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Abstract

When modelling a chemical process,  a modeller is  usually required to handle a wide

variations  in  time  and/or  length  scales  of  its  underlying  differential  equations  by

eliminating either the faster or slower dynamics. When compelled to deal with both and

simultaneously simplify model structure, he/she is sometimes forced to make decisions

that render the resulting model discontinuous.

Discontinuities  between  adjacent  regions,  described  by different  equation  sets,  cause

difficulties for ODE solvers. Two types exist for handling discontinuities in ODEs. Type I

handles a discontinuity from the ODE solver side without paying any attention to the

ODE model.  This resolution to discontinuities suffer from underestimating the proper

location of  the discontinuity and thus results  in  solution errors.  Type II  discontinuity

handlers  resolve  discontinuities  at  the  model  level  by  altering  model  structure  or

introducing  bridging  functions.  This  type  of  discontinuity  handling  has  not  been

thoroughly explored in literature.

I  present  a  new  hybrid  (Type  I  and  Type  II)  algorithm  that  eliminates  integrator

discontinuities through two steps. First, it determines the optimum switch point between

two functions spanning adjacent or overlapping domains. The optimum switch point is

determined  by searching  for  a  “jump  point”  that  minimizes  a  discontinuity  between

adjacent/overlapping functions. Two resolution approaches exist. Approach I covers the

entire overlap domain with an interpolating polynomial. Approach II relies on a moving

vector  to  track a  function trajectory during simulation run.  Then,  the discontinuity is

resolved using an interpolating polynomial  that joins the two discontinuous functions

within a fraction of the overlap domain. 

The  developed  algorithm is  successfully  tested  in  models  of  a  steady state  chemical

reactor exhibiting a bivariate discontinuity and a dynamic Pressure Swing Adsorption

Unit  exhibiting  a  univariate  discontinuity  in  boundary  conditions.  Simulation  results

demonstrated a substantial increase in models' accuracy with a reduction in simulation

runtime.
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Chapter 1: Introduction

Introduction

Chemical Engineering is one of the most versatile disciplines in science.  Its stamp is

sensed in almost every aspect of our life from the fuel that drives our cars to the cement

that builds our homes and to pesticides that remove harmful bacteria and insects from

agricultural products, etc. The current chemical engineering practice covers wider areas

than  it  used  to  be  in  the  old  days  when  the  discipline  was  just  shaping.  Chemical

engineers  are  now  contributing  to  areas  such  as  design  of  integrated  circuits  and

production of composite materials.

In  most  of  these  disciplines,  experimenting  with  a  product  to  improve  its  quality  or

reduce  production  costs  comes  at  a  cost.  Sometimes  the  cost  is  so  high  that  plant

managers will prohibit engineers from making any changes to an existing process unless

or until it is bullet-proofed that these changes will cause no harm to the plant production.

Even when plants are green built, companies resort to old practices that are proven to

work over the uncertainty that accompanies new innovations. Of course, such practices,

although  acceptable  and  sometimes  appreciated,  hinder  development.  To  overcome

difficulties associated with adopting newly developed practices, engineers resort to either

the use of pilot plants that mimic current operating practices or to the use of mathematical

models that simulate the behaviour of the system.
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Chapter 1: Introduction 16

Pilot plants, when properly built, constitute a very effective method to experiment with a

small  model of an existing process, optimize or completely alter it  to make the same

product or redesign it to produce a better product. However, in general, pilot plants are

expensive  to  build  and  operate.  Their  cost  is  sometimes  prohibitive to  justify  their

construction.

The  other  route  to  prove  the  feasibility  of  a  new  idea  would  be  to  construct  a

mathematical model that resembles the process to be tested whether an operating one or

just being newly built. This route is normally less expensive than building pilot plants. It

is also not uncommon that successful simulation results justify the construction of a pilot

plant.

In order for a mathematical model to be useful, it needs to serve a purpose [Cameron et

al, 2005]. Serving the purpose requires a balance between the level of model detail and its

accuracy. Detailed models would always be preferable if it were not to the fact that they

take longer time to build and more time to test and troubleshoot. Thus, a compromise is

usually  struck  between  model  accuracy  and  its  level  of  detail.  This  compromise  is

achieved through the use of simplified models that only address the main contributing

phenomena  to  a  process  while  either  ignoring  or  simplifying  models  of  non-core

phenomena.  An Inclusion/exclusion  of  a  certain  phenomena into/from a  mathematical

model is both scientific and judgemental. 

When modelling dynamics of slow processes, faster dynamics that occur below a specific

time  scale  are  ignored.  Similarly,  when  modelling  faster  dynamics,  slow  dynamics

occurring  beyond  a  certain  time  scale  are  ignored.  For  example,  when  modelling

ecological  systems,  scientists  seldom care  about  the  fast  changes  that  are  happening
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within a tissue of a living species. Similarly, when modelling the cellular activity of a

human body, human life span is seldom included in such models. 

Many similar examples exist in chemical engineering. For example, when modelling flow

distribution networks between several plants, the modeller usually ignores modelling of

smaller plant constituting equipment such as pumps and valves because they exits at a

lower  detail  level.  Also,  modellers  who  model  industrial  reactors  are  usually  not

concerned with including equations that model molecular level dynamics and vice versa.

There are several reasons behind excluding or approximating models resembling non-core

phenomena:

1. The time and effort used to build such models might not be justifiable considering

the added accuracy. New developments in multi-scale modelling might reduce the

time required to build such models. However, this approach to modelling is still at

its infancy. 

2. Computational  power  required  to  run  such  models  might  not  be  justifiable.

Development of faster computers might resolve the required computational power

for today's  produced models. However,  with advances in computational power,

scientists are usually tempted to move from simplified models to more rigorous

ones, increasing the demand for more computational power.

Until the above mentioned problems are resolved, scientists will almost always be forced

to simplify models by excluding non-core phenomena. However, the line that is drawn

between core and non-core phenomena is itself a blurred one. Simulation results deviate

from accuracy when important phenomena are ignored or not properly modelled in the
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name of simplicity. 

Nature can be thought of as a sequence of numerous continuous events. Studying nature

as  a  whole  is  virtually an  impossible  task.  That's  why scientists  prefer  encapsulating

selected pieces of a system before studying them in a controlled environment. To extend

the usability of such experiments, scientists fit the results obtained from such experiments

to equations that are preferably derived from basic principles. When it is not possible to

formulate  an  analytical  equation  to  describe  a  certain  phenomena,  scientists  resort  to

fitting results to empirical or semi-empirical formulas. Regardless of the origin of the fit,

the resulting equation only resembles the generated output within a specified accuracy.

More experiments at different controlled conditions lead to generating different formulas

with differing accuracies.

These scientific  practices  lead to  differing formulas  to  calculate  a  certain property at

different conditions. Such situations leave the modeller no choice but to use two differing

formulas to model  the behaviour of a particular  phenomena that  extends between the

boundaries provided by two differing formulas. The model switches from calculating the

property using one formula to the other through the use of conditional statements. If a

condition is met, the model uses one formula. Otherwise, it uses the other one.

This direct use of conditional statements raises what is referred to in mathematics as a

“jump discontinuity”. Such discontinuities raise difficulties when solving mathematical

models.  Handling  of  a  discontinuity  is  a  solver  dependent  problem.  Some  solvers

reinitialize model equations while others generate bridging interpolating functions. This

means that for the same discontinuous model,  different solvers will  probably produce

different model outputs. The lack of generality when addressing such a problem raises a
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question about the accuracy of one provided solution over the other. 

A mathematical “removable discontinuity” is generated when the formulas at both sides

of the conditional statement do not cover the full range of their respective independent

variables. Because of the current modelling practices, none of the available modelling

languages or their respective solvers is able to detect such discontinuities. In this work, I

illustrate how a better modelling practice reveals such discontinuities. I will also provide

means to resolve them.

Sometimes,  reinitialization  is  inevitable,  mainly  because  of  restrictions  imposed  by

current  modelling  practices.  However,  how  much  information  is  lost  because  of

reinitialization? and whether there is a better solution that avoids reinitialization? are two

questions that remain unanswered.

The  first  objective  of  this  work  is  to  prove  the  inaccuracy of  some of  the  practices

adopted with simplified models. In particular, the focus is devoted to the way a simplified

model  behaves  when  crossing  two  adjacent  domains  possessing  different  modelling

equations.  The  second  objective  is  to  provide  a  better  solution  to  this  problem that

requires minimum intervention from the modeller.

I will provide a brief introductory to modelling in Chapter 2.  I will start by defining what

is meant by a model and provide a brief history of modelling. Then, I will discuss model

development  and highlight  how assumptions  emerge during the modelling process.  A

brief introductory to error analysis  will  also be provided in this  chapter.  Due to their

importance in simulation of mathematical models in general and to this work in particular,

a small section is devoted to integrating stiff mathematical models and integrator variable

step sizing.
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In  Chapter  3,  I  survey  the  available  approaches  to  handling  discontinuities  in

mathematical  models.  I  classify  the  approaches  into  two  types  and  survey  current

practices of each type separately.

Chapter 4 focuses on the encountered discontinuities in the models that are constructed to

prove the novel concepts outlined in Chapter  5. A particular emphasis are drawn to the

way I modelled the Pressure Swing Adsorption (PSA) column. The PSA column model is

built with an objective in mind to build a model that includes all possible steps occurring

in today's operating PSA columns. Then, an MINLP optimizer would be built on the top

of the model to determine the optimum operating conditions of a PSA unit based on a

particular feed and an objective function. Integer parameters in the optimization include

the minimum required number of PSA columns in addition to elimination or inclusion of

some steps.  The maximum number  of  pressure  equalization  steps  is  also included as

integer optimisation parameter.

In Chapter 5, I discuss a generic methodology to handle discontinuities in mathematical

models. I start by introducing the concept and illustrate how it applies to one-dimensional

systems. Then, the concept is expanded to cover multi-dimensional systems.

Lastly, Chapter  6 will demonstrate how the ideas developed in Chapter  5 apply to the

complex models constructed in Chapter 4.
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An Overview of Modelling with Emphasis on Mathematical

Models

The purpose of this chapter is to provide the reader a brief background

on modelling. Through the discussion, I shed light at the definition of

a model in its general and restricted forms. Then, I follow it by a brief

introductory to the history of modelling. The core ideas behind the

development of mathematical models are explored in the third section.

I also discuss why model assumptions originate and their implications

on the numerical integration of the model. I also briefly discuss the

sources  of  numerical  errors  associated  when  integrating  an  ODE

system and how variable integration step-size contribute to increased

solution  accuracy.  Last,  I  briefly  introduce  stiff  systems  and  how

they're  specially  handled  through  the  use  of  implicit  integration

methods.

21
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2.1. Definition of a Model

According  to  [Schichl,  2004],  the  word  modelling  originated  from  the  Latin  word

modellus. Modellus refers to the regular way humans cope with reality.  [Ritchey, 2012]

states that various kinds of models are used in all aspects of science in ways that make it

difficult to agglomerate the definition of modelling into a clear and concise statement.

However, he points out that two distinguishing criteria stand behind each model. First, a

model should have more than one dimension or as he puts it:  mental construct.  Each

dimension should support ranges of values or states. Second, a relationship must exist

between model dimensions or their respective ranges. 

In earlier papers, an extra restrictive criterion on the definition was imposed, namely:

connections between dimensions should be identified on the basis of connections between

their  respective value ranges.  However,  this  additional criterion rules out some of the

classic models such as influence diagrams and analytical hierarchy models. Such models

do not possess direct relationships between the values of their dimensions. In fact, the

dimensions of some of these models are not defined as they are treated as black-boxes.

[Ritchey, 2012] also claims that by the above definition, he relaxed his earlier criterion for

defining a model from those presented in his earlier papers ([de Waal and Ritchey, 2007],

[Ritchey, 2011]). 

[Frigg and Hartman, 2012] point out that models refer to a variety of things. They named

physical and fictional objects, descriptions and equations as examples. Below is a brief

description of each of these things:

1. Fictional Objects: Models are also constructed to represent fictional objects and

hence named fictional models. Examples of this class include the Bohr model of
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an atom, a frictionless moving object, ideal collision of billiard balls, etc. Such

models only exist in the mind of the scientist and they don't need to be physically

realizable. In this class, the model becomes the object. 

2. Physical objects: Models are constructed to model physical objects. The class of

models that falls into this category covers all physical entities. In such instances,

the  model  serves  as  a  representation  of  something  else.  Wooden  models  of

vehicles,  planes,  ships  are   examples  of  models  that  fall  into  this  category.

However,  interestingly,  [Frigg and Hartman,  2012] points out that some living

creatures can be and are looked at as models to other creatures. Such an analogy is

very evident in life sciences where animals such as rats and monkeys are used as

models  to  understand  human  reactions  to  certain  internal/external  influences.

Science refers to such models as material models. 

3. Descriptions:  Some scientists  think  of  models  as  a  stylized  description  of  the

objects under study [Achinstein, 1968][Black, 1962]. Each model is assumed to be

uniquely identified with a description. However, this unique identification raises a

contradiction. If the description is simplified, would it still be representative of the

same model? Would it represent a different model? If a model can be uniquely

identified with a description A, then any other identifying description of the same

model would have to be connected to a different model. Thus, models cannot be

equated with descriptions as the relationship is not one-to-one based.

4. Equations: Some scientists indulge the idea that models are equations. This view

of models also suffers from the same drawback of treating models as descriptions.

[Frigg and Hartman, 2012] also point out that models can be constructed as a combination
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of these elementary constructs. Thus, they define models as representations of objects.

Represented  objects  can  be  either  real  (representing  phenomena)  or  mere  theories.  A

model can even extend further to include a combination of a partial  representation of

reality and a posed theory [Morgan, 2001].

[Schichl,  2004] provides the following definition: “A model is a simplified version of

something that is real”.  [Hangos and Cameron, 2001] follow a similar path when they

define a model as an imitation of reality. The term real implies that the fictional models,

discussed earlier, cannot be considered as models in these definitions. This restricted form

of the definition undermines the role of fictional models into the development of science.

Looking  at  the  above  introductory  concepts,  one  can  easily  deduce  that  a  clear  and

concise definition that encapsulates all types of models is difficult to construct.[Ritchey,

2012]  clearly articulates this problem:

“What is, and what is not, to be considered a scientific model is a matter

of convention, as long as we make  our1 rules clear and we apply them

consistently”  

2.2. Brief History of Modelling

Ancient cavemen, and cavewomen, paintings are evident examples of humans early use

of  abstractions  to  represent  objects.  Paintings  are  considered  as  models  crudely

representing reality whether that reality is an event, a sequence of events (story) or a mere

representation  of  a  number.  However,  according  to  [Schichl,  2004],  breakthroughs  in

modelling were introduced by cultures  of the Ancient Near  East and Ancient  Greece.

[Schichl,  2004] claims  that  mathematical  models  can  be  traced  back  to  ancient

1 As per the author, it has been mistakenly scripted as “are” instead of “our” in the original paper.



Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 25

civilizations in Babylon, Egypt, and India. These cultures used mathematical models to

better organize and advance their life. In particular, algorithmic mathematics was used to

solve problems related to irrigation, tax payments, construction, etc.. [Schichl, 2004]

Deductive reasoning emerged with developments in philosophy and its interaction with

mathematics.  This  development  gave  rise  to  the  seeds  of  mathematical  theory in  the

Hellenic era. Thales of Miletus (624-546 BC), a pre-Socratic Greek philosopher, started

the use of geometry to analyse reality.  This introduction of geometry into analysis  of

reality facilitated the development of pure mathematics as a science that is independent

from its applications [Kallrath, 2004]. 

Succeeding  Thales,  Pythagoras  of  Samos  (570-495  BC)  is  known  as  the  first  pure

mathematician basing his work on Thales. In the 300 years to follow, philosophers such

as Aristotle (384-322 BC) and Eudoxos (408-355 BC) added more contributions to the

science of mathematics. Climax was reached in 300 BC by Euclid of Alexandria (Mid 4 th

century- Mid 3rd century BC). He scripted a collection of books that contained most of the

available mathematical knowledge available at his time. The Elements was the title of the

collection. The Elements contained the first concise axiomatic description of geometry. It

also included a treatment on number theory among other subjects. The Elements remained

as a classic text for teaching mathematics for hundreds of years to follow. Around 250

BC, the theories in The Elements were used by Eratosthenes of Cyrene (276-194 BC) to

calculate distances between Earth and Sun and between Earth and Moon.  Eratosthenes of

Cyrene is claimed to be the first applied mathematician [Kallrath, 2004].

By 150 AD, a mathematical model describing the solar system with circles and epicircles

to  predict  the  movement  of  the  sun  and  the  surrounding  planets  was  developed  by

Ptolemy (100-170 AD). The accuracy of the model ensured its application for years that
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followed. In 1619, Johannes Kepler (1571-1630 AD) devised a better and simpler model

to predict planetary motion. Newton and Einstein enhanced Kepler's motion model. The

final model is still in use until today.

Development in models and model building methods was not only evident in Europe.

Similar modelling methods were independently developed in countries such as China,

India and Islamic countries such as Persia. Abu Abd-Allah Ibn Musa Al-Khwarizmi (780-

850 AD) was famous of his work on algorithms. In fact, the word algorithm was derived

from his last name. He authored a collection of books on what was known at the time as

Indian numbers (known now as Arabic numerals). His book titled “Al-kitab Al-Mukhtasar

fi Hisab Al-gabr wa Al-muqabala” is rich in mathematical models and problem solving

algorithms. The term Algebra was derived from the title of this book [Kallrath, 2004]. 

After the decline of Greek civilization, Leonardo da Pisa Fibonacci (1170-1250 AD) is

considered  the first  great  western mathematician.  Fibonacci  realized  the advantage of

Indian numbers over their Roman counterparts. He used the algebraic methods recorded

in Al-Khwarizmi books to succeed as a merchant. In 1202, he authored his book Liber

Abaci. The book marked the introduction of the zero as a number to Europe  [Kallrath,

2004].

To advance the use of visual models, artists started novel development in the principles of

geometry. Giotto (1267-1336 AD) and Filippo (1377-1446 AD) were among the first to

introduce the concept of perspective into visual models in Anatomy [Kallrath, 2004].

Although  Diophant  (201-285  or  215-299  AD)  and  Al-Khwarizmi  made  great

contributions  to  algebra,  it  wasn't  until  Vieta  (1540-1603  AD)  that  variables  were

systematically introduced into mathematics. Nevertheless, it took 300 more years to fully

articulate and understand the role of variables in the formulation of mathematical theory.
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Cantor (1845-1918 AD) and Russel (1823-1913 AD) were among the first scientists that

contributed  to  variable  formulations.  Deriving  laws  of  physics  that  described  the

principles of nature was the major driving force behind developments in modelling and

mathematical theory. The introduction of models into economics came at a later stage

[Kallrath, 2004]. 

Process  Systems  Engineering  (PSE)  has  evolved  as  a  science  after  the  industrial

revolution to advance problem solving techniques using models derived from many of the

physical sciences and engineering disciplines. The motive behind this development is the

growing trend to reduce complex physical behaviour to simple mathematical forms for

easier process design. This motive has continued and increased after the Second World

War.  The  development  of  faster  computers,  high  level  programming  languages  and

advances in mathematical modelling have all lead to considerable progress in the area of

Process Systems Engineering. [Hangos and Cameron, 2001]

2.3. Model Development

The great interest in model building and model use is because it is a means to gaining

insight into the behaviour of systems, probing them, controlling them, and optimizing

them. The process of model  building and use is  divided into four steps  [Hangos and

Cameron, 2001]:

1. Transforming a real problem into a mathematical model.

2. Solving the mathematical model.

3. Interpreting model output.

4. Using results in real world.

Models are built to serve a variety of functions. Examples include:
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1. Explaining Phenomena: Most developed theories in physics fall into this category.

Examples include : Newton’s mechanics, thermodynamics, Einstein’s theory of

relativity,  quantum  mechanics,  the  Standard  Model  of  particle  physics,  etc.

Models  in  engineering  follow  a  similar  trend.  Examples  include  models  of

distillation  columns,  fluid  behaviour  around  objects,  circuit  analysis,  channel

hydraulics, etc.

2. Making Predictions: Models that are built to explain certain phenomenon can be

further used to predict the behaviour of a system under certain conditions. The

most obvious example falling into this category is weather forecast models. 

3. Decision Making: quite a number of models are built to aid in decision making

process. 

The process of designing models begins with a goal in mind. The modelling goal specifies

the intended use of the model. The modelling goal has a major impact on the level of

detail and on the mathematical form of the model to be built. Models can be developed to

test dynamic or steady state aspects of a system, to help in design problems and to address

process control issues [Hangos and Cameron, 2001]. According to [Cameron et al, 2005],

modelling objectives in current modelling practice are forgotten, implicitly considered, or

remembered in a blurred manner at a later stage in the building cycle of the model. The

lack of an explicit goal statement significantly affects the focus, task efficiency, model

coherency and eventually might lead to termination of model cycle, especially in model

conceptualization. Lack of explicit goals often results in a model that is not suitable for

the stated purpose, consumes an enormous amount of time to develop and is either too

simplistic or exhaustively complex for the required application. In their paper, [Cameron



Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 29

et al, 2005] defined a modelling goal triplet

<<Model>> to/for <<Application>> of/from/for <<System>>

The  short  notation  for  this  triplet  is  <<M-A-S>>.  They  also  pointed  out  that

decomposition of a modelling objective is not an easy task. Their means-end analysis for

process modelling is focused on introducing a framework that permits the modeller to

develop model structures that possess the required functionality to achieve the declared

goals. Model functionality includes a model representation of the basic character of the

system as well as the required functionality for the application area [Cameron et al, 2005].

The effort of setting up a detailed mathematical model for a chemical process is high due

to the large variety of chemical  process  units  and physical  phenomena in addition to

increasing  requirements  on  the  sophistication  of  models.  To overcome this  modelling

bottleneck,  considerable  effort  needs  to  be  exerted  into  systemising process  models,

formalizing  their  representation,  and  developing  knowledge-based  software  tools.

[Bogusch et al, 2001] used conferences, industrial project meetings and a field study to

collect requirements on modelling environments from a practitioner’s point of view. Their

findings are summarized as follows:

1. Support should be provided for development and storage of groups of models that

serve a particular process need.

2. Interaction  between  modeller  and  modelling  package  needs  to  be  transformed

from equation level to knowledge level.

3. Support should be provided to maintain process models up-to-date with process

changes. 

4. Modelling  packages  should  be  capable  of  storing  and  retrieving  modelling

knowledge to be used to guide the model development process.
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5. A library  of  predefined  model  building  blocks  of  fine  granularity  should  be

supplied.

6. Automation of some stages of the modelling process. For examples, Knowledge

propagation, documentation and report generation can be automated.

7. Models are more than equations. Model assumptions and limitations, degrees of

freedom,  model  initialization,  etc,  should  also  be  included  in  a  model

representation.

In their  paper,  [Bogusch et  al,  2001] describe how ModKit has evolved as a process

modelling environment to meet these needs.

Mathematical models can be classified in pairs, as (Mechanistic or Empirical), (Stochastic

or  Deterministic),  (Lumped  or  Distributed),  (Linear  or  Nonlinear)  or  (Continuous,

Discrete or Hybrid) [Hangos and Cameron, 2001]. The approach to modelling a particular

problem can also  be  classified.  [Marquardt,  1996] classified  modelling  approaches  in

current commercial process simulators into two groups: block-oriented (or modular) and

equation-oriented.  In  the  Block-oriented  approach,  the  main  focus  is  to  model  at  the

flowsheet level. Process entities are described through block diagrams that are built from

standard  library  of  building  blocks.  The  blocks  and  their  connectivities  model  the

behaviour of a process unit or part of it. Blocks are connected via signals representing

stream flow of information, material and energy. Standard formats are used to construct

each stream. Advantages of this modelling approach include ease of accessibility and use.

Despite  its  great  advantages,  this  approach  is  considered  inadequate  for  supporting

solutions  of  more  complex problems.  The reason is  the  lack  of  precoded models  for

various  unit  operations  with  adequate  level  of  detail.  Examples  include  multiphase

reactors, membrane processes, polymer reactors and most units involving particulates. As
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a result, expensive and time consuming model development for a particular unit is often

needed during project work [Marquardt, 1996].

Equation-oriented  modelling  tools  implement  unit  models  and  incorporate  them in  a

model  library  through  declarative  modelling  languages.  Aspen+  equation-oriented

modeller  and Aspen dynamics  (formerly SPEED UP) are  examples  of  this  approach.

Languages developed in these modelling tools extensively support model implementation.

However, users do not have the freedom of developing models from basic engineering

concepts. In addition, support is lacking for appropriate design and documentation of the

model library. Thus, the concept of validated model re-usability, by a group of engineers,

for these types of models is impossible. Reinventing models becomes imperative. Models

that are initially well developed deteriorate over time. [Marquardt, 1996].

The realised disadvantages in both approaches has excited researchers to look for better

modelling approaches.  The main aim is  to  ease model  development  and maintenance

through  developing  model  formulation  capabilities,  enhancing  model  reuse  and

adaptation as well as  facilitating model's maintenance and documentation. 

Recent developments have led to modelling languages that are more declarative (explicit

and  symbolic)  and  multilevel  model  based.  These  developments  can  generally  be

classified into four groups: 

1. Process  Modelling  Languages:  Although  the  fundamental  concepts  of  these

languages  are  similar  to  those  of  the  generic  modelling  languages,  they  are

designed from the start  to address the specific issues of a selected application

domain  in  the  definition  of  the  language.  Examples  include  MODEL.LA or

VEDA. In these languages, chemical engineering specific elements are included in
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the  language  definition.  It  should  be  noted  that  VEDA is  a  basic  language

definition platform  [Marquardt, 1996]. The language definition syntax is based on

the  use  of  Objects  derived  from  Object  Oriented  programming  concepts

originating  from  computer  science.  Although  originally  developed   to  model

chemical engineering phenomena, the structure of the language is generic enough

to accommodate models from any scientific discipline. Currently, implementations

are carried out using different software platforms. An example is the frame-based

knowledge representation language FRAMETALK [Rathke, 1993] as well as the

expert  system  shell  G2  [Gensym,  1995] and  the  process-centred  design

environment PROART/CE [Dömges et al , 1996].

2. Modelling Expert Systems: the objective behind these modelling environments is

to  produce a sufficient process model from a formal description of the modelling

problem that  is  initially  introduced  by a  user  with  a  minimum or  no  further

interaction. Similar to all expert systems, the system should contain a knowledge

base that is built on some formalism of a hybrid knowledge representation, an

interface for knowledge acquisition, a description facility in addition to a discrete

reasoning  system  that  allows  automatic  model  generation  from  the  provided

specification. The early attempts to model such a system constituted MODEX.  In

addition, MODASS exhibits some aspects of this general idea. After prototypes of

both modelling languages were implemented and enhanced, they were suspended.

PROFIT encompasses recent  advances in  expert  systems. In PROFIT,  the user

supplies  details  of  structural  specification in  addition  to  the  phenomenological

characteristics that comprehensively define the considered process abstraction. An

inference  engine,  that  is  rule-based,  automatically  determines  a  set  of  balance
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equations based on the supplied facts [Marquardt, 1996].

3. Interactive (Knowledge-Based) Modelling Environments: knowledge-based design

environments or construction kits are built to enforce the traditional concept of

elementary  building  blocks  that  result  in  a  robust  model.  Various  possible

configurations can result from those elementary building blocks because of their

generic structure that provides few restrictions on combined blocks.  Instead of

directly solving the problem, the system provides a variety of solution paths that a

modeller can select from. Consequently,  problem specifications are constructed

side-by-side  with the solution. There isn't, so far, a practically built system that

complies  with  this  idea.  Nevertheless,  Some  of  its  concepts  are  found  in

MODASS or in knowledge-based user interface of DIVA [Bär and Zeitz, 1990].

4. General  modelling  languages:  Examples  of  this  group  include  DYMOLA,

OMOLA , ASCEND or gPROMS. These languages can be looked at as the second

generation of equation oriented simulation languages that can be traced back to

the 1960s specification of CSSL  [Augustin  et  al,  1967].  Their  design supports

hierarchical decomposition of complex models. This hierarchical decomposition

facilitates model reuse and maintenance. All of these languages utilise concepts

originated  from Semantic  Data  Modelling  [King  and  Hull,  1987] and  Object

Oriented  Programming  [Stephik  and  Bobro,  1986].  They  exhibit structured

representations  of  encapsulated  submodels  that  are  organized  in  terms  of

inheritance  and  aggregation  hierarchies.  The  use  of  these  languages  is  not

restricted to chemical engineering applications. This is because the definition of

the  language  is  reduced  to  a  relatively  small  number  of  generic  elements

[Marquardt, 1996].
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The development of any software package that supports an engineering task requires a

model conceptualization of the problem domain. This abstraction level should eventually

reveal  a  reasonable  process  modelling  methodology  that  well  suits  computer

implementation. This methodology should include:

1. Models'  decomposition  and identification  of  elementary modelling objects  that

can be combined to form a coherent model of virtually any chemical process.

2. Generic modelling algorithms that support building models from the ground up,

maintenance and modifications of existing models to serve the requirements of a

new context [Marquardt, 1996].

2.4. Assumptions in Mathematical Model Building

Mathematical models constitute a class of models that are built based on mathematical

equations to study the behaviour of an existing system under different scenarios or to

study the effect of pushing the system close to or beyond its known boundaries.

In general,  equations in a mathematical model are divided into conservation laws and

constitutive equations [Hangos and Cameron, 2001]. Conservation laws are equations that

restrict  and align the  behaviour  of  the model  with the  system it  is  presenting.  When

modelling, the differential variables belonging to this class of equations are called state

variables as they determine the state of the system at any particular time or spatial instant.

Integration  routines  usually  integrate  these  variables  from  particular  initial  to  final

conditions, between predetermined boundary conditions, or a combination of initial and

boundary conditions. Differential variables are assumed continuous in nature. However,

discontinuities  may occur  in  differential  equations.  Such discontinuities  usually  result

from model formulation and its  underlying assumptions.  Let us illustrate this  with an

example.
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Figure  2.1 : A flash drum with a pressure safety valve.

Example 2.1 An over-pressurized column. 

Let us draw a mass balance envelope around a simple flash drum that

contains a pressure safety relief valve as illustrated in Figure . In normal

process operating conditions, the pressure relief valve is closed since the

pressure  is  lower  than  the  set  value  of  the  relief  valve  Ph .  In  such

conditions, the overall dynamic mass balance around the flash drum can

be written as:

dm
dt

=ṁ1− ṁ2−ṁ3 (2.1)

Once drum pressure reaches the pressure set by the PSV (Ph), the mass

balance will immediately shift to the form:

dm
dt

=ṁ1− ṁ2− ṁ3− ṁ4 (2.2)

This sudden change in the mass balance equation results in an explicit

model discontinuity.

Conventional  integration  routines  properly  tackle  this  type  of  discontinuity  mainly
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because the discontinuity appears in the state variable. Such routines use an interpolating

polynomial to bridge the gap between the two sides of the discontinuity. Some of modern

integration  routines  (e.g.  [gPROMS,  2012])  prefer  re-initialization  of  variables  over

bridging with  an  interpolating  polynomial.  However,  in  such cases,  bridging  with  an

interpolating polynomial  should arguably provide a  more accurate  solution than mere

initialization.  The  increase  in  accuracy  is  attributed  to  the  fact  that  an  interpolating

polynomial would implicitly assume that there is a spatial or temporal transition between

the  two adjacent  sides  of  the  discontinuity.  Smooth  transition  more  resembles  reality

regardless  of the difference between the relative rates  of change exhibited by system

behaviour  and  the  interpolating  polynomial  representing  the  transition  over  the

discontinuity. 

On the other hand,  reinitialization assumes an instantaneous transition between the sides

of the discontinuity. This instantaneous transition overlooks the smoothness of the system

transition. In doing so, model behaviour information during transition is not captured. In

addition, the use of an interpolating polynomial is computationally less exhaustive as I

will  prove  in  section  6.1.  Reinitialization  is  computationally  exhaustive  because  the

integrating  routine  does  not  only  reinitialize  the  discontinuous  variable  or  equation.

Rather,  it  reinitializes  the  entire  system  of  equations.  Thus,  computational  effort  is

directly proportional to model size when reinitializing.  Such computational deficiency

mandates  the  use  of  more  powerful  computing  platforms  as  the  size  of  the  model

increases.

Let us turn our attention to constitutive equations. These equations are formulated and

added  to  conservation  laws  (equations)  in  order  to  determine  values  of  particular

constants/variables appearing in the differentiable equations. The reason behind the need
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for such equations lies in the fact that when conservation balances are written, few of

their  underlying  terms  require  either  definition  or  calculation  [Hangos  and  Cameron,

2001]. Constitutive equations are, unlike balance equations, particular to the system under

study.  They  define  the  characteristics  of  a  particular  system  and  to  some  extent

differentiate it from other systems [Aris, 1999]. Examples of model variables that can be

calculated  using  constitutive  equations  include  the  density  of  a  two-phase  fluid  in  a

crystallizer, thermal conductivity of a substance, the overall heat transfer coefficient of a

particular system, stresses within a rock, etc. These properties are usually functions of the

state of the system (temperature, pressure, flow and composition) in addition to other

system specifications.

In some cases,  the constitutive variable  may reduce to  a simple constant  such as  the

resistance in a simplified electrical circuit. However, in other cases, equations may extend

beyond  that.  The  complexity  of  calculating  a  constitutive  variable  in  a  conservation

equation is usually a direct function of the accuracy required for the value of that variable.

Thus, in general, more accurate values require more complex equations. 

To overcome the need to implement high accuracy calculations over the entire range of

the  property to  be  estimated,  scientists  and engineers  resort  to  formulating  relatively

simplified equations that calculate the value of a constitutive variable to a certain degree

of accuracy.  Such equations  are  based on theoretical  grounds,  experimental  data  or  a

combination  of  both.  Regardless  of  the  origin  of  the calculation  method,  it  is  almost

always associated with a domain at  which it  can be applied with some confidence,  a

minimum acceptable accuracy and few simplifying assumptions. 

Extrapolating the use of the calculation method beyond its applicability domain results in

loss of either confidence or accuracy of the reported values, if not resulting in both. To



Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 38

overcome this barrier, researchers opt to define an equation or a set of equations that

satisfy minimum acceptable accuracy for each of the domains a simulation model might

run  into.  This  approach  works  well  within  the  applicability  domain  of  the  equation.

However, it introduces another problem when simulation moves from the applicability

domain of one equation (or correlation) to that of another. The problem is illustrated in

Example 2.2.

Example 2.2 Viscosities of liquid and vapour benzene:

The viscosities of saturated pure vapour and liquid benzene against the

temperature are plotted in Figure 2.2. Saturated liquid viscosity is plotted

on the left y-axis while saturated vapour viscosity is plotted on the right

axis. The saturated liquid viscosity at any given temperature is roughly

about thirty times that of the saturated vapour. A modeller can account

for the value of the viscosity at any given phase through an expression

such as:

if Phase=Vapour
Viscosity=Vapour Viscosity

else if Phase=Liquid
Viscosity=Liquid Viscosity

endif

A simulation model involving a transition between the two phases will

most  probably  run  into  a  discontinuity  at  the  phase  transition  point

because of the large differences between the viscosity values of the two

phases.

Since the origin of constitutive equations differ from one applicability domain to

the other, it becomes natural to realise that these equations will most probably

violate  continuity  at  the  intersecting  points  of  their  applicability  domains
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although they are calculating the value of the same property. Such a discontinuity

introduces  a  problem when  a  simulation  integration  routine  moves  from one

domain to an adjacent one exhibiting different equations to calculate the same

variable.

Figure 2.2 : Vapour and liquid benzene viscosities as functions of temperatures. [Reid et

al, 1987]

As discussed earlier, conventional integration routines use an interpolating polynomial to

resolve the discontinuity. However, conventional integration routines cannot detect the

exact  location  of  the  discontinuity.  They  rather  detect  the  discontinuity  in  the  state

variable  resulting  from  a  discontinuous  constitutive  equation.  Since  discontinuity  is

detected at the state variable level, the bridging interpolating polynomial is constructed at

the state variable level. Thus, the resulting interpolating polynomial is not representative
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of system behaviour any more. Such a resolution leads to:   

1. a diversion of the simulation from its original trajectory. This diversion creates an

error and reduces confidence in simulation results post discontinuity. The error

accumulates  with  every  passage  through  a  constitutive-equation  discontinuity.

What  worsens  the  situation  is  that  the  error  is  not  calculated  as  it  is  passed

undetected.  At  best,  the  modeller  is  merely  notified  of  the  existence  of  a

discontinuity and its respective resolution.

2. a situation known in literature as a  sticky discontinuity.  A sticky discontinuity

happens  when  the  change  in  the  simulation  trajectory,  introduced  by  the

interpolating polynomial, lands the model at a pre-discontinuity point leading to a

regeneration  of  the  same  polynomial  and  a  re-landing  at  the  same  pre-

discontinuity  conditions.  The  situation  continues  until  the  integrating  routine

surrenders after a certain preconfigured number of iterations. 

Modern solvers such as [gPROMS, 2012] reintialize the entire model equation when such

a discontinuity is encountered. Reinitialization in this situation is better than the use of an

interpolating polynomial since it, at least, preserves the structure of the model and avoids

sticky discontinuities. However, the aforementioned reinitialization problems still exist

and a proper solution remains to be found.   

A third form of a discontinuity appears in a model when a sudden change exists, not in

model equations but in their respective boundary and/or initial conditions. Examples of

such discontinuity include a sudden open/closure of a motor-operated valve, the start-up

or  shut-off  of  a  pump  or  a  sudden  reroute  of  flow  network.  The  discussion  is  best

explained through an example.
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Example 2.3 Pressurizing and de-pressurizing a vessel.

In this example, I will model a simple gaseous pressurization of a vessel

through one end and its immediate depressurization through the other end.

The interest is focused on concentration and velocity profiles throughout

the vessel over space and time. Thus, I will discretize the axial dimension

of the vessel. Uniformity will be assumed in radial direction. To further

simplify the problem, I will assume isothermal conditions and negligible

pressure gradient. The differential component concentration of the system

can be written as:

dc i

dt
=DL

d2 ci

d z2 −
d(c i u)

dz
(2.3)

Also, since no reaction or adsorption is occurring inside the vessel, the

total  concentration  becomes  a  function  of  pressure  only.  Assuming  an

ideal gas behaviour:

C t=f (P)=
P

RT
(2.4)

Thus,  velocity  becomes  a  function  of  total  concentration  and  its  time

derivative:

dv
dz

=
1
C t

dCt

dt
(2.5)

To complete the problem specification, I need a function representing the

change in vessel pressure with respect to time  ( P = f(t) ). An exponential

form is presented in equation (2.6)

P=Plow− (Phigh−Plow )[1−e
−M pt ] (2.6)

Since the component concentration balance is presented through a PDE
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that is first order in time and a second order in space, I need to specify the

initial conditions as well as the boundary conditions. For this example,

The focus  is  devoted  to  boundary conditions  of  the  PDE.  Thus,  initial

conditions (feed component concentrations) can be arbitrary selected.

When pressurizing the vessel, the feed is introduced at one end (z=0) while

the  other  is  closed  (z=L).  The  boundary  conditions  for  the  feed

introduction  end  and  the  closed  end  during  pressurization  step  are

respectively outlined below:

−DL

∂c i

∂z
|z=0=u|z=0 (ci

f− c i|z=0 )  (2.7)

−DL

∂c i

∂z
|z=L=0 (2.8)

For the depressurization step, the respective boundary conditions are as

follows:

−DL

∂c i

∂z
|z=0=0 (2.9)

−DL

∂c i

∂z
|z=L=0 (2.10)

Note how the boundary condition changes form from equation 2.7 to equation 2.9.

Such a change creates  a discontinuity  in  the  mathematical  formulation  of  the

problem.

Almost  all  modelling  literature  treats  discontinuities  in  boundary conditions  similarly.

Simply  stated,  no  known  integration  routine  can  smoothly  integrate  over  changing

boundary conditions. Thus, almost all modelling languages allow modellers the flexibility

to split a discontinuity in boundary condition into two separately treated problems. The
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integration  routine  integrates  over  the  first  set  of  mathematical  equations,  stops

integration, reinitializes model equations and continues integrating into the next set of

equations.

As I stated earlier, although reinitialization overcomes the discontinuity, it comes at the

cost  of  introducing  an  error  into  subsequent  integration  steps.  In  addition,  it  is

computationally exhaustive as all system equations need reinitialization and not only the

discontinuous set.

It appears from the above discussion that there is still a room to improve the accuracy and

computational  efficiency  when  integrating  discontinuous  functions  whether  the

discontinuity  occurs  in  the  state  variable,  the  constitutive  equation  or  the  boundary

condition. 

2.5. Numerically  Integrating  Mathematical  Models  and  the  Inherent

Errors

In order to solve any mathematical model, it  needs to be reduced to a set of ordinary

differential equations (ODEs) before linking it to an integration routine (sometimes an

integration routine is referred to as a solver). If a model contains higher order differential

equations such as Partial Differential Equations (PDEs), the equations are reduced to a set

of ODEs using readily available techniques in literature before passing the final system to

the integration routine. 

A typical  relationship  between  the  model  and  the  solver,  as  implemented  in  most

conventioal solvers, is represented int Figure  2.3. As illustrated in the figure, the main

driver routine (Block A) is responsible for providing the initial conditions and the overall

integration interval. This routine is almost always written by the model developer. Once

information is passed to the ODE integrator (Block B), the integration routine initializes
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integration and starts  integrating between initial  and final  points  defined by the main

driver routine in a sequence of integration steps. 

Figure  2.3 :  A  diagram  illustrating  the  flow  of  information  between  entities  of  a

conventional integration routine, its associated main driver and the model routine.

For each integration step i, the integration routine passes the current integration position

(xi), the values of the yi,j vector evaluated at  xi  and the integration step size  h=Δx to the

ODE model routine (Block C). The ODE model routine evaluates the Δyi,j/Δxi and passes

results  to  the  integration  routine.  Once  the  integration  routine  receives  a  new set  of

Δyi,j/Δxi, it checks solution accuracy by one of the following methods:

1. Recalculating derivatives using  xi and  yi,j vectors that correspond to a smaller  h

(normally half of the original one) while maintaining the integration algorithm. 

|Δ y i , j

Δ xi
|
xx i
+Δ x i

−
Δ y i, j

Δ xi
|

xxi
+0.5Δ x i

|<ϵ ∀ j (2.11)

2. Computing the error using two different integration algorithms with the first (A)

being more computationally efficient while the second (B) being more accurate.

Both algorithms will integrate through a fixed integration step size h=Δx. 

ODE Integrator ODE ModelMain Driver

xo=a , yo ,
Δ yo

Δ xo

, [a ,b ]
x i∈[a, b] , yi , j

Emax

Δ y i, j

Δ xi
yb

A B C
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|Δ y i , j

Δ xi
|
xx i
+Δ x i

A

−
Δ y i, j

Δ xi
|

xxi
+Δ xi

B |<ϵ ∀ i (2.12)

Regardless of the error calculation method, the integration step is accepted if the error is

less than a specified tolerance ϵ  and h is increased for the subsequent integration step.

Otherwise, h is reduced and integration is repeated over the newly calculated h. 

The difference between the two integral values, calculated using either of equations 2.11

or 2.12, constitutes the local error, or at least an approximate numerical representation of

it. The  inaccuracy  that  results  from  using  equation  2.11 arises  from  the  fact  that

integrating using any value h̄ , representing the magnitude of the halved step, that is less

than h carries its own errors. An exact representation of the local error is only achievable

when  h̄  approaches  an  absolute  0.  Of  course,  the  calculation  then  becomes

computationally  prohibitive.  So,  a  compromise  is usually  struck  between  acceptable

accuracy and computational efficiency.

The inaccuracy associated with using equation  2.12 as error evaluation criterion stems

from the fact that the more accurate algorithm is not the exact solution to the integral.

Thus, it also carries its own error within its computation. We are simply stating that a

numerical  solution  is  as  good  as  the  computing  algorithm  and,  with  an  infinite

computational power and/or highly accurate numerical solution algorithm, the numerical

solution might reach the exact one.

Errors  resulting  from the  use  of  a  particular  numerical  algorithm can be  reduced by

deploying better numerical algorithms, increasing efficiency of certain existing ones or

tightening solution error-tolerance criterion. The first two solutions are handled by the

modelling language developer while the last one is handled by the modeller.

In addition to errors resulting from the use of a particular numerical algorithm, there is
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another  source  of  numerical  error  that  is  associated  with  machine  precision.  It  is

sometimes referred to as the round-off error. Each computing machine stores numbers to a

finite precision. If the calculated number requires a precision that is more than what the

machine can store, an error is introduced that is equivalent to the difference between the

true numeric value and that stored by the machine. 

[Cheney and Kincaid, 1999] state that round-off errors are negligible when integrating

few steps. However, error magnitudes start playing an important role when integrating

over hundreds to thousands of steps. The IEEE 754 double precision format, illustrated in

Figure  2.4, stores a float number using 15-17 decimal figures (depending on the sign).

This number representation significantly reduces errors associated with rounding-off. 

      Sign  (1 bit)

Exponent =

(11 bits)

Mantissa  

(52 bits)

Figure  2.4 :  The  number  of  machine  bits  reserved  for  a  double-precision  variable  as

outlined by IEEE 754 standard

Another  solution  that  overcomes  machine  precision  limitations  is  rescaling  of  ODE

variables. Sometimes, it  is also called  normalization. Basically, the ODE variables are

transformed from their original domains to normalized ones. For example, let us assume

that an integral of an ODE y'(x) = f(x,y) is required to be carried over x∈[a ,b ]  with an

initial  condition  y(a) = g and a known  y domain of y∈[c ,d ] .  All variables and their

respective domains can be normalized to fall within a range of [0,1]. For the independent

variable  x, the transformation will take the form x̄=(x−a)/(b− a) resulting in x̄∈[0,1] .

Similar transformation over the dependent variable y using ȳ=( y−c)/(d−c) , results in
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ȳ∈[0,1] and an initial condition of ȳ (0)=(g−c)/(d−c) . 

The error that results from a one-time execution of the numerical algorithm is referred to

as the local error. This error is the sum of the last two pre-mentioned errors over a single

execution  interval  of  a  particular  numerical  algorithm.  When  integrating  polynomial

ODEs, the local error resulting from a single integration step can be easily calculated

using Taylor's series expansion of the form: 

EL=
f ' (x i , y i)

2!
h2
+

f ' '(x i , y i)

3 !
h3
+

f (4 )(x i , y i)

4 !
h4
+ ....

f (n)(x i , y i)

n!
hn  (2.13)

The  integer  n in  equation  (2.13)  corresponds  to  the  order  of  the  polynomial  to  be

integrated since any derivatives beyond the nth derivative will be zeros as per polynomial

definition.  The calculation of the local error is more accurate when exact derivatives of

(2.13)  are  available  and  computable.  When  these  derivatives  are  not  available,  their

numerical counterparts can replace them with a compromise on accuracy.

When  a  particular  numerical  algorithm  is  repeatedly  executed  to  solve  a  particular

numerical problem (as in ODE integration), the sum of the local errors introduced by a

particular execution step in addition to errors introduced by previous executions is called

the  Cumulative or  Global error.  When the exact solution is available, for comparative

purposes, the global errors is calculated as the difference between the exact solution and

its numerical counterpart.. 

2.6. Stiffness and Stiff Mathematical Models

In this discussion, a particular interest is devoted to stiffness of ODE systems because

discontinuities  in  ODEs  originate  at  the  boundaries  of  stiffness  where  conventional

numerical  integration  methods  do  not  apply.  Conventional  methods  to  resolving

discontinuities in ODE systems are discussed in Chapter 3: . 
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A stiff system of equations is a system that inherently involves mixed, slow and fast,

dynamics. The bigger is the difference between the fast and slow dynamics of a system,

the stiffer is the system [Chapra and Cancale, 2002]. 

In numerical mathematics, stiffness is described as a phenomenon rather than a property

of  the  system.  This  is  mainly  because  there  is  no  concise  definition  to  stiffness.  In

addition to the description outlined earlier, here are few more definitions:

• An ODE system is considered stiff if the size of the integration step is defined by

a stability criterion and not by solution accuracy.

• An  ODE  system  is  is  considered  still  if  explicit  integration  methods  fail  to

integrate it or take longer time to integrate.

• A linear ODE system is stiff if all its associated eigenvalues posses negative real

part, and the stiffness ratio (the ratio of the magnitudes of the real parts of the

largest to smallest eigenvalues) is large.

• In general, An ODE system is considered stiff if the magnitudes of eigenvalues of

its Jacobian matrix greatly differ.

In the vast majority of systems, the rapid changing dynamics are only evident in a fraction

of the integration interval.  Afterwards, the system behaviour is dictated by the slower

dynamics [Chapra and Cancale, 2002]. For example, consider the ODE system:

dy1

dt
=1000∗(1− y1)

dy2

dt
=1− y2

 (2.14)

with initial conditions y1(0) = y2(0) = 0. The analytical solution takes the form:
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y1(t)=1−e−1000 t

y2(t)=1−e− t
 (2.15)

The behaviour of the system is plotted in Figure 2.5. Note how fast the response of y1(t)

compared to y2(t).

Figure 2.5: The behaviour of the stiff system defined by equation (2.15).

If  a  small  integration step  h is  used,  the dynamics  of the fast  response ODE will  be

captured.  However,  despite  the fact that the fast  response ends after a  fraction of the

integration interval,  any variable  step-size routine that  is  not  equipped to handle stiff

systems (mainly explicit integration routines) will fail to increase the step-size afterwards

[Chapra and Cancade, 2002]. Note the difference in time constants defining the system in

equation  2.14 (0.001 and 1). If the time constant of the fastest response equation in an

ODE system is denoted as τ fastest  and that of the slowest response equation is denoted as

τslowest , stiffness ratio Rs is defined as:

y1(t)=1−e−1000t

y2(t)=1−e−t

t

y1(t)=1−e−1000t

y2(t)=1−e−t

y(t)
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RS=
τslowest
τ fastest

 (2.16)

2.7. Concluding remarks

In this  introduction  to  modelling,  I  defined modelling and provided a  brief  historical

background. The importance of defining a modelling goal is also navigated. The concepts

of equation-oriented and block-oriented modelling were introduced.  I  also provided a

summary  of  available  modelling  languages  and  their  categorization.  The  difference

between conservation laws and constitutive equation has been highlighted. I also provided

an insight  on how discontinuities  appear  in  formulation  of  mathematical  equations.  I

discussed  the  building  blocks  required  to  integrate  any  given  model  and  introduced

variable step-size as a mean to to efficiently integrate ODEs without a significant loss of

accuracy or overload of the computing machine. Lastly, I briefly introduced Stiff ODE

systems with methods to integrate them.

When the response time of the fastest ODE in the system approaches 0,  RS in equation

2.16 approaches  infinity.  Literature  refers  to  this  type  of  problem as  a  discontinuity

problem. Discontinuities in mathematical ODEs require special handling techniques that

are presented in Chapter  3. The chapter presents conventional approaches to resolve a

discontinuity in an ODE system. Chapter 4 introduces the models that are constructed to

prove the novel concepts in Chapter 5. In Chapter 5, I present a novel approach to handle

discontinuities. This novel approach better bounds the discontinuity, minimizes the error

around it and reduces computational power. Chapter 6 presents some of the applications

to the novel approach presented in Chapter 5.
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Discontinuities and Their Conventional Resolutions

In this chapter, I define the mathematical discontinuity, shed light on

the previous work dedicated to handling discontinuities in modelling

languages. The previous work on handling discontinuities is classified

into two types. This chapter reviews previous literature on both types. 

51
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A process can be thought of as a complex system that is described by, mostly, continuous

mathematical functions (algebraic or differential). Solution of these differential equations,

usually through integration, brings insights into the behaviour of the process under study.

However,  as  discussed  earlier,  the  continuity  of  these  mathematical  functions  is

sometimes broken by internal  or external  influences.  Breakage of  a  continuity occurs

because  of  the  tendency  of  scientists  to  treat  each  process  condition  with  differing

constitutive  equations  and/or  boundary  conditions.  Once  simulation  shifts  from  one

condition to another,  the underlying equations  change;  usually with no reservation of

mathematical  continuity.  A rapid  phase  change  or  flow  reversal  are  examples  of  an

internally generated discontinuity in a ODE/DEA system whereas switching a pump on or

off can be considered as an external influence that raises a mathematical discontinuity in

the modelled system.

A mathematically continuous function at a point  c is one that satisfies three conditions

[Swokowski, 1991]:

f(c) is defined (3.1a)

lim
x→c

f (x )  exists (3.1b)

lim
x→c

f (x )=f (c) (3.1c)

Satisfying  condition  (3.1c)  implies  that(  3.1a)  and  (3.1b)  are  automatically  satisfied.

Discontinuities in mathematical functions arise when one or more of the above conditions

are not satisfied. Mathematics classify discontinuity into removable, jump and infinite. 

Figures  3.1 illustrate the various forms of discontinuities encountered in mathematics.

Figure  3.1a and  3.1b illustrate two types of  removable discontinuities. For Figure  3.1a,

the value of the function at point c is not defined. Thus, condition 3.1a is not satisfied and

the  function  is  deemed  discontinuous  at  c.  Figure  3.1b  illustrates  a  different  type  of
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removable discontinuity.  Although the function is  defined at  point  c (condition  3.1a),

condition  3.1c is  not satisfied as  lim
x→c

f (x )≠ f (c) .  The discontinuity in Figure  3.1c is

generally referred to as jump discontinuity. Note that although f(c) is defined at one side

of the function, condition  3.1c is still not satisfied as  lim
x→c-

f (x )≠ f (c) . The last form of

discontinuity is called  infinite discontinuity and is illustrated by the example in Figure

3.1d. In such cases, condition  3.1a and  3.1b are always not satisfied. Note that at this

stage of the discussion we are only addressing the continuity of a function but not the

continuity of its respective derivatives.

A discontinuity in a mathematical model arises because of a change in a system state

leading to a change in mathematical equations representing the system. In some cases, the

discontinuity presents itself explicitly in the form of a conditional statement to describe a

transition from one state of the system to another. For example, a modeller would transit

from a laminar to turbulent flow regime through a conditional statement that sets the

boundaries for each regime. Because each regime is described by a different function

(correlation), the conditional statement used to transit simulation between two adjacent

regimes would probably cause a jump discontinuity.

Other discontinuities might not be modelled in an explicit conditional statement form.

However, the structure of the model causes a state change that consequently alters the

underlying  mathematical  equations  and  eventually  leads  to  a  model  discontinuity.

Examples of this form include model boundary conditions related to disc ruptures, pump

start/stop,  sudden opening/closure of valves, etc. Such discontinuities can be triggered by

a time, space or state-variable event.  Such discontinuities can still  be reformulated as

conditional statements and hence facilitate the derivation of a unified solution for this
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class of problems resulting from discontinuities in conditional statements.

a. Removable discontinuity b. Removable discontinuity

c. Jump discontinuity d. Infinite discontinuity

Figure 3.1 : Types of mathematical discontinuities [Swokowski, 1991].

Ideally, conditional statements should not be used to describe continuous dimensions as

continuous  dimensions  are  described  by  continuous  functions.  Thus,  if  functions

representing  continuous  models  exist  with  an  equivalent  accuracy  to  those  with

discretized models, continuous functions should be preferred over discretized ones. The

method of negative saturations for modelling two-phase compositional flow  [Abadpour

and Panfilov, 2009] presents an interesting example that resolves a discontinuity in model

equations through reformulating the problem definition to eliminate the discontinuity. 

However, in some cases, the modeller would want to simplify the modelling task because
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of computational cost, inapplicability to the problem at hand, insignificance of rigorously

modelling some parts of the model, etc. In other instances, information about specific

parts of the model are not readily available. As [Cameron et al, 2005] stated, a model is

built to fit a purpose. Thus, if the purpose does not call for a rigorous model, a simplified

model is constructed. In such cases, the modeller probably resorts to assumptions that

lead to discretizing some of model's continuous dimensions through the use of conditional

statements. Discretization contradicts the nature of the assumed continuity of the original

rigorous continuous function and presents itself as a jump discontinuity that mandates a

resolution during a simulation run. 

Even when rigorously tested functions/correlations are available in  literature,  they are

usually bound by the conditions set for their validation experiments. Such bounds leave

the  modeller  no  choice  but  to  combine  more  than  one  function  to  cover  a  certain

applicability  domain  for  the  intended  simulation.  Any  combination  of  heterogeneous

functions leads to a model discontinuity. 

Once a discontinuity in a simulation run is detected, it should be properly handled by the

ODE/DAE  solver.  Handling  discontinuity  through  ODE/DAE  solvers  is  performed

through two steps: discontinuity detection and discontinuity resolution; although some

solvers  combine  the  two steps  [Mao  and Petzold,  2002].  The  literature  refers  to  the

problem of  locating  a  discontinuity  as  discontinuity  detection  [Javey,  1988].  Process

simulators usually couple their integrators with the modelling language. This coupling

eases detection of jump discontinuities. 

Regardless of the form or source of discontinuity, it needs to be resolved either before

starting to integrate the ODE/DAE system (if  possible) or whenever it  is encountered

during the evolution of integration process. Methods for the resolution of discontinuities
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arising during integration of differential equations can be divided into two types:

1. Type I tries to handle discontinuities using methods that are usually integrated

with the solver (integrator) of the ODE/DAE system. Those methods are usually

generic, irrespective of the system to be modelled and handle discontinuities at the

time they are encountered during integration (or simulation). Most literature on

discontinuity detection and resolution covers this class (eg. [Ellison, 1981], [Mao

and Petzold, 2002], [Javey, 1988] and [Park and Barton, 1996]).

2. Type II handles discontinuities using knowledge about the process to be modelled.

It  remodels  the  ODE/DAE  system  in  a  way  that  eliminates  discontinuities.

Literature is very sparse in this area (e.g.  [Borst, 2008],  [Brackbill et al, 1992]

[Helenbrook et al, 1999] and [Carver, 1978]).

[Borst,  2008] refers to  the two types  as  discretization and regularization,  respectively

(Figure  3.1).  He also points out that internal model discontinuities are better handled

using type II  methods irrespective of the solver integration routine.  Surprisingly,  both

types  use  some  form  of  an  interpolation  to  convert  a  discontinuous  region  into  a

continuous  one  when  dealing  with  internally  generated  discontinuities.  Externally

generated discontinuities are usually handled by reinitialization of the model equations

and their respective new initial and boundary conditions. In the following discussion, I

will briefly touch on recent literature covering each of the categories.

3.1. Type I - Integrator Based Discontinuity Resolution

[Cellier, 1979] demonstrated that the most efficient approach to locating a state event is

through  discontinuity  locking.  In  discontinuity  locking,  the  system  of  ODE/DAE  is

locked until the end of the integration step regardless of the existence of a state event
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during the step. After completion of the integration step that involves a state event, the

exact location of the state event is detected. Several event location algorithms that use

discontinuity locking mechanism are reported and for a comprehensive review of state

event detection algorithms, the reader may refer to [Park and Barton, 1996]. 

Figure 3.1: Transformation of a discontinuity into either a regularization or discretization
problem. [Borst, 2008]

[Mao and Petzold, 2002] have introduced an event detection algorithm that is based on

regulating the integration step size based on discontinuity functions that are appended to

the DAE system. Recently,  [Archibald et  al,  2008] introduced a  state  event  detection

algorithm that is based on polynomial annihilation techniques. Their method relies on the

difference  of  the  Taylor  series  expansions  behaviour  between  continuous  and  non-

continuous intervals of the tested function. The authors also indicate that their method is

applicable to one-dimensional problems only.

Once a discontinuity is detected, it needs to be resolved before the integrator passes it.

[Javey,  1988] reports  three  methods  for  resolving  discontinuities.  In  all  methods,  the

integrator checks the sign change of a discontinuity-function after each integration step as

an indication of having located a discontinuity: 

1. Once the discontinuity is located, the integrator switches modelling equations to
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those  after  the  discontinuity  and  starts  at  the  end  of  the  current  step.  This

procedure  is  inaccurate  as  it  accumulates  error  each  time  a  discontinuity  is

encountered.  [Mao  and  Petzold,  2002] warn  about  mere  stepping  over

discontinuities without carefully handling them with some rigour. 

2. Once the discontinuity is located, the integrator halves the step and repeats the last

integration  step in  a  hope to  resolve  the  discontinuity.  Resolution is  generally

achieved  if  the  function  is  continuous  but  the  integrator  fails  to  resolve  the

discontinuity  due  to  the  use  of  a  large  integration  step.  Thus,  repeating  the

integration step with smaller step sizes, where the discontinuity is detected should

eventually reveal the continuity of the function. This solution, although better than

the first one, is still considered inefficient because the integrator needs to iterate at

the discontinuity until an acceptable error tolerance is achieved. If the acceptable

error tolerance is not achieved after repeated step-halving (usually because of an

instantaneous discontinuity) , the integrator aborts integration. The method is then

unable to resolve the discontinuity [Carver, 1978]. 

3. Once the discontinuity is located, the integrator reinitializes the differential and

algebraic  variables  using  post  discontinuity  conditions  after  interpolating  all

differential  and  algebraic  variables  at  the  discontinuity  using  a  discontinuity

function (an interpolating polynomial). It should be noted that this method implies

mathematical continuity of differential equations through the discontinuity domain

regardless of the validity of the resulting solution, as demonstrated by  [Cellier,

1979]. This method is the most commonly adopted in recent integration routines

used for process simulation. 

The mismatch between the results obtained using the interpolating polynomial and
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those  obtained  when  reinitializing  the  ODE/DAE  system  after  crossing  a

discontinuity sometimes creates what is known as a sticky discontinuity. Sticky

discontinuities occur because sometimes after reinitializing the ODE/DAE system,

the state of the differential variables returns to the value it had before triggering

the discontinuity resolution resulting in an infinite loop: locating the discontinuity,

interpolating to conditions after the discontinuity,  reinitializing ODE/DAE after

the discontinuity, re-evaluating discontinuity trigger and falling back to the same

discontinuity, interpolating to conditions after discontinuity, etc. 

Two problems arise from Type I discontinuity resolution: 

1. Reinitialization  effort  is  directly  proportional  to  the  number  of  DAE/ODE

equations. Even if a discontinuity is encountered in one equation of the system,

the  integrator  still  needs  to  reinitialize  the  entire  system.  This  procedure  is

computationally  exhaustive.  What  we  need  is  an  approach  that  detects  and

eliminates  localized  discontinuities  leaving the  rest  of  the  system's  continuous

functions intact. 

2. Some integration routines use interpolating polynomials to bridge discontinuous

domains.  The  use  of  integrator-based  interpolating  polynomials  can  produce

inaccurate results at or after the discontinuous region.  [Park and Barton, 1996]

demonstrate that sticky discontinuities arise because the interpolating polynomial

used by the integrator to overcome a ODE/DAE discontinuity may land the ODE

system at a point before the discontinuity. This is  mainly due to the difference in

behaviours between the ODE/DAE system and the interpolating polynomial that is

used  to  approximate  its  behaviour  at  the  discontinuity  although  both  the

ODE/DAE  system  and  the  interpolating  polynomial  share  the  same  initial
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conditions at the location immediately preceding  the discontinuity. 

We may easily deduce that even if the interpolating polynomial has managed to

cross the discontinuity, it will probably land at a location post the discontinuity

that  is  different  from that  corresponding  to  the  destination  of  the  ODE/DAE

system.  So,  even  when  discontinuities  are  resolved  using  integrator-based

interpolating polynomials, the solution post a discontinuity loses accuracy. The

error accumulates with every resolved discontinuity.

3.2. Type II – System Dependent Discontinuity Resolution

In this section, we shed light on resolution of discontinuities using bridging functions that

are derived from laws surrounding the physical system or their approximation. The first

published attempt was by [Carver, 1978]. He appended the discontinuous functions to the

ODE system after a slight transformation. Then, he applied  [Gear, 1970] algorithm to

detect discontinuities. Carver's attempt was the only encountered attempt to generalize a

solution  using  Type  II  although  the  problem  was  still  left  discretized  (i.e.  no

regularization functions used).  [Brackbill et al, 1992] resolved a discontinuity resulting

from the contact of two fluids at an interface point by a smooth interpolation between

discontinuities using the following function: 

P ( x )={ C 1(FLUID 1)
C 2(FLUID 2)

0.5∗(C 1+C 2)(INTERFACE )
(3.2)

[Helenbrook et al, 1999] criticized Brackbill's approach as introducing an error that is

linearly  proportional  to  the  formed  grid.  Instead  they  recommended  replacing

discontinuities with moving boundaries that retain the interface region between the two

fluids.  [Borst,  2008] emphasized that the use of regulating functions derived from the

physics of the problem (Type II) will better eliminate discontinuities than the sole use of



Chapter 3: Discontinuities and Their Conventional Resolutions 61

Type I discretization techniques . He attributes the enhancement to the increase in length

(or time) scale over that resulting from the use of discretization techniques as illustrated

in Figure 3.1. He illustrated the concept by modelling fractures of solid material at their

break points. 

3.3. Concluding Remarks

In this  chapter,  I  discussed  how conventional  numerical  integration  routines  (solvers)

handle discontinuities. I also highlighted the drawbacks of handling discontinuities using

conventional integrator-based approaches.

Conventional approaches to handling discontinuities are classified into Integrator-Based

(Type I) and System-Dependent (Type II). Type II focuses on model behaviour during

integration  rather  than  model  equations.  It  addresses  the  resolution  through  devising

better regularizing functions. Literature favours Type II discontinuity resolution approach

over Type I.  However,  apart  from the attempt by  [Carver,  1978],  literature reports  no

generic methodology for Type II resolutions. 

In Chapter 4, I will introduce the discontinuities in the constructed models that are used to

prove the applicability of the novel approach introduced in this work. I will also highlight

the sources of the embedded discontinuities within these models.

In  Chapter  5,  I  provide  a  generic  approach  to  Type  II  problems  that  is  problem

independent.  Once included within a simulation package, this approach eliminates the

need for the solver to reinitialize state variables whenever a discontinuity is located. In

addition, since the approach tackles discontinuities at their appropriate level, interpolating

polynomials  resulting from this  approach more resemble the accurate  simulation path

than those generated by an integration routine that resolve discontinuities at state variable

level only. The resolution is generic enough to be adopted in: 
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1. implicitly  defined  discontinuities  arising  from  discontinuous  constitutive

equations. 

2. implicitly defined discontinuities arising from discontinuities in state variables.

3. explicitly defined discontinuities that are formulated as boundary conditions. 

An implicit discontinuity is a discontinuity arising from model differential or constitutive

equations. On the other hand, an explicit discontinuity is a discontinuity raised through a

sudden change in model boundary conditions.
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Discontinuities in Constructed Models

In this chapter, I will present discontinuities arising in the modelling

of a chemical reactor and a Pressure Swing Adsorption (PSA) unit.

The reactor model posses an implicit two-dimensional discontinuity in

the  calculation  of  its  heat  transfer  coefficient  when  transitioning

between Laminar and Turbulent flow regimes. 

The  constructed  PSA  model  exhibits  multiple  one-dimensional

discontinuities in its boundary conditions when the PSA column shifts

between each of  its  cyclic  steps.  To simulate  various  PSA column

configurations, additional intermediate steps are modelled along with

the basic cyclic steps reported by  [Skarstrom, 1960]. The additional

steps  include  co-current  depressurization  and  multiple  pressure

equalization steps. 

The PSA model is structured to allow its use as an optimisation model

for  PSA units.  I  will  devote  some  pages  to  outline  the  modelling

scheme I followed to include various PSA column steps in one model

in order to construct a PSA model that will prove useful for synthesis

and optimisation of PSA units.

63
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To demonstrate the ideas on discontinuity handling presented in this  thesis,  I need to

prove  that  the  concept  is  applicable  to  both  implicitly  and  explicitly  defined

discontinuities.  Thus,  I  need  to  construct  models  exhibiting  implicit  and/or  explicit

discontinuities. In the next two sections, I will walk through model construction, illustrate

the philosophy behind constructing each model and highlight encountered discontinuities

in the process of model building.

4.1. Discontinuities in the Reactor Model

A simplified model of the isomerization reactor patented by  [Minkkinen et al, 1993] is

constructed.  The  reactor  is  basically  used  to  isomerize  part  of  the  normal  alkanes

introduced by the process feed to elevate  the feeds  octane number.  Details  of reactor

modelling and validation are discussed in Appendix B. In this section, my primary focus

is to present discontinuities occurring in the  constructed model.

Discontinuities in the reactor model arise when transitioning from laminar to turbulent

flow regimes and vice versa. Modelling any constitutive equation that posses a separate

function to represent Laminar flow regime and another one to represent turbulent flow

regime will  result  in  a discontinuity when simulation shifts  from one flow regime to

another. Unless the values of the two functions are close enough for the integrator routine

to pass its error tolerance test, a discontinuity is inevitable. 

To simplify the problem and only focus on a single discontinuity, I reduced the values of

the other variables calculated through constitutive equations to constants evaluated at feed

conditions. The only exception is the fluid heat transfer coefficient. To calculate fluid heat

transfer coefficient for Laminar flow, I used the simplified constant heat-flux equation of

Nud = 4.364. I assumed that Reynolds number ranges from 0 to 2,310. For turbulent flow,
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I used the Gnielinski correlation [Keith, 2000]:

Nud=
( f /2)(Red− 1000)Pr

1+12.7 ( f /2)1 /2
(Pr2/3−1) [1+(

d
L )

2/3

]  (4.1)

where: f=[1.58 ln (Red )−3.28 ]
− 2

2300<Red<106

0.6<Prd<2000

0<d/L<1

Thus,  Nusselt number  for  the  range  covering  both  laminar  and  turbulent  regimes

becomes: 

Nud={ 4.34 1<Red<2,310

( f /2)(Red−1000)Pr

1+12.7 ( f /2)1 /2
(Pr2/3−1) [1+(dL )

2/3

] 2300<Red<106 ,0.6<Pr d<2000

(4.2)

A plot  of  Nud versus  Re and  Pr for  Laminar  and  Turbulent  flow  regimes  is

illustrated in Figure 4.1. 

Figure 4.1 :A plot of Nusselt number versus Prandtl and Reynolds numbers illustrating a
discontinuity in the transition between Laminar and Turbulent flow regimes at Re = 2300.

A typical pseudo code of equation 4.2 is presented in 4.3:
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If (Re < 2300) 

Nud=4.364 Nud=4.364

Else

Nud=
( f /2)(Red−1000)Pr

1+12.7( f /2)1/2(Pr2 /3−1) [1+(dL )
2/3

]
EndIf

(4.3)

A typical  mistake,  that  modellers  usually  fall  into,  is  not  accounting  for  the  proper

boundaries of both branches of the conditional statement. A better conditional statement

encapsulating the bounds of 4.2 would be in a form similar to 4.4: 

If (Re > 1) and (Re < 2310) 

Nud=4.364

ElseIf (Re > 2300) and (Re < 106) 

if (Pr > 0.6) and (Pr < 2000) 

Nud=
( f /2)(Red− 1000)Pr

1+12.7 ( f /2)1 /2
(Pr2/3−1) [1+(

d
L )

2/3

]
Else

flag a warning and continue or flag an error and quit

EndIf

EndIf

(4.4)

Note how expression 4.4 well encapsulates the composite Nud function within its proper

bounds. However, such encapsulation creates a problem during simulation run. What if

Re started or passed through at a value that is less than 1? What if Re is above 2310 but

Pr is less than 0.6 or greater than 2000? 

Also, from the structure of the conditional statement, the language compiler or interpreter

would not shift to the second branch of the conditional statement until the the first logical

statement evaluates to false although an overlap exists between the domains of the two

sub-functions representing both sides of the conditional statement ( Re∈[2300,2310] ). Is

it better to leave the conditional statement intact or alter it to a better one? If a better one
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exists, on what basis should we alter the expression? 

Lastly, in modern modelling languages, any transition between two consecutive branches

of a conditional statement is treated as a discontinuity that mandates reinitialization of all

state variables and their underlying constitutive equations. But, do we need to reinitialize

all model equations when the discontinuity is occurring only in a subset of the model

equations? In the context of this work, I will provide a generalized framework to better

treat models involving discontinuities. In the discussion, I will be providing answers to all

of these questions.

4.2. PSA Model Construction and Discontinuities

Pressure  Swing  Adsorption  is  one  of  the  very  competitive  separation  techniques  to

distillation. When the right adsorbent is identified, purities can reach values beyond those

of conventional distillation columns. PSA is also useful in separating equiboiling point

mixtures that are otherwise deemed difficult or expensive to separate using distillation

columns.

This introductory will begin by a process description of PSA. Within the description, I

will highlight differences between each of the cyclic steps and the boundary conditions

surrounding each of the steps. 

4.2.1. PSA Process Description and Differential Equations

The first PSA patents were published between 1930 and 1933. However, early published

work  on  PSA processes  was  overlooked  by  recent  authors  in  favour  of  the  works

published  separately by  [Skarstrom,  1960] (filed  in  1958 and accepted  in  1960)  and

[Guerin and Domine, 1957] (filed in December 1957). 

The [Skarstrom, 1960] PSA cycle consisted of four main steps: pressurization, adsorption,
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counter current depressurization (blowdown) and desorption. It used an inert material to

desorb. On the other hand, [Guerin and Domine, 1957] used vacuum to desorb material

off adsorbents. 

After the introductory of the basic steps, few other steps were added that contributed to

either an increased purity or a reduced energy utilization. Examples of the later added

steps  include  co-current  de-pressurization,  pressure  equalization  and  strong-adsorptive

purge steps. Also, Rapid PSA eliminated the adsorption step from the basic cycle. 

In this  section,  I  will  detail  the efforts  I  made to to  create  a generalized PSA model

encompassing most of the available steps. The intent is to use the mode as a synthesis

optimization tool that determines the best combination of steps that serve a particular feed

with specified objectives  (purity and/or  recovery).  In the following paragraphs,  I  will

describe each of the modelled steps, outline the underlying differential equations, their

respective boundary conditions and the available optimisation variables.

In this  discussion,  the term  adsorbent refers to  the solid  pellets  which adsorb certain

components from the gas phase. Sometimes, it is referred to as molecular sieve. The term

inert is  used  to  refer  to  the  material  that  is  weakly adsorbed from the  gas  phase  by

adsorbent. The term  adsorbate refers to the material that is strongly adsorbed into the

adsorbent.

During adsorption step, as the mixture to be separated passes through the adsorbent bed,

adsorbent pellets preferentially adsorb some of the mixture components over others based

on either separation kinetics or equilibrium constants of mixture constituents. As time

passes, more adsorbates accumulate in the adsorbents. At a certain point, adsorbents reach

a saturation limit beyond which no adsorption occurs. Once the entire bed, or a portion of

it, reaches a certain saturation level, the bed needs to be purged to remove the adsorbed
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material.  Following the  analogy of  liquid-liquid  extraction,  the  stream containing  the

weakly adsorbed components (inerts) is sometimes referred to as the  Raffinate and that

containing the strongly adsorbed is referred to as the Extract. 

Adsorption is usually favoured by high pressure and low temperature and desorption is

hence favoured by low pressure and high temperature. Thus, PSA beds continuously cycle

over  periods  of  high  and  low  pressures  and  temperatures.  Most  of  the  Raffinate  is

collected at high pressure cyclic steps and most of the Extract is collected at low pressure

ones  (Figure  4.2).  Between  these  two cyclic  steps,  a  PSA vessel,  naturally,  needs  to

pressurize and depressurize. Figure  4.3 illustrates a typical PSA cycle pressure profile

starting with Pressurization step and moving through Adsorption and De-pressurization

steps before concluding with a Desorption step. 

Figure  4.2: A PSA process flow diagram illustrating the connections between feed and
product  streams for  columns  undergoing  pressurization,  adsorption,  blowdown (co-  &
counter- current) and desorption steps respectively. 

Column 1 
(Pressurization)

Column 2 
(Adsorption)

Column 3 
(Counter-Current 

Blowdown)

Column 5 
(Desorption)

Feed

Raffinate Purge

Extract

Column 4 
(Co-Current 
Blowdown)
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Figure 4.3 : Pressure profile versus time for a single [Skarström, 1960] PSA Cycle.

When constructing  the  PSA model,  I  started  with  the  four-step  process  described  by

[Skarström,  1960];  namely:  Pressurization,  Adsorption  (feed  introduction),  Counter-

current  Blowdown  (Depressurization)  and  Desorption.  Figure  4.4 illustrates  the

interconnections of streams between columns undergoing various steps. 

After  constructing  the  basic  [Skarström,  1960] cycle,  I  introduced  the  co-current

blowdown (  [Cassidy and Holmes, 1984][Keller II, 1983][Avery and Lee, 1962] ) and

pressure equalization steps ([March et al][Berlin, 1966][Wagner, 1969] ). 

Because of computational  difficulty of modelling the full  set  of PSA units,  I  initially

opted for simulating one PSA unit and scaling the resulting output to neighbouring non-

PSA units  as  suggested  by  [Nilchan  and  Pantelides,  1998].  However,  this  modelling

scheme proved to be inaccurate  when modelling pressure equalization steps  as I  will

discuss later. This limitation mandated the modelling of multiple PSA columns. 

I  used an axial  dispersion model  to  model  the PSA column.  To discretize the spatial
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dimension, I used the finite difference method. Thus, fluid phase component mass balance

is written as:

−DL

∂2ci
∂ z2

+
∂ (uci)
∂ z

+
∂ci
∂t

+ρs

(1− ε )

ε

∂qi

∂t
=0 (4.5) 

The overall mass balance is written as:

C t
∂u
∂ z

+
∂C t

∂t
+ρs

(1− ε)
ε
∑
j

∂q j

∂t
=0 (4.6)

The mass transfer rate follows a linear driving force (LDF) expression:

ρs

∂qi

∂t
=apkgl(ci−<ci>) (4.7)

The adsorption equilibrium isotherm follows that introduced by [Nitta et al, 1984]:

<ci>RT=
1

Ki ,ads

θi

(1−∑j
θ j)

ni (4.8)

Fluid phase energy balance is written as:

εK L

∂2T g

∂z2 =εCρgCt

∂(uT g)
∂z

+εCρgCt

∂T g

∂t
+ (1−ε )aphp(Tg−T s)+aihwi (T g−Tw) (4.9)

Energy balance around adsorbent is written with the assumption that adjacent adsorbent

pellets do not exchange heat and that heat is only exchanged with the surrounding fluid.

This assumption reduces heat balance around adsorbent pellets from a PDE to an ODE:

ρsCρs

∂T s

∂t
=aphp(T g−T s)+∑

j
(−ΔH j , ads)ρs

∂q j

∂t
(4.10) 

Energy balance around the column shell is formulated as:

kw

∂2Tw

∂ z2
=ρwCρw

∂Tw

∂t
+hwiawi(Tw−T g)+hweawe(Tw−T∞) (4.11) 

The pressure drop inside the column is assumed to follow Ergun's equation:
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∂P
∂ z

=
150 u ε

dp
2

(1− ε )2

ε3 +
1.75ρ gu2

dp

(1− ϵ)

ε 3 (4.12) 

Although Ergun correlation  is  originally derived to  estimate  pressure  drop across  the

entire length of the column, it has also been widely used to estimate infinitesimal pressure

drop across two points along the axial dimension of the bed (e.g. [Yang et al, 1998] and

[Buzanowski and Yang, 1989]). In this  work, I adopt the latter  use.  [Crittenden et  al,

1994] showed  that  pressure  drop  predictions  from Ergun  equation  do  not  accurately

represent  experimental  data.  Nevertheless,  they  should  suffice  for  the  material  to  be

demonstrated in this thesis. 

The boundary conditions for the energy balance around the wall are the same regardless

of the cyclic step the column is undergoing:

∂Tw

∂z
∣z=0=

∂Tw

∂z
∣z=L=0 (4.13)

Boundary conditions  for  other  differential  equations  are  cyclic  step  dependent.  I  will

detail them after a brief description of their respective steps.

Pressurization step  is  regarded  as  the  first  step  in  a  PSA cycle.  The  purpose  of  the

pressurization step is to elevate the pressure from a predetermined low to high value.  The

feed to this step can be introduced from a battery-limit fresh feed, from a bleed (recycle)

stream from the raffinate or a combination of both. Pressurizing with a recycled stream

from the raffinate has the advantage of enhancing raffinate purity. 

It should be noted that it is always better to have a higher [high : low] pressure ratio as it

enhances  separation.  However,  higher  pressure  ratios  are  accompanied  with  higher

compression power costs.  No effluent  stream is  collected from this step (Figure  4.2).

Once the pressure reaches its high value, this step ends and the closed end is opened for
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raffinate collection signalling the start of the Adsorption step. 

Figure  4.4:  A diagram illustrating  the  basic  [Skarstrom,  1960] cycles  a  PSA column
undergoes. 

The diagram also indicates the steps where feed is introduced and those where Raffinate
and Extracts are collected in addition to the effluent of the cocurrent-blowdown step.

Literature reports the use of three functions to simulate pressurizing and depressurizing a

vessel; namely: linear, parabolic and exponential. Figure  4.5 illustrates the shape of the

curves for respective functions during pressurization and depressurization steps.

The linear pressurization profile is the simplest to model although it does not represent

the reality of a fast pressurization rate when the driving force is high (Pressure difference

between feed and vessel) and a low pressurization rate when the driving force reduces.

Linear pressurization equation is presented in 4.14 and linear depressurization equation is

presented in 4.15.
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P=Plow+[Phigh− Plow

t p
]t (4.14)

P=Phigh+[Plow− Phigh

t p
]t (4.15)

Two functions that demonstrate a better behaviour are the exponential and the parabolic

functions. The exponential function provides a steeper departure pressure at the start of

the pressurization/depressurization step with a pressure profile that is close to flat line

towards  the  end  of  the  step.  On  the  other  hand,  the  parabolic  function  provides  a

relatively even distribution of pressure profile.  

a. Pressurization b. Depressurization

Figure  4.5: Comparison between linear, parabolic and exponential  pressure profiles for
pressurization and depressurization steps.

Equations  4.16 and  4.17 represent  parabolic  pressure  profiles  for  pressurization  and

depressurization  steps,  respectively.  Similarly,  equations  4.18 and  4.19 represent

exponential pressure profiles for pressurization and depressurization steps, respectively.

P=Phigh− (Phigh−Plow)[ t
t p

− 1]
2

(4.16)

P=Plow− (Plow−Phigh)[ t
t p

−1]
2

(4.17)

t 0 t0+ t p

P low

Phigh
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Exponential

Linear

Phigh

P low

t 0 t0+ t p

Exponential
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Linear
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P=Plow− (Plow−Phigh )[1−e
−M pt ] (4.18)

P=Phigh− (Phigh−Plow) [1− e
−M dp t ] (4.19)

Nevertheless, all the above modelling equations suffer a fundamental drawback. They all

exhibit an instantaneous change in the feed velocity when the feed is initially introduced

to  the  pressurization  step.  A better  novel  treatment  of  this  drawback  is  presented  in

Appendix A where a combination of parabolic and exponential pressure profile equations

is  used to provide a realistic inlet  velocity evolution from the start  to the end of the

pressurization step.

Another typical optimization variable for this step is the pressurization rate (Mp) when

using  exponential  pressurization  profiles  or  the  pressurization  velocity  when  using

parabolic pressurization profiles. Typical boundary conditions for this step are as follow:

−DL

∂c Ai

∂ z
|z=0=u|z=0( cAi f

− cAi
|z=0) (4.20)

−DL

∂c Ai

∂ z
|z=L=0 (4.21)

−K L

∂T g

∂ z
∣z=0=εC pg C t u∣z=0T g f−T g∣z=0  (4.22)

−K L

∂T g

∂ z
∣z=L=0 (4.23)

u∣z=L=0 (4.24)

Pressurization-Equalization  step can be considered as a partial pressurization step from

the perspective of the vessel to be pressurized. The difference between a pressurization

step and pressurization-equalization step lies in the feed. In the pressurization step, the

feed  is  usually  coming  from  a  continuous  stream  with  a  fixed  pressure,  flow  and

composition such as fresh feed from unit battery-limits or a recycled raffinate. However,
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in  pressurization-equalization,  the  vessel  that  is  at  the  end  of  an  adsorption  step  is

connected to pressurize a vessel that has just been purged; resulting in pressure changes

for  both  vessels  during  pressure  equalization.  The  main  reason  behind  pressure

equalization  steps  is  the  conservation  of  mechanical  energy,  that  would  otherwise  be

drawn from a compressor, by equalizing pressures of these two connected vessels. 

Boundary conditions of a pressurization-equalization step can be regarded as similar to

those of a pressurization step. However, [Delgado and Rodrigues, 2008] have shown that

these  boundary  conditions  do  not  conserve  mass  and  energy between  interconnected

vessels;  especially  for  long  equalization  times.  They  analysed  two  sets  of  boundary

conditions from literature.  They also proposed a third set of boundary conditions and

concluded,  from simulation  runs,  that  the third  set  better  conserves  mass  and energy

between interconnected beds. Nevertheless, and for the purposes of this study, I will stick

to those boundary conditions that are similar to pressurization step for reasons outlined in

the next few paragraphs. 

In modelling multiple vessels,  I  followed the suggestions by  [Nilchan and Pantelides,

1998]. They suggested that modelling one PSA vessel is sufficient to predict bed profiles

of the entire PSA cycle. Indeed, modelling one vessel and scaling the output to multiple

vessels  substantially  reduces  simulation  computational  power  and  consequently  time.

However,  to  incorporate  [Delgado  and  Rodrigues,  2008] suggestions  regarding

equalization step boundary conditions,  at  least  two vessels  need to  be simulated:  one

undergoing pressurization-equalization and the other undergoing blowdown-equalization.

An additional vessel is needed per each additional equalization step. To compromise, I

opted for the use of an intermediate  vessel  to  store a well-mixed product  of  the bed

undergoing blowdown-equalization. The amount stored in the intermediate vessel will be
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discharged  to  a  running  PSA  bed  when  the  bed  reaches  the  next  pressurization-

equalization  step.  The intermediate  vessel  acts  as  a  well-mixed tank.  Thus,  time and

spatial profiles are not stored. Only the integral of the amount released from the bed and

its average concentration over the elapsed time are stored for later use. I am still using the

exact  boundary conditions  of regular  pressurization and blowdown steps for  the beds

undergoing  pressurization-equalization  and  blowdown-equalization,  respectively.  The

idea of introducing and intermediate storage vessel is not new. It was implemented in the

original patent that introduced equalization steps to the community  [Marsh et al, 1964]

before  eliminating  the  intermediate  vessel  in  the  patents  filed  by  [Berlin,  1966] and

[Wagner, 1969].

The question would then be, why should we still treat this step as a separate one instead

of treating it as a pressurization step? It is mainly to conserve mass balance. As would be

expected, the mass of an equalization step is conserved between the interconnected high

and low PSA  vessels. No raffinates or extracts are collected during equalization steps.  In

addition, this segregation allows independent future developments of separate boundary

conditions  for  depressurization,  depressurization-equalization,  pressurization  and

pressurization equalization steps inside the model.

The final pressure of an equalization step lies somewhere between the pressures of the

two  interconnected  vessels.  Arithmetic  ( Peq=0.5∗(Phigh+Plow) )  and  geometric  (

Peq=√(Phigh Plow) )  means  are  used  in  literature  to  calculate  the  final  settling

(equalization)  pressure.  Examples  of  works  that  use  these  formulas  include  [Chiang,

1996] and  [Banerjee  et  al,  1990].  [Warmuzinski,  2002] showed that  arithmetic  mean

corresponds to the frozen solid approximation. However, due to the nature of this step,

both averages do not reflect the actual final settling pressure. [Warmuzinski and Tanczyk,
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2003] calculated the equalization pressure for a binary adsorbed components using this

equation (assuming component A is the strongly adsorbed):

Peq=
C+1√Phigh

C Plow  (4.25)

Where:

C=
1

α y A
f
+ 1

 , α=
αB
αA

, αi=
ϵt
ϵb
+

1− ϵb
ϵb

K i , ads
, i = A, B

However, their analysis is based on linear isotherms. Since we are fitting our adsorption

isotherm curves to a non-linear  model  [Nitta et  al,  1984],  more testing is  required to

verify the validity of this formula. [Chahbani and Tondeur, 2010] have proved that, for an

accurate  prediction  of  equalization  pressure,  segregation  of  the  equalization  step  into

pressurization-equalization and blowdown-equalization steps ceases to be valid as I noted

earlier. This demonstrates the invalidity of the assumption that modelling a single PSA

bed suffices to predicting the performance of an entire PSA unit, proposed by [Nilchan

and Pantelides, 1998], when it comes to equalization steps. As can be seen from Figure

4.6 , there is a  noticeable mass imbalance between the two interconnected vessels when

assuming that  each  vessel  preserves  independent  boundary conditions,  as  reported  by

[Delgado and Rodrigues, 2008]. However, I opted to accept this difference and reinitialize

content  of  the  virtual  tank after  the  end of  each pressurization-equalization step.  The

constructed  model  is  designed to  allow the  calculation of  equalization pressure using

arithmetic,  geometric  or  [Warmuzinski  and  Tanczyk,  2003] equation  based  on  user

selection.

Since this work is aimed as a proof of a concept more than a rigorous design and/or

operation, I think [Nilchan and Pantelides, 1998] assumption is sufficient for the purpose.

However, for the PSA optimization work discussed in section 4.2.2, pressure equalization
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is modelled using a number of PSA units. 

Figure  4.6:  Trends  illustrating  the  imbalance  in  mass  when  assuming  that  pressure
equalization  steps  act  as  two  separate  steps;  namely:  pressurization-equalization  and
blowdown-equalization. 

The mass of the virtual tank is trended at the  lower section of the figure. Trends were
produced using geometric average pressure.

The typical optimization parameter for equalization steps is the number of equalization

steps to be performed with a column undergoing pressurization and a set of columns that

need to be de-pressurized. The absence of equalization steps result in a considerable loss

of  mechanical  energy  that  needs  to  be  compensated  by  power-driven  compressors;

leading  to  energy  inefficient  process.  On  the  other  hand,  after  a  certain  number  of

equalization  steps,  the  driving  force  (pressure  difference)  between  the  interconnected

vessels reaches a very low value that renders further equalizations infeasible. Boundary

conditions for this step are the same as those for pressurization steps (eq. 4.20-4.24).

Adsorption step (sometimes referred to as feed introduction step) is the high pressure step

since pressure remains at its high value for the entire period of the step. This is also the

step at which raffinate is collected (Figure  4.2). When PSA units were introduced, this
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step used to be run until the bed was saturated with adsobates before switching to counter-

current blowdown (depressurization) step. However, after introduction of the co-current

blowdown  step,  beds  are  prematurely  switched  to  co-current  blowdown  to  allow

additional recovery of raffinate. A typical optimization parameter for this step is the step

duration (ta). Boundary conditions for adsorption step are written as:
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The  discussion  related  to  pressurization-equalization  step  is  also  applicable  to

depressurization-equalization step. The purpose of the depressurization-equalization step

is to reduce the pressure from its high value, to an intermediate value, by pressurizing a

vessel  at  a  lower  pressure.  This  step  allows  for  conservation  of  mechanical  energy

required to pressurize low-pressure vessels. No products are collected during this step.

The Boundary conditions for depressurization-equalization step are:

−DL

∂ cAi

∂ z
| z=0=0 (4.31)
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−DL

∂ cAi

∂ z
| z=0=0 (4.31)

−K L
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∂ z
∣z=L=0 (4.34)

u∣z=L=0 (4.35)

De-pressurization (blowdown)  is originally the step that is used to reduce bed pressure

from its high value to the low one. However, after introduction of equalization steps, this

step became either an intermediate step between equalization steps (e.g.  [Cassidy and

Holmes, 1984]) or a final step after a series of equalization steps to bring bed pressure to

the value of the purge stream in the desorption step. The main difference between this

step and an equalization step is that the bed in this step is connected to a low pressure end

(in contrast to a variable pressure vessel in equalization step). The direction of the flow of

this step determines the collecting end. Co-current blowdown effluent is usually collected

as a raffinate while counter-current blowdown effluent is usually collected as an extract as

illustrated in  4.2. In both cases, one end of the vessel is closed. The advantage of co-

current blowdown, before saturating the bed, is that it increases the concentration of the

strongly  adsorbed  components  in  the  gas  phase  by  discharging  the  weakly  adsorbed

components  that were trapped in the adsorbent  to  the raffinate  product.  The resulting

increased concentration of strongly adsorbed components enhances extract purity when

collected  later  at  the  counter-current  blowdown  step.  Thus,  this  step  simultaneously

enhances raffinate and extract recoveries and purities. 

The  depressurization  rate  (Mdp)  or  depressurization  time  (tdp)is  a  typical  optimization

variable.  Another  optimization  variable  is  the  fractional  time  utilized  for  co-current

pressurization versus that of the counter-current pressurization in relation to the total time

devoted for depressurization (tdp). Boundary conditions for the blowdown step are exactly
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the same as those of the Blowdown-equalization step.

Desorption step is the last step in a cycle. The purpose of this step is to clean the saturated

adsorbent  from the  adsorbate  that  was  mainly adsorbed during  adsoprion  step.  Since

desorption  is  favoured  by low pressure,  this  step  is  entirely  run  at  low pressure.  In

addition, part of the raffinate is used as a purge gas. In fact, raffinate recovery and purity

are influenced by the amount of the purge used. So, for an operating unit, more purge

results  in  a  purer  raffinate  at  the  expense  of  its  recovery  and  vice  versa.  Extract  is

collected  as  an  effluent  from  this  step.  Desorption  step  (td)  duration  is  a  typical

optimization variable.  Typical desorption step boundary conditions are:

∂c Ai

∂ z
∣z=0=0 (4.36)
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To accurately represent the unit,  two separate  tanks are added to store both products'

(raffinate and extract) quantities and qualities. Also, to avoid the infinite accumulation of

mass, as the simulation, progresses, tanks' respective inventories are reduced, or simply

reinitialized, to a specified inventory once the inventory exceeds the specified limit. In

addition to mimicking real PSA units, this provision prevents the tanks from turning into

concentration sinks; specially after the passage of a large number of cycles. 

All beds initially contain no adsorbates in both fluid and solid phases. Also, initial bed
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temperature is assumed to be equal to the fresh feed temperature. Thus, initial conditions

become:

c i(z ,t=0 )=0 (4.41)

qi (z ,t=0 )=0 (4.42)

T (z ,t=0 )=T f (4.43)

where CAi refers to the concentration of each adsorbate component.

4.2.2. Formulation of the PSA synthesis problem

As I indicated earlier, the PSA model was developed generically enough to be applied to

the  synthesis  of  any PSA process  provided  that  constitutive  equations  related  to  the

composition of the feed to be processed and those related to the adsorbent are available.

In this section, I will outline the formulation of the optimization problem as a disjunctive

programming problem [Grossmann and Ruiz, 2011].

since this is a synthesis optimization problem, the objective function can be written as:

max P=(Y R FR $R+Y E FE $E−PC $C−N SD $SD)C L−(N C $NC
+N Aux $ Aux)

(4.44)

where:

Y R : composition of valuable components in Raffinate 
stream

F R : Raffinate stream flow

$R : Raffinate stream Price

Y E : composition of valuable components in Extract stream

F E : Extract stream flow

$E : Extract stream price
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PC : consumed power (mainly compression)

$C : Price of consumed power

N SD : Number of shut downs per cycle length

$SD : Cost of production loss per shut down

N C : Number of PSA columns (optimisation variable)

$NC
: Capital cost of a single PSA column

N Aux : Number of auxiliary equipment (mainly compressors)

$Aux : Capital cost of a single compressor

CL : Life cycle

The first right hand side term corresponds to the operating cost while the second term

corresponds to the capital cost. For simplicity, all auxiliary equipment (piping, valves,

compressors,  etc)  are  combined  into  a  compressor  term.  This  is  usually  a  valid

assumption  since  the  capital  cost  of  the  compression  supersedes  the  cost  of  other

equipment. 

Compression power  PC is represented as combination of the compression power saved

with pressure equalization steps and that consumed during elevation of extract pressure to

feed pressure before using it to co-current purge at high pressure:

PCN=PPress+PSA−PEQ (4.45)

where:

PPress : Total compression power required to pressurize a vessel.

PSA : Power required to elevate the extract pressure from its low 
value    to that of the strong adsorptive purge pressure.

PEQ : Compression power required if equalization steps are used.

Both terms in equation will be discussed later in this section. 
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When there is a premium on the quality of either Raffinate or Extract flows, the premium

can be included as a variable cost function:

$R=f (Y R) (4.46)

$E=f (Y E) (4.47)

The overall material balance is a constraint:

FF=FR+FE (4.48)

where:

FF : fresh feed stream flow

For the pressurization step, the only optimization variable is the pressurization rate (Mp)

or  the  pressurization  time  (tp).  [  Shirley  and  Lemcoff,  1996] demonstrated  that  the

performance  of  an  Air-nitrogen  PSA separation  unit  approaches  a  maximum  as  the

pressurization  rate  increases  before  dropping afterwards.  I  expect  other  PSA units  to

follow similar behaviour. Thus, pressurization rate is added as an optimisation variable.

For the adsorption (feed introduction) step, the only optimization variable is the duration

of  the  step  (ta).  Low  durations  result  in  high  purity  raffinate  and  maintain  bed

temperatures  at  relatively steady values,  preventing  high  temperature  swings between

adsorption and desorption steps. However, a low step duration might underutilize the PSA

bed, resulting in frequent shifts between cycle steps. These frequent shifts lead to short

valve life cycles. Cost of valve replacements is usually not that high. However, the cost of

production loss due to unplanned shut downs is high enough. PSA units are usually used

as intermediate units to aid in production. Thus, the cost of a unit shut down is usually not

directly associated with the cost of separated products from the PSA unit but is directly

associated with the cost of the final products produced from the plant. 

Longer adsorption step durations result in an increase in bed temperature. This increase in
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bed  temperature  lowers  adsorption  capacity  (adsorption  capacity  increases  with  the

decrease in temperature). Thus, a longer adsorption step duration is also not favourable.

an optimum adsorption time for a specified process that balances between process failure

and separation efficiency should exist.

The term NSD$SD captures the cost of production loss due to probable shut downs resulting

from a valve failure. Assuming a valve can function for a specified number of open/close

sequences  (SMAX),  dividing  the  number  of  total  open/close  sequences  (S)  over  SMAX

calculates the number of probable shut downs. To include the term as part of the operating

cost, it needs to be divided by the life cycle (CL). Thus,

N SD=
S

SMAX CL
(4.49)

Co-current  Purging  with  strongly  adsorptive  (Extract)  product  was  introduced  in  the

patent by [Tamura, 1974]. The basic idea is to purge the amount of feed that is left inside

a PSA column with a portion of the Extract stream after elevating Extract stream pressure

to that of the feed as illustrated in Figure 4.7a. The effluent of this step is combined with

the effluent of the adsorption step and thus is considered as part of the Raffinate. The

introduction  of  this  step  (in  addition  to  co-current  depressurization)  enabled  the

production  of  high  purity  extract  in  addition  to  high  purity  raffinate  [Yang,  1987].

However, the downside of this step is that it involves pressure elevation for the amount of

extract that will be used as a purge stream. Remember that extract is mostly (with the

exception of counter-current de-pressurization) a low-pressure product. Thus, elevation to

a higher pressure incurs power costs. The consumed compression power during purge

pressure elevation is captured within the objective function in the variable (PP). 

[Yang, 1987] suggested that an optimization opportunity may exist if purging with strong

adsorptive is performed between two co-current de-pressurization intervals as illustrated
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in Figure 4.7b. The amount of power saved by elevating the Extract pressure to a value

that is lower than that of the feed might justify the suggestion.  However, no attempt has

been made to verify the feasibility of this suggestion. One of the objectives of this PSA

model development work is to prove such feasibility. An optimization variable (xcc) will

be introduced. An  xcc=0 indicates that the high pressure purge will  occur immediately

after the adsorption step as illustrated in Figure 4.7a. This leads to purging with a pressure

that is equivalent to that of the feed. An xcc=1 indicates that the purge step will occur after

the co-current pressurization step as illustrated in Figure  4.7c. This would result in the

strong-adsorptive purge taking place at the lowest possible pressure at which raffinate is

collected.  An  xcc  value between 0 and 1 would indicate a strong-adsorptive purge that

occurs sandwiched between two co-current de-pressurization steps as illustrated in Figure

4.7b. The value of  xcc will dictate the amount of de-pressurization time after which the

strong-adsorptive purge step would occur.

Once a strong-adsorptive purge step is introduced, the duration of this step (tsa,p) becomes

an optimisation variable. A short duration will result in lower recovery of inerts (weakly

adsorptive). A long duration will result in an escape of the strong adsorptive components

into the raffinate leading to lower raffinate purity. A good estimate for the upper bound of

the duration would be the length of the adsorption step (ta). Using pressurization step time

duration (tp) as an upper bound might not be sufficient to discharge all inerts from the

column if the column is too long.
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a. Before co-current depr. (xcc = 0) b. Between two co-current depr. (0< xcc <1)

c. After co-current depr. (xcc = 1)

Figure  4.7:  Location  of  the  strong-adsorptive  purge  step  relative  to  the  co-current
depressurization step as suggested, but not verified,  by [Yang, 1987]. Arrows indicate the
flow direction for each of the steps.
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For  Depressurization  (blowdown)  step,  the  first  optimisation  variable  is  the

depressurization rate  (Mdp)  or the depressurization time (tdp).  The second optimization

variable  is  the  fraction  of  the  depressurization  time  that  is  devoted  to  co-current

depressurization (xc). The remaining depressurization period (1-xc), after subtracting the

time required for pressure equalization, is devoted to counter-current depressurization.

For Pressure Equalization step, the optimization variable would be the number of feasible

equalization  steps  (NE).  Since  each  equalization  occurs  between  two  columns,  the

minimum number of columns required for a PSA process that involves equalization steps

is 3. The third PSA column is required to maintain continuity of production. Also, for the

same reason, the maximum number of equalizations should not exceed the number of

available PSA columns. 

After  a  number  of  successive  equalization  steps,  the  pressure  difference  between  the

column to be pressurized and the pressurizing column becomes small enough to hinder

subsequent equalizations. Thus, an optimum number of equalization steps exists. 

For desorption step, the optimisation step is desorption step duration (td). Short td  values

result in under desorption of strongly adsorptive from adsorbent pellets. Long  td  values

lead to lower raffinate recovery.

Another variable that affects the performance of the desorption step is the location of the

effluent stream at the desorption step. In their patent, [Guerin and Domine, 1957] purged

their extract from the middle of the PSA column (not from either of the column ends).

Purging from the middle of the column cuts the residence time of the material inside the

vessel  by  almost  a  half.  The  location  of  desorption  step  effluent  stream  (xd)  also

constitutes an optimisation variable with the optimum leaning probably towards the feed

end. An xd=0 indicates an extract that is collected from the feed end. An xd=1 indicates an
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extract that is collected from the product end (z=L). The importance of the location of the

desorption step effluent has not been studied in any earlier work. The second objective of

this work is to determine the optimum location of the effluent stream during desorption

step. 

The last optimisation variable of the Desorption step is the [ purge : feed ] ratio. In his

patent,  [Skarstrom,  1960] indicated  that  for  the  desorption  step  to  be  effective,  the

volumes of the feed and purge streams, at their respective pressures, should at least be the

same. This suggestion proved to be useful in future PSA implementations. It also sets the

minimum purge volume (or volumetric flow rate). It can be formulated as a minimum

constraint. Assuming ideal gas behaviour, the constraint can be formulated as:

[V P=
nP RT P

PP
]≥[V F=

nF RT F

PF
] (4.50)

Dividing VP by VF in Equation 4.51 , the ratio becomes:

V P

V F

=
nPT P

PP

PF

nF T F

≥ 1 (4.51)

To complete problem formulation, I need to specify a minimum raffinate purity and/or

recovery  or  a  minimum  extract  purity  and/or  recovery.  I  also  need  to  specify  the

maximum number of columns required to achieve such specifications. The problem can

be  further  extended  to  optimize  columns  sizing  (i.e.  length  and  diameter).  Thus,  the

optimization problem can be summarized as:

max P=(Y R FR $R+Y E FE $E−PC $C−N SD $SD)C L−(N C $NC
+N Aux $ Aux)

s.t. :

1. Pressurization rate: M (p,min)<M p<M (p,max )

2. Pressurization Feed (fresh or recycled raffinate) [Boolean]:

[PF=0 ]∨[PF=1 ]
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3. Adsorption step duration: 0<ta<t a,max

4. Strong Adsorptive Purge:

[ 0<xcc≤1
0<t sa , p≤ ta,max

]∨[ xcc=0
t sa, p=0a,max

]
5. Depressurization rate: M (dp ,min)<M dp<M (dp ,max)   

6. Fraction co-current de-pressurization from the total de-pressuirzation time: 
0≤ xc≤ 1

7. Desorption step duration: 0<td≤ td,max

8. Desorption step effluent stream location: 0≤ xd≤1

9. Column length: Lmin≤ L≤ Lmax

10. Column diameter: dc ,min≤ dc≤ dc ,max

11. Number of PSA columns: 1≤N c≤N c ,max

12. Number of Presssure-Equalization steps: 0<N E≤NC−1

13. Minimum raffinate purity: Y R ,min<Y R≤1

14. Minimum extract purity: Y E,min<Y E≤ 1

The only equality constraint is the total material balance:

1. Material Balance: F D=F R+F E

Note that the NE and NC are pure integer variables and not an either-or boolean variables. I

am intending to connect these variables to an MIP optimizer using real variables. The

optimisation routine should search an integer space of the these two variables and not the

real one. This constitutes a mapping problem. How should the optimiser behave when it

requests  the value of the cost  function at  NC =1.5? To overcome this  difficulty,  I  am

planning to introduce an intermediate layer between the optimizer and the constructed

model specifically tailored to these two variables as illustrated in Figure 4.8.

The purpose of the intermediate layer is to rescale the integer variables in order to present

them as real variable to the optimizer. Thus, using the transformation xC=Nc/NC,Max, the NC
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variable is transformed to the variable  xC that is bounded by real bounds:  xC∈[0,1 ] .

Applying similar scaling transforms the NE variable: xE=NE/Nc,max.  The variables NC and

NE will be visible to the constructed model while their respective transformations xC and

xE will be visible to the optimizer.  The reader should note that since the lower bound of

NE is dependent on  NC ( N E∈[0, NC ] ), a variable-bound optimisation routine should be

selected for optimization.

Figure 4.8: Optimising integer variables as continuous ones through the introduction of an

intermediate layer.

The third objective behind this optimisation exercise is to search for a possible existence

of any new PSA operating region that was not revealed in any of the earlier PSA works by

freely varying all optimization variables within their specified limits.

In summary, this section outlined the developmental work performed in modelling the

PSA unit that was used to prove the concepts developed in this thesis. The next section

outlines the discontinuities occurring as a result of shifts between boundary conditions of

Optimization Routine
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the intermediate steps that form a PSA cycle.

4.2.3. Encountered Discontinuities in the PSA Model

Noting the variations in boundary conditions between each of the steps a PSA column

undergoes,  one can easily deduce that each change in boundary conditions requires  a

model reinitialization.  A typical set of  [Skarström, 1960] cycle boundary conditions is

outlined in Figure 4.9.  

Although the same set of differential equations is used throughout a PSA model, each of

the pre-mentioned steps carry its own boundary and initial conditions. To shift from one

to another set  of boundary conditions,  integration of the previous step is  stopped and

model equations are reinitialized to the new set of boundary conditions before resuming

integration. Because transitions between boundary conditions occur within the time line,

modellers  don't  usually  think  of  the  altering  sequence  of  boundary  conditions  as  a

composite function. Nevertheless, it is a composite one. Taking component mass balance

as an example, one can view the alteration of boundary conditions, at a specified vessel

end, as a strip of time or state events. For example, the conditional statements in  4.52a

and 4.52b (and their respective mathematical representations in  4.53 and 4.54) illustrate

how  boundary  conditions  change  as  a  function  of  cyclic  time  (tcycle)  at  each  of  the

respective ends of the column. Boundary conditions switch between Nuemann and Robin

throughout the cycle.
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Figure 4.9: Velocity and component balance boundary conditions for each of [Skarström,

1960] PSA cyclic steps. 

Similarly,  the  axial  velocity vector  initial  condition  value  and location  change as  the

active column step changes. The respective mathematical formulation of this composite

function is illustrated in 4.55.

The PSA model was constructed using  [gPROMS, 2012] modelling language.  For the

purposes of this work, I converted all state based transitions into time based transitions.

For example, pressurization step concludes when the pressure of the PSA vessel reaches

that  of the feed.  Since Pressure variation is  modelled as function of time as outlined

earlier, it becomes an easy task to calculate the time required for the pressure to move

from a  lower  value  to  a  higher  one  and  thus  replacing  the  state  transition  between

pressurization  and  adsorption  steps  into  a  time  transition.  Thus,  transitions  between
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boundary conditions are written as functions of time only as illustrated in equations  4.53,

4.54 and 4.55. The reason behind taking this course is that it facilitates the construction of

a composite discretized boundary conditions function within gPROMS as illustrated in

4.52. It  also prevents gPROMS from reinitializing variables when a state transition is

encountered  in  a  regularized  boundary  conditions  model.  These  concepts  will  be

discussed in the next chapter.

If (tcycle > 0) and (tcycle ≤ tPressurization) 

−DL

∂c Ai

∂ z
|z=0=u|z=0( cAi f

− cAi
|z=0)

ElseIf (tcycle > tPressurization) and (tcycle ≤ tAdsorption) 

−DL

∂c Ai

∂ z
|z=0=u|z=0( cAi f

− cAi
|z=0)

ElseIf (tcycle > tAdsorption) and (tcycle ≤ tDe-pressurization) 

−DL

∂c Ai

∂ z
|z=0=0

ElseIf (tcycle > tDe-pressurization) and (tcycle ≤ tDesorption) 

−DL

∂c Ai

∂ z
|z=0=0

EndIf

If (tcycle > 0) and (tcycle ≤ tPressurization) 

−DL

∂c Ai

∂ z
|z=1=0

ElseIf (tcycle > tPressurization) and (tcycle ≤ tAdsorption) 

−DL

∂c Ai

∂ z
|z=1=0

ElseIf (tcycle > tAdsorption) and (tcycle ≤ tDe-pressurization) 

−DL

∂c Ai

∂ z
|z=1=0

ElseIf (tcycle > tDe-pressurization) and (tcycle ≤ tDesorption) 

−DL

∂c Ai

∂ z
|z=1=u|z=1 (cA i f

− cA i
|z=1)

EndIf

(4.52a). BCz=0 ( tcycle ) (4.52b). BCz=L( tcycle )

I should emphasise that conversion of state events into time events does not limit the

applicability of the concepts that will be discussed in the next chapter. It just facilitates

proving the concept when the modeller is not at liberty to alter the code of the simulation

package. 

∂C i

∂ z
|z=0=f (tCycle)={ −(u |z=0/DL)(C i

f−C i |z=0) 0 ≤ tCycle ≤ T Pressurization

−(u |z=0/DL)(C i
f−C i |z=0) T Pressurization < tCycle ≤ T Adsorption

0 T Adsorption < tCycle ≤ T Depressurization

0 T Depressurization < tCycle ≤ TimeDesorptionStep

(4.53)
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∂C i

∂ z
|x=L=f (tCycle)={ 0 0 ≤ tCycle ≤ T Pressurization

0 T Pressurization < tCycle ≤ T Adsorption

0 T Adsorption < tCycle ≤ T Depressurization

−(u |z=L/DL)(Ci
p−C i |z=L) T Depressurization < tCycle ≤ T Desorption

(4.54)

u|z=0 or z=L=f (tCycle)={ u |Z=L=0 0 ≤ tCycle ≤ T Pressurization

u|Z=0=uf T Pressurization < tCycle ≤ T Adsorption

u|z=L=0 T Adsorption < tCycle ≤ T Depressurization

u |z=L=−u p T Depressurization < tCycle ≤ TimeDesorptionStep

(4.55)

Note that gPROMS immediately reinitializes state variables when transiting between each

two consecutive cyclic steps as illustrated by the conditional statement in 4.56. Also, note

how the entire simulation run time is converted into a sequence of repetitive steps in 4.56.

The  question  to  be  posed  at  this  stage  is  whether  immediate/instantaneous  transition

between  boundary  conditions,  constitute  a  good  modelling  practice?  Can  we  avoid

reinitialization and yet achieve the same results? Can we avoid reinitialization and yet

achieve better simulation results? I will answer these questions in the next chapter. 
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Cycle = 0

Repeat

Cycle Time = 0

If   ( Cycle Time >= 0 ) and ( Cycle Time <= Pressurization Time )

Step = Pressurization; reinitialize model equations based on Pressurization BCs; 

run simulation for cyclic step time-span;

ElseIf   ( Cycle Time > Pressurization Time ) and ( Cycle Time < Adsorption Time )

Step = Adsorption; reinitialize model equations based on Adsorption BCs;

run simulation for cyclic step time-span;

ElseIf  ( Cycle Time >= Adsorption Time ) and ( Cycle Time <= Depressurization Time )

Step = Depressurization; reinitialize model equations based on Depressurization BCs;

 run simulation for cyclic step time-span;

ElseIf ( Cycle Time > Depressurization Time ) and ( Cycle Time < Desorption Time )  

Step = Desorption; reinitialize model equations based on Desorption BCs; 

run simulation for cyclic step time-span;

Endif

Cycle = Cycle + 1

Until (Cycle = Max Cycles) or ( | YCycle – YCycle-1 | <= Tolerance) 

(4.56)

4.3. Concluding Remarks

In this chapter, I highlighted the discontinuities encountered in the developed reactor and

PSA columns. For the reactor model, the discontinuity occurs as the reactor moves from

laminar to turbulent flow region because of the increase in feed flow. The discontinuity

affects the wall heat transfer coefficient. It is a two-dimensional discontinuity as Nusselt

number is dependent on both Reynolds and Prandtl numbers. 

In the PSA model, I demonstrated how the shift in boundary conditions from PSA cyclic

sub-step to the other (e.g. pressurization to adsorption and adsorption to depressurization,

etc) results in a one-dimensional discontinuity. 

I  also  took  the  opportunity  to  present  the  ongoing  work  on  the  formulation  and

construction of the generic optimization of the PSA synthesis problem. I also introduced a

novel method to properly model transient inlet velocity profile during the pressurization

and depressurization of columns without introducing discontinuities (Appendix A).



CHAPTER 5: REGULARIZING DISCRETE FUNCTIONS

Regularizing Discrete Functions

This  chapter  discusses  regularizing  discrete  functions  that  were

introduced in Chapter 3. I begin by introducing some of terminologies

that will be adopted throughout the discussion. Then, I will discuss the

resolution starting with univariate functions and, later, extending it to

bivariate and multivariate functions. For all resolutions, I will discuss

novel approaches to detection and resolution of discontinuities.

98
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5.1. One-dimensional Functions

Let us assume that we have a composite function f that is defined by two separate sub-

functions f1(x) and f2(x) that span two adjacent domains [a', b] and [a, b'], respectively:

 f (x )={ f 1(x ) , x∈[a ' , b ]
f 2(x ) , x∈[a ,b ' ]

(5.1)

For  demonstration  purposes,  we  will  assume that  a >  a'.  The  ideal  situation  for  the

modeller is to have a continuous composite function across the entire simulation domain

regardless  of  the  sub-domains  defining  the  respective  sub-functions.  To  achieve  this

situation, the switch between  f1 and  f2 has to occur at a changeover (switch) location  g

satisfying the following condition (Figure 5.1a):

 f 1(g )= f 2(g ) (5.2)

However, switch point  g is seldom searched for, or even considered, when modelling.

Instead the modeller usually opts for the selection of a point g' based usually on a widely

adopted convention. A Reynolds number (Re) of 2300 is an example of a conventionally

used break point between Laminal and Turbulent flows. If Re is below 2300, the flow is

assumed Laminar. Otherwise, it is Turbulent. Such an arbitrary selection often raises a

discontinuity between sub-domains at any arbitrary switch point g' as illustrated in Figure

5.1a. In such a case, the objective is to eliminate a discontinuity between two intersecting

functions  spanning  overlapping  domains.  In  this  case,  sub-functions  intersect  and

functions' domains overlap. Thus, their exists a point g that satisfies equation 5.2.

When equation  5.2 is not satisfied, the sub-functions are said to be non-intersecting as

illustrated  in  Figures  5.1b and  5.1c. For  non-intersecting functions,  there is  usually a

location g, along the dimension of the independent variable, that minimizes the distance

between the two functions and hence allows for a smoother jump. Jumping between the
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two functions at any point other than g would result in an extra effort by the integration

routine to resolve the discontinuity. Thus, in such cases, the objective of this work is to

minimize  jump  effort  between  two  overlapping  but  non-intersecting  sub-functions

spanning overlapping domains as illustrated in Figure 5.1c. It should be noted that Figure

5.1b is a special case of Figure  5.1c where the intersection domain reduces to a single

point. In such cases respective sub-functions' domains overlap (a≤b). However, unlike the

case in Figure 5.1a, sub-functions do not intersect. 

a. b.

c. d.
Figure  5.1:  Forms  of  domain  switch  points  between  two  functions  and  types  of

discontinuities between two adjacent domains.

The first objective of this work is to find the best switch point g for any given set of two

overlapping sub-functions, whether intersecting or non-intersecting. The second objective

is  to  eliminate  discontinuities  in  non-intersecting  sub-functions  by  devising  an
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interpolating polynomial at the location of the discontinuity between the two functions.

To achieve both objectives, the method is decomposed into discontinuity detection and

discontinuity resolution sub-problems. 

5.1.1. One-dimensional Discontinuity Detection

First, we must sort the ranges for the respective sub-functions using their starting points

in an ascending or descending order and then compare the location of the domain end of

one function, (e.g. b for f1), with the domain start of its successor, (e.g. a for f2). If the end

and start domain limits of two respective successive sub-functions are equal (i.e.  a=b ),

the discontinuity is said to be non-overlapping. The point g is immediately identified for

non-overlapping domains as g=a=b as illustrated in Figure  5.1b. Sorting and comparison

will  also  immediately  detect  if  sub-functions  f1 and  f2 do  not  satisfy  the  continuity

assumed for  the  main  function  f spanning [  a',  b'  ]  as  illustrated  in  Figure   5.1d.  A

resolution  to  removable  discontinuities,  such  as  that  illustrated  in  Figure  5.1d,  is

presented in section 5.2.3. 

Having identified an overlapping domain, to find  g  for overlapping discontinuous sub-

functions, we will transform the problem into an optimization problem. As an example,

the overlap domain for Figure  5.1a and Figure  5.1c is [a,b]. We define an error function

as:

e (x )=| f 1(x )− f 2( x)|  (5.3)

Our objective is to find a point  g that minimizes  e(x) over the domain [a,b].  It can be

argued that  the  use  of  the  absolute  function  will  alter  the  convexity of  the  objective

function as illustrated in Figures 5.2a and 5.2b. However, it should be noted that, in this

problem, the objective is to search for  e(x)=0, not the minimum e(x). The problem is a
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root finding problem, not an optimization one. Thus, using the absolute value function

helps formulating a better solution in this case. If the value of e(x) is always above zero,

the optimisation algorithm will report the optimum  x that corresponds to the minimum

e(x). Even if the function contains multiple zeros (Figure 5.2c), locating one of the zeros

is sufficient for the search algorithm to succeed. Nevertheless, since the absolute value

function is not differentiable at sign-change locations, it will introduce problems when

used  by  optimization  routines.  A better  differential  function  that  achieves  the  same

objective is the square function (illustrated in Figure 5.2d): 

e (x )=[ f 1( x)− f 2(x )]2  (5.4)

a. b.

c. d.
Figure 5.2: Behaviours of various error (difference) functions e(x).
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The advantage of formulating the problem as an optimization problem instead of a root-

finding one is that the optimum will always return a value whether roots are available or

not. When roots are available, the minimum resembles that of Figure 5.1a (i.e. e(g) = 0).

When roots  are  not  available,  the  minimum resembles  one of  the  cases  illustrated  in

Figures 5.1b and  5.1c. Since this is a fairly simple optimization problem, it can be solved

using any of the commercially available optimisation routines. 

Once  g is detected, it can be immediately inserted into the conditional statement of the

composite function; replacing any arbitrary selected  g'  by the modeller.  For example, if

the detection algorithm resulted in locating a minimum jump effort point g  between two

discontinuous  functions  f1 and  f2,  g can  easily  be  inserted  into  the  final  conditional

statement as illustrated in (5.5): 

If (x<g) then (Domain I) 

f = f1(x)

Else if (x>=g) then (Domain II) 

f = f2(x) 

 or

If (x<=g) then (Domain I) 

f = f1(x)

Else if (x>g) then (Domain II)

f = f2(x) 

(5.5)

For  cases  where  sub-functions  intersect  and  overlap  (Figure   5.1a),  a discontinuity

detection  algorithm  is  sufficient  to  grant  at  least  smooth  continuity  between  the

discontinuous functions but not their respective first and second derivatives. For cases

where  functions  touch  or  overlap  but  do  not  intersect  (Figures   5.1b  and   5.1c,

respectively),  discontinuity  detection  algorithm  might  be  sufficient  if  the  simulation

integrator routine is able to jump between the functions without the need for reinitializing

the state variables. As indicated by [Borst, 2008], resolution of discontinuity using Type I

discontinuity handlers might not always be appropriate because of the exhaustive need to

reinitialize state variables and the fact that, in some cases, re-initialization might alter the

solution path. Thus, I propose a discontinuity resolution algorithm to avoid falling into



Chapter 5: Regularizing Discrete Functions 104

state-variable re-initialization.

5.1.2. One-dimensional Discontinuity Resolution

Discontinuity  resolution  takes  the  form  of  bridging  the  two  discontinuous  domains

through an interpolating polynomial, f3. Linear interpolation requires at least two points.

However,  we will  attempt  to  link  functions  using  a  smooth  interpolating  polynomial

preferably  to  the  3rd degree.  Linking  functions  with  a  third  degree  interpolating

polynomial ensures continuity up to the second derivative of the interpolating function.

To construct any smooth polynomial, we need at least three points. One would think that

three  points  are  sufficient  to  construct  the polynomial  around the  discontinuity point.

However,  as  we  will  demonstrate  later,  at  least  four  points  are  required  in  order  to

minimize  first and second derivatives' discontinuities at the junction points between the

interpolating polynomial f3 and the corresponding discontinuous sub-functions f1 and f2. 

To simplify computations, I will evenly separate the points by an interval  h  from each

other. Their exact locations will be relative to the location of the discontinuity location (g)

in the independent variable dimension. The location of the mesh control points, relative to

g, takes one of three forms depending on its location within the overlap domain [a,b]:

• If a minimum g∈(a ,b) exists, mesh control points will be respectively located at

distances  g-1.5h,  g-0.5h,  g+0.5h and  g+1.5h  as illustrated in Figure  5.3a. This

selection of points' locations ensures even distribution of the interpolating points

on both sides of the point g. 

• If the minimum g∉(a ,b) , then g must reside at one end of the domain. If  g is

located  at  the  start  of  the  overlap  domain  (g=c),  mesh control  points  will  be

respectively located at g, g+h, g+2h and g+3h as illustrated in Figure 5.3b.
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• If g is located at the end of the overlap domain (g=b), mesh control points will be

respectively located at g, g-h, g-2h and g-3h as illustrated in Figure 5.3c.  

To perform a smooth transition, we need at least one point to lie on each of the functions'

curves at the respective sides of the discontinuity location. Let us call these points point 1

and point 2. Taking Figure5.3a as an example for the case where g∈(a , b) , the respective

locations  of  points  1  and  2  will  be   (g-1.5h,  f2(g-1.5h)) and  (g+1.5h,  f1(g+1.5h)),

respectively. Of course, one can argue that we could also position the points at (g-1.5h,

f1(g-1.5h)) and (g+1.5h,  f2(g+1.5h)). However, we should bear in mind that the sorting

algorithm, explained earlier, decides on the order of the functions based on their span over

the independent variable dimension.

For the case where  g is located at the start of the overlap domain (g=a), the respective

locations of points 1 and 2 will be (g, f2(g)) and (g+3h, f1(g+3h)). For the case where g is

located at the end of the overlap domain (g=b), points 1 and 2 will be located at (g-3h,

f1(g-3h)) and (g, f2(g)), respectively. Respective examples of both cases are illustrated in

Figures 5.3b and 5.3c. Of course, the sorting algorithm argument still holds.
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a. b.

c. d.

Figure 5.3: Location of mesh control points relative to the minimum jump-effort point g.

For the last two points (points 3 and 4), of the four point set, we utilized the length of the

line  segment  |AB|,  defined  by equation  5.6 and  illustrated  in  Figure  5.3d,  to  shift  f3

function values at these points from the respective discontinuous functions values. Since

the location of  g, on the independent variable dimension, corresponds to the point that

exhibits minimum distance between the two functions f1 and f2 within the overlap domain,

the length of the line segment |AB| corresponds to that minimum distance.

As an example, let us take the case where  g∈(a ,b) . The  y-axis values of the points

located at distances  -0.5h and +0.5h from the point g will be calculated as the values of

the functions at these respective points after adding or subtracting a fraction  p of ∣AB∣.
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For  lower  valued  functions  (e.g.  f2),  Point  3  would  have  the  coordinates

(g−0.5h , f 2(g−0.5h)+ p∣AB∣) .  For higher valued functions (e.g.  f1),   Point 4 would

have the coordinates (g+0.5h , f 1(g+0.5h)− p∣AB∣) .  

∣AB∣=∣f 1(g )− f 2( g)∣  (5.6)

[Fritsch  and  Carlson,  1980] detail  the  necessary  and  sufficient  conditions  to  ensure

monotonicity of the interpolating polynomial control points. Basically, they prove that in

order  to  ensure  a  monotonically  increasing  or  decreasing  function,  slopes  of  control

points should have the same sign or a value of zero. To emphasise the same concept, the

value of p should satisfy the condition in 5.7: 

0≤ p≤0.5  (5.7)

Naturally, providing a separate p value for each of the functions f1 and f2 would add to the

degrees of freedom as long as they satisfy the condition in (5.7). These two p values can

act as tuning parameters to smooth the transition between f3 and the discontinuous sub-

functions  f1 and  f2.  In  addition,  the  original  formulation  of  hermite interpolating

polynomials (to be discussed later) uses a tension parameter (t) that extends between 0

and 1. We could use either t or p to perfect the resulting interpolation curve. However, we

intend to keep both parameters in order to smooth the transition between the interpolating

polynomial and the discontinuous sub-functions. 

To demonstrate the effect of the interpolation algorithm on the conditional statement, let

us  consider  the  case  in  (5.5)  and  assume  g∈(a ,b) .  After  generating  the  four-point

interpolating polynomial, the logical statements in  (5.5)  will be transformed into (5.8).

We should also note that, because of the uniqueness of the solution for one-dimensional

functions, the devised procedure can be run off-line prior to the start of the simulation
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run.  Indeed,  we  recommend  embedding  the  algorithm  into  the  modelling  language

compiler  to  automate  generation  of  polynomials  and  their  respective  additional

conditional expressions.

If (x<g-1.5h) (Domain I)

f = f1(x)

ElseIf (|x-g|≤1.5h)  (Interpolating polynomial Domain)

f = f3(x)

ElseIf (x>g+1.5h)  (Domain II) 

f = f2(x) 

EndIf

(5.8)

The algorithm can be extended to account for complex conditional statements such as

(5.9)  by solving  w(x) for  x.  It  can  also  be  extended  to  account  for  complex  logical

expressions involving logical operators ∧  or ∨ .

If (w(x) ≤ 0) (Domain I) 

f = f1(x)

ElseIf (w(x)>0)  (Domain II) 

f = f2(x) 

EndIf

(5.9)

Lastly, an additional side benefit resulting from the use of the line segment |AB| to locate

the  intermediate  points  at  g-0.5h and  g+0.5h is  that  the  locations  of  these  points

automatically coincide with the locations of the respective sub-functions f1 and f2 if f1 and

f2 posses a common intersection point since |AB|=0 in this case regardless of the value of

p.  This  benefit  indicates  that  detection  and  resolution  algorithms  can  be  integrated

seamlessly  without  the  need  to  treat  intersecting  sub-functions  separately.  Figure  5.4

illustrates the resulting interpolating polynomial linking two intersecting sub-functions.
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Figure  5.4:  A  four-point  hermite interpolating  polynomial  between  two  intersecting

unidimensional functions using tension (t)=0.

5.1.3. Perfecting the Connection and the Bounding Box Problem

The  smoothing  of  the  transition  between  the  interpolating  polynomial  and  the

discontinuous functions can be transformed into an optimization problem that minimizes

first  or  second  derivative  differences  between  the  interpolating  polynomial  and  the

discontinuous  functions  at  Point  1  and  Point  2.  The  optimization  problem  can  be

formulated as: 

min :[ f P 1
' - − f P 1

' +
]
2
+[ f P 2

' - − f P 2
' +
]
2

s . t .={ 0≤ pi<0.5
0≤t≤1

 

min :[ f P 1
' ' -− f P 1

' ' +
]
2
+[ f P 2

' ' -− f P 2
' ' +
]
2

s . t .={ 0≤ pi<0.5
0≤t≤1

 
(5.10)

a. first order derivative optimization b. second order derivative optimization

If the derivatives of the discontinuous sub-functions, appearing in the cost function, are

readily  available,  they  can  be  directly  evaluated  through  the  available  expressions.

Otherwise,  any derivative estimation numerical  technique (e.g.  secant  method)  can be

used to evaluate the required derivatives.

Once the position of the points is determined, we need to connect them with a continuous

x

f ( x)

Intersection Point

f1 f2

Interpolating Polynomial

f3
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interpolating function that is preferably 2nd order smooth to aid in calculation of Jacobian

and  Hessian  matrices  when  required  by  the  numerical  ODE/DAE  solver.  Two

interpolation methods satisfy our criterion: cubic splines and cubic hermite interpolating

polynomials (Appendix C). However, we selected hermite interpolating polynomials for

the following reasons:

1. For the same set of interpolating points, cubic spline interpolating polynomials

exhibit more overshoot than their cubic hermite counterparts [Fritsch and Carlson,

1980]. 

2. Cubic  hermite interpolating  polynomials  have  one  more  degree  of  freedom to

better control the shape of the interpolating polynomial ([Kochanek and Bartels,

1984] and  [Bartels et al, 1987]). This degree of freedom is granted by the extra

tension  parameter  (t).  As  the  name  implies,  t is  roughly  a  measure  of  how

stretched or lose is the connecting polynomial between the mesh control points.

Assuming that mesh control points are connected through a thread, a t=0 indicates

a loose thread while a  t=1 indicates a tightly wrapped thread. I encourage using

hermite interpolating polynomials for the extra degree of freedom they provide.

The  discussion  from  this  point  onward  assumes  the  utilization  of  hermite

interpolating  polynomials.  Hermite interpolating  polynomials  are  discussed  in

Appendix C.

Nevertheless, the reader should note that  hermite interpolating polynomials require two

additional mesh control points over cubic splines as illustrated in Figures 5.3a, 5.3b and

5.3c. Interpolation will still occur between the four control points discussed earlier.  The

two additional control points only aid in forming the shape of the curve.
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Let us now turn our attention to an issue that will further constrain the value of the  p

parameter.  At  lower  values  of  pi and/or  tension  parameter  (t),  the  bounds  of  the

interpolating  polynomial  tends  to  cross  the  maximum function  boundaries  set  by the

control points as illustrated in Figure 5.5. This situation might not create an issue for most

discontinuous  functions.  However,  certain  types  of  discontinuous  functions  mandate

proper bounding of interpolating polynomial to the upper and lower limits  set  by the

control points. For example, if  x denotes valve opening and f(x) represents flow, then it

would not be expected for the flow to arrive at its maximum value until valve opening

reaches 100% (x=1). An interpolating polynomial that is not properly bounded will result

in  the  undesirable  situation leading to  either  a  maximum flow before reaching 100%

valve opening or worse leading to a negative flow before the valve is fully closed. This

problem is known as the bounding-box problem in computer-graphics literature [Filip et

al, 1986]. 

To resolve the problem, we need to bound the maximum and minimum values of the

interpolating polynomial to the values set by control points 1 and 2 so that:

f 1(xP 1
)≤ f 3( x)≤ f 2(x P2

) for  x P1
≤ x≤ x P2

(5.11)

The  solution  to  the  problem comes  straight  forwardly  from calculus.  To  do  so,  the

optimization  routine  needs  to  identify  the  maximum  and  minimum  values  of  f3(x),

compare them to those of control points 1 and 2, and finally, reject or accept the pair of

(pi, ti) values based on adherence to condition 5.11. 

5.1.4. Are four control points enough?

The  discussion,  so  far,  has  assumed  that  we  need  at  least  four  points  to  properly

interpolate. However, we need a good justification to favour four points over three or five.

This can be demonstrated by considering the plots of the hermite interpolating polynomial
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for three, four and five interpolating points shown in Figures 5.5a, 5.5b and 5.5c.

When using a three-point interpolating polynomial, two of the points lie on the respective

discontinuous functions. The x coordinate of the third point corresponds to the minimum

jump effort  location (g).  The only degree of freedom available to tune the curvature,

excluding the hermite  tension  parameter, is  through  the  manipulation  of  the  function

value at the minimum jump effort point g. I varied p/|AB| values from 0 to 0.5 relative to

f1 and f2 in the upper and lower sections of the figure, respectively. As illustrated in Figure

5.5a,  the drawback of a three-point  interpolating polynomial  is  that it  always favours

better closure towards one of the discontinuous functions over the other.

For the case of four control points, I omitted the  g point and relied only on two points

separated by a distant  h from each of the sides of the minimum jump effort location  g.

The interpolating function values, at the junctions with f1 and f2 are fixed at the values of

their  respective functions  f1 and  f2.  I  used equal  values  of  p to  distance interpolating

function  values  at  points  4  and  5.  Thus,  one  degree  of  freedom is  remaining  (again

excluding hermite tension) to smooth the transition between the interpolating polynomial

f3 and  the  functions  f1 and  f2,  namely p.  The  common intersection  point  between all

generated curves is purely curvature related and has no relation to the g point discussed

earlier.

For the case of five control points, I made use of the minimum jump effort location (g) to

add the fifth point. The value of the interpolating polynomial f3, at this point, is calculated

and fixed at the mean of the two discontinuous functions  f1 and  f2  (i.e. f3(g) = 0.5[f1(g)

+f2(g)] ). The values of the control points at the junctions with f1 and f2 are assigned the

respective values of the functions. The values of these two points are also fixed. I also

used  constant  values  of  p to  distance  the  points  located  at  g-h and  g+h from their
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respective functions f1 and f2. The resulting interpolating values of p/|AB| ranging from 0

to 0.5 are plotted in Figure 5.5c.

The  resulting  curves  for  four-point  interpolating  polynomials  (Figure  5.5b)  provide

similar degrees of curvature to those obtained using five-point interpolating polynomial

(Figure  5.5c).  Thus,  we  may  comfortably  conclude  that  a  four-point  interpolating

polynomial is sufficient to provide good closure between the interpolating polynomial and

the discontinuous functions.

a. Three Points b. Four Points

c. Five Points
Figure  5.5: Comparison between 3, 4 and 5 control points using a  hermite interpolating

polynomial with various p values. 

5.1.5. Regularizing boundary and initial conditions

Discontinuities in boundary conditions usually take the form presented in Figure 5.1b (i.e.
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g=a=b). Because the overlap domain is so small, any regularization will force  f3 to lie

outside the overlap region. Moreover, since the switch between value reported by each

side of  the  conditional  statements  (f1 to  f3)  or  (f2 to  f3)  can  be  state  variable  or  time

dependent, we cannot evenly distribute f3 span between f1 and f2.  Even distribution could

violate state variable dependency. Thus, the solution would be to insert an additional time

interval to accommodate f3 between f1 and f2. This makes sense since the set of boundary

conditions  at  the  overlap  region does  not  coincide  with  any of  the  sets  of  boundary

conditions belonging to the either of the discontinuous sub-functions.

Regularizing the form in Figure 5.1b can take one of the forms in Figures 5.3a-c. Using

the forms presented in Figure  5.3a and  5.3c would require calculation of more control

points at locations before f3 (points at the left side of the g point when replacing the x-axis

with a time axis). The use of the form presented in Figure  5.3b reduces the number of

points located to the left of the g point to only one point, namely the additional control

point required by the hermite interpolating polynomial. 

I should mention that accurate estimation of the value of the state variable at this point is

not very important. This is due to the fact that the additional  hermite control points are

used to  adjust  the shape of the resulting curve bounded by the four  points  discussed

earlier. The algorithm would work with any arbitrary value of the state variable at that

point. However, accurate determination provides a better initial interpolation curve. After

optimizing  the  shape  of  the  curve  through  (5.10),  the  final  curve  would  have  better

closure at both ends of the interpolation region than a curve optimized with an arbitrary

selection of the additional hermite control point. 

To accurately calculate the value of f1 at this point, the integrator needs to pass through

the control point and record a snapshot of the boundary condition values at that point. For
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time events,  the event can be marked in the integrator time-line. For state events, the

integrator  needs  to  switch  to  the  branch  of  the  conditional  statement  containing  the

regularization function before realizing the existence of a shift in boundary conditions.

Then, it needs to return back an interval h in time to record the snapshot. In both time and

state event cases, such approaches add an extra unnecessary burden on the integrator. To

mask the problem from the integrator, I allowed the integration routine to freely control

integration step-size while taking snapshots of the time steps taken by the integrator. Once

the regular  expression shifts  to  the regularizing function,  the location of  that  hermite

control  point  is  calculated  through  approximating  past  integration  steps  with  an

interpolating polynomial. 

The concept is illustrated in Figure 5.6. The past points (diamond-shaped) along with the

g-point (intersecting f2 with the interpolating polynomial) are used to estimate the value of

f2(g-h).  In  the  figure,  four  interpolating  points  are  used  to  generate  a  third  degree

interpolating polynomial that past-interpolates to find  f2(g-h). Of course, we could have

used a hermite interpolating polynomial to perform the same task. However, there is no

added benefit in using hermite polynomials for past interpolation as no tight control over

the  estimation  of  function  value  is  required.  In  this  case,  a  hermite interpolating

polynomial would unnecessarily increase computational power.

Although computationally exhaustive, I think this approach provides a better estimation

of the past value of the state variable. To avoid such computations, we can assume the

value of the state variable at the left  hermite control point to be equal to that at the  g

point. This assumption is used to calculate the additional hermite control point located to

the right side of the g point.
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Figure 5.6: Past interpolation points at  t i−1 , t i−2  and t i−3  in addition to the g point at t i

are used to estimate the value of f 2  at g−h .

5.1.6. Regularizing conflicting boundary conditions

The main reason behind conventional initialization of variables at a discontinuity is the

large change in one or more of the state-variables. The change is usually larger than the

accepted value of the tolerance set by integration routine. The large change is sometimes

a  direct  result  of  a  conflicting  boundary  conditions  between  the  two  discontinuous

functions. An example of such conflict is the sudden changes in flow or flux directions

between the one set of boundary conditions and its neighbouring one.

Conflicting  boundary  conditions  arise  when  the  boundary  conditions  before

reinitialization of variables conflict with those after reinitialization. A discontinuity in a

boundary  condition  resulting  from  flow  reversal  can  be  regarded  as  a  conflicting

boundary condition. The flow before the discontinuity occurs in one direction. After the

discontinuity, the flow direction reverses.
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The problem that  arises  with  regularizing  conflicting  boundary conditions  is  that  the

developed  algorithm cannot  directly  move from one boundary condition  to  the  other

without  stumbling  in  the  middle  and  eventually  failing.  Taking  the  example  of  flow

reversal at the discontinuous region, we can realize that one set of boundary conditions is

mandating the flow to move in one direction while the other set is asking it to move in a

counter-current direction to the first set. 

Reinitialization  of  variables  resolves  the  conflict  by  simply  ignoring  past  boundary

conditions  and  focusing  only  on  the  present  boundary  conditions.  However,  such  a

resolution introduces an error into the model as it assumes that flow reversal happened

exactly  at  the  start  of  the  discontinuity.  Reinitialization  assumes  the  existence  of  no

intermediate transition region.

The solution to such regularization problems lies in breaking the discontinuous region

into  two  regularized  regions  that  share  a  common  interchange  point.  This  common

interchange point is hopefully physically realizable. For example, before a flow reverses

its direction, it needs to move from a positive or negative flow to a point were the fluid is

stagnant. This stagnation point is a good transition point between the two sets of boundary

conditions as the point belongs to both sets of boundary conditions.

The concept is best understood with an example. In section  4.2, I detailed the general

layout of a discretized PSA model. Components boundary conditions of the model are

illustrated in Figure 4.9. One-interval regularization between the two steps is illustrated in

Figure  5.7.  Note  how  the  direction  of  spatial  flux  for  the  component  mass  balance

changes from Desorption step to Pressurization step. In the Desorption step, velocity and

component fluxes move in a direction that is counter-current to that of the Pressurization

step. Trying to directly bridge the discontinuity at the two boundaries (z=0 or x=L) using
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one regularization interval results in a regularizing function having a negative flux at one

end while  exhibiting a positive one at  the other  end.  This situation leads  to  a  solver

instability  and eventually  results  in  the  solver  failing  to  integrate.  Indeed,  the  solver

should not integrate such a scenario as it is not physically realizable. 

Looking deep into the process, it can easily be realized that the boundary discontinuity is

summing  two  process  actions.  At  the  end  of  Desorption  step,  the  purge  valve  starts

closing. After the purge valve is completely closed, the feed valve is opened and feed is

introduced at high pressure signifying the start of the Pressurization step. So, effectively,

the discontinuity is compacting two process actions in an instantaneous time point. 

Two regularization intervals are required to resolve this problem. The first regularization

interval closes the purge valve, effectively moving the flow and its respective component

mass fluxes from their negative direction to an intermediate stagnant point where there is

no flow in any of the directions. The flow and component fluxes then start moving into

the positive direction with the opening of the feed valve. The two-interval regularization

concept is illustrated in Figure 5.7. Also, two-interval regularization between Desorption

and Pressurization steps is illustrated in Figure 5.9.

As I outlined, the two-interval regularization solves the problem. However, it comes at an

expense. It is not an easy task for an algorithm to decide whether a discontinuity requires

one- or two-interval regularization. Until a future algorithm is devised to tackle such a

limitation,  it  becomes the task of the modeller to point the number of regularizations

required per a discontinuity to the modelling language.  In addition, for a two-interval

regularization, the modeller needs to define the intermediate point that is shared by both

regularization intervals and define its corresponding boundary conditions.
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5.1.7. Differential models embedding other models

Complex models usually combine boundary conditions, initial conditions and constitutive

equations. The model in such cases is built from different layers. However, as outlined in

Chapter 3: , the integrating routine focuses only on the layer that it immediately integrates

through. This is the layer at which model state variables are integrated with respect to an

independent  variable  such  as  time.  Other  model  layers  are  normally  overlooked  by

conventional integrators.

For  example,  in  the  PSA model  outlined  in  section  4.2.1,  velocity  distribution  is  a

function of the spatial dimension and not the temporal one. The distribution is modelled

as an initial  value problem in space only although a small  time contributing factor is

evident from the component adsorption term. Thus, to a conventional integrating routine,

velocity distribution does not exist and hence will not be regularized unless pointed out

through  any  mean  by  the  modeller  to  the  integrating  routine  implementing  the

regularization algorithm. Moreover, the fact that the location of the initial conditions for

velocity (whether at x=0 or at x=1) is a process step dependent (refer to Figure 4.9) adds

to the complexity of the situation. 

It is an easy task for a modelling language/algorithm to identify the state variables in a

model. This easiness facilitates the insertion of appropriate state-variable regularization

algorithms. However, this is not the case with embedded models since these models are

transparent  to  the  modelling  language.  Some of  the  embedded  models  might  require

regularization. Others might not. Thus, when regularizing models, modelling languages

should  provide  the  modeller  the  option  to  select  which  of  the  embedded  models  to

regularize along with model state variables and which to ignore. 

Unless the integration routine is clever enough (normally not) to realize the existence of
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embedded constitutive equations within the model that require regularization, it becomes

a  difficult  task  for  it  to  regularize  these  embedded  equations.  Currently,  very  little

information is exchanged between the model and the integrating routine (refer to Figure

2.3). I think this problem marks a good direction for continuing research on this subject.

5.2. Two-Dimensional Functions

So far, we have discussed tackling the problem for one dimensional functions. What if z is

a function of two variables (e.g.  z = f(x,y) ), where  z poses one or more discontinuities

along each of the dimensions. The discontinuous function may take a form like:

f (x , y )={ f 1(x , y ) , x∈[a ' x , bx ] , y∈[a ' y , b y ]

f 2(x , y ) , x∈[ax , b ' x ] , y∈[a y , b ' y ]
 (5.12)

Assuming  a ' x<ax≤ bx<b ' x and  a ' y<a y≤b y<b ' y (Figure  5.10a),  if  g ' x  and  g ' y are

arbitrary selected as discontinuity boundaries along the x and y dimensions, respectively,

a possible pseudo code of (5.12) could be written as either of the forms in (5.13). 

If ( a'x < x < g ' x ) 
If ( ay < y < b'y ) 

f(x,y) = f1(x,y)
ElseIf ( ax < x ) and ( a'y < y <ay ) 

f(x,y) = f2(x,y)
EndIf

ElseIf ( g ' x < x < b'x )
If (a'y < y < by) 

f(x,y) = f2(x,y)
ElseIf [(x < bx) and (by  < y < b'y)] 

f(x,y) = f1(x,y)
EndIf

EndIf

If (a'y < y < g ' y ) 
If ( a'x < x < ax ) and ( y > ay ) 

f(x,y) = f1(x,y)
ElseIf [( ax< x < b'x )] 

f(x,y) = f2(x,y)
EndIf

ElseIf ( g ' y < y < b'y )
If ( a'x < x < bx ) 

f(x,y) = f1(x,y)
ElseIf [(bx < x < b'x) and ( y < by)] 

f(x,y) = f1(x,y)
EndIf

EndIf

(5.13a). (5.13b).
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Figure 5.7: One- and two-interval regularizations of a conflicting boundary discontinuity.
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Figure 5.8: One-interval regularization of the conflicting boundary discontinuity between

Desorption and Pressurization steps in a PSA unit.
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Figure 5.9: Two-interval regularization of the conflicting boundary discontinuity between 

Desorption and Pressurization steps in a PSA unit.When dealing with two dimensional

relations, discontinuities present themselves as planes as illustrated in Figure  5.10a.  We

can deduce some conclusions from projecting the domains of f1 and f2 into the x-y plane.

The discontinuity planes formed by using form (5.13a) are illustrated in Figure  5.10b.

Similarly, The discontinuity planes formed by using form (5.13b) are illustrated in Figure

5.10c.  Notice that  the difference in  nesting of conditional  statements  only affects  the

resulting output within the overlap domain that is illustrated in Figure 5.10a.
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The  solution  strategy  remains  the  same  as  for  one  dimension:  the  problem  is  still

decomposed into discontinuity detection and discontinuity resolution sub-problems. 

a. 2D overlapping functions b. Nesting based on x-dimension at the outer 
if statement.

c. Nesting based on y-dimension at the outer 
if statement.

Figure  5.10:  An  example  illustrating  applicability  domains  of  two-dimensional
overlapping  functions  f1 and  f2 and  the  effect  of  conditional  nesting  on  boundaries
segregation.
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Before elaborating on the approach to handle discontinuity detection and resolution in

2D,  let  us  look  at  how  functions  overlap  in  two  dimensional  space.  Figure  5.10a

illustrates the case where there are overlaps between the two functions in both domains.
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dimension and overlap in the other, the overlap domain in 5.10a reduces to a line. In such

cases, the detection algorithm will only have one degree of freedom: that is to find the

optimum  switch  point  for  the  dimension  where  overlap  exists.  When  functions  are

adjacent to each other in both domains,  the overlap domain reduces to a point in the

projected 2D space. The detection algorithm has zero degrees of freedom in this case and

the resulting discontinuity locations will correspond to the intersection point between the

two functions.

It should be noted that, in 2D problems, detection of optimum switch points does not

guarantee  passage  of  the  simulation  trajectory  through  these  points.  It  only  helps  in

formulating the conditional statement around the minimum jump effort point to aid in

minimizing discontinuity while switching. This conclusion stimulates us to questioning

the  credibility  of  the  obtained  conventional  simulation  results  when  the  simulation

trajectory does not  pass through an overlapping domain (shown as question marks in

Figure 5.10). When not passing through an overlap domain, conditional expressions will

extrapolate the use of discontinuous functions regardless of extrapolation applicability.

This statement holds for all conditional statements involving the use of functions bounded

by specified intervals. Since conventional modelling packages do not provide an apparent

fix to this problem, it becomes the responsibility of the modeller to either ensure that the

selected functions  cover  the intended unknown simulation path,  or  to  insert as  many

functions  as  possible  (with  differing  domains)  to  cover  a  wider  area  to,  hopefully,

minimize extrapolation. Thus, I think it is essential to include the applicability domains of

each logical branching expression as part of the model input file. Then, the simulation

package would check whether the solution falls within the specified applicability domains

and flags an alert (or stops simulation execution) when the simulation trajectory deviates
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from the applicable domains of the branched conditional statements.

The detection  of  an optimum jump points  for  2D functions  can be formulated as  an

extension of the 1D problem. For two discontinuous functions overlapping at [ax,bx] and

[ay,  by] in  x and  y dimensions, respectively; the optimum switch point  g(x,y) is found

through solving the optimization problem:

min.e(x , y)=∣f 1(x , y )− f 2(x , y)∣  

s . t .={ x∈[a x ,b x]

y∈[a y ,b y]

(5.14)

As I indicated in the 1D case, once the gx and gy locations are determined, their values can

be directly substituted into the constructed conditional statement to minimize jump effort

between the two adjacent discontinuous functions. The model can, then, be solved using

any  of  the  available  integration  packages.  Nevertheless,  since  detection  of  optimum

switch points does not always guarantee elimination of reinitialization of the ODE/PDE

model at the switch point or accuracy of integrator-based interpolated solution afterwards,

the need arises for a discontinuity resolution algorithm.

5.2.2. Two-Dimensional Discontinuity Resolution

Once overlap boundaries between the discontinuous functions are determined through the

detection algorithm, we need to interpolate between the discontinuous functions in order

to eliminate discontinuity. I propose two approaches and highlight their pros and cons.

The  simplest  approach  (approach  I)  is  to  cover  the  entire  overlap  domain  with  an

interpolating polynomial. Boundaries of the interpolating polynomial will correspond to

those of the continuous function at the boundary location as illustrated in Figure  5.11a.

The fact that the values of the interpolating polynomial at its boundaries matches that of
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the neighbouring functions facilitates smooth transition in all directions. 

However,  this  approach  comes  at  a  cost.  For  a  fixed  number  of  control  points  per

dimension, interpolation mesh size is overlap-domain size dependent. This means that

mesh resolution will decrease as the size of the overlap domain increases and vice versa.

Of course, increasing the number of control points for large overlap domains will resolve

this  problem  but  at  a  heavy  computational  cost.  Thus,  I  recommend  adopting  this

approach  for  a  relatively small  overlap  domain  size.  A typical  if structure  using  this

approach (based on Figure 5.11a) is illustrated in (5.15).

Note  that  the  conditional  statement  well  encapsulates  the  bounding  domains  of  the

discontinuous functions. Thus, the last Else statement is needed to indicate to the user that

simulation trajectory is deviating from the specified functions' boundaries. 

An alternative approach (approach II)  would be to track a two dimensional trajectory

vector  v⃗n as  simulation  progresses  and  generate  the  grid  points  of  the  interpolating

polynomial  once  the  conditional  statement  shifts  to  the  branch  containing  the

interpolating polynomial as illustrated in Figure 5.4b. The v⃗n vector tracks the coordinates

of the independent  variables  of the composite  function as  simulation progresses.  Full

derivation of the underlining equations is presented in Appendix D. 

If   [{(a 'x≤ x<ax)∧(ay<y<b' y)}∨{(ax≤ x≤bx)∧(by<y≤ b' y)}]
f(x,y) = f1(x,y)

ElseIf [{(bx<x≤ b 'x)∧(a' y≤ y≤ by)}∨{(ax≤ x≤bx)∧(a ' y≤ y<ay)} ]
f(x,y) = f2(x,y)

ElseIf [(ax≤ x≤bx)∧(ay≤ y≤ by)]

f(x,y) = interpolate
Else

Print “Illegal extrapolation”
EndIf

(5.15)

In this  approach,  the mesh is  constructed at  the intersection point  between v⃗n and the
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overlap  domain.  The  aim of  the  constructed  mesh  is  to  facilitate  transition  from the

currently active discontinuous function to the function towards which v⃗n is heading. Once

transition to the destination discontinuous function is complete the rest  of the overlap

domain is considered as a seamless part of the destination discontinuous function. This

approach allows generation of a high resolution variable grid size that is independent of

the size of the overlap domain and with a fixed number of control points. 

The approach works well with one exceptional situation. This situation arises when  v⃗ i

changes  direction,  within  the  overlap  domain,  and  returns  back  to  the  discontinuous

function where it originally came from as illustrated in Figure  5.11b. Since the overlap

domain, with the exception of the interpolation region, has been replaced with the values

of the destination discontinuous function a  discontinuity would probably occur  at  the

boundaries of the overlap domain with the function where the vector has originally come

from. Such a situation is solvable through formulating an additional exit interpolating

polynomial with the original function as illustrated in Figure  5.11c. Note that even the

entry region (cross-hatched) is treated as a possible interpolating region to move back to

f1 from the overlap region. The fine-hatched region resembles the entire area at which

interpolation might occur. However, the generated mesh will only cover the portion at

which v⃗ i is heading as illustrated in Figure  5.11d. Note that this problem would never

occur if approach I is used because v⃗ i  will always fall in the region of the interpolating

polynomial  once  it  is  inside  the  overlap  region  as  illustrated  in  Figure  5.11a.  Two

advantages arise from using approach II:

1. It allows for variable size mesh, i.e. hx and hy can be arbitrary selected as long as

the resulting mesh does not cross the overlap domain.
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2. Only four points are needed (six when using  hermite interpolating polynomials)

per interpolation dimension regardless of the size of the overlap domain.

However,  more  checks  are  needed  in  this  approach  over  approach  I.  A typical  2D

conditional structure pseudo code is illustrated in (5.16).

a. b.

c. d.

Figure 5.11: Approaches I and II to resolving discontinuity.

5.2.3. How legal is “illegal” extrapolation?

As we discussed earlier, extrapolation occurs when trying to join the two discontinuous

sub-functions  by  a  polynomial  that  lies  outside  their  designated  domains.  This  is

illustrated in Figures 5.1d and 5.10 (domains marked by question marks) for 1D and 2D

functions, respectively. There are two reasons (cases) behind alerting the modeller about

illegal extrapolation:
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1. The extrapolation domain might be defined by a function exhibiting a behaviour

that is different from the behaviours of the sub-functions to be extrapolated. In

such cases, extrapolation will result in erroneous simulation output. 

2. Either or both of the functions to be linked might not be mathematically defined in

the extrapolation region (e.g.  division by zero). In such cases control points 3 and

4 cannot be calculated due to unavailability of function values at the location of

these points.

The modeller will  obtain a less than accurate result  in the first  case.  However,  if  the

modeller is confident about the consistency of the behaviour between the extrapolation

region and the functions to be extrapolated, he or she can simply alter domain boundaries

of the functions to append the extrapolated region to one of them, divide it between the

two  functions  or,  even  better,  append  it  to  both  functions  and  rely  on  the  detection

optimizer to locate the best transition point g. 

As for the second case, the integrator will simply stop integrating because the values of

the functions at points 3 and 4 are dependent on the respective values of functions 1 and

2. However, the dependency can be broken by eliminating function evaluations at these

two points. We should recall that function evaluations at points 3 and 4 are needed to

calculate the amount of dip based on  p parameter. If some curvature smoothness at the

junction points between the interpolating polynomial and the discontinuous functions can

be sacrificed in the quest for continuity, then the integrator can extrapolate between the

values of the two discontinuous sub-functions using their respective boundaries that are

adjacent to the extrapolation domain. 
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If (active_point_coordinate∉overlap_domain)
entry_completed = false; first_overlap_entry = true; first_exit_attempt = true
If (active_point_coordinate∈ f 1range )

f= f1(x,y)
Active_function = f1

ElseIf (active_point_coordinate∈ f 2range)
f= f2(x,y)
Active_function = f2

Else
Print “Illegal Extrapolation”

EndIf
ElseIf (active_point_coordinate∈overlap_domain)

detect_entry_intersection_plain;
If first_overlap_entry = true

construct_entry_mesh; 
first_overlap_entry = false

EndIf
If  (active_point_coordinate∈entry_interpolation )∧(not entry_completed )

f = entry_interpolate
Else

entry_completed = true
If (active_point_coordinate∈exit_interpolation)

If first_exit_attempt = true
construct_exit_mesh 
first_exit_attempt = false

EndIf
f = exit_interpolate

Else
f = fDestination_function(x,y)

EndIf
EndIf

EndIf

(5.16)

As we might expect, the second solution will work for cases 1 and 2. However, it will not

eliminate  errors  associated  with  the  first  extrapolation  case.  So,  it  still  becomes  the

modeller's responsibility to tackle the first case by inserting an appropriate function to

define the region that might otherwise be erroneously extrapolated.

5.2.4. Mesh Generation

In order to interpolate, a mesh needs to be generated. For one-dimensional problems, the
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mesh  reduces  to  a  one-dimensional  set  of  points.  The 2D+  problems  require  an

elaboration on mesh generation methods.

Mesh generation is an approach dependent exercise. Generating the mesh using approach

I is a fairly easy task since the mesh will cover the entire overlap region. The values of the

boundary  points  surrounding  the  overlap  region  will  always  correspond  to  the

neighbouring continuous sub-functions adjacent to the overlap domain as illustrated in

Figure 5.11a.

For approach II, mesh generation is more complex. The extra complication arises from the

tracking of v⃗ i . I will discuss four methods to construct the mesh around the intersection

of the v⃗n  with the discontinuity plane. I will briefly explain each method and provide my

reasoning for selecting one of them. For simplicity, I will demonstrate examples using a

discontinuity plane orthogonal to x-axis. However, the concept applies to discontinuities

orthogonal to either of x- or y-axis.

The first method constructs a squared mesh around the discontinuity point as illustrated in

Figure 5.12a. Values of h '
x

 and h '
y

are measured with respect to their respective x- and y-

axes. The size of the mesh is fixed. The distribution of the mesh control points along the

sides of  v⃗n is dependent on the slope of  v⃗n . Thus,  v⃗n  might lean towards some of the

control points over others.

The second method is similar to the first one with the exception that the size of the mesh

is  expandable  in  the  direction  that  is  perpendicular  to  the  discontinuity  plane.  The

advantage of this method is that it allows a better distribution of the control points along

each side of the v⃗n vector  as  illustrated in  Figure  5.12b. As can be deduced from the

figure, vector v⃗n  is still almost always leaning towards one set of the mesh control points
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over the other.

a. b.

c. d.

Figure 5.12: Four ways to construct a mesh around a vector-plane intersection point. 

The third method aligns the grid with the direction of v⃗n . This method better distributes

grid points along the sides of v⃗n , compared to the former two methods as illustrated in

Figure 5.12c. Note that h '
1

 and h '
2

are respectively measured parallel and orthogonal to v⃗n

but not relative to  x- and  y-axes. Since the grid is aligned to  v⃗n while the conditional

statement  is  based on a discontinuity that  is  orthogonal  to  either  x-  or  y-axis,  logical

statements around interpolation region become functions of the direction of v⃗n . Since the

generated  mesh  is  not  aligned  with  overlap  domain,  it  becomes  a  difficult  task  to

superimpose the mesh on the conditional statement.
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The fourth method relies on fixing an h' along each of the dimensions while shifting the

location of the line segments that are parallel to the discontinuous domain to align the grid

with v⃗n . The fourth method resolves the drawbacks of the previous three methods.  Thus,

I opted for implementing this method in grid construction for Approach II. The extension

of this approach to the construction of 3D meshes is detailed in Appendix C.

5.3. N-Dimensional Functions

5.3.1. N-Dimensional Discontinuity Detection

To generalize,  for  two  n-dimensional  discontinuous  functions,  discontinuity  detection

detects the overlap region between the two discontinuous sub-functions. It also detects the

optimum switch point between the two discontinuous functions. The position of the two

sub-functions, relative to the overlap region and the location of the optimum switch point,

assists in formulating the conditional statement. If sub-functions do not overlap in any of

the dimensions, the algorithm flags an error and simulation execution stops. 

5.3.2. N-Dimensional Discontinuity Resolution

Discontinuity resolution takes the form of an interpolating polynomial that connects the

two  discontinuous  sub-functions.  For  one-dimensional  discontinuous  functions,  the

interpolating polynomial is best formulated around the minimum jump effort point.

For discontinuous functions of dimensions greater than one, the solution can follow one

of two approaches:

1. The first approach relies on constructing an interpolating polynomial that covers

the  entire  overlap  domain.  This  path  is  suitable  for  relatively  small  overlap
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regions. For large overlap domains, the interpolating polynomial mesh resolution

can  be  enhanced  by  increasing  the  number  of  control  points  at  a  heavy

computational cost.

2. The second approach constructs one mesh and possibly a second one. The first

mesh  is  constructed  at  the  entry  to  the  overlap  domain.  It  facilitates  smooth

transition between the active discontinuous sub-function at the entry point of the

overlap domain and the destination one. Once transition occurs, the rest of the

overlap domain is  treated as if  it  were part  of the destination sub-function.  In

situations where the simulation vector reverts back to the sub-function where it

originally came from within the overlap domain, an exit mesh is constructed to

resolve discontinuity at exit location. This path has the advantage of varying the

mesh size based on user specification while maintaining a fixed number of control

points.

Figures 5.13a and 5.13b illustrate generated meshes for an overlap-domain between two

3D  discontinuous  functions  using  approaches  I  and  II  to  discontinuity  resolution,

respectively.

The total required number of  mesh points is an exponential function of the dimensions of

the composite function and can be calculated as:

Number of mesh points=mn  (5.17)

where m: number of control points per dimension

n: number of dimensions

To ensure smooth transition between the two discontinuous sub-functions, at least

four  control  points  are  required  per  a  dimension.  In  the  case  of  hermite

interpolating polynomials, six control points are required per a dimension to assist

in  curvature  closure  as  outlined  in  Appendix  C.  Figure  5.14 illustrates  the



Chapter 5: Regularizing Discrete Functions 136

relationship between the number of control points required and the dimensions of

the composite function. Although computational power and capacity are machine

dependent, we can deduce from the plot the existence of a threshold beyond which

computational  power  and  machine  space  (memory  or  hard  disk)  becomes

prohibitive. For example, for a tenth dimension discontinuous function, a cubic

spline would require a mesh composed of 1,048,576 points. That is a megabyte of

memory/disk space per  discontinuity.  The problem becomes worse when using

hermite interpolating polynomials. For a tenth dimension discontinuous function,

the  hermite interpolating  polynomial  requires  60,466,176  mesh  points.  This  is

about 58 megabytes of memory/disk space per discontinuity encountered.

a. Mesh covering entire overlap domain (Approach
I).

b. Mesh covering entry/exit regions only (Approach
II).

Figure 5.13: Representation of the two types of generated meshes in a 3D cuboid overlap
domain.
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exhibiting  constant  values  throughout  the  interpolation  region  is  omitted  from  the

interpolation mesh. Also, since usually hard disk space is more abundant than memory,

the entire mesh can be saved in a computer hard drive using binary files to accelerate

simulation program access  to  these mesh-point  files.  Lastly,  instead of generating the

mesh once  at  the  first  entry to  the  interpolation  region and  saving  it,  the  simulation

routine can opt to generate the mesh at each interpolation run and immediately dispose it

after the composite function value is computed to free memory/hard disk space. The latter

resolution  saves  a  tremendous  amount  of  disk  space  by dynamically  allocating  mesh

space  to  compute  function  values  and  freeing  the  space  once  the  function  value  is

computed. However, additional CPU time is required to construct the exact same mesh at

every function evaluation within the interpolation region. 

Figure  5.14:  A semi-log plot  of  number of  mesh points  required versus  discontinuous
function dimension.

Of course, a combination of one or more of the above resolutions will result in a more

efficient and/or robust algorithm. For example, the simulation routine can be programmed

to:

1. Generate  interpolation  mesh  only  once  in  memory  when  memory  space  is

dimension
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cubic



Chapter 5: Regularizing Discrete Functions 138

abundant. 

2. Once  memory  occupied  space  reaches  a  specified  maximum,  the  simulation

routine switches to storing a one-time generated mesh in the machine hard drive.

3. If hard drive space is limited or has reached a critical level, the routine shifts to

dynamically creating and destroying meshes at each function evaluation inside the

interpolation region.

To  further  enhance  efficiency,  the  routine  can  be  programmed  to  optimize  memory

utilization  by  loading  lower  dimension  functions'  meshes  into  memory  while  saving

higher  dimension  ones  to  hard  disk.  The  prior  knowledge  of  the  dimension  of  each

composite function will assist the simulation routine in calculating the maximum amount

of occupied hard disk/memory space beyond which dynamic allocation and destruction of

interpolation meshes (bullet 3) should be used instead of a single-time generated mesh

(bullets 1 or 2). 

Such  a  resolution  is  hardware  dependent.  Thus,  below  certain  machine  hardware

specifications and based on computed mesh size for each interpolating polynomial in a

simulation  model,  the  simulation  routine  can  flag  an  error  message  prior  to  starting

simulation run indicating the inability to run the model on a specified machine. However,

I think modern hardware capabilities extend far beyond such minimum specifications.

Last, it is good to shed some light on whether this work eliminates the need for implicit

solvers and their respective variable integration step size. The answer is no. Taking Figure

5.3 as an example, we notice that slope changes are very evident between each of the sub-

functions and their  respective interpolating polynomial.  An explicit  integration routine

with a  fixed  integration  step size  can easily overlook these slope changes,  even in  a
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regularized  composite  function,  resulting  in  sever  simulation  errors.  Of  course,

minimizing integration step length might resolve the issue but at the cost of increased

simulation run-length. The use of variable integration step-size in implicit solvers ensures

the  adjustment  of  the  step-size  as  required.  Larger  integration  steps  are  used  when

integration  error  is  within  bounds.  Whenever  integration  error  exceeds  the  bounds,

integration step is halved and error is recalculated. The implicit integration routine adjusts

integration  step  size  when  moving  between  discontinuous  sub-functions  and  their

respective interpolating polynomial. Thus, the use of implicit integration routines is still

favoured even after model regularization.

5.4. The Algorithm

The algorithm implementation is programming language dependent as it involves either a

modification of conditional statements or a complete rewrite of the discrete composite

function  to  regularize  it.  In  compiler-based  modelling  languages  such  as  [gPROMS,

2012], it is recommended to embed the code within the language compiler. However, this

solution might not be feasible for general purpose modelling languages such as MATLAB

or GNU Octave or even general purpose imperative languages such as C++, FORTRAN

or Pascal. In such cases, the programmer can write his/her custom code to iterate through

discretized  composite  functions  and transform them to  their  regularized  counterparts.

Generic  packages  to  perform  such  tasks  can  also  be  developed  by  the  scientific

community and added to the language as a language library module.

Regardless  of  the  implementation  platform,  the  modeller  needs  a  mean  to  enter  the

domain of each dimension of a sub-function that is part of a composite discontinuous

function. The detection algorithm sorts the discontinuous sub-functions of a composite

function based on the applicability of the respective domain for each of the dimensions.
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Figure  6.3 illustrates a simplified flowchart of the algorithm. A simplified step-by-step

procedure that should be executed by the modelling language follows:

STEP-01: Start simulation run

STEP-02: Check for the availability of any functions containing conditional statements

or standalone conditional statements  involving continuous variables (i.e.  of

real or float types) inside original model code.

STEP-03: Search for an optimum switch point that minimizes the difference in values

between any  two sub-functions within their overlap domain.

STEP-04: Adjust the standalone conditional statement or the one within the composite

function to account for the new switch point.

STEP-05: If resolution is enabled by the modeller, reconstruct a regularized conditional

statement from the discretized one (recommended). 

STEP-06: Repeat STEP2 and STEP3 until all conditional statements within modeller's

code are handled.

STEP-07: Start the integration and Initialize variables.

STEP-08: The integration routine advances integration step if final integration limit is

not reached.

STEP-09: Update v⃗ i for each composite regularized function.

STEP-10: If composite regularized function parameters are not within the interpolation

region, the value of function f  is calculated using the provided discontinuous

sub-function that lies within the active domain. If parameters are within the

overlap domain, check if this is the first entry to the overlap region in order to

generate  the  interpolation  grid.  If  the  grid  is  already  generated,  use

interpolating polynomial f3 to calculate f.
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STEP-11: Repeat steps 8-11 until simulation completes. 

In the present work, the search for discontinuous functions within a simulation code is not

implemented.  As  I  explained  earlier,  this  task  is  programming-language  dependent.

However, the search for an optimum switch point within the conditional statements, that

are used as examples in this work, is implemented and tested using  [gPROMS, 2012]

Foreign Object Interface (FOI). It has also been independently tested using GNU Octave

[GSL, 2011].

Similarly, regularizing functions have been tested using both  [gPROMS, 2012] and GNU

Octave  [GSL, 2011] programming languages.  Again,  the automatic formulation of the

composite regularizing function is language compiler specific. It is also outside the scope

of this work and thus not implemented.

For  the  online  part,  the  vector  tracking  algorithm  has  also  been  implemented  in

[gPROMS, 2012] FOI. Binary (record) files are used to record vectors' paths of Prandtl

and Reynolds numbers during simulation run of the reactor model. For the PSA model,

the same routines are used to track velocity, inlet and outlet concentration profiles.  

For Approach II to discontinuity resolution, a complete C++ routine is written to handle

the regularization of the discontinuity. The possibility of the vector reversing direction

within the interpolation region is also programmed.

A special C++ routine is also written to estimate the location of the left-most control point

when regularizing boundary conditions. As discussed earlier, the purpose of the routine is

to interpolate using available pre-discontinuity history points in order to  calculate  the

value of the independent variable immediately preceding the regularization region.
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Figure 5.15: A simplified flowchart illustrating flow of the presented algorithm. Solid lines
represent the more preferred path while the dashed line represents the less preferred one.
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The bounded dotted area represents offline part while the rest represents the online part. 

A separate C++ routine is written to handle the generation of the mesh control-points for

Approach II to discontinuity resolution. The routine is linked to  [gPROMS, 2012] and

tested using the reactor model that is  described in Appendix  B. The mesh generation

algorithm is also simultaneously tested using GNU Octave [GSL, 2011].

I  implemented the  algorithms in a  C++ code.  Then,  I  linked the compiled  code to  a

[gPROMS,  2012] models  described in  Chapter  4 and  Appendix  B through gPROMS

Foreign Object Interface (FOI). A simplified one-dimensional hermite interpolation code

is presented by  [Bourke, 2011].  [Breeuwsma, 2011] presented a general C++ and Java

codes for multidimensional interpolation that can be used in conjunction with any one-

dimensional  interpolation  method.  I  combined  the  codes  of  [Bourke,  2011] and

[Breeuwsma, 2011] to formulate the C++ multidimensional hermite interpolation routines

that are used in this work.

5.5. Summary and Concluding Remarks

In this chapter, I introduced a novel approach for detecting and resolving discontinuities

originating from the use of conditional statements within a modelling code. The approach

is based on targeting the discontinuity at  its  origin and hence eliminates the need for

interpolating polynomials that do not truly represent the discontinuity.

I outlined how the one-dimensional detection and resolution approach can be applied to

regularize constitutive equations. I also discussed how the approach can be extended to

handle discontinuities resulting from shifts in boundary conditions during simulation run.

I  demonstrated  the  uniqueness  of  the  resolution  for  one-dimensional  discontinuous

functions. Thus, the one-dimensional detection and resolution approach can be applied

offline before starting the model integration.
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The one-dimensional  detection approach is  extendible  to  multi-dimensional composite

functions.  For  multi-dimensional  resolution,  I  devised  two  discontinuity  resolution

approaches. Approach I relies on covering the entire overlap domain with an interpolating

polynomial. This approach is more applicable to small overlap domains since the mesh

resolution reduces as the size of the overlap domain increases.

Approach II  to discontinuity resolution relies on tracking a vector of the independent

variables of a composite function. The vector is used to construct the multi-dimensional

interpolating polynomial once the conditional statement shifts to the overlap domain. A

procedure is also devised to best generate a mesh of control points for the interpolating

polynomial based on the direction of a tracked vector.

The last section of this chapter outlined the sequence of the steps for the algorithm and

how they should be implemented either within the compiler of the language or as an

independent code. The next chapter demonstrates the implementation of the algorithm,

discussed in this chapter, to two models of chemical processes.



CHAPTER 6: Applications to Some Complex Models

Applications to Some Complex Models

In this chapter, I will demonstrate the discussed concepts using two

examples,  one  for  one-dimensional  functions  exhibiting  dynamic

boundary  conditions  and  the  other  for  a  two-dimensional  function

embedded within a model's constitutive equation. 

145
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6.1. Regularizing a Discontinuity in Heat Transfer Coefficient 
Calculation

I tested the effect of transition from Laminar to Turbulent flow regimes on the wall heat

transfer coefficient described by equation 4.1 and plotted in Figure 4.3. 

When using the approach presented in this work, I expected to observe a decline in the

time  required  to  perform  a  simulation  run  compared  with  conventional  simulation

reinitialization procedures. Since the developed reactor model discretizes axial space to

convert PDEs to ODEs, I intend to use the number of discretization points as a variable to

test our theory. 

The  code  is  expected  to  best  perform at  large  numbers  of  discretization  points.  The

performance should approach that of conventional simulation techniques as the number of

discretization points  is  reduced.  This  is  due  to  the  fact  that  the number of  equations

requiring initialization is directly proportional to the number of  discretization points.

To establish a baseline for the analysis  and to eliminate the bias introduced by every

simulation run on the analysis, I recorded machine time taken to complete a constant

velocity  simulation  that  does  not  pass  through  any discontinuities  for  a  set  of  axial

discretization nodes that span from 10 to 500 as outlined in Table 1. To eliminate any

variance in reported data (due to interfering machine background tasks) I repeated each

run three times and reported the average outcome of the three runs on the table. I should

also mention that  the reported base case is  based on conventional  simulation runs.  A

consistent additional one second is noticed when using FOI to report base case results.

The additional one second is probably attributed to initiation and termination of the link

between [gPROMS, 2012] and the FOI. I should also mention that results on Table 6.1 are

generated using a single lumped heat transfer coefficient that is based on feed conditions
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and an average axial reactor temperature. Also, the simulation runs were performed on a

machine  equipped  with  an  Intel  i5  processor  using  4GB RAM and running  a  Linux

operating system.

a. Discretized Discontinuity b. Regularized Discontinuity

Figure 6.1: (a) Discretized and (b) regularized Nusselt functions plotted against time. The
quasi  independent  variables,  Reynolds  and  Prandtl  numbers,  are  also  plotted  for
illustration purposes.

It  should  be  noted  that  points  in  the  Nu curve  do  not  represent  control  points  but
simulation reporting intervals.

After establishing the base case,  I  applied a sinusoidal input to the feed velocity that

crosses Reynolds boundary of 2,300 between the two correlations ten times. Plots of Nu,

Pr and  Re against  time when passing through the first  discontinuity are  illustrated in

Figure 6.1a for the discretized model and in Figure 6.1b for the regularized one. For the

regularized  model,  Figure  6.2 represents  a  3D  view  of  the  regularized  interpolating

polynomial that is constructed based on v⃗n  direction.

The simulation run-length is plotted against the number of axial discretization nodes for

the  reference  case,  the  discretized  and  the  regularized  models  in  Figure  6.3a.  The

difference  between  the  discretized  model  and the  base  case  run  lengths  is  plotted  in

Figure  6.3b  gainst  the  number  of  discretization  nodes.  The  difference  between  the

regularized model and the base case run lengths is also plotted in the same figure. With

the exception of the reported time using ten discretization nodes, the rest of the points
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closely resemble straight lines. Excluding the point corresponding to ten discretization

nodes  (explained  later)  and  applying  regression  analysis  between  the  number  of

discretization nodes and the absolute simulation run length for the conventional case and

this  work  yields  the  tabulated  results  in  Table  6.2.  The  slopes  resulting  from  the

regression analysis  represent  the run length time per discretization node. Dividing the

slope resulting from this work (0.12263) by the slope resulting from conventional runs

(0.15869) provides the fractional run length time elapsing from this work per elapsed run

length of conventional runs (0.7728). The results show that using the approach provided

in  this  work  results  in  about  23%  saving  in  run  length  time  over  conventional

discontinuity handling techniques at least for 2D discontinuous functions. Of course, the

same conclusion would have been achieved had we directly regressed run length time for

conventional discontinuity handlers against the results obtained in this work bypassing

the inclusion of discretization nodes in regression analysis.

Figure  6.2: A zoomed view of Re-Pr trajectory vector as it approaches the discontinuity
and smoothly slides over it.

As it  appears from the figures and supported by the computational  results,  there is  a

consistent drop in the reported simulation time when using the new approach for two

dimensional discontinuous functions. Also, the new approach becomes more attractive as

Re

Pr

Nu
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the number of the state variables, to be initialized, increases. 

As the number of state variables decreases, both approaches to resolving discontinuity

report closer simulation times. However, since initialization itself introduces errors in the

solution,  the  new  approach  still  holds  the  advantage  of  not  reinitializing  any  state

variables. 

a. Absolute time b. Relative to base case
Figure 6.3: Simulation Run Length versus number of internal discretization nodes.

Table 6.1: Reported Simulation Time for several runs using varying discretization nodes

Time (seconds)

Discretization
Nodes

Base Case Conventional This Work

Absolute Above Base Absolute Above Base 

10 37 38 1 42 5

20 4 7 3 8 4

50 8 11 3 11 3

100 9 20 11 17 8

200 14 34 20 28 14

300 21 50 29 41 20

400 29 69 40 55 26

500 35 82 47 66 31
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Table 6.2: Regression results for correlating simulation run length with number of discretization nodes.

Slope Intercept Correlation Coefficient

Conventional 0.15869 3.40857 0.9992

This Work 0.12263 4.78063 0.9993

As illustrated in Figure 6.3a, there is a sudden increase in the reported time when using

ten discretization points. This sudden increase in simulation time is mainly attributed to

the  decline  in  discretization  resolution.  As  the  number  of  space  discretization  points

decreases, the integrator is forced to take smaller integration steps in order to meet the

specified error tolerance criterion for a successful integration step.

6.2. Regularizing Boundary and Initial Conditions of a PSA Column

Pressure Swing Adsorption (PSA) processes are considered among few of the processes

that exhibit continuous dynamics from the moment they are started until they are shut

down. As discussed in Section  4.2.3, any PSA column undergoes a sequence of steps

whereby  inlet  and  exit  valves  are  automatically  opened  and  closed  or  products  are

redirected through switch (Motor Operated) valves. Feeds are introduced at some steps

and products  are  collected  at  either  the  same step  or  at  different  steps.  A simplified

isothermal  set  of  the  PSA model  equations,  presented  in  Section  4.2,  is  used  to

demonstrate the concept. The PSA cycle is described in Section  4.2.1 is reduced to its

simple [Skarström, 1960] form. 

Each  step  undergone  by a  PSA column  possesses  differing  boundary  conditions  that

uniquely identifies the step from its sister steps as illustrated in Figure  4.9. The switch

from one step to the other is either time dependent (e.g. adsorption and desorption steps)

or state variable dependent (e.g. pressurization and de-pressurization). Regardless of the

solver  used,  conventional  solution  of  PSA  column  differential  equations  requires
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reinitialization  of  the  ODE/DAE system at  the  start  of  each  step  in  the  sequence  as

outlined in Section 4.2.3. The model repeats the cycles until a desired maximum number

of cycles is reached or an error tolerance is reached on exit concentrations between two

consecutive cycles at the end of either depressurization or desorption step signifying the

reach of a cyclic steady state. 

In this work, I regularized the components mass boundary and velocity initial conditions

illustrated in equations  4.20-4.24,  4.26-4.30,  4.31-4.35 and 4.36-4.40 for pressurization,

adsorption,  depressurization  and  desorption  steps,  respectively.  Regularization  is

performed  through  the  use  of  1D  hermite interpolating  polynomials.  One-interval

regularization  is  added  between every two  consecutive  steps  as  illustrated  below for

velocity, inlet and exist concentrations composite functions:

u|z=0 or z=L=f (TimeCycle)={ u|z=L=0 0 ≤ TimeCycle ≤ TimePressurization Step

Interpolate TimePressurization Step < TimeCycle < TimePressurization Step+w
u|z=0=(u f ) TimePressurization Step+w ≤ TimeCycle ≤ TimeAdsorption Step

Interpolate TimeAdsorption Step < TimeCycle < TimeAdsorption Step+w
u|z=L=0 TimeAdsorption Step+w ≤ TimeCycle ≤ TimeDepressurization Step

Interpolate TimeDepressurizationStep < TimeCycle < TimeDepressurization Step+w
u |z=L=−u p TimeDepressurization Step+w ≤ TimeCycle ≤ TimeDesorptionStep

Interpolate TimeDesorptionStep < TimeCycle < TimeDesorptionStep+w

(6.1)

∂ c i

∂ z
|z=0=f (TimeCycle)={ u |z=0(c i

f−c i|z=0) 0 ≤ TimeCycle ≤ TimePressurization Step

Interpolate TimePressurization Step < TimeCycle < TimePressurization Step+w
u |z=0(ci

f−ci|z=0) Time PressurizationStep+w ≤ TimeCycle ≤ Time AdsorptionStep

Interpolate TimeAdsorption Step < TimeCycle < TimeAdsorption Step+w
0 Time AdsorptionStep+w ≤ TimeCycle ≤ TimeDepressurizationStep

Interpolate TimeDepressurization Step < TimeCycle < TimeDepressurizationStep+w
0 TimeDepressurization Step+w ≤ TimeCycle ≤ TimeDesorptionStep

Interpolate TimeDesorptionStep < TimeCycle < TimeDesorptionStep+w

(6.2)
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∂ c i

∂ z
|z=L=f (TimeCycle)={ 0 0 ≤ TimeCycle ≤ TimePressurization Step

Interpolate TimePressurization Step < TimeCycle < TimePressurization Step+w
0 TimePressurization Step+w ≤ TimeCycle ≤ TimeAdsorptionStep

Interpolate TimeAdsorption Step < TimeCycle < TimeAdsorption Step+w
0 TimeAdsorptionStep+w ≤ TimeCycle ≤ TimeDepressurizationStep

Interpolate TimeDepressurization Step < TimeCycle < TimeDepressurizationStep+w
u |z=L(ci

p−ci|z=L ) TimeDepressurizationStep+w ≤ TimeCycle ≤ TimeDesorptionStep

Interpolate TimeDesorptionStep < TimeCycle < TimeDesorptionStep+w

(6.3)

Initially, I was planning to demonstrate the concept of two-interval regularization through

implementing it in the regularizing interval between desorption and pressurization steps.

However,  a better modelling of the regularization period through reformulation of the

velocity calculation function (Appendix A) allowed the use of one regularization interval

between  these  two  steps.  Nevertheless,  it  should  be  noted  that  the  two-interval

regularization can still be used to resolve discontinuities similar (but no exactly the same

as I will discuss later) to the one outlined between desorption and pressurization steps.

At each time step, the velocity profile is obtained through solving an ODE equation with

one boundary condition. However, the location of the boundary condition is PSA cycle

step dependent. So, in order to regularize velocity boundaries, I initially had to calculate

the entire velocity profile in the FOI through an independent integration routine provided

through GNU Scientific  Library  [GSL, 2011].  The resulting  profile  is  then  passed to

gPROMS model.  This  approach  provided  the  anticipated  results.  However,  since  the

profile  is  calculated  outside  gPROMS  solver  with  no  available  Jacobian  vector,  the

execution time of  every model  run tended to  take  longer  time than required.  This  is

presumably because  gPROMS solver  is  trying  to  construct  a  Jacobian  vector  for  the

velocity by forcing more function calls to the FOI object. 

Later on, I eliminated use of the GSL integrator and relied solely on gPROMS integration

routine to solve for velocity profile. The FOI only determines the location of velocity

initial condition and its value. Both parameters are passed to gPROMS which evaluates
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velocity  boundary  conditions  through  complex  indexing  of  vector  parameters  as

illustrated below:

 Velocity|Velocity Location=Velocity Value (6.4a)

d (Velocity)
dx |(1−Velocity Location)=0 (6.4b)

Although results were satisfactory, they were less than acceptable due to a presumed bug

in  gPROMS solver.  Although  gPROMS solver  accept  passing  regular  expressions  as

vector  indices,  it  does  not  reevaluate  the  regular  expression  until  a  discontinuity  is

encountered,  an  if statement  switches  branches  or  the  model  is  reinitialized  after  a

discontinuity.

To resolve the above problem, I had to force evaluation of the regular expression through

adding  a  dummy  if statement.  Only  then,  the  model  demonstrated  acceptable  results

within  reduced  execution  time.  However,  this  resolution  comes  at  a  cost  as  I  will

demonstrate later.

[Borst,  2008] refers to  the length of the regularization function with the symbol w as

illustrated in Figure 3.1. Since the overlap domain is small enough to apply approach I to

discontinuity resolution, one can easily relate w to h through the formula in equation 6.5.

w=3 h (6.5)

There is always a physical meaning to the length (time span) of the regularizing function.

In the PSA example, w refers to the amount of time it takes the valve to move from fully

closed (0%) to fully open (100%) or vice versa. The valve travel speed can easily be

calculated as:

v=
100%

w
(6.6)
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From (6.6), we can easily deduce that w=0 (a discretized model) corresponds to a valve

exhibiting an infinite speed. This is unrealistic. Moreover, with a regularized model, the

modeller can study the effect of valve speed on process performance by varying w and

possibly  optimizing  process  performance  through  manipulating  w .  Thus,  with

regularization,  we are  able  to  add one  more  parameter  to  the  PSA unit  optimization

problem. This addition couldn't have been brought into the optimisation problem had we

used a discretized model.

In order to test the directional accuracy of the developed algorithm, I need to compare

both the discretized and regularized models to a reference model. I could not locate any

literature that discusses or experiments with the effect of valve dynamics on the operation

of a PSA unit. So, I added a simplified valve model to the original disretized model. The

resulting  model  (referred  to  as  “reference  model”  hereafter)  is  still  a  discrete  model.

However,  it  assumes  linear  changes  (not  instantaneous)  in  flow  overtime  after  each

reinitialization between steps. This linear transformation closely mimics the operation of

a motor operated valve (MOV) that is normally used in PSA units using conventional

PSA modelling techniques. I should also stress that this model has its own flaws since it is

still  a  discretized  model.  However,  the  closeness  of  this  model  results  to  one  of  the

predefined models (discretised or regularized) over the other provides confidence in the

obtained  results.  Last,  the  interval  used  to  apply  the  linear  change  in  flow  for  the

reference model corresponds to w in the regularized model. 

To ensure a unified starting point, I ran regularized and reference models at regularization

interval  of  w=0.001 seconds.  This  value  corresponds to  a  valve moving from a fully

closed to fully open position or vice versa in 0.001 seconds. Although not realistic, it

provides confidence that all models' will provide similar, if not exact, outputs at this valve
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travel time. It should also be noted that hermite tension parameter is set to a value of one

in all regularized models. Setting it to a value less than one generates a loose interpolation

curve that results  in a state variable limit  violations.  At  w=0.001, all  models reported

almost exact figures. The calculated absolute error between all models was no more than

0.0004. 

I then ran all models at  w=5. To keep a fixed cycle length for all models, I divided the

added regularization period w between adsorption and desorption steps of the discretized

model as illustrated in Figure 6.4. 

a. A discretized PSA cycle b. A regularized PSA cycle

Figure  6.4:  Comparison between a discretized and a regularized PSA cycle illustrating
relative time span for each of the cycle steps and valve opening/closure span for  w=10.
The arrows indicate cycle direction.

The vessel velocity at  z=0 is plotted in Figure  6.5a.  The velocity at z=L is plotted in

Figure  6.5b. Two curves representing regularization trends at  p=0.05 and at  p=0.3 are

plotted to illustrate how the value of  p changes the shape of the regularization curve. A

p=0.3 is selected to closely mimic the reference model although I think a value of p=0.05

more resembles a typical valve behaviour. It should be noted that between Pressurization

and Adsorption steps, the valve at z=L moves from 0 to 100% opening. This means that

the initial condition for velocity at the interpolation region is set by the velocity at  z=L

(Figure 6.5b). Thus, the velocity at z=0 is a direct result of the ODE solution.  
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a. Velocity at z=0

a. Velocity at z=L

Figure 6.5: Curves representing velocity profiles at the period between Pressurization and
Adsorption  steps  for  both  ends  of  the  PSA column.  The  curves  represent  Reference,
Discretized  and  Regularized  models  at  w=5.  For  the  Regularized  model,  curves
representing p=0.05 and p=0.3 are plotted. 
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Although regularized models appear to follow the reference model, there is a fundamental

difference between the curves. Since, the Reference model is a ramped-discretized model,

the model shifts to the adsorption step before opening the valve. Since the velocity initial

condition for the adsorption step is set at z=0, the reference model simulates the opening

of the valve at z=0. This is a fundamentally flawed concept as the valve at z=0 has already

been opened during the previous pressurization step. It should not be opened twice.

As  can  be  seen  from the  discretized  model,  there  is  an  instantaneous  change  in  the

velocity at z=0 from 0 to 1 (Figure 6.5a). The velocity maintains a value of 1 afterwards.

Since the reference model is a ramped-discretized model, it follows the same path of the

discretized model with the exception of the ramp. At the other end of the vessel (z=L), it

can be noticed that for the discretized model, the velocity is calculated using the spatial

differential equation. Thus, it jumps to an unacceptable value because of reinitialization.

Then,  the  model  corrects  itself  by recalculating  subsequent  velocity  values  based  on

model  differential  equations  as  illustrated  in  Figure  6.5b.  On  the  other  hand,  the

regularized model simulates the opening of the valve at z=L. Thus, it more resembles the

actual  process.  The  implications  of  this  fundamental  difference  are  evident  in  the

concentration curves of Figures 6.6a and 6.6b for n-C5 and n-C6, respectively.

The sudden change in the direction of the concentration curves is  due to  the dummy

reinitialization code implemented in gPROMS to force it to shift velocity boundaries as

discussed earlier and outlined in equations  6.4a and 6.4b. As discussed, this is a bug in

gPROMS software that should be addressed by [gPROMS, 2012] development team. 

The reader should also note that for concentration profiles, the regularized model is not

regularizing  concentrations  directly.  It  is  rather  regularizing  their  spatial  derivatives

(continuity of fluxes) as outlined in equations 6.2 and 6.3. 
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a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure  6.6:  Curves representing concentration profiles  for  n-C5 and  n-C6 at  the period
between  Pressurization  and  Adsorption  steps  at  z=0.  The  curves  represent  Reference,
Discretized  and  Regularized  models  at  w=5.  For  the  regularized  model,  curves
representing p=0.05 and p=0.3 are plotted. 
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The changes of concentration fluxes for all models at z=0 and z=L for the regularization

interval extending between pressurization and adsorption steps are plotted in Figure 6.7.

Note how regularized models inlet concentration flux increases with time until it reaches

a  maximum.  Afterwards  it  continues  declining  to  a  value  of  zero.  This  behaviour  is

expected since opening the product end valve increases velocity across the column and

hence allows components to move across the vessel. The spatial flux increases as velocity

increases. Once velocity settles at the value corresponding to maximum valve opening,

the inlet spatial flux starts dropping until it reaches a value of zero. Such a phenomena is

hardly noticeable in the discretized models because of the rapid reintialization.

Figures  6.8a and  6.8b illustrate velocity profiles for the regularization interval between

adsorption and depressurization steps. After adsorption step is complete, the valve at z=L

is closed. Thus, the initial velocity condition is set at z=L. Velocity changes at z=0 follow

the  calculated  profiles  based  on  the  differential  equation.  All  models  simulate  this

behaviour regardless of the regularization interval. Note that the sharp decline in velocity

at  z=0, to the right of the regularized and reference model curves of Figures  6.8a, is a

direct  result  of  the  dummy  reinitialization  that  is  discussed  earlier  and  outlined  in

equations 6.4a and 6.4b. At this step, the reinitialization is required to shift the location of

the velocity boundaries from z=0 for adsorption step to z=L for depressurization step.  

Figure  6.9 demonstrates  how concentration  profiles  for  the  respective  n-C5 and  n-C6

components change across the transition between adsorption and depressurization steps.

Although  very  small,  the  effect  of  the  dummy reinitialization  is  also  noticed  in  the

concentrations of both components. The dummy reinitialization will only be evident in

the first regularization step between pressurization and adsorption steps and in the second

regularization  step  between  adsorption  and  depressurization.  The  model  changes  the
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velocity initial condition location from z=L to z=0 in the first regularization step and from

z=0 to  z=L in  the  second regularization  step.  Transitions  between other  steps  do  not

require dummy reinitialization as their velocity initial condition locations are set at z=L.

Figure  6.10a illustrates the change in inlet spatial concentration derivatives (fluxes) for

the period between adsorption and depressurization steps. The peaks of the regularized

models are expected. As the valve at z=L closes, the back-end flux reduces. The front-end

flux also reduces. However, due to the negative slope of the velocity profile, the inlet flux

exhibits an increase. As the valve further closes, the negative slope of the velocity profile

decreases resulting in a decrease in inlet flux. 

The negative flux represented by the reference model is due to the pre-mature change in

concentration  boundary  conditions.  For  the  reference  model,  concentration  boundary

conditions  change  from  those  representing  adsorption  to  those  representing

depressurization before valve closure. This premature change results in concentration flux

moving towards the feed end instead of moving towards the product end. The discretized

model maintains the same boundary conditions and fluxes throughout the regularization

period before switching to depressurization boundary conditions immediately after the

regularization period.  Thus, no change is noticed in the flux of the discretized model

during the regularization period.

Concentration  fluxes  at  z=L  (Figure  6.10b)  do  not  change  because  the  boundary

conditions at this location are the same for both adsorption and depressurization steps.

The  velocity  profiles  for  the  regularization  period  between  de-pressurization  and

desorption steps are plotted in Figures  6.11a and  6.11b for the respective ends of the

vessel at  z=0 and z=L. Figure  6.12a illustrates the concentration profile for  n-C5 at z=0

while  Figure  6.12b  illustrates  n-C6 concentration  profile  at  the  same  end.  Note  the
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continuity in the profiles for the regularized and reference models because of the absence

of reinitialization.

Figures 6.13a and 6.13b illustrate the changes in spatial flux at z=0 and z=L, respectively.

The reason behind no observable flux changes at z=0 is because boundary conditions for

depressurization and desorption steps at this location are the same. The noticeable jump in

flux curves at the end of the regularization period (marked as 1 in the figure) is due to the

concentration flux reaching its intended desorption value. Thus, the flux afterwards drops

to zero indicating a perfect match between the final value reported by the interpolating

polynomial and the destination function (inlet flux of desorption step).  

Before  discussing  regularization  curves  for  the  period  between  desorption  and

pressurization steps, it is worth shedding some light on how inlet velocity is calculated

during pressurization step. For the parabolic profile, this velocity instantaneously changes

from a value of  0  to  15 times that  of  the feed velocity.  For the exponential  velocity

profiles, the initial inlet velocity depends on pressurization rate Mp. However, regardless

of  the  value  of  Mp,  pressurization  is  almost  always  instantaneous.  The  exception  is

associated with low values of Mp which are not representative of the system. 
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a. dY-nC5/dz at z=0

b. dY-nC5/dz at z=L

Figure  6.7: Curves representing the change in concentration spatial derivatives at both
ends  of  the  PSA column  between  pressurization  and  adsorption  steps.  The  curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted. 

For the Figure 6.7b, all curves are superimposed on each other.
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a. Velocity at z=0

b. Velocity at z=L

Figure  6.8:  Curves representing velocity profiles  at  the period between adsorption and
depressurization steps for both ends of the PSA column. The curves represent reference,
discretized and regularized models at w=5. For the regularized model, curves representing
p=0.05 and p=0.3 are plotted. 
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a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure  6.9:  Curves representing concentration profiles  for  n-C5 and  n-C6 at  the period
between adsorption and de-pressurization steps at z=0. The curves represent Reference,
Discretized  and  Regularized  models  at  w=5.  For  the  Regularized  model,  curves
representing p=0.05 and p=0.3 are plotted. 
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a. dY-nC5/dz at z=0

a. dY-nC5/dz at z=L

Figure  6.10: Curves representing the change in concentration spatial derivatives at both
ends  of  the  PSA column  between  adsorption  and  depressurization  steps.  The  curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted. 

For Figure 6.10b, all curves are superimposed on each other.
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a. Velocity at z=0

b. Velocity at z=L

Figure 6.11: Curves representing velocity profiles at the period between de-pressurization
and desorption steps for both ends of the PSA column. The curves represent reference,
discretized and regularized models at w=5. For the Regularized model, curves representing
p=0.05 and p=0.3 are plotted. 



Chapter 6: Applications to Some Complex Models 167

a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure  6.12:  Curves representing concentration profiles for  n-C5 and  n-C6 at the period
between de-pressurization and desorption steps at  z=0. The curves represent  reference,
discretized and regularized models at w=5. For the Regularized model, curves representing
p=0.05 and p=0.3 are plotted. 
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a. dY-nC5/dz at z=0

b. dY-nC5/dz at z=L

Figure  6.13: Curves representing the change in concentration spatial derivatives at both
ends  of  the  PSA column  between  depressurization  and  desorption  steps.  The  curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted. 

For the Figure 6.13a, all curves are superimposed on each other.
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Such  a  sudden  change  in  velocity  profile  does  not  correspond  to  the  reality  of  a

continuous process.  Also,  since  this  sudden change is  hard coded as  a  change in  the

constitutive equation value that results from a change in boundary conditions (not as a

conditional  statement),  it  becomes hard to detect  and regularize.  In such cases,  if  the

modeller is not willing to alter the model to a better one that more accurately represents

the inherent dynamics, there would be no escape from reinitializing the model between

desorption  and  pressurization  steps.  Simply  stated,  there  is  no  substitute  for  good

modelling practices.

Note that there are two sources for this discontinuity. The first source is the switch in

boundary conditions between the desorption step that exhibits constant counter-current

flow to  that  of  the  pressurization  step.  The  second  source  is  the  formulation  of  the

pressure profile equation (whether using parabolic or exponential profile equation). Both

equations assume an instantaneous change in inlet pressure from  Plow to  Phigh. The first

source can be eliminated through one-interval regularization that was discussed in the

previous  chapter.  The  second  source  requires  reformulation  of  the  pressure  profile

equations. A complete derivation of a novel velocity calculation function is discussed in

Appendix A. The novel velocity calculation approach is used to calculate velocity profiles

in the constructed PSA column.

Figures 6.14a and 6.14b illustrate the velocity profiles for the period between desorption

and pressurization at  z=0 and  z=L, respectively.  Note that at this transition, the active

velocity  initial  condition  is  located  at  z=L.  Concentration  profiles  are  illustrated  in

Figures 6.15a and 6.15b for normal pentane and hexane, respectively. To better illustrate

the transition, Figure 6.15a is magnified in Figure 6.16. Similarly,  6.15b is magnified in

Figure  6.17.  The noticeable sudden shifts  in concentration profiles trended in Figures
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6.15a and  6.15b after the regularization period are due to the introduction of the fresh

feed that  possesses  differing concentrations  from those encountered at  the end of  the

desorption step. 

Spatial fluxes for the desorption-pressurization regularization periods at z=0 and z=L are

trended in Figures  6.18a and  6.18b, respectively. The sudden changes in fluxes of the

discretized and reference models at  z=L are due to model reinitialization. The values of

these fluxes should have stayed at zero due to the restriction imposed by the boundary

condition. However, reinitialization deviated the values from their intended path. Note

how the  regularized  models  maintain  the  flux  at  the  value  imposed by the  boundary

condition. 

Now, let us shed some light on the accuracy of the developed algorithm when compared

to conventional discretization algorithms. I used inlet and exit velocities as basis for the

comparison. Inlet and exit concentrations or their respective spatial fluxes cannot be used

as a base for comparison because each is dependent on the velocity profile. I used the

reference model as a base for the comparison although it has its own flaws. For each of

the steps, the cumulative relative error in dimensionless velocity that spans the entire

regularization period is calculated as:

 EC∣z=0∨ z=1=∑
i=1

n | |vi−v i, ref|
vi , ref

| (6.7a)

The cumulative errors calculated for each of the steps at z=0 and z=L are tabulated in

Tables  6.3 and  6.4, respectively.  It should be noted that the increased accuracy of the

regularized  model  with  p=0.30  over  the  one  with  p=0.05  is  primarily  because  the

regularized  model  with  p=0.30  closely resembles  the  profile  of  the  reference  model.

Nevertheless,  I  think the regularized model  with  p=0.05 more resembles  a  real  valve
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operation as the velocity profile starts with a non-linear range between valve opening and

flow. It then follows that with a linear range before closing the opening-velocity curve

with another non-linear profile.

Table 6.3: Cumulative relative error in velocity at z=0 spanning regularization interval 

Regularization Period

Cumulative Relative Error in Velocity at z=0

Discretized Regularized at

p=0.05

Regularized at

p=0.30

Pressurization-Adsorption 45 4 1

Adsorption-Depressurization 90 5 3

Depressurization-Desorption 41 5 7

Desorption-Pressurization 47 5 1

Table 6.4: Cumulative relative error in velocity at z=L spanning regularization interval 

Regularization Period

Cumulative Relative Error in Velocity at z=L

Discretized Regularized at

p=0.05

Regularized at

p=0.30

Pressurization-Adsorption 58 5 2

Adsorption-Depressurization 60 5 2

Depressurization-Desorption 68 5 1

Desorption-Pressurization 52 5 1

To  further  illustrate  differences  between  discretized  and  regularized  models,  the

cumulative  difference in  n-C5 and  n-C6 concentrations  at  z=0 between the  discretized

model and the reference one and its regularized counterpart (p=0.05) are plotted in Figure

6.19 for values of w=5 and w=10. The x-axis time spans a full PSA cycle. Note how the

regularized  model  always  provides  better  results  over  the  discretized  one.  It  is  also

arguable that the regularized model provides better results than the reference model itself.

The error analysis clearly indicate the substantial increase in accuracy of the developed

algorithm over conventional discretization algorithms.

Moreover, what adds to the accuracy of the developed algorithm is the strict adherence of
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the interpolating polynomial to the bounds set by the model equations. Figures 6.5b and

6.18b  clearly  demonstrate  how  a  discretized  solution  violates  model  bounds  at  the

reintializatation  time.  Although  the  error  is  corrected  by  the  model  equations  in

subsequent steps, the introduced error resides in the calculation of the cumulative error

and  alters  the  subsequent  model  solution  path.  We  can  comfortably  conclude  that

regularization supersedes discretization. 

Appendix E demonstrates how the concepts, presented in Chapter 5 and demonstrated by

the applications in this chapter, are coded in C++



Chapter 6: Applications to Some Complex Models 173

a. Velocity at z=0

b. Velocity at z=L

Figure  6.14: Curves representing velocity profiles at the period between desorption and
pressurization steps  for both ends of the PSA column. The curves represent reference,
discretized  and  rregularized  models  at  w=5.  For  the  Regularized  model,  curves
representing p=0.05 and p=0.3 are plotted. 
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a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure  6.15:  Curves representing concentration profiles for  n-C5 and  n-C6 at the period
between  desorption  and  pressurization  steps  at  z=0.  The  curves  represent  reference,
discretized and regularized models at w=5. For the Regularized model, curves representing
p=0.05 and p=0.3 are plotted. 

Reference and 
Discretized Models

Regularized Models 
with p=0.05 and 
p=0.30

Regularization Interval



Chapter 6: Applications to Some Complex Models 175

a. Y-nC5 at z=0

a. Y-nC5 at z=0

Figure  6.16:  Magnified  version  of  the  curves  presented  in  Figure  6.15a illustrating
concentration profiles for n-C5 at the period between desorption and pressurization steps at
z=0. The curves represent reference, discretized and regularized models at  w=5. For the
Regularized model, curves representing p=0.05 and p=0.3 are plotted. 
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a. Y-nC6 at z=0

a. Y-nC6 at z=0

Figure  6.17:  Curves  representing  concentration  profiles  forn-C6 at  the  period  between
desorption and pressurization steps at z=0. The curves represent reference, discretized and
regularized models at  w=5. For the Regularized model, curves representing  p=0.05 and
p=0.3 are plotted. Curves are identical for all models. Thus, only one curve appears in
each of the figures.
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a. dY-nC5/dz at z=0

b. dY-nC5/dz at z=L

Figure  6.18: Curves representing the change in concentration spatial derivatives at both
ends  of  the  PSA column  between  desorption  and  pressurization  steps.  The  curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted. 

For the Figure 6.18a, all curves are superimposed on each other.
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a. Y-nC5 using w=5 seconds b. Y-nC6 using w=5 seconds

c. Y-nC5 using w=10 seconds d.  Y-nC6 using w=10 seconds
Figure 6.19: The cumulative difference between Y-nC5 and Y-nC6 inlet concentrations (z=0)
predicted by the discretized and regularized models (p=0.05) compared to the reference
model after the first PSA cycle.
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6.3. Summary and Concluding Remarks

In this chapter, I demonstrated how the algorithm that was developed in Chapter 5

can be applied to regularize one and two dimensional discontinuous composite

functions.  I  demonstrated  the  application  to  one-dimensional  models  by

implementing the algorithm in a PSA column model.  The algorithm is  used to

regularize  the  change  in  the  boundary  conditions  between  the  steps  of  a

[Skarstrom, 1960] cycle. It is also used to regularize the velocity profile initial

condition value and location.

To  demonstrate  the  applicability  of  the  algorithm  to  two-dimensional

discontinuous functions, the algorithm is implemented to regularize the transition

of  heat  Nusselt number  between  laminar  and  turbulent  flow  regimes.  Nusselt

number is calculated using two separate equations for each of the flow regimes.

Since  Nuseelt is a function of  Reynolds and  Prandtl numbers, the discontinuous

function is a two dimensional one.

I illustrated how the application of the regularization algorithm reduces simulation

runtime by 23% compared to models relying on reinitialization of variables. The

main  reason  behind  the  reduction  in  simulation  run  length  is  the  localized

resolution  of  the  discontinuity.  This  localized  resolution  eliminates  the

unnecessary reinitialization of the entire set of model equations.

In addition to increased simulation run efficiency, I also demonstrated how the

regularized model  provides  more accurate  results  by better  resembling what  is

happening in an actual process.

In the next chapter, I summarize the outcome of this work and introduce possible

areas for future research that can further enhance the developed algorithm.
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SUMMARY AND CONCLUSIONS

In the previous chapters, I demonstrated how discontinuities arise when simplifying

mathematical models during their construction. I illustrated how jump discontinuities

rise through the use of conditional statements. I also demonstrated how sometimes a

discontinuity can easily be removed or minimized through altering the limits of the

bounds of the conditional statement. I also classified the previous work on resolving

discontinuities  in  mathematical  models  into  two  approaches.  Approach  I  to

discontinuity  resolution  relies  solely  on  the  integrating  routine  to  resolve  a

discontinuity once it is encountered. The conventional resolution techniques relied on

either generating an interpolating function at the state-variable level or reinitializing

model  variables.  The  drawbacks  of  each  approach  have  been  discussed.  I  also

highlighted the situations at which each of these resolution approaches outperform the

other.

An algorithm has been developed to automatically detect discontinuities based on the

applicability boundaries of the discontinuous functions and to minimize or eliminate

them based on the behaviour of the discontinuous functions at the discontinuity. The

discontinuity  detection  algorithm  can  be  programmed  to  run  within  a  modelling

language or to run independently. In both cases, the detection algorithm should be run

prior to the start of the simulation to adjust model conditional statements based on the

output  of  the  algorithm.  It  can  also  be  run  independently  of  the  discontinuity

180
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resolution  algorithm.  If  a  discontinuity  is  resolved  through  the  detection  algorithm

without the need for regularization, the resulting model can be directly run without the

need to pass it through a discontinuity resolution algorithm.

When  the  discontinuity  detection  algorithm  fails  to  resolve  a  discontinuity  (mainly

because  of  the  behaviour  of  the  sub-functions  around  the  conditional  statement),  the

discontinuity  should  be  resolved  through  the  discontinuity  resolution  algorithm.  The

discontinuity  resolution  algorithm  basically  bridges  the  missing  gap  between  the

discontinuous functions lying on adjacent sides of the conditional statement through the

use of an interpolating polynomial. I demonstrated that the use of four control points to

construct the interpolating polynomial provide a good compromise between  accuracy and

computational effort.

To bridge the gap,  hermite interpolating polynomials are used because they offer two

advantages over other readily available interpolating polynomials. They are third order

polynomials which assist the solver in calculating Jacobian and Hessian matrices of the

simulation model even when integrating through an interpolation region. Cubic splines

offer such a feature. However, when using Cubic splines, there is no control over the

shape of the curve for a given set of control points. This means that the spline is fixed for

a fixed set of control points. On the other hand, hermite interpolating polynomials provide

two extra  parameters to adjust  the shape of the curve while preserving its  continuity,

namely  tension  and  bias  parameters.  In  this  work,  I  only  made  use  of  the  tension

parameter. I also introduced the dip parameter to assist in better control over the shape of

the curve.

However,  the  use  of  hermite interpolating  polynomials  comes  at  a  cost.  With  cubic

splines,  only  four  control  points  are  required  per  dimension  to  construct  a  cubic
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interpolating polynomials. With hermite interpolating polynomials, two additional points

are required resulting in a total of six control points. The additional control points are

required  to  shape  the  curvature  between  the  interpolating  polynomial  and  the

discontinuous functions at the closing ends of the curve. The relationship between the

number of dimensions and the required number of control points is exponential.  

In  addition  to  resolving  jump  discontinuities,  I  demonstrated  how  removable

discontinuities  can  be  resolved  by bridging  the  gap  through  the  use  of  interpolating

polynomials.  Although  it  is  always  better  to  close  a  removable  discontinuity gap  by

adding a properly bounded function representing the gap domain, bridging the gap using

an interpolating polynomial will serve when such functions do not exist. The decision on

which path to follow is completely left to the modeller discretion.

Discontinuity resolution approaches are demonstrated to work on problems with many

dimensions. They are generic enough to be adopted in solving any ODE/DAE system

involving  discontinuities  in  either  state  variables  and/or  their  respective  constitutive

equations. 

For 1D discontinuous functions, it  is recommended to run the discontinuity resolution

algorithm before running the simulation. The main reason behind this recommendation is

that in 1D functions, the interpolating polynomial between two adjacent discontinuous

functions is unique. Thus, regularization solution is independent of simulation path. The

same argument  holds  for  Type I  discontinuity resolution of  2D+ functions  where the

interpolation mesh covers the entire overlap domain.  

For  2D+ discontinuous  functions,  I  demonstrated  two  resolutions.  The  first  (Type  I)

resolution   relies  on  covering  the  entire  overlap  domain  with  a  single  interpolating

polynomial.  Type  I  discontinuity  resolution  is  suitable  for  relatively  small  overlap
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domains.  The bigger  the  overlap  domain,  the greater  is  the  number  of  control  points

required to properly interpolate. Using a fixed low number of control points results in a

coarse interpolation mesh.

Type  II  discontinuity  resolution  relies  on  a  fixed-size  mesh  of  control  points  that  is

instantaneously constructed  once  the  expression  leaves  a  discontinuous  branch of  the

conditional statement. However, unlike Type I discontinuity resolution generated mesh,

the generated mesh in Type II discontinuity resolution does not cover the entire overlap

domain between the two discontinuous functions. Instead, it covers a small portion of the

domain that allows for regularizing the discontinuity while maintaining acceptable mesh

resolution.  The compromise when using this  type  of  resolution is  the steep departure

slope that results in a faster transition between the discontinuous functions. Nevertheless,

the conducted experiments demonstrated no decline in integrator efficiency due to the fast

transition.  The  main  reason  behind  maintaining  a  good  performance,  despite  the

resolution of  the mesh,  is  mainly attributed to  the fast  variable-step search algorithm

embedded within [gPROMS, 2012].

To eliminate the exhaustive need to generate unnecessary meshes along the entire course

of the simulation, both discontinuity resolution approaches rely on storing a vector of the

independent variables required to construct the mesh. The mesh is only created once the

conditional statement leaves one sub-function and immediately destroyed after it lands on

the  adjacent  discontinuous  one  to  reserve  computer  memory  space.  For  Type  II

discontinuity resolution, a proper method to generate an evenly distributed mesh around

the tracking vector is also devised.

Few sections are devoted to regularizing boundary conditions because of the nature of

their discontinuities. I demonstrated how boundary conditions can be transformed into
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conditional  statements  involving  spatial  discontinuities.  I  also  provided  a  generic

resolution approach that relies on the same principles outlined earlier.

Discontinuity resolution completely eliminates re-initialization of state variables because

it bridges a discontinuity at its localized origin whether the origin is a state variable or a

constitutive  equation.  Elimination  of  reinitialization  reduces  simulation  run  length  by

23%. The reduction in simulation run-length is attributed to the localized treatment of the

discontinuity at its origin instead of reinitializing the entire model equations to resolve a

local discontinuity. Nevertheless, this reduction is not the major achievement of the work.

This work achieves two other goals that were not present in previous works in this field:

1. Regularization  more  resembles  reality  than  mere  re-initialisation  of  variables

because it takes into account the time and/or space factors between state changes.

States transit through time and space from their initial to final values. Failing to

take  this  fact  into  account  jeopardises  model  accuracy.  This  failure  is  clearly

evident in conventional model variables'  re-initialization as I presented in PSA

unit example. 

2. Sticky discontinuities result from the use of interpolating polynomials that are not

derived from model equations to bridge model discontinuities as outlined earlier.

Even if the integration routine manages to overcome sticky discontinuities, the

generated error between the equations representing the actual model and those

used  by the  approximating  interpolating  polynomial  might  lead  to  misleading

simulation results. This work completely eliminates the use of integrator-based

polynomials to bridge discontinuities by relying on interpolating polynomials that

are derived from model equations with strict adherence to bounds that match both

ends of interpolating polynomial to its adjacent discontinuous sub-functions.    
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In order for this generic approach to discontinuity resolution to function, the following is

required:

1. When  a  conditional  expression  is  to  be  inserted  into  a  mathematical  model,

domains of all independent variables belonging to each branch of the conditional

expression need to be identified by the modeller and fed to the algorithm. This is

an essential requirement for the discontinuity detection algorithm to search for the

optimum switch point that minimizes the jump between the two branches and to

reconstruct the conditional statement based on the supplied domains. It also helps

flagging a  warning message  and continuing or  flagging an  error  message  and

stopping the simulation when the algorithm that detects the simulation trajectory

is  stepping  out  of  the  bounds  provided  for  each  branch  of  the  conditional

statement. Some modelling languages such as [gPROMS, 2012] include an option

for the modeller to define  bounds of model variables during modelling. Then, the

integrator ensures integrating variables within these bounds when simulation is

running. Such a capability can be extended to bound an independent variable to a

sub-domain  of  its  full  domain  when  a  branch  of  a  conditional  statement  is

executed. 

2. When regularizing a discontinuity in boundary conditions,  it  also becomes the

modeller's responsibility to identify what and how model-embedded constitutive

equations are to be regularized along with the boundary conditions. Automating

such a task is also a promising area for a continuing research. Changing modelling

practices  by  formulating  equations  requiring  regularization  as  differential

equations and others as algebraic ones can also act as a starting point. However,

such  a  starting  point  imposes  unnecessary  restrictions  on  the  modelling  task.
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Another challenge would be to automatically set the bounds of the interpolating

polynomial that will be used to regularize these variables.

3. When regularizing a discontinuity that involves conflicting boundary conditions,

the modeller should decide whether to use one or more regularization intervals

depending  on  the  physics  of  the  problem.  When  opting  for  more  than  one

regularizing  interval,  the  modeller  should  also  specify  the  location  and  the

conditions  of  the  common  interchange  point  between  the  two  regularization

intervals. 

Automating such a task is a promising area for continuing research that requires a

person  who  is  equipped  with  the  knowledge  of  modelling  and  computer

programming. The work can also easily be split into a group of two persons from

two disciplines.  A starting  point  would  be to  realize that  only three  boundary

conditions exist (Dirichlet, Robin and Dankwert). The challenge is to determine

which  two-combinations  of  the  three  known  boundary  conditions  lead  to  a

boundary  conflict  when  regularized.  If  the  automated  procedure  can  detect

conflict, it can advise the use of two regularizing intervals or even automatically

insert them into the model. The next challenge would be to identify the common

interchange  point  between  the  two  regularizing  intervals.  In  the  examples  we

demonstrated, it just happened that the interchange point is located at a point that

shares a common boundary conditions between the two regularizing functions.

Whether  the same argument holds for all  other  modelling problems remains  a

question that requires an answer.

4. When  using  hermite interpolating  polynomials,  care  must  be  practised  when

assigning values to the tension parameter. This point particularly holds when the
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interpolating polynomial is to be strictly restricted to the bounds assigned by the

control points. Setting the tension to 1 ensures proper bounding to the limits set by

the control points.  Setting lower values result  in smother  curvature but with a

compromise on proper bounding.

Although,  in  the context  of  this  work,  examples  have been drawn from the chemical

engineering  discipline,  the  approach  is  generic  enough  to  be  applied  to  modelling

practices in all scientific and engineering disciplines. For example, the algorithm can be

used to regulate the transition between equations representing elastic and plastic regions

of a string.

Multiscale modelling is an area where this approach to modelling might prove useful. The

algorithm brings into the modelling problem some information about the behaviour of

phenomena that are occurring at a faster time scale or more detailed hierarchical level

than that of the model equations without the need to detail the modelling of the high

resolution phenomena. For example, the approach was able to provide information about

the behaviour of PSA unit valves without the need to model them.

Does  this  approach  to  discontinuity  handling  apply  to  all  problems  involving

discontinuities? Not entirely. In the context of this work, I am addressing a resolution to

naturally occurring continuous processes that are discretized through modelling practices.

Naturally  occurring  discontinuous  processes  should  not  be  regularized  through  these

approaches. An example would be modelling the fracture of a broken glass. Phase change

can also be relatively regarded as discontinuous phenomena. 

A very interesting aspect of this approach is that it brings back the intimate relationship

between  model  equations  and  their  solver.  It  proves  that  one  way to  resolve  today's

integration problems is by allowing the solver to navigate through model equations and
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adjust them when appropriate to generate a better simulation path and ultimately lead to

better results. However, the question about which equations a solver need to regularize

and which are not remains unanswered when the regularization problem involves special

kinds of constitutive equations. I have illustrated that it is very difficult for the approach

at  its  current  state  to  detect  and resolve  discontinuities  in  the  spatial  velocity  profile

without the modeller pin pointing them to the algorithm. A change in modelling practices

to distinguish regularizable equations  from others  might  lead  to  automatic  resolution.

However, some problems will still be open to mind exploration. Automatically detecting

the location and value of the velocity initial  condition is  an evident  example of such

problems.

With this work, I hope that I am able to open a door to overcome difficulties associated

with reinitialization and hopefully eliminating reinitialization as a whole.
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APPENDIX A:  A Novel Formula for Calculating Pressurization 
and De-pressurization Velocity Profiles
The spatial  velocity  profile  during  pressurization  or  depressurization  of  any vessel  is

calculated using equation  4.6. Assuming no adsorption at the boundaries, equation  4.6

reduces to:

C t
du
dz

+
dCt

dt
=0 (A.1)

Equation A.1 can be normalized using the following transformations :

v=u/Umax , CT=Ct /Ct ,max , x=z /L  and

τ=t /tref  where t ref=L/Umax

(A.2)

The normalized equation takes the form:

CT
dv
dx

+
dCT

d τ
=0 (A.3)

Realizing that:

C t=
P
RT

→CT=
P /RT
Pref /RT

=
P
P ref

→
dCT

d τ
=
d P
d τ

(A.4)

Where P=P /P ref . Equation A.1 can then be written in terms of P  as :

P dv
dx

+d P
d τ

=0 (A.5)

Since  P  is independent of  x,  v is independent of  τ and v(1) =0, equation  A.5 can be

integrated to yield:

v (x , P )= 1
P
dP
d τ

(1− x) (A.6)

At x=0 (inlet velocity), equation A.6 reduces to :

v (P )= 1
P
d P
d τ

(A.7)

The pressure P  can be calculated using a normalized version of either equation 4.16 or
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4.18.  Equations  4.16 and  4.18 can  be  written  in  their  dimensionless  form with  their
respective time derivatives as:

P=
Phigh

Pref

−(Plow

Pref

−
Phigh

Pref
)[ ττp

− 1]
2

(A.8a)

d P
d τ

=− 2
τ p (Plow

Pref

−
Phigh

Pref
)[ ττp

− 1] (A.8b)

P=
Plow

Pref

+(
Phigh

Pref

−
Plow

Pref
)[1− e

(−M p τ )] (A.9a)

d P
d τ

=−M p(
Phigh

Pref

−
Plow

Pref
)[1−e

(−M p τ) ] (A.9b)

Substituting either equation A.8 or A.9 into A.7 yields an expression for inlet velocity as

a function of time. Figure A.1a illustrates the response of inlet velocity to time changes

using  equations  A.8 (parabolic  profile).  Figure  A.1b  illustrates  the  response  of  inlet

velocity to time changes using equations  A.9b (exponential profile).  The value of  MP =

2.3076923 corresponds to an initial pressurization velocity (at  τ=0) that is equivalent to

that provided by the parabolic profile.

These two equations are widely adopted in literature. However, they posses a fundamental

drawback. They instantaneously change bed initial  velocity from a value of zero to a

value that corresponds to multiples of feed velocity at adsorption step. 

For the parabolic profile, this velocity instantaneously changes from a value of 0 to 15

times  that  of  the  feed  velocity  during  adsorption  step.  For  the  exponential  velocity

profiles, the initial inlet velocity depends on pressurization rate MP. However, regardless

of the value of MP, pressurization is almost always instantaneous. 
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a. Inlet velocity evolution based on parabolic pressure profile.

b. Inlet velocity evolution based on exponential pressure profile.

Figure  A.1:  Dimensionless inlet velocity during pressurization step calculated using  a:
parabolic  pressure profile,  b: exponential  pressure profile.  The value of  M=2.3076923
corresponds to an initial velocity value (at t=0) that is equivalent to the one provided by
the parabolic profile .
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This sudden change in velocity profile does not correspond to the reality of a continuous

process.  In order to  derive a better  representing equation,  we should realize first  that

pressure  changes  in  this  step  are   due  to  introduction  of  high  pressure  feed  through

opening of the feed valve. The opening of the feed valve is a continuous function that is

mistakenly modelled as an instantaneous one. The pressure rises downstream of the feed

valve  before  reaching  the  PSA column.  The  pressure  downstream  of  the  valve  is  a

function of valve opening, In addition, the pressure always rises downstream of the feed

valve  before  reaching  the  vessel.  Such  a  change  is  an  incremental  and  not  an

instantaneous  one.  It  can  be  modelled  by  substituting  the  constant  value  of  Phigh in

equations A.8 or A.9 by an incremental function in pressure that is bounded by pressure

limits [Plow, Phigh]. Referring to Figure 4.5, it can be realized that the exponential pressure

profile  is  always  leading  the  parabolic  one  yet  the  exponential  profile  is  still  an

incremental one and bounded by Plow and Phigh. Thus, replacing the constant Phigh value in

equation A.8 will result in an incremental pressure profile and simultaneously result in an

incremental velocity profile. Thus, equation A.8 becomes:

P(τ)= 1
Pref
[Phigh(τ)−(Plow−Phigh(τ))[ ττ p

−1 ]
2

] (A.10a)

d P(τ )
d τ

=
1

Pref
[T 1+T 2+T 3 ] (A.10b)

Where:

Phigh(τ)=Plow+(PFeed− Plow )[1−e(− M p τ) ] (A.10c)

T 1=
2
τp

[Plow+(PFeed− Plow)(1− e
−M p τ )](1− τ

τ p
) (A.10d)

T 2=[1−( ττp
− 1)

2

][(P Feed−Plow)M e(−M τ) ] (A.10e)
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T 3=
2 Plow
τp [ ττp

− 1] (A.10f)

Several trends of equation  A.10 with various  MP values are plotted in Figure  A.2. The

value of MP=170.83164 corresponds to a dimensionless inlet velocity peaking at a value

of 15. This value is exactly the same as that reported by equation A.8. However, the value

provided by equation  A.10 does not peak at the start of pressurization step. Thus, the

value calculated by equation A.10 provides a better regularization.
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a. Inlet velocity profile Based on Equation A.8

b. Inlet velocity profile based on Equation A.10

Figure A.2: Dimensionless pressurization step inlet velocity based on a: a fixed value of
upstream feed  pressure  that  is  equivalent  to  the  high  pressure  value  (parabolic  profile
based on equation A.8), b: a variable upstream pressure that is based on equation A.10.
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APPENDIX B: MODELS' VALIDATIONS WITH THE MINKINNEN 

PROCESS

I centred the validation of the modelling work around the [Minkkinen et al, 1993] process

which hydroisomerizes normal pentane and normal hexane compounds to their branched

isomers in a reactor before separating products from reactants using a Pressure Swing

Adsorption unit. 

B.1 A Brief Description of the Process

The [Minkkinen et al, 1993] process consists principally of:

1. a distillation column (deisopentanizer) to separate isopentane from the feed (not

modelled),

2. an isomerization reactor to convert normal alkanes to their branched isomers,

3. a  distillation  column  (product  separator)  to  separate  Hydrogen  from  reactor

effluent (not modelled),

4. and two Pressure Swing Adsorption columns to separate normal alkanes from

their branched isomers.

In their patent, [Minkkinen et al, 1993] presented an original scheme for the process and

also introduced a modified variant. I only focused on the original scheme of the process

which is illustrated in Figure B.1. The original Minkkinen process feed composition is

outlined in the left column of Table  B.1. To simplify calculation and modelling tasks, I

approximated the feed composition to that presented at the right column of Table B.1 by

averaging concentrations of various  i-C6 isomers into one isomer, namely 2-2 Dimethyl

Butane.  I  deliberately  averaged  the  concentrations  of  i-C6 isomers  instead  of
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agglomerating them. Agglomerating them would lead to an isomer feed composition that

is  higher  than  normal  hexane  composition  and  hence  shifting  equilibrium  towards

producing  normal  hexane  instead  of  iso-hexane.  Process  stream  flows,  composition,

temperatures and pressures are outlined in Table B.2. Any missing information is obtained

through drawing an overall and individual component material balances around process

units. Respective stream numbers are outlined in Figure B.1.

Figure B.1: Simplified process diagram for the [Minkkinen et al, 1993] Process. Individual
stream specifications are outlined in Table B.2. 

In  Minkkinen  process,  the  feed  consisting  of  normal  and  iso-  parafiins  is  feed  to  a

distillation unit.  Lighter components are stripped at the top of the column and the rest of

the material is collected as a bottom product and fed to an isomerization reactor. The

stripped top product is used as a purge stream during the desorption step of the PSA unit. 

The bottom draw of the distillation column is mixed with a recycled hydrogen stream

before entering the isomerization reactor.  Hydrogen acts as a reaction promoter.  More

than 60% of  n-C5 and 73.0% of  n-C6 are converted to their respective isomers. Reactor

effluent is fed to a product separator where essentially all hydrogen is stripped off the
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product separator feed and recycled back to the reactor. A Hydrogen feed line is present at

the bottom of the distillation column to compensate for any loss in Hydrogen recycle

loop. 

Table B.1: Original [Minkkinen et al, 1993] and approximated feeds to Minkkinen Process.

Compound Original Feed (mol %) Approximated Feed (mol %)

Isobutane 0.4 25.38

Normal Butane 2.4 2.4

Isopentane 21.0 23.2

Normal Pentane 29.0 29.0

Cyclopentane 2.2 0.0

2-2 Dimethyl Butane 0.5 6.03

2-3 Dimethyl Butane 0.9 0.0

2 Methyl Pentane 12.7 0.0

3 Methyl Pentane 10.0 0.0

Normal Hexane 14.0 14.0

Methyle Cyclopentane 5.0 0.0

Cyclohexane 0.5 0.0

Benzene 1.3 0.0

C7+ 0.1 0.0

Since  conversion  is  incomplete,  a  need  arises  to  separate  normal  paraffins  from the

isomers. This separation is performed in a two-bed PSA unit. The bottom of the product

separator is mixed with a bleed stream from the top of the distillation column before it is

fed  to  the  PSA column undergoing pressurization  and adsorption  steps  (Column I  in

Figure B.1). 

Each PSA column is filled with an adsorbent that is selective to normal paraffins. Iso-

paraffins pass, unadsorbed, through the column and are collected as a raffinate product.

Simultaneously, PSA Column II is undergoing depressurization and  desorption steps to

remove normal paraffins that were accumulated as a result of a previous adsorption step.

The effluent from PSA Column II (extract) is recycled and mixed with the main feed
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before entering the distillation column.  Once PSA Column I adsorbent is saturated with

normal paraffins, the feed is switched to PSA Column II and PSA Column I is purged

with distillation column top product. The cycle between the two PSA columns is repeated

indefinitely until the unit is shut down. 

B.2 The Reactor Model

Isomerization reactors (commercially known as reformers) are mainly used to convert

normal alkanes to their isomers using a catalytic reactor in the presence of Hydrogen.

Isomerization is  one of the reactions  required to  raise  the octane number of  the feed

stream by converting  normal  alkanes  to  their  branched  isomers.  Other  side  reactions

occurring inside reformers include the desirable Dehydrogenation,  Dehydrocyclization,

Hydrocracking, and the undesirable Demethylation reaction  [Little, 1985]. High octane

numbers  reduce  knocking  characteristics  and  increase  the  efficiency  of  combustion

engines that are used to power most of today's auto-mobile industry.

[Minkkinen et al, 1993] recommended the use of a high activity catalyst that is based on

Chlorinated Alumina and Platinum in order to operate the reactor at temperatures between

130-220ºC and pressures ranging from 20-35 bars in addition to the low Hydrogen to

hydrocarbon [H:HC] ratios of 0.1 to 1.0. In their laboratory test unit, they used 52 litres of

a  η alumina-based isomerization  catalyst  that  contains 7 wt% chlorine and 0.23 wt%

Platinum.  They  also  mention  the  suitability  to  use  Zeolite  based  catalysts  such  as

Mordenites  although  they  dismissed  their  use  due  to  the  higher  activation  energies

required  by such catalysts  that  eventually require  higher  reactor  inlet  temperatures  to

achieve the required conversion. 



Appendix B: Models' Validations with the Minkinnen Process 208

Table B.2: Properties of individual streams described by [Minkkinen et al, 1993]. Shaded areas indicate information that is obtained through material balances. Bold-faced figures

with white backgrounds refer to information supplied by [Minkkinen et al, 1993] in their patent.
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The catalysts used in such processes are usually Platinum based, hence the name noble.

[Spivey and Bryant, 1982] classify catalysts used into Mordenite and Faujasite with the

former exhibiting the highest activity.

In this work, I modelled the Modernite catalyst that was presented by [Spivey and

Bryant, 1982] in their paper as they reported the required reaction rate constants.

In  their  study  on  Hydroisomerization  of  n-C5 and  n-C6 mixtures  on  Zeolite

catalysts, they used a 0.5 wt% Platinum H-mordenite (Pt-H-M) with [SiO2: Al2O3]

ratio  of  [14:1]  and a  0.5  wt% Palladium H-faujasite  type  Y (Pd-H-Y)  with  a

[SiO2:Al2O3] ratio of [6.4:1]. Since the catalyst used by Minkkinen is a Platinum

based one, I picked the corresponding rate constants from the paper by  [Spivey

and Bryant, 1982]. 

Figure  B.2:  3D Temperature profile versus normalized axial distance  x and

time  τ.  x= z /LR  and  τ=t / tref where t ref=LR /U ref .  Initial  higher

temperature profiles are due to the release of heat of adsorption.
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B.2.1 Reactor Sizing Calculation

Other than the total volume of the catalyst used (52 litres),  [Minkkinen et al, 1993] did

not  provide  any  information  on  reactor  geometry.  So,  I  had  to  perform  a  simple

isothermal  reactor  design  exercise  to  estimate  reactor  length  and  diameter.  The  n-C5

Hydroisomerization reaction is a reversible reactions that can be expressed as:

CnC5
⇄
k iC

5

knC5

CnC5
(B.1)

The rate of the reaction is expressed as:

−r nC5
=k nC5

CnC5
− k iC5

C iC5
(B.2)

Where: 

knC5
: forward reaction rate constant

k iC5
: reverse reaction rate constant

C nC5
: normal-pentane concentration

Ci C5
: iso-pentane concentration

Equation  B.2 can also be written based on one of the reaction rate constants and the

reaction equilibrium constant:

−r nC5
=k nC5(CnC5

−
C iC 5

K C
) (B.3)

Where:

K C=
k nC5

k i C5

[Spivey and Bryant, 1982] discuss temperature and pressure dependency of the forward

and reverse reaction rate constants. However, for a simplified design calculation we will

assume isothermal operation. Since the reactor is operated at a constant pressure and a

relatively fixed feed composition, the assumption of isobaric operation seems a valid one.
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Under these conditions, and assuming a plug flow reactor, the reactor design equation can

be written as: 

τ=
LR

uf

=CnC5
∫
0

X nC
5 dX nC5

−rnC 5

=CnC5
o

K C

knC5

∫
0

X nC
5 dX nC5

B−C X nC5

(B.4)

Where:

B=K CC nC5
o−C iC5

o

C=Cn C5
o(1+K C)

LR : Reactor Length

Equation B.4 can be analytically integrated and solved for normal pentane conversion (

X nC 5
):

X nC 5
=

B
C
[1−e

(−
LR

A
)] (B.5)

Where:

A=
uf

k nC5
[ K C

1+KC
]

Reactor feed flow and composition can be obtained from the material balance presented

in  Table  B.1 after  assuming  a  reasonable  [H:HC] ratio.  Equation  B.5 still  holds  two

degrees of freedom, namely column length (LR) and feed velocity  uf. Feed velocity can

easily be calculated from feed molar/mass flow rates by assuming a reasonable reactor

diameter (dR). The diameter dR and length LR are correlated through reactor volume. For a

fixed catalyst volume, total bed volume can be calculated using equation B.6:

V T=
V C

(1− εB)
(B.6)

Where:

VT : Total reactor volume

VC: Catalyst volume

εB: Bed void. 
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So, for a specified dR and LR, Equation 9 can be solved to obtain reactor exit conversion

X nC 5
. 

Equilibrium conversion can be calculated by taking the limit of (B.5) as  reactor length LR

approaches  infinity  as  illustrated  in  equation  B.7.  At  140ºC,  respective  equilibrium

conversions  for  n-C5 and  n-C6 are  0.70  and 0.31.  A reactor  [H:HC] ratio  of  [1:1]  is

adopted in constructing the material balance in Table B.1.

X nC 5

eq
= lim

LR→∞

B
C
[1− e

(−
LR

A
)]= B

C
=[ K C

(1+K C)][
(Cn C5

o−C i C5
o)

Cn C5
o ]

(B.7)

B.2.2 Reactor Model Validation

The constructed reactor model is validated against experimental exit concentrations and

temperatures provided by [Minkkinen et al, 1993] and summarized in Table B.1. Steady

state  reactants  and  products  axial  concentration  profiles,  along  with  the  temperature

profile, are illustrated in Figure B.3. Table B.3 compares reactor effluent concentrations

and temperatures reported by  [Minkkinen et al, 1993] to those produced in this model.

The wall external heat transfer coefficient is used as a tuning parameter to match the exit

temperature to that reported by  [Minkkinen et al, 1993].

Typical  [Minkkinen et al,  1993] Reactor feed and effluent streams' properties are also

respectively outlined in streams 7 and 8 of Table B.2.

Figure  B.3 illustrates  the  spatio-temporal  profile  of  reactor  temperature.  As  can  be

noticed, reactor temperature sharply rises after initial start-up of the reactor and drops as

the reactor reaches steady state.  The steady-state drop in the temperature profile is due to

the saturation of the catalyst pellets. Reactor effluent n-C5 and i-C5 concentrations closely
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match those reported by [Minkkinen et al, 1993]. The noticeable difference between n-C6

and  i-C6 concentrations reported in this work and those produced by  [Minkkinen et al,

1993] is due to averaging the concentrations of hexane isomers at the reactor feed as

outlined earlier. 

Figure  B.3:  Steady state  reactants  and products concentration profiles  and temperature
profile versus normalized axial distance. 

Temperature profile is plotted against the right y-axis while all other profiles are plotted
against the left y-axis.
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Table B.3: Comparison between reactor effluent concentrations and temperatures reported by [Minkkinen et

al, 1993] and those produced in this work.

Variable Minkkinen This Work Absolute Difference % Difference

n-C5 0.0894 0.0689 0.0205 23.0

n-C6 0.0261 0.0354 0.0093 36.0

i-C5 0.2431 0.2240 0.0191 8.0

i-C6 0.1233 0.0879 0.0354 29.0

Exit Temperature 160.0 159.6 0.4 0.3

B.3 The PSA Model

B.3.1 Constitutive Equations Used in Constructing the PSA Column Model

In this section, I highlight constitutive relations used in constructing the pressure swing

adsorption model discussed in Chapter 4: .

B.3.1.1 Adsorption Isotherm

[Nitta et al, 1984] adsorption isotherm is used to calculate solid phase concentration. The

isotherm assumes occupation of the adsorbed molecule to multiple sites on the surface of

the adsorbent. For a single component adsorption, the isotherm takes the form:

nKP= θ
(1−θ)n

 (B.8)

The  additional  parameter  n accounts  for  non-linearities  associated  with  components

exhibiting  adsorption  behaviours  that  are  not  captured by  the  Langmuir  isotherm.

Basically,  it  slows  down  the  decline  in  adsorption  capacity  due  to  the  decrease  in

adsorbate concentration. For n =1, the isotherm reduces to that of Langmuir. Also, when

the surface coverage is infinitesimally small, the denominator reduces to unity and the

equation reduces to Henry's law. In presence of multicomponent adsorption, Nitta derives

the following equation:
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niK ipi=
θi

(1−∑j=1 θ j)
ni

 
(B.9)

assuming ideal gas behaviour and substituting  pi=RT < c i>  into equation  B.9, leads to

the form used in our model:

ni<ci>RT=
1

K i
ads

θ
i

(1−∑j θ j)
ni

 
(B.10)

where  the  adsorption  equilibrium  constant  K i
ads  follows  Arrhenius  behaviour  with

respect to changes in temperature.

B.3.1.2 Gas-Solid Mass Diffusivity

Calculation of effective diffusivity is required to determine the gas-solid mass transfer

coefficient. Effective diffusivity is composed of two terms: molecular (or bulk) diffusivity

and  Knudsen  diffusivity.  Molecular  diffusivity  is  evident  with  dense  gases  and/or

relatively large solid pore sizes.  On the other hand, Knudsen diffusivity is dominant in

low density gases and/or small pore sizes. The reason behind the distinction between the

two diffusivities is related to relative number of collisions between gas molecules to that

with the solid surface. In molecular diffusion, collisions between gas molecules are more

often than that between a gas molecule and the solid surface. The opposite is true with

Knudsen diffusion.

Knudsen diffusivity is calculated using the equation reported by [Kauzmann, 1966] that is

derived from kinetic theory of gases:

Dk=
2 d p

6 (8 RT
πM )

1
2  (B.11)

Since collisions are more often encountered with the gas molecule than with the solid

surface and due to the relative small pore sizes, molecular weight is taken as that of the
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colliding gas. [Satterfield, 1980]. However, [Ruthven et al, 1994] used a mean molecular

weight of the binary diffused substances:

1
M
=

1
M 1

+
1

M 2

 (B.12)

In this work, we followed the equation by Ruthven et al to calculate M. 

Binary molecular diffusivity is also derived from kinetic theory of gases and reported as :

D12=CT
(

3
2
)√[M 1+M 2

M1 M2
]

Pσ12
2
ΩD

 
(B.13)

However,  because  data  is  scarce  on  values  for  collision  diameter  σ12
and  collision

integral ΩD
,  [Fuller et al, 1966] and [Fuller et at, 1969] provided a simplified equation

that is based on atomic diffusion volumes:

D12=10−3 T1.75 √[M 1+ M 2

M 1 M2 ]
P [3√Σ(v1)+

3√Σ(v2) ]
2

  
(1)

The noticeable symmetry of the equation implies that D12=D21 for both equations.

A simplified form for calculating “ideal” effective diffusivity, based on the assumption of

equal but opposing fluxes of components A and B:

1
D
=

1
Dm

+
1
Dk

 (B.14)

Interestingly, although literature is consistent about the form of the equation , it is not firm

about the source of the equation. For example, [Yang et al, 1998] reports that the equation

was obtained by Bosanquet [referenced in [Aris, 1975] and [Pollard and Present, 1948].

On  the  other  hand,  [Ruthven,  1984] reports  that  the  equation  was  simultaneously



Appendix B: Models' Validations with the Minkinnen Process 217

published by [Evans et al, 1961] and [Scott and Dullien, 1962].

In addition to Knudsen and Molecular  diffusivities,  we added an additional  term that

accounts for Poiseuille flow diffusivity that is evident in large pore sizes and/or high

pressures:

D p=
d p

2 P
16μ

  (B.15)

The final equation for “ideal” diffusivity becomes [Ruthven et al, 1994]:

1
D
=

1
Dm

+
1
Dk

+
1
Dp

  (B.16)

Since the actual diffusion path is not always equivalent to the radius of the pore,  the

diffusivity  resulting  from  equation  B.16 needs  to  be  corrected.  Correction  is  made

through dividing by a factor that accounts for tortuosity effects. Also, to account for the

fact that pore diffusion volume is only a fraction of the total pore volume, diffusivity is

multiplied by intra-particle void. The resulting diffusivity is called effective diffusivity:

De=
ε p D
τ   (B.17)

For  multicomponent  adsorption,  [Taylor  and  Krishna,  1993] discuss  the  difficulty  of

obtaining a general formula to calculate mixture diffusivity.  They have also indicated the

conditions for which assumptions of effective diffusivity would be valid:

1. Binary diffusion coefficients are equal, as we pointed out earlier.

2. The  concept  of  effective  diffusivity  is  also  applicable  in  cases  where  one

component  is  in  large  excess  of  the  rest.  In  this  case,  effective  diffusivity  of

component i that is not in excess reduces to its pure diffusivity Dii.

3. When diffusion  occurs  through a  stagnant  gas.  In  this  case  the  [Wilke,  1950]
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approximation holds:

Di ,eff=
1−x i

∑
j=1, j≠i

x j

Dij

 
(B.18)

The third case is eliminated by default in this work due to the continuous flow of the

processes studied. To preserve relative generality, we will be limiting our examples to

case 1.  

B.2.1.3 Gas-Solid Overall Mass Transfer Coefficient

Overall mass transfer coefficient using an equation combining both internal and external

mass-transfer coefficients, referenced in [McCabe et al, 2005]:

1
K gl

=
1
k i

+
1
ke

  (B.19)

Where: k i=
10 De

d p

,

The external  mass transfer  coefficient  is  evaluated using the correlation suggested  by

[Wakao and Funazkri, 1978]:

Sh=2.0+ 1.1Sc
1
3 Re0.6   (B.20)

or 

ke d p

Dm

=2.0+1.1(
μ

ρg Dm
)

1
3(ρg u d p

μ )
0.6

 (B.21)

The equation is suitable for calculating packed beds axial dispersion coefficient within:

3<Re<104

B.3.1.4 Axial Dispersion Coefficient

Although dispersion  usually occurs  in  axial  and radial  directions,  radial  dispersion  is

usually  neglected  when  bed  diameter  is  substantially  bigger  than  adsorbent  particle
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diameter. In our simulations, we will try to hold to a minimum Bed-to-particle diameter

ratio of 5 when bed diameter is included as an optimization variable; unless it becomes an

optimization  constraining  variable.  For  axial  dispersion,  we  used  the  correlation

recommended by [Wen and Fan, 1975]:

1
Pe

=
0.3

ReSc
+

0.5

(1+ 3.8
ReSc)

 
(B.22)

or

D zρ

d pμ
=

0.3
ρu d p
μ

μ

ρg Dm

+
0.5

(1+
3.8

ρgu d p
μ

μ

ρg Dm
)

 

(B.23)

The readers attention should be drawn to the definition of Pem in this equation (that differs

from the definition of Pem in the rest of the document. The equation is valid in the range

of:

0.008<Re<400  and 0.28<Sc<2.2

B.3.1.5 Particle-to-Fluid Heat Transfer Coefficient

Particle-to-Fluid heat transfer coefficient is calculated using the correlation provided by

[Wakao et al, 1979]:

Nup=2.0+1.1 Pr
(

1
3
)

Re0.6  (B.24)

or

hp d p

k
=2+1.1(C pgμ

k )
(1
3
)(ρ gu d p

μ )
0.6

 (B.25)

This equation is valid in the range of:

15<Re<8500

It is also worth noting that this correlation was based on the form that was provided by

[Wakao and Funazkri, 1978] and outlined in equations B.19 and B.20.
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B.3.1.6 Fluid-to-Wall Heat Transfer Coefficient

For wall heat transfer coefficient, we divided the use of correlations based on the flow

regime. Furthermore, whenever applicable, we further divided flow regimes into entrance

and  fully  developed.  For  entrance  region  Laminar  flow,  we  used  the  equation

recommended by [Sieder and Tate, 1936]:

Nud=1.86 (Red Pr )
(1 /3)(d c

L )
(1 /3)

( μμw )
0.14

 (B.26)

 [Sieder and Tate, 1936] indicate that the properties of this correlation should be evaluated

at  the  arithmetic  mean  bulk  temperature  0.5∗(T in+ T out) .  However,  because  of  the

dynamic nature of the process, it is very difficult to estimate (and/or fix) bulk entrance

T in and exit  T out temperatures. So, we opted for evaluating all properties at unit fresh

feed conditions. Evaluating all properties at fresh feed conditions leads to elimination of

the viscosity effects, between bulk fluid and wall, appearing at the end of the correlation.

The correlation is valid when:

(Red Pr )( dc

L )>10  (B.27)

In addition, [Sieder and Tate, 1936] limited the use of the correlation to Prandtl numbers

in the range of 0.48<Pr<16,700 . Reported errors of this correlation are in the range of

±25 % .  For fully developed laminar flow, I applied the recommendation by [Shah and

London,  1978].  Basically,  they  state  that,  for  fully  developed  laminar  flow,  Nusselt

number  tends  to  settle  at  a  constant  value.  For  flow through ducts  the  correlation  is

simply:

Nud=4.364  (B.28)

For turbulent flow, I used the correlation proposed by [Gnielinsky, 1976]:
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Nud=
( f /2)(Re−1000)Pr

1+ 12.7 ( f /2)(1 /2 )(Pr(2/3)−1) [1+ (dc

Lc
)
(2 /3)

]  (B.29)

f =[1.58ln (Red)−3.28]
(−2)

(B.30)

The correlation captures the effects of entrance and fully developed regions. For fully

developed turbulent  flow,  the term  (dc /Lc) is  set  to zero.  It  is  valid  in the following

ranges:

 0.5<Pr<2000

2300< Red<106

0<
dc

Lc

<1

It should be noted that all these correlations are developed for the case of constant heat

flux.  Although heat  flux  might  not  be  uniform in  our  model,  I  still  think  that  these

correlations  are  more  appropriate  than  their  constant  wall  temperature  counterparts

because although the heat flux is not constant, it is evident.

B.3.1.7 Pure Component Thermal Conductivity

Pure  component  thermal  conductivity  is  estimated  using  the  method  of  Chung  et  al

([Chung et  al,  1986],  [Chung et  al,  1984]).  The method is  tested over wide range of

hydrocarbons  but  not  with  polar  substances.  However,  the  authors  indicated  that  the

formula can be used for polar substances if values of parameter β for the polar substances

are available. The method was originally established to estimate thermal conductivities at

low pressures but, later on, modified to account for high pressures too. As reported by

[Chung et al,  1986], error resulting from this formula, at high pressures, is within the

range of 5-8%:
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λ=
31.2 ηo

ψ

M
(G2

− 1
+B6 y)+qB7 y2 T r

0.5 G2  (B.31)

Where:

G1=
1−0.5 y

(1− y)3
 

G2=

(
B1

y
)[1−e(−B 4 y)

]+ B2G1 e(B5 y)
+ B3G1

B1 B4+ B2+ B3

Bi=ai+biω+c iμr
4
+diκ

Values of constants ai , bi ,  c i  and c i  are tabulated below:

i ai bi c i d i

1 2.4166E+0 7.4824E-1 -9.1858E-1 1.2172E+2

2 -5.0924E-1 -1.5094E+0 -4.9991E+1 6.9983E+1

3 6.6107E+0 5.6207E+0 6.4760E+1 2.7039E+1

4 1.4543E+1 -8.9139E+0 -5.6379E+0 7.4344E+1

5 7.9274E-1 8.2019E-1 -6.9369E-1 6.3173E+0

6 -5.8634E+0; 1.2801E+1 9.5893E+0 6.5529E+1

7 9.1089E+1 1.2811E+2 -5.4217E+1 5.2381E+2

B.3.1.8 Mixture Gas-Phase Thermal Conductivity

As suggested by [Reid et al, 1987], mixture thermal conductivity is estimated using the

same equation  for  pure thermal  conductivity but  with evaluation of  parameters  using

mixing rules provided by [Wassiljewa, 1904] for equation B.32, and [Mason and Saxena,

1958] for equations B.33 and B.34:
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λm=∑
i=1

n y iλi

∑
j=1

n
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(B.34)

B.3.1.9 Gas-Phase Axial Effective Thermal Conductivity

Axial  effective  thermal  conductivity  is  estimated  using  the  correlation  provided  by

[Dixon and Cresswell, 1986]. After excluding radial dispersion term (refer to  Appendix

C), the correlation is simplified to:

1
Pea

=
1

Peaf

+
kas /kaf

RePr
 (B.35)

or
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(ρgu d
μ )(

C pgμ

kaf
) (B.36)

As pointed out by the authors, this equation covers ranges of Re below and above 100, as

opposed  to  a  previous  work  that  only focused  on laminar  flow.  It  also  accounts  for

transient  heat   effects  which  better  suits  our  model.  It  should  be  noted  that  k af is

calculated using the correlations for mixture thermal conductivity outlined earlier.

B.3.1.10  Gas-Phase Pure Component Viscosity

Pure component viscosity is estimated using the method of ([Chung et al, 1984], [Chung

et al, 1986]):
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η=40.875
Fc (MT )0.5

V c
(2 /3 )

Ωv

(B.37a)

F c=1−0.2756ω+ 0.059035μr
4
+ κ (B.37b)

Ωv=[A(T*
)
−B ]+ C [e−DT*

]+ E e(−FT ) (B.37c)

T *
=1.2593 T r (B.37d)

μr=131.3
μ

(V c T c)
0.5 (B.37e)

A=1.16145
B=0.14874
C=0.52487
D=0.77320
E=2.16178
F=2.43787

(B.37f)

B.3.1.11 Gas Phase Mixture Viscosity

Gas phase mixture viscosity is calculated using a simplification of the kinetic theory of

gases that is proposed by [Wilke, 1950]:

ηm=∑
i=1

n yiηi

∑
j=1

n

y jϕ i , j

 
(B.38)
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B.3.2 PSA Model Validation

The validity of the constructed PSA model is tested against the PSA patent for separation

of iso- from normal paraffins that was filed by [Minkkinen et al, 1993]. A variant of the

PSA section of this  process was modelled by  [Silva and Rodrigues,  1998].  Silva and

Rodrigues  have  published  results  for  isothermal  and  non-isothermal  cases.  Spatial
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distributions of normal pentane and normal hexane concentrations (as mole fractions) for

the  cyclic  steady  state  (CCS)  step  are  reported  for  the  isothermal  case.  In  addition,

temperature profiles are reported for the non-isothermal case. Our verification process

will  target  two  goals.  The  first  goal  is  to  produce  raffinate  and  extract  products

concentrations that match those reported by [Minkkinen et al, 1993]. The second goal is

to compare CSS concentration and temperature profiles obtained in this work with those

reported by Silva and Rodrigues and discuss the sources of bias between reported results. 

According to  [Minkkinen et  al,  1993],  the PSA column undergoing Adsorption phase

produces  iso-pentane  with  purity  greater  than  99%.  Since  the  PSA process  is  totally

dynamic,  calculation  of  isopentane  purity  is  only attained  through  averaging  effluent

concentration throughout adsorption step. 

a. Adsorption (at x = z/L = 1) b. Desorption (at x = z/L = 0)

Figure  B.4:  Evolution of  raffinate and extract  concentrations during the Cyclic  Steady
State (CSS) adsorption and desorption steps. 

Raffinate is  collected at  the back-end of  the vessel  during Adsorption step.  Extract  is
collected  during  Desorption  step  at  the  front  end  of  the  vessel.  Normal  hexane
concentration  is  omitted  from the  figure  to  allow better  scaling  of  axes.  The  normal
hexane exit concentration is always zero as can be realized fromFigures B.5b and B.5d.

Figure B.4a illustrates the exit concentration of normal and iso pentane (molar fractions)

against time for the CSS adsorption step. For the first 5 minutes, the curve indicates that

the  process  is  producing  a  nearly  steady  99+  mol%  pure  iso  pentane.  Purity  starts

dropping at  the end of the step due to a  slight  breakthrough of normal  pentane.  The
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average isopentane purity throughout the adsorption step is 99.06 mol%. Thus we may

comfortably conclude that simulation results coincide with experimental data reported by

[Minkkinen et al,  1993]. The exit concentration of normal hexane is omitted from the

figure to allow better scaling for the left y-axis where normal pentane concentration is

plotted. Normal hexane concentration at product end of the column during adsorption step

is always zero. The axial profile plotted in Figure B.5b supports this fact.

Following the same path,  [Minkkinen et al, 1993] reports that desorption step effluent

consists of 27 mol% normal pentane, 7.5 mol% normal hexane with the balance being iso

pentane. The model reports average concentrations of 26.31 and 8.15 mol% for normal

pentane and normal hexane, respectively. Differences between reported figures are less

than 1 mol%.

Concentration  evolution  profiles  for  the  depressurization  and  desorption  steps  are

illustrated in Figure B.4b. The increase in  normal pentane and hexane concentrations at

the beginning of the step is due to the rapid escape of isopentane from the column and the

desorption of normals from adsorbent pellets to the gas phase when depressurizing the

vessel from 15 to 2 bars. However,  isopentane concentration picks up once the purge

stream is  introduced during  desorption  step.  Minkkinen does  not  distinguish  between

depressurization  and  desorption  steps  as  the  effluent  of  both  steps  is  combined  and

recycled back to the distillation column (De-isopentanizer).

Minkkinen also reports that average column temperature is maintained at about 300ºC in

both adsorption and desorption steps.  The model confirms these results as illustrated in

Figures B.5a-B.5d with the exception of the sharp temperature wave that is located close

to the product end during adsorption step (Figure  B.5b).  The sharp temperature wave

illustrated in Figure  B.5b is due to dynamic adsorption. During pressurization step, the
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adsorbate is concentrated at the front end (left) of the vessel with unadsorbable material

(inerts) occupying the rest of the vessel. Adsoption requires high pressures . Thus, little

adsorption occurs during pressurization step. However, at the start of adsorption step, the

bed is already fully pressurized and the product end (right) is open for collection of inert

material.  Adsorption  process  is  exothermic  by nature.  Any adsorbed material  releases

energy that heats up the bed causing a temperature rise. As the bed saturates, no localized

adsorption occurs at saturated locations and the temperature at these locations drops to

that of the feed due to heat exchange with feed. However, since adsorption is still evident

in unsaturated locations of the bed, temperature rises in these locations causing a sharp

temperature wave. This consecutive saturation of the bed constructs a temperature wave

that starts at feed introduction end when adsorption step starts and moves towards the

product end as the front end of the bed is saturated with adsorbates. The wave settles at its

final location, illustrated in B.5b,  before switching the bed to the depressurization step.  

Let us now turn our attention to the results reported by [Silva and Rodrigues, 1998]. Silva

and Rodrigues modelled and laboratory tested an exact copy of the PSA unit described by

Minkkinen with few modifications. The major difference between both processes lies in

the  composition  of  the  purge  stream.  Minkkinen  used  the  top  effluent  of  the  de-

isopentanizer column to purge the PSA column undergoing desorption step. This scheme,

although resulting in a better PSA unit recovery, the purity of the raffinate deteriorated.

[Silva and Rodrigues, 1998] opted for recycling part of the pure product stream as a purge

stream for the desorption step. This new setup resulted in a high purity product but on the

expense  of  recovery.  Purge  feed  compositions,  product  purity  and  recovery  of  both

processes is summarized in Table B.4.
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a. Pressurization b. Adsorption

c. Depressurization (Blowdown) d. Desorption

Figure B.5 : Axial concentration and temperature profiles at the end of the Cyclic Steady
State.

Plots are generated using the model developed in this work for the case described by
[Minkkinen et al, 1993] in his patent. Temperature profiles are plotted against the right y-
axis while composition profiles are plotted against the left one.

The high recovery of the Minkkinen process is due to the setup of the process flowsheet.

As  indicated  earlier,  Minkkinen  uses  the  stream  existing  the  depentaniser  column

overhead as a purge to the PSA column undergoing desorption step. This means that all

the product stream is recovered since no amount is recycled as a purge stream.
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Table B.4: Comparison between Minkkinen and Silva & Rodrigues experiments' recoveries and purities.

Purge Stream Composition (mol%)
% Recovery % i-C5

PurityProcess n-C5 n-C6 i-C5

Minkkinen 6.9 0.0 93.1 100.00 98.941

Silva and Rodrigues 0.0 0.0 100.0 14.89 99.998

a. Pressurization b. Adsorption

c. Depressurization (Blowdown) d. Desorption
Figure B.6: Comparison of CSS spatial profiles for temperature and composition between
results produced in this work and those reported by [Silva and Rodrigues, 1998]. 

Dotted lines represent results published by [Silva and Rodrigues, 1998]. Continuous lines
represent the results produced in this work.

Silva and Rodrigues published CSS axial  composition and temperature profiles.  Their

results formulate good bases to validate the CSS axial profiles produced in this work.

Since no tabular data were provided by [Silva and Rodrigues, 1998], I had to digitize their

plots before re-plotting them in Figure B.6. For each of the CSS steps, continuous lines in
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Figure B.6 represent results obtained from this work while dotted ones represent the work

published by Silva and Rodrigues. Temperature profiles are plotted against the right y-

axis  whereas  molar  concentrations  of  normal  pentane  and normal  hexane are  plotted

against the left y-axis.

The noticeable  difference  between the  two works  lies  in  the  temperature  profiles.  In

general, Silva and Rodrigues report higher temperature profiles than those produced in

this  work.  Silva  and  Rodrigues  attribute  the  rise  in  the  temperature  to  the  use  of  a

parabolic temperature profile to simulate the oven used in their experiments. However,

they do not outline the nature of the parabolic profile or how it is incorporated in the

simulation model. The higher temperature profile also explains the higher saturation of

their  PSA bed  at  the  end  of  the  adsorption  step  compared  this  work.  At  higher

temperatures, adsorbents saturate at lower concentrations of adsorbates and vice versa. In

fact, the influence of the extra oven in the data reported by Silva and Rodrigues explains

almost  all  discrepancies  between  results.  Minkkinen  reported  an  average  axial

temperature  of  300ºC.  The  results  in  this  simulation  work  are  more  aligned  with

Minkkinen experimental results.

Another noticeable difference is in the concentration front of the pressurization step. Silva

and Rodrigues results report higher concentration fronts at the end of the pressurization

step.  This  is  probably  due  to  the  use  of  a  lower  pressurization  rate  (M).  Silva  and

Rodrigues use exponential function to build up pressure during pressurization step and to

depressurize it during depressurization step. The adjustable variable in this exponential

function is the pressurization rate M. Although they mention the use of the pressurization

rate  constant  M,  they don't  make any notes  about  the magnitude of  that  constant.  To

produce the curves in this work, we used a pressurization rate M=1/ t ref (s-1) where tref is
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the refrence time defined as  L/Uref  ,  L being the length of the column and  Uref is  the

refrence velocity. This choice of M corresponds to M̄=1  for normalized equations.

To conclude,  the  profiles  produced in  this  work  closely resembles  those  reported  by

[Minkkinen et al, 1993] and [Silva and Rodrigues, 1998]. Discrepancies where explained

and justified whenever encountered. Thus, the developed model well suits further work

on this area.
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APPENDIX C: PIECE-WISE CUBIC HERMITE INTERPOLATING 
POLYNOMIALS

C.1 Introductory

In one dimensional polynomial interpolation, a polynomial  p(x) is created from either a

function f(x) or a set of (xi, f(xi)) data representing f. When interpolating, the (xi, f(xi)) data

points  are  interchangeably  called  nodes,  interpolants  or  control  points.  Polynomial

interpolation guarantees the existence of p(x) that satisfies:

p(x i)=f (x i) (C.1)

for  all  nodes.  However,  the  accuracy of  the  match  within  the  nodes  does  not  imply

accuracy of interpolation between them [Cheney and Kincaid,  1999]. In fact, a perfect

interpolation match only exists when the interpolating polynomial is an exact replica of

f(x). Thus, as x deviates from the control points, the error between f(x) and p(x) increases.

One would think that a higher order p(x) might result in a better interpolation. However,

this is not the case. As [Cheney and Kincaid,  1999] state it, the news were shocking when

the scientific community realized that higher order polynomials deteriorate interpolation

accuracy. 

To solve this problem, scientists resort to using low order polynomials and dividing the

interpolation region into segments. The term spline refers to such segmentation whether

even or uneven [Kochanek and Bartels, 1984].

The lowest order polynomial that can be interpolated is the first order polynomial or the

straight  line.  However,  straight  line  interpolation  suffers  several  drawbacks.  It  is  not

curved. Thus, it does not follow the intended curvature of the original function. It can
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only be differentiated once and the derivative (a constant)  is  not a function of space,

marking it impractical for mathematical or engineering applications requiring the estimate

of derivatives to approximate maxima, minima and inflection points of functions among

other uses. 

The second obvious alternative is second order polynomials (parabolic functions). These

functions provide better curvature alignment with original functions. However, they suffer

the  drawback  of  constant  second derivatives.  This  drawback  prevents  scientists  from

estimating inflection points of the original function.

Third order interpolating polynomials solve the problems encountered in first and second

order ones. However, although most third order polynomials well interpolate a given data

set, some provide advantageous features over others. Let us start our discussion with a

well known theorem:

Theorem A.1:

For a set of distinct points  x0,  x1,...xn having corresponding y values of  y0,  y1, ….  yn, a

unique polynomial of a degree ≤ n exists such that p(xi) = yi for 0 ≤ i ≤ n.

According to Theorem A.1, the shape of the unique polynomial is only a function of the

selected data set within the interpolation segment. There are numerous ways to construct

an interpolating polynomial from a data set.  Newton divided difference and Lagrange

interpolating polynomials are among the most popular [Cheney and Kincaid,  1999]. As

Newton  interpolating  polynomials  constitute  a  subset  of  hermite interpolating

polynomials, we will start our discussion by demonstrating their construction from a set

of data.
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Example C.1 Constructing a Newton interpolating polynomial

Let us construct a Newton interpolating polynomial from the below set of

scattered data assuming x is the independent variable:

x -1 1 0 2

y 4 3 6 -11

The  final  interpolating  polynomial  is  a  combination  of  n-1  sub

polynomials  where  n  represents  the  number  of  data  points.  The  first

polynomial resembles a horizontal line, the second is a sloped line, the

third is a parabola and so forth. For this example, since n=4, we will only

be able to construct a third degree interpolating polynomial.  Using the

first point from the left (selection of points is arbitrary as long as each

point is utilized once) and realizing that the first polynomial is of degree 0:

p0(x)= y0=4 (C.2)

The second polynomial (degree 1) is constructed by adding an extra term

to the first one:

p1(x)=p0(x)+c1(x− x0) , where c1 is a constant (C.3)

Substituting equation C.2 in equation C.3:

p1(x)=4+c1( x− x0) (C.4)

Using the second point from the left, we can easily calculate that c=-0.5.

The third polynomial (degree 2) is constructed by adding an additional term to the

second polynomial:

p2(x)=p1(x)+c2(x− x0)(x− x1) , where c2 is a constant (C.5)

Substituting equation C.4 in equation C.5:
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p2(x)=4−0.5( x− x0)+c2(x− x0)(x− x1) (C.6)

Substituting appropriate values from the first three points, c2 is calculated to be

-2.5. Hence, 

p2(x)=4−0.5( x+1)−2.5 (x+1)(x−1) (C.7)

Following the same pattern, the forth polynomial becomes:

p3(x)=4−0.5 (x− x0)− 2.5(x− x0)(x− x1)+c3(x− x0)(x− x1)(x− x2) (C.8)

Inserting appropriate substitutions results in:

p3(x)=4−0.5 (x+1)−2.5 (x+1)(x−1)− (x+1)(x−1) x (.9)

The combined polynomial is additive. Thus,

p(x )= p3(x )=4−0.5(x+1)−2.5(x+1)(x−1)−(x+1)(x−1)x (C.10)

A plot of the final polynomial is illustrated in Figure C.1.

The reader  can easily notice the recursive nature of the procedure.  Also,  the formula

ensures  that  each  added  polynomial  passes  through  all  the  nodes  of  all  previously

constructed polynomials. In fact, the adherence to forcing the polynomial into passing

through  each  node  is  what  creates  highly  oscillatory  behaviour  when  interpolating

between nodes using higher order polynomials.

A more convenient way to obtaining these coefficients would be to use Newton divided

difference recursive formula  [Cheney and Kincaid,   1999] and  [Chapra and Cancade,

2002]. The general form of the formula is:

f [xn , xn−1 ,..... x1 , x0]=
f [xn , xn−1 , .....x2, x1]− f [xn−1 , xn−2 ,..... x1 , x0]

xn− x0

(C.11)
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Figure C.1: A plot of the third degree polynomial constructed from Example A.1.

Using the above formula, c0 is immediately realized to be c0= f [ x0]= y0  . c1 is calculated

as: 

c1=
f [ x1]− f [ x0]

x1− x0

=
y1− y0

x1− x0

(C.12)

The coefficient c2 is calculated using equation (C.13):

c2=f [x0, x1, x2]=
f [ x2, x1]− f [x1, x0]

x2− x0

(C.13)

The theory is best explained by an Example:

Example  C.2: Obtaining Coefficients using Newton divided difference formula
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The tabulated data in Example are used to calculate the coefficients of

equation (C.10) as illustrated in the table below:

Table C.1: Deriving coefficients of Newton interpolating polynomial

C.2 Osculating Polynomials

Note that in the preceding discussion, nothing has been assumed about the conformity of

interpolating polynomial derivatives to those of the original function at the nodes. Thus,

although the  interpolating  polynomial  nodes'  values  confirm to  the  provided function

values  (or  data  set),  the  derivatives  of  the  interpolating  polynomial  may or  may not

coincide  with  those  of  the  original  function.  If  the  derivatives  of  the  interpolating

polynomial  are  required  to  match  the  derivatives  of  the  original  function,  Osculating

interpolating polynomials should be used.

“Osculating2 polynomials”  is  a  general  term  used  to  describe  a  set  of  interpolating

polynomials that agree with a set of n observation values as well as their m+1 derivatives.

The degree of the resulting osculating polynomial depends on the amount of information

available around the nodes. 

Osculating  polynomials  are  also  called  hermite polynomials  [Moler,  2004].  They are

named after  the  French mathematician  Charles  Hermite.  The maximum degree  of  an

Osculating polynomial can be calculated as:

2 In Latin, “Osculari” means “to kiss”.

xi f[xi] = yi f[xi,xj] f[xi,xj,xk] f[xi,xj,xk,xl]

-1 4 = c0

1 3 -0.5 = c1

0 6 -3 -2.5 = c2

2 -11 -8.5 -5.5 -1 = c3



Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 238

r=n−1+∑
i=0

n

mi (C.14)

Where n represents the number of observations and mi represents the number of available

derivatives per ith observation. The coefficients of the polynomial can be evaluated using

Newton divided difference technique that was outlined earlier. The difference between the

original  Newton  divided  difference  procedure  and  the  one  used  for  osculating

polynomials is that in osculating polynomials the same observation is repeated a number

of times that are equal to the available derivatives at the observation. The discussion is

better understood with an illustration.

Example C.3 Constructing an osculating polynomial

The  following  table  of  observations  is  constructed  using  the  trigonometric  sine

function and its subsequent first and second derivatives:

xi f(xi) f(1)(xi) f(2)(xi)

-1 -0.8414710 0.5403023

0 0 1.0 0.0

The second derivative of the first observation is deliberately omitted to demonstrate

that the procedure can always be applied to the available derivatives. For this table

of  observations,  n=2.  Also,  Since  only  one  derivative  is  available  for  the  first

observation,  m1 =  1.  Similarly,  for  the  second  observation,  two  derivatives  are

available. This leads to m2 = 2. Thus, the resulting polynomial is a fourth degree (r =

2-1+1+2) polynomial. 

To  construct  the  coefficient  matrix  using  Newton  divided  differences,  each

observation should be repeated mi+1 times. Thus the first observation is repeated
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twice and the second observation is repeated thrice. Since it is impossible to use

equation  (C.11) for  repeated  observations,  equation  (C.11) is  replaced  with  the

respective available derivatives from the observations table. The resulting table is

illustrated below. Note that the zi column is only used to count the number of used

observations to construct the table. 

Table  C.2:  Using  Newton  divided  differences  technique  to  obtain  the  coefficients  of  an  osculating

polynomial for the set of data presented in Example C.3.

zi xi f[xi] f[xi,xj] f[xi,xj,xk] f[xi,xj,xk,xl] f[xi,xj,xk,xl, xm]

1 -1 -0.84147 =c1

2 -1 -0.84147 0.54030=c2

3 0 0.0 0.8414709 0.30116= c3

4 0 0.0 1 0.15852 -0.14263=c4

5 0 0.0 1 -0.17255 -0.33108 -0.18844=c5

The final  polynomial,  constructed from the above table,  is  presented  in  equation

(C.15). The  equation  is  split  into  two  rows  due  to  space  limitations.  Since  the

resulting polynomial has a match with the original function, at the nodes, up to the

second derivative, the function is said to be second degree parametrically continuous,

or simply C2.

f (x)={−0.84147+0.54030 (x+1)+0.30116(x+1)2

−0.14263(x+1)2(x−0)−0.18844 (x+1)2(x−0)2} (C.15)

The  original  sine  function  and  its  4th order  osculating  polynomial  are  plotted  in

Figure  C.2. using discretisation intervals of  h=0.1. Also, error values between the

original function and the interpolating polynomial are outlined in Table C.3.
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Table   C.3: Regression results for correlating simulation run length with number of discretization
nodes.

xi

f(xi) % Error

sin(xi) o2(xi) h(xi) o2(xi) h(xi) 

-1.000 -0.841 -0.841 -0.841 0 0 

-0.900 -0.783 -0.785 -0.783 0.172 0.023 

-0.800 -0.717 -0.722 -0.717 0.595 0.078 

-0.700 -0.644 -0.652 -0.643 1.146 0.144 

-0.600 -0.565 -0.574 -0.563 1.715 0.208 

-0.500 -0.479 -0.490 -0.478 2.201 0.256 

-0.400 -0.389 -0.399 -0.388 2.508 0.280 

-0.300 -0.296 -0.303 -0.295 2.541 0.271 

-0.200 -0.199 -0.203 -0.198 2.204 0.225 

-0.100 -0.100 -0.101 -0.100 1.394 0.135 

0.000 0.000 0.000 0.000 0 0 

It is worthy at this point to discuss some of the continuity aspects of spline functions.

Since spline functions use several segments to construct a given curve, the continuity at

the points connecting the segments is of critical importance as it determines smoothness

of the final curve.  If the function only matches observations but not their subsequent

derivatives,  the  function  is  called  a  G0 geometric  function.  If  the  resulting  function

matches  the  observations  and  the  directions  of  their  first  derivatives  but  not  their

respective values, the function is called G1 geometric function. In G1 functions, the curve

leans  more  toward  the  tangent  of  one  side  of  the  segment  compared  to  the  other.

Parametric  continuity  imposes  more  restrictions  on  joints  between  segments.  Ck

parametric  continuity implies  a  match between the connecting  segments  up to  the  kth

derivative of the interpolating function. Thus, by definition, Osculating functions are Ck

compliant.

C.3 C1 Hermite Interpolating Polynomials

A C1 hermite  interpolating polynomial is a  hermite polynomial were only observations
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and  their  respective  first  derivatives  (tangents)  are  utilized  to  construct  it.  The  same

methods used in the previous section will be repeated in this section. In addition, we will

explore some of the behaviours of  C1 interpolating polynomials. The construction of a

polynomial from a data set is illustrated in Example C.4.

Example C.4: Constructing a C1 hermite polynomial from a data set

Let us use the observations in Example C.3 to construct a C1  hermite interpolating

polynomial. Since the coefficients are readily available in Table  C.2, it becomes a

trivial  exercise  to  construct  the  polynomial  following  the  technique  used  earlier.

Since  no  derivatives  beyond  the  first  derivative  will  be  required,  the  resulting

polynomial will be of a third degree (r = 2-1+1+1 = 3 ).  The last  row and last

column of Table C.2 will be omitted since they involve the second derivative of the

second observation. The resulting polynomial is outlined in equation A.16:

f (x)=−0.84147+0.54030(x+1)+0.30116(x+1)2−0.14263(x+1)2(x−0) (C.16)

Note  that  the  polynomial  in  equation  (C.16) is  exactly  the  same  as  the  one  in

equation  (C.15) after omitting the last  term involving the second derivative.  The

behaviour of the original function, its second order (O2) osculating polynomial and

its  C1 hermite  equivalent  are  plotted  in  Figure  C.2 for  a  discretisation  interval

h=0.1. Also, interpolation results and error values are tabulated in Table C.3.

Apart  from a good fit  of  both interpolating polynomials to  the original  function,

Figure C.2 does not reveal much. However, the error reported in Table C.3 clearly

indicate that the additional term used in the osculating polynomial is a source of

noise rather than an error reduction term. Error is reduced by about 10 orders of

magnitude just by omitting the extra term.
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Figure  C.2:  A plot  of  sin(x),  its  respective  2nd order  osculating  o2(xi)  and  hermite
polynomials over the interval [-1,0] and with segment discretisation of h=0.1.

Although C1  hermite interpolating polynomials can be constructed from Newton divided

difference formula, a more convenient (and widely used) method to construct them is to

to  think  of  the  polynomial  as  a  piece-wise  polynomial.  Piece-wise  polynomials  are

complex polynomials that are constructed from a set of known elemental polynomials.

Since we are dealing with cubic  hermite polynomials, we will restrict the discussion to

this class of polynomials. However, the concepts apply to any hermite polynomial with a

lower or higher degree. The concept is better illustrated in a matrix form. Also, since we

are dealing with  spatial  coordinates,  it  is  better  to  use parametric  notation instead of

explicit coordinate notation. This means that any dimensional curve will be defined using

a parameter t to denote its location. The coordinates x(t), y(t) and z(t) are functions of the

parametric variable  t. We will limit our discussion in this appendix to one dimensional

polynomials. Appendix D covers interpolation in multi-dimensional space.
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A hermite curve can be described as a matrix multiplication of a basis functions matrix M,

a geometry vector  g and a polynomial vector  p. Also, to simplify derivations, both the

parametric  variable  t and  the  geometric  coordinate  (e.g.  x)  will  be  scaled  to  extend

between [0,1] The polynomial vector p can be written in a parametric form as:

p3=[t
3 t 2 t 1] (C.17)

The geometric vector  g is a vector holding the basic properties of the curve. For cubic

hermite polynomial,  this  vector  translates  into  a  four-elements  vector.  Two  of  the

elements hold the coordinates of the control points and the other two hold the values of

their respective first derivatives. Thus, g can be expressed as:

g=[Po P1 Ro R1] (C.18)

The matrix M is the coefficient matrix of all base polynomials. Since we are dealing with

a third order polynomial, the matrix  M will have to contain four columns, each column

corresponding to a coefficient of the p3 vector. Also, since the curve is constrained, by two

control points and their respective derivatives, the number of rows corresponding to the

constrains should be equal to 2 control points + 2 derivatives = 4 columns. The final

matrix is thus a 4x4 matrix:

M=[
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44
] (C.19)

Thus, the parametric form for any of the coordinates (e.g. x) can be expressed as:

x (t)=p3 M gx
T
=[t 3 t2 t 1][

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44
][

g1 x

g2 x

g3 x

g4 x
] (C.20)
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Using the four constraints defining the curve, we can construct a matrix A satisfying all 

constraints as follows:

A=[
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

] (C.21)

Note that the first row of the matrix corresponds to the first control point having a value

of 0 (x(0) = [ 0 0 0 1]Mgx  ) since at x(0)  all tk  (k=1,2,3)  terms will evaluate to 0.  The

second row corresponds to x(1) = 1. The third term corresponds to x'(0) = Ro and so forth.

The goal of this exercise is to evaluate the coefficients of the basis functions. This goal is

achieved through solving :

g*
=[

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

]M g*
(C.22)

Of course, the only way to satisfy this equation is to conclude that  AM=I or M = A-1.

Solving for  M yields  the  coefficients  of  the  elemental  functions  in  a  matrix  form as

outlined in  (C.23).  Note that  the coefficients  of  each elemental  function are arranged

column wise because of the order of the M matrix in equation (C.23).

M=[
2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

] (C.23)

From (C.23), the elemental functions can be written as:

b1(t )=2 t3−3 t 2
+1 (C.24)

b2(t )=−2t 3+3 t2

b3(t )=t 3−2 t2
+t
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b1(t )=2 t3−3 t 2+1
(C.24)

b4(t )=t3− t 2

Figure C.3 illustrates the individual behaviour of each of the base functions. The final 

hermite polynomial is written as:

hx( t)=M g=(3 t3−3 t 2+1)P0 x+(−2 t 3+3t 2)P1 x+( t
3− 2t 2+ t)R0 x+( t

3− t2)R1 x (C.25)

Figure C.3:  The basic functions of a hermite interpolating polynomial

The hermite polynomial form presented in equation (C.25) is more convenient to program

and reduces computational power when compared to Newton divided difference formula.

Nevertheless, more computationally efficient formulas can also be derived out of equation

(C.25). 

If  the  derivatives  (tangents)  at  the  first  and  second  control  points  (  R0x and  R1x,

respectively) are readily available, they can be directly substituted into equation (C.25).

b
1
(t)

b
2
(t)

b
3
(t)

b
4
(t)

b i(t
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However, in many applications, this is not the case. If tangents are not available, they can

be approximated using additional point or points before and after the control points to

estimate the derivatives. 

Several  techniques  are  available  to  evaluate  tangents  based  on additional  points.  The

simplest is to use a three-point data set, two of which are control points. This technique

results in equal tangents (i.e.  R0x = R1x) which implies C1 continuity:

Ri=Ri−1=
1
2 [(Pi+1− Pi)

(t i+1− t i)
+
(P i− Pi−1)

(t i− ti−1) ] (C.26)

For a data  set  consisting of a  number of points  that  is  greater  than three,  the central

difference formula in equation (C.26) can be used for all points except for one of the end

points where either a forward difference or a backward difference formula can be used to

estimate the first  or last  tangent,  respectively.  [Kochanek and Bartels,  1984] Use this

technique  to  demonstrate  their  Kochanek-Bartel  spline.  Their  spline  is  essentially  a

hermite interpolating polynomial.

A better estimate of tangents is achieved by using two additional points instead of one as

illustrated in equation (C.27). 

Ri=(1− τ )[Pi+1− P i−1

t i+1− ti−1
] (C.27)

Splines that use equation (C.27) are called canonical splines. Note the appearance of the

tension  parameter  ( τ∈[−1,1] )  in  the  equation.  The  tension  parameter  controls  the

sharpness  of  the  curve  when  it  bends  based  on  the  position  of  the  control  points

[Kochanek and Bartels,  1984].  When  the  value  of  the  tension  parameter  is  zero,  the

resulting spline is called Catmull–Rom spline.

Bias  ( β∈[−1,1] ) is  the  second parameter  that  affects  the direction and value of  the
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derivative. It can be used to control the direction of the path as it passes through a control

point.  Equation  (C.27) is  written  assuming a  zero  bias  and a  uniform distribution  of

points.  When  the  value  of  the  bias  differs  from zero  and  the  points  are  not  evenly

distributed, the general form in equation (C.28) replaces that in equation (C.27) :

Ri=(1− τ )[(1+β)
(Pi+1− P i)

t i+1− ti

+(1− β)
(P i− Pi− 1)

t i− t i−1
] (C.28)

Similarly, equation (C.29) presents the general form of equation (C.26) when the value of

the bias deviates from zero. 

Ri=Ri−1=
1
2 [(1+β )

(Pi+1− Pi)

(ti+1− t i)
+(1− β)

(Pi− Pi−1)

(t i− t i−1) ] (C.29)

[Bourke,  2011] provided  a C++  code  representing  a  one-dimensional  hermite

interpolating polynomial. His code is presented in Appendix E.
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APPENDIX D:  APPROACH II 3-D VECTOR TRACKING AND MESH 
GENERATION EQUATIONS

This  appendix  details  the  vector  tracking  procedures  that  is  used  in  Approach  II  for

discontinuity  resolution.  The  first  section  details  how a  vector  is  tracked  during  the

simulation run. The second section details how a mesh is constructed at the discontinuity

location once a discontinuity is reached. Although the discussion is illustrated using a 3D

function, the approach is applicable to functions of any dimension.

D.1 Three-D Vector Tracking

Let us assume that at time to, the 3D function f initializes at xo and yo coordinates of their

respective axes in a region bounding f1. The resulting starting point is Po( xo, yo, zo, f(xo, yo,

zo) ). Since f(xo, yo, zo) can be calculated at any P(x, y, z), we do not need to track function

values. As the simulation advances by one step to  t1, the coordinates of another point

P1(x1,  y1,  z1) are identified. The locations of these two points are sufficient to determine

the trajectory vector  v1 that is  accurate  to time  t1 only.  Using linear  algebra notation,

vector v1 can be written as:

v⃗1=P⃗o P1=[
x1− xo

y1− y o

z1− zo
] (D.1)

Now, let us transform the conditional statement into a discontinuity plane. A plane can be

uniquely identified through either:

1. a point inside the plane and a vector orthogonal to that plane,

2. or through three non-collinear points inside the plane. In this case the vector in

case 1 is calculated using the three non-collinear points.
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We will define the plane using the second case. To start, we need to locate arbitrary points

PA(xA,yA,zA),  PB(xB,yB,zB) and  PC(xC,yC,zC) located inside the discontinuity plane. We will

demonstrate the procedure for the discontinuity plane cutting the x dimension. Since the

plane is cutting the x dimension at x=xn, the x-coordinates of the three points will take the

value  of  xn.  The  discontinuity  plane  is  extending  infinitely  in  all  coordinates.  This

extension allows us to select arbitrary values for the y coordinates yA ,yB  and yC and the z

coordinates zA , zB  and zC . So, the coordinates of the points become:

PA (x A ,y A ,z A )
PB (x B ,y B ,zB)
PC (xC ,yC ,zC )

 

 
 
 CCCC

BBBB

AAAA

z,y,xP

z,y,xP

z,y,xP
 (D.2)

A check for non-co-linearity needs to be performed before proceeding to the next step. If

the points are identified as collinear, then another set of arbitrary values for yA, yB and yC

needs to be assumed and the above procedure is to be repeated. Once points pass the non-

collinearity  test,  v⃗ p  that  is  orthogonal  to  the  discontinuity  plane  is  obtained  via

multiplying  vectors  P⃗A PB with  P⃗A PC  (or  any similar  combination)  as  vector  cross

product. Thus,

v p=P⃗ A PB x P⃗ A PC=[
xB− xA

yB− yA

zB− zA
]x[

xC− xA

yC− yA

zC− zA
]=[

(yB− yA )(zC− z A )− (zB− zA )(yC− yA )
(zB− zA )(xC− x A )− (xB− xA )(zC− z A )

(xB− xA )(yC− y A )− (yB− yA )(xC− x A )]=[
avp

bvp

c vp
]  

(D.3)

Since the general equation of any plane passing through point Po(xo, yo, zo) and orthogonal

to 
















c

b

a

v
  is:

      0=zzc+yyb+xxa ooo  , (D.4)

we could easily formulate the equation of the discontinuity plane as one of the equations
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in (D.5):

avp (x− xA )+bvp( y− y A )+cvp (z− z A )=0  (D.5a)

avp (x− xB )+bvp( y− y B )+cvp (z− zB )=0 (D.5b)

avp (x− xC )+bvp (y− yC)+cvp (z− zC)=0 (D.5c)

using points PA(xA, yA, zA),  PB(xB, yB, zB) or PC(xC, yC, zC) as an example.

Next, we need to find the intersection point of the line, directed by  v1 that is passing

through Po and P1, with the discontinuity plane defined by equation (D.5). To do this, we

need to write the equation for this line in the form:

x=xo+(x1− xo )τ  (D.6a)

y=yo+( y1− yo )τ (D.6b)

z=zo+(z1− z o)τ (D.6c)

Substituting (D.6) into (D.5), we get:

avp(xo+(x1−xo) τ−x A)+bvp ( y o+( y1−yo) τ−yA )+cvp (zo+( z1−zo) τ−z A)=0  (D.7)

Equation  (D.7) has only one unknown (τ). Solving for  τ and substituting the resulting

value  into  (D.6a),  (D.6b)  and  (D.6c),  we  obtain  the  x,  y,  and  z coordinates  of  the

intersecting point between the line (vector) Po P1  with the discontinuity plane. Since the

vector will intersect the plane at time tn, we will call the intersection point Pn(xn,  yn,  zn).

The discussion is illustrated in Figure D.1.
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Figure D.1: Progression of v⃗ i towards a discontinuity plane.

D.2 Mesh Generation Using Approach II

Next, we need to construct the coordinates of the 64-point interpolating polynomial. To

do so, we will rely on the direction of the P⃗o P1 vector. The idea is to generate 4 planes

that are parallel to the discontinuity dimension and separated by a distance  h along the

discontinuous dimension as illustrated in Figure 5.12b for an intersection at z plane. Since

we assumed intersection at x-plane, the planes will be separated by a distance hx. Hence,

the x dimensions of the 4 discontinuous planes become: xn, xn+hx, xn+2hx and xn+3hx if v⃗n

is entering the overlap domain from the left end. If  v⃗n is entering the overlap domain

from the right end, the x dimensions of the 4 discontinuous planes become: xn, xn-hx, xn-

2hx and  xn-3hx.  Since  we  are  aiming  for  a  symmetrical  distribution  of  control  points

around the v⃗n  vector, we need to calculate the coordinates of the other dimensions (y and

z) for the points lying on v⃗n  vector and having the 4 x-coordinates mentioned above. To

do so, we will calculate a new τ  for each of the newly generated x-values:

A

B
C

Po P1

v 2
P 2

Pn

v1

vn

v p

f 1

f 2

f ( x , y )

x y

Pn−1
P n−2
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τx n+1h x
=

(xn+1hx− xo )

(x1− xo)
(a )

τx n+2h x
=
(xn+2hx− xo)

(x1− xo )
(b )

τ xn+3hx
=

(xn+3h x− xo)

(x1− xo )
(c )

 or

τ xn− 1hx
=

(xn− 1hx− xo )

(x1− xo )
(a)

τx n− 2hx
=

(xn− 2hx− xo )

(x1− xo )
(b)

τ xn− 3hx
=

(xn−3hx− xo )

(x1− xo )
(c )

(D.8)

Next  we  substitute  the  newly  obtained  τ values  into  equation  D.6  to  get  the  other

coordinates of the points at which v⃗n  intersects with other planes. Last, we construct a

mesh of  sixteen  points  surrounding each of  the  four  newly calculated points  on v⃗n  .

Figure D.2 illustrates the concept when applied to 2D discontinuous functions.

a. (3D view) b. (Planar view)
Figure D.2: The behaviour of a 2D interpolating polynomial demonstrating the continuity

of  the  polynomial  along  the  continuous  coordinate  while  interpolating  along  the

discontinuous axis. (CP = Control Point)
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APPENDIX E:  A BRIEF ON THE DEVELOPED CODE

This appendix is meant to serve as a starting point for researchers who would like to have

a  look at  the  developed code,  copy it  or  copy some parts  of  it,  mimic  it  in  another

environment or even develop a better code. Thus, I don't claim perfection in the written

code. I am just presenting a working code. 

Some of the concepts are verified using C++. Others are verified using GNU Octave.  I

will write a brief introductory to each code before presenting it.

E.1 One-Dimensional Hermite interpolation

Below  is  the  C++  implementation  of  the  one-dimensional  hermite interpolation

polynomial that is presented by  [Bourke, 2011]. The code uses four function values to

interpolate between two points. Thus, the function only interpolates between y1 and y2.

Nevertheless, it uses y0 and y3 to determine the appropriate slope of the interpolating

polynomial at the points y1, y2 and any intermediate point within [y1,y2]. Note that since

the x-coordinates of the points are equally spaced, their absolute values are irrelevant to

the interpolating function. Instead, the fraction mu∈[0,1] is used to reflect the x position

of the point at which the interpolating polynomial should report its y value. The code also

reflects how tension and bias parameters (explained in Appendix C) are used.

double HermiteInterpolate( double y0,double y1, double y2,double y3, double mu, 
double tension, double bias) {  

   double m0,m1,mu2,mu3, a0,a1,a2,a3;      
   mu2 = mu * mu;
   mu3 = mu2 * mu;
   m0  = (y1-y0)*(1+bias)*(1-tension)/2;
   m0 += (y2-y1)*(1-bias)*(1-tension)/2;
   m1  = (y2-y1)*(1+bias)*(1-tension)/2;
   m1 += (y3-y2)*(1-bias)*(1-tension)/2;
   a0 =  2*mu3 - 3*mu2 + 1;
   a1 =    mu3 - 2*mu2 + mu;
   a2 =    mu3 -   mu2;
   a3 = -2*mu3 + 3*mu2;
   return(a0*y1+a1*m0+a2*m1+a3*y2);   }
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Since  the  above  function  is  x-dimension  independent,  a  separate  function  should  be

written to  calculate  the value of  mu.  An example implementation of  such function is

presented below:

double interpolate(double *xv, double *yv, double x, double tension, double bias) {

  // mu is the scaled location of point x relative to the two bounding points.
  double mu;

  int i = -1;
  while (xv[++i] <= x);
  if (xv[i-1] == x) 

--i;
  else 

i-=2;

  mu = (x - xv[i+1]) / fabs(xv[i+2] - xv[i+1]); 

  return hermite_interpolate( yv[i], yv[i+1], yv[i+2], yv[i+3], mu, tension, bias);  }

Note that two vectors of six points (*xv and *yv) are passed to the above function along

with the point x at which the value of the interpolation polynomial is to be computed. The

function searches for the location of x within the provided *xv vector, calculates mu and

passes  four  of  the  six  interpolation  points  to  the  HermiteInterpolate function.  The

conditional statement is used to insure using the same set of interpolation points even

when x is at the border of the interpolation interval.

E.2 Two-Dimensional Interpolation

[Breeuwsma,  2011] presented  a  general  C++  and  Java  codes  for  multidimensional

interpolation  that  can  be  used  in  conjunction  with  any one-dimensional  interpolation

method. His C++ code is presented below:
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double bi_interpolate ( double *xv, double *yv, zm[MAX_POINTS][MAX_POINTS],
double x, double y, double tension, double bias ) {
double arr[MAX_POINTS];

for (int i=0; i<MAX_POINTS;++i) 
arr[i] = interpolate(yv, zm[i], y, tension, bias);

return interpolate(xv, arr, x, tension, bias); }

Looking at the interpolation mesh as a squared one (zm), the idea behind the code is to

interpolate each of the six-point row vectors in the x-dimension to produce the six-point

interpolation  vector  for  the  y-dimension.  Thus,  the  two-dimensional  interpolation  is

treated as a double one-dimensional interpolation. The code can easily be extended to

cover multi-dimensional interpolation by nesting additional  for loops or using dynamic

arrays.

E.3 Past Interpolation to Determine the Value of the missing hermite 

Point when Regularizing Boundary Conditions

Past Interpolation is to find the value of the passed hermite point is discussed

in section  5.1.5.  A spline interpolating polynomial is  used to perform the

interpolation. The spline interpolation code is taken from the GNU Scientific

C++ Library [GSL, 2011]. The calling function is presented below. 

double past_interpolate (int n, double t[], double y[], double tval, double *yval) {
int ibcbeg = 0, ibcend = 0;

 
 double ybcbeg=0, ybcend=0, ypval, yppval, *ypp;
 
 ypp = spline_cubic_set ( n, t, y, ibcbeg,  ybcbeg, ibcend, ybcend );
 
 *yval = spline_cubic_val ( n, t, y, ypp, tval, &ypval, &yppval );
 
 return *yval; }
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E.4 Regularizing Initial and Boundary Conditions

The code below is used to regularize velocity initial and concentration 

boundary conditions.

double present_interpolate (double *inputs) {

 double

g = inputs[0],
 h = inputs[1],

Tau = inputs[2],
norm_dip = inputs[3], // dip-parameter
tension = inputs[4],
bias = inputs[5],
t = inputs[6], // current simulation time
initial_bound = inputs[7],
final_bound = inputs[8],

// Past interpolated value (Calculated using past_interpolate function)
initial_bound_mh = inputs[9],

// Magnitude of Jump
AB = fabs(final_bound-initial_bound);

double tv[MAX_POINTS], // time interpolation vector 
yv[MAX_POINTS]; // velocity or BC interpolation vector

// initializing t interpolation vector
tv[0] = (g-h)/Tau; / (tp-h)/tau/
for (int i=1; i<MAX_POINTS; ++i) 

tv[i] = ( Tau*tv[i-1]+h )/Tau;

// initializing boundary velocity interpolation vector
yv[0] = initial_bound_mh; // @(tp-h)/Tau
yv[1] = initial_bound; // @(tp)/Tau
if (initial_bound > final_bound) {

yv[2] = initial_bound-norm_dip*AB; // @(tp+h)/Tau
yv[3] = final_bound+norm_dip*AB; // @(tp+2h)/Tau

}
else {

yv[2] = initial_bound+norm_dip*AB; // @(tp+h)/Tau
yv[3] = final_bound-norm_dip*AB; // @(tp+2h)/Tau

}
yv[4] = final_bound; // @(tp+3h)/Tau
yv[5] = final_bound; // @(tp+4h)/Tau

return interpolate(tv, yv,  t, tension, bias); }
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E.5 Generating a Two-Dimensional Interpolation Mesh based on 

Approach II to Discontinuity Resolution

The code below is a C++ implementation to the concepts provided in 

Appendix C.

void mesh_grid(dim_info *dim, double *inputs, int discont_dim,
double norm_dip, // Normalized Dip [0-->1]

 double zpm[MAX_POINTS][MAX_POINTS],
 double f (int, double, double, double*) ) {

// Calculating interp_loc for discontinuous dimension 
double shift = - 0.5*dim[discont_dim].h*(MAX_POINTS-1);
for (int j=0; j<MAX_POINTS;++j) {

dim[discont_dim].interp_loc[j] = dim[discont_dim].v[2] + shift;
shift+=dim[discont_dim].h;

}

 // Calculating interpolation location for other dimensions
double slope;
for (int i=0; i<DIMENSIONS;++i) 

if ( i!=discont_dim ) {
shift = -0.5*dim[i].h*(MAX_POINTS-1); 
for (int j=0; j<MAX_POINTS; ++j) {
slope = calc_slope(dim[discont_dim].v[0], dim[discont_dim].v[1], 

dim[i].v[0], dim[i].v[1]);
dim[i].interp_loc[j] = slope*(dim[discont_dim].interp_loc[j] - 

dim[discont_dim].v[0] ) + dim[i].v[0] + shift;
shift+=dim[i].h;

}
 } 

// Generating z mesh points
for (int i=0; i<MAX_POINTS;++i)

for (int j=0; j<MAX_POINTS;++j) {
if (in_range(dim[0].interp_loc[i], dim[1].interp_loc[j], dim[0].v[2], 

dim[1].v[2], 1) )
zpm[i][j] = f(1, dim[0].interp_loc[i], dim[1].interp_loc[j], inputs);

else 
zpm[i][j] = f(2, dim[0].interp_loc[i], dim[1].interp_loc[j], inputs);  

}

// Dipping intermediate points using p parameter
int index1, index2, diprow1 = MAX_POINTS/2-1, diprow2 = diprow1+1;
double 
A = f(1, dim[0].v[2], dim[1].v[2], inputs), 
B = f(2, dim[0].v[2], dim[1].v[2], inputs),
AB = A-B;

for (int i=0; i<MAX_POINTS; ++i) {
// dipping first row/column
if (dim[0].discontinuous) { index1 = diprow1; index2 = i; }
else { index1 = i; index2 = diprow1; }

if ( in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2], dim[1].v[2], 
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1) ) {
if (A < B) 

zpm[index1][index2] -= norm_dip*AB;
else 

zpm[index1][index2] += norm_dip*AB;
}
else if ( in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2], 

dim[1].v[2], 2) ) {
if (A < B) 

zpm[index1][index2] += norm_dip*AB;
else 

zpm[index1][index2] -= norm_dip*AB;
}

 // dipping second row/column
 if (dim[0].discontinuous) { index1 = diprow2; index2 = i; }
else { index1 = i; index2 = diprow2; }

if ( in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2], dim[1].v[2], 
1) ) {
if (A > B) 

zpm[index1][index2] += norm_dip*AB; 
else 

zpm[index1][index2] -= norm_dip*AB;
}
else if ( in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2], 

dim[1].v[2], 2) ) {
if (A > B) 

zpm[index1][index2] -= norm_dip*AB;
else 

zpm[index1][index2] += norm_dip*AB;
}

}
}

E.6 Determining the location of the cutting planes for Nu=f(Re,Pr)

To  determine  the  best  location  for  the  cutting  planes,  corresponding  to

minimum(e), I used a simple sequential search algorithm. This algorithm is

used only to prove the concept. For practical applications, a faster and more

rigorous search algorithm should be used.

void get_cut_plains( double *Re1_limit, 
double *Re2_limit, 
double *Pr1_limit, 
double *Pr2_limit, 
double *x_plain,  
double *y_plain,
double *inputs,
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double f(int , double , double , double* ) ) {

double x=Re1_limit[1], 
y=Pr1_limit[1], 
min_x=x, 
min_y=y;

// initializing error function to one of the corners of the overlap domain
double error = fabs( f(1, x, y, inputs) - f(2, x, y, inputs) ), min_error = error, step = 0.1;

// Searching Re-Pr space for an optimum jump location
for ( x=Re2_limit[0]; x<Re1_limit[1]; x+=step) {

for ( y=Pr2_limit[0]; y<Pr1_limit[1]; y+=step) {
error = fabs( f(1, x, y, inputs) - f(2, x, y, inputs) );
if (error < min_error) {

min_error = error;
min_x = x;
min_y = y;

}
}

}

*x_plain = min_x;
 *y_plain = min_y;
}

E.7 The regularized Nu=f(Re,Pr) Function

The below code represents the regularized Nu=f(Re,Pr) function I used to

interpolate between the values of the heat transfer coefficient corresponding

to  laminar  and  turbulent  flow regimes.  In  practical  implementations,  this

function should be generated by the language compiler. Note the use of C++

static function to track the first entry to the overlap region. This detection

facilitates a one-time generation of the interpolation mesh. Also, note how

the  composite  function  well-encapsulates  the  boundaries  of  the  its  sub-

functions  leading to  the  “illegal  extrapolation”  message  if  the  simulation

crosses the boundaries that are set by the domains of the sub-functions.

double Nud_interp (double *inputs) {
static bool first_entry_to_Nud_interp=true, first_entry = true;

static double zpm[MAX_POINTS][MAX_POINTS];

// Renolds limits per function
double Re1_limit[] = { inputs[2], inputs[3]}, Re2_limit[] = {inputs[4], inputs[5] }, 
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// Prandtl limits for each function
Pr1_limit[] = {inputs[6], inputs[7]}, Pr2_limit[] = {inputs[8], inputs[9]}, 

// Current Values of Re and Pr
Re = inputs[15], Pr = inputs[16];     
double tension = inputs[10], bias = inputs[11], norm_dip = inputs[13];
int discont_dim = inputs[14]-1;

// declaring and initializing dim structure
static dim_info dim[DIMENSIONS];
if (first_entry_to_Nud_interp) {

fisrt_entry_to_Nud_interp = false;
for (int i=0; i<DIMENSIONS; ++i) {

// all dimensions should be continuous except one
 dim[i].discontinuous = false; 

 for (int j=0; j<BOUNDARIES;++j) 
 for (int k=0; k<PROPERTIES;++k) 
 dim[i].boundary[j][k] = 0;
 dim[i].h = 0;

dim[i].cut_plain = 0;
 for (int j=0; j<MAX_POINTS;++j) 

dim[i].interp_loc[j]=0;
}

 
get_cut_plains(Re1_limit, Re2_limit, Pr1_limit, Pr2_limit, &dim[0].cut_plain, 
&dim[1].cut_plain, inputs, Nud);

 
for (int i=0; i<DIMENSIONS; ++i) {

// Initial values of h in each dimension
dim[i].h = inputs[12];

 
// Assigning discontinuity 
(i == discont_dim ) ? dim[i].discontinuous = true : dim[i].discontinuous = 

false;
}

// copying respective arrays' limits
// for discontinuous dimension, check against absolute low and high of both 

functions
dim[0].boundary[0][0] = inputs[2]; // Re2_low_limit
dim[0].boundary[1][0] = inputs[5]; // Re1_high_limit
// for continuous dimension, check against overlap violations.
dim[1].boundary[0][0] = inputs[8]; // Pr2_low_limit
dim[1].boundary[1][0] = inputs[7]; // Pr1_high_limit 

} 

// updating moving vector
for (int i=0; i<DIMENSIONS;++i) {

 // pushing old v vector values to the back of the array
for (int j=0; j<VECTOR_LENGTH-2;++j)

 dim[i].v[j] = dim[i].v[j+1]; 
 // updating the v vector with new array values 
 dim[i].v[VECTOR_LENGTH-2] = inputs[i+15];

}

double h = dim[ discont_dim ].h,
interp_span = (MAX_POINTS-1-2)*h;
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// Laminar
if ( (Re > Re1_limit[0]) && (Re < dim[0].cut_plain - 0.5*interp_span) ) {  

first_entry = true;
// For uniform heat flux (Taken from Holman, p. 291)
return Nud(1, Re, Pr, inputs); 

}
// Interpolation Region
else if ( fabs( Re - dim[0].cut_plain ) <= 0.5*interp_span)  { 

// Generating mesh points at first entry only
// ensuring that mesh generation is executed only once per entry to interpolation 

region
if (first_entry) {

first_entry = false;
// locating intersection point of moving vector with cutting plain
find_i_point(dim, discont_dim);
// resizing (reducing) h if necessary
get_gaps(dim, discont_dim);
// generating interpolation matrix
mesh_grid(dim, inputs, discont_dim, norm_dip, zpm, Nud);

}
// Interpolating
return bi_interpolate ( dim[0].interp_loc, dim[1].interp_loc, zpm, Re, Pr, tension, 

bias );
}
// Turbulent
else if ( (Re < Re2_limit[1]) && (Re > dim[0].cut_plain + 0.5*interp_span) ) {
/*   Gnielinski correlation: Gnielinski is a correlation for turbulent flow in tube.
        taken from CRC Handbook of thermal engineering ( p. 3-49) */

return Nud(2, Re, Pr, inputs);
}
else

cout << "Illegal Extrapolation\n";
}

E.8 The discretized Nu=f(Re,Pr) Function

The code in this section represents the discretized Nu=f(Re,Pr) function that

is written by the modeller. I coded each function separately and then coded

the composite function as a separate one calling either laminar or turbulent

functions depending on the domain. The composite discretized function is

called  by  the  regularized  one  to  determine  the  values  of  the  composite

function outside the interpolation region.  

// Nud in Laminar Regime
double NudL(double Re, double Pr, double *param) {

 return 4.36;
}
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// Nud in Turbulent Regime
double NudT(double Re, double Pr, double *param) {

double Lc = param[0],
dci = param[1],
f = pow( (1.58*log(Re) - 3.28),-2);

return ( (0.5*f)*(Re-1000.0)*Pr ) / ( 1+12.7*pow(0.5*f,0.5)*(pow(Pr,2.0/3)-1 ) ) * ( 1 + pow
(dci/Lc, 2.0/3) );

}

double Nud(int domain, double Re, double Pr, double *param) {
switch (domain) {

case 1:  { 
// Laminar regime
return NudL(Re,Pr, param);

    break;
}
default: { 

// Turbulent regime [ case 2 ]
return NudT(Re,Pr, param);

}
}

}
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Nomenclature

ap Specific area of pellet hp Particle heat transfer coefficient

awe Wall external specific area hwe Wall external heat transfer 
coefficient

awi Wall internal specific area hwi Wall internal heat transfer coefficient

ci Concentration of component i k Thermal conductivity

<ci> Average concentration of 
component i

ke External mass transfer coefficient

Cpg Fluid heat capacity kgl Overall mass transfer coefficient

Cps Solid heat capacity ki-C5 Reverse reaction constant

Cpw Wall heat capacity kn-C5 Forward reaction constant

Ct Total gas phase concentration kw Wall thermal conductivity

Ct,max Maximum total concentration Ki,ads Adsorption equilibrium isotherm 
constant for component i

CT Dimensionless total 
concentration

KL Axial thermal conductivity

dc Column diameter L Column Length (cm)

dp Particle diameter LR Reactor length (cm)

D Ideal diffusivity m Mass (grams)

Deff Effective diffusivity ṁ Mass flowrate (grams/second)

Dk Knudsen diffusion coefficient M Molecular weight

DL Axial mass dispersion coefficient Mdp De-pressurization rate (1/seconds)

DM Molecular diffusion Mp Pressurization rate (1/seconds)

Dz Axial dispersion coefficient n Polynomial Order or nth derivative

Emax Maximum allowed error in a 
single integration step

n-C5 Normal pentane

f Friction factor n-C6 Normal hexane

g Optimum transition point 
between two discontinuous 
functions

NE Number of equalization steps

h Integration step or distance 
between mesh control points

nF Number of feed moles



Nomenclature 264

ni [Nitta et al, 1984] Isotherm 
exponent

xO Initial condition of independent 
variable

nP Number of purge moles yO Initial condition of dependent 
variable

Nud Nusselt number based on vessel 
diameter

yb Value of dependent variable at end 
of integration step

P Pressure (bar) yi,j The value of the  jth element in the y
vector at the ith integration step 

P Dimensionless pressure ȳ Dependent variable scaled value

Pe Peclet number z Absolute axial distance (cm)

Peq Equalization pressure

PF Feed Pressure

PP PSA column purge pressure Greek Letters

TF Feed Temperature α Ratio between two equilibrium 
constants

Tg Fluid Temperature αA Equilibrium constant of strongly 
adsorbed component

TP Purge Temperature αB Equilibrium constant of weakly 
adsorbed component

u velocity Δ xi Change in independent variable x at 
ith integration step

v Dimensionless velocity Δ y i , j Change in the jth value of the 
dependent vector y at ith integration 
step

vi Dimensionless velocity at time 
indexed interval i

−ΔH j ,ads Component i heat of adsorption

w Regularization interval ϵ Maximum  acceptable  error  in  an
integration step

x Dimensionless distance  Εb Bed void

x̄ Independent  variable  scaled
value

η Pure component Dynamic viscosity

xi Value of the independent 
variable at ith integration interval

ηm Mixture Dynamic viscosity

Xn-C5 N-pentane conversion λ Fluid pure component thermal 
conductivity
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λm Fluid mixture thermal 
conductivity

μ Dynamic viscosity

μw Dynamic viscosity at wall

ΩD
Collision integral

ρg Fluid density 

ρs Solid (adsorbent) density 

ρw Vessel wall density 

σ 12 Collission diameter
τ Dimensionless time or tortuosity
τp Dimensionless pressurization 

time

θi Surface coverage of component I
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