculated the mean across all runs in the training 

set. To decode I calculated a linear correlation between each sample in the test set 

and the mean samples from the training set. A test sample was then assigned to the 

condition that produced the greater correlation coefficient.  

 

2. Linear Discriminant Analysis 

 

This classifier determines the discriminant dimension response pattern space, in 

which the ratio of between-class over within-class variance of the data is maximised 

(269). After projection of the data into the linear discriminant dimension, a 

classification threshold is placed at the midpoint between the two class means. The 

classifier is Bayes-optimal in that it ignores estimation error, and assumes Gaussian 

within-class distributions. 

 

In a two class-classification problem as within our experiment, the normal vector of 

the decision boundary is estimated as a product of the within-class covariance matrix 

and the mean vectors of each class. The side of the hyperplane that a discriminant 

value falls on determines which of the two classes it belongs to (after establishing its 

distance from the hyperplane in relation to the mean value of all samples, and the 

vector of voxel values, whether it is a positive or negative integer). 

 

The complementary aspect to this method in our analysis was the use of PCA for 

dimensionality reduction, producing eigenvectors (from the individual voxels) as the 

separable features. 
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3.2.9.2 Single Feature analysis: 
 
 
1. Correlational Classifier with Principal Components Analysis (single most 
discriminant eigenvector) 
 

Following feature reduction using PCA, correlational analysis was then performed 

using the single most discriminating eigenvector when considering the two conditions 

of interest. 

 

2. Univariate approaches 
 

In order to contrast and explore the strength of the multivariate classification I 

examined classification based on single features, representing a special case of the 

classification methods outlined above, but now with extreme feature reduction. The 

motivation behind the multivariate approaches was a finer grained modelling of the 

information provided by the experimental data set. Nonetheless I sought to examine 

whether a broader approximation of the task related activations would still provide 

similar levels of classification accuracy. 

 

i) Average of t-values across a ROI 
 

The univariate analysis was performed using the average of the t-values across each 

ROI. I established classification of the average signal in an ROI in relation to the 

condition under examination. Once again ranking was used to isolate the 60 most 

informative voxels with regards to the two conditions examined, with the average 

calculated across the t-values from these voxels only. 

 

ii) Correlational Classifier with single ‘best’ voxel  
 

This identified the single most discriminative voxel in each ROI following ranking i.e. 

the voxel that had the largest F-value when comparing the two conditions of interest 

in the training set. 
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3.3 Results 
 
 

3.3.1 Overview 
 

I used multivariate classifiers as well as routine univariate classification to determine 

whether activity within each ROI could be used to classify the direction of spatial 

attention in each of the four attention conditions and for combinations of the 

conditions i.e. left vs. right, up vs. down, and diagonals. Chance level of performance 

was therefore 25% for the four-way classification and 50% for the paired attentional 

comparisons.  

 

Potentially the most important comparisons for a real world setting, e.g. navigating a 

room, were left versus right and the four-way attention conditions (offering the largest 

number of options). 

 

3.3.7 Eye position data 
 

Participants were requested to maintain central eye fixation throughout all of the 4 

task blocks, for each of the 12 sessions. The repeated measures demonstrated no 

statistical difference in mean eye position from fixation or between conditions. An 

ANOVA was performed for x- and y-axis for the thirteen participants for whom eye 

data was obtained. (X-axis: left vs. right, F (1,12) =0.287, p=0.602, up vs. down, 

F(1,12) =0.094, p=0.764, interaction F(1,12)=0.042, p=0.841). (Y-axis: left vs. right, 

F(1,12)=0.287, p=0.602, up vs. down, F(1,12)=0.094, p=0.764, interaction, 

F(1,12)=0.042, p=0.841). There were no statistical differences in the number of data 

points collected for any of the conditions. As a result, the absence of systematic 

deviations from fixation precluded the need to exclude imaging runs. 
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3.3.2 Correlational Classifier using multiple features 
 

I found above chance classification for all four attentional conditions in occipital 

ROIs, which included primary visual cortex (Table 3-1, Figs 3-2 to 3-5). Bilateral 

parietal, and bilateral LOC ROIs performed well, with LOC demonstrating above 

chance classification in all conditions except diagonal shifts of attention.  

 

 

Table 3-1. Statistical results for correlational classifier. 
 
Reports of means, standard deviations, and the results of t-tests comparing 
classification using the correlational classifier, against chance (25% for 4 way, 
50% for dual choice conditions), for all four attentional conditions, in each ROI.  
 
(Acc = classification accuracy/ percentage, SD = standard deviation, DoF = 
degrees of freedom. Entries in red are statistically significant results, p< 0.05 ). 
 

          Attention 
Condition Acc SD DoF t- value p-value 

4 way      

Bilateral Occipital 32.69 5.85 12 4.74 0.00 

Bilateral Parietal 28.69 5.46 12 2.44 0.02 

Bilateral SMA 23.33 6.97 4 -0.53 0.69 

Bilateral LOC 31.41 5.92 12 3.90 0.00 

Bilateral FEF 26.49 7.09 6 0.56 0.30 

Left vs. Right 

Bilateral Occipital 55.61 5.40 12 3.74 0.00 

Bilateral Parietal 55.29 6.17 12 3.09 0.00 

Bilateral SMA 50.83 6.69 4 0.28 0.40 

Bilateral LOC 57.85 5.78 12 4.90 0.00 

Bilateral FEF 51.79 8.11 6 0.58 0.29 

Up vs. Down 

Bilateral Occipital 53.53 5.85 12 2.17 0.03 
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Bilateral Parietal 48.88 8.49 12 -0.48 0.68 

Bilateral SMA 46.25 6.97 4 -1.20 0.85 

Bilateral LOC 54.01 6.61 12 2.18 0.02 

Bilateral FEF 50.30 3.49 6 0.23 0.41 

Diagonals 

Bilateral Occipital 5 7.21 7.82 12 3.32 0.00 

Bilateral Parietal 47.12 5.07 12 -2.05 0.97 

Bilateral SMA 47.50 4.97 4 -1.12 0.84 

Bilateral LOC 52.08 5.71 12 1.32 0.11 

Bilateral FEF 46.73 5.88 6 -1.47 0.90 
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Fig 3-2. Four-way classification across ROIs with correlational classifier, 
averaged across participants. The stars over the bars denote statistically 
significant classification (p<0.025, one tailed t-test). The red line indicates 
‘chance’ level classification at 25%. The error bars indicate ±1 SD.  
 

 

 
Fig 3-3. Left versus right classification across ROIs with correlational 
classifier, averaged across participants. The stars over the bars denote 
statistically significant classification (p<0.025, one tailed t-test). The error bars 
indicate ±1 SD. The red line indicates ‘chance’ level classification at 50%. 
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Fig 3-4. Up versus down classification across ROIs, with correlational 
classifier averaged across participants. The stars over the bars denote 
statistically significant classification (p<0.025, one tailed t-test). The red line 
indicates ‘chance’ level classification at 50%. The error bars indicate ±1 SD. 
 

 
 
Fig 3-5. Diagonals classification across ROIs, with the correlational classifier 
averaged across participants. The stars over the bars denote statistically 
significant classification (p<0.025, one tailed t-test). The red line indicates 
‘chance’ level classification at 50%. The error bars indicate ±1 SD. 
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3.3.3 Linear Discriminant Analysis   
 

Above chance classification only occurred in the 4-way and Left versus Right 

conditions, with Bilateral Occipital and LOC showing the highest classification 

accuracies (Table 3-2, Figs. 3-6 to 3-9). 

 

Table 3-2. Statistical results for LDA classifier. 
 
Means, SD, and the results of t-tests comparing classification with the LDA 
classifier, against chance (25% for 4 way, 50% for dual choice conditions), for 
all four attentional conditions, in each ROI. (Acc = classification accuracy/ 
percentage, SD = standard deviation, DoF = degrees of freedom. Entries in red 
are statistically significant results, p<0.05). 
 

Attention 
condition Acc SD DoF t- value p-value 

4 way 

Bilateral 

Occipital 30.61 7.29 12 2.78 0.01 

Bilateral 

Parietal 24.20 5.68 12 -0.51 0.69 

Bilateral SMA 21.67 4.80 4 -1.55 0.90 

Bilateral LOC 29.65 8.55 12 1.96 0.04 

Bilateral FEF 25.89 5.49 6 0.43 0.34 

Left vs. Right 

Bilateral 

Occipital 53.85 5.23 12 2.65 0.01 

Bilateral 

Parietal 53.37 5.48 12 2.21 0.02 

Bilateral SMA 49.58 6.32 4 -0.15 0.56 

Bilateral LOC 57.37 8.57 12 3.10 0.00 

Bilateral FEF 49.70 4.57 6 -0.17 0.57 

Up vs. Down 
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Bilateral 

Occipital 52.40 7.55 12 1.15 0.14 

Bilateral 

Parietal 48.88 8.62 12 -0.47 0.68 

Bilateral SMA 52.08 4.42 4 1.05 0.18 

Bilateral LOC 50.64 6.04 12 0.38 0.35 

Bilateral FEF 50.60 7.19 6 0.22 0.42 

Diagonals 

Bilateral 

Occipital 50.32 7.50 12 0.15 0.44 

Bilateral 

Parietal 46.80 5.55 12 -2.08 0.97 

Bilateral SMA 43.75 6.25 4 -2.24 0.96 

Bilateral LOC 50.64 6.93 12 0.33 0.37 

Bilateral FEF 51.19 4.79 6 0.66 0.27 
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Fig 3-6. Four-way classification with LDA across ROIs, averaged across 
participants. The stars over the bars denote statistically significant 
classification (p<0.025, one tailed t-test). The red line indicates ‘chance’ level 
classification at 50%. The error bars indicate ±1 SD. 
 

 

 
Fig 3-7. Left versus right classification with LDA across ROIs, averaged across 
participants. The stars over the bars denote statistically significant 
classification (p<0.025, one tailed t-test). The red line indicates ‘chance’ level 
classification at 50%. The error bars indicate ±1 SD. 
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Fig 3-8. Up versus down classification with LDA across ROIs, averaged across 
participants. The stars over the bars denote statistically significant 
classification (p<0.025, one tailed t-test). The red line indicates ‘chance’ level 
classification at 50%. The error bars indicate ±1 SD. 
 

 
 

Fig 3-9. Diagonals classification with LDA across ROIs, averaged across 
participants. The stars over the bars denote statistically significant 
classification (p<0.025, one tailed t-test). The red line indicates ‘chance’ level 
classification at 50%. The error bars indicate ±1 SD. 
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3.3.4 Linear Discriminant Analysis with Principal Component Analysis 
 

 

Bilateral occipital ROIs performed well in all 4 conditions, with bilateral LOC 

performing next best (3 out of 4 conditions) (Table 3-3, Figs 3-10 to 3-13). 

 

Table 3-3: Statistical results for LDA classifier with PCA. 
 
Means, standard deviations, and the results of t-tests comparing classification 
with the LDA classifier using PCA, against chance (25% for 4 way, 50% for dual 
choice conditions), for all four attentional conditions, in each ROI. (Acc = 
classification accuracy/ percentage, SD = standard deviation, DoF = degrees of 
freedom. Entries in red are statistically significant results, p<0.05). 
 

Attention 
condition Acc SD DoF t-value p-value 

4 way 

Bilateral 

Occipital 29.97 5.74 12.00 3.12 0.00 

Bilateral 

Parietal 26.92 4.54 12.00 1.53 0.08 

Bilateral 

SMA 23.33 3.73 4.00 -1.00 0.81 

Bilateral 

LOC 27.72 4.11 12.00 2.39 0.02 

Bilateral 

FEF 24.70 1.44 6.00 -0.55 0.70 

Left vs. Right 

Bilateral 

Occipital 55.13 5.35 12.00 3.45 0.00 

Bilateral 

Parietal 52.24 4.46 12.00 1.82 0.05 

Bilateral 47.92 2.95 4.00 -1.58 0.91 
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SMA 

Bilateral 

LOC 55.29 6.78 12.00 2.81 0.01 

Bilateral 

FEF 51.49 2.88 6.00 1.37 0.11 

Up vs. Down 

Bilateral 

Occipital 54.33 6.04 12.00 2.58 0.01 

Bilateral 

Parietal 50.48 4.00 12.00 0.43 0.34 

Bilateral 

SMA 51.67 3.42 4.00 1.09 0.17 

Bilateral 

LOC 52.56 5.96 12.00 1.55 0.07 

Bilateral 

FEF 52.98 2.03 6.00 3.87 0.00 

Diagonals 

Bilateral 

Occipital 52.56 3.52 12.00 2.62 0.01 

Bilateral 

Parietal 49.36 5.27 12.00 -0.44 0.67 

Bilateral 

SMA 50.83 3.78 4.00 0.49 0.32 

Bilateral 

LOC 51.60 5.32 12.00 1.09 0.15 

Bilateral 

FEF 47.32 5.20 6.00 -1.36 0.89 
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Fig 3-10. Four-way classification across ROIs for LDA with PCA, averaged 
across participants. The stars over the bars denote statistically significant 
classification (p<0.025, one tailed t-test). The red line indicates ‘chance’ level 
classification at 25%. The error bars indicate ±1 SD. 
 

 
 
Fig 3-11. Left versus right classification across ROIs, for LDA with PCA, 
averaged across participants. The stars over the bars denote statistically 
significant classification (p<0.025, one tailed t-test). The red line indicates 
‘chance’ level classification at 50%. The error bars indicate ±1 SD. 
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Fig 3-12. Up versus Down classification across ROIs, for LDA with PCA, 
averaged across participants. The stars over the bars denote statistically 
significant classification (p<0.025, one tailed t-test). The red line indicates 
‘chance’ level classification at 50%. The error bars indicate ±1 SD. 
 

 
 
Fig 3-13. Diagonals classification across ROIs, for LDA with PCA, averaged 
across participants. The stars over the bars denote statistically significant 
classification (p<0.025, one tailed t-test). The red line indicates ‘chance’ level 
classification at 50%. The error bars indicate ±1 SD. 
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3.3.5 Predicting shifts of attention using univariate approaches 
 
The rationale for the use of univariate classification approaches has been outlined 

above. The results were less successful as compared with the multivariate 

classification accuracies. There was no significant classification from any of the ROIs 

for any of the attentional conditions using this approach. 

 

Table 3-4: Statistical results for univariate classification. 
 
Means, standard deviations, and the results of t-tests comparing classification 
with univariate classification (average of t-values), against chance (25% for 4 
way, 50% for dual choice conditions), for all four attentional conditions, in 
each ROI. Nil significant results. (Acc = classification accuracy/ percentage, 
SD = standard deviation, DoF = degrees of freedom). 
 

Attention 
condition Acc SD DoF t-value p-value 

4 way 

Bilateral 

Occipital 24.04 4.30 12 -0.81 0.78 

Bilateral Parietal 23.24 3.88 12 -1.64 0.94 

Bilateral SMA 22.50 9.13 4 -0.61 0.71 

Bilateral LOC 24.68 5.02 12 -0.23 0.59 

Bilateral FEF 23.81 3.78 6. -0.83 0.78 

Left vs. Right 

Bilateral 

Occipital 51.92 7.63 12 0.91 0.19 

Bilateral Parietal 52.24 7.58 12 1.07 0.15 

Bilateral SMA 43.33 5.97 4 -2.50 0.97 

Bilateral LOC 50.00 6.01 12 0.00 0.50 

Bilateral FEF 51.79 5.30 6 0.89 0.20 

Up vs. Down 

Bilateral 50.48 8.30 12 0.21 0.42 
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Occipital 

Bilateral Parietal 50.16 6.22 12 0.09 0.46 

Bilateral SMA 50.42 6.49 4 0.14 0.45 

Bilateral LOC 51.76 5.57 12 1.14 0.14 

Bilateral FEF 52.38 6.53 6 0.97 0.19 

Diagonals 

Bilateral 

Occipital 48.56 4.76 12 -1.09 0.85 

Bilateral Parietal 46.15 6.58 12 -2.11 0.97 

Bilateral SMA 46.25 2.28 4 -3.67 0.99 

Bilateral LOC 48.56 6.33 12 -0.82 0.79 

Bilateral FEF 52.08 5.77 6 0.96 0.19 
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Fig 3-14. Four-way classification across ROIs, averaged across participants, 
for Univariate Classification. The red line indicates ‘chance’ level classification 
at 25%. The error bars indicate ±1 SD. 
 

 
 
Fig 3-15. Left versus right classification across ROIs, averaged across 
participants for Univariate Classification. The red line indicates ‘chance’ level 
classification at 50%. The error bars indicate ±1 SD. 
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Fig 3-16. Up versus down classification across ROIs, averaged across 
participants for Univariate Classification. The red line indicates ‘chance’ level 
classification at 50%. The error bars indicate ±1 SD. 
 

 
 
Fig 3-17. Diagonal classification across ROIs, averaged across participants for 
Univariate Classification. The red line indicates ‘chance’ level classification at 50%. 
The error bars indicate ±1 SD. 
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3.3.6 Correlational classifier with the ‘single best voxel’  

 
The use of the correlational classifier with the ‘single best voxel’ was attempted but 

yielded no significant results in terms of classification for any ROI, for any attentional 

condition. 
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3.4 Discussion 
 
 
I explored whether the location of covertly deployed spatial attention could be 

decoded from activity recorded non-invasively by fMRI from higher order visual 

areas. I used two approaches (multivariate and univariate classification) on a spatial 

attention task performed during fMRI. My hypothesis was that spatial attention 

deployment could be successfully decoded from activation in higher order visual 

cortex, with accuracy levels comparable to primary visual cortex. I predicted the use 

of multivariate classification techniques would yield highly accurate classification 

from these regions. An open question was how well univariate classification would 

perform in comparison. I found highest rates of classification for all attention 

conditions with multivariate classification specifically in bilateral occipital regions 

(including primary visual cortex) and bilateral LOC. Univariate classification was not 

successful at decoding the location of spatial attention. Overall, consistent 

classification was less reliable in frontal and parietal regions. 

 

This investigation was based on two existing observations in the literature. Firstly, 

the presence of topographic maps of visual space throughout visual cortex, including 

both primary visual cortex and higher order regions such as the parietal lobe and the 

LOC. Secondly, the co-existence of ‘attentionotopy’, that is the preferential 

enhancement of these retinotopic maps in relation to deployment of covert spatial 

attention, particularly within higher order visual areas in frontal, parietal, and lateral 

temporo-occipital regions (41,374,379). 

 

Primary visual areas respond robustly to high contrast visual stimuli such as 

checkerboard gratings, driving activation of appropriately specific retinotopic co-

ordinates of visual space. The effect of attention on these regions is well-

documented (119,394–397). In this study the stimuli were of sufficient contrast (i.e. 

black and white spirals) to elicit a salient response in primary visual cortex. Therefore 

classification from primary visual ROIs served as a comparator for classification 

accuracies in higher visual areas for the effect of attention on the underlying 

retinotopy in these regions. 
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Studies demonstrating retinotopy and ‘attentionotopy’ in high order visual areas such 

as in the parietal lobe along IPS (398,399) (saccade driven) FEF and inferotemporal 

cortex (41) have successfully used univariate analysis techniques with arguably 

more salient or biologically relevant stimuli compared to our own study which used 

small white spirals (2 degrees visual angle) on a black background. Silver’s landmark 

experiment utilised contrast gratings in a ‘piechart’ of spatial locations (398), while 

Saygin and Sereno used rotating wedges containing point-light biological motion 

figures (41).  It is likely that the attention ‘signal’ in higher order visual cortex 

incorporates the biological importance of the stimulus being attended to, as well its 

visual salience, thus incorporating top-down as well as bottom-up influences (362). It 

may be for this reason that I did not find consistent classification in some of the 

higher order regions such as parietal cortex and FEF. 

 

I included SMA as a ROI as I speculated that it might have a top-down role in 

sustained visuospatial attentional allocation. The SMA has a putative role in 

cognitive control in the presence of conflict resolution, and in relation to internally 

generated or self-initiated action (400).  On this basis I attempted to classify the 

endogenous shifts of attention set out in our experiment task. No above chance 

classification took place with any of the classifiers. A possible reason for this is that 

the functional involvement of SMA is more specifically related to its role in the 

volitional component of self-directed action rather than the trigger for attentional 

allocation. 

 

An interesting finding was the consistently high classification accuracy for attentional 

conditions in the LOC. It has previously been suggested that the LOC may serve as 

an intermediate hub in the top-down attentional network, with the presence of both 

object-sensitive and retinotopic information here (381). This will be discussed in 

more detail below. 

 

The specific deployments of attention that I examined were ‘left versus right’, ‘up 

versus down’, diagonal and four-quadrant attention. I used comparatively simple but 

robust multivariate classification algorithms (correlational classifier, LDA, and LDA 

using PCA), with t-maps for single voxel estimates (269). Across the three 

multivariate classifiers used, significantly above chance classification in 
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distinguishing ‘left versus right’, and for the four quadrants, was observed in primary 

visual areas (bilateral occipital), and to a lesser extent in higher visual areas. 

Bilateral LOC was as successful for these two conditions, across all three classifiers. 

Classification from within the bilateral parietal ROI was above chance with the 

correlational classifier, and the LDA classifier using PCA, for both conditions. None 

of the other regions examined provided above chance classification. Examining 

‘diagonals’ and ‘up versus down’ conditions provided above chance classification 

only with the bilateral occipital ROI, and then only with the correlational classifier, 

and LDA using PCA. ‘Up versus down’ with the correlational classifier, and LDA with 

PCA could successfully decode spatial attention deployment from the Bilateral LOC 

ROI.  Bilateral FEF only provided accurate classification for ‘up versus down’ using 

the LDA with PCA approach. 

 

No accurate classification was achieved with the LDA classifier (i.e. without prior 

PCA).  None of the other regions studied provided accurate classification for the 

’diagonals’ condition. 

 

My results indicate that using higher cortical areas to establish the current focus of 

spatial attention in either upper or lower visual fields is challenging. With regards to 

spatial attention, Kraft et al. have demonstrated that spatial orienting has a lower 

visual field preference (401). Moreover, shifts of attentional focus are more precisely 

delineated when performed in the upper visual field, whilst stationary attention has a 

lower visual field advantage (402–404). Discerning ‘up versus down’ and ‘diagonal’ 

deployments of attention were more challenging to decode in the ROIs. This may be 

related to the asymmetric cortical representation of retinotopy with regards to the 

upper and lower visual fields, resulting in a differential distribution of the effects of 

attention (401,405). Despite the documented presence of retinotopy in the parietal 

cortex, LOC, and FEF (see Introduction), it has been suggested that areas of the 

visual field are asymmetrically represented in the higher order visual areas, and that 

there is a visual field bias which varies from brain region to brain region. While there 

is physiological evidence for lower field preferences at the level of the retina (as 

much as 60% of retinal area) (406) and the lateral geniculate nucleus (407), the 

correlates of cortical asymmetries are incompletely understood. Monkey studies 

have demonstrated lower visual field advantages in higher visual areas (V6a, middle 
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temporal area (MT)) (408,409). More recently, Sayres and Grill-Spector et al. 

(98,410) have demonstrated lower visual field bias, in the presence of complete 

retinotopic representation in the LOC. Schwarzlose et al. reported an upper visual 

field bias in the PPA and a lower visual field bias in FFA (98). 

 

Using the univariate approach of averaged t-values, no significant classification 

accuracies were achieved in any of studied regions. Additionally, the classification 

obtained using a single ‘best’ voxel was also not successful. The reason for this 

finding with the univariate approaches may be linked to several factors. The 

comparative simplicity of the stimuli used i.e. spirals, as compared to high contrast 

gratings, may have resulted in lower magnitudes of BOLD activation through the 

visual hierarchy. As such, fine grained activations related to the stimuli and the 

deployment of spatial attention would be more likely to be identified by multivariate 

approaches. Primary retinotopic areas are highly sensitive to the physical properties 

of the stimulus, such as contrast, edges, spatial frequency, and also have 

comparatively lower levels of BOLD activation in response to visual stimuli as 

compared to higher visual areas. This may explain the lack of success in 

classification using univariate approaches in these regions. As established earlier, 

higher order visual areas respond to more complex visual features of a visual 

stimulus such as category-specific information and semantic content. The activation 

produced in these regions in response to simple, visual spirals may have not been of 

sufficient magnitude therefore, to be identified by univariate approaches. 

 

The success with the pattern correlational classifier and LDA with PCA may be 

related to a number of factors. They are computationally inexpensive, simple and 

rapid to train. In particular, the correlational classifier is appealing with regards to its 

straightforward interpretation i.e. it provides the most correlated class-averaged 

training pattern.  Simple linear classifiers perform well in the presence of smaller 

data sets (e.g. hundreds of voxels rather than thousands of voxels); this would also 

explain the strength of classification with the LDA classifier when using eigenvariates 

produced by a PCA. The latter enables a dimensionality reduction, potentially 

increasing the signal to noise ratio. Further the true distributions of the Bayes-optimal 

(i.e. ignoring estimation error) decision boundaries may have been approximately 

linear. It is likely that the task, presenting visual-spatial information utilising 
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retinotopic representations, generates linearly classifiable information that is 

optimally suited to the use of these classifiers. Correlational classifiers classify 

patterns in keeping with their Pearson correlation coefficient with a category template 

pattern. They utilise a nearest neighbour approach, with within-class averaging and a 

correlation distance function. The test pattern is classified according to the category 

pattern it is most similar to. On the other hand, the LDA classifier utilises a Gaussian 

approach, with a Mahalanbois distance function. It determines the discriminant 

dimension in response-pattern space, maximising the ratio of between-class over 

within-class variance of the data. As such I provide evidence for the use of simple 

linear classifiers for multivariate classification of brain activation in relation to the 

deployment of spatial attention. 

 

I used classification accuracy as the means of assessing and reporting BCI 

performance, and compared it with classification at chance. This was motivated by 

classification accuracy directly corresponding to the probability of performing a 

correct classification. Other comparable fMRI BCI studies have reported BCI 

performance in terms of classification accuracy (43,44). A necessary caveat for the 

use of classification accuracy is that classes for classification must be balanced, as 

was the case in this study. Alternative metrics include sensitivity and specificity, 

which measure the proportion of correctly identified positive results (true positives) 

and the proportion of correctly identified negative results (true negatives). Sensitivity 

is alternatively referred to as the ‘true positive rate’ or ‘recall’, and bears a 

relationship to classification accuracy. Other measures which have been used 

include F-measures which examines precision and recall, and correlation co-

efficients which are used for the validation of classification (411). I used t-tests to 

determine whether classification accuracy was significantly different from chance-

level classification, an approach that can be considered a standard way to assess 

classifier performance (e.g.(412–414)). 

 

In this study I explored classification algorithms that could be simply incorporated 

into an attention-driven BCI. Although I achieved above chance classification 

accuracies in the attention conditions, the magnitude of ‘decoding’ accuracy was 

comparatively modest in the context of an application for a communication interface. 

Current recommendations suggest target BCI accuracies in the region of 70-80% 
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(78), (this recommendation was applied broadly to all forms of BCI i.e. EEG ). 

However the influence of cognitive task on classification accuracy as well as, 

individual differences in brain activation responses, and imaging modality, remains 

unknown. Nonetheless, I consider further methods for increasing information transfer 

rate, and the production of higher rates of classification accuracy in the next chapter. 

 

I attempted to identify higher order brain regions that would provide optimal 

information for classifying the direction of visuospatial attention. It would appear from 

my work, that higher order visual regions provide the opportunity for further 

exploration, by investigating the use of a more detailed neural signal, incorporating 

information related to object category, as well as spatial information. From my 

results, LOC appeared to be the most promising cortical target in this regard. This 

was considered an important finding from a biological perspective, in that LOC is 

traditionally recognised as having a role in object- specific attention. Its role in 

attention in relation to spatial position is less clearly understood. There is a growing 

body of literature examining the presence of both object-based and spatial 

information in the LOC (48,112,383,384,415). A number of authors have 

demonstrated position related information in category-specific cortical regions such 

as LOC (410,416,417). Arguments for a spatiotopic ‘grid’, indicating the positioning 

of the same object at different locations in space have therefore been made, 

although evidence to the contrary has also been shown, suggesting instead that 

object sensitive information is position tolerant (48). Importantly, Carlson et al. 

(410,416,418) have suggested that spatiotopic information may not be accessible to 

active processing. It is possible that the presence of object and spatial information in 

the same cortical region may be encoded by neighbouring but discrete populations 

of neurones, which cannot be measured with the spatial resolution currently afforded 

by fMRI.  

 

An important consideration in this study, given the examination of multiple brain 

regions, as well as a number of classification approaches, is the problem posed by 

multiple comparisons. Typically, a Bonferonni correction can be applied, which 

attempts to establish the family-wise error rate, that is the likelihood of falsely 

reporting a significant classification (i.e. a Type 1 error), when multiple brain regions 

are being tested simultaneously. For n comparisons, the significance is adjusted by 
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1/n. Although applying this correction to the classification results obtained would not 

effect all of the significant results presented in this study, Bonferroni corrections in 

the context of BCI bio-signal processing has been suggested to be too conservative 

(411). This relates to the fact that it assumes independence of comparisons, when 

BCI classification is frequently performed on co-dependent temporal and spatial 

data. The false discovery rate (FDR) has been proposed as an alternative, 

controlling the proportion of false positives, rather than the probability of a single 

false positive. However, the FDR increases the likelihood of Type 1 errors. A useful 

approach may instead be to adopt a hierarchical significance testing approach. This 

has been used in EEG analysis (419), and may be applied in principle to fMRI 

analysis. In this case, the data is put into ‘family hierarchy’, with sub-families (child 

hypothesis) i.e. a family of parietal ROIs. Child hypotheses are compared recursively 

if ‘their parents’ null hypothesis is rejected. This experiment (and experiment 2) were 

fundamentally aimed at exploring potential approaches to classifying spatial 

attention, and by necessity tested several classifiers and brain regions.  

 

In light of my findings, and previous work (48,410,416,417) LOC may potentially 

serve as a preparation platform for the integration of information from both dorsal 

and ventral visual streams. The strength of the BOLD signal, measured in the LOC in 

relation to the deployment of spatial attention may be enhanced through the use of 

more complex stimuli such as real-world objects. Object-selective cortex which 

demonstrate retinotopy such as LOC might therefore be suitable targets for BCIs  

which use neural activity associated with real-world stimuli at differing spatial 

positions of the visual scene(15,42,43,45,323,420). Such a BCI could be used by 

paralysed patients who might be unable to speak, but wish to interact independently 

with the environment (421). The device would need to be intuitive to use, but enable 

interactions with real-world objects.  A practical example demonstrating the ultimate 

evolution of this approach would be a bed bound patient interacting with a bedside 

visual interface powered by his decoded neural activity. The interface would be a 

partitioned screen, with multiple object streams, which might include food items, 

faces of carers, and body parts. As required, the patient would direct attention to one 

of the spatially separated streams, using his neural activity to ‘select’ a relevant 

stimulus i.e. an image of his back to indicate back pain, and image of glass of water 

to indicate thirst etc. A realtime fMRI-based BCI could be used as the first step in the 
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development of a communications platform, serving to identify and hone specific 

neural activity and brain regions, prior to conversion to an operational implantable 

BCI. This concept extends attention-driven BCIs beyond being driven by purely 

retinotopic, primary visual cortex based neural activity (10,44), to the use of higher 

order visual regions, with ‘decoding’ being applied to stimuli with real-world 

relevance. I explore this further in the next chapter.  

 

 

3.5 Conclusion 
 

The application of multivariate analyses in the presence of simple stimuli enabled the 

reliable identification of subtle patterns of spatial information and indicated where 

spatial attention was being deployed by a participant. This was achieved in a number 

of previously identified cortical regions involved in spatial attention. I additionally 

provide evidence for the presence of spatial information in the LOC. While this region 

is known to have both spatiotopic and object-sensitive information, this is, to my 

knowledge, the first study illustrating the involvement of the LOC in the deployment 

of spatial attention utilising MVPA. 

 
 

3.6 Rationale for Experiments 1 and 2 
 
The aim of my first experiment was to identify a usable fMRI paradigm in which the 

deployment of spatial attention could be used to develop a rt-fMRI BCI. Prerequisites 

for such a device include simplicity of implementation, ease of use, and real-world 

applicability, in a similar manner to the choice of multivariate classifier used in the 

data analysis. In my first experiment I identified a number of higher order visual 

areas as well as primary retinotopic cortex that classified the direction of spatial 

attention. This adds to recent literature documenting the use of classification 

techniques to determine the direction of spatial attention (10). In the next experiment 

I extend these findings by examining the deployment of spatial attention to stimuli 

with real-world salience. The use of such stimuli is of operational use in the context 

of a BCI in a clinical setting, for example in use by locked-in patients. Further, I hope 
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to take advantage of object-based information, in addition to spatial information in 

higher order visual cortex, for the purposes of ‘decoding’ the direction of attentional 

deployment. 
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ABSTRACT: Experiment 2 
 
Predictive encoding of spatiotemporal patterns in higher order visual areas 
using real world stimuli- multivariate and univariate approaches 
 
 
Introduction 
 
Higher order visual areas such as LOC contain information about both objects and 

their location. Here I test the hypothesis that the deployment of visual attention to 

different object categories in specific regions of the visual field can be ‘decoded’ 

using univariate and multivariate classification applied to BOLD signals from higher 

order visual areas, as well as from early retinotopic visual areas. 

 
 
Methods 
 
Participants were scanned performing a task in which 4 stimuli were presented 

simultaneously in each of four visual quadrants. Stimuli consisted of 4 categories 

(faces, houses, body parts, and consumables). Participants were instructed to fixate 

centrally and voluntarily attend to one of the four quadrants. At the end of a block 

they disclosed which quadrant they had previously been attending. 

 

Within functionally defined ROIs, representing retinotopic and higher visual areas 

responsive to the stimuli, univariate classification employing a 'winner take all' 

decision rule was used to blindly determine which quadrant had been attended. This 

prediction was compared against participants' behavioural responses to generate a 

measure of online prediction accuracy across blocks and for each ROI. I further 

compared the performance of this simple decision rule against multivariate 

classification accuracy. 

 
The decision rule produced significant classification accuracies in all the ROIs except 

one (SPL) ranging from 25% to 50% (chance = 25%).Although not as successful, 

multivariate classification was most robust with linear discriminant analysis. 
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Classification accuracies ranged from 25% to 30% with chance level at 25% and 

reached statistical significance only in a minority of participants. 

 

 

Conclusions 
 
Classifying the direction of spatial attention using simple univariate approaches on a 

single block basis was achieved significantly better than chance from higher visual 

areas including LOC and FFA. The use of multivariate classifiers also demonstrated 

above chance accuracy in similar higher order visual areas but did not improve upon 

classification accuracy. Classifying spatial attention in LOC, including temporal 

information and stimuli with real-world saliency may pave the way towards 

operational applications such as 'attention-based BCIs' for locked-in patients. 

 
 
Key words 
 
Realtime fMRI (rt-fMRI), spatial attention, classification, decoding, m-sequences, 

brain-computer interface (BCI), higher order visual areas, LOC, FFA 
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4. EXPERIMENT 2 

 

Predictive encoding of spatiotemporal patterns in higher 
order visual areas using real world stimuli- multivariate 
and univariate approaches 

 

4.1 Introduction 
 
Real-world human actions are often preceded by the direction of attention to 

intended actions. This often begins in an abstract manner, with the interaction of 

cognitive functions directed by the overarching involvement of attention. The study of 

visual attention over the past three decades using fMRI has revealed the manner in 

which cortical retinotopic mapping of a visual scene can be modulated by attention 

(105,422–424). Retinotopic maps in higher order visual areas e.g. FEF, parietal lobe 

(425), LOC (112) FFA (41,410) have been shown to interact with the deployment of 

spatial attention. These maps have eccentricity representations as well as orderly 

polar angles, as seen in early visual cortex (112,371). Support for a hierarchical top-

down organisation of attention (119,426–428), has led to the proposal of 

‘attentionotopy’, in which discrete topographically-specific command signals from 

higher order visual areas, pass in a co-ordinated fashion through a hierarchical 

cortical circuit of attention (116), acting on specific retinotopic neuronal populations. 

 

Attention may be allocated to space as well as to specific features and objects. This 

may occur within a circumscribed area of space, the so-called ‘spotlight’ of attention 

(357) , or throughout the visual scene as in the case of attending to a specific colour, 

or the motion of objects (429,430). The presence of both object and spatial 

information within the same regions of higher order visual areas, such as LOC and 
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FFA, has been demonstrated using multivariate and univariate analysis (98,417). An 

on-going debate is whether this information is segregated, or represented 

independently within the same neuronal population (431). The interaction of object-

based attention in space may enable extraction of higher rates of information from 

functional imaging data for the classification or ‘decoding’ of the direction of spatial 

attention. As discussed in the previous chapter, objective-selective cortex which 

demonstrate retinotopy may be suitable for ‘attention-based’ brain-computer 

interfaces (BCI) (10,15,274,311), enabling neural activity linked to real-world stimuli 

at specific spatial positions in the visual scene to be used as a surrogate for explicit 

communication. This would allow patients to interact with their environment using 

their ‘decoded’ neural activity, despite being  unable to speak, move their eyes, or 

move their limbs as is the case with ‘locked-in’ patients (2,4,15,421,432). 

 

Here I explore the classification of the BOLD signal in relation to voluntary (i.e., not 

cue directed) deployment of spatial attention to four spatially separated streams of 

biologically meaningful stimuli. The aim of this chapter is to demonstrate that 

classification can be reliably performed on a trial-by-trial basis. In addition to using 

conjunctions of spatial and object-based attention, I introduce specific alterations of 

the temporal presentation of the stimuli, incorporating a further layer of information 

into the resulting fMRI BOLD signal. I aimed for maximum orthogonality between 

attended quadrants by using separate m-sequences (maximum shift L-level register 

sequences) for the timing of object presentation in each quadrant. M-sequences are 

pseudorandom sequences of integers that have recently been introduced in fMRI 

experimental design, to optimise stimulus presentation (249). The latter is effectively 

an extension of the concept behind event related fMRI i.e. iimproved resolution of 

haemodynamic responses associated with transient neural activity linked to stimulus 

presentation or task performance. 

 

I use an fMRI attention paradigm, in which the participants attended to one of four 

quadrants showing streams of objects. A particular quadrant is covertly selected on a 

block-by-block basis. I therefore test the hypothesis that the deployment of 

visuospatial attention can be decoded on a single block basis using the BOLD 

signals produced in higher order visual areas, aided by using differences in stimulus 

category, timing and location. 
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4.2 Methods 
 
 

4.2.1 Participants 
 
Nine neurologically healthy adult volunteers (24–32 years of age; mean age = 28; 4 

females) with normal or corrected-to-normal visual acuity were recruited from the 

general population to participate in the experiment. Each participant was provided 

with written informed consent approved by the local ethics committee (UCL Ethics 

Committee code: 09/H0716/14) and passed MRI safety medical screening approved 

by the Wellcome Trust Centre for Neuroimaging (where MRI scanning was 

performed). 

 

4.2.2 Equipment set-up 
 
Stimuli were back projected (NEC Lt Projector) onto a screen mounted to the top of 

the magnet bore behind the participant’s head. All visual stimuli described below 

were generated and displayed via MATLAB scripts created with Cogent extensions. 

Participants viewed the screen (via a mirror mounted to the head coil) at an optical 

distance of 52cm. The participants responded via a pair of custom-built, MR-

compatible, fiber-optic, push button response boxes. 

 

4.2.3 Eye-tracking 
 
Eye position and pupil diameter were sampled at 60 Hz using long-range infrared 

videooculography (ASL 504LRO Eye Tracking System, MA). Throughout the 

experiment eye movements were monitored on-line via a video screen, for all 

participants. 
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4.2.4 Stimuli and presentation procedure  
 
The stimuli were drawn from 4 categories- faces, houses, body parts, and 

consumables. Each category contained 16 unique exemplars that would also be 

specific to each quadrant. In each task block, images (diameter of stimuli: 2 degrees, 

eccentricity: 6 degrees) from each object category were presented in a pseudo-

random manner, consisting of 16 images per mini-block (400ms per image, 100ms 

gap); each task block was composed of 2 mini-blocks, such that all 16 exemplars 

within an object category were shown during a mini-block. The order of the category 

mini-blocks was counter balanced between and across sessions. All images were 

rendered with identical greyscale values, and mean luminance using a custom 

designed MATLAB script. 

 

4.2.5 Stimuli for retinotopy  
 

To map retinotopic visual areas, flashing checkerboards (8 Hz frequency) were 

simultaneously presented in all four quadrants for 30s, with rest intervals of 30s. This 

was repeated 4 times within a retinotopic mapping scanning run. 

 

A second retinotopic localiser was used to functionally define the anatomical 

boundaries of primary visual cortex. This involved the presentation of a stimuli 

simultaneously consisting of a rotating checkerboard wedge, and an expanding/ 

contracting checkerboard ring. Presentation parameters were identical to those used 

for the first retinotopic localiser run. 

 

4.2.6 Experimental Design 
 
The experiment was divided into 5 sessions. Each session consisted of 8 blocks. 

Each block comprised of a cue interval (3s), the task (32s), and a rest period 

(12.52s). Participants were instructed to maintain central eye fixation at all times. 

This was facilitated by the presence of a dot at the centre of the screen. During the 

cue interval this was orange (‘get ready’), white during the task, and red during the 

rest period.  
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The structure of the experimental task varied between sessions. During the first 

session, streams of stimuli were presented in one quadrant of the screen for the 

duration of one block, such that each quadrant was attended to twice over the 

course of a session.  This functional localiser session helped identify object-selective 

and spatial-specific regions of primary and higher order visual cortex. (Fig. 4-1, top 

panel.) 

 

During the next 4 sessions, stimuli were presented simultaneously in all four 

quadrants. More specifically during the 2nd of the 4 sessions, attention to a particular 

quadrant was indicated using a directional cue, presented during the cue interval. 

Once again each quadrant was cued for attention twice over the course of the 

session. (Fig. 4-1, middle panel.) 

 

During 3rd to 5th sessions, participants were instructed to covertly attend a quadrant 

of their choice for the duration of a whole block. Further they were advised to use a 

strategy that enabled them to attend all quadrants twice during a session. They 

disclosed the attended quadrant by means of a button press during the rest period at 

the end of each of block. (Fig. 4-1, bottom panel.) 

 

4.2.7 Retinotopy 
 
A separate retinotopy scanning session was performed over 45 minutes. This 

involved the use of two localiser sessions. A retinotopic localiser targeting the 

specific eccentricities of images used in the main experiment was used, with the 

stimuli matching the size and shape of the stimuli used in the main experiment, so as 

to produce matched retinotopic activations in primary visual cortex.  

 

4.2.8 N-back task 
 
In order to ensure attention was maintained in all sessions there was a button press 

required if two successive exemplars were identical (one-back task). This occurred 

between one to three times per mini-block. 
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Fig 4-1. Experiment 2 design schematic.  
Session 1 (top panel): Object/location functional localiser. Stimuli were only 
presented in one quadrant per block of attention; this was repeated twice. The 
purpose of this session was to clearly delineate functional activations 
associated with each of attentional conditions.  
Session 2 (middle panel): Cued attention session. Same-category stimuli were 
simultaneously presented to all four quadrants. Stimulus frequency and 
category were unique to each quadrant in a similar fashion to session one. 
Attention was cued through the use of stick man during the cue interval 
indicating which quadrant was to be attended over the course of a block. 
Sessions 3-5 (bottom panel): Voluntary attentional deployment. Participants 
were required to covertly direct their attention to a self-chosen quadrant for 
the length of one block. During the inter-block rest interval they revealed their 
chosen quadrant through a button box press linked to numbered visual 
interface- this was recorded to enable subsequent analysis. Each quadrant 
was attended to twice during the course of a session. 

 

 

 

  

 

 

 

 

          

  
 

 

 

 

Session 1: Localiser 

Session 2: Cued attention 

Session 3-5:  Covert attention  
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4.2.9 M-sequences, and modelling its effects on the haemodyamic response in 
a 4 quadrant spatial attention experiment 
 
The timing of stimulus presentation was achieved through the use of four quadrant 

specific m-sequences. As described in chapter 2.4.1, m-sequences specify an 

optimal order of events that allows for the statistical disambiguation of different 

events presented close together in time, which would otherwise be difficult given the 

slow nature of the haemodynamic response (see chapter 2.2.2.1). This is achieved 

in two ways- m-sequences are nearly orthogonal to cyclically time-shifted versions of 

themselves, and they maximize the number of presentations for all event types. 

 

The m-sequences provided 32 stimulus presentation slots per quadrant per block. 

Each of the 4 m-sequences were created to be maximally uncorrelated with each 

other. In order to test that the m-sequences for the four quadrants were optimally 

orthogonal to each other, a computational model of simulated brain activations were 

examined by taking each m-sequence and convolving it together with modelled 

‘noise’ and the HRF.  

 

After generating four m-sequences that were uncorrelated, and convolving them with 

a canonical HRF, I sampled the frequencies down to the typical TR (i.e. 

approximately 2s = 16 data points for 32s sequence). The response function 

produced, simulated the BOLD response during the localiser run i.e. when stimuli 

were being presented in one quadrant per block. This was repeated for each 

quadrant, and then put together to confirm that the simulated ‘timeseries’ were 

uncorrelated (see Fig 4.2a). 

 

The correlation coefficient between the individual simulated ‘timeseries’ from the 

localiser session and the combined simulated ‘timeseries’ for the BCI sessions were 

calculated. The weighting of the contribution of one sequence (i.e. the 'attended 

sequence') to the total response was increased in small steps. These ‘weights’ were 

normalised, and acted to model the effect of attention on one of the quadrant-related 

timeseries in a BCI session. The correlation coefficient between the individual 

quadrant-specific timeseries from the localiser session,  and the same quadrant in 

the presence of combined timeseries from the BCI session were calculated. The 
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higher the correlation for a specific quadrant between the localiser session and the 

BCI session, the more separable the neural activity linked to the allocation of 

attention to that quadrant in the presence of competing stimulus streams.  I 

performed this sequence one hundred times for each weighting level with the 

addition of random  noise. The average response frequency was then calculated. Fig 

4.2b illustrates the modelled BOLD responses for each quadrant and the effect of 

‘attention’ (i.e. increased weighting on a specific quadrant). This confirmed that the 

modelled BOLD activity for each quadrant could be distinguished as being different 

from the other three, motivating the choice of each of the 4 quadrant specific m-

sequences. 
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Fig 4-2.  Graphs modelling M-sequences for each quadrant convolved with a 
HRF. 
Fig 4.2 a) This shows a timeseries for each quadrant. This figure illustrates the 
relative orthogonality for each quadrant as represented by a unique and 
maximally orthogonalised m-sequence convolved with a canonical HRF. 
 
Fig 4.2 b) This illustrates the degree of correlation between the timeseries from 
the localiser session in which there was only one quadrant based stimulus 
stream, and the ‘BCI’ sessions, in which there were 4 simultaneous quadrant 
based stimulus streams. The objective of this computational model was to 
examine if the introduction of weighting to one of the time series would make 
it more discrete from the other three i.e. increase its degree of correlation with 
the localiser session in which neural activity can only be related to the one 
quadrant stimulus stream available. The introduction of a weighting served to 
mimic the effect of attention. 
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4.2.10 Data acquisition 
 
FMRI data were acquired on a 3T Allegra scanner. Structural images were acquired 

using a T1-weighted sequence (176 sagittal slices, TR=7.92 ms, TE=2.4 ms, 

FoV=256x240 mm). Functional images were acquired with a gradient-echo EPI 

sequence (TR=60 ms, TE=30 ms, FoV=64x72, matrix=64×64, interleaved 

acquisition, no gap, 3 mm isotropic resolution, 33 slices). Slices were positioned 

along the slope of the temporal lobe and covered ventral visual cortex and parietal 

cortex. The sessions of the experiment consisted of 197 volumes each. Field maps 

were acquired to correct geometric distortions in the EPI images due to 

inhomogeneities in the magnetic field. 

 

4.2.11 Data analysis- Eye tracking 
 
Eye tracking data were analysed with in-house scripts utilising MATLAB and SPM8. 

After eye blinks and periods of signal loss were removed from the data, mean and 

median x and y eye position coordinates were expressed as a distance from central 

fixation. This was performed for each trial type and for all 8 participants. These data 

were submitted to a repeated measures ANOVA with the factors of horizontal eye 

position (left, right) and vertical eye position (upper, lower), to calculate whether 

mean eye position deviated significantly from fixation across attention conditions. 
 

4.2.12 Data analysis- fMRI data 
 
Participant specific functional data were first analysed using SPM8. To allow for T1 

equilibration, the first five images of each run were discarded. Preprocessing of the 

data involved mean bias correction, realignment (of each scan to the first scan of 

each run), unwarping, and co-registration of the functional data to the structural 

scan. A 6mm FWHM Gaussian kernel was used for smoothing the data. The data 

was filtered with a 256-s cut-off, high-pass filter to remove low-frequency noise 

including differences between runs, while at the same time preserving as many of 

the spontaneous fMRI fluctuations as possible (433). The use of the longer length 

high pass filter was a compromise necessitated by the loss of task related signal with 
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shorter high-pass filters i.e. 128s. I used session specific grand mean scaling, with 

no global normalisation when preparing the GLM. Movement parameters in the three 

directions of motion and three degrees of rotation were included as confounds in the 

analysis of the imaging data. 

 

4.2.13 Data analysis- retinotopy 
 
Functional data were preprocessed in SPM8 by applying slice time correction, 

realignment and unwarping (using field maps), and co-registration to the structural 

scan for each participant. The time series from each scan was then analysed further 

in MATLAB using a fast Fourier transform and the phase and power at the 

stimulation frequency (12 cycles/scan for polar scan, 20 cycles/scan for eccentricity 

scan) were extracted. A F-statistic indicating the significance of the visual response 

was calculated by dividing the power at the fundamental frequency of the stimulus by 

the average power across all frequencies. The resulting phase maps were displayed 

on a reconstructed, inflated surface of the grey/white matter boundary in FreeSurfer 

(285,292). The boundaries of the visual regions were delineated manually by 

mapping mirror reversals in the phase map, which correspond to the representation 

of the vertical and horizontal meridians. The inner and outer boundaries of the ROIs 

were defined by mapping the extent of significant (p < 0.05, uncorrected) visual 

responses in the polar map. The eccentricity map was used to confirm that these 

edges corresponded to the locations where the eccentricity values wrapped around. 

The surface area of each region was then determined by summing up the areas for 

all the mesh vertices in the region (as calculated by FreeSurfer's reconstruction 

algorithm for the grey-white matter surface) 

 

Further analysis of the fMRI data will be described in two parts. First, I will explain 

the analysis of the functional localizer run, the selection of functional ROIs, and then 

the analysis of the main experiment.  
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4.2.14 Defining functional regions of interest 
 
For each participant, the parameter estimates resulting from the fit of the GLM to the 

fMRI time series from the first session were used to calculate a t-statistic at each 

voxel. This resulted in participant-specific statistical maps of t-values summarising 

activations associated with the task (in this case summed across all conditions) 

compared to rest. The t-maps (threshold = 3.0) were overlaid onto each inflated 

cortical hemisphere (reconstructed from the anatomical images) using Freesurfer   

(http://surfer.nmr.mgh.harvard.edu/fswiki) (285,292). Participant-specific functional 

ROIs were delineated manually, including parietal cortex (superior and inferior), 

fusiform temporal cortex, and LOC.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Fig 4-3. Inflated left and right hemispheric brains for a specific participant 
reconstructed from their anatomical image, showing functional ROIs. 
 
A t-threshold of 3 was used to producing heat-maps of functional activations 
in relation to the attention localiser task. Using the anatomical labels provided 
in FreeSurfer as a guide, the resulting overlays were then appropriately 
demarcated and labelled as isolated participant-specific functional ROIs. 
 

Functionally 
defined  
higher order visual 
areas/ROIs:  
Superior Parietal 
Lateral Occipital 
Complex 
Fusiform Face 
Area 
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4.2.15 Analysis of main experiment (Sessions 2-5) 
 

Cortical responses to the 4 attentional conditions were modelled using onsets related 

to the onset times of images within a given m-sequence, convolved with the 

haemodynamic response. Each m-sequence was specific to 1 of the 4 quadrants; 

the same m-sequence for a given quadrant was used across all sessions, 

irrespective of the object category. A GLM was created with separate partitions for 

sessions 2-5; a regressor was created to model each of the quadrant-specific m-

sequences, rest, cue and button box presses, for every block in every session. This 

yielded a parameter estimate for each condition and for every session. 

 

Establishing which quadrant was attended to during a specific block was based on 

the highest representative parameter estimate. After establishing this for each block 

in each session, I then compared the ‘predicted’ parameter estimate and its 

quadrant, with the ‘chosen’ quadrant as indicated by the participant. This was 

performed on a trial-by-trial basis, enabling prediction accuracies to be calculated 

across blocks and sessions for each ROI. 

 

4.2.16 Multivariate pattern analysis with ‘mini-blocks’ 
 
Preprocessed functional data in volume space were further analysed using custom 

software written in MATLAB. The time course from each run was normalised to a z-

score. Four features were extracted from each of the ROIs for each condition 

(corresponding to the four attention conditions), representing the mean, maximum 

and minimum parameter estimates together with their standard deviations. Prior to 

this the time series was modelled in a GLM delineating ‘mini-blocks’ representing the 

object category being shown (two categories being shown during the course of a 

block within any given session of the experiment). For each ROI the features in each 

mini-block were extracted and vectorised, resulting in one pattern (‘sample’) for each 

mini-block. 

 

This data was then used for multivariate classification using a leave-one-run-out 

cross-validation procedure. Samples from all except one session were assigned to a 
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training set and the remaining samples were used as a test set. For each attentional 

condition I calculated the mean sample across all blocks in the training set. To 

decode I used separate classifiers incorporating each sample in the test set and the 

mean samples from the training set.  All voxels within a functionally defined ROI 

were used to define features. 

 

4.2.17 Defining Primary Visual Areas (V1, V2, V3) 
 
Primary visual areas were defined using a standard retinotopic approach (284). 

Specifically, for each participant, using the anatomical images, the surface of each 

cortical hemisphere was reconstructed and inflated using FreeSurfer. Polar maps of 

the visual cortex were calculated using phase-encoded retinotopic mapping 

techniques (284) and retinotopic visual areas were delineated manually. The 

boundaries of V1–V3 were delineated by identifying the representation of the vertical 

and horizontal meridians from the mirror reversals in the phase map, separating the 

ventral and dorsal sub-regions of these areas. 

 

The functional data from the first retinotopic localiser was analysed with a GLM. The 

effect of activation versus rest was modelled together with movement parameters, 

and convolved with the HRF. The resulting t-maps were overlaid onto the inflated 

cortical hemispheres. Twelve discrete regions were uniformly identified in primary 

visual cortex in all participants, i.e. 3 regions either side of the calcarine sulcus for 

each hemisphere corresponding to V1v, V2v, V3v and V1d, V2d, V3d respectively. 

The demarcations between the component regions were delineated using the 

previously defined retinotopic maps (see above). 
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Fig 4-4. Inflated right and left hemispheric brains for a specific participant 
reconstructed from the anatomical images, showing retinotopic ROIs. 
 
 Each hemisphere has been transposed to optimally expose the medial/inferior 
cortical surface and therefore primary visual cortex. The t-maps associated 
with the retinotopic localiser taken from the GLM created in SPM, were 
imported and overlaid onto each appropriate hemisphere. These overlays were 
thresholded (t-threshold = 3) and smoothed (6mm FWHM kernel) creating heat 
maps of functional activations, prior to being delineated into each of the 
specific regions of primary retinotopic cortex. This was aided by the 
application of overlays of polar and eccentricity maps obtained separately 
after a phase-encoded retinotopy session 
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4.2.18 Analysis using retinotopic ROIs 
 
In a similar manner to the main experiment, using each individually defined 

retinotopic ROI, the parameter estimates relating to the quadrants (modelled using 

the m-sequence) were examined on a block-by-block basis. This established which 

quadrant produced the largest parameter estimate/block, providing a prediction of 

which quadrant had been attended to, which was then compared to the actual 

attended quadrant. 

 

Each of the 4 component parts of each primary visual area related to one of the 

attended quadrants i.e. retinotopic cortex which is contralateral and flipped with 

regards to the viewed real world quadrant (e.g. RV1d relates to lower left visual 

quadrant ).  In this manner a competition was set up within each primary visual area 

during each attentional block, to examine which 1 of the 4 component ROIs had the 

‘winning’ parameter estimate (based on the modelled m-sequences). 

 

I used several approaches for identifying which of the four ROIs within a specific 

region of primary visual cortex was the ‘winner’ with regards to a particular 

attentional task. This involved tailored use of parameter estimates: 

 

4.2.19 Using higher order ROIs: 
 
M-sequence regressor within a ROI 
 
Each m-sequence was specific to a particular quadrant during the experiment. As 

such within each ROI, there were 4 m-sequence regressors each specific to a 

complementary area of attended space. I set up a competition among the 4 m-

sequence specific regressors, with the highest mean parameter estimate identifying 

the ‘winning’ regressor. This analysis examined the classification from within a 

specific ROI, and the rate of accurate prediction regarding a participant’s deployment 

of spatial attention, on a single trial basis. 
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4.2.20 Using retinotopic ROIs: 
 
i) Winning parameter estimate 
The highest parameter estimate within a ROI (constituting 4 ‘mini’ ROIs within a 

specific retinotopic region) was used to predict which quadrant of space was being 

attended. 

 

ii) Mean parameter estimate 
In this analysis the four parameter estimates (modelling each of the quadrant specific 

m-sequences) within a ROI, were established. A competition was then setup among 

the 4 ROIs, constituting a visual region), with the highest ‘mean’ parameter estimate 

identifying the ‘winning’ ROI and the area attended. 

 

iii) Median parameter estimate 
The approach used a similar principle to ii), using instead the highest median 

parameter estimate value to identify which of the component ROIs within a specific 

area of visual cortex provided the highest classification accuracy.  
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4.3. Results 
 

4.3.5 Eye position data 
 

Participants were requested to maintain central eye fixation throughout all of the 8 

task blocks, for each of the 4 sessions. A repeated measures ANOVA was 

performed on the X and Y eye position data separately, and the factors of horizontal 

attention (left, right) and vertical attention (up, down) demonstrated no main effect of 

horizontal or vertical attention and no interaction between them: for X-position data: 

left vs. right, F(1,7)=0.697, p=0.431; up vs. down, F(1.,7)=0.387, p=0.554, 

interaction, F(1,7)=1.164, p=0.316; for Y–position data: left vs. right, F(1,7)=0.697, 

p=0.431, up vs. down, F(1,7)=0.387, p=0.554, interaction, F(1,7)=1.164, p=0.316). 

Participants therefore did not move their eyes in a statistically significant, consistent 

manner throughout the experiment, precluding the requirement for the removal of 

data and/or participants. 

 
 

4.3.1 Classification within Functional ROIs 
 
I investigated the extent to which functionally delineated high order visual areas 

could be used to predict the direction of spatial attention. The added caveat was the 

incorporation of unique temporal information in the presentation of stimuli at each of 

the 4 quadrant-based spatial locations. 

 

The resulting accuracies for individual ROI based classifications were determined by 

the extent to which the winning m-sequence parameter estimate, and the linked 

‘predicted’ quadrant space, matched the actual attended quadrant during a task 

block. 

 

Accuracies were calculated using in-house MATLAB scripts, across blocks for each 

session, across the sessions for each participant, and across participants. The 

higher order visual areas were grouped into parietal regions, FFA and LOC. 
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First, I examined the accuracy of classification for the cued session (session 2) 

across participants (Figure 4-1). Mean accuracies were particularly high in LOC, left 

inferior parietal ROIs and FFA (See Table 4-1, and Fig. 4-5). 

 

I then examined accuracy of classification for all sessions i.e. 2-5. Classification 

accuracies were significantly greater than chance in all three higher order visual 

areas, exceeding 50% in bilateral LOC ROIs, with chance at 25% (See Table 4-2, 

and Figure 4-6). 

 

 
 
Fig 4-5.  Mean classification accuracy for ROIs, across Session 2 (cued 
attention) and across participants. Accuracy was by calculated by comparing 
the predicted quadrant with the cue direction on a block-by-block basis. The 
red line indicates ‘chance’ level classification at 25%. The error bars indicate 
±1 SD.  
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Table 4-1. Univariate classification accuracies across ROIs, averaged across 
participants for session 2 (cued attention).  
 
Reported are mean classification accuracies and associated t-values, p-values 
SD, and degrees of freedom for pairwise t-tests comparing means against 
chance level classification (25%). Significant classification is marked in red. 
(Acc = classification accuracy/ percentage, SD = standard deviation, DoF = 
degrees of freedom). 
 

ROIs Acc SD DoF t- value p-value 
Bilateral FFA 45 19.97 7 2.8762 0.012 

Left FFA 45 21.06 7 2.7277 0.015 
Right FFA 41 19.76 7 2.2361 0.030 

Bilateral LOC 45. 9.30 7 6.1775 0.000 
Left LOC 53 11.97 3 4.7001 0.009 

Right LOC 38 15.31 4 1.8257 0.071 
Bilateral Parietal 39 20.53 7 1.9378 0.047 

Left Parietal 41 26.73 6 1.591 0.081 
Right Parietal 31 13.11 5 1.1677 0.147 

Bilateral Superior 
Parietal 

27 12.39 7 0.3568 0.366 

Left Superior 
Parietal 

20 13.26 7 -1 0.825 

Right Superior 
Parietal 

28 16.02 7 0.5517 0.300 

Bilateral inferior 
Parietal 

45 18.96 4 2.3591 0.039 

Left Inferior 
Parietal 

48 23.31 6 2.6354 0.019 

Right Inferior 
Parietal 

35 9.41 5 2.7116 0.021 
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Fig 4-6. Mean classification accuracy for ROIs, across sessions 2-5 and across 
participants. Classification was based on a winner-takes-all approach for the 
winning mean parameter estimate. Accuracy was calculated by comparing the 
predicted quadrant with the attended quadrant (either cued as in Session 2 or 
selected by the participant Sessions 3-5). The red line indicates chance level 
classification at 25 %. The error bars indicate ±1 SD. 
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Table 4-2. Table of univariate classification across ROIs, averaged across 
participants, for all sessions.  
 
Reported are mean classification accuracies and associated t-values, p- value 
standard deviation, and degrees of freedom for pairwise t-tests comparing 
means against chance level classification (25%). Significant classification is 
marked in red. (Acc = classification accuracy/ percentage, SD = standard 
deviation, DoF = degrees of freedom). 
 

ROIs Acc SD DoF t -value p-value 
Bilateral FFA 47 16.26 7 3.67 0.004 

Left FFA 48 12.93 7 5.04 0.001 
Right FFA 45 14.08 7 4.08 0.002 

Bilateral LOC 50 14.80 7 4.71 0.001 
Left LOC 42 4.03 3 8.52 0.002 

Right LOC 43 7.46 4 5.43 0.003 
Bilateral Parietal 39 16.95 7 2.41 0.023 

Left Parietal 41 21.38 6 1.99 0.047 
Right Parietal 32 5.38 5 3.08 0.014 

Bilateral Superior 
Parietal 

31 6.98 7 2.38 0.025 

Left Superior 
Parietal 

25 4.85 7 0.23 0.413 

Right Superior 
Parietal 

31 6.25 7 2.83 0.013 

Bilateral Inferior 
Parietal 

43 8.09 4 5.01 0.004 

Left Inferior 
Parietal 

48 17.10 6 3.59 0.006 

Right Inferior 
Parietal 

33 4.31 5 4.44 0.003 
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4.3.2 Classification within retinotopic region using competition amongst 
constituent ROIs 
 
I next examined the use of primary visual ROIs for classification of the deployment of 

spatial attention using a univariate approach of identifying parameter estimates 

acting as markers for the region of attended space. The parameter estimates 

modelled quadrants as specified by m-sequences. 

 

In the first approach, I utilised a summary value of the activity within a component 

ROI, in this case the median parameter estimate value. This demonstrated a 

progressive increase in classification accuracy from V1 to V3, reaching statistical 

significance at the group level in V3 (p < 0.05, for a binomial distribution). 

 

In the second approach I used a competition among the specific parameter 

estimates representing one of the four component ROIs, modelling the m-sequence 

for the appropriate region of visual space. This demonstrated increasing above- 

chance classification through V1 and V2, with a drop of classification accuracy to 

below chance in V3.  

 

Each of the two approaches used are depicted in Figures 4-8, 4-9 and 4-10, 4-11 

respectively. Figures 4-8 and 4-10 show individual participant classification 

accuracies across each of the three visual ROIs (V1 blue, V2 red, V3 green); Figures 

4-9 and 4-11 show group-averaged classification accuracy across each of these 

three visual ROIs. 
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Fig 4-8.  Individual classification accuracy using the highest value median 
parameter estimate to identify the winning ROI, within 3 visual areas (V1-V3). 
(Chance = 25% indicated by the red line). 
 

 
 
Fig 4-9. Group-averaged classification accuracy using the highest value 
median parameter estimate to identify the winning ROI, within 3 visual areas 
(V1-V3). The stars above the bars denote statistical significance (p<0.05, one 
tailed t-test against chance). The error bars indicate ±1 SD. (Chance = 25% 
indicated by the red line). 
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Fig 4-10. Individual classification accuracies based on competition between 
quadrant-specific regressor taken within a visual ROI. (Chance = 25% 
indicated by the red line).  
 

 
 
Fig 4-11. Group-averaged classification accuracies based on competition 
between quadrant-specific regressor taken within a visual ROI. The star above 
the bar denotes statistical significance (p<0.05, one tailed t-test against 
chance. Error bars are standard deviation. (Chance = 25% indicated by the red 
line). The error bars indicate ±1 SD. 
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Table 4-3. Group averaged classification accuracies using the highest value 
median parameter estimate to identify the winning ROI, within 3 visual areas 
(V1-V3). 
 
Reported are mean classification accuracies and associated t-values, p- value 
standard deviation, and degrees of freedom for pairwise t-tests comparing 
means against chance level classification (25%). (Acc = classification 
accuracy/ percentage, SD = standard deviation, DoF = degrees of freedom). 
 

ROIs Acc SD DoF t -value p-value 
V1 22 5.79 7 0.71 0.5 
V2 28 3.23 7 2.53 0.039 
V3 30 6.87 7 2.55 0.038 

 
 
 
Table 4-4. Group-averaged classification accuracies based on competition 
between quadrant-specific regressor taken within a visual ROI. 
 
Reported are mean classification accuracies and associated t-values, p- value 
standard deviation, and degrees of freedom for pairwise t-tests comparing 
means against chance level classification (25%). (Acc = classification 
accuracy/ percentage, SD = standard deviation, DoF = degrees of freedom). 
 
 

ROIs Acc SD DoF t -value p-value 
V1 29 7.04 7 2.05 0.080 
V2 31 6.12 7 3.20 0.015 
V3 25 5.89 7 0.84 0.428 
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4.3.3 Classification using multivariate pattern Analysis – Part 1 
 
I also explored multivariate classification, extending the use in Experiment 1 to 

include more complex classifiers. Initially, I used two linear classifiers (Correlational 

and LDA), which I had applied successfully in Experiment 1 (Chapter 3). The use of 

dimensionality reduction was explored with both classifiers. The rationale for the use 

of a correlational classifier and LDA classifier  has been previously discussed 

(Chapter 3), and is predicated on its simplicity, ease of understanding, reproducibility 

and comparatively low risk of over-fitting (269).  

 

Table 4-5. Classification accuracy per functionally defined ROI, across all 
participants in percent. Chance classification was at 25%. 
 

 Left 
FFA 

Right  
FFA 

Bilateral 
FFA 
 

Right 
LOC 

Left 
 LOC 

Bilateral 
LOC 
 

Left  
Parietal 

Right  
Parietal 

Pattern 
Correlation 28.32 29.49 25.39 31.64 28.71 28.71 24.61 23.83 

Pattern 
Correlation 
(with PCA) 28.13 26.37 24.41 29.49 30.08 30.27 23.24 26.37 

LDA 
(with PCA) 29.1 30.66 26.37 30.66 30.27 25.39 26.37 25.78 

 

 

Classification was above chance in LOC and FFA ROIs, given that chance level 

classification for 4-quadrant spatial attention was at 25% (Table 4-5). The second 

table (Table 4-6) identifies the number of participants, out of a total of nine, for whom 

classification accuracy was significantly above chance. Using lateralised ROIs, FFA 

classification had as many as 4 participants reaching statistical significance (p < 0.05 

for a binomial distribution, for LDA with PCA classification) with the right FFA being 

the most consistent across classifiers (4 participants with Correlation Classification, 3 

participants with LDA). The bilateral LOC ROI demonstrated better classification 

results for the Correlational Classifiers (2 participants without PCA, 3 participants 
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with PCA). Interestingly bilateral ROIs did not demonstrate an additive effect in terms 

of classification accuracy, most likely due to the inclusion of non-contributory voxels, 

i.e. FFA, and potentially more informative voxels being used for classification in the 

case of the LOC. The parietal ROIs performed less well, with classification not 

exceeding chance. 

 

Table 4-6. Total number of participants, out of 9 participants, with significant 
classification per ROI for each classifier. Statistical significance was assessed 
using a binomial distribution (p<0.05 for a binomial distribution).  
 

 Left 
FFA 

Right 
FFA 

Bilateral 
FFA 

Right 
LOC 

Left 
LOC 

Bilateral 
LOC 

Left 
Parietal 

Right 
Parietal 

Pattern 
Correlation 

1 4 1 1 1 2 0 0 

Pattern 
Correlation 
(with PCA) 

0 0 0 2 2 3 0 1 

LDA 
(with PCA) 

4 3 0 2 1 1 1 1 
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Fig 4-12. Classification accuracies averaged across participants, for each high order 

visual ROIs, for three linear classifiers. Chance = 25%, shown by the horizontal 
red line. The error bars indicate ±1 SD. 
 

 

Table 4-8. Table of multivariate classification using LDA across ROIs.  
 
Classification accuracies and standard deviations are shown for most 
successful linear classifier (LDA with PCA). The number of participants with 
above-chance classification is reported (p<0.05 for a binomial distribution). 
(Acc = classification accuracy/ percentage, SD = standard deviation). 
 
 

ROI Acc SD Participants with 
significant 

classification 

Bilateral FFA 29.1 0.086 4 

Left FFA 30.66 0.075 3 

Pattern correlation 
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Right FFA 26.37 0.05 0 

Bilateral LOC 30.66 0.057 2 

Left LOC 30.27 0.052 1 

Right LOC 25.39 0.046 1 

Left Parietal 26.37 0.066 1 

Right Parietal 25.78 0.049 1 
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4.3.4 Classification using Multivariate pattern analysis – Part 2 
 
 
I then investigated a series of non-linear classifiers including variations of K-nearest 

neighbour approaches and SVM. These classifiers have more complex decision 

boundaries but perform well with smaller ROIs (269). I used the following non-linear 

approaches: K –nearest neighbour, Quadratic, Radial and Polynomial support vector 

machines.  The use of non-linear classifiers with fMRI data is contentious, with 

support for their use from one study (258) but not from others (257,273). The 

expressed concern with the use of more complex non-linear classifiers is that the 

relationships between features and prediction can become difficult to predict (266), 

and may not be ideal for fMRI classification. 

 

Linear SVM classifiers have been suggested to be comparable to LDA classification 

and may be preferable when the optimal decision boundary is approximately 

hyperplanar, but has assumptions of equal and multinormal pattern distributions (as 

is the case with LDA) (269). 

 

The purpose of this exercise was twofold. In the first instance I wanted to establish 

the strength of classification in specific ROIs such as the LOC, which for the previous 

univariate and multivariate classification approaches had been identified as a 

putative region from which to decode the direction of spatial attention. The second 

aim was to identify classifiers that demonstrated comparable accuracies, or better, 

as compared to the LDA and Correlational Classifier. This is important particularly 

when considering further developments such as an increased feature space, given 

that classifiers such as SVM’s typically work better with larger numbers of features, 

and the possibility of combining multiple ROIs.  

 

Examining the total number of statistically significant classifications across all ROIs 

(see Table 4-10), all the non-linear SVM classifiers performed similar to the LDA 

classifier, with the radial SVM having the largest number of significant classifications 

across all ROIs used (i.e. see Table 4-10, 14 cf. 13 with LDA).  
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Table 4-9. Classification accuracy across a series of linear and non-linear 
classifiers per functionally defined ROI, averaged across participants. Chance 
classification was at 25%. 
 

 Left 

FFA 

Right 

 FFA 

Bilateral 

FFA 

Right 

LOC 

Left 

LOC 

Bilateral 

LOC 

Left 

 Parietal 

Right 

Parietal 
Euclidean 
Nearest 

Neighbour 
31.64 28.32 26.37 23.63 28.52 23.24 29.88 26.17 

K-nearest 
neighbour 

3 28.32 30.08 28.52 25.98 28.52 25.2 27.93 25.59 
K-nearest 
neighbour 

5 27.54 28.91 26.76 28.32 29.88 26.37 28.13 23.44 
K-nearest 

neighbour 
7 27.73 29.49 25.59 28.13 30.47 25.59 26.17 23.63 

K-nearest 
neighbour 

9 25 27.54 25.2 26.76 29.49 26.17 27.15 26.56 
Linear 

SVM 27.34 30.66 25.78 29.88 30.66 26.17 24.22 26.95 
Quadratic 

SVM 24.41 27.15 24.22 29.49 32.23 25.59 29.1 25 
Polynomial 

SVM 28.32 29.1 27.34 28.32 32.03 25.2 25.98 26.37 
Radial 

SVM 25.78 29.3 26.76 29.49 28.91 28.13 29.49 24.61 

 

 

Table 4-10. Total number of participants with significant classification for each 
ROI and classifier. (p<0.05 for a binomial distribution). 
 

 Left 

FFA 

Right 

FFA 

Bilateral 

FFA 

Right 

LOC 

Left 

LOC 

Bilateral 

LOC 

Left 

Parietal 

Right 

Parietal 
Euclidean 
Nearest 

Neighbour 

3 2 2 1 1 1 1 0 

K-nearest 
neighbour 3 

0 2 3 0 2 1 1 0 

K-nearest 
neighbour 5 0 2 1 1 2 1 1 0 

K-nearest 

neighbour 7 0 2 1 3 1 0 2 1 

K-nearest 
neighbour 9 0 2 1 1 2 0 2 1 
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Linear SVM 1 2 0 1 3 0 1 1 
Quadratic 

SVM 0 3 1 2 3 0 3 0 

Polynomial 
SVM 1 2 0 2 4 0 0 1 

Radial SVM 0 2 1 2 3 3 2 1 

 

 
 

 
 
Fig 4-3. Group-averaged classification accuracies, for each high order ROI, for 
linear classifiers and most successful non-linear classifier.  
 
The most successful of the non-linear classifiers (Radial SVM) is shown in 
comparison to three previously used linear classifiers. Chance classification is 
at 25% and is shown by the horizontal red line. The error bars indicate ±1 SD. 
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4.4 Discussion 
 
 

In this study, the primary aim was to identify a robust mechanism for classification of 

covert, participant determined deployment of visuospatial attention using fMRI, on a 

trial-by-trial basis. Results obtained over all nine participants show that quadrant 

shifts of spatial attention could be decoded using mean responses with accuracies of 

approximately 50% (chance 25%) in higher order visual areas including LOC, FFA 

and in both superior and inferior parietal lobes. I compared univariate and 

multivariate classification, with the aim of optimising a classification platform for 

future implementation as a brain-computer interface. I found that univariate 

classification performed best, using higher-order bilateral ROIs. 

 

The analysis can be considered in three parts. Firstly, classification based on 

univariate analysis, examining which parameter estimate (modelling each quadrant-

specific m-sequence) predicted the direction of covert attention, performed with the 

highest accuracy. Accuracies approximately twice chance on a single trial basis were 

obtained in LOC and FFA. Secondly, the use of multivariate classifiers, in particular 

the LDA and the radial SVM classifiers demonstrated above chance accuracy in 

similar higher order visual areas including LOC and parietal lobe, although at much 

lower levels of accuracy.  

 

The multivariate classifiers were applied to blocks of imaging data, specifically 

smaller ‘mini-blocks’ defining particular object category; feature selection included 

the mean, minimum and maximum parameter estimate for each quadrant. It is worth 

considering that despite the spectrum of accuracies achieved across the different 

classifiers and functional ROIs, persistently high classification accuracy was evident 

in the LOC. Taking the two analyses together, this suggests that LOC may represent 

a putative target for extracting object-based and spatial information. As discussed in 

the previous chapter, it has been reported that the LOC in addition to containing 

object information, may also contain spatial information. There is evidence to 

suggest that the object information may be location specific, or location tolerant (48). 

In this study, prediction accuracy for the direction of spatial attention may in fact be 
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dependent on the presence of retinotopic maps in LOC.  A similar mechanism may 

underlie the prediction accuracies observed in the inferior temporal cortex e.g. FFA. 

The existence of retinotopic maps within the LOC (112,384), and the inferior 

temporal cortex (FFA and PPA) (41,379,410,434) has been previously 

demonstrated. 

 

I performed formal retinotopy followed by an assessment of the strength of predictive 

classification in primary retinotopic regions (see Figs 4-8 to 4-11). I observed an 

incremental trend in classification accuracy using median parameter estimates 

through V1-V3, with significant classification in V3 only.  This would be in keeping 

with the current understanding of attentional modulation, which increases 

progressively through primary visual areas, with V1 having little in the way of 

‘attentionotopy’, V2 more so, and V3 demonstrating significant attentionotopy (435). 

The use of median values enables the best measure of the central location of data in 

the presence of a highly skewed distribution, and is less susceptible to the influence 

of outlying values. In this context, the median parameter estimate is likely to be the 

measure that is the least susceptible to noise in the BOLD signal, and that best 

represents the activity within a component ROI.  

 

The use of parameter estimates modelling a specific subdivision of the primary visual 

cortex was predicted to be the best means of classifying attention using retinotopic 

cortex. This ostensibly sets up a competition between four-component ‘mini’ ROIs 

linked to retinotopic cortex serving specific quadrant of visual space. The analysis 

indicated that V2 might have a slight advantage with regards to prediction accuracy. 

However, the use of retinotopic ROIs produced lower rates of classification accuracy 

overall as compared to predictions made using higher visual areas.  

 

The use of quadrant specific timing of stimuli presentations may have contributed to 

the increased classification accuracies demonstrated in high order visual areas. The 

use of timing to give distinguishing information to cognitive experiments performed 

using fMRI originally led to the development of event-related fMRI. As compared to 

traditional block design fMRI paradigms which combine identical event types in a 

row, event related fMRI allows for different event types to be interleaved. Therefore, 

event related fMRI provides an opportunity to resolve haemodynamic responses 
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linked with neural activity produced by multiple stimuli occurring close together in 

time, as compared to block design fMRI which is optimised for detecting activity in 

the brain. In this study, I combined a standard block design with regards to the 

presentation of object categories (i.e. mini-blocks of faces, house, body parts, 

everyday objects), with specifically timed presentations for individual stimuli, 

optimised through the use of m-sequences. By ensuring maximal orthogonality 

between the 4 quadrant stimulus presentations, the use of m-sequences had the 

defined purpose of helping to separate brain activation produced by the deployment 

of spatial attention to stimuli in a specific quadrant. 

 

A consideration in this experiment, as with the previous chapter, was the 

examination of multiple brain regions, as well as classification approaches, and 

therefore the potential of problem of multiple comparisons.  As previously discussed, 

a Bonferroni correction can be applied. This attempts to address the family-wise 

error rate, that is the likelihood of falsely reporting a significant classification (i.e. a 

Type 1 error), when multiple brain regions are being examined simultaneously. For n 

comparisons, the correction is made by adjusting the significance by 1/n. Although 

applying this correction to the classification results would not affect all of significant 

results presented in this study, Bonferroni corrections in the context of BCI bio-signal 

processing has been suggested to be too conservative (411). This relates to the fact 

that it assumes independence of comparisons, however, BCI classification is 

frequently performed on co-dependent temporal and spatial data. As discussed in 

the previous chapter, it may instead be reasonable to adopt a hierarchical 

significance testing approach. This has been used in EEG analysis (419), and may 

be applied in principle to fMRI analysis. In this case, the data is put into a ‘family 

hierarchy’, with sub-families (child hypothesis) e.g. a family of parietal ROIs. Child 

hypotheses are compared recursively if their ‘parents’’ null hypothesis is rejected. 

This experiment (and Experiment 1) were fundamentally aimed at investigating 

which brain regions were optimal for classifying spatial attention, and by necessity 

tested several classifiers and brain regions. (NB: In Experiment 3 (see rationale, 

next) I hone the approach to the use of three bilateral ROIs as the targets for the 

application of univariate classification only). 
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During the design of this experiment, consideration was given to the requirement for 

real-world applicability both in terms of the ease of translation of the basic 

experiment into a real-world setting i.e. by using stimuli with environmental valence 

(cf. scrambled images, Gabor patches) as well as the technical considerations for 

mutability into a rt-fMRI classification/ BCI.  I successfully established an offline 

classification pipeline utilising a univariate analysis approach. The established 

classification framework provides a means of decoding neural activity related to the 

deployment of spatial and object based attention. This now provides the basis for an 

online fMRI-based, attention-driven communication interface which uses neural 

activity as a surrogate for communication (15). 

 

4.5 Conclusion 
 
In this experiment I provided evidence of successful classification of the deployment 

of 4-quadrant spatial attention using univariate and multivariate approaches in the 

higher order visual regions examined. A comparison of the ROIs, including higher 

order regions as well as primary retinotopic cortex, identified higher order ROIs as 

the most successful target for classification and decoding of spatial attention. This 

‘decoding’ pipeline was optimised by the inclusion of temporal, object and spatial 

information, and performed most successfully with simple univariate analysis and 

classification. 

 

4.6 Rationale for Experiment 3 
 
In Experiment 2 I expanded on my previous work by exploring a number of options 

for the development of a non-invasive, attention-driven fMRI based BCI. I showed 

that by using a novel implementation for the timing of stimulus presentations, a 

univariate classification algorithm could successfully decode the direction of covertly 

deployed spatial attention, at more than twice chance, based on BOLD activation in 

higher order visual brain regions. Classification accuracies were higher than those 

achieved with the multivariate classifiers. In the next chapter, I will seek to implement 
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this into an operational BCI framework, using a rt-fMRI pipeline, providing proof-of-

principle for an online ‘attention-driven’ BCI for communication.  
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Abstract: Experiment 3 
 
Real-time decoding of spatial attention in higher order visual areas 
 
 
Introduction 
 
Higher order visual areas such as parietal cortex, FFA, and LOC carry information 

regarding both object category and their spatial location (1). Information from areas 

such as these can be used to decode object categories, or the direction of covert 

spatial attention (2,3). I use an automated decision criterion to evaluate, on a trial-by-

trial basis, which location is covertly attended by participants performing a 4-

quadrant attention task with real-world stimuli, and provide proof-of-principle for a rt-

fMRI BCI for communication. 

 
 
Methods 
 
Eight healthy adult volunteers underwent fMRI scanning, during which they 

performed a task requiring the covert allocation of attention to one of 4 spatial 

quadrants. During a visual stimulation block, 4 stimuli (faces, houses, body parts, 

and consumables) were presented simultaneously in each of the 4 visual quadrants. 

Stimulus presentation timing followed a quadrant-specific m-sequence, in order to 

optimise the separation of neural activations related to each of the 4 quadrants. 

Participants were instructed to covertly attend to one of the 4 quadrants and 

indicated at the end of each block which quadrant they had attended.  

 

Participants' BOLD signal changes were extracted from the target brain regions 

(bilateral FFA, bilateral LOC, bilateral parietal), delineated initially with a localiser 

session. Each of the quadrant parameter estimates were modelled with a GLM and 

‘decoding' was carried out in a 'winner takes all' approach, based on which one of 

the 4 quadrant-specific parameter estimates had the highest mean value .The 

decoded 'prediction' was compared against the participants' subsequently disclosed 
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response - this was used to generate a measure of online prediction accuracy across 

blocks and sessions for each ROI. 

 
 
Results 
 
The decision rule (i.e. winner-take all, quadrant-specific parameter estimates) 

produced accuracies in the selected ROIs well above chance (> 25%). Accuracies 

for determining the direction of attention were significantly above chance in all 3 

ROIs (all p’s < 0.001); individual decoding accuracies were up to 70% accurate 

during the first half of each experimental session. 

 

 

Conclusions 
 

Determining the direction of spatial attention using a combined univariate approach 

on a single-block basis can be achieved using rt-fMRI. Decoding accuracies were 

significantly better than chance in higher order visual areas including bilateral 

parietal cortex, LOC and FFA. Decoding spatial attention using temporal information 

(i.e. m-sequences) and real world stimuli provides a novel approach to the 

development of 'attention based' BCI (4). These 'real-time' BCIs could utilise 

attention as a means of communication in patients who are unable to speak, or move 

e.g. locked-in patients. 

 
Keywords: 
 

rt-fMRI, BCI, attention, online decoding, visual areas, FFA, LOC, parietal 
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5. EXPERIMENT 3 

 

Real-time decoding of spatial attention in higher order 
visual areas 
 
 

5.1 Introduction 
 

Online brain activation, linked to the voluntary control of visual attention during fMRI 

scanning, may be utilised as a surrogate for communication, leading to the possibility 

of a rt-fMRI-based BCI communication device. Communication interfaces based on 

non-invasive, and invasive, imaging modalities aim to provide effective information 

within a constrained timeframe, ideally on a trial-by-trial basis. Using an automated 

decision criterion to evaluate shifts of spatial attention by participants performing a 4-

quadrant attention task, I sought to provide proof-of-principle for an rt-fMRI-based 

BCI for communication. 

 

Non-invasive ‘decoding’ of brain activations with rt-fMRI, is based on the online 

classification of imaging data, following extraction and processing of task-related 

BOLD activation performed ‘on-the fly’. Any brain state may potentially be decoded 

in this manner, including those associated with covert cognitive brain states (38,436). 

Potential applications include ‘lie-detection’ devices, which have already been 

demonstrated offline, and the online conversion of brain activations into motor and 

cognitive output. Cortical activations decoded in this manner, may be explicitly 

related to the task e.g. motor cortex activations used to move a robotic arm (7). 

Alternatively, higher order cognitive processes linked to more distributed, complex 

neural activations, may be harnessed and converted to bits of information for a more 

versatile BCI (9,432,437). This has included spelling devices, and the spatial 

navigation of a cursor through a virtual maze (39,40) . 
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Voxel-based activations, which constitute the make-up of an fMRI image, are the 

basis of information transfer in fMRI-based BCIs. Voxels themselves range in size 

from e.g. 1mm3 to 3mm3, and may contain many neuronal sub-populations with 

differing tuning properties. In order to optimise signal extraction for the purposes of a 

BCI, it is necessary to maximally target specific neuronal populations within a cortical 

region, which are functionally involved in the task being used to drive the BCI. A 

challenge in the selection of cortical regions for this purpose is ensuring specificity. A 

potential solution to this problem is to target focal regions of the brain, which have a 

higher order role in co-ordinating neural processes, and may combine associated 

neural firing. A putative region would still have differing populations of neurons in 

close proximity, but now potentially with mutual firing properties – this might then 

serve as an optimal target for a neural interface. 

 

Regions such as the LOC, FFA and regions of the parietal cortex (i.e. superior and 

inferior parietal lobule) are candidate regions for an integrative role in processing of 

visual stimuli and attention. LOC is traditionally recognised as being object selective 

cortex. However it contains at least 2 retinotopic regions, and additionally appears to 

be involved in coding inter-object relations (7,8,9). FFA is predominantly face 

selective, but has also been shown to have spatial topography (41,440). It responds 

more broadly to visually presented shapes (441), and its activity is modulated by 

attention (442,443).  Parietal cortex has a role in top down processes, including 

mediating shifts of attention, maintenance of saliency maps, expectation, priming, 

shape discrimination, but also in aspects of working memory (46,81,444,445). More 

specifically, dorsal regions of the parietal lobe are activated by shifts of top down 

attention related to spatial location, features or objects (118,446–449). 

 

In progressing towards building a attention-based BCI, these three regions have 

been shown to participate in spatially specific attentional shifts, and are actively 

involved in the top-down modulation of attention, serving as a common point for 

multiple sources of information (450,451). At this level of the visual hierarchy, there 

may be sufficient quantitative and qualitative information integration, to enable 

decoding of veridical representations. This is relevant for a BCI using higher order 

visual processing such as attention, together with real-world stimuli, for the purposes 

of a  communication interface in patient populations. 
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The use of rt-fMRI as the basis for a non-invasive BCIs is centred on its superior 

spatial specificity and resolution, as compared to other comparable non-invasive 

imaging modalities used in this way e.g. MEG/EEG based devices (2). Functional 

brain regions can be identified, and investigated in relation to task-based activations, 

and can be used to hone activation profiles, to increase signal strength, and improve 

decoding accuracy (10). Further, the neurobiology of the region can be explored, 

enabling more complex assessments such as examining network connectivity 

between associated functional brain regions. Finally, an important translation of this 

sequence is the identification of an anatomical substrate for direct implantation of 

intracortical BCIs, which has been demonstrated (10). Rt-fMRI ‘verified’ implantable 

BCIs e.g. (19) provide an optimal means of validating BCI technology prior to 

surgical implantation, which has an associated morbidity and risk of mortality (20–

23), thereby increasing the safety and specificity of the BCI technique, as well as the 

likelihood of long-term success. 

 

I aimed to test whether brain activations in higher order visual cortex produced by 

shifts of spatial attention, covert or otherwise, could be accurately classified in real-

time. By doing this I intended to provide proof-of-principle for online ‘decoding’ of 

visuospatial attention, which might then be applied in a BCI, to indicate spatial 

preferences to 1 of 4 quadrants. I hypothesised that neural activations linked to the 

allocation of spatial attention, could be enriched by the inclusion of information 

related to stimulus being attended (i.e. object and feature-based information) and its 

temporal profile. I tested this hypothesis by creating quadrant specific m-sequence 

timings for the presentation of quadrant specific stimuli. Classification was performed 

online, on brain activations extracted from bilateral FFA, PPA and parietal cortex, 

and compared visual quadrant based parameter estimates in a winner-takes- all 

approach. I predicted that using this method, decoding of visuospatial attention 

would be most accurate using higher order visual areas. 
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5.2 Methods 
 
 

5.2.1 Participants 
 

Eight healthy adult volunteers (24–32 years of age; mean age = 28 years, 4 females) 

with normal or corrected-to-normal visual acuity were recruited to participate in the 

experiment. Each participant provided written informed consent and the study was 

approved by the local ethics committee (UCL Ethics Committee code: 09/H0716/14). 

Each participant also passed MRI safety screening approved by the Wellcome Trust 

Centre for Neuroimaging (where MRI scanning was performed). 

 

5.2.2 Stimuli 
 

The visual stimuli consisted of 4 categories namely faces, houses, body parts, and 

food/drink. Each category contained 16 unique exemplars that were specific to each 

quadrant. Each stimulus subtended 2 degrees of visual angle in diameter, and were 

presented at an eccentricity 6 degrees from the centre of the screen. All images 

were rendered to ensure identical greyscale values, and mean luminance using a 

custom designed MATLAB script.  

 

5.2.3 FMRI scanning 
 

All experiments were performed on a 3T Allegra head-only scanner, using a 

standard transmit–receive head coil. Functional data were acquired with a single-

shot gradient echo planar imaging sequence (matrix size, 64_64; field of view, 

192_192mm; isotropic resolution, 3 x 3 x 3mm; 32 slices with ascending acquisition; 

slice thickness, 2 mm; slice gap, 1 mm; echo time (TE), 30 ms; repetition time (TR), 

1920 ms; flip angle, 90°; receiver bandwidth, 3551 Hz/pixel). In the middle of each 

scanning session, double-echo fast, low-angle shot sequence (FLASH) field maps 

(TE1, 10 ms; TE2, 12.46 ms; resolution, 3 x 3 x 2 mm; slice gap, 1 mm) were 
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acquired and used to correct geometric distortions in the images attributable to field 

inhomogeneities. 

 

5.2.4 Real-time set up 
 

I used the Turbo Brain Voyager package with custom real-time image export tools 

programmed in ICE VA25 (Weiskopf et al., 2004b), and custom scripts running on 

MATLAB. Participants’ brain activations (differences in BOLD signal) were extracted 

from previously identified brain regions i.e. target ROIs, with a delay of 2 s from the 

acquisition of the image. Head motion was corrected in real time using Turbo Brain 

Voyager. 

 

The real-time data preprocessing was performed in Turbo Brain Voyager and 

encompassed 3D motion correction with realignment to a preselected template, 

smoothing, incremental linear detrending of time series and statistical parametric 

mapping. The ROI time course(s) were extracted from the prescribed ROI masks, 

averaged and exported by Turbo Brain Voyager. Signal drift, spikes and high 

frequency noise were further removed in real time from the exported time courses 

with the custom MATLAB scripts (302). 

 

5.2.5 Experimental procedure 
 
There were 5 sessions per participant. They consisted of the following :- 

 
1. Localiser session 
 

During the first session, streams of stimuli were presented in one quadrant of the 

screen for the duration of one block (48 seconds made of 3 seconds cue 

presentation, 32 seconds stimulus presentation, 13 seconds rest), such that each 

quadrant was attended to twice over the course of a session. There were 8 blocks in 

this session, which lasted 6 minutes 24 seconds. 
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This session served to identify object and spatiotemporal selective regions of higher 

order visual cortex (i.e. functional localiser). Participants were instructed to maintain 

central eye fixation throughout the session. 

 

Defining functional regions of interest 
 

ROIs were selected using the Turbo Brain Voyager selection package. For each 

participant, the parameter estimates resulting from the fit of the GLM to the fMRI time 

series from the first session were used to calculate a t-statistic at each voxel 

indicating evidence of task-related activation. This resulted in participant-specific 

statistical maps of t-values summarising activations associated with the task 

compared to rest. The t-maps were overlaid onto inflated cortical hemispheres using 

the Turbo Brain Voyager package (threshold of t=3) Participant-specific functional 

ROIs were delineated manually and included bilateral parietal cortex, FFA and LOC. 

 

 

2. Cued attention session 
 

In each task block, object images from a particular object category were presented in 

a pseudo-random manner, consisting of 16 images per mini-block (400ms per 

image, 100ms gap); each task block was composed of 2 mini-blocks, resulting in all 

16 exemplars within an object category being shown during a mini block. The order 

of the ‘object’ mini-blocks was counter-balanced between and across sessions. 
Attention to a particular quadrant was indicated using a directional cue, presented 

during the cue interval. Each quadrant was cued for attention twice over the course 

of the session. Participants were instructed to maintain central eye fixation 

throughout the session. There were 8 blocks (48 seconds each) in the session which 

lasted 6 minutes 24 seconds in total. 

 

To ensure attention was maintained in all sessions a button press was required if 2 

successive exemplars were identical (i.e.one-back task). This occurred between one 

to 3 times per mini-block. The n-back task ensured focused attention through the 

presentation of stimuli. 
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Fig 5-1. Cued Attention session schematic. Participants were cued to attended 
stimuli presented in one quadrant per block. 
 

 

4. ‘Decoding’ sessions 
 

Stimuli were presented as described in the previous paragraph. Participants were 

now instructed to covertly attend a quadrant of their choice for the duration of a 

whole block while maintaining central eye fixation. They were further instructed to 

use a strategy that would enable them to attend all quadrants twice over the course 

of the scanning session. They disclosed the attended quadrant using a button press 

during the rest period, at the end of each of block. 

 

 

 

Cued attention

Cue 3s

Rest 12.5s

Attention to stimuli in cued 
quadrant only 32s



 209 

 
 
Fig 5-2. ‘Decoding’ sessions schematic  
 
Participants were instructed to fixate centrally, attend to one of the 4 
quadrants during the cue, disclosing which quadrant they had attended at the 
end of each block using a button-box. Stimulus presentation timing was 
quadrant specific, specified through the use of m-sequences. 

 

5.2.6 M-sequences 
 

The timing of presentation of the stimuli was prepared using a quadrant specific m-

sequence (249). The m-sequences were prepared to ensure maximum orthogonality, 

providing 32 stimulus presentation slots per quadrant per block. A model of brain 

activations using maximally orthogonal m-sequences (64 time points of either 

stimulus/ or blank presentations) was first tested, convolved with modelled ‘noise’ 

and the HRF (see Chapter 4). 

 

Covert decision

Rest

Covert Attention to single quadrant

Self report

3s

32s

12.5s
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Frequencies were downsampled to the typical TR (i.e. approximately 2 seconds = 16 

data points for 32 second sequence). The sequences were used to simulate the 

localiser run, with responses to the sequence in one quadrant at time, as would be 

the case in the session one localiser. The sequences were then used to simulate 

sessions that had simultaneous streams in all 4 quadrants (i.e. brains activations in 

response to all of the sequences being shown simultaneously as seen in sessions 2 

to 5). The weighting of the contribution of one sequence to the total response (i.e. 

the 'attended sequence') was varied in small steps. The ‘weights’ were normalised, 

with weighting representing the amount of attention to a particular sequence. The 

correlation coefficient between the responses to individual sequences from session 

one and the combined responses from the multiple stream sessions (2 to 5) were 

calculated. The sequence was performed one hundred times for each weighting level 

with the addition of random noise to the responses. This confirmed that the modelled 

BOLD activity for each quadrant could be distinguished as being different from the 

other three, motivating the choice of each of the 4 quadrant specific m-sequences. 

 

 

5.2.7 Eye tracking  
 

Eye tracking was performed during the offline classification study, using a similar 

experimental set-up (see Experiment 2). This provided support for the absence of 

excessive eye movements following participant instruction to maintain central eye 

fixation. I opted not to use eye tracking for the online experiment due to the 

complexity of the real-time implementation. 

 
 

5.2.8 Analysis of main experiment (Sessions 2 to 5) 
 
I investigated the extent to which functionally delineated higher order visual ROIs 

could be used to predict the direction of spatial attention. The addition of unique 

temporal information in the presentation of stimuli at each of the 4 quadrant spatial 

locations was applied to improve decoding accuracy. The resulting accuracies for 
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individual ROI based classifications were based on comparing the winning quadrant 

specific parameter estimate, with the covertly attended quadrant during a task block.  

 

Cortical responses to the 4 attentional conditions were modelled using onset times of 

images, together within a given m-sequence, convolved with the HRF. Each m-

sequence was unique and specific to one of the 4 quadrants; the same m-sequence 

for a given quadrant was used across all sessions, irrespective of the object 

category. A GLM modelled each of the quadrant parameter estimates over each 

block consisting of 24 scans. ‘Decoding’ was carried out at the end of each block, in 

a ‘winner takes all’ approach, based on one of the 4 parameter estimates with the 

greatest mean value. Data were read by the script and lagged behind image 

acquisition by approximately 2 seconds. 

 

The attended quadrant, during a specific block, was the one with the highest 

representative parameter estimate. On a trial-by-trial basis, a prediction was made, 

which could then be compared to the actual quadrant attended to by the participant, 

by comparing the prediction to the participant’s button-box response at the end of 

each block. Having established this for each block in each session, it was possible to 

calculate accuracies for each ROI.  

 
I previously confirmed offline that the optimal implementation for decoding spatial 

attention was through the use of higher order visual areas, and applying univariate 

decoding (see Chapter 4). For this reason, I did not use primary retinotopic ROIs, nor 

multivariate classification techniques. 

 
 

5.2.9 Reaction times 
 
The potential effects of experiment time on decoding accuracy are an important 

consideration for an accurate BCI. A possible effect might be a decrease in decoding 

accuracy due to increasing fatigue of an individual. I therefore further examined the 

changes in decoding accuracy over time. I did this by dividing each session, into the 

first 4 blocks and the second 4 blocks, and comparing reaction times during the 
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performance of a n-back task, between the first half and the second half of the 

session. I also did a comparison of the reaction times from one randomised set of 

four blocks with another,  to confirm that any changes observed were not occurring 

due to chance. 
 
 

5.3. Results 
 

5.3.1 Decoding accuracies 
 
I first examined decoding accuracies across all sessions and blocks, for each of the 

3 bilateral ROIs (See Fig. 5-2), to establish whether the quadrant to which attention 

was being directed could be decoded at above chance levels from signals evoked in 

each ROI. For each ROI (FFA, PPA, parietal), decoding accuracy was significantly 

above chance levels (25%): FFA (M=49.61, SD=5.70, t(7)=12.32, p<.001); PPA 

(M=43.36, SD=5.40, t(7)=9.63, p<.001); Parietal (M=39.06, SD=7.84, t(7)=5.08, 

p<.01). 

 
 
Fig 5-3. Participant-averaged decoding accuracy for the 3 ROIs averaged 
across sessions and blocks. Chance-level decoding is at 25% (horizontal red 
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line). The error bars show one standard error of the mean. Asterisks indicate 
decoding accuracy was significantly above chance. Error bars indicate ±1 
SEM. 
 
I next examined whether there was a change in decoding accuracy with time, over 

the sessions of the experiment. I performed a repeated measures ANOVA with the 

factors of session (1-4) and ROI (Bilateral FFA, Bilateral LOC, Bilateral Parietal). 

There was no main effect of session (F(3,21)= 0.089, p= 0.97). There was a main 

effect of ROI F(3,14)= 6.29, p= 0.011). There was no interaction between session 

and ROI F(6,42)= 1.86, p= 0.11). Thus, decoding accuracy remained the same over 

the course of the sessions in the experiment. 

 

I further investigated a possible influence of time by looking at decoding accuracies 

over the 8 blocks averaged across sessions and participants. (see Fig. 5-3). A 

repeated measures ANOVA was performed, with the factors of ROI (Bilateral FFA, 

Bilateral LOC, Bilateral Parietal), and time (8 blocks, averaged across the 4 

sessions). There was a significant main effect of ROI (F(2,14)= 6.29, p=0.011). 

There was no main effect of time (F(7,8)= 2.14, p= 0.056). This might suggest there 

was a decrease in decoding accuracies with time, although there was no significant 

interaction between ROI and time (F(14, 98)=1.54, p=0.11). 

 

A paired t-test (2-tailed) comparing decoding accuracy over the 1st four blocks as 

compared to the 2nd 4 blocks revealed a significant decline in decoding accuracy for 

bilateral LOC (t= 3.16, p=0.016) and bilateral parietal ROIs (t=2.61, p=0.035). There 

was no significant decline in decoding accuracy for Bilateral FFA (t= 2.09, p=0.075). 

(Figure 5-4). 
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Fig 5-4. Participant-averaged decoding accuracy per block, averaged over the 
4 sessions .Chance-level decoding is at 25% (horizontal red line). Error bars 
indicate ±1 SEM. 
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Fig 5-5. Decoding accuracies during each session, comparing the 1st four 
blocks with the 2nd four blocks. Chance is at 25% (horizontal red line). The 
columns in dark/solid colours represent decoding accuracy over the first four 
blocks, averaged across all sessions; the lighter/gradient-filled columns 
represent decoding accuracy over the second 4 blocks, averaged across all 
sessions. Decoding accuracy in bilateral LOC and Parietal ROIs was 
significantly higher during the first half of each session, as compared to the 
second half of each session. Error bars indicate ±1 SEM. Asterisks indicate 
significant differences in decoding accuracy, between the 1st four and 2nd four 
blocks. 
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Figure 5-5A 

 
 

Figure 5-5B 
Figs 5-6 A, B. Decoding accuracies for each participant, comparing the 1st four 
blocks (Fig. 5-6 A), with the 2nd four blocks (Fig. 5-6 B), averaged across all 
sessions.  Chance is at 25% (horizontal red line). Note that this figure presents 
the same information as Fig 5-4, now dividing each session into halves. 
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3.3.2 N-back task reaction times 
 

An assessment of reaction times on the n-back task was performed from the 6 

participants on whom data was obtained, using an ANOVA, across sessions (1-4) 

and blocks (averaged over 1st four blocks, averaged over 2nd four blocks). This was 

to examine if fatigue may affect task performance across and within sessions (i.e. 

across blocks) (see Fig 5-7). 

 

A main effect of blocks was observed (F(1,5)=7.751, p=0.04), with an increase in 

reaction times over the blocks (Figure 5-6). There was no effect of sessions 

(F(3,15)=1.00, p= 0.42), nor was there an interaction of blocks with sessions 

(F(3,15)=0.49, p=0.70). 

 

In order to confirm the main effect of blocks (i.e. a change in reaction times over 

time), the block order was randomised (using a computationally generated random 

sequence) and then divided into halves. A repeated measures ANOVA was 

performed again, but revealed no main effects of session (F(1,5)=0.89, p= 0.48), or 

blocks (F(1,5)=0.89, p= 0.11), nor an interaction (F(1,5)=0.64, p= 0.61). 
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Fig 5-7. Graph showing reaction times averaged across participants for n-back task 

performance, for each session. Sessions were divided further into the 1st four 
and 2nd four blocks to show the effects of experimental time on task 
performance. Error bars represent ± 1 SEM. Matched average reaction times 
for individual participants are shown for first four blocks and second four 
blocks of each session. A main effect of blocks was observed (F(1,5)=7.751, 
p=0.039), with an increase in reaction times over the blocks. 
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5.5 Discussion 
 

 

The purpose of this study was to develop a proof-of-principle for a rt-fMRI based BCI 

utilising online decoding of brain activations linked to the voluntary allocation of 

spatial attention. I report a novel online decoding method using rt-fMRI to identify the 

direction of covert spatial attention, using BOLD activation in higher order visual 

areas that have a role in the processing of spatial, and object-based information. 

 

In this study I found online classification or ‘decoding’ of the voluntary deployment of 

covert attention to spatial location, could be implemented with a rt-fMRI set-up. A 

novel algorithm was implemented in MATLAB, using a ‘winner-take all’ decision rule, 

based on spatial quadrant-specific parameter estimates, and optimised using m-

sequences to orthogonalise quadrant-specific stimulus presentation. Classification 

accuracies in the selected higher order visual ROIs i.e. FFA, PPA, parietal cortex, 

were significantly above chance in all 3 ROIs (all p’s < 0.001); individual decoding 

accuracies were as high as 70%, during the first half of each experimental session. 

Using an assessment of participant reaction time on an interposed n-back task, the 

increased reaction times over the blocks within a session, were interpreted as 

suggesting participant fatigue may have contributed to a reduction of decoding 

accuracy towards the end of the BCI attention experimental session. 

 

Attention is a versatile neural process, which is useful for the purpose of BCI 

development (15). In particular spatial attention is complex, engaging a number of 

cortical regions and combing both bottom-up and top-down processes (116,452–

454). The outside world is spatially represented by internally maintained retinotopic 

maps, which have been demonstrated throughout the visual hierarchy. In addition to 

primary retinotopic cortex, retinotopy has been demonstrated in the dorsal (IPS (41)) 

and ventral processing stream (e.g. LOC) (48). In relation to higher order visual 

cortex, spatial selectivity has been documented in regions traditionally associated 

with feature and object based attention, including Occipital Face Area (OFA), FFA, 

Fusiform Body Area (FBA), Extrastriate Body Area (EBA), LOC, and posterior 

fusiform area (98). Object category and position may be jointly coded for in high 

order visual cortex such as the LOC (44,,45). Retinotopy has been demonstrated in 
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LOC (112), a region which also may serve as a point of integration between the 

ventral and dorsal visual processing streams (457). Golomb and Kanwisher (49) 

confirmed that topographical information relating to object position, is linked to 

retinotopic maps throughout high order object-selective regions, with top-down 

modulation of these neuronal populations resulting in spatiotopic representations. 

Further, attention may act to co-ordinate multiple perceptual streams related to 

separate visual and spatial properties of a stimulus, serving to integrate 

behaviourally relevant input (458). This body of work provided the evidence for the 

selection of the category and object-selective cortex such as FFA and LOC in this 

experiment. 

 

The inclusion of temporal information by using m-sequences for stimulus 

presentation in our study served to disambiguate quadrant-specific brain activations 

in each of the higher order brain regions, thereby increasing classification accuracies 

during the selective deployment of attention to one of the 4 quadrants. The use of 

alterations in stimulus frequency has been previously examined in EEG and MEG, 

predicated on the improved temporal resolution of these modalities. The 

investigation of temporally selective attention has made a relatively small 

contribution to the existing literature. It is widely debated with regards to its exact 

neural mechanism e.g. is it sub-served by a discrete cortical locus, or does it function 

within existing components of attention, at a specific level of the attentional 

hierarchy. Coull and Nobre (459) identified the FEF and IPS, as being activated in 

fMRI and PET attentional studies involving manipulations of the time interval 

between stimulus presentations. Activations were greater when participants directed 

their attention across both space and time together, as compared to either dimension 

alone. Left hemispheric dominance was supported by collision-judgment tasks, with 

activations being identified in the left inferior- parietal cortex (supramarginal gyrus) 

(460,461). Cognitive manipulations of time perception on the other hand, activate the 

right hemisphere, with the right DLPFC and right parietal cortex being implicated 

(462–465). These findings suggest the potential overlap of discrete but integrated 

attentional pathways. Therefore, in addition to adding a temporal profile to the brain 

activations, the incorporation of a m-sequence into the stimulus presentation may 

have served to strengthen the neural activation related to the deployment of spatial 
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attention, as well as helping to segregate brain activations linked to the concurrent, 

but spatially separated presentation of visual stimuli. 

 

I report four quadrant classification accuracies almost twice chance (44-50% 

accuracy in LOC/FFA, chance 25%). Previous studies using online non-invasive 

BCIs document accuracies of 41% for four quadrant decoding using MEG (420). 

Bahramisharief et al. (42) measured MEG occipital alpha band to examine covert 

attention over 16 polar eccentricities, in 11 participants. An offline analysis enabled 

the attended angle to be predicted in 7 out of the 11 participants. Kelly et al. (466) 

have also used occipital alpha band as the basis of a spatial attention EEG-BCI, 

reporting 73% classification accuracy over 10 participants, decoding left versus right 

covert spatial attention in offline analyses. Invasive BCI decoding using ECoG in 

non-human primates have reported accuracies of 67% (15). In relation to the use of 

online fMRI decoding of spatial attention, currently only one group have published 

using this method (10,44,311). Accuracy for four quadrant decoding was reported as 

being on average 78%, exceeding Kubler et al.’s previous suggestion of an 

operational accuracy of 70% for BCIs used for communication and control(78,467–

469).  Decoding was performed on neural activation in  a priori determined 

retinotopic ROIs, each of which was quadrant-specific (43). Concurrent real-time 

feedback was also used to strengthen brain activation in the ROI corresponding to a 

cued direction of attention. With regards to online decoding in object based attention, 

Niazi et al. (470) used an online whole brain classifier to distinguish when 

participants were attending to a face or house stimulus, reporting accuracies of 

77.6%. A recent study using object-based attention to drive a closed-loop 

neurofeedback BCI provided further evidence of using higher order visual regions 

such as FFA and PPA with rt-fMRI (323). 

 

I extend the decoding approach, demonstrating for the first time proof-of-principle for 

a non-invasive cognitive BCI with rt-fMRI, utilising higher order visual brain regions, 

manipulating cognitive processes such as the covert deployment of attention. This 

BCI could serve as the basis for a communication interface in conditions in which 

patients have preserved higher order neural function, but are unable to speak or 

move to due to pathology affecting the brainstem or spinal cord. The methodological 

advance demonstrated in this study is important as it progresses BCI technology 
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from utilising primary sensorimotor cortex for motor rehabilitation to targeting 

internally driven cognitive processes. By accessing these more elusive neural 

activities, a attention-driven or cognitive BCI (9,15) also opens the door to cognitive 

enhancement  and treatment of cognitive disorders. Further, I used stimuli that may 

be directly relevant in terms of a BCI device for practical use in a patient setting. 

Examples of using an attention driven BCI could include ‘indicating’ via images on a 

visual display, a particular body part that urgently needs medical attention, 

‘requesting’ a food item or glass of water, or ‘asking’ for a particular individual. Each 

quadrant could provide a specific stream of information, which the individual could 

then direct their attention to as required. The potential benefit of targeting a focal 

brain region with a non-invasive BCI interface could also relate to the eventual 

translation into an implantable BCI. This might improve the signal-to-noise ratio by 

using intracranial recordings targeting neuronal populations identified and enhanced 

by prior use with a non-invasive BCI. Further such a device would have the important 

advantage of being portable and/or ‘invisible’. Andersson et al. have previously 

reported on the use of rt-fMRI and cortical decoding as a prelude to classification 

using  intracranial recordings with EcOG (10). 

 

The accuracy with which the direction of attention to one of the four quadrants could 

be determined was as high as 60-70% during the first half of the scanning sessions, 

with a significant reduction in decoding accuracy during the second half of the 

scanning sessions.  Sessions requiring the participants to deploy covert attention, or 

respond to a cue, made no difference to the accuracies. Interestingly, participants 

(e.g. participant 5) that exhibited effective (above chance) classification of their 

spatial attention deployment across the three brain regions examined in the first half 

of each scanning session (see Fig 5.6 A), performed less well during the second half 

of the experiment (see Fig 5.6 B), leading to an overall poor classification result 

across the three ROIs (see Fig 5.4).  Examining the overall within-session 

classification alone (Fig 5-4) does not enable this difference to be detected. Possible 

reasons for this decline in decoding accuracies within may be related to fatigue, with 

there being a known reduction in goal directed performance e.g. top-down driven 

processes (459,460). Reaction times were examined as a surrogate marker of 

fatigue, with an increase in reaction times during the performance of the n-back task 

being noted during the course of a session, which was statistically significant (i.e. 
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F(1,5)=7.751, p=0.039). Mental fatigue, with subsequent impairment in complex task 

performance has been associated with a reduction in BOLD activation in underlying 

brain regions (461). Further, mentally fatigued individuals have been shown to have 

problems blocking out distracting stimuli (474). This consideration is important in the 

context of optimising a BCI imaging paradigm, in order to achieve the recommended 

criterion decoding accuracy of 70% (467–469).  The implication from these findings 

is that an attention-driven BCI using realtime fMRI technology would be optimised by 

ensuring that sessions were kept short, for example 3-4 minutes (i.e. half of the 

session length used in this study). It is possible to envisage the long term utility of an 

attention-driven BCI for the selection of specific objects, using the allocation of 

spatial attention to navigate a visual-interface analogous to the BCI platform used 

here. The user would be able to interact rapidly with the interface to express a 

specific communication within the suggested time frame. In the event that the user-

communication interface interaction was unsuccessful, or unable to be completed 

within a 3-4 minute ‘user episode’, there would be a requirement for a short period of 

rest before attempting usage again e.g. a few minutes. This would be a reasonable 

practicable approach to the use of such a BCI, except perhaps in situations 

potentially involving a patient’s request for urgent attention, although this would be 

normally addressed through more standard patient care and support from carers/ 

healthcare providers. 

 

Eye-tracking was not included in the fMRI part of the experiment, due to the 

complexity of the rt-fMRI set-up. Eye movements do represent a potential confound - 

brain activations associated with eye movements occurring in the cortical oculomotor 

network can overlap with those produced by shifts of spatial attention (475). In the 

EEG and ECoG field, it has been demonstrated that eye movements disturb 

decoding of attention-related brain activation, reducing classification accuracy to 

below chance level (476,477). I did use eye tracking in the offline version of this 

experiment and obtained similar classification accuracies in the same brain regions, 

whilst confirming an absence of excessive eye movements (see results Experiment 

2).  
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5.6 Conclusions 
 

One of the stated goals of BCI research is to provide a communication platform with 

real world applicability for patients who may lack the ability to move or speak e.g. 

stroke patients, or communicate with eye movements e.g. locked-in patients. In this 

study, I address this requirement by using an internal, higher order process which is 

not dependent on activation of motor or primary sensory cortex. Decoding the 

direction of spatial attention using combined univariate approaches on a single block 

basis was achieved significantly better than chance from higher visual areas 

including bilateral parietal cortex, LOC and FFA. Decoding accuracies approaching 

the recommended target of 75% were achieved during the first half of each scanning 

session. Decoding spatial attention, including temporal information and stimuli with 

real-world saliency may pave the way towards operational applications such as 

'attention-based' BCIs for locked-in patients. 

 

 

Rationale for Experiment 4 
 
In the preceding three experiments, univariate and multivariate classification 

techniques were successfully applied to brain activations in higher order visual areas 

produced by cognitive tasks, culminating in an online implementation using an rt-

fMRI experimental pathway. This work also provides proof-of-principle for a non-

invasive attention driven BCI. 

 

In the next experiment, I extend the established use of rt-fMRI with higher order 

visual areas, to examine the second BCI principle of a neurofeedback loop. By 

training participants to modulate brain activation in category-specific regions using 

neurofeedback, I investigate the potential for producing changes in visual perception, 

and linked changes in the functioning of the trained brain regions. 
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Abstract: Experiment 4 
 
 
Functional plasticity in high order visual areas following neurofeedback 
training 

 
 
Introduction 
 

In the preceding experiments I explored and confirmed the ability to accurately 

decode brain activation in object specific brain regions such as LOC and FFA, in real 

time. Accessing the level of activation in these brain region in real-time may allow us 

to go further, beyond simply reading it out to manipulating the level of activity (see 

Fig 1-1, Chapter 1). This in turn could lead to changes in the functional, and 

structural plasticity of the brain region being modulated, potentially causing changes 

to linked behaviour. Neurofeedback-based training using rt-fMRI can be 

implemented to enable such manipulation, and when performed in higher order 

visual regions involved in complex visual processing, may lead to changes in 

perception.  

 

I selected two discrete brain regions which have specific roles in object processing 

(i.e. FFA in face processing, PPA in house and place processing), as compared to 

the LOC which has a more general, overarching role in object processing. I 

hypothesised that learning to modulate the level of activation in two higher order 

visual areas, the FFA and PPA, using neurofeedback would change the dynamics of 

binocular rivalry for specific stimuli that activate these regions. I used a binocular 

rivalry (BR) paradigm where a face stimulus and house stimulus were presented 

simultaneously to each eye. I hypothesised that rivalry between the ensuing face and 

house percepts would be altered by learning-induced changes in the trained regions. 

To explore the mechanisms underlying neurofeedback learning, which involve top-

down processes, I also examined functional, effective connectivity and structural 

changes in the SPL, a region previously implicated in neurofeedback learning. 
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Methods 
 

Brain activation in FFA and PPA, and BR dynamics (cumulative dominance duration, 

cumulative switch frequency) were measured before and after neurofeedback 

training in ten participants. Cumulative dominance durations are a measure of the 

total time a face or house stimulus was perceived (duration of the percept). 

Cumulative switch frequencies measure the total number of times a face or house 

stimulus was perceived (frequency of percept). Participants were divided into two 

training groups who each learned up-regulation of the difference in signal between 

FFA and PPA (or vice-versa). Structural analysis in the trained regions and SPL 

were performed using tensor-based morphometry (TBM). Effective connectivity 

between SPL and the trained regions were examined using Dynamic Causal 

Modelling (DCM). A Canonical Variate Analysis (CVA) was performed to examine 

associations between the behaviour measures, and the structural and functional 

changes, before and after neurofeedback training.  

 
 
Results 
 

All participants learned to regulate the differential signal (F(1,8) = 5.75, p = 0.04). BR 

dynamics were altered in both groups with a change in the dominance durations of 

the percepts that were dependent on the signal they had trained on. Specifically, 

there was a decrease in the dominance duration of the house percept for the FFA 

minus PPA group, and of the face percept for the PPA minus FFA group (t(9)=2.88, 

p=0.02). Participants were also able to execute up-regulation during BR, causing a 

further shift in BR dynamics in a similar manner (t(9)=4.76, p=0.001). The difference 

in signal between FFA and PPA (or vice-versa) increased during concurrent up-

regulation (t(9)= 2.21, p< 0.03, one-tailed t-test). A DCM analysis showed the 

training effect to be in the modelled bottom-up connections from ventral visual areas 

used to produce the training signal to SPL, and in SPL’s self-connections. The CVA 

analysis confirmed an significant association between changes in dominance 

duration following neurofeedback training, and the structural changes in FFA, PPA 

and SPL. 
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Conclusion 
 

Voluntary modulation of higher order visual areas can be learned using rt-fMRI 

neurofeedback, and leading to changes in visual perception. The effects of 

neurofeedback training of ventral visual areas were underpinned by functional 

changes in the trained brain regions, as well as changes in effective connectivity 

between a putative control region associated with visual perception, SPL, and the 

trained regions, FFA and PPA. Finally, individual differences in perceptual measures 

of BR were associated with structural changes in all 3 regions. 

 

 

Key words 
 
rt-fMRI, neurofeedback, differential signal, higher order visual areas, PPA, FFA, SPL, 

top-down control, DCM, perceptual biasing, CVA 
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6. EXPERIMENT 4 

 

Functional plasticity in high order visual areas following 
neurofeedback training 
 

 

6.1 Introduction     
 
At any point in time, we are aware of only some of the information available to our 

senses. Our extraordinary ability to make sense of the visual scene is guided by the 

interaction between previously determined behavioural goals, as well as the salience 

of stimuli present in the scene (478). Familiarity and previous perceptual experience 

(479) facilitate  perceptual processing, making it more rapid and efficient. Prior 

determination of internally generated task goals may lead to unconscious covert 

orienting in relation to basic stimulus features (480), as well as more abstract 

categorical information (481), invoking the use of working memory representations, 

and search-related attentional capture.  

 

The neural basis for the selection of visual stimuli prior to processing has been linked 

with preparatory activity in category-specific visual brain regions, particularly when 

participants were provided with abstract strategies, prior to visual search for stimuli 

not previously seen before. Importantly, activation in primary visual cortex was not 

implicated, despite an established role of this region in visual imagery. A top down 

role for category-specific regions was therefore suggested, with internally generated 

neural activity in these regions biasing visual processing in favour of linked object 

categories (482). An key finding in this earlier work, was that preparatory activity was 

most effective in influencing processing when implemented at the level of category-

specific brain regions 
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An unanswered question in the field is whether we can deliberately alter the 

likelihood of a stimulus entering awareness, by the direct approach of training brain 

areas involved in visual processing and awareness, such as category-specific 

regions. If visual awareness could be biased in this way, the likelihood of specific 

sensory interpretations occurring may be increased, with broader implications for 

manipulating visual perception. The visual system provides a useful platform to 

examine the manner in which sensory processes, which generate perceptual 

experiences, may be manipulated. Category-specific brain regions, attributed with 

processing of specific visual stimuli e.g. FFA and faces, PPA and houses, might be 

manipulated directly with neurofeedback using rt-fMRI. Altering the levels of brain 

activation in these regions using neurofeedback, can be explored in relation to visual 

processing, allowing use to investigate the potential for the unconscious biasing of 

visual perception. 

 

Neurofeedback training with rt-fMRI, employs voluntary control of a visual interface, 

(e.g. fluctuating thermometer bar), presented to the participant while in the scanner. 

This is linked to the activation of target brain regions, by the participant using mental 

imagery (85), while being scanned. The neural substrates of mental imagery are 

thought to share considerable overlap with those engaged in the perception of the 

outside world (151,171) and behavioural execution (483,484), enabled by task-

specific neuronal representations. Although mental imagery has been shown to alter 

perception in the short term (485), evidence of its effects following long-term practice 

are  not clear. For example, successive training of mental imagery does not increase 

the vividness of the imagery or affect binocular rivalry (BR) between stimuli (486). In 

comparison, training of motor imagery produces task improvement and has been 

associated with functional and structural changes throughout the motor hierarchy 

(13,14,15). This suggest that visual perception may complex process with regards to 

its relationship with mental imagery. 

 

The use of online data processing tools allows simultaneous measurement and 

feedback of brain activation to the participant while engaging in a neurofeedback 

task. The ‘training’ component of neurofeedback training requires voluntary control of 

the display, e.g. learning to consistently ‘push’ the level of the thermometer bar upto, 

or above a target level.  The effect of training of primary visual areas in relation to 
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visual processes has recently been shown - Scharnowski et al. demonstrated 

improved visual detection during voluntary up-regulation of V1 activation following 

neurofeedback training (16), and Shibata et al. showed increased orientation 

discrimination following training of retinotopic cortex (areas V1/V2) (17). A further 

question is whether or not high order visual processing such as perception can be 

perturbed by engaging category specific visual areas in neurofeedback training. In 

this thesis I chose to examine the effects of neurofeedback training of higher order 

visual areas on BR, a well evidenced perceptual task (490–493). 

 

BR describes the phenomenon where incompatible stimuli are presented separately 

and simultaneously to each eye of a participant (494,490). The stimuli presented for 

rivalry may be as simple as orientation gratings, which are marginally different from 

each other, or may be more complex stimuli such as natural scenes presented to 

one eye, and faces presented to the other. Regardless, the participant is consciously 

aware of only one of the perceptual stimuli at a time- the other stimulus is 

suppressed. This perceptual fluctuation is spontaneous and stochastic (495). Both 

top-down (i.e. higher cognitive modulatory) and bottom-up (i.e. salience-based) 

processes have been shown to be involved (496–498). Category specific brain 

regions, involved in perception of stimuli engaged in rivalry (e.g. FFA and PPA for 

face/ house rivalry) demonstrate changes in their levels of activation prior to and 

during phenomenological changes in BR (150,171), indicating the relationship of 

specific fluctuations in brain function to changes in perception.  

 

An important consideration in the design of the study presented in this chapter was 

the role of top-down control in visual processing. In the context of perception, this 

top-down processing likely reflects feedforward and feedback interactions between 

multiple cortical regions. Activity in the frontoparietal network is likely to represent the 

top of the command hierarchy, with specific examples documented in both 

neurofeedback training of visual regions and in binocular rivalry. Scharnowski et al. 

(81,16) recently demonstrated increased functional and effective connectivity 

between a specific region of the SPL and retinotopic visual cortex following 

neurofeedback training of V1. Neurofeedback training is likely to engage a number of 

higher order processes, including those related to the neuroprosthetic control, 

agency, introspection and attention. Interestingly, regions of SPL has been shown to 
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be causally involved in BR. Kanai and Carmel (499,500), using  transcranial 

magnetic stimulation, illustrated increased perceptual switching following stimulation 

of an anterior SPL site (aSPL), and  converse following stimulation of a posterior 

SPL site (pSPL). The findings were interpreted within a Bayesian framework, with 

aSPL setting up perceptual predictions, and pSPL establishing the related prediction 

error between the prior perceptual expectation and the ‘posterior’ sensory evidence 

received.  

 

I therefore set out to firstly establish the effect of neurofeedback training of high 

order visual areas on visual perception, using a binocular rivalry paradigm, and 

secondly, to delineate possible mechanisms involved in top-down control of 

neurofeedback training. I used rt-fMRI with neurofeedback to train a group of healthy 

participants to differentially modulate the level of activation in visual category-specific 

brain regions (FFA and PPA). Changes in perception during in BR, were recorded, in 

relation to the perception of pairs of face and house stimuli. 

 

I hypothesised that neurofeedback would enhance the effectiveness of imagery-

based training on visual perception by enabling voluntary modulation of the level of 

activity in category-specific brain areas. I predicted that the effect of neurofeedback 

training would be to alter the baseline functional state of the trained regions, as well 

as underlying structure and functional connectivity. 

 

Specifically in relation to functional connectivity I investigated the involvement of top-

down modulatory regions implicated in neurofeedback and BR – I examined changes 

in effective connectivity between SPL regions and FFA and PPA using dynamic 

causal modelling (DCM), following neurofeedback training.  
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6.2 Methods 
 
 

6.2.1 Participants 
 

Ten neurologically normal adult volunteers (24–35 years of age; mean age = 28 

years; 8 females) with normal or corrected-to-normal visual acuity participated in the 

experiment. Each participant gave written informed consent; the study was approved 

by the local ethics committee (UCL Ethics Committee code: 09/H0716/14) and 

passed a MRI safety medical screening approved by the Wellcome Trust Centre for 

Neuroimaging (where MRI scanning was performed). 

 
 

6.2.2 Stimuli and Materials 
 

All visual stimuli described below were generated and displayed via scripts in 

MATLAB created with Cogent extensions. Stimuli were presented on a viewing 

screen with visual angle 23 degrees by 17 degrees (30 x 26 using a LCD projector 

(LT158; NEC). The stimuli were 3 degrees (in a tiled frame of 4 degrees). They were 

visible to the participants in the scanner via a mirror-mounted screen on the top of 

the MR scanner bore, behind the head, at an optical distance of 52 cm. Face or 

house greyscale stimuli were presented, with 20 different exemplars in each of the 

two categories. Responses were obtain via a pair of custom-built, MR- compatible, 

response boxes. 

  

 

6.2.3 Experimental Outline 
 

The experiment was divided into multiple sessions with each participant being 

required to attend 6 consecutive scanning days. The participants were split into two 

groups, with 5 participants in the ‘face’ group and 5 participants in the ‘house’ 

training group. On Day 1, all participants underwent a pre-training high-resolution 
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structural scan, a functional localiser scan and pre-training BR sessions. On Days 2-

4, participants underwent neurofeedback training sessions, for a total of 3 separate 

training sessions. On Day 5 a transfer session was performed. On Day 6, post-

training BR was performed, as well as a post-training high-resolution structural scan. 

 
 
Fig 6-1.  Experiment 4 experimental procedure schematic. The three stages of 
the experiment are outlined below: 
 
Stage 1: Pre-training BR 
Three sessions of BR were performed 
 
Stage 2: Neurofeedback training 
The 10 participants were separated into two groups prior to neurofeedback 
training. The ‘face’ group were explicitly instructed to use face-imagery 
strategies to ‘drive up’ a fluctuating thermometer bar (blue bar), up to a fixed 
mark (orange bar). The ‘house’ group were similarly instructed, but they were 

1. Pre-training BR 

2. Neurofeedback training 
•  9 training sessions 
•  2 groups of 5 
- ‘Face’ strategies  
(FFA minus PPA signal) 
- ‘House’ strategies 
(PPA minus FFA  signal) 
 

3. Post-training BR 
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!
!
!
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!!!!!!!!!!!!!!!!!!!!
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BR BR + Upregulation (trained) BR + Upregulation (untrained) 
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to use ‘house-imagery’ strategies. The blue thermometer bar represented the 
difference in activation levels between the FFA and PPA ROIs – the face group 
trained on a FFA minus PPA signal, and the house group trained on a PPA 
minus FFA signal. Following the neurofeedback training sessions, the 
participants performed a transfer session during which they differentially 
modulated FFA and PPA as trained, but now in the absence of neurofeedback 
signal.  
 
Stage 3: Post-training BR 
This was separated into three sessions. The participants performed BR 
sessions (2), BR with concurrent up-regulation of target brain regions as 
trained (2), and BR with concurrent up-regulation of the target brain regions 
using non-trained strategies (2) i.e. the ‘face’ group used house-imagery 
related strategies (as illustrated), and the ‘house’ group used face-imagery 
related strategies.  
 
 

6.2.4 FMRI scanning 
 

All experiments were performed on a 3T Allegra head-only scanner, using a 

standard transmit–receive head coil. Functional data were acquired with a single-

shot gradient echo planar imaging sequence (matrix size, 64_64; field of view, 

192_192mm; isotropic resolution, 3 x 3 x 3 mm; 32 slices with ascending acquisition; 

slice thickness, 2 mm; slice gap, 1 mm; echo time (TE), 30 ms; repetition time (TR), 

1920 ms; flip angle, 90°; receiver bandwidth, 3551 Hz/pixel). In the middle of each 

scanning session, double-echo fast, low-angle shot sequence (FLASH) field maps 

(TE1, 10 ms; TE2, 12.46 ms; resolution, 3 x 3 x 2 mm; slice gap, 1 mm) were 

acquired and used to correct geometric distortions in the images attributable to static 

field inhomogeneities. 
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6.2.5 Realtime fMRI set-up for neurofeedback  
 

I used the Turbo Brain Voyager package (300) with custom real-time image export 

tools programmed in ICE VA25 (Siemens Healthcare) (301), and custom MATLAB-

based scripts. Participants were shown visual representations of BOLD signal 

changes in brain regions that had been identified with a functional localiser scan i.e. 

target ROIs. Head motion was corrected in real time using Turbo Brain Voyager. 

 

Real-time data preprocessing was performed in Turbo Brain Voyager and 

encompassed 3D motion correction with realignment to the preselected template, 

smoothing, incremental linear detrending of time series and statistical parametric 

mapping. The ROI time course(s) were extracted from the prescribed ROI masks, 

averaged and exported by the Turbo Brain Voyager. Signal drift, spikes and high 

frequency noise were further removed in real time from the exported time courses 

with the custom MATLAB scripts (302). The feedback signal was calculated and 

displayed to the participants in the form of a fluctuating thermometer bar, with a 

delay of 2 s from the acquisition of the image. 

 

6.2.6 Binocular rivalry set-up 
 

Inside the scanner, participants, wearing custom-made prism glasses, were shown 

two stimuli equidistant from a central viewing screen divider. To ensure fusion prior 

to the BR task blocks, two identical stimuli were presented to each eye; the images 

were moved with respect to the midline and each other until optimal fusion was 

achieved to produce a single image. During the viewing blocks a face stimulus and a 

house stimulus were presented in the left and right hemi-fields respectively - the 

stimuli were pseudorandomised with regards to which eye received the face or 

house stimuli; each viewing block was performed with a new pair of stimuli from the 

pool of 20 stimuli. 
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6.2.6 Day 1: Pre-training binocular rivalry 
 

Both prior to and after neurofeedback training participants were tested on a BR 

paradigm. This involved a face image being presented to one eye, and a house 

image being presented to the other eye, simultaneously. Participants were instructed 

to indicate a perceptual shift only if the whole exemplar was perceived; any 

combination or ‘patchwork’ percept regardless of the predominance of the exemplar 

category was reported as a ‘mixed’ percept. The participants were instructed to 

switch as accurately and rapidly as possible between the three possible button 

presses linked to the three perceptual states (i.e. face percept, house percept, mixed 

percept). This resulted in measures of the cumulative frequency of switches to a 

specific percept, and the cumulative duration of the percept throughout the BR 

measurement period. Each measurement block lasted for 40s, followed by a rest 

period of 20s; a total of 4 blocks were performed per session, for a total of 3 

sessions. 

 

6.2.7 Day 1: Localiser 
 

After the pre-training BR scan each participant underwent a functional localiser scan 

to identify FFA and PPA regions. The localiser session lasted for 12 minutes, 

consisting of 16 blocks of face stimuli, and 16 blocks of house stimuli, with 20 

different exemplars per block. Each stimulus was shown for 600ms (400ms 

interstimulus interval). To ensure participants attended to the stimuli, they performed 

a one-back task in which they indicated with a button-press when a stimulus had 

been repeated (3 times/block).  

 

Two contrasts were applied namely Houses vs. Faces, Faces vs. Houses (t-statistic 

threshold > 3.00); I then used the ROI selection plug-in for Brain Voyager QX, to 

demarcate and select the ROIs for each participant. The ROIs were defined along 

the ventral and lateral surfaces of the temporal lobe in proximity to the fusiform gyrus 

for FFA, and lateral to the collateral sulcus in the parahippocampal region for PPA 

respectively. 
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6.2.8 Day 2-4: Neurofeedback sessions 
 

Each neurofeedback training session consisted of three neurofeedback scanning 

sessions; each session was made of 6 blocks lasting 60s, and consisted of ‘up-

regulate’ periods (40s) followed by ‘rest’ periods (20s). During an up-regulation 

period, participants viewed a fluctuating horizontal red bar, and a fixed horizontal 

black bar, the latter being situated towards the top of the screen.  Participants were 

advised that the fluctuating red bar was related to their brain activity; they were 

instructed to drive the red bar up to the level of the black bar by using mental 

imagery strategies (see below). Further, they were advised to try and maintain the 

red bar at that level, for as long as possible during the ‘up-regulate’ period.  

 

Participants were also advised that there was a delay related to the training signal 

based on brain activity (i.e., the haemodynamic function of the BOLD signal) that 

they would be controlling, of approximately 6-8s. They were told not to be 

disappointed if there were moment-to-moment drops in the level of the fluctuating 

bar, but rather to focus on ‘pushing’ their brain activity in a consistent way in order to 

maintain a steady ‘momentum’ during the brain up-regulation blocks. 

 

During the intervening rest periods, participants were instructed to perform a mental 

arithmetic task (serial subtraction of 7 from 100 i.e. ‘serial 7s’). This orthogonal task 

ensured that brain activations during the ‘rest period’ (related mental arithmetic) were 

unrelated to those produced during the ‘task period’ (related face or house imagery). 

 

 

6.2.9 Neurofeedback signal  
 

The ‘face’ group were instructed to use mental imagery strategies involving face 

imagery, with possible examples of what might work (e.g. visualisation of familiar 

faces, famous faces). They were encouraged to identify a strategy that worked best 

for them, allowing a broad interpretation of the general face imagery instruction. 

Similarly, the ‘house’ group were instructed to use mental imagery strategies 

involving house imagery. They were also given broad examples of strategies, which 
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might be employed (e.g. visualisation of familiar buildings, the outside of their home), 

and encouraged to find strategies that worked best for them from session to session. 

Across both groups, it was open to the participants to utilise their own interpretation 

of the basic instruction.  

 

The signal that participants were trained to regulate was derived from the ROIs 

identified during the Day 1 functional localiser. Specifically, during neurofeedback 

training, the fluctuating red bar was driven by brain activity in which the signal from 

PPA was subtracted from the FFA-derived signal (for the ‘face’ group) or the reverse 

subtraction (i.e., PPA – FFA) for the ‘house’ group).  Participants were therefore 

trained to modulate a differential training signal, rather than the activity in a single 

region of the brain.  The approach prevented participants from adopting a strategy 

that might modulate global BOLD activation rather than the desired ROI-specific 

changes. 

 

There were therefore 5 potential activation states which could increase the difference 

between the two brain regions (R1 and R2), leading to up-regulation of the 

differential training signal i.e. R1 - R2.  These could be (1) An increase in R1; (2) a 

decrease in R2; (3) a combination of the two; (4) a relatively greater increase in R1 

as compared to R2; and (5) a relatively greater decrease in R2 as compared to R1. 

 
 

6.2.10 Learning effect 
 

The learning effect measures the change in BOLD activation in trained brain region/s 

across the neurofeedback training sessions. This involves calculating the mean 

percentage signal change (PSC) on each training run, and plotting it as a graph of 

mean percentage signal change against time. For my experiment, participants 

specifically learned to control the difference in activation between two brain regions. 

Therefore, the learning effect for each training run (3 per training day) for each 

participant was established by calculating the mean PSC  based on the difference in 

brain activation between the two ROIs. Mean PSC was calculated in the following 

manner:- 
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PSC within ROI    =  
 

𝐀𝐯𝐞𝐫𝐚𝐠𝐞	𝐁𝐞𝐭𝐚	𝐯𝐚𝐥𝐮𝐞	𝐢𝐧	𝐑𝐎𝐈		𝐝𝐮𝐫𝐢𝐧𝐠	𝐮𝐩 − 𝐫𝐞𝐠𝐮𝐥𝐚𝐭𝐢𝐨𝐧	𝐁𝐥𝐨𝐜𝐤𝐬
𝐀𝐯𝐞𝐫𝐚𝐠𝐞	𝐁𝐞𝐭𝐚	𝐯𝐚𝐥𝐮𝐞	𝐟𝐨𝐫	𝐠𝐥𝐨𝐛𝐚𝐥	𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭	𝐝𝐮𝐫𝐢𝐧𝐠	𝐮𝐩 − 𝐫𝐞𝐠𝐮𝐥𝐚𝐭𝐢𝐨𝐧	𝐛𝐨𝐜𝐤𝐬 

 
                       x 100 
Therefore: 

 
 PSC of training signal = (PSC ROI 1 - PSC ROI 2) per block 
 

A group ‘learning effect’ was therefore represented by plotting for each of group, the 

average percentage signal change across the nine training sessions. 

 

 

6.2.11 Structural scans for each neurofeedback session 
 

A 4.5 min T1-weighted structural scan was performed at the beginning of each 

session (whole brain coverage; 3D FLASH; 1 mm isotropic resolution; matrix size, 

256 x 224; field of view, 256 x 224 mm; 176 sagittal partitions; TE, 3.5 ms; TR, 9.5 

ms; flip angle, 18°; readout bandwidth, 199 Hz/pixel; anatomical image data 

exported in near real time similar to Weiskopf et al. (301). 

 

This anatomical image was used for co-registration of the in-session head position 

with the high-resolution T1-weighted structural MDEFT scan using TBV performed 

on the first scan day. From the resulting co-registration matrix, the position of the 

neurofeedback target ROIs in the current head position of the current run was 

determined. This ensured the same ROI was used in each of the sessions, on each 

of the scan days, for each participant. 
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6.2.12 Day 5: Transfer Session 
 

On Day 5, following the final neurofeedback training session, participants were 

required to demonstrate self-regulation of differential brain activity, in the absence of 

a visual neurofeedback signal. This was in order to confirm that the participants had 

successfully learned to regulate brain activity. 

 

There were 2 transfer sessions, each comprised of 6 blocks. Each block lasted 60s 

and consisted of an ‘up-regulate’ period (40s) followed by a ‘rest’ period (20s). 

During the up-regulation period, participants were presented with the word ‘regulate’  

at the centre of the screen. Participants were required to try and drive their brain 

activity ‘up’, using mental imagery strategies as successfully used during the 

neurofeedback training sessions, but now in the absence of a feedback signal. 

 

 

6.2.13 Day 6: Post-training binocular rivalry 
 

Following the neurofeedback training sessions, all participants performed BR again, 

with the identical experimental set-up described above as for pre-training BR. This 

was to establish what the effects of neurofeedback training were on visual perception 

(i.e. the ‘behavioural’ effect). Three different BR conditions were performed in a 

counterbalanced order across all participants, consisting of 2 of the total 6 sessions. 

The 3 conditions were the following:  

 

i) BR no up-regulation. The instruction here was identical to the pre-training 

BR, and will be referred to as ‘baseline’.  

ii) BR with concurrent brain modulation using the trained strategy. The ‘face’ 

group were instructed to use their individual face imagery strategies that 

worked best during the training and transfer sessions, while 

simultaneously engaging with the BR task. Similarly, the ‘house’ group 

were instructed to use their individual house imagery strategies, which 

worked best during the training and transfer sessions.  
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iii) BR with concurrent brain modulation using the non-trained strategy. This 

condition required the participants to generate imagery in a similar fashion 

to their training sessions, except with the explicit instruction that had been 

given to the other group i.e. the ‘face’ group were instructed to use house 

imagery strategies, and the ‘house’ group were instructed to use face 

imagery strategies. This condition enabled a comparison between the 

effect of trained up-regulation on BR, and up-regulation without prior 

training. 

 

These 3 post-training BR sessions were pseudo-randomised and counter-balanced 

across the participants to address potential order effects and fatigue. 

 

6.2.14 High resolution structural scans 
 

A whole brain high-resolution T1-weighted structural scan was performed prior to 

training, and repeated once again following training. This was in addition to the 

‘short’ structural scans (described above) performed on each neurofeedback 

scanning day. The scan was a 3D modified driven equilibrium Fourier transform 

(MDEFT) scan, 1mm isotropic resolution; matrix size, 256 x 240 mm; field of view, 

256 x 240 mm; 176 sagittal partitions; TE, 2.4 ms; TR, 7.92 ms; inversion time, 910 

ms; flip angle, 15°; readout bandwidth, 195 Hz/pixel; spin tagging in the neck with flip 

angle 160° to avoid flow artefacts for superposition of functional maps (501). 

 
 

6.3 Analysis 
 
 

6.3.1 Behavioural data – binocular rivalry 
 

During the BR sessions, dominance durations for a particular percept, measured as 

the time taken from a switch to that percept, to another percept was collected from 

each participant. This also enabled switch frequencies to be calculated, based on 



 242 

using switches to a specific percept only.  Using custom- written MATLAB scripts, 

these measures were calculated per block, and session, to produce cumulative time 

measures for pre-training and the three post-training BR conditions. This yielded a 

cumulative dominance duration that was equal to the total amount of time the 

stimulus was perceived, averaged across blocks, and cumulative switch frequencies 

that was equal to the total number of switches to a particular percept. 

 

Between condition changes in cumulative durations, and cumulative switch 

frequencies, for each percept, across groups were also calculated. Specifically, 

these were changes in the training-strategy related percept, the non-training 

strategy-related percept, and the mixed percept. For inferential statistical analyses of 

these dependent variables I used SPSS 21 (IBM Corp. Armonk, USA), to perform 

ANOVAs and follow-up planned t-tests, which were two tailed unless otherwise 

stated. 

 
 

6.3.2 Brain imaging data – Binocular rivalry 
 
Participant specific functional data were first analysed using SPM8. To allow for T1 

equilibration, the first five images of each session were discarded. Preprocessing of 

the data involved mean bias correction, realignment (of each scan to the first scan of 

each run), unwarping, and co-registration of the functional data to the structural 

scan.  The data were smoothed with a 6 mm FWHM Gaussian kernel and high-pass 

filtered (128s cut-off) to remove low-frequency noise including differences between 

sessions, while at the same time preserving as many of the spontaneous fMRI 

fluctuations as possible (433). Session specific grand mean scaling was applied, with 

no global normalisation, when preparing the GLM. Movement parameters from the 

three directions of motion and three degrees of rotation were included as confounds 

in the analysis of the imaging data. 
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6.3.3 Offline ROI analysis 
 

6.3.3.1 Fusiform Face Area and Parahippocampal Place Area 
 

Neurofeedback 
 
BOLD changes across the 9 training sessions were modelled through the creation of 

a GLM, with regressors for each of the 9 sessions. Box-car functions were created 

for the four up-regulation blocks during each training session, convolved with the 

canonical HRF. Six regressors for movement and a global constant were also 

included. Rest was modelled implicitly. For each participant, beta values were 

extracted, averaged across all the voxels in the ROI masks (created using functional 

activations in FFA and PPA during the functional localiser). Mean PSC calculated, 

adjusted for the global brain signal (see equation above). For each participant, 

differential mean PSC between the two trained ROIs (i.e. training strategy related 

ROI and non-training strategy related ROI) was calculated across sessions. Using 

these values, the average mean PSC across participants, across the training 

sessions, and two subsequent transfer sessions were calculated. 

 

 

Binocular rivalry 
 
In order to determine BOLD signal changes during BR in the trained ROIs, FFA and 

PPA, boxcar functions were created modelling onset of the BR block, convolved with 

the canonical. HRF. This was done for each condition – pre-training BR (‘pre BR), 

post-training BR (‘post BR’), post-training BR with concurrent trained up-regulation 

(‘post BR + trained up-regulation’), post-training BR with concurrent non-trained up-

regulation (‘post BR + non-trained up-regulation’). A GLM was performed at the 

single participant level. Beta values were extracted from each voxel for each of the 

trained ROIs, for each condition, then averaged and a mean PSC calculated, 

adjusted for the global brain signal (see equation above). Specific changes across 

groups in the training-strategy related ROI, and the non-training strategy-related 

ROI, between pre-training and post-training BR were examined. ANOVAs, and 
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follow-up planned t-tests (two tailed t-tests were used unless otherwise stated) were 

used to examine between condition changes in brain activation. 

 

6.3.3.2 Superior Parietal Lobule 
 

I examined SPL regions previously documented in the literature, in relation to 

neurofeedback learning and BR. 

 

 

 
Neurofeedback 
 
A pre-specified 4mm sphere (centred on MNI coordinates: x=22, y=-58, z=64 

(81,16)) was used, based on previous work confirming activation during 

neurofeedback learning (81,16).  In a an analogous manner to the method described 

above for FFA and PPA mean PSC for this ROI was extracted for each of the 9 

training sessions, and the two transfer sessions, and plotted as an ‘activation’ curve 

(cf. ‘learning’ curve). A second level analysis was also performed as a sanity check 

to confirm significant activation in SPL during neurofeedback learning, using a small 

volume correction with the aforementioned co-ordinates. 

 

Binocular rivalry 
 
During BR, activation in pre-specified 4 mm spheres with central MNI co-ordinates of 

x= 36, y=-45, z=51 and x= 38, y=-64 z=32 was examined, based on previous work 

demonstrating activation during BR (499). At the second level, a small volume 

correction was applied across the ROIs examined for each of the BR conditions, as 

well as for the following contrasts: pre BR vs. Post BR, Post BR vs. Post BR + 

trained up-regulation, Post BR vs. Post BR + non-trained up-regulation. 
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6.3.4 Brain imaging – structural analysis 
 

Two techniques were used for longitudinal structural analyses. In order to proceed 

with structural analysis, the structural brain data (collapsed across time) was first 

optimally aligned. For each participant, DARTEL was used, an algorithm for 

diffeomorphic image registration which optimises interparticipant registration (294). 

 

For each participant, their preprocessed high-resolution T1 structural images were 

orientated to specifically place the anterior commissure, at the MNI origin. 

Segmentation of the images into grey matter, white matter and CSF in native 

participant space was then performed, using the tissue probability maps. 

 

For each participant, a rigid body transformation based on six parameters was 

performed, with the DARTEL algorithm passing through six iterations of alternation 

between the creation of an average template of all the individual maps (i.e. a median 

image), and warping the individual participant images to the median image. The 

result of this was then used to create a series of flow fields per participant, which 

parameterised the deformation through non-linear registration of each individual 

image to the template for grey matter and white matter. The final average template 

was registered to the MNI 152 template brain. 

 

TBM was then performed. TBM makes inferences based on Jacobian matrices of the 

deformation fields – these values correspond to the relative volumes of tissue before 

and after warping. These matrices vigorously track local structural changes such as 

contraction (Jacobian determinant <1) or expansion (Jacobian determinant >1). The 

use of Jacobian determinants makes TBM advantageous for small numbers of 

participants. For each participant, Jacobian determinants of the deformation fields 

were first calculated, and then the images were smoothed with a 6mm FWHM 

isotropic Gaussian kernel. 

 

ROI masks were used, corresponding to the two trained ROIs (FFA and PPA), and 

aSPL. These ROIs were spheres centred on co-ordinates that demonstrated the 

highest functional activity across training (6mm for FFA, PPA; 4mm for aSPL). 

Values corresponding to changes in volume for pre-neurofeedback training vs. post-
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neurofeedback training were extracted from these ROIs; ANOVAs, and follow-up t-

tests (two tailed) were then performed to establish if specific brain regions changed 

significantly before versus after training. 
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6.3.5 Dynamic Causal Modelling 
 

6.3.5.1 Overview 
 

DCM is a framework for creating, estimating and comparing models of brain 

connectivity. DCM is ‘causal’ in the sense of control theory (502), and employs a 

forward model in which experimental manipulations cause changes in neural 

dynamics that may propagate to other neuronal populations. In turn, these dynamics 

are modelled as driving the haemodynamic response and BOLD signal. The basic 

procedure is to construct a simple neuronal model of interacting cortical regions, 

coupled with a realistic biophysical model of haemodynamic response, for each 

participant. Estimating the parameters of this model enables inferences to be made 

about the casual interactions between regions.  

 

6.3.5.2 Introduction to DCM for fMRI 
 

DCM for fMRI is a framework for inferring neuronal connectivity from regional 

haemodynamic BOLD timeseries (502,503). It rests on a two-part model. To begin 

with, change in the neuronal states of the brain regions of interest (Δz) with time (Δt) 

due to an experimental manipulation, is modelled with a differential equation: 

 

𝑧 =
∆𝑧
∆𝑡 	= 𝑓 𝑧, 𝑢, 𝜃X  

 

Represented diagrammatically (annotations explained in text below diagram): 

 
The neuronal model, 𝑓, predicts the rate of change in neuronal activity over time, 𝑧, 

given external experimental inputs 𝑢 , and connectivity parameters 𝜃X . These 

! "
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connectivity parameters include the strength of connections or ‘coupling’ within and 

between regions. z represents the brain regions or ‘nodes’ being modelled. (NB: In 

the neurofeedback experiment presented the brain regions would be SPL, FFA, 

PPA, and the experimental input in relation to the neurofeedback training sessions 

would be the task of controlling the visual interface i.e. fluctuating thermometer). 

 

𝑦 = 𝑔(𝑧, 𝜃[) 

 

The observation model, 𝑔, is a detailed biophysical model which predicts the BOLD 

timeseries that would be observed, given the neuronal activity 𝑧 and observation 

parameters 𝜃[. More specifically, the neuronal model has the following form: 

 

𝑧 = 𝐴 + 𝑢]𝐵]
_

]`)

𝑧 + 𝐶𝑢 

 

The change in neuronal system with respect to time, 𝑧, is a function of connectivity 

parameters 𝐴,	𝐵 and 𝐶. Matrix 𝐴 represents the strength of connections within and 

between regions in the absence of any experimental input These connections may 

be modulated by experimental input 𝑢, with matrix 𝐵] representing the combination 

of the effect of experimental input 𝑢] on each connection i.e. the change in intrinsic 

‘coupling’ as a result of experimental input. Activity in the network is driven by 

experimental stimulation according to matrix 𝐶 , which represents the influence of  

experimental input on each region. (NB:- In this study, this would be a visual input 

i.e. fluctuating thermometer effecting those brain regions directly engaged in the task 

of neurofeedback modulation, FFA and PPA). For each experimental condition 𝑖 =

1…𝑚, timeseries 𝑢] represents the onsets of experimental stimulation. z represents 

the brain regions or ‘nodes’ being modelled.  (NB: for the original theoretical and 

empirical work in DCM see (503–506)). 

 

In this basic formulation, the level of activity in each ROI is represented by a single 

number or state, which forms the entries of vector 𝑧. Here, I used an extended two-

state version of this model (504), in which each region was modelled as having an 

excitatory and inhibitory population of neurons, and long-range connections were 
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modelled as excitatory, in keeping with known neurobiology. With this extended 

model, the off-diagonal elements of matrix 𝐴 represent long-range excitation, and the 

diagonal elements of matrix A represent self-inhibition within each region (i.e. the 

influence of each region’s inhibitory population on its excitatory population).  

 

As DCM is a Bayesian scheme, each parameter of the model was constrained by a 

prior distribution. For the neuronal part of the model, I used conservative ‘shrinkage 

priors’ which presume that coupling parameters are zero at the outset. For the 

haemodynamic part of the model, DCM is supplied with priors based on empirical 

measurements. The parameters of the forward neuronal model 𝜃X = {𝐴, 𝐵, 𝐶} are 

combined the parameters from the observation model, and Bayesian inversion 

performed. This provides the evidence (i.e. marginal likelihood) of the model, as well 

as the posterior distribution of its parameters (i.e. neuronal coupling measures).  

 

6.3.5.3 SPM Analyses 
 
 

Prior to ROI creation, the functional images were smoothed with a 6mm Gaussian 

kernel to compensate for inter-participant variability. In preparation for the DCM 

analyses, the imaging timeseries from the 9 training sessions were concatenated. 

Onsets were determined for each of the ‘up-regulation’ blocks (4 per blocks per 

session, 3 sessions per training day), and a single regressor for training was created. 

Other regressors included those for session, and day. Six movement regressors 

were also included. 

 

6.3.5.4 Regions of Interest selection and time series extraction 
 

Six mm ROI spheres were created for both FFA and PPA for each participant, using 

the masks created following the functional localiser (contrasts of Face > House, and 

House > Face respectively). Timeseries from these volumes of interest (VOIs) were 

summarised using the SPM 12 eigenvariate function. I extracted each participant’s 

principal eigenvariate around the participant-specific local maxima activation nearest 

to the peak voxel, within the mask. SPL VOI creation, and timeseries extraction were 

performed as a single step using the SPM 12 eigenvariate function, with extraction 
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around participant specific local maxima nearest to the voxel co-ordinates previously 

established (i.e. SPL; x= 22, y= -58, z=63). All voxels used to create the 

eigenvariates, were significant at p < 0.05 uncorrected and effects-of-no-interest 

such as motion and session means were regressed out. The single timeseries 

representing the activity in each region was then used to fit DCMs. 

 

6.3.5.5 DCM – Specification 
 

DCMs were created and estimated (503) using DCM 12 as implemented in SPM 12. 

All DCMs were deterministic, bilinear, 2-state models with mean centred inputs, and 

self-connections enabled. I created a model for each participant with three regions – 

a Training-strategy related ROI, a Non-training-strategy related ROI and SPL. All 

entries in matrix 𝐴  were enabled (had non-zero prior variance), making all three 

regions fully connected. There were two experimental inputs (𝑢) – Task and Training. 

Task, 𝑢), was a timeseries consisting of ones for each time step when the task was 

being performed and zeros for intervals between trials. Training, 𝑢5 , was a 

timeseries with zeros for sessions 1-3 and ones for sessions 6-9, modelling an 

increase in response due to training. All entries in matrix 𝐵 )  were fixed at zero, 

meaning there was no modulatory influence of Task on any connection. All entries in 

matrix 𝐵 5  were enabled, meaning that Training could modulate any connection. 

Matrix 𝐶 was configured such that Task had a driving influence on the trained brain 

regions only i.e. not SPL. 

 

6.3.5.6 DCM - Estimation 
 

The BOLD timeseries were high-pass filtered, and motion confounds were removed. 

The parameters of each participant’s model were estimated using an algorithm 

based on variational Bayes. This provides an estimated posterior distribution for 

each parameter, in addition to the free energy, which is a lower bound on the log 

model evidence. The free energy may be thought of as the accuracy of the model 

minus its complexity and enables model comparison. 
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After fitting each participant’s model, post-hoc model reduction (506) was used to 

prune away any parameters which did not contribute to the free energy. In brief, in 

each iteration of the post-hoc search procedure, one or more parameters were 

disabled by setting their prior variance to zero. The free energy of this reduced 

model was rapidly calculated (using a generalisation of the Savage-Dickey ratio). If 

the reduced model did not have a worse free energy than the full model, it may be 

concluded that the disabled parameters were not contributing to the free energy. The 

algorithm repeats by disabling different combinations of parameters until an optimal 

is found. 

 

The reduced models from each participant were averaged to achieve a group level 

reduced model (‘Bayesian Parameter Average’ or BPA). I then analysed the 

posterior estimates of the parameters in this reduced model, particularly to identify 

any effect of neurofeedback training. 

 
 
6.4 Examining individual differences using 
Canonical Variate Analysis 
 

In the final step, I sought to examine the effect of neurofeedback training on the 

combined measures of behaviour, functional BOLD changes during neurofeedback 

training, and structural changes in the trained regions, including the putative higher 

order control region, SPL. Statistical characterisation of the putative effects of 

behavioural changes associated with neurofeedback training (i.e. the change in BR 

dominance durations for all three percepts,  comparing pre-training BR with post 

training BR with and without concurrent upregulation of trained brain regions), 

functional (i.e. BOLD activation in the FFA, PPA, and SPL ROIs during the 

neurofeedback training sessions) and structural (i.e. measures of volume change in 

structural imaging performed before and after training in FFA, PPA and SPL) was 

achieved through analysis of the individual subjects’ measures using standard 

multivariate techniques (Canonical Variate Analysis (CVA), also known as 

multivariate analysis of variance, or ManCova .(507,508) CVA enables statistical 

inferences to be made about associations between the imaging data and behavioural 

data that are distributed over variables. It was chosen for analysis of this dataset 
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because it can accommodate statistical dependencies between multivariate predictor 

variables (behavioural changes) and multivariate outcome variables (functional or 

structural measures). This meant that neither the behavioural nor imaging data had 

to be examined in isolation, which had the profound advantage that distributed 

changes could be identified (while minimising the multiple comparison problem). 

  

CVA was used to assess and characterise the presence of a mapping between the 

imaging dataset and the predictors of behavioural change. The objective of the CVA 

was to find the linear combination of outcome variables that was best predicted by a 

linear mixture (contrast) of structural or functional components. The weights of these 

linear combinations are called canonical vectors. The canonical variates of the 

outcome and predictor variables are the expression of each canonical vector in each 

subject. Other quantities generated by CVA include Bartlett’s approximate chi-

squared statistic for Wilks’ Lambda and its associated significance, or p-value, which 

test for the significance of a linear mapping or correlation between the canonical 

variates. In other words, one or more pairs of canonical variates show a significant 

statistical dependency. 

  

 

6.5 Results- Behavioural 
 

6.4.1 Binocular rivalry 
 

For each participant, cumulative dominance durations and cumulative switch 

frequencies were calculated based on the dominance durations and switch 

frequencies per block, performed during pre-training BR as well as for post-training 

BR. Three percepts were reported ‘face’, ‘house’ and ‘mixed’. These were 

subsequently binned according to group membership in the following manner- the 

‘Trained’ percept (i.e. the response associated with the trained strategy/region – 

Face percept for the Face/FFA trained group, House Percept for the House/PPA 

trained group), the ‘Non-trained percept’ (i.e. non-congruent with the trained 

strategy/region- House percept for the Face/FFA trained group, Face percept for the 

House/PPA trained group), and the ‘Mixed percept’ (representing any combination 



 253 

of the Face or House percepts). In post-training BR, in addition to performing 

baseline BR, participants also performed BR while simultaneously up-regulating 

brain activity as performed during neurofeedback training and transfer session. 

Additionally, non-trained up-regulation was attempted by all participants while 

performing BR. 

 

6.4.2 Durations 
 

Planned paired t-tests were used to examine cumulative dominance durations for 

each of the three percepts (grouped into training-strategy related percept, non-

training strategy related percept, and mixed percept) specifically comparing the pre-

training baseline state with the three post-training states, which were ‘baseline’ BR, 

‘BR with trained up-regulation’, and ‘BR with non-trained up-regulation’. (See Figs 6-

2 and 6-3). 

 

Comparing dominance durations from baseline BR with those from post-training BR, 

there was a significant reduction of the non- training strategy related percept (t(9)= 

2.88, p=0.018), and a significant increase in the duration of the mixed percept (t(9)= 

2.74, p=0.023). No significant change was evident for the training strategy related 

percept (t(9)=0.46, p=0.66). (See Fig. 6-3). 

 

Comparing baseline BR with post-training BR + trained up-regulation, there was a 

very significant reduction in the cumulative dominance duration of the non- training 

strategy related percept (t(9)=4,76, p=0.001), and a significant increase in the 

duration of the mixed percept (t(9)=2.68, p=0.03). No significant change was 

produced for the training strategy related percept (t(9)=0.53, p=0.61). (See Fig. 6-3). 

 

Comparing baseline BR with post-training BR + non-trained up-regulation there was 

a significant reduction in the duration of the training strategy related percept (t(9)= 

2.41,p=0.04), and a significant increase in the duration of the mixed percept (t(9)= 

3.60,p= 0.006). (See Fig. 6-3). 
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Fig 6-2. Binocular rivalry cumulative dominance durations across participants. 
Cumulative dominance durations (i.e. during a session, the total duration a 
percept linked to training strategy, not linked to training strategy or mixed 
combination of the two, was perceived) across participants for pre-training BR, 
and the three post-training BR sessions – Post training, Post training BR with 
concurrent trained up-regulation, and Post training BR with concurrent non-
trained up-regulation. Error bars represent standard error of the mean. 
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Fig 6-3.  Binocular rivalry cumulative dominance durations – differences 
between conditions. 
 
The difference between the cumulative dominance durations (i.e. the total 
duration a training strategy related percept, non-training strategy related 
percept or mixed percept was perceived) is shown above, comparing:- 
 

1. pre-training baseline BR with post-training BR in the absence of 
concurrent brain regulation (left);  

2. pre-training baseline BR with post-training BR with concurrent up-
regulation using the trained strategy (middle);   

3. pre-training baseline BR with post-training BR with concurrent up-
regulation using non-trained strategy (right).  

 
Following training there was a significant reduction in the duration of the 
percept which was not linked to training i.e. the ‘non-trained percept’. There 
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was also an increase in the duration of the ‘mixed percept’. This effect was 
increased when BR was performed with concurrent up-regulation using the 
trained strategy. When the non-trained strategy was used, there was an 
increase in the duration of the mixed percept only (right-hand side). Error bars 
represent standard error of the mean. 
 
 

6.4.2 Switches 
 

Planned t-tests were performed for the difference in cumulative switch frequencies, 

examining pre- vs. post-training changes. Switch frequencies were calculated to 

specific percepts (grouped in to training strategy related percept, non-training 

strategy related percept, and mixed percept). 

 

First, the switch frequency for baseline BR was examined pre- versus post-training. 

There was no significant change in switch frequency between the two time points, for 

any of the trained percepts (all t’s ≤ 1). (See Fig. 6-4 and 6-5). 

 

Comparing post-training BR + trained up-regulation, with pre-training baseline BR, 

there was a significant reduction in the cumulative switch frequency towards the non-

training strategy related percept (t(9)= 3.86, p= 0.003) . No change was evident for 

cumulative switch frequency towards the mixed percept (t(9)=2.08, p= 0.07), nor the 

training strategy related percept (t<1). (See Fig. 6-4 and 6-5). 

  

Comparing post-training BR + non-trained up-regulation with pre-training baseline 

BR, there was a significant decrease in the cumulative switch frequency towards the 

training strategy related percept (t(9)= 4.20, p= 0.002). No change was evident for 

cumulative switch frequency towards the the non-training strategy related percept 

(t(9)= 1.48, p= 0.17), nor the mixed percept (t(9)= 2.20, p=0.06). (See Figs. 6-4 and 

6-5). 
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Fig 6-4. Binocular rivalry switch frequencies across participants. Cumulative 
switch frequencies across participants for pre-training baseline BR, and the 
three post-training BR sessions i.e. Post training baseline BR, Post training BR 
with concurrent trained up-regulation, and Post training BR with concurrent 
non-trained up-regulation. Error bars represent ± 1 SEM. 
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Fig 6-5. Binocular rivalry cumulative switch frequencies – differences between 
conditions. The difference between the cumulative switch frequencies (i.e. the 
frequency of switches to a percept) is shown above, comparing pre-training 
baseline BR with post-training baseline BR in the absence of concurrent brain 
regulation; pre-training baseline BR with post-training BR + concurrent up-
regulation using the trained strategy; pre-training baseline BR with post-
training BR with concurrent up-regulation using non-trained strategy. Error 
bars represent ± 1 SEM. 
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6.5 Results - Imaging 
 
 

6.5.1 Neurofeedback training- FFA and PPA 
 

A one-way ANOVA was performed on the ‘training’ signal (percentage BOLD signal 

change calculated as the difference between the training-strategy related ROI and 

the non-training strategy related ROI) across the ten participants over nine training 

sessions. This indicated a linear increase in the differential percentage signal change 

over the sessions (F (1,8) = 5.75, p = 0.043). (See Fig. 6-6). 

 

Planned post-hoc paired t-tests to test whether the training signal significantly 

differed from zero over the three days were performed. That is, did the BOLD signals 

from the two ROIs significantly change relative to each other as a function of training, 

indicating an effect of learning? These analyses showed that there was such a 

learning effect from Day 2 onwards (Day 1: t(9)=0.40, p= 0.88; Day 2: t(9)=3.27 

p=0.01; Day 3: t(8)=2.69, p=0.04).  Comparisons were also performed between 

training day 2 and 3 with training day 1: (Day 2 vs. Day 1: t(9)= 2.10, p =0.06, Day 3 

vs. Day 1: t(8)= 2.76, p= 0.02, one-tailed t-tests). (See Fig. 6-6). 

 

The learning effect was also examined on a session-by-session basis. There was a 

significant change in the differential percentage BOLD signal change from training 

session four onwards [Run 1 t(9)=1.9 p=0.09 ; Run 2 t(9)=0.3 p=0.74; Run 3 t(9)=0.6 

p=0.5; Run 4 t(9)=3.5 p=0.006; Run 5 t(9)=3.5 p=0.005; Run 6 t(9)=2.3 p=0.05; Run 

7 t(8)=2.1 p=0.07; Run 8 t(8)=2.6 p=0.03; Run 9 t(8)=3.3 p=0.01]. 

 

 

6.5.2 Transfer session- FFA and PPA 
 

There was strong a priori hypothesis that participants would learn to up-regulate 

differential activity in the two trained brain regions, in the absence of a 

neurofeedback signal. This was confirmed by the transfer session following training. 

During the transfer session, participants performed two additional tasks; BR with 
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upregulation of the trained strategy and BR with upregulation of the non-trained 

strategy. Across participants there was an increase in the differential BOLD signal for 

both of these sessions, which was significant for the first session (t(9)=3.2, p=0.01), 

but not the second session (t(9)=1.7, p=0.12). (See Fig. 6-6). Overall, the transfer 

session across participants demonstrated a significant increase in the training signal 

(t(9)=2.4, p=0.04), and a significant change in brain activity as compared to the first 

training session (t(9)=2.40, p=0.03, one-tailed).  

 
 

Fig 6-6. Mean BOLD activation changes across groups during neurofeedback 
training. Activations in the training strategy-related brain region are shown by 
the red line, and activations in the non-training strategy-related brain region 
are shown by the blue line, over the nine training sessions, and two transfer 
sessions. The green line shows the difference in mean BOLD activation 
between the two brain regions corresponding to the ‘training’ signal the 
participants visualised and trained on in the scanner i.e. a ‘differential’ signal. 
There was significant increase in this differential brain activation from the 4th 
training session onwards.  Error bars represent ± 1 SEM. 
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Fig 6-7. Functionally defined ROIs used for neurofeedback training, showing 
overlap of activation across all participants. The FFA ROI (red) and the PPA 
ROI (blue) are shown overlaid on a MNI brain. 
 
 
 

6.5.3 Binocular rivalry – FFA and PPA 
 
 

For all of the BR sessions, before and after training, I compared mean BOLD PSC in 

the training strategy-related ROI, as well as the non-training strategy-related ROI. 

Across participants, for BR performed before and after training, a significant 

reduction in activity was seen in both ROIs (Pre BR vs. Post BR comparison: training 

strategy-related ROI: t(9)= 3.43, p= 0.007; non- training strategy-related ROI: t(9)= 

2.26,p=0.049); there was no difference in the levels of activity between the two ROIs: 

t(9)=0.45,p=0.67). When BR was performed with up-regulation of the training-

strategy related ROI, there was a significant increase in the differential brain 

activation between the training strategy-related ROI, and the non-training strategy-

related ROI, compared to zero. A one-tailed t-test was used, as there was a prior 

hypothesis that the training signal (i.e. based on the difference in activation between 

the two ROIs) would increase during trained up-regulation, as compared to the non-

upregulation conditions (t(9)= 2.31, p= 0.046, one-tailed). This was underpinned by a 

significant increase in the level of activation in the training strategy-related ROI (post 

BR + trained up-regulation vs. post BR baseline: t(9)= 2.21, p= 0.05). (See Fig. 6-7). 
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Fig 6-8. Mean BOLD activation changes during BR sessions performed before 
and after neurofeedback training. The plot summarises the BOLD changes 
(mean PSC) in trained regions during BR sessions performed before and after 
neurofeedback training. There was a significant reduction in activation in both 
the training strategy related regions and the non-training strategy related 
regions following training (stars indicate significant comparisons). When BR 
was performed with concurrent trained up-regulation, there was an increase in 
BOLD activation in the training strategy related ROI only. Error bars represent 
± 1 SEM. 
 

 

When the participants underwent BR, and attempted to up-regulate the non-trained 

ROI (using strategies which were not specifically trained), no significant changes in 

brain activity were observed, as compared to the pre- training and post-training 

baseline BR (all t’s< 0.5, one-tailed). (See Fig. 6-7). 
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Fig 6-9. The mean percentage signal change in the training strategy-related 
ROI and the non-training strategy-related ROI following training, comparing 
the effect of voluntary up-regulation.  There was a significant increase in the 
mean BOLD percentage signal change in the training strategy-related ROI 
only. (stars indicated significant comparisons). Error bars represent ± 1 SEM.  
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As discussed earlier, I specifically examined a SPL for associated changes in 

activation during neurofeedback training. The co-ordinates selected were based on 
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A second level analysis was performed using a 10 mm sphere small volume 

correction (x= 22, y= -58, z= 63). This confirmed that there was significant activation 

in this region during the 9 training sessions (t(9)= 6.45,p= 0.014). BOLD percentage 

signal changes from this ROI were extracted for the 9 training sessions, and the 2 

transfer sessions and plotted as a function of training session (Fig. 6-9). 

 
Fig 6-10. Activation curve for SPL region previously indicated as being 
involved in neurofeedback learning, across 9 training sessions and 
subsequent 2 transfer sessions, averaged across all participants. Error bars 
represent ± 1 SEM. 
 

 
 

 
Fig 6-11. Anatomical location of aSPL sphere. View of the 10mm sphere 
centred on the MNI coordinates 22, -58, 63, located in the anterior SPL. 
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6.5.5 Transfer session - SPL 
 
For the transfer sessions, the first transfer session produced significant activity in the 

SPL region (t(9)= 2.96, p=0.01), whereas the second transfer session did not (t(9)= 

0.60, p=0.56). 

 
Taken together, SPL was active during neurofeedback training while active learning 

was taking place, with a reduction in activity during the transfer sessions, when 

learning had been completed and was no longer occurring. 

 

6.5.6 Binocular Rivalry - SPL 
 

Across participants, mean PSC was compared using small volume corrections for 

the two right sided SPL ROIs 4 mm spheres) previously documented as being 

involved in BR. These regions were in anterior SPL (aSPL, x= 36, y= -45, z= 51), 

and posterior SPL (pSPL, x=38, y=-64, z= 32) respectively.  Each of the BR sessions 

before and after training were examined, with and without concurrent trained up-

regulation of the training signal. 

 

Pre Training: 

 

During BR performed prior to neurofeedback training, activation was found to be 

significant in both SPL regions i.e. aSPL, t(9)=15.89, p<0.001; pSPL: t(9)=6,43, 

p<0.031. 

 

Post training 

 

During BR performed following neurofeedback training, activation was found to be 

significant in both SPL regions i.e. aSPL, t(9)=12.95, p<0.001; pSPL, t(9)=6,43, 

p=0.003. 

 

Post training with trained up-regulation 
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When BR was performed with concurrent trained up-regulation, following 

neurofeedback training, activation was found to be significant only in aSPL 

(t(9)=19.56, p<0.001). 

 

Pre training BR minus Post training BR 

  

Examining the effects of training on BR, using a comparison of conditions, 

demonstrated significant activation in aSPL (t(9)= 7.04, p= 0.012) and pSPL t(9)= 

5.74, p=0.03. 

 

6.6. Results - structural  
 

I examined longitudinal structural changes in FFA and PPA, and SPL using 4mm 

sphere masks based on the regions of greatest functional activation during 

neurofeedback training. An ANOVA did not reveal any significant changes in these 

regions (all p’s more than 0.05). 

 

 

6.7 Results -DCM for neurofeedback training 
 
Prior to training, there was strong bottom-up effective connectivity from the training-

strategy related ROI (‘St’) to SPL and from the non-training strategy related ROI 

(‘Non St’) to SPL. These parameter estimates, which correspond to the matrix ‘A’ in 

Equation 2, are reported in Fig 6-11 (grey text).  

 

Post-hoc model reduction eliminated all but four parameters in relation to the 

modulatory effects of training (posterior probability >0.95). The connection from St to 

SPL was increased by training, denoting increased feedforward connectivity. The 

connection from Non St to SPL was reduced. Finally, the intrinsic self-connection of 

SPL was increased (see Fig. 6-10, green text).  
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Training therefore acted on the feed-forward connectivity of the two trained regions 

with SPL. 

 

 

 
 
Fig 6-12. DCM results for effects of neurofeedback training. Post-hoc model 
reduction shows the training effect to be in the bottom-up connections 
entering SPL, and its self-connections. Excitatory modulation of the Training 
strategy related ROI to SPL connection, and inhibitory modulation of the Non-
training strategy related ROI to SPL connection was observed. Results 
thresholded at posterior probability 0.95. 
 

The effect of training on the feed-forward connections was further examined, 

specifically to test whether there was a significant difference between the  Training 

strategy related ROI to SPL connection as compared to the Non-training strategy 

related ROI to SPL connection. To compare the strength of connection parameters in 

the group-average DCM, I computed a Bayesian contrast. To illustrate this method, 

to assess if the first parameter in the model is larger (more positive) than the third 

parameter, the contrast, 𝑐, is a vector: 
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𝑐 = 1, 0, −1  

 
The posterior mean of the contrast is calculated by multiplying 𝑐 by a vector 𝐸, which 

contains the estimated mean of each parameter: 

𝜇 = 𝑐′𝐸 

 
The posterior variance of the contrast is calculated similarly, using estimated 

covariance matrix 𝑉 from the DCM: 

𝜎5 = 𝑐′𝑉𝑐 

 

To report the result, I plotted the probability density function 𝑁(𝜇, 𝜎5), which shows 

the probability of a difference in effective connection strengths (a Bayesian contrast), 

see Figure 6-11. The probability of observing a value greater than zero under this 

distribution, calculated using the normal cumulative distribution function (CDF), was 

97.4%. 

 
 
Fig 6-13. Probability that the effective connection strength between the 
training strategy related ROI and SPL was greater than the effective 
feedforward connection strength between non-training strategy related ROI 
and SPL. 
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6.7 Results – Canonical Variate analysis 
 
 
 Plots for specific comparisons of individual differences in behaviour (dominance 

durations) and functional changes (BOLD changes across training in FFA, PPA, 

SPL), and behaviour and structural changes (measure of the volume changes in 

FFA, PPA and SPL following training) are presented below, together with Bartlett’s 

approximate chi-squared statistic for Wilks’ Lambda and its p-value, for each 

comparison.  

 

Two comparisons were examined with regards to the behavioural measures. The 

first was to examine the change in cumulative dominance durations measured in pre-

versus post-training BR. There was no significant association between an 

individual’s dominance duration as a result of training, and the magnitude of their 

BOLD response in their ROIs (p =0.08, r =0.91; Fig.16.14A). There was, however, a 

significant association between an individual’s behavioural training effect and 

structural changes in their ROIs (p =0.03, r =0.89; Fig.6.14C). 

 

The next comparison was to assess the relationship between cumulative dominance 

duration changes (versus pre-training) now during concurrent up-regulation of 

trained brain activity. The relationship between this behavioural measure and an 

individual’s BOLD response in their ROIs was not significant (p =0.05, r=0.95; 

Fig.16.14B). The same behavioural measure did, however, correlate significantly 

with structural changes in these regions (p =0.003, r=0.94; Fig.16.4D). 
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Fig 6-14. Canonical Variate Analysis results. Each of the comparisons/graphs 
are explained below: 
 
A. Comparison of behaviour (i.e. change in cumulative dominance durations 
for training strategy related percept, non-training strategy related percept and 
mixed percepts between pre-training BR and post-training BR) and function 
(i.e. change in the level of the differential BOLD signal between training 
strategy related brain region and non-training strategy related brain region). 
B. Comparison of behaviour (i.e. change in cumulative dominance durations 
for training strategy related percept, non-training strategy related percept and 
mixed percepts between pre-training BR and post-training BR performed with 
concurrent trained up-regulation of brain activity) and function (i.e. change in 
the level of the differential BOLD signal between training strategy related brain 
region and non-training strategy related brain region). 
C. Comparison of behaviour (i.e. change in cumulative dominance durations 
for training strategy related percept, non-training strategy related percept and 
mixed percepts between pre-training BR and post-training BR) and structural 
changes after training (in trained brain regions FFA, PPA and SPL). 
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D. Comparison of behaviour (i.e. change in cumulative dominance durations 
for training strategy related percept, non-training strategy related percept and 
mixed percepts between pre-training BR and post-training BR performed with 
concurrent trained up-regulation of brain activity) and structural changes after 
training (in trained brain regions FFA, PPA and SPL).  
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6.8 Discussion 
 

 

This study demonstrates that neurofeedback training produces lasting changes in 

bistable visual perception as measured with BR. Using fMRI with neurofeedback, 

participants were trained to differentially modulate the level of activation in two 

higher-order, category-specific visual brain regions, FFA and PPA. These regions 

have recognised roles in the processing of perception related to face stimuli and 

house stimuli, respectively. Following training, sustained changes in the perception 

of stimuli associated with these regions, were found during BR. These changes in 

perception were underpinned by functional changes in actively trained brain regions, 

as well a higher order control-related brain region, aSPL during neurofeedback 

training. DCM analyses showed changes in effective connectivity between aSPL and 

the trained brain regions during neurofeedback training, implicating the interplay 

between a control-related area, and higher-order visual areas involved in BR. A CVA 

analysis confirmed a significant association between changes in BR dynamics (i.e. 

dominance duration) following neurofeedback training, and structural changes in 

FFA, PPA and SPL, following neurofeedback training. 

 

To summarise my experimental findings, participants learned to up-regulate the 

neurofeedback signal in both groups (i.e. ’Face group’, ‘House group’).  Both groups 

were unaware of the underlying nature of the training signal. From the five potential 

means by which the training signal could be increased (see page 221), participants 

decreased the level of activity in the non-training strategy-related ROI, while 

appearing to maintain or ‘clamp’ the level of activity in the training strategy-related 

ROI. Comparing this to observed behavioural changes in BR dynamics, before and 

after training, there was a significant reduction in the cumulative dominance 

durations of the non-training strategy related percept. This was in keeping with the 

direction of the brain activation changes over training. The behavioural change was 

further enhanced when BR was performed in the presence of concurrent up-

regulation of the training- strategy related ROI.  

 

Examining the imaging findings during BR, specifically the concurrent BOLD 

changes during up-regulation in training and non-training strategy-related ROIs, 
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there was a significant increase in the level of activity in the training strategy-related 

ROI only, which is an intuitive result. However, training produced a different effect on 

neural activation in the ROIs from that observed during BR. During neurofeedback 

training, the difference between the two regions was driven by a significant reduction 

in the level of activity of the non-training strategy-related ROI, while during BR, the 

participants were able to drive the level of activation in the training strategy-related 

ROI. An explanation for this maybe related to the presentation of visual stimuli during 

BR.  As one of the presented stimuli was salient to the training strategy (e.g., face 

stimulus for the ‘face’ group) and involved a trained category-specific ROI (e.g., 

FFA), concurrent up-regulation in the presence of trained, salient stimuli may have 

resulted in the enhanced response in trained category-specific cortex. In contrast to 

this, no directly salient visual stimuli were presented during the neurofeedback 

sessions, with neural activations in the trained brain regions being primarily self-

generated by the participants. 

 

The results from my study may imply a causal relationship between the modulation 

of brain activation and changes in perception, and builds on previous work illustrating 

that neurofeedback training of cortical regions using a relatively unconstrained 

measure of activity such as mean regional activity, produces changes in the function 

of the region. I found that modulation of the relative level of activation between two 

higher-order visual brain regions using neurofeedback training altered the perception 

of stimuli linked to the trained regions. 

 

In a related fashion, Shibata et al. (509) demonstrated lasting changes in the ability 

of participants to detect particular patterns (orientations of gratings) following 

neurofeedback training of primary visual areas. Scharnowski et al. (16) on the other 

hand, only demonstrated improvement in a visual detection task involving grating 

orientation detection, when concurrent trained up-regulation was performed, 

confirming an effect of learning to regulate brain activity. These two studies illustrate 

an important point – neurofeedback training affects the activity and/or functionality of 

the brain region.  

 

Neurofeedback training has been conceptualised as a specific form of instrumental 

conditioning that utilises a BOLD signal based training signal as the operant value 
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(86) Successful control of the signal produces an implicit reward, and is selected 

such that brain activation in target brain region/s is directly linked to the task at hand.  

In order to modulate the activity in these brain regions in the absence of an external 

stimulus, participants must utilise abstract cognitive strategies to voluntarily regulate 

the on-going activity within a specific brain region; frequently these strategies use 

mental imagery (85). Studies have previously demonstrated participants gaining 

control of the feedback signal in the absence of an explicit instruction (232,510,511), 

although this has been countered (511). Scharnowski and colleagues (16) altered 

their experimental paradigm during their study to include explicit instruction related to 

the strategy to be used during neurofeedback. They demonstrated a more rapid 

learning effect as a consequence. In my study the training signal was produced by 

differential activity between two brain regions. However, explicit instruction for control 

of the signal was related to only one of the two brain regions. The second brain 

region acted as an internal ‘control’ (329) in relation to non-specific global changes in 

brain metabolism and hence neuronal activity e.g. related to arousal, attention, 

breathing (57,58,301,315). Interestingly, although the participants were not offered a 

strategy that required involvement of the secondary brain region, they were 

nonetheless able to control its activity. This provides an interesting example of 

separating brain activity in a specific cortical region from its functional output.  

 

More specifically, I examined participants’ ability to regulate the non-training 

strategy-related region as a separate condition by providing an explicit instruction 

linked to that region, but without any training. Participants were unable to modulate 

the training signal with a non-trained strategy (see Fig. 6-7), despite having 

previously successfully modulated the activation levels in both ROIs, when using a 

training strategy linked to only one of the two ROIs. This observation identifies the 

importance of the neurofeedback training process, in that control of the visual 

interface/ ‘training’ signal is qualitatively different to a one-to-one mapping of mental 

imagery and activation of imagery-content related brain regions. Further, it illustrates 

the specificity of the neurofeedback training process, implicating a procedural 

component to the underlying process (86,94). In terms of the behavioural changes in 

BR, during attempted use of non-trained mental imagery strategies, participants 

demonstrated a significant increase in the duration of the mixed percept, but not the 

non-training strategy related percept.  



 275 

 

The mechanisms underlying the neurofeedback effect are unknown, and the 

literature examining this topic limited (72,77,332,334,512–514). The complexity of 

the neurofeedback process relates to a number of observations. To begin with, 

neurofeedback-driven brain modulation potentially provides access to neural 

processing which are normally hidden.  The issue of causality emerges - mentalising 

modulates pre-existing neural processing, shaped by the specificity of controlling the 

visual interface. Several neural processes are likely to be involved, including the 

binding of neural and mental events (515), agency (516), introspection (517), 

attention and neuroprosthetic control (94). Top-down co-ordination is therefore likely 

to be necessary during neurofeedback control, with a network of regions being 

engaged during learning. Midline structures including the anterior and posterior 

cingulate have been suggested (77). More specifically in the context of visual 

perception, Scharnowski et al. (16) observed increased top-down connectivity 

between aSPL and primary visual cortex in participants who successfully learned to 

up-regulate activation in the visual cortex. SPL has a recognised role in the top-down 

control of covert visuospatial attention and in cognitive control (454,518). Using an 

aSPL ROI that has been previously implicated in neurofeedback (81), I found 

significant activation during neurofeedback training in the present study.  

 

A DCM analysis was used to investigate changes in effective connectivity between 

the trained brain regions which demonstrated significant task-related BOLD 

activation, and infer the directionality of changes to potentially identify causal 

relationships between brain regions examined. DCM extends the assessment of 

statistical dependencies between two brain regions that examine correlations 

between fMRI time series (i.e. functional connectivity) to include the specification and 

testing of forward models, which include ‘hidden’ biophysical and neuronal states i.e. 

region specific haemodynamic models, of how the observed data occurred (519). By 

doing this, ‘connections’ are inferred by parameterising the coupling between brain 

regions. More specifically, both the haemodynamic and neuronal contributions to the 

BOLD response are modelled using non-linear differential equations in continuous 

time (i.e. dynamic), which incorporate the strength of the connections and how they 

are effected by experimental factors. DCM therefore models the coupling interaction 

or ‘effective connection’ between brain regions, which in the case of a putative higher 
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order brain region interacting with a lower tier brain region i.e. SPL and FFA, can be 

feedforward or feedback(520). Finally, DCM (See 6.3.5.2 and (504,521)) provides for 

the possibility of the connection being either excitatory or inhibitory. The effect of 

neurofeedback training in this study was found to positively modulate the excitatory 

feedforward connection between the training-strategy related ROI to aSPL, and 

negatively modulate the excitatory feedforward connection between the non-training 

strategy related ROI to SOL. There was also a positive modulation on the excitatory 

self-modulatory connection of aSPL.  More complex DCM models could be 

envisioned, potentially involving other brain regions implicated in cognitive control 

and perception, such as the dorsolateral prefrontal cortex, as well as other parts of 

the parietal lobe i.e. posterior parietal cortex (71,454,497,499,518,522). Although this 

would pose a significant challenge in terms of computational analysis, it may 

nonetheless enable a more complete view of the way in which perception is 

controlled, and provide further targets for neurofeedback-led modulation. 

 

The feedforward interaction between the trained regions and SPL may be in keeping 

with a previously posited theory of neurofeedback learning (90). According to this 

‘two-step model’ of neurofeedback learning, feedforward processes interact with 

feedback processes, with higher-order processes such as attention being utilised in 

a trial-and-error search linked to the provided instruction. Once the skill is learned, it 

becomes an automatic process, and is stored in implicit memory; at this point top-

down involvement is no longer required. In my study, in line with this mechanism, 

activation of SPL was observed during the neurofeedback training process, with 

increased feedforward connectivity from the directly trained brain regions. Following 

this period of training, activation in SPL reduced to zero during the transfer sessions. 

 
Turning now to the perceptual task, BR provides a useful experimental paradigm to 

examine the effects of voluntary brain modulation on perception. It involves the 

simultaneous presentation of two stimuli, separately to each eye. The resulting 

perceptual phenomena, where perception of one stimuli competes with other, is 

stochastic, but is amenable to manipulation (479,523–525). A number of 

mechanisms have been used to explain the neural workings of BR, invoking both 

top-down, higher-order cognitive modulation, and bottom-up, salience driven 

processes. Attentional processes have been implicated, and a shared locus for 
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attention and perceptual bistability has been shown (526). BR has been used to 

assess targeted modulation of higher-order brain regions, which have explicit roles in 

visual perception. The addition of neurofeedback training enables a direct means of 

manipulating this, combining aspects of mental imagery, perceptual biasing and 

learning.  

 
An alternative account of BR conceptualises it as a predictive or inferential process. 

It adds to the previously described feed-forward model (i.e. tiered information 

processing through an increasingly complex cortical hierarchy) by allowing for a 

reciprocal interaction between the internal mental state and the external stimulus 

acting upon it (168,497,527). Taking the proposed Bayesian framework, the 

dominant percept at any given time is maintained by the highest posterior probability, 

at the top of the cortical hierarchy. The stimulus representation at the lower levels 

provide error signals which are compared continuously with top-down predictions- 

the percept is rendered more or less stable in relation to this bottom-up inhibitory 

mechanism i.e. the lower the error signal, the more stable the percept, the higher the 

error signal, the greater the suppression of the percept (138,527,528). In Bayesian 

terms, the initial prediction for this study would be that the a strong prior manipulation 

by neurofeedback entrainment of category-specific brain regions would cause 

perceptual stability to shift in the direction of the trained region. More specifically, I 

observed BR dynamics being shifted in the direction of the information represented 

by the trained visual brain region. The shift in BR dynamics observed following 

neurofeedback training was exaggerated during concurrent trained up-regulation. 

The application of this Bayes-related theory to the observed findings of this study 

therefore provides one possible unifying explanation.  

 

The behavioural changes during BR after neurofeedback training may arise from a 

number of related but distinct processes.  Mental imagery does play a role in 

neurofeedback, although as discussed above, it has been shown to be insufficient as 

an explanation for the behavioural changes. Rademaker and Pearson (486) 

examined whether successive training of mental imagery resulted in increasing 

‘vividness’, and if this had an impact on perceptual rivalry. No effect of training was 

found in relation to the vividness of the imagery, nor was there any benefit in 

expending increased effort in terms of imagery. It is therefore unlikely that instructing 
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the participants to use mental imagery was itself sufficient to produce the 

behavioural changes observed in this study.  Similarly the role of ‘priming’ and 

‘cueing’ could also be invoked as potential arguments for the observed behavioural 

changes. Denison et al. (529) showed that prior presentation of a specific orientation 

grating caused an increase in the perception of the identical grating during BR. 

However, this did not produce a lasting effect on BR dynamics – dominance 

durations were not significantly changed in a lasting manner. Exogenous cueing prior 

to BR may increase the probability of the predominant percept being linked to the 

cue. Indeed, prior to BR, hearing sentences with the word ‘face’ result in FFA 

activation, while hearing sentences with the word ‘house’ result in PPA activation 

(515). Nonetheless, Pelekanos et al. (530) did not find any significant change in 

stimulus dominance between faces and houses on rivalry trials when participants 

had been cued with a word linked with one of the rivalrous stimuli. Evidently neither 

altering the level of activity in higher order brain regions involved in perception, nor 

applying known influences on visual perception, provide a comprehensive 

explanation for the lasting shifts in perceptual bistability observed following 

neurofeedback training in this study. My findings, along with others, suggests instead 

that the interaction of mental imagery and control of a physiological measure of brain 

function using neurofeedback, can be used to produce lasting changes in behaviour 

– in my study, a significant change in the unconscious processing of visual stimuli. 

 

The work presented above was performed on a limited number of participants. 

Nonetheless, a more detailed examination of the individual differences in 

neurofeedback training, and its effect on perceptual dynamics during BR, functional 

and structural changes in the trained brain regions, was performed using CVA (507). 

This is a multivariate analysis technique that can accommodate multiple individual 

measures such as behaviour, indices of connectivity, structure and function in order 

to establish the extent to which behavioural changes linked to neurofeedback 

training of target brain regions, predicts functional and structural changes. The extent 

to which BR dynamics, specifically the changes in cumulative dominance durations 

of each of the percepts, was altered by neurofeedback training of FFA and PPA, was 

found to be linked with measures of structural changes in FFA, PPA and SPL 

following neurofeedback training. This may suggest that neurofeedback training, 

even over a relatively short period of time (1 week) can alter perception, as a result 
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of changes in functional and structural  plasticity of trained and linked brain regions 

(531,532). Further, longitudinal assessments in relation to both lasting training 

effects, and adaptive changes in brain plasticity could be envisaged with a larger 

participant cohort. 

 

In terms of the implications of this study, it illustrates the impact of brain-based 

training approaches, over and above simply task-based training. It provides for the 

possibility of directly manipulating brain function to alter perception by targeting 

relevant brain regions rather than behavioural routines. Further, control brain regions 

could serve as neurofeedback targets to explore the possibility of more efficient 

neurobiological training paradigms. From a behavioural perspective, it is now to be 

established the extent of the unconscious biases that can be trained and thereby 

altered using neurofeedback, such as social and potentially aberrant biases. Finally, 

the work presented demonstrates an operational platform for non-invasively 

modulating network brain functioning to produce changes in behaviour and cognition 

– this can be translated into the clinical arena, for the purposes of modulating 

functional networks disturbed by disease such as PD. 

 

6.9 Conclusion 
 
 

To my knowledge, the work presented above provides the first evidence of the 

effects of neurofeedback training on higher order visual perception. This was 

implemented with rt-fMRI, to produce unconscious shifts in the perception of higher-

order visual stimuli. Trained up-regulation of ventral temporal visual areas produced 

linked shifts in in the stimulus perception as measured with BR behavioural 

measures. They were correlated with functional changes in the trained brain regions, 

as well as changes in effective connectivity with top-down cortical ‘control’ regions 

implicated in neurofeedback learning. Individual differences implicated structural 

plasticity in the brain regions examined. Future work can investigate the extent to 

which neurofeedback training can be used to further alter high order processes such 

as consciousness, potentially by targeting perceptual and well as control brain 

regions. 

 



 280 

7. GENERAL DISCUSSION AND CONCLUSIONS 
 

 

7.1 General summary 
 

 

The experimental studies in this thesis investigated the development of a non-

invasive BCI, implemented with rt-fMRI, targeting brain activations in higher order 

visual areas for the purposes of an attention driven communication interface, and 

altering perception using neurofeedback. Both of these applications may be 

considered examples of ‘cognitive’ BCIs. 

 

In this general discussion, I will review the findings of the experimental chapters, and 

relate them to the aims of this thesis – namely the extent to which rt-fMRI was 

successfully used for the practical applications of decoding and neurofeedback. 

Further, I will discuss the extent to which the results of the studies provide 

mechanistic and potentially causal insights into visual cognitive functioning. I will 

consider current and future experimental work that could/are being used to test 

hypotheses generated from the studies presented here, specifically examining the 

use of non-invasive BCI in the control of cognition, and behaviour, in health and 

disease. 

 

The experimental studies can be considered in the context of the decoding of 

attention (Chapters 3 and 4), applications of rt-fMRI for the purposes of a 

communication BCI (Chapters 5), and the use of neurofeedback-based training to 

modulate perception (Chapter 6).   

 

 

 7.2 Decoding of attention 
 

The first two chapters examined the classification of specific patterns of brain 

activations in higher order visual regions during the deployment of spatial attention.  
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Initially, using multivariate classification approaches, spatially distributed brain 

activations evoked in association with covert shifts of attention to simple visual 

stimuli in one of four quadrants of the visual field, could be classified at above-

chance accuracy. The cortical ROI investigated included primary visual cortex, 

category-specific brain regions with proven retinotopy such as lateral occipital cortex 

(LOC) (49,112,384), and putative control regions implicated in top-down modulation 

of attention including the parietal lobe (123,444,449), and FEF (116,121,123). 

Regions with a hypothetical role in spatial attention such as the SMA were also 

explored (533,534). Overall, results from these studies provided classification 

accuracy only marginally (though significantly) above chance, with the most 

successful classification being obtained from primary visual cortex and LOC. This 

was specifically true for four-quadrant classification, which was the most important in 

terms of applicability as an attention-driven BCI (i.e. highest degrees of freedom for 

control of an attention driven BCI).  

 

This finding was likely to be related to a number of known attributes of the visual 

system. Primary visual cortex is highly sensitive to the physical properties of a 

stimulus (e.g. luminance, contrast, location). Further, the magnitude of BOLD 

activation elicited by visual stimuli, is comparatively less in these regions as 

compared to higher order visual cortical areas (535). The relative success of 

multivariate classification therefore confirmed the presence of attention related 

information in primary retinotopic cortex, albeit at level insufficient to be identified by 

magnitude-driven univariate approaches. Further, the presence of statistically 

reliable classification in the LOC may be attributed to the robust retinotopy of this 

region (112), together with its role in object processing (48,49,452) – the use of 

spirals may have activated cortical regions sensitive to retinotopic location, as well 

as object-sensitive areas in higher order cortex.  

 

In this experiment, multivariate classifiers performed significantly better as compared 

with simpler univariate approaches. The relative simplicity of the stimuli used in the 

paradigm (spirals), as compared to high contrast gratings or checkerboards (e.g. 14) 

would potentially mean that multivariate classification would be more likely to identify 

distributed fine-grained information in the brain activations observed. Conversely, 

univariate approaches that are primary dependent on the magnitude of derived brain 
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activations may lack sufficient sensitivity under some cognitive conditions and/or 

classes of visual stimuli, to reliably reveal stimulus location in primary visual cortex, 

and stimulus properties in LOC. 

 

Nonetheless, this work provided a number of insights into establishing a robust 

decoding platform. Building on these observations, in the second study (Chapter 4) I 

used more complex, real-world visual stimuli. This was done with the intention of 

taking advantage of category specific information coded in higher-order visual areas 

in addition to spatial information, in order to enrich the brain signal being classified. I 

also implemented a novel use of m-sequences for the purposes of quadrant-specific 

stimulus presentation, thereby adding a further source of information for the decoder. 

Once again primary visual cortex was examined in relation to classification 

accuracies. However I now extended the approach to include other category-specific 

brain regions such as FFA, in addition to LOC, as well as performing a detailed 

examination of the different parts of the parietal lobe. 

 

Using univariate approaches I found above chance classification for four-quadrant 

attentional deployment, in higher order visual cortex, including parietal regions, FFA 

and LOC. Further, the magnitude of classification accuracy was improved as 

compared to the results obtained in the first study. Multivariate classifiers were 

investigated again, including more sophisticated approaches. However, univariate 

classification accuracies were much improved in the second study i.e. i.e. 50% 

classification accuracy for four-quadrant classification, while multivariate accuracies 

remained just above chance i.e. 30% classification accuracy for four-quadrant 

classification.  The improvement in classification using univariate approaches in the 

second experimental study may be attributable to the strength of BOLD activation 

produced by using more complex visual objects, focused within a specific cortical 

location. Further, I used a winner-take all decision algorithm for the univariate 

classification that identified the highest level of activations produced in relation to the 

deployment of spatial attention to one of four potential streams of stimuli in each 

quadrants. As this univariate approach produced markedly improved classification 

accuracies for the deployment of spatial attention, I went on to develop it for online 

implementation with rt-fMRI. 
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7.3 Online decoding with rt-fMRI 
 

After establishing a reliable decoding pipeline for the classification of spatial attention 

using brain activations linked to category-specific information, quadrant- specific 

stimulus presentations using m-sequences, and spatial location, I sought to replicate 

this using an online rt-fMRI platform. An analogous paradigm was successfully 

implemented but now using rt-fMRI, with four-quadrant classification performed on a 

trial-by-trial basis. Overall classification accuracies computed in real time were 

comparable to those calculated offline from LOC, FFA and parietal lobe, with 

individual decoding accuracies reaching rates of 70%. It was also shown that 

decoding accuracies were highest during the first half of each experimental session, 

and these correlated with more rapid reaction times on a n-back task. As such, I 

concluded that within-session fatigue may have been a factor affecting classification 

accuracy, and that this would potentially need to be accounted for when 

implementing a BCI. Specifically, this would be of particular importance in a clinical 

context, for example with physiologically frail patient groups e.g. locked-in-syndrome, 

when attempting use of an attention driven BCI communications platforms 

(15,86,536). 

 

 

7.4 Neurofeedback 
 

In the final experimental chapter, a rt-fMRI neurofeedback loop was established to 

examine the modulation of activation in ventral category-specific brain regions 

involved in visual processing. In order to test if neurofeedback training altered the 

function of these brain regions and as a consequence, changed visual perception, I 

used a BR paradigm, with the presentation of visual stimuli, whose processing was 

linked to the brain regions being trained. The regions trained were PPA and FFA, 

with participants learning to modulate the difference in activation levels between the 

two brain regions. The ‘face’ group, that is, those participants who learned to 

increase the levels of activation in FFA relative to PPA, perceived house stimuli less 

than face stimuli i.e. reduced cumulative dominance durations of house stimuli. 

Similarly, the ‘house’ group, that is, those participants who learned to increase the 



 284 

levels of activation in PPA relative to FFA, perceived face stimuli less than house 

stimuli i.e. reduced cumulative dominance durations of face stimuli. 

 

This might suggest that by increasing the level of activation within functional brain 

regions involved in the processing of category-specific visual stimuli using 

neurofeedback training, neuronal representations relying on the function of these 

regions were strengthened. This may in turn have lead to more rapid processing of 

these stimuli, and as a result, perceptual biasing. A conclusion from this experiment, 

was that these findings constituted a neural analogue of Levelt’s 2nd proposition 

(490). The original proposition, which has since been refined (537) was based on the 

physical properties of visual stimuli and its psychophysical relations with BR 

alternation dynamics. It states the following:  

 

“Variation of the stimulus strength in one eye will only influence the mean dominance 

duration of the contralateral eye and not the mean dominance duration of the 

ipsilateral eye.”  

 

Levelt’s historic observations have informed computational (527,538) and cognitive 

accounts of BR (539). In the context of the experimental findings in Chapter 6, it may 

be useful to consider a neural formulation of Levelt’s 2nd proposition, with regards to 

perceptual biasing. Specifically, strengthening the neuronal representation related to 

specific visual stimuli may bias perceptual processing, such that stimuli linked to 

these representations are more likely to be preferentially processed, resulting in 

unconscious perceptual biasing. A further qualification in relation to intrinsic vs. 

extrinsically manipulated brain activations might be that in the absence of direct 

stimulation through repetitive exposure, modulation of neuronal representations may 

only be achieved by intrinsically stimulating brain activation. 

 

The investigation of the learning process underpinning the observed effects of 

neurofeedback training led to the investigation of a possible control region, SPL, 

which had previously been implicated in other types of learning involving the visual 

system (540). This was regarded as being important from a number of perspectives; 

the identification of such a region may provide a more direct target for the facilitation 

of learning in neurofeedback training paradigms. Future training paradigms could 
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seek to specifically train connectivity parameters between such regions and the 

specific regions linked to the process of interest (e.g. 24) . By engaging these 

regions more directly, a more rapid and robust learning procedure may be facilitated.  

 

With regards to understanding the mechanism underlying neurofeedback-based 

learning, a DCM connectivity analysis focusing on the trained regions as well as 

putative control regions provided an opportunity to investigate the direction of 

information flow (e.g. 25). The results of the DCM analysis indicated a two-step 

process, with training initially increasing feedforward connectivity between the 

trained regions and SPL, followed by a reduction in activation in SPL after the active 

learning phase. This result is in keeping with a previous conceptual proposal made 

by Lacroix (90) outlining a dual-step process for biofeedback learning, although there 

remains a need to integrate this with a procedural understanding of how 

neurofeedback training leads to learned regulation of brain activation (e.g. 27), and 

how such training gains might be sustained. 

 

I examined structural changes in relation to neurofeedback training. No significant 

results were obtained at the group level. However, a multivariate combinatorial 

analysis of all of the measures of neurofeedback training using CVA, demonstrated 

individual differences in the relationship between the behavioural changes in BR 

dynamics, and the structural measures. This potentially important finding is 

suggestive of functional and structural plasticity following 1 week of neurofeedback 

training with rt-fMRI. Rapid adaptive plasticity as recently discussed in the training 

literature (233) has not been previously evidenced in relation to structural changes 

following neurofeedback training (542), although there has been some encouraging 

data in relation to functional activation changes (13,66). 

 
 

7.5 BCI technology - Perspectives and insights  
 
I will now consider how the work performed in this thesis fits into the broader context 

of our understanding of BCI technology. The development of BCI platforms provides 

an opportunity for cognitive, motor and behavioural enhancement, in health and 
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disease. Focusing predominantly on the prospects for cognitive enhancement in the 

context of the work in this thesis, I discuss current and emerging applications under 

the two headings of ‘software’ and ‘hardware’ upgrades. This is a conceptual 

simplification borrowed from the computing fields to assist with understanding a 

complex, and highly interconnected field – as such there remains a significant 

overlap in the concepts and applications described below. 

 
 

7.5.1 A ‘software upgrade’: Shaping neural representations using 
neurofeedback 
 

An emerging implication of my work and that of others is that neurofeedback training, 

using mental imagery related to the specific functional processing of brain region, 

may enable ‘shaping’ of neural representations (88), without participants being 

consciously aware. This neurofeedback driven instrumental conditioning could be 

applied in sensorimotor cortex, or in perceptual regions. I discuss the importance of 

mental imagery in relation to accessing neural machinery in a desired cortical region, 

prior to exploring potential applications of this concept. 
 

Neurofeedback training, particularly for the purposes of cognitive BCIs, utilises 

mental imagery as a surrogate for engaging neural processes. Mental imagery acts 

as a form of weak perceptual phenomena, which is modality-specific (543–545). I will 

focus on empirical evidence relating to this view of visual mental imagery, and of its 

relevance to this study. Visual imagery produces activation throughout the visual 

hierarchy, with some important quantitative and qualitative differences depending on 

the cortical region (535,546). Early visual cortex, at the bottom of the hierarchy, 

demonstrates an overlap in activation patterns between visual imagery and explicit 

visual perception. There is a high degree of correspondence in relation to the 

physical properties being imagined/perceived e.g. retinotopic location, spatial 

frequency, edges. In comparison, imagery-related activation in higher order cortex, 

such as the ventral visual areas tend to be invariant to visual detail (35). Activations 

in these areas are related to the semantic content, and are more flexible and 

abstract (547). Further, activity patterns are more reliably decoded from higher order 
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visual areas, leading to the suggestion that perceived and imagined visual images 

resemble each other more closely in higher order visual areas (535).  

 

Therefore, the use of higher order visual areas in neurofeedback training may 

provide the most potent means of enacting a change on visual perception and 

unconscious biases, potentially modulating the raw material of complex perception. 

Neural representations that give rise to prior expectations may be directly shifted in 

the direction of neurofeedback training, in the absence of an explicit expectation. 

This may in turn result in an enhancement of desirable responses during predictable 

as well as unpredictable tasks involving visual perception. 

 

This type of perceptual shaping could be envisaged as being used for perceptual 

‘enhancements’, where specific behaviour and perceptual routines could be 

preferentially trained. The potential benefit of using neurofeedback training would be 

to enable a broader repertoire of responses, based on modulating the level of 

activation within a predetermined area, which may have multiple, similar, overlapping 

neural representations. This was demonstrated by the study in Chapter 6, in which 

participants were preferentially shifted towards a specific category e.g. faces vs. 

houses, rather than being directed towards a specific face or house exemplar.  

 

Clinically, neurofeedback training of higher-order visual brain regions could 

potentially be used in the treatment of thought disorders and phobias, to encourage 

perceptual biasing towards normative values, and away from intrusive and disruptive 

percepts. In a broader context, neurofeedback might be used in education and 

learning, to measure, track and accelerate skill acquisition.  An example might be 

using neurofeedback training to specifically engage target brain regions, ahead of 

the use of linked educational materials utilising the trained brain regions. For a 

specific example, students might train visual brain regions prior to learning on a 

visual reasoning task. Further, knowledge of specific control regions implicated in 

particular types of learning e.g. SPL in neurofeedback and visual perceptual learning 

(81,540), could pave the way to specifically triggering activation in these regions in 

order to accelerate learning. 
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A tailored application of neurofeedback BCIs that is related to the above is the use of 

‘closed loop’ training, where the user is not explicitly aware of the neurofeedback 

signal. De Bettencourt et al. (323) illustrated this system using rt-fMRI and category-

specific attention. Brain activations related to either ‘house’ stimuli or ‘face’ stimuli 

were decoded as participants viewed superimposed stimuli. Participants were then 

guided towards attending to one or the other stimulus by dynamically altering the 

luminance of the stimuli in the visual display in relation to online decoding of brain 

activations in category specific ventral visual areas. This approach might potentially 

be extended to more complex cognitive processes with the aim of enhancing normal 

cognition or shifting a pathological brain state towards a normative one using an 

interactive display, an online assessment of correlated activation patterns (i.e. 

decoding a participant’s mental state in real time) and continuous feedback in 

response. Using such an adaptive closed-loop feedback approach, the current 

mental state could be covertly guided towards a target state. A separate application 

outside the clinical arena might be during skill acquisition as alluded to above, where 

neural activation patterns could be monitored and guided towards ‘decoded’ neural 

states previously established as being associated with expertise (548). 

 

An exploratory opportunity afforded by neurofeedback-guided shaping of neural 

representations would to prepare specific regions of cortex prior to ‘fitting’ a tailored 

neural prosthesis, which could be physical, cognitive or psychological. Preliminary 

work (549) indicates that participants can differentially and simultaneously modulate 

activation in left and right motor cortex as a result of neurofeedback-based training. 

The purpose of this work was to address the alteration in balance of hemispheric 

activity in the motor cortex after stroke.  

 

On the basis on of this and related work (94), if motor cortex activity could be 

manipulated so specifically, it may then be possible to train activity in a precise 

region of the motor cortex prior to fitting a prosthesis. For example, neurofeedback-

based training of the activation in the hand area motor region (i.e. hand ‘knob’ along 

the precentral sulcus (550)) could be performed prior to fitting a prosthetic hand. This 

would preferentially and pre-emptively engage necessary neural processes, which 

could then be further selectively trained and pruned through prosthetic hand use, 

and neurofeedback. 
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An analogous sensory prosthesis can also be envisaged, such as training activation 

in auditory brain regions prior to fitting a hearing aid, and/or audiology training. An 

alternative approach to a cognitive prosthesis based on closed-loop neurofeedback 

might be an enhanced human/computer interaction, in which through a ‘co-adaptive’ 

system (551), the BCI would learn from the environment, as well as from explicit 

input from the BCI user, resulting in continuous synergistic adaptation (552). A 

related concept is currently the focus of research by the Defense Advanced 

Research Projects Agency (DARPA) (548). For example, a computer based 

‘intelligent’ threat detection system would engage programmed automated routines, 

as well as concurrently interacting with, and selectively training a human user to 

respond more rapidly to a particular threat through neurofeedback enhancement of 

specific cortical responses.  

 

7.5.2 A ‘hardware upgrade’: ‘Brain-in-the-loop’ applications 
 

A useful term coined in a recent publication in relation to BCIs, ‘brain-in-the-loop’ 

(548), highlights an important and potentially very powerful application of BCI 

technologies; rather than a behaviour being targeted for appraisal, modulation and 

shaping towards a desirable endpoint, brain function and activation are directly 

accessed and utilised (see Fig. 7-1).  

 

 
Fig 7-1. Illustration of a possible paradigm for BCI technology relying on the 
‘brain-in-the-loop’ concept. As shown in (A), the brain is now the point of 
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access for the BCI, as compared to the standard paradigm (B), which instead 
accesses behaviour as the correlate of brain function. 
 

I have discussed BCI-driven modulation of neural activation as the focal concept in 

the previous section. I will now consider ‘hardware’ approaches, that is, applications 

that may directly alter the structure of the brain, or may work alongside or ‘extend’ 

normal brain function. 

 
 

7.5.3 Triggering adaptive plasticity to restore function 
 

The term plasticity has been applied to a number of different measures of brain 

structure and function , and it is important to establish the metric associated with 

proposed or purported changes in plasticity for the relevant approach (e.g. 

neuroimaging or neurophysiological changes, and behavioural or structural 

changes), and the manner in which they interact. For example, by training a specific 

brain region or regions, changes in functional imaging measures have been 

correlated with changes in behaviour. Subramaniam et al. (13) demonstrated 

improvements on motor measures in PD patients following learned upregulation of 

SMA. Correlated alterations were noted in the levels of functional activation in the 

SMA, as well as other network brain regions implicated in PD, such as the 

subthalamic nucleus and the globus pallidus interna.  

 

Shibata et al. (509) recorded changes in the function of the primary visual cortex, by 

training participants to produce brain activations matched to a particular grating 

stimulus orientation. Participants were then more likely to identify the same grating 

orientation, even when not pre-emptively evoking cortical activations associated with 

the training state, leading the authors to implicate changes in plasticity of V1 

following perceptual learning. This finding with primary visual cortex is analogous to 

the findings in Chapter 6 that occurred instead in higher-order visual cortex. BR 

dynamics were altered following training, even when participants were not actively 

up-regulating the trained brain regions. These behavioural and correlated functional 

changes in brain activation have been considered direct examples of brain plasticity. 
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An important question that was addressed by the study in Chapter 6, was whether 

functional changes produce associated structural changes in grey and/or white 

matter, representing a novel finding in the literature. 

 

Evidence for matched functional and structural plasticity has been reported from 

studies of motor learning in rodent models. Here, functional reorganisation of cortical 

motor maps, as well as structural changes that include grey matter glial changes and 

synaptogenesis, and increased myelination of relevant white matter pathways have 

been shown (553). In humans, cognitive training of healthy participants on working 

memory tasks was correlated with increased fractional anisotropy (FA) in white 

matter tracts adjacent to working memory regions, such as the body of the corpus 

callosum, and the IPS (554). FA has been linked with the degree of myelination, and 

is regarded as a marker of white matter integrity. Taken together these findings 

provide for an intriguing therapeutic possibility that relies on such structural changes, 

namely, could structural brain injury caused by disease or trauma be restored by 

focused neurofeedback training of brain activation in or near to the damaged brain 

region? Intuitively producing measurable structural brain changes through training 

would confirm a causal link between training and desirable changes in function and 

behaviour. 

 

An alternative approach may be to target compensation for damaged brain function 

by training compensatory connectivity in associated network pathways. This may not 

necessarily only rely on overt structural changes, and in fact has been offered as an 

explanation by Subramaniam et al. (13), for the therapeutic benefit observed 

following neurofeedback modulation of the SMA in PD patients.  

 
 

7.5.4 Decoding brain signals to enable function 
 

Component cognitive functions are internal and ‘hidden’, and are typically 

experimentally assessed in an indirect manner. In order to ‘power’ a cognitive BCI, 

internal states comprising cognitive functions such as visual working memory, 

attention etc. must be accessed, a challenge well addressed by the use of fMRI, 
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currently the best means of identifying where in the brain, activation related to a 

specific cognitive process is occurring.   

 

By employing classification techniques on brain activations measured with fMRI, the 

aim is to identify what brain function is occurring in relation to its cortical/subcortical 

location. This is in fact the first step in the design of any BCI – identification and 

deciphering of target brain activation (see Fig. 7-2A). These ‘decoded’ signals can 

then be used as the translated surrogate of the cognitive function, ideally providing a 

real-time view of brain mechanics occurring in its service. The optimal evolution of 

this technique would be to parse complex, hidden brain states into intuitive, semantic 

descriptors, in effect creating a brain ‘translation’ device. Given the current state-of-

the-art, fMRI at 3T can only be used as a relatively coarse enabler of function, by 

decoding brain activation for use in the communication and control of a BCI. I 

achieved a reasonable degree of success with the online decoding of spatial 

attention from higher order visual areas (individual accuracies of 70%), following 

inclusion of multiple sources of information for decoding. 

 

The emerging challenge then is achieving sufficient resolution with the brain imaging 

technique, to accurately extract all of the neural activity related to a specific cognitive 

function, and employing techniques that identify and reconstruct the neural activity. 

The ideal decoding outcome for the experiment in Chapter 6 might be hypothesised 

as being able to determine in real time what specific object exemplar was being 

attended to, in which quadrant, on an exemplar-by-exemplar basis. The required 

rates for accurate decoding with a BCI to be operational for communication have 

been suggested to be 70% (467–469). This was initially suggested in the context of 

BCI using neurophysiological measures. Higher rates of online decoding for spatial 

attention have been achieved with rt-fMRI at 7T (10,19,43,311), although this was 

obtained with primary visual cortex, using simple high contrast stimuli e.g. chequered 

gratings in two directions and high luminescence arrows in four directions.  

 

More recently, attempts have been made to transform voxel-based information from 

individual brain activity into a common space, using statistical learning methods to 

subsequently provide flexible decoding of visual images across, rather than just 

within, individuals (555). The neural decoder was able to successfully predict fMRI 
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activity patterns of a target participant for unseen visual stimuli (structured or random 

patches), having being provided with fMRI activity patterns from a different 

participant. This work demonstrated the first steps towards translating a common 

‘neural code’ across individuals (555). Although this work was demonstrated with 

primary visual cortex, in keeping with the flexibility of the machine learning 

methodology it is dependent on, it could be applicable to higher-order brain regions. 

For example, it could be applied to the decoding of more complex functions such as 

social behaviours and even aspects of personality. Such an application could provide 

insights into individual differences in brain function on the one hand, and provide 

means of crossing boundaries between individuals presented by language, and 

distance. Direct brain-to-brain communication (556–558) utilising a common neural 

code and foregoing the requirement for overt communication, is already an active 

area of research, and would represent an ultimate destination for brain decoding and 

the enabling of function. 

 

 

7.5.5 Combining invasive and non-invasive BCI technology 
 

The work in this thesis is specifically concerned with use of fMRI as means of 

developing a non-invasive cognitive BCI. There are a number of advantages to the 

use of non-invasive technology in addition to avoiding the need for a surgical 

procedure e.g. ease of replacement, upkeep and modification of the BCI. On the 

other hand an ideal BCI device needs to be small and discrete, with a minimal 

aesthetic profile (559). Current non-invasive technologies, taking into account the 

most portable examples on the market, such as wireless, dry electrode EEG 

headsets (560–565), do not easily fit this criteria, and remain relatively cumbersome. 

Implantable technologies have been investigated with the aim of providing a fully 

concealed, portable, wireless device, and have been shown to be preferable from 

the point of view of the patient or participant (559). A recent documented success 

has been with the ‘BrainGate’ BCI (v2.0), using a microelectrode array implanted 5 

years previously in a patient with incomplete locked-in-syndrome. The array, 

implanted in the hand/arm area of the motor cortex, enables control via a point-and-

click interface with a novel hexadecimal-based radial keyboard (536). A persistent 
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issue with invasive BCI technologies, given the intrinsic aim of maintaining long-term 

implantation, is, however, hardware failure and implant infection (566,567). These, 

and other issues related to interface failure vs. reliability are currently being 

addressed by the DARPA-funded Reliable Neural Interface Technology (RE-NET) 

program involving the joint effort of a number of top-tier US university research 

institutions (548). 

 

A useful approach to these specific issues related to BCI’s is to combine the 

strengths of non-invasive and implantable techniques. A potential pipeline might be 

to first use decoding algorithms to identify the most appropriate regions of cortex that 

are functionally relevant for an assigned task. Online neurofeedback training with or 

without a closed loop system could then be used to optimise the neural 

representations in relation to the functional requirement. In the third step, an 

implantable BCI would be inserted in a focal or distributed fashion, in anatomical 

alignment with the non-invasively identified and trained cortical ROIs. Finally a fourth 

step could be envisaged where adaptive neurofeedback via the implanted BCI could 

be used to train and maintain specific neuronal populations or activations, depending 

on the resolution of the implanted BCI. A simple proof-of-principle has been 

demonstrated at 7T using online decoding of spatial attention in primary visual cortex 

prior to implantation of a subdural ECoG electrode grid array (10). 

 

Non-invasive BCI’s may provide an alternative means of stimulating brain activation, 

in a manner analogous to more direct surgical approaches e.g. deep brain 

stimulation (DBS) with implantable electrodes (568). DBS has been successfully 

used to stimulate a number of subcortical targets for therapeutic effects on 

behaviour, cognition, autonomic physiology and movement (for reviews see 65, 66). 

Conceptually, rt-fMRI neurofeedback might provide a means of access to subcortical 

targets in a similar fashion. Indeed recent work has shown successful online 

modulation of the ventral tegmental area (11), a region which is currently being used 

as a surgical DBS target for the treatment of cluster headache and refractory 

depression (571). Further, non-invasive modulation of cortical regions have been 

shown to produce downstream effects on subcortical regions, with associated 

behavioural changes in PD (13). It may be possible to utilise rt-fMRI ‘non-invasive 

brain stimulation’ method to treat some of the perceptual abnormalities in PD, 
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incorporating the benefits of mental imagery training linked to rt-fMRI mediated 

access of cortical and subcortical ROIs e.g. ventral visual areas (572) or the Nucleus 

Basalis of Meynert (573). 

 

A example pipeline for rt-fMRI ‘non-invasive brain stimulation’ method might be to 

first identify PD patients who have been selected for DBS surgery, prior to surgical 

implantation of the deep brain electrodes, and to then use rt-fMRI neurofeedback 

training to modulate specific cortical and subcortical nodes, as well as networks 

joining the two, e.g. SMA, STN, and the hyperdirect pathway (13,574–576). The aim 

would be to potentiate specific pathways and targets prior to surgery, potentially 

providing an additive effect to surgery, as well as optimising surgical targets. This 

approach might eventually provide a standalone means of treatment, which would be 

suitable for patients not deemed fit for surgery, or those opting not to undertake the 

attendant risks of a surgical procedure. Following surgical implantation of the 

electrodes, it is possible to ‘externalise’ the leads for a short period of time, and 

undertake local field potential recordings from the implanted STN. This would 

provide an opportunity to examine the down stream effects of learned neurofeedback 

regulation of cortical targets i.e. SMA in relation to the surgical target i.e. STN. 

Indeed, this investigational pathway has formed the basis of a successful grant 

application to trial the use of neurofeedback training of SMA modulation in pre-

operative PD patients, prior to STN-DBS surgery. 

 

 

7.6 Neurosurgery and the BCI method – a therapeutic opportunity 
 

The combination of the neurosurgical and neuroimaging approaches provides fertile 

ground for the development and application of neurofeedback and BCI ideas and 

technologies. Most frequently, implanted stimulation and recording devices such as 

DBS electrodes, and ECoG with subdural electrodes arrays, allow for direct 

measurements of brain function from the single neuron level up to the mesoscopic 

scale, sampling focal populations of neuronal activity (e.g. populations of 105 

neurones are measured with ECoG). This can be used to enable BCI effector 
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control, as well as providing a unique opportunity for measuring brain function in 

response to invasive and non-invasive stimulation modulation.  

 

 
Fig 7-2A. Schematic of the components parts of a typical BCI set-up.  
 
This includes signal acquisition from the brain, and translation into effector 
outputs which may be control of a computer or prosthetics such as a 
wheelchair or robotic hand, and for self-modulation of perceptual processes 
(Adapted from Wolpaw90).  
 
Fig 7-2B. Anatomical layout illustrating the multiple points of access for BCI 
interventions from the scalp to the deep subcortical regions. 
 

In the preceding section, I have described one potential example (i.e. rt-fMRI ‘non-

invasive brain stimulation’ neurofeedback training in pre-op STN-DBS) of the manner 

in which routine neurosurgical implantation of prosthetics can be leveraged as an 

opportunity for examining the modulation of brain activation in relation to 

neurofeedback training and therapeutic behavioural effects. DBS is a versatile 
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Brain signals for BCIs
Brain signals can be detected and measured in many 
ways; these include the use of methods for recording 
electrical or magnetic fi elds, functional MRI, PET, and 
functional near-infrared imaging (fNIR). At present, 
magnetoencephalography, functional MRI, and PET are 
not suitable for widespread everyday use owing to their 
complex technical requirements, expense, and limited 
real-time capabilities. Only electrical fi eld recording and 
possibly fNIR8,9 are likely to be of practical value for 
clinical use in the near future.

Figure 1 shows that the electrical fi elds that result 
from brain activity can be recorded at the scalp (EEG 
activity), at the cortical surface (electrocorticographic 
[ECoG] activity), or within the brain (local fi eld potentials 
or neuronal action potentials [spikes]). Each method 
has its own advantages and disadvantages. EEG 
recording is simple and non-invasive, but has limited 
topographical resolution and frequency range. In 
addition, EEG recordings are susceptible to 
contamination from electro-oculographic or electro-
myographic activity from cranial muscles. ECoG and 
intracortical methods have better topographical 
resolution and wider frequency ranges, but implantation 
of electrode arrays on the cortical surface or within the 
brain is needed. Concerns about safety, the risk of tissue 

reaction, and long-term recording stability still need to 
be addressed.

The ultimate practical value of each of these methods 
will depend on which communication and control 
applications can be supported and on the extent to which 
the disadvantages can be overcome. The problem in 
determining the comparative value of non-invasive (ie, 
EEG) methods, moderately invasive (ie, ECoG) methods, 
and more invasive (ie, intracortical) methods has not yet 
been resolved. Although it is possible that practical, stable, 
and safe methods for the long-term recording of signals 
within the brain will soon be available, the speed and 
precision of communication and control that are possible 
with intracortical recording might not be much higher 
than is possible with less invasive methods.10 At present, it 
seems probable that diff erent recording methods will be 
useful for diff erent applications, diff erent users, or both. 
Careful and comprehensive assessments of the 
characteristics and capabilities of each of the alternatives 
are crucial. Experience of BCI research in human beings 
has so far primarily involved non-invasive EEG-based 
investigations.6 There are a few reports of short-term 
ECoG studies:11 so far, only limited data are available from 
people who have had intracortical electrode implants,12–14 
and most intracortical BCI data have been obtained from 
animal studies (primarily from monkeys).15–20 
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Figure 1: Overview of a BCI system
(A) Design and operation of a BCI system. Electrophysiological signals that indicate brain activity are obtained from the scalp, the cortical surface, or within the 
brain and are analysed to derive particular signal features (such as amplitudes of event-related potentials, EEG rhythms, or fi ring rates of single neurons). These 
features are translated into commands that operate an output device, such as a word-processing program, a wheelchair, or a neuroprosthetic limb. Adapted 
from Wolpaw JR et al,6 with permission from Elsevier. (B) Recording locations for electrophysiological signals used by BCI systems. EEG activity is recorded using 
electrodes on the scalp. ECoG activity is recorded using electrodes on the cortical surface. Action potentials from single neurons or LFPs are recorded using 
electrode arrays implanted in the motor cortex or in other brain areas. Adapted from Wolpaw JR et al,7 with permission from Cambridge University Press. 
LFP=local fi eld potential.
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surgical technology that can be used in a number of ways in relation to BCI 

technologies and neurofeedback. For example, adaptive closed-loop stimulation with 

DBS is an active area of research (577,578), which may enable tailored and more 

efficient stimulation paradigms, improving therapeutic benefit as well increasing 

hardware lifetime in-vivo. Online measurements of an implanted closed loop system 

using wireless measuring devices are currently in development; longitudinal in-vivo 

measurements of implanted brain regions could then be performed, potentially 

enabling on-going neurofeedback sessions for patients. 

 

Recording from single neurons with depth electrodes implanted for seizure location 

identification in epilepsy patients have been used to investigate perceptual 

processes, such as responses in the temporal lobe when patients were shown 

celebrity face images (579), and lateral temporal cortex responses to speech sounds 

(580). ECoG arrays, also inserted at the time of surgery for seizure detection in 

epilepsy, have been used to provide proof-of-principle for computer-cursor control 

using auditory cortex activations (581), covert shifts of spatial attention in 

sensorimotor areas (432,476), and the decoding of speech production-related 

cortical activity (580,582). Most recently, an ECoG array was inserted de novo in a 

tetraplegic patient over sensorimotor cortex, to enable 3-dimensional BCI control of a 

computer cursor (583). Such studies are illustrative of the important insights that can 

be gained from the integration of neurosurgical and neuroimaging disciplines, with 

the point of overlap provided by the implantation of prosthetic devices that can 

directly stimulate or record from the brain. 

 

The neurosurgical insertion of ICP bolts to provide continuous intracranial pressure 

measurements could also be employed as a novel opportunity to apply the BCI/ 

biofeedback concept for therapeutic benefit. Intracranial recordings of autonomic 

physiology may be used as a target for neurofeedback-guided therapies. A 

significant conclusion from the completion of the work in Chapter 6 was the potential 

power of the neurofeedback technique as a therapeutic tool. Neurofeedback can be 

viewed as a variant of biofeedback. As established in the introductory and method 

chapters, the biofeedback approach was first demonstrated in the 1960s, with 

voluntary bi-directional control of heart rate via an analogue visual display which 

provided the biological signal to be controlled (584). The fundamental conclusion of 
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this and subsequent work using measures of internal autonomic activity, including 

cerebral physiology e.g. control of regional cerebral blood flow and end tidal CO2 to 

treat migraine and epilepsy (585–588), was that biofeedback enables voluntary 

control of autonomic physiology. This may be mediated by a putative central 

autonomic network, and its interaction with the peripheral autonomic nervous system 

(589–591). It is possible to speculate that neurofeedback modulation of the BOLD 

signal (i.e. a haemodynamic measure), through the use of mental imagery, may be 

based upon control of cerebral vasculature. On the basis of these insights, and those 

developed in this thesis in relation to the neurofeedback concept, further work (see 

Fig. 7-3 and 7-4) and a scientific proposal have been submitted (592). The proposal 

seeks to demonstrate that biofeedback-based control of intracranial pressure (ICP) is 

possible, and may be used for patients with ICP-related pathology e.g. intracranial 

idiopathic hypertension. The scientific justification is based on the assumption that if 

biofeedback control of cardiovascular and cerebral vasculature is possible, other 

dependent measures of cerebral physiology, such as ICP, may also be amenable to 

volitional control.  

 

 
Fig 7-3. ICP Biofeedback set-up. Patient shown with ICP bolt inserted and 
connected to a computer display showing ICP wave form, and an analogue 
display of absolute ICP values in real-time. The patient attempts to reduce the 
number of the ICP value using biofeedback control.  

Mindfulness of breathing, guided by analogue ICP biofeedback can be 
used to reduce ICP in patients with known idiopathic intracranial 

hypertension 
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Fig 7-4. Preliminary data for ICP biofeedback study. Data from a single IIH 
patient, illustrating ICP changes during concurrent ICP biofeedback and 
mindfulness of breathing.  On the x-axis are the number of hours over which 
ICP was monitored, and the y-axis shows median ICP values (mmHg). These 
preliminary results indicate that the patient learned to voluntarily reduce their 
ICP values using biofeedback control. 
 
 

7.7 Summary and final conclusions 
 
In this thesis, I presented empirical evidence for the use of higher-order visual areas, 

and their functioning in visual cognition and perception, as potential targets for non-

invasive BCI using rt-fMRI. In the first half of my thesis I demonstrated that it is 

possible to reliably decode the direction of covertly deployed spatial attention, online 

and offline, exploiting the use of spatial, and object category information, in addition 

to temporal information of visual stimuli arising from the novel use of m-sequences. 

In the second half of my thesis, after successfully establishing an rt-fMRI analysis 

pathway, I demonstrated that category specific visual perception can be biased by 

neurofeedback training of ventral visual areas. Perceptual dynamics during a BR 
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paradigm were altered, providing a novel conceptualisation of a long-standing 

observation regarding BR, known as Levelt’s 2nd proposition. 

 

The use of category specific visual areas in this thesis confirmed that they can 

provide accurate and reliable decoding, may be manipulated across a range of 

cognitive functions, and offer an access point to complex functions such as 

perception. I further investigated the underlying mechanics of neurofeedback, 

utilising a number of cutting-edge analysis techniques, and implicated the 

involvement of top-down control by a putative modulatory region, SPL. This finding 

may provide empirical evidence for an extant theory of biofeedback, known as 

‘Lacroix’s dual step process’. 

 

From an operational point of view, I have discussed the potential use of a rt-fMRI 

set-up with neurofeedback as a non-invasive BCI, in health and disease. I also 

covered biofeedback, which relies on concurrent electronic measurement to 'close' 

the loop- to this end it is by definition a BCI. Nonetheless, one of long-term aims of 

biofeedback/ neurofeedback learning is to automatise learned control of the trained 

measure, and achieve control of the target physiology in the absence of concurrent 

feedback.  

 

If function can be restored and maintained in the absence of prosthetic implants, this 

would clearly be optimal, but may not always be possible. To this end, biofeedback, 

decoding and neurofeedback, and non-invasive and implantable BCIs form a 

continuum, which provide a number of flexible options for enabling and restoring 

brain function, which is summarised in Fig 7-2B. 

 

To conclude, the research in the areas covered by the work in this thesis is at an 

exciting stage. Technological advances in computing, imaging and engineering are 

being more readily combined with human biology, giving rise to the emerging yet 

rapidly developing field of BCI, with the principal aim of enhancing brain function in 

health and restoring brain function in disease. 
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