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ABSTRACT
A generalised Lasso iteratively reweighted scheme is here in-
troduced to perform spatially regularised Hurst estimation on
semi-local, weakly self-similar processes. This is extended fur-
ther to the robust, heavy-tailed case whereupon the generalised
M-Lasso is proposed. The design successfully incorporates
both a spatial derivative in the generalised Lasso regulariser op-
erator and a weight matrix formulated in the wavelet domain.
The result simultaneously spatially smooths the Hurst esti-
mates and downweights outliers. Experiments using a Hampel
score function confirm that the method yields superior Hurst
estimates in the presence of strong outliers. Moreover, it is
shown that the inferred weight matrix can be used to perform
wavelet shrinkage and denoise fractional Brownian surfaces in
the presence of strong, localised, band-limited noise.

1. INTRODUCTION
Characterised by their long-range dependency structure, weak
self-similar models find myriad applications in signal and im-
age processing and beyond including texture analysis for super-
resolution [1], classification [2], segementation [3], condition
monitoring [4], decluttering [5], and denoising [6, 7, 8].

The Hurst parameter, which controls the power-law de-
cay, and therefore the smoothness or texture, is usually of
great importance and various estimation schemes have been
developed. However, the majority of these either assume a
globally constant value or, as in the multifractal formalism,
forgo any attempt to estimate the pointwise value and instead
describe how it varies stochastically over space [9, 10, 11].
Alternatively, one can consider a case somewhere in-between
these two extremes whereby the Hurst parameter varies as a
piecewise low-order polynomial. The piecewise constant case
could, for example, form a model outline to describe multi-
ple textures or features in an image scene. Indeed, Pižurica
[12] exploited interscale wavelet ratios and deviation from a
power-law of sorts to perform adaptive denoising.

Recently, Nafornita et al [13] formulated a spatially reg-
ularised Hurst estimator by exploiting Tibshirani’s newly de-
veloped path algorithm for the generalised Lasso [14] . Their

J. D. B. Nelson was partially supported by grants from Innovate UK and
the Dstl

method delivered superior Hurst estimation and Hurst-based
adaptive denoising compared to ordinary least-squares. How-
ever, like other non-robust methods which assume normal error
terms, their method is vulnerable to outlier noise in the wavelet
energy spectrum. If the normality assumption is broken, the
Hurst estimates can become very poor. We here propose a
significant generalisation of [13] which allows for a heavier-
tailed distribution and which mitigates outlier noise. Although
robust regression approaches have been considered for Hurst
estimation [15], they have not been combined with spatial reg-
ularisation and, indeed, have not even been attempted for local
or semi-local Hurst estimation (the Hurst parameter is assumed
constant throughout the data). Likewise, although robust ap-
proaches have been applied to the Lasso [16, 17, 18], they did
not consider the generalised Lasso or Hurst estimation.

In Section 2 we discuss wavelet-based Hurst estimation
and introduce an iteratively reweighted (IRLS) scheme to solve
the generalised Lasso method. In Section 3 we describe robust
estimation and propose a new robust IRLS M-estimator for
the generalised Lasso problem. Experiments in Section 4
illustrate the superiority of the method for Hurst estimation
and denoising in the presence of band-limited noise.

2. BACKGROUND
The computational machinery used by Nafornita et al [13] is
restricted to Tibshirani’s generalised Lasso [14] path algorithm.
We here proposed a simple, more flexible, alternative via IRLS.

2.1. Regularised Hurst estimation
There exists a natural and elegant connection between weak
statistical self-similarity, the Hurst parameter, and multiresolu-
tion analysis as summarised in the following result.
Theorem 1 (e.g. Nelson & Kingsbury [5]). Let T ⇢ R2

and suppose the stochastic field z : T 7! R, has weak

statistical self-similarity namely Ez(�·) = �HEz and

Ez(�t)z(�·) = �2HEz(t)z(·). Then E
��
(Wz)(· ; k, ✓)

��2 /
2

2k(H+1)
where W is the wavelet operator defined by

(Wz)(t; k, ✓) := 2

�k
⌦
z, ✓(2

�k ·�t)
↵
, with wavelet  de-

fined over space t, orientation ✓, and kth finest scale level.

A lesser studied generalisation of this problem is when the
Hurst parameter is allowed to vary slowly over space. Here,
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E |·|2 is approximated by the sample 2nd moment in some spa-
tial region. When localisation is of particular importance, the
pointwise estimateEk,✓(·):=

��
(Wz)(· ; k,m)

��2 is used [19].
The spatial domain is discretised as t 2 T = {ti}n0

i=1. We
drop ✓ (the same analysis is performed in each direction) and
put yk[i] := logEk,m(ti). Then the power law in Theorem 1
motivates the linear model yk[i] = k�2[i]+�1[i], i.e. y = X�,
with y = (y

>
1 , . . . ,y

>
n0
)

> 2 Rn, yi = (yk� [i], . . . , yk+ [i])
>,

� = (�>
1 , . . . ,�

>
n )

> 2 Rp, �i = (�1[i],�2[i])
>, and X =

In0 ⌦X0 2 Rn⇥p, with

X

>
0 =


1 . . . 1

k� . . . k+

�
2 R2⇥K ,

where In0 is the n0 ⇥ n0 identity matrix, and where n = Kn0

and p = 2n0. Here the regression is performed over a subset
of scales k�, . . . , k+ because the finest levels have poor SNR
and the coarsest levels have poor spatial localisation.

The spatially varying Hurst parameter can then be esti-
mated from the least-squares estimate via H[ti] = 1/2ˆ�2[i]�1.
If the Hurst parameter varies slowly or piecewise over space
then the generalised Lasso formulation of Nafornita et al [13],
namely argmin� ky �X�k22+� kr�k1, where r 2 Rm⇥p

performs spatial differentiation on �, can be used to spatially
regularise the estimates for � and hence H . As shown in [13]
and the Experiments section below, the regulariser smooths the
estimated Hurst parameter over space and leads to significantly
superior estimates for piecewise varying Hurst when compared
to the pointwise, ordinary least-squares approach.

2.2. Iteratively reweighted least-squares Lasso
The basic form of Lasso (with r = I above) is not directly
useful for Hurst estimation, per se, but it is nonetheless in-
structive to consider how it is solved via iteratively reweighted
least-squares (IRLS). As discussed further in Section 3, al-
though myriad alternatives exist (proximal methods, LARS,
coordinate descent, Landweber iteration, grafting, Osbourne’s
algorithm, ✏-boosting, etc) the IRLS algorithm provides a sim-
ple means to extend Lasso to the robust case where the usual
square-loss term is replaced by a cost function which down-
weights the erroneous affects of anomalous, or outlier, values.
Unlike many other methods, IRLS can be easily extended to
overlapping mixed (grouped-sparse) norms [20] and, although
its exponential convergence advantage [21] is mitigated by
the iterations per loop, recent fast methods based on precondi-
tioning have emerged [20]. The basic form [16] proceeds by
rewriting the Lasso objective as a weighted ridge regression

��
y �X�

��2
2
+ �

���
��
1
=

��
y �X�

��2
2
+ �

��
⌦

1/2�
��2
2
,

with y 2 Rn, X 2 Rn⇥p, � 2 Rp, and where ⌦ =

diag

�
|�i|�1 �p

i=1
2 Rp⇥p. One then arrives at the following

simple iterative procedure for Lasso which solves a weighted
ridge problem and then updates the weights:

�(`+1)  (X

>
X+ �⌦(`)

)

�1
X

>
y,

⌦

(`)  diag

�
|�(`)

i + �|�1
�p
i=1

. (1)

where � can be a small, fixed constant or updated as in [21].
2.3. Iteratively reweighted least-squares for regularised
Hurst estimation
Since r does not have full rank the regularised Hurst es-
timator cannot collapse down to the basic Lasso. We here
fuse the ideas of the preceding two subsections and propose
an IRLS scheme for generalised Lasso which offers an al-
ternative means to solve the spatially regularised Hurst esti-
mation problem. Building on the previous section we note
that the generalised penalty can be written as kr�k1 =

P
i

��r>
i �

��
=

P
i

��r>
i �

���1
(r>

i �)
2, where ri 2 Rp⇥1

such that r = (r>
1 , . . . ,r>

m)

>. We then formulate the
generalised Lasso objective as a weighted ridge regression:
��
y �X�

��2
2
+ �

��r�
��
1
=

��
y �X�

��2
2
+ �

��
⌦

1/2r�
��2
2
,

where, now, ⌦ = diag

�
|r>

i �|�1
�m
i=1
2 Rm⇥m and we thus

propose the IRLS scheme for the generalised Lasso:

�(`+1)  (X

>
X+ �r>

⌦

(`)r)

�1
X

>
y,

⌦

(`)  diag

�
|r>

i �
(`)

+ �|�1
�m
i=1

. (2)

Unlike Tibshirani’s generalised Lasso [14], IRLS does not
yield the full solution path (for all �). However, in practice, it is
common to pick a suitable � and solve over the � coefficients.
Either � is chosen according to some theoretical criterion or is
‘learnt’ via cross-validation or other means.

3. ROBUST HURST ESTIMATION
It is well known that the least-squares based estimators are
vulnerable to outliers. Just a small number of anomalous
measurements or noise artefacts can render poor estimates.
Even when just a minority of data points lie significantly
away from the model assumptions, robust approaches become
attractive. In this scenario the assumption that the residu-
als are Gaussian, which gives rise to the least-squares loss,
must be dropped in favour of a more heavier-tailed distribu-
tion. Typically, it is assumed that the density can be written
in the form f(✏) / exp�⇢(✏). Assuming the noise is iid,
minimisation of the negative log-likelihood yields the prob-
lem argmin�

P
i ⇢(yi � x

>
i �), where X = (x

>
1 , . . . ,x

>
n )

>.
Differentiating with respect to � and setting to zero givesP

i  (✏i)x
>
i = 0, where the so-termed score function  is the

derivative of the cost function:  = ⇢0. Setting wi :=  (✏i)/✏i
then yields the solution � = (X

>
WX)

�1
X

>
Wy, with the

weight matrix W = diag(wi)
n
i=1. Here, again, IRLS can be

used; the algorithm is initialised with the ordinary least squares
solution. The weight matrix is then updated before the next
iteration of the solution is computed and so on:

�(`+1)  (X

>
W

(`)
X)

�1
X

>
W

(`)
y,

✏(`)  y �X�(`), W

(`)  diag

✓
 (✏

(`)
i )

✏
(`)
i

◆n

i=1

.(3)

3.1. Robust Lasso
The robust Lasso or M-Lasso results from combining the ro-
bust cost function ⇢ with the sparsifying `1-norm penalty:



Table 1. The family of the proposed robust, generalised Lasso
problems

Condition Problem

� 6= 0,W,r 6= I or 0 proposed generalised M-Lasso
r = I M-Lasso
W = I (IRLS) generalised Lasso

r = W = I Lasso
� = 0, (r = 0) robust least-squares

� = 0, (r = 0),W = I ordinary least-squares

argmin

�
⇢(y �X�) + � k�k1 .

Since both robust least-squares and the Lasso can be solved
via IRLS it is quite natural to form a combination of the two
(cf. (1) and (3)) to solve M-Lasso. See, e.g., Zhang et al [16].
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>
W
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X+ �⌦(`)

)
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(`)
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✏(`)  y �X�(`), W

(`)  diag

✓
 (✏

(`)
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✏
(`)
i

◆n

i=1

,

⌦

(`)  diag

�
|�(`)

i + �|�1
�p
i=1

. (4)

3.2. Robust generalised Lasso
We propose the combination of our IRLS scheme (2) with (3)
to solve the robust, generalised Lasso or generalised M-Lasso:

argmin

�
⇢(y �X�) + � kr�k1 ,

with the iterations:

�(`+1)  (X

>
W

(`)
X+ �r>

⌦

(`)r)

�1
X

>
W

(`)
y,

✏(`)  y �X�(`), W

(`)  diag

✓
 (✏

(`)
i )

✏
(`)
i

◆n

i=1

,

⌦

(`)  diag

�
|r>

i �
(`)

+ �|�1
�m
i=1

. (5)

Note that this model and scheme can be thought of as a gen-
eralisation of the M-Lasso and the (IRLS) generalised Lasso.
Indeed, it collapses down to the less general versions accord-
ing to the Table 1. The ⌦ facilitates the iterative procedure.
The r matrix spatially regularises the solution and exploits
the assumption that the Hurst parameter varies slowly or as
a piecewise constant function. The weights W downweight
and mitigate outliers in the wavelet coefficient magnitudes y
caused by band-limited noise or any other pseudo-periodic con-
tent which interferes with the power-law assumptions. Such
artefacts (cf. top-centre of Fig. 2; and Section 4) are typical
of textures which present edges or contours that may obscure
the signal/object of interest . For instance, see the elephant in
long-grass example in [22] or the mine hunting in the presence
of sand ripples using sonar imagery example in [19].

4. EXPERIMENTS
The robust Lasso was compared to closely associated methods
on a Hurst estimation, and denoising task. In both cases, the
robustness to outliers was tested.

Table 2. Mean absolute error (and standard deviation) of
the Hurst estimators: OLS, Lasso, and M-Lasso for data sets
‘CurvesQ’ (Q = 3, 4, 5),with noise prob p (%) and var �2.
p Method �2 = 0 �2 = 10 �2 = 1000

Q = 3
Ols 0.265 (0.331) 0.283 (0.338) 0.353 (0.401)

1 Lasso 0.167 (0.186) 0.194 (0.193) 0.262 (0.209)
M-Lasso 0.170 (0.195) 0.181 (0.187) 0.188 (0.193)

Ols 0.265 (0.331) 0.344 (0.363) 0.721 (0.601)
5 Lasso 0.167 (0.186) 0.255 (0.199) 0.665 (0.317)

M-Lasso 0.170 (0.195) 0.223 (0.207) 0.238 (0.228)
Q = 4

Ols 0.253 (0.282) 0.266 (0.287) 0.350 (0.365)
1 Lasso 0.197 (0.182) 0.217 (0.192) 0.301 (0.217)

M-Lasso 0.184 (0.189) 0.200 (0.196) 0.216 (0.196)
Ols 0.253 (0.282) 0.321 (0.292) 0.778 (0.589)

5 Lasso 0.197 (0.182) 0.281 (0.178) 0.754 (0.373)
M-Lasso 0.184 (0.189) 0.230 (0.183) 0.262 (0.210)
Q = 5

Ols 0.254 (0.270) 0.285 (0.284) 0.383 (0.380)
1 Lasso 0.206 (0.182) 0.242 (0.188) 0.340 (0.227)

M-Lasso 0.189 (0.183) 0.214 (0.187) 0.225 (0.193)
Ols 0.254 (0.270) 0.363 (0.305) 0.764 (0.576)

5 Lasso 0.206 (0.182) 0.331 (0.196) 0.745 (0.367)
M-Lasso 0.189 (0.183) 0.273 (0.196) 0.275 (0.217)

Curves3

Curves4

Curves5

Fig. 1. Hurst estimates of three fractional Brownian surfaces.
1st column: true Hurst; 2nd: OLS; 3rd: Lasso, 4th: M-Lasso.
Examples chosen have comparable performance to the re-
spective means over the relevant parameters (see Table 2),
namely p = 0.01, �2

= 1000; p = 0.05, �2
= 10; p = 0.01,

�2
= 1000 for curves ‘3’, ‘4’, and ‘5’ respectively.

4.1. Hurst estimation
Hurst estimation, used in wide-ranging applications [1, 2, 4, 5],
offers a measure of long-range dependency, or texture, present
in data. An adaptation [19] of the incremental Fourier synthe-
sis method [23, 24] was used to synthesise fractional Brownian
surfaces with a piecewise varying Hurst parameter. One hun-
dred instantiations of three image types, of varying complexity,
were simulated. The ground truth (of the underlying Hurst



Table 3. Sum of absolute reconstruction error (and standard de-
viation) using various denoising methods for data set ‘Curves4’

�2 Ols Hard Lasso M-Lasso
Q = 3

10 1.124 (0.257) 2.192 (0.172) 1.130 (0.261) 0.416 (0.288)
1000 15.586 (10.291) 2.167 (0.130) 15.603 (10.124) 0.427 (0.141)

Q = 4
10 1.329 (0.287) 2.509 (0.210) 1.244 (0.327) 0.620 (0.281)

1000 18.345 (14.431) 2.515 (0.174) 18.534 (14.574) 0.632 (0.448)
Q = 5

10 1.393 (0.286) 2.592 (0.261) 1.395 (0.289) 0.625 (0.319)
1000 25.181 (40.091) 2.565 (0.186) 21.768 (23.568) 0.678 (0.385)

original

Fig. 2. Denoising example for �2
= 1000, p = 0.01. Top row:

original image, noisy image, hard thresholded reconstruction;
bottom row: reconstruction using OLS, Lasso, and M-Lasso
weight methods.
parameter) is shown in the first column of Fig. 1 for each type.

Three methods were used to estimate the Hurst param-
eter from dual-tree ([25]) wavelet coefficients: ordinary
least-squares (OLS), (generalised) Lasso, and the proposed
(generalised) M-Lasso. For the latter, we set the score
 to be the Hampel’s three part redescending function
and, as suggested by [16], fixed the parameters thereof
to {1.96, 2.24, 2.58} ⇥ �̂⇢, where we compute the estimate
�̂⇢ = median(|yi � yi�1|)ni=2/(0.6745

p
2). To emphasise

the importance of locality, we used image patches of size
32 ⇥ 32 and fixed k� = 2, k+ = 4 to discard the finest and
coarsest scales. The best results (over �) were reported for
both the Lasso methods. In practice this can be learned via
cross-validation or set according to how rapidly one expects
the piecewise Hurst parameter to vary. Outlier, multiplicative
noise was added to a proportion p of the 2nd finest scale
level coefficients according to d⇠2,✓ = (1 + Iu<p")d2,✓, with
u ⇠ U(0, 1), " ⇠ N (0,�2

), and dk,✓ := (Wz)(·; k, ✓). Here
p controls the probability of a coefficient being corrupted by
an outlier and � determines the probability of the outlier being
large. Figure 1 illustrates example estimates on the Curves3-5
data. One can see that the outliers manifest themselves as
black blobs in the Hurst estimates and that the least-squares
estimates are especially sensitive. The Lasso has some limited
success in smoothing these artefacts away but the M-Lasso

is notably superior. Table 2 confirms the advantage of the
proposed generalised M-Lasso over the other methods grows
as the outliers become more significant (as either p or � is
increased). At small outlier variance it does no worse.
4.2. Denoising
The Hurst parameter has been exploited in a variety of de-
noising schemes. Nafornita et al [13] applied a framework
based on that of Echelard and Lévy-Véhel [6]. The scheme
adaptively shrinks finer-level wavelet coefficients if they lie
above the power-law decay, as estimated by the log-slope (i.e.
Hurst parameter) of the coarser wavelet coefficients.

However, in our example, the image patch is smaller (32⇥
32). Furthermore, (outlier) noise is added to the 2nd finest
scale level, the finest level has very low SNR, and the coarsest
level is very poorly localised. In this case, the best option
is to use only the second and third finest scales to estimate
the slope. Unfortunately, our experiments revealed that this is
highly vulnerable to noise. On the other hand, the ‘robustified’
Hurst estimator proposed here can use the 2nd-4th finest scale
levels to estimate the slope. The outliers in the 2nd finest level
are automatically downweigted by the weight matrix W. In
this way, the weight matrix which is iteratively derived during
the estimation procedure, is directly used to shrink the wavelet
coefficients in the 2nd finest scale. After shrinkage, the inverse
wavelet transform is computed to reconstruct the image. Note
that the weights W (and, hence, this denoising scheme) is only
available in the IRLS-type scheme.

A typical comparative example is illustrated in Fig 2. The
band-limited noise can be clearly seen in the stripy patch in the
centre top of the image. Performing hard thresholding (zeroing
all coefficients in the 2nd finest level) results in a blurry image.
The generalised Lasso method of Nafornita et al [13] does
little better than OLS at this noise value (�2

= 1000) whereas
using the weight matrix derived from generalised M-Lasso, we
see that the reconstruction closely matches the original image.
Table 3 summarises the results over relatively small and large
outlier variance and for the three image types. Lasso and
OLS perform respectably only for relatively small noise levels
(�2

= 10) but are extremely poor for large noise (�2
= 1000)

where even hard thresholding is better. The proposed M-Lasso
weight matrix approach holds a small but significant advantage
at low noise and is clearly superior for large �.

5. CONCLUSION
A new Hurst estimator has been developed which combines the
robustness of M-estimators with spatial regularisation. This
results in an estimator which performs significantly better in
the presence of strong outliers and no worse than least-squares
and generalised Lasso for small, or no, outlier noise.

Further work could include the consideration of other M-
estimator functions, a more rigorous treatment of the regres-
sion statistics including confidence intervals, results on the
asymptotics of the estimators discussed, and a relaxation of
the piecewise model assumptions.
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