-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by UCL Discovery

Network Filtering for Big Data:
Triangulated Maximally Filtered Graph

Guido Previde Massara', T. Di Matteo'2, Tomaso Astel:3
L Department of Computer Science, University College London,
Gower Street, London, WC1E 6BT, UK
2 Department of Mathematics, King’s College London, The Strand, London, WC2R 2LS, UK
3 Systemic Risk Centre, London School of Economics and Political Sciences, London, WC2A2AE, UK
(Dated: 16/07/15)

We propose a network-filtering method, the Triangulated Maximally Filtered Graph (TMFG),
that provides an approximate solution to the WEIGHTED MAXIMAL PLANAR GRAPH problem. The
underlying idea of TMFG consists in building a triangulation that maximizes a score function
associated with the amount of information retained by the network. TMFG uses as weights any
arbitrary similarity measure to arrange data into a meaningful network structure that can be used
for clustering, community detection and modeling. The method is fast, adaptable and scalable to
very large datasets, it allows online updating and learning as new data can be inserted and deleted
with combinations of local and non-local moves. TMFG permits readjustments of the network in
consequence of changes in the strength of the similarity measure. The method is based on local
topological moves and can therefore take advantage of parallel and GPUs computing. We discuss
how this network-filtering method can be used intuitively and efficiently for big data studies and
its significance from an information-theoretic perspective.

Keywords: TMFG, Big Data, Network Filtering, PMFG, Planarization algorithms, Correlation
Network, Markov Random Fields, WEIGHTED MAXIMAL PLANAR GRAPH (WMPG)

I. INTRODUCTION

We are witnessing interesting times rich of information, readily available for us all. Using,
understanding and filtering such information has become a major activity across science, industry
and society at large. Our society has become a global information processing system where
news propagate and impact on individuals and the economy at increasingly fast rates with
increasingly large effects. It is therefore important to have tools that can analyse this information
while it is generated and that can provide ways to reduce complexity and dimensionality while
keeping the integrity of the dataset. Information content and flow are often associated with large
degrees of redundancy both in time (repeating and scaling patterns) and across different variables
(similarity, dependency and causality). Redundancy is often used to convey strength to the
meaning or, more simply, it is the signal of recurring patterns with high statistical significance and
therefore important. In this paper we propose to use such redundancy to build an information-
based network that retains the relevant part of the data-interdependency structure. The structure
of this network is a representation of the information in the dataset and such information can
be efficiently analysed by using network-theoretic tools.

The idea of using redundancy — mostly correlation coefficients — to filter information in complex
datasets by building sparse networks retaining relevant edges only has been very actively studied
in the literature mostly by means of two approaches: i) the minimum spanning tree (MST)
[1, 2]; ii) the planar maximally filtered graph (PMFG) [3-5]. The common idea underneath
these two approaches is to filter a dense matrix of weights by retaining the largest and most
significant possible subgraph while imposing global constraints on the topology of the resulting
network. In particular, in the MST approach edges with the largest weights (e.g. correlations)
are retained while constraining the subgraph to be globally a (spanning) tree. Similarly, in
the PMFG construction the largest weights (e.g. largest correlation coefficients) are retained
while constraining the subgraph to be globally a planar graph (see [2-4]). Both the MST and

https://core.ac.uk/display/79500908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the PMFG are particular cases of simplicial complexes; our proposed method can be extended
to more general simplicial complexes with different constraints (for instance on the topological
genus, or on the size of the largest complete subgraph — or clique).

The PMFG is a greedy solution of the WEIGHTED MAXIMUM PLANAR GrAPH (WMPG)
problem: given a complete edge-weighted graph find a planar subgraph which is maximal (i.e.
no edge can be added without destroying planarity) and such that the sum of the edge weights is
maximum. The problem is known to be NP-complete (see [6] for a proof and [7] for a review), but
algorithms providing sub-optimal solutions are known. For instance, an approximation algorithm
with a guaranteed performance ratio of 3 for complete graphs is discussed in [8].

The PMFG has a richer information content than the MST with a larger number of edges (the
PMFG has 3p—6 edges, while the MST has p— 1, where p is the number of vertices) and contains
of 3- and 4-cliques. However, the network is still sparse, filtering 3p — 6 edges out of p(p — 1)/2
of the complete graph K, which is associated with the original dense matrix of weights.

Planar filtered graphs are powerful tools to study complex datasets. It has been shown in [9]
that by making use of the 3-clique structure of the PMFG a clustering structure can be extracted
allowing dimensionality reduction that keeps both local information and global hierarchy in a
deterministic manner without the use of any prior information. Applications of Planar filtered
graphs to financial data-sets can meaningfully identify industrial activities and structural mar-
ket changes [10, 11]. Planar filtered graphs can be used to diversify financial risk by building
a well-diversified portfolio that effectively reduces risk by investing in stocks that occupy pe-
ripheral regions of the graph [12]. Planarity ensures easy visualization of the network with the
possibility to draw the network without edge-crossing. Another appealing advantage of planar
filtered networks concerns graphical modeling (e.g. Markov Random Fields [13]) where planarity
(which limits the treewidth of the junction tree of the filtered graph) grants that some exact
inference algorithms can be performed in an efficient fashion (see [14, 15]). However, the algo-
rithm so far proposed to construct the PMFG is computationally costly and cannot be applied
to large datasets. There is therefore scope to search for novel algorithms that can construct
planar filtered graphs in a computationally efficient way. In the present paper we indeed intro-
duce a computationally efficient algorithm, the TMFG, that produces planar filtered graphs by
optimizing an objective function (which we shall call “score function”) by using local topological
moves called 77 and T5 [16], the ‘Alexander move’ A [17], in conjunction with a ‘vertex-swap’
operator S. These topological moves are sketched in Figs. 1, 3, 5 and 6. The T} move acts on
two triangles which share an edge and replaces the shared edge with a new edge joining the (pre-
viously) opposite vertices (see Fig. 3); the 75 move adds a vertex inside a triangle and connects
this vertex to the triangle’s vertices with three new edges (see Fig. 1); the ‘A move operates on
two triangles which share an edge by deleting the shared edge, adding a new vertex inside the
resulting rhombus and joining the added vertex to the rhombus’ vertices (see Fig. 5); finally the
S operator swaps two vertices of the graph keeping fixed the neighbours (see Fig. 6).

The TMFG algorithm has also the advantage of allowing ‘online’ updates of the planar graphs.
Furthermore, the TMFG can be naturally applied to multipoint dependency measures associated
with the 3- and 4-clique structure. When only 75 and S operators are used the algorithm
produces triangulated (or chordal) graphs together with their structure of cliques and separators.
Chordal graphs have several appealing properties being very well suited to modelling with Markov
Random Fields (MRF) with a computationally attractive closed-form solution for the Maximum
Likelihood Estimate of the joint probability (see [18, 19]), they are also perfect graphs and
as such have polynomial time solutions for problems that are otherwise harder (e.g. graph
coloring problem, maximum clique problem, and maximum independent set problem, see [20]).

(—B«H:E—} In the case of Gaussian graphical models the structure of the graph represents partial
correlations between variables and the non-zero entries of the concentration matrix (the inverse

of the covariance matrix also called precision matrix [18, 21, 22]) coincide with the edges of the
graph. Additionally, the algorithm has the advantage that it is not restricted to planar topologies
allowing higher-genus hyperbolic embeddings to be explored [16, 23-25]. Finally, given its local
nature, the algorithm is ideally suited for parallelisation and GPU computing.

This paper is organized as follows. In section II we discuss some facts about Planar Maxi-
mally Filtered Graphs describing two algorithms used to generate such graphs; in section 11T we
introduce the TMFG algorithm and we highlight some characteristics of the algorithm that are
relevant to applications with high-dimensional, frequently-updated datasets; in section IV we of-
fer some information-theoretic perspectives on the selection of a particular score function; finally
in section V we apply TMFG to several weight distributions showing that it is computationally
faster than PMFG achieving comparable or better results.

II. PLANAR MAXIMALLY FILTERED GRAPHS

Algorithms for the extraction of planar subgraphs from dense networks are relevant in several
domains such as, for instance: i) the analysis of financial data — where nodes generally represent
financial assets (such as stock prices, spreads, liabilities, risk or liquidity indicators etc.) and the
edges represent correlations or other measures of dependence between them (see [3, 4, 12, 26]); ii)
facilities layout — where nodes represent the facilities and the edges the affinities between them
(see [27-29] for a survey); iii) integrated circuit design — where nodes are the electrical elements
and connections are the physical connections (see [30]); iv) systems biology — where nodes can
represent proteins and edges protein interactions in a metabolic network (see [31]); v) social
systems — where nodes represent social agents (e.g. individuals, companies, groups) and edges
represent social interaction (see [32] for a detailed overview). In some domains — such as facility
layout or integrated circuit design — the constraint of planarity is a direct consequence of the two
dimensional planar geometry of the problem, while in other domains, network planarity is a way
to constraint the complexity of the graph reducing the degree of interwovenness [3]. Planarity
is also desirable because many NP-hard problems have efficient polynomial-time solutions, or
better approximations, for planar graphs (vertex coloring, edge coloring, independent vertex set,
multicommodity flows, see [33] for an introduction).

Let us here briefly review two known algorithms that have been used to construct planar
filtered networks from a matrix of weights:

e PMFG [4];
e Deltahedron heuristics and subsequent improvement [7, 28, 29].

These algorithms provide estimates for optimal solutions to the MAXIMUM WEIGHTED PLANAR
GRAPH problem. Let us here recall that, given a complete edge-weighted graph G(V, E), with
vertex set V' and edge set E, the MAXIMUM WEIGHTED PLANAR GRAPH problem requires to
build a planar subgraph G'(V, E’), with E’ C E such that adding another edge e € E'\ E’ would
cause G(V, E' Ue) to be non planar and such that the sum of the weights is maximum (see [29]
and [7] for a detailed description of the problems and a survey).

A. Planar Maximally Filtered Graph

The PMFG algorithm [3] searches for the maximum weighted planar subgraph by adding edges
one by one (see [5]). The resulting matrix is sparse, with 3(p —2) edges. The algorithm starts by
sorting by weighting all the edges of a dense matrix of weights in non increasing order and tries
to insert every edge in the PMFG in that order. Edges that violate the planarity constraint are

Ts

Tt @

V2 V3 V9 V3

FIG. 1: T: move: addition of one vertex within a triangular face [16, 23, 24, 38, 39]. Its inverse, T ,
removes a vertex from inside a three-clique (in this case the clique {v1,v2,v3}).

discarded. The most computationally intense part of the algorithm is the planarity test, which
is performed every time an edge insertion is attempted. It results that the PMFG construction
performs an order of p? (O(p?)) planarity tests on any dense p x p matrix of weights W. Assuming
that the complexity for a planarity test in O(p) (see [34, 35]) the computational complexity of
the whole algorithm results in a O(p?) [9].

B. Deltahedron heuristic

The deltahedron heuristic [28, 29] searches for approximate solutions of the WMPG problem
starting from a tetrahedron, Ky, which is planar. Then, at each step a vertex is added into a
triangular face and three edges are added connecting the newly inserted vertex to the vertices
of the triangular face. This vertex insertion in a triangular face is called T» move (see Fig.1
and [16, 23, 24, 38, 39]). It is easy to see that the T operator acts without breaking planarity
ensuring that the final network is planar. The triangular face is chosen in order to maximise
the sum of the newly connected edges, while the vertices to be inserted are extracted from a
pre-sorted list. The vertex list can be sorted according to two functions of the edge weights
incident to the vertex, yielding two possible variants of the deltahedron heuristic:(i) the sum of
the incident edge-weights or (ii) the maximum incident edge-weight. Different weightings lead
to different ordering for the vertices and different results.

The deltahedron heuristic algorithm is not “greedy” (unlike the PMFG that chooses the heav-
iest feasible edge at every step) since the choice of the ordering of the vertices is done once at
the beginning and there is no subsequent attempt at optimising the order of the vertices taking
into account the local configuration. and-there-is—noknown performance—suarantee: However
the algorithm is considerably faster than the PMFG, since every T move keeps the planarity of
the graph and therefore there is no need to test for planarity at each stage.

An important feature of the graphs produced by T» moves is that they are chordal graphs:
every cycle of length greater than 4 has a chord, an edge not belonging to the cycle that joins
two non-adjacent vertices. Chordal graphs are perfect graphs and as such there are polynomial
time algorithms for solving generally hard problems such as finding a maximum clique, graph
coloring, and maximum independent set.

In [7, 40] the deltahedron heuristic is improved by maintaining a record of the most favourable
vertex insertion moves (Green and Al-Hakim heuristic — the GH-heuristic henceforth), essentially
keeping a cache of the best and next-to-best options for inserting any of the remaining vertices.
The cache is updated as the algorithm progresses. Optionally Osman et al. [7] allow for a

FIG. 2: Addition of three vertices in Leung’s extension of the deltahedron heuristic.

T

() (1) —

FIG. 3: T1 move: rewiring of a shared edge between neighboring triangular faces.

parameter that governs the“greediness” of the algorithm. In section III we will introduce a
modified version of the GH-heuristic algorithm.

C. Local topological moves: T1, T2, A, & S

With the deltahedron heuristic we have already introduced the 75 move that, as shown in
Fig.1, inserts vertex vy into the triangular face {v1,v2,v3} splitting it into three triangular faces
{v1,v2,v4}, {v1,v4,v3}, and {vy,ve,v3}. In the following we will call face a three-clique that
does not contain any vertex in the given embedding, reserving the word triangle for a generic
3-clique. We see that, after the T move, {v1,v92,v3} is no longer a face but rather a 3-clique.

In an extension of the deltahedron heuristic method, suggested by Leung [41], vertex insertion
can happen either one vertex at a time (the 75 move, as in Fig.1) or three vertices at a time as in
Fig.2. This corresponds to the insertion of an octahedron within a triangular face [25]; clearly this
is different from the T5 move that instead corresponds to the insertion of a tetrahedron. However,

Ts

V2 U3

(vr)
N

FIG. 4: Demonstration that the Leung’s extension in Fig.2 can be generated by using two 7> and one
T} moves.

A

 —

—
—

FIG. 5: A move: insertion of a vertex inside a plaquette made of two neighbouring triangular faces.

such a move can be obtained by combining 7> with another local move, called T [16, 23, 24, 38],
consisting in switching neighbors among two adjacent triangles, as shown in Fig.3. In general,
any local topological change of a surface triangulation that preserves embedding and results in
a triangulation can be realized through the combination of the two elementary moves 77 and
T, [17]. However it should be pointed out that the application of T} could cause the graph to
become no longer chordal. For instance, the Leung extension (Fig.2) can be produced via two
T, and one T7, as demonstrated in Fig.4.

Another move that we will use to build planar graphs is the A move as described in Fig.5. Also
in this case the move can be produced combining 77 and 75 and leads to non-chordal graphs.

Finally, we will use the ‘swap’ operator, .S, that re-labels sub sets of vertices of a graph as
shown in Fig.6, where it is acting on the vertices of a 4-simplex. This operation is trivial when the
weights are identical, but will in general affect aggregate functions of the weights in a non-trivial

V2 V3 V4 V2

FIG. 6: S move: relabelling of the vertices of a 4-simplex. Note that the topology of the graph is
unchanged.

way. The peculiarity of this operator is that it has not to operate locally and it keeps topology
unchanged preserving therefore planarity.

In the following section we shall see how T5, T7, A and S moves can be used to generate planar
filtered graphs as well as higher genus, non-planar, filtered graphs.

III. TRIANGULATED MAXIMALLY FILTERED GRAPH
A. TMFG construction

The TMFG algorithm starts from a clique of order 4 (K4) and adds vertices by using the
local move T». The novelty is that, at each step, the algorithm optimizes a score function (e.g.
the sum of the weights of the edges). Similarly to the GH-heuristics, the method does not rely
on any particular ordering of the vertices but, at every step, it calculates the score that would
be obtained by adding any of the remaining vertices inside any feasible face. T3 is applied to
the vertex and face pair that leads to the maximum increase in score. A naive implementation
would require to evaluate the gain function for every pair consisting of a feasible vertex and a
feasible face, thus resulting in an O(p?) calculations at every step and therefore O(p?) overall
computational complexity. However, it is possible to maintain and update incrementally a cache
with the information about the best possible pairing updating only the records affected by a move.
This cache contains as many elements as there are feasible faces (O(p)). Since the calculation
of the maximum of a vector of O(p) elements requires O(p) calculations , the overall number of
calculations for the score functions is O(p?). This results in much faster computational times
with respect to the PMFG. Differently from [7] we use a slightly different data structure to
keep track of the vertices to insert into the feasible faces. We also keep track of the triangles
that are no longer faces because this is relevant for subsequent modelling (see section IV).

Let us first focus on 75 moves only. After every application of T the cache is updated: some
scores that were previously achievable are no longer feasible, while others become feasible and
the corresponding score is calculated. More formally, we define a score function S(vp, {va, v, vc})
that quantifies the gain achievable by adding vertex vy, inside the triangle {vq, vy, vc}.

For instance, for a given, dense, matrix of weights W, the gain function can be the sum of the
weights of the edges that will be added by inserting v, in face {vq, vp, ve}: S(Vn, {Va, Vb, Ve}) =
W (vp,va) + W(vp,vp) + W(vp,ve). In the next session we discuss an information theoretic
interpretation of the score function.

The cache is a structure made up of two vectors (MaxzGain and BestVertex) indexed by
the faces in the planar graph present up to that point. Let us consider a given stage of the
construction with m triangular faces t;, ¢ € {1,2,--- ,m} and k remaining uninserted vertices
v € {v1 -+ vr}. The MaxGain vector contains the value of the maximum gain over all remaining
vertices for all triangular faces:

MaxGain_< max S(v,t1), max _S(v,f2),... max S(v,tm)). (1)

ve{vy-vg} vE{vy-vk} ve{vy v

The BestVertex vector contains inside the list of vertices that attains the maximum gain for
the specific triangular face:

BestVertex = | argmax S(v,t1), argmax S(v,t2),..., argmax S(v,tm) (2)
ve{vi--vr} ve{vy--vk} ve{vy--vg}

When a vertex (say vertex vy,) is added to a certain triangular face (say face ¢;) the two cache
vectors must be updated by removing vertex v, from the list of remaining vertices, removing
face t; and adding three new faces. It is worth noting that ¢; becomes a clique separator of the
graph [22]. The TMFG pseudocode is shown in Algorithm 1. For simplicity we have not given
details of the application of the moves T, A and the swap operator S. The TMFG generated
by using T5 only is a 4-clique tree.

The TMFG algorithm can be extended to include 77 and A moves as well. In this case,
the moves are local, internal to the plaquette made by two joint triangles (i.e. {v1,v2,v3} and
{v2,v3,v4} in Fig.3). The gain function for a T move is associated to the removal of an edge
(i.e. (v1,v3) in Fig.3) and the simultaneous addition of another edge (i.e. (v2,vs) in Fig.3).
Similarly the gain for a move of type A (as shown in Fig.5) results from the removal of one edge
and the insertion of a new vertex and four new edges. The use of 77 and A moves generally
improve gain; however, we have verified that the algorithm with 75 only produces very similar
results. Furthermore, planar filtered graph with 77 or A moves are no longer clique trees but
rather bubble-trees [9] which are in general no longer chordal. For instance see Fig.4 where the
application of T; creates a non-chordal graph: the cycle v; — vo — vg — v5 — v1 has length grater
than 3 without internal chords. This can have some implications for dependency modeling, as
we shall discuss in Section IV. In the following we will therefore consider separately the two
cases of TMFG constructed with and without 77 and A. In many cases the application of the
swap operator S results in higher overall gains. This operator has the advantage of leaving the
overall topology unchanged but its use should be regulated by few local or heuristic criteria to
avoid an increase in the complexity of the algorithm due to the increasing number of possible
combinations. The case that we have implemented requires the evaluation of all the possible
combinations of the four vertices involved in the execution of a T, operation. This requires some
further changes to the cache vectors, but — being applied locally — it does not increase the overall
computational complexity that remains O(p?).

The TMFG algorithm is not greedy with respect to edge insertion in the sense that the best
possible move is chosen from a subset of all the feasible edge insertions that preserve planarity.
Nonetheless, we shall see that TMFG performs as well as — or better than — the PMFG for a
large class of weight matrices, including squared correlation coefficient matrices from empirical
time series which are relevant for modeling [42].

®» 9 o »

10
11
12
13
14
15
16
17
18
19
20

input : A dense p X p square matrix W with positive weights (e.g. a matrix of squared correlation
coeflicients)

output: A sparse matrix, P, a filtered version of W fulfilling the planarity constraint

C1 + Tetrahedron, {vi,v2,vs,v4}, with highest overall total score ;

// Assign the four triangular faces in C; to the array 7T

T < {{v1,v2,v3}, {v1,v2,v4}, {v1,v3, 04}, {v2,v3,v4}};

// Put the p —4 vertices not belonging to C; in the array V

V {U57"' 7UP};

// Create an empty list of Separators

S+ o;

// Assign the first tetrahedron to the list of cliques

C C1;

P W(Cl,Cl);

Calculate MazGain for T and V as in Eq.(1) ;

Calculate BestVertex for T and V as in Eq. (2) ;

// Insert p—4 vertices via T

while V is not empty do

Find the t; € T and v; € V that achieve the maximum in MazxGain;

Insert v; into ¢; // this creates three new triangles t,, tp, tc

V< V\vs;

T — (T\ {tl}) U {tay tb7 tC}?

S« {ti};

S+ SuUS;

C’i <~ {th tav tb7 tC}7

C+ CUC;

Update MaxGain and BestVertex to reflect the changes in 7 and V;

end

21 return P;

Algorithm 1: TMFG algorithm

B. Dynamical adaptability

Due to the local nature of the operators, 71, 15, TQ_l, A, A71 and (local) S, used to construct
the TMFG one can continuously modify the network allowing ‘online’ adaptability while new data
are generated. This is of practical importance because in real, big data, applications information
is changing dynamically with new data continuously fed causing changes in the matrix of weights
that require modifications of the filtered graph. Further, creation of new nodes is required
when new elements/variables become relevant in the system. Conversely, elements/variables
can eventually become irrelevant and the corresponding vertices should be eliminated from the
graph. The implementation of these moves requires keeping a cache matrix of gains continuously
updated and dynamically checking for moves that improve total gains.

C. Parallelization and big data

The local nature of TMFG construction and dynamical adaptation through T, T, T4 t
A, A=! and (local) S, moves make it ideal for parallelization. There are several possibilities for
parallelization and it is beyond the purpose of the present work to implement a parallel algorithm
for TMFG. Let us however discuss briefly a possible parallel implementation of the TMFG. One
of the main features of planar triangulations is that three-cliques uniquely divide the network into
two ‘inside’ and ‘outside’ subgraphs within a nested hierarchical structure [43]. This means that,

10

given a seed structure of three-cliques, each clique can develop its inside subgraph independently.
A processor can be assigned to each seed clique and calculations can be performed locally. Given
that each separating clique divides roughly the graph into two parts one can compute the TMFG
in O(p) using O(logp) processors. Another issue related to big data is the size of the score
vectors. It is clear from the construction that the size of the cache grows linearly with the
dimension of the problem and that triangles in the basis can be assigned to different processors,
allowing parallel updates of the cache.

D. Memory usage

In the case of pair-wise dependence (such as correlation) both the deltahedron heuristic and
the PMFG require to compute in advance the entire correlation matrix, while the TMFG does
not use the full information from the correlation matrix and could calculate only the correlations
necessary for the incremental update of the gain vectors. This is an advantage already for
correlation measures, in the (numerous) cases where the number of observations (g) is less than
the number of variables (p): in fact it could require much less memory (approximately p x q) to
store the time series of the observations and calculate the correlations on-demand, rather than
calculating and storing a large correlation matrix (approximately %). This fact is even
more relevant for multi-point dependencies (e.g. partial correlation, mutual information, ...): in
these cases the TMFG would still require only to store the time series in memory and would
require the calculation of the relevant gain functions only, while other methods would require
the storage of large amounts of data (e.g. order of p® for a three-points dependency measure).

IV. MODELING WITH TMFG: INFORMATION THEORETIC PERSPECTIVE

In complex systems, such as financial markets, a large number of interdependent variables are
typically involved. The TMFG is a way of filtering the structure of interrelation between the
variables reducing it to a network of most relevant interactions.

Modeling the system statistically consists in identifying the joint probability distribution that
best describes the observed collective behavior of the variables.

Specifically, given a set of observations {zi(1),..,21(q)}, {z2(1),...,22(q)},
{zp(1),...,zp(¢)} of p random variables X = {X;,Xs,...,X,}, one aims to estimate a
joint probability distribution function Q(X) that is the best representation of the ‘true’
multivariate probability distribution function P(X) from which the set of observations are
drawn. Clearly, P(X) is unknown and the only information available are the observations
{z1(1), ..., z1(9)}, {z2(1),...,x2(q)}, ... {zp(1),...;xp(q)} from which Q(X) must be estimated.

Information filtering graphs can be used to compute Q(X). The main advantage is that these
graphs are locally low dimensional (e.g. the largest clique is K4 when planarity is enforced) which
makes sampling tractable also with limited amount of data [42]. Further, the TMFG constructed
from T, moves results in a tree made of 4-cliques separated by 3-cliques (called separators in the
following). This can be seen by observing that the root of the tree is the initial 4-clique and that
every Th move creates a further 4-clique one level deeper, and that every 4-clique other than the
root is separated from its parent by a 3-clique. A pictorial representation of this fact is in the
first two pictures in Fig. 2: the T5 move creates the clique {v1,vs,v4,v5} one level underneath
the parent clique {vy,v9,v3,v4} and the two cliques are separated by the 3-clique {vy,vs,v4}.
This is a particular case of a triangulated or chordal or decomposable graph [22]. From the theory
of graphical models (see [18]) we know that the probability distribution function associated to a

11

decomposable graph — such as the TMFG — admits the representation:

[lece Pe(Xe)
[lies Ps(Xs)

Where: C and S are respectivelly the set of cliques and separators of the graph and P.(X.)
and P,(X,) are the marginal probabilities of the sub sets of variables X, and X, associated
respectively with the 4-clique ¢ and the triangular separator s.

Equation (3) reduces the p-dimensional problem of estimating the joint probability distribution
function Q(X) to the estimation of a set of 3- and 4-dimensional local marginal probabilities
Py(X;) and P.(X.) [42]. Such a reduction of a global high-dimensional problem to a set of
local low-dimensional problems helps greatly in the estimation of the joint probability. The open
question is now to measure how well the, unknown, true joint distribution P(X) is represented
by the model estimation Q(X) factorized over the TMFG. To this end we can measure the
dissimilarity between the two probability density functions which is given by the Kullback-Leibler
divergence [44]:

QX) = (3)

Dic(P 1) = 3 POX) o G5) (@

For simplicity we are considering discrete variables, a similar treatment can be developed for
continuous variables. The goal is to construct the TMFG that minimizes such a distance. By
substituting Eq.3 into Eq.4 we write the Kullback-Leibler divergence as follows:

Drr(P [Q)= ZP) log (P(X)) (5)
Y R ()
ceC X,
JrZZP s) log (Ps(Xy))
seS X

From a information theoretic perspective the first term in Eq.5 (with a minus sign),

H=-— ZP)log (P(X)) , (6)

quantifies the total amount of uncertainty in the system, measuring the number of bytes (if
base-2 logarithms are used) necessary to define a state. The other two remaining terms in Eq.5:

==) Pu(Xo)log (Po(Xe)) + Y > Pu(X,)log (Py(X,)) (7)

ceC X, seS X

also quantify an uncertainty, but in this case, associated with the model of the system. In
other words, by adopting the TMFG structure of interactions, H,, measures the number of
bytes necessary to define the state of the system when only the interrelations among variables
associated with edges in the TMFG are considered.

An algorithm to construct the TMFG with the aim of minimizing D, (P || Q) can be imple-
mented by choosing at every stage the move that minimally increases H,, consistently with all
other constraints. In particular, considering the TMFG construction via T moves, the contri-
bution to Dg (P || Q) from the insertion of a vertex v added inside an existing triangular face
t generating a 4-clique u is:

S(v,t) Za X,)log (Pu(Xy)) = > Pi(Xy)log (P(Xy)) (8)

Xt

12

From an information theoretic perspective —S is the amount of uncertainty introduced in the
model by including a variable v, the TMFG structure should be constructed in a way to minimize
such uncertainty. In [42] the case for normal multivariate distributions is discussed in detail.

Note that, in practice, to compute Eq.5 one must substitute the — unknown — marginal distri-
butions of the real probability P.(X.) and P.(X,) with the corresponding empirical estimators
P,(X,) and P.(X,) and the equality in Eq.5 would therefore become an approximate estimate.
This is consistent with our approach as far as the empirical estimators are the MLE estimate of
the real marginal distributions of cliques and separators.

V. EXAMPLES OF TMFG CONSTRUCTION AND COMPARISON WITH PMFG

A vast literature has demonstrated that PMFG can be used to retrieve meaningful information
about the structure of interdependency in complex datasets [4, 9-12], it is therefore natural to
compare the performances of the TMFG with the ones of the PMFG.

Let us first look at the scaling of execution times for TMFG and PMFG algorithms as function
of the size p of the weight matrix W; results are reported in Fig.7 (seconds on a 2.6 GHz Intel
Core i7T®). We observe that TMFG execution times scale with the matrix dimension size p
approximately as O(p?) while PMFG scales approximately as O(p®). The 2-parameters best
polynomial fits give respectively: Trypg ~2-1077-p?2 +6-10"*p and Tparpg ~ 21076 - p3 +
3-107%p2. Overall we can see that execution times are several orders of magnitude faster for
TMFG than PMFG.

We have then compared the total retained edge weight for the following four variants of the
TMFG construction:

1. TMFG: the base version of the algorithm. It uses only T operators. This version of the
algorithm produces chordal graphs.

2. TMFG-T1: uses Ty followed by an optimisation stage where a number of 77 moves are
performed after every insertion of a new vertex.

3. TMFG-S: a variant of the basic algorithm with T, followed by local optimization with S.

4. TMFG-A: a variant of the algorithm with T3 followed by local optimization with 77 and
A.

We have tested 9 types of random weight matrices W with different weight distributions:

1. Beta distribution with shape parameters o = 0.5 and § = 3. This distribution is heavily
skewed and is characterised by very low density on the right side of the interval [0, 1].

2. Beta distribution with shape parameters & = 3 and g = 0.5. This distribution is skewed in
the opposite direction and has a high density near the right extreme of the interval [0, 1].

3. Pareto distribution with power law exponent equal to 1. This distribution has a fat tail.

4. Pareto distribution with power law exponent equal to 2. This distribution has still a fat
tail, but thinner than the previous one.

5. Random matrix of correlations of 400 time series generated by simulating 20 normally
distributed common factors.

6. Random matrix of correlations of 400 time series generated by simulating 50 common
factors. This matrix shows less structure than the one generated using 20 factors.

13

O TMFG T2
O PMFG

102} .
£
]
X2 101 E E
[eP]
g
=
g

0

£ 100¢ E
=
(]
Q
"
[<B]

107k E

'2 Ll " " PR T R R A | A |
10 100 1000 10000
Size p

FIG. 7. Demonstration that TMFG is faster and scalable with respect to the PMFG. Comparison
between execution times for TMFG and PMFG for different values of p ranging between 50 and 10000.
Lines are the 2-parameters best polynomial fits (see text).

7. Random matrix of correlations of 400 time series generated by simulating 100 common
factors. This matrix shows less structure than the two above.

8. Uniform distribution over [0, 1].

9. Square of a real correlation matrix coefficients computed from daily log-returns of 342 US
stocks, across a period of 15 years (form Jan 1997 to Jul 2012) (see [10]).

All matrices are symmetric and have size p = 400 except the real correlation data that have
sizes p = 342. For all the weight matrices (excepting for the real correlation matrix) we have
compared results for 100 samples. For the real correlation matrices we generated matrices by
random sampling the starting point of 100 time windows of length 1000 data points over a period
of 4500 points in total. Table I reports the average relative performance, defined as the ratio
between the sum of the edge weight in the four variants of TMFG with respect to the sum of the
edge weight in the PMFG. It shows that the PMFG is usually more effective when the density of
high weights is low, while the TMFG is more effective when the density of high weights is higher
or limited. This result is to be expected since the PMFG is less constrained than the TMFG in
picking up isolated high-weight edges one at a time, while the TMFG is more efficient in selecting
subsets of edges with a high total sum. For the random matrices of correlation we see that the
TMFG performs better than the PMFG in filtering the more structured matrix generated using
20 factors. In the real case we see that the TMFG is marginally better than the PMFG. We
conclude that TMFG is in general performing comparably well, and sometimes better than the

14

Welght matrix TMFG/ TMFG-T1/ |TMFG-S/ |TMFG-A/ |TMFG _ (Time)/
. PMFG PMFG PMFG PMFG PMFG (Time)

coefficients

distribution

Beta(0.5,3) 95.42% 96.24% 95.72% 99.89% 0.16%

Beta(3, 0.5) 104.70% 104.73% 104.77% 104.80% 0.14%

Pareto(1) 99.97% 99.97% 99.97% 99.97% 0.17%

Pareto(2) 97.94% 98.00% 98.02% 98.32% 0.17%

Random Matrix [102.23% 102.63% 102.57% 103.77% 0.22%

(20 factors)

Random Matrix [100.30% 100.82% 100.64% 102.54% 0.21%

(50 factors)

Random Matrix | 98.46% 99.14% 98.86% 101.42 % 0.21%

(100 factors)

Uniform 116.27% 116.29% 116.34% 116.89% 0.15%

Real correlation [100.11% 100.17% 100.24% 100.42% 0.15%

matrix

TABLE I: Average relative performances (ratio between sum of edge weights) of the TMFG algorithm
with respect to the PMFG. Four TMFG variants and nine different weight distributions. Note that
TMFG and TMFG-S are chordal graphs.

PMFG. We observe that the TMFG tends to improve relative performance as the size of the
matrix increases (see Table IT). When other moves are used TMFG improves performances with
best performances obtained by the TMFG-A variant.

Weight matrix size] LMFG TMFG-T1 |TMFG-S | TMFG-A
, /PMFG /PMFG /PMFG /PMFG
50 88.68% 88.82% 89.35% 95.93%
100 90.49% 93.13% 92.31% 98.14%
150 92.14% 93.77% 90.44% 95.26%
300 93.73% 95.6% 94.63% 100.06%
500 96.36% 96.79% 96.6% 100.98%
700 98.83% 100.49% 98.92% 103.58%
850 98.93% 99.95% 99.99% 103.83%
1000 100.33% 100.56% 100.71% 105.39%
1200 101.34% 102.16% 101.16% 105.24%

TABLE II: Example of relative increase in performance of the TMFG algorithm with respect to PMFG
when dimensionality p increases. The underlying distribution is a Beta(0.5, 3).

VI. CONCLUSIONS

We have described a new family of algorithms, TMFG, to retrieve approximate solutions to
the MAXIMAL PLANAR GRAPH problem, which have the following desirable characteristics:

1. TMFG is faster than the previously proposed method PMFG [4] with execution times that
increase as the square of the weight matrix size p, while PMFG increases with the third
power of p.

2. TMFG constructed with 75 and S only produces chordal graphs. This opens the door to the
use of graphical modeling. The fact that the maximum dimension of cliques is controlled
by the topology entails that efficient inference algorithms can be used.

15

3. From TMFG construction t