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Abstract 

A novel, highly soluble chromophore for use in organic electronics based on an indigoid structure 

is reported. Co-polymerization with thiophene affords an extremely narrow band-gap polymer 

with a maximum absorption at ~800 nm. The novel polymer exhibits high crystallinity, and high, 
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ambipolar transport in OFET devices of ~0.23 cm2 V-1 s-1 for holes and 0.48 cm2 V-1 s-1 for 

electrons. OPV device efficiencies up to 2.35% with light absorbance up to 950 nm, demonstrating 

potential for this novel chromophore in near-IR photovoltaics. 

 

Introduction 

The development of novel organic conjugated polymers has gained momentum in recent times 

due to their possible applications in organic photovoltaic (OPV) and organic field-effect transistor 

(OFET) devices where their lower cost, light weight, and mechanical flexibility are all attractive 

properties. Current high performance polymers have enabled OFET devices with mobilities in 

excess of 2 cm2 V-1 s-1, and OPV devices with power conversion efficiencies (PCEs) of over 8%.1-

3 Ultra-narrow band gap conjugated polymers are of great interest due to the ease of charge 

injection when incorporated into ambipolar OFETs, and also their near-IR optical absorption for 

use in both tandem and transparent OPV devices.4 Considerable interest has focused on planar bis-

lactam containing polymers such as diketopyrrolopyrrole (DPP) 15 and isoindigo 26. The electron 

withdrawing nature of the lactam core alongside its planarity has enabled DPP and isoindigo 

containing conjugated polymers to reach both OPV PCEs and OFET mobilities. 
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Figure 1. Bis-lactam containing compounds and polymer building blocks 

Indigo 3 is the most produced natural dye worldwide, and has a highly planar structure arising 

from intramolecular hydrogen bonding between the oxygen and the amide protons of the indol-3-

one units.7 Upon photoexcitation, rotation about the central carbon-carbon bond can effect trans-

cis isomerisation8 as well as either single or double proton transfer, resulting in rapid energy loss 

through internal conversion, thereby negating any potential for OPV devices.9 As a semiconductor 

in OFET devices, indigo has shown hole mobilities up to 1×10−2 cm2 V−1 s−1.10 More recently, 

functionalised indigoids have been investigated, and the mobility can be slightly enhanced to 

1.3×10−2 cm2 V−1 s−1 using 5,5’-dichloroindigo.11 Crucially the use of naturally occurring 

compounds as building blocks for materials in organic electronics can begin to address the issues 

of sustainability associated with them. As an example, Cibalackrot (7,14-diphenyldiindolo[3,2,1-

de:3',2',1'-ij][1,5]naphthyridine-6,13-dione, INDP) is an indigo derivative first synthesised in 1914 
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by condensation of indigo and phenylacetyl chloride.12 Importantly, the molecule is locked in a 

highly planar rigid conformation where proton transfer and trans-cis isomerization are not 

possible. This highly conjugated compound has similar functionality to compounds containing the 

popular bis-lactam system, and hence polymers based on this structure display interesting 

electronic properties. Remarkably however, there are almost no reports of IND implementation in 

organic electronics. Glowacki et al. reported the use of the parent small molecule in OFET devices 

to obtain reasonable OFET mobilities,13 and very recently He et al. demonstrated its use as a co-

monomer to achieve high field effect mobilities when co-polymerized with solubilizing co-

monomers.14 We were interested in developing soluble IND derivatives which would not require 

co-polymerization with complex co-monomers, and here we report the first synthesis of such 

materials and their potential for use in organic electronics. By demonstrating the use of conjugated 

polymers containing natural occurring and potentially bio-sustainable building blocks we believe 

that we are taking important steps towards addressing the issue of sustainability in organic 

electronics. 

 

 

 

Results and Discussion 

The synthesis (Scheme 1) begins with protection of commercially available 5-hydroxy-2-

nitrobenzaldehyde 4 with 3,4-dihydro-2H-pyran, followed by an aldol condensation to give (E)-

5,5'-bis((tetrahydro-2H-pyran-2-yl)oxy)-[2,2'-biindolinylidene]-3,3'-dione 6. A subsequent 

condensation reaction and concurrent deprotection of the tetrahydropyranyl groups affords the 2,9-

dihydroxy-7,14-di(thiophen-2-yl)diindolo[3,2,1-de:3',2',1'-ij][1,5]naphthyridine-6,13-dione 
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(INDT) compound 8. This compound was then alkylated with 2-octyldodecyl chains to improve 

solubility and then subsequently brominated with N-bromosuccinimide to afford our new novel 

INDT monomer 9. Co-polymerization via Stille coupling of monomer 9 with simple bis-

trimethylstannylthiophene affords polymer INDT-T which was purified by Soxhlet extraction 

using acetone, then hexane, to remove low molecular weight oligomers, and finally chloroform. 

The dark green polymeric product is soluble in common organic solvents such as chloroform and 

chlorobenzene. 

 

Scheme 1. Synthetic route to the novel INDT monomer 
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(nm)b 

λmax
film 

(nm)c 

HOMO 

(eV)d 

LUMO 

(eV)e 

Eg (eV)c Eg
calc 

(eV)f 

15,700 49,400 3.15 797 790 -4.24 -3.02 1.22 1.32 

Table 1. Physical and Optical Properties of INDT-T 

a) determined by SEC(PS) using PhCl as eluent b) PhCl solution c) spin-coated from PhCl 

5mg/mL d) determined by XPS e) HOMO + optical energy gap f) determined by TD-DFT using 

B3LYP/6-31g* 

The molecular mass of INDT-T was determined by SEC(PS) to be Mn ~15.7 KDa and Mw 

~49.4 KDa which, although is perhaps lower than optimal, is sufficient to evaluate the promise of 

this material in organic electronic devices. Figure 2a shows the solution (chlorobenzene) and thin 

film (spin coated from a 5mg/mL solution in chlorobenzene) UV-Vis absorption spectra of INDT-

T. Both spectra show a broad featureless absorption in the near-IR with λmax ~790 nm. The 

spectrum becomes somewhat broadened on going from solution to thin films which is attributed 

to solid state packing effects, often observed in similar materials. The optical band gap in the film 

can be estimated to be ~1.22 eV, demonstrating the effectiveness of the IND core at creating near-

IR absorbing materials. The HOMO and LUMO energy levels were determined by XPS and the 

optical energy gap and are found to be -4.24 eV and -3.02 eV, respectively. Both values are in a 

similar range to typical DPP and isoindigo polymers, thus showing that the IND containing 

polymers are an important addition to the bis-lactam containing conjugated polymer family.  
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Figure 2. a) Normalised UV−vis absorption spectra of INDT-T. Solution spectra was recorded in 

chlorobenzene and thin-film were spun from a 5 mg/mL solution of INDT-T in chlorobenzene b) 

X-ray diffraction of a drop-cast INDT-T film from a 5 mg/mL solution of INDT-T in 

chlorobenzene 

The influence of annealing temperature on the molecular packing in INDT-T thin films was 

studied by X-ray diffraction (Figure 2b). Drop-cast polymer thin films (5 mg/mL solution in 

chlorobenzene) shows a Bragg reflection at 2θ = 3.8°, corresponding to the (100) reflection and 

indicative of a typical lamellar packing distance of 2.3 nm. Annealing at 100 °C for 10 min leads 
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to a substantial increase in thin film crystallinity as observed by the increased intensity of the (100) 

peak, though we note that this improvement may not necessarily arise from increased ordering of 

the π-π stacking in the thin film.15 The appearance of the corresponding (200) reflection also 

indicates increased long range order. No noticeable changes in the in the film crystallinity are 

observed after annealing at higher temperatures. 

To investigate the electronic structure of the new polymer, DFT calculations were carried out on 

model trimers with methoxy substituents. The calculated energy gap is found to be 1.32 eV, in 

good agreement with experiment.  Figure 3 shows the HOMO and LUMO distributions of the 

geometry optimized structure of INDT-T using Gaussian 09 (DFT, B3LYP/6-31G*). The 

backbone displays a high degree of co-planarity indicating that charge transport in this materials 

should be efficient. Both the HOMO and LUMO are delocalized well over both the thiophenes 

and the central bis-lactam core. However, while there is little contribution to the HOMO from the 

peripheral phenyl groups, there is substantial delocalisation of the LUMO onto these sites. This 

indicates that further substitutions at these positions will enable independent manipulation of the 

LUMO level without disruption of the HOMO. 
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Figure 3. The a) HOMO and b) LUMO distributions of the geometry optimized structure of 

INDT-T using Gaussian 09 (DFT, B3LYP/6-31G*) 

OFETs with Top Gate-Bottom Contact architecture were fabricated using the novel polymer on 

glass substrates with CYTOP dielectric. Al + Au bilayer (20 nm + 20 nm) electrodes for ambipolar 

charge transport were used. The organic semiconductor layer was spin-coated on top of the 

substrates from a chlorobenzene solution (10 mg/mL). Finally, CYTOP dielectric was spincoated 

on top followed by a thermally evaporated Al gate electrode. Representative transfer and output 

characteristics are shown in Figure 4, and data are compiled in Table 2 and 3. The 100 °C annealed 

film maximum hole and electron mobilities extracted extracted from the saturation regime of the 

transfer curves were both approximately 0.08 cm2 V−1 s−1 demonstrating good balanced ambipolar 
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behaviour and negligible hysteresis. Annealing the devices at 200 °C leads to significant 

improvement in both the hole and electron mobility. A high hole mobility of 0.23 cm2 V-1 s-1 for 

was determined from the best fit of the second derivative of transfer curve saturation regime with 

the peak value measured being 0.52 cm2 V-1 s-1. The best-fit value for the electron mobility was 

0.48 cm2 V-1 s-1 with a remarkable peak mobility of 1.2 cm2 V-1 s-1, however we note that there 

was a significant amount of noise present in the second derivative mobility extraction plot. As was 

shown in XRD experiments, we believe that the improved OFET characteristics are due to the 

increased ordering of the INDT-T polymer with annealing.  

 

Annealing 

Temp. 

/oC 

Channel 

Length 

/µm 

µhole
a,b 

(peak value) 

/cm2 V-1 s-1 

Vth,,hole
c 

/V 

Ion/Ioff 

for 

holesc 

µelectron
a,b 

(peak value) 

/cm2 V-1 s-1 

Vth,electro
c 

/V 

Ion/Ioff 

for 

electro

nsc 

100 40 0.04±0.003d 

(0.046±0.002) 

-120±8 104 0.075±0.01 

(0.11±0.03) 

43±5 105 

 50 0.076 

(0.09) 

-23 105 0.075 

(0.094) 

22 106 

 100 0.048 

(0.069) 

-90 105 0.079 

(0.13) 

29 106 

200 50 0.23 ± 0.1e 

(0.52±0.08) 

-131±2 103 0.48 ± 0 

(1.2 ±0.05) 

52±3 106 

aμhole and μelectron refer to the highest effective mobilities measured in the saturation regime for a 

gate-voltage range of 20 V. bPeak values for saturation regime mobility are given in brackets next 

to the best-fit values because the second derivative plots are noisier. cThe threshold voltages (Vth) 

and the on-to-off ratios (Ion/Ioff) were extracted from the linear regime (Vd = −30 V (all devices) 

except for 200 oC annealed (-90V) for holes and Vd = 30 V (all devices) except for 40 µm device 

(60 V) for electrons).dAverage of 4 devices.eAverage of 2 devices 

Table 2. OFET Characteristics of INDT-T 
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Figure 4. The transfer and output characteristics of an OFET devices of INDT-T annealed at 

200oC 

The threshold voltage for electrons was in the range of ~20-50V which are comparable to values 

measured in DPP and iso-indigo based OFETs. However the large threshold voltages for holes 
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indicates an injection barrier for holes. We attribute this to non-optimized matching of the 

electrodes and the polymer HOMO. To overcome this OFETs with UV-O3 treated Au electrodes 

with an Al adhesion layer (40 nm + 5 nm) for optimized hole injection due to a deeper work 

function were fabricated. The results are shown in Table 3. 

Annealing 

Temp. 

/oC 

Channel 

Length 

/µm 

µhole
a,b 

(peak value) 

/cm2 V-1 s-1 

Vth,,hole
c 

/V 

Ion/Ioff 

for 

holesc 

100 30 0.1±0.01d 

(0.13±0.015) 

-14±0.5 104 

aμhole refers to the highest effective mobilities measured in the saturation regime for a gate-

voltage range of 20 V. bPeak values for saturation regime mobility are given in brackets next to 

the best-fit values because the second derivative plots are noisier. cThe threshold voltages (Vth) 

and the on-to-off ratios (Ion/Ioff) were extracted from the linear regime (Vd = −30 V) for holes. 
dAverage of 2 devices 

Table 3. Hole optimized OFET Characteristics of INDT-T 

 

Only p-type transport was observed for these devices, however it is clear that both the measured 

hole mobility and threshold voltage are significantly improved relative to the equivalent devices 

presented in Table 2. This indicates that the larger threshold voltages observed in the initial device 

data is likely due to improper work function matching, or sub-optimal metal-polymer contact. 

Bottom gate-Bottom contact OFET devices were also fabricated but these suffered from significant 

hysteresis and lower mobilities. 

Conventional and inverted bulk-heterojunction OPV devices were fabricated using a 1:2 blend 

of INDT-T:PC71BM as the active layer spin-coated from a 4:1 CHCl3:ODCB solution (10 mg/mL). 

The J-V curves and EQE are shown in Figure 5 and the data is presented in Table 4. The 

conventional OPV device provides a PCE of 2.25 %, with a short circuit current (Jsc) of 6.27 mA 
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cm−2, an open circuit voltage (Voc) of 0.62 V, and a fill factor (FF) of 0.58. The relatively high 

open circuit voltage is impressive considering the extremely narrow bandgap of INDT-T, and the 

devices all have relatively good fill factors, indicating good charge extraction at low fields. The 

inverted devices showed similar overall efficiencies of 2.35 %, but had slightly increased short 

circuit currents (Jsc = 6.88 mA cm−2) and lower open circuit voltages (Voc = 0.59 V). Similar 

variations between conventional and inverted OPV devices have been shown before in DPP-based 

conjugated polymers. The EQE shows that the majority of the photocurrent originates from the 

fullerene absorption but there remains an appreciable contribution from the extremely near-IR 

absorbing INDT-T polymer up to 950 nm. Despite the modest overall efficiencies, these devices 

represent some of the highest efficiencies from such ultra-narrow band-gap materials.16 We believe 

that the lower contribution to the photocurrent is predominantly due to insufficient energetic offset 

of the polymer with respect to the fullerene.17 More importantly we demonstrate the first 

functioning OPV devices of this very novel chromophore indicating that it is well-suited for further 

development in this field. 
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Figure 5. a) J−V characteristics of INDT-T:PC[70]BM solar cells b) External quantum efficiency 

of the INDT-T:PC[70]BM solar cell 

Architecture Jsc (mA cm−2) Voc (V) FF PCE (%) 

Conventional 6.27 0.62 0.58 2.25 

Inverted 6.88 0.59 0.58 2.35 

Table 4. OPV Device Characteristics of INDT-T-Based Solar Cells 

Conclusion 

We report the synthesis of a novel soluble monomer INDT for use in conjugated polymers based 

on naturally occurring indigo. Incorporation of this novel unit in a conjugated polymer, INDT-T, 
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results in an extremely narrow band-gap material with high crystallinity. This polymer exhibits 

high ambipolar transport in OFET devices, with holes and electrons exhibiting mobilities of 0.23 

cm2 V−1 s−1 and 0.48 cm2 V−1 s−1 respectively. Conventional and inverted OPV devices give 

efficiencies of up to 2.35 % with photocurrent generated up to 950 nm, demonstrating the potential 

of this novel monomer unit for implementation in near-IR OPV devices. 

Experimental Section 

Characterisation 

1H NMR spectra were recorded at 400 MHz on a Bruker Avance 400 spectrometer, at 500 MHz 

on a Bruker Avance 500 spectrometer, or at 600 MHz on a Bruker Avance 600 spectrometer in the 

stated solvent using residual protic solvent CHCl3 (δ = 7.26 ppm, s) or DMSO (δ = 2.56 ppm, qn) 

as the internal standard. 13C NMR spectra were recorded at 125 MHz on a Bruker Avance 500 

spectrometer or at 150 MHz on a Bruker Avance 600 spectrometer in the stated solvent using the 

central reference of CHCl3 (δ = 77.0 ppm, t) or DMSO (δ = 39.52 ppm, septet) as the internal 

standard. Mass spectra were obtained using either a VG70-SE or MAT 900XP spectrometer at the 

Department of Chemistry, University College London. X-ray diffraction (XRD) measurements 

were carried out with a Bruker D4 Endeavour diffractometer equipped with a nickel-filtered Cu 

Kα1 beam and a scintillation counter detector and post-sample graphite monochromator, using a 

current of 30 mA and an accelerating voltage of 40 kV. UV-vis spectra were recorded on a 

Perkin-Elmer Lambda 950 spectrophotometer. 

Synthesis 

2-nitro-5-((tetrahydro-2H-pyran-2-yl)oxy)benzaldehyde 

5-hydroxy-2-nitrobenzaldehyde (5.09 g, 31 mmol) and 3,4-dihydro-2H-pyran (13.7 mL, 0.15 

mol) were dissolved in a 4:1 solution of dichloromethane:hexane (61 mL). p-Toluenesulfonic acid 
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(58 mg, 1 mol%) was suspended in dichloromethane (15 mL) and a few drops of pyridine were 

added. The acidic mixture was then added in one portion and the reaction stirred for 12 h. Solvent 

and unreacted 3,4-dihydro-2H-pyran were then removed in vacuo to give a brown oil which was 

purified by flash chromatography on silica gel (4:1, PET:EtOAc, RF = 0.3) to give the product as 

a yellow oil (7.66 g, 100%). 1H NMR (400 MHz, CDCl3) δ 10.49 (s, 1H), 8.17 (d, J = 9.0 Hz, 1H), 

7.51 (d, J = 2.8 Hz, 1H), 7.33 (dd, J = 9.0, 2.8 Hz, 1H), 5.62 (t, J = 2.8 Hz, 1H), 3.84 – 3.74 (m, 

1H), 3.71 – 3.63 (m, 1H), 1.96 – 1.90 (m, 2H), 1.80 – 1.69 (m, 2H), 1.68 – 1.62 (m, 2H)  LRMS 

(CI+) m/z 252 [MH]+ 

(E)-5,5'-bis(benzyloxy)-[2,2'-biindolinylidene]-3,3'-dione 

2-nitro-5-((tetrahydro-2H-pyran-2-yl)oxy)benzaldehyde (2.3 g) was dissolved in acetone (34.5 

mL) and cooled to -10 °C. With vigorous stirring, a 0.2 M solution of potassium hydroxide (4.6 

mL) was added dropwise over 15 min, turning the solution pale yellow. After 30 min the solution 

was warmed to 5 °C and a 0.4 M solution of potassium hydroxide (34.5 mL) was added dropwise, 

slowly. When half of this solution was added the reaction turned deep green, once addition was 

complete the reaction was a dark green/blue colour. After addition the reaction was covered and 

allowed to warm to room temperature and stir for 24 h. The solid was then collected by vacuum 

filtration and washed with methanol until washings ran colourless to give a blue solid (0.72 g, 

34%). 1H NMR (600 MHz, CDCl3) δ 8.76 (s, 2H), 7.42 (d, J = 2.5 Hz, 2H), 7.22 (dd, J = 8.7, 2.5 

Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 5.34 (t, J = 3.3 Hz, 2H), 3.97 – 3.88 (m, 2H), 3.68 – 3.58 (m, 

2H), 2.04 – 1.94 (m, 4H), 1.92 – 1.82 (m, 4H), 1.73 – 1.63 (m, 4H)  LRMS (CI+) m/z 463 [MH]+ 

HRMS Found (CI+): [MH]+ 463.18632, C26H27N2O6 requires 463.18691 

2,9-dihydroxy-7,14-di(thiophen-2-yl)diindolo[3,2,1-de:3',2',1'-ij][1,5]naphthyridine-6,13-

dione 
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(E)-5,5'-bis((tetrahydro-2H-pyran-2-yl)oxy)-[2,2'-biindolinylidene]-3,3'-dione (2.2 g, 4.8 

mmol), and 2-(thiophen-2-yl)acetyl chloride (3.6 mL, 29 mmol) were dissolved in anhydrous 

xylene (96 mL) and the reaction refluxed at 165 °C for 24 h. The blue reaction turned purple after 

1 h. After 24 h the vapours from the argon flow were no longer acidic. The reaction was transferred 

to a 250 mL round bottomed flask washing with methanol and chloroform. All solvent was 

removed in vacuo to give a black residue. The residue was taken up in methanol and the yellow 

methanol washings carefully decanted off, to leave the black solid in the flask. After five methanol 

washings the solid was suspended in methanol and, with stirring, 5% sodium hydroxide solution 

(20 mL, 2.5 equiv) was added. The solution immediately turned dark red and then black and 

allowed to stir for 12 h. 6M hydrochloric acid (4.1 mL, 24.8 mmol) was then added to neutralise 

the reaction. The methanol and water were then removed in vacuo and the resulting residue was 

washed with a small amount of water which was carefully decanted off, to remove any salts. The 

solid was then taken up in acetone and filtered off under reduced pressure. The resulting dark solid 

was washed with water, acetone then methanol, then air dried to give a black solid (0.7 g, 29%). 

1H NMR (600 MHz, DMSO) δ 10.03 (s, 2H), 8.22 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 4.5 Hz, 2H), 

7.74 (d, J = 3.6 Hz, 2H), 7.53 (d, J = 2.4 Hz, 2H), 7.35 (dd, J = 4.5, 3.6 Hz, 2H), 7.07 (dd, J = 8.7, 

2.4 Hz, 2H)  LRMS (ES+) m/z 507 [MH]+ HRMS Found (ES+): [MH]+ 507.0482, C28H15N2O4S2 

requires 507.0473 

2,9-bis((2-octyldodecyl)oxy)-7,14-di(thiophen-2-yl)diindolo[3,2,1-de:3',2',1'-

ij][1,5]naphthyridine-6,13-dione 

2,9-dihydroxy-7,14-di(thiophen-2-yl)diindolo[3,2,1-de:3',2',1'-ij][1,5]naphthyridine-6,13-dione 

(0.7 g, 1.4 mmol) potassium carbonate (2.67 g, 19 mmol) and 9-(bromomethyl)nonadecane (1.25 

g, 3.5 mmol) were dissolved in dimethylformamide (28 mL) and heated at 60 °C with stirring for 
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24 h. The reaction was then cooled and poured into a separating funnel containing brine and 

hexane. The organic layer was extracted with brine (5 × 50 mL), separated and filtered under 

reduced pressure to remove black particulates. The purple organic filtrate was then dried over 

magnesium sulphate, filtered and concentrated in vacuo to give a purple oil. The crude oil was 

purified by flash chromatography on silica gel (9:1, PET: EtOAc, RF = 0.2) to give a pure purple 

oil (119 mg, 8%). 1H NMR (600 MHz, CDCl3) δ 8.40 (d, J = 8.9 Hz, 2H), 7.74 (dd, J = 3.6, 0.8 

Hz, 2H), 7.69 (dd, J = 5.1, 0.8 Hz, 2H), 7.65 (d, J = 2.5 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.08 (dd, J 

= 8.9, 2.5 Hz, 2H), 3.81 (d, J = 5.8 Hz, 4H), 1.81 – 1.73 (m, 2H), 1.47 – 1.40 (m, 4H), 1.40 – 1.35 

(m, 4H), 1.35 – 1.20 (m, 56H), 0.90 – 0.84 (m, 12H) 13C NMR (150 MHz, CDCl3) δ 158.5, 158.0, 

138.0, 134.8, 130.3, 130.2, 130.1, 127.1, 126.3, 125.1, 122.5, 118.4, 118.3, 111.0, 71.9, 38.0, 32.0, 

31.4, 30.2, 29.8, 29.7, 29.5, 26.9, 22.8, 14.3 LRMS (ES-) m/z 1065 [M-H]+   

7,14-bis(5-bromothiophen-2-yl)-2,9-bis((2-octyldodecyl)oxy)diindolo[3,2,1-de:3',2',1'-

ij][1,5]naphthyridine-6,13-dione 

2,9-bis((2-octyldodecyl)oxy)-7,14-di(thiophen-2-yl)diindolo[3,2,1-de:3',2',1'-

ij][1,5]naphthyridine-6,13-dione (119 mg, 0.11 mmol) was dissolved in dichloromethane (15 mL) 

and the solution was cooled to 0 °C. N-Bromosuccinimide (43 mg, 0.24 mmol) was added all at 

once to the stirring solution and the reaction was covered and kept at 0 °C for 30 min. The ice bath 

was then removed and the reaction allowed to warm to room temperature and stir for a further 12 

h. After 1 h the solution had changed from purple to sapphire blue. After 12 h the reaction was 

diluted with further dichloromethane and washed with water (2 × 30 mL) then brine (30 mL), dried 

over magnesium sulphate and concentrated to give a waxy solid. Methanol was added to the flask 

and to give a suspension, which was then collected by vacuum filtration to give a pure blue waxy 

solid (60 mg, 44%) 1H NMR (600 MHz, CDCl3) δ 8.34 (d, J = 8.9 Hz, 2H), 7.67 (d, J = 2.4 Hz, 
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2H), 7.54 (d, J = 3.9 Hz, 2H), 7.21 (d, J = 3.9 Hz, 2H), 7.07 (dd, J = 8.9, 2.4 Hz, 2H), 3.83 (d, J = 

5.7 Hz, 4H), 1.83 – 1.75 (m, 2H), 1.48 – 1.41 (m, 4H), 1.41 – 1.36 (m, 4H), 1.36 – 1.17 (m, 56H), 

0.91 – 0.83 (m, 12H) 13C NMR (150 MHz, CDCl3) δ 158.1, 137.6, 136.6, 123.0, 129.2, 129.0, 

126.8, 124.4, 122.4, 118.7, 111.0, 72.0, 51.0, 38.0, 32.0, 31.4, 30.2, 29.8, 29.5, 27.0, 22.8, 14.3 

HRMS Found (ES-): [M-H]- 1221.4817, C68H91Br2N2O4S2 requires 1221.4787 

Polymer INDT-T 

7,14-bis(5-bromothiophen-2-yl)-2,9-bis((2-octyldodecyl)oxy)diindolo[3,2,1-de:3',2',1'-

ij][1,5]naphthyridine-6,13-dione (60.1 mg, 49.1 µmol), tris(dibenzylideneacetone)dipalladium(0) 

(2.6 mg, 2.8 µmol, 6 mol%), tri(o-tolyl)phosphine (3.47 mg, 11.4 µmol) and  2,5-

bis(trimethylstannyl)thiophene (20.15 mg, 49.1 µmol) were added to a dry 10 mL microwave vial 

equipped with a stirrer bar and sealed. Chlorobenzene (2.5 mL) was added via syringe and the 

solution degassed with argon for 30 min. The vial was then placed in a microwave reactor and 

heated as follows: 10 min at 100 °C, 5 min at 120 °C, 5 min at 140 °C, 5 min at 160 °C and 20 min 

at 180 °C. The vial was then allowed to cool and the reaction had changed colour from sapphire 

blue to turquoise. The reaction mixture was added dropwise slowly into rapidly stirring methanol 

(70 mL) and allowed to stir for 2 h, forming fine dark blue fibres. The polymeric material was then 

filtered under reduced pressure into a cellulose thimble and washed with methanol then acetone. 

The polymer was purified by soxhlet extraction as follows: acetone for 12 h, hexane for 12 h and 

chloroform for 12 h. The chloroform was then concentrated to give a turquoise plastic-like film on 

the round bottomed flask. This film was dissolved in a minimum volume of hot chlorobenzene 

(~2.5 mL) then added dropwise slowly into rapidly stirring methanol cooled to 0 °C. Once addition 

was complete the methanol was stirred for 30 min then filtered under vacuum, washing carefully 

with methanol then a small amount of acetone then allowed to dry, forming a dark blue film. The 
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polymer was air dried for 1 h then placed in a vial and dried under vacuum for 12 h (49 mg, 87%). 

GPC (PS): Mn = 15687, Mw = 49381, PDI = 3.15; UV (PhCl) λmax 797, (Thin film) λmax 790 
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A novel, extremely narrow band-gap polymer with a structure based on natural indigo has been 

synthesised and exhibits high crystallinity, high ambipolar transport in OFET devices, and OPV 

device efficiencies up to 2.35% with light absorbance up to 950 nm, demonstrating potential in 

near-IR photovoltaics. 

 

µhole 0.23 cm2/Vs
µelectron 0.48 cm2/Vs
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