
DISCONTINUITIES IN MATHEMATICAL MODELLING:

ORIGIN, DETECTION AND RESOLUTION

Tareg M. Alsoudani

A thesis submitted for the degree of Doctorate of Philosophy of

University College London

Department of Chemical Engineering

University College London

London WC1E 7JE

March 2016

I, Tareg M. Alsoudani confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated in

the thesis.

2

Abstract

When modelling a chemical process, a modeller is usually required to handle a wide

variations in time and/or length scales of its underlying differential equations by

eliminating either the faster or slower dynamics. When compelled to deal with both and

simultaneously simplify model structure, he/she is sometimes forced to make decisions

that render the resulting model discontinuous.

Discontinuities between adjacent regions, described by different equation sets, cause

difficulties for ODE solvers. Two types exist for handling discontinuities in ODEs. Type I

handles a discontinuity from the ODE solver side without paying any attention to the

ODE model. This resolution to discontinuities suffer from underestimating the proper

location of the discontinuity and thus results in solution errors. Type II discontinuity

handlers resolve discontinuities at the model level by altering model structure or

introducing bridging functions. This type of discontinuity handling has not been

thoroughly explored in literature.

I present a new hybrid (Type I and Type II) algorithm that eliminates integrator

discontinuities through two steps. First, it determines the optimum switch point between

two functions spanning adjacent or overlapping domains. The optimum switch point is

determined by searching for a “jump point” that minimizes a discontinuity between

adjacent/overlapping functions. Two resolution approaches exist. Approach I covers the

entire overlap domain with an interpolating polynomial. Approach II relies on a moving

vector to track a function trajectory during simulation run. Then, the discontinuity is

resolved using an interpolating polynomial that joins the two discontinuous functions

within a fraction of the overlap domain.

The developed algorithm is successfully tested in models of a steady state chemical

reactor exhibiting a bivariate discontinuity and a dynamic Pressure Swing Adsorption

Unit exhibiting a univariate discontinuity in boundary conditions. Simulation results

demonstrated a substantial increase in models' accuracy with a reduction in simulation

runtime.

3

Dedication

To my father who I still feel his positive presence after he passed away 27 years ago,

To my mother who taught me how to crave my way through difficulties,

To my wife Amani for the valuable support, infinite love and cheerful encouragement she

provided throughout my study time, and

To my children Ziyad, Ludan, Siba and Joud whom I haven't had much time to spend

with while studying for this degree.

4

Acknowledgement

Very special thanks to my advisor, Professor I.D.L. Bogle, for his continuous support,

guidance and above all patience during my study at UCL. His attitude towards explaining

points that I missed without pointing them, pushing me when feeling exhausted, and

being patient while his ideas are still to be digested in my mind is unforgettable. I learnt

so much by interacting with him through my study at UCL.

5

Contents
 List of Figures..8

 List of Tables..14

Chapter 1: Introduction..15

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models...........21

2.1. Definition of a Model..22
2.2. Brief History of Modelling..24
2.3. Model Development..27
2.4. Assumptions in Mathematical Model Building...34
2.5. Numerically Integrating Mathematical Models and the Inherent Errors..............43
2.6. Stiffness and Stiff Mathematical Models..47
2.7. Concluding remarks..50

Chapter 3: Discontinuities and Their Conventional Resolutions.....................................51

3.1. Type I - Integrator Based Discontinuity Resolution..56
3.2. Type II – System Dependent Discontinuity Resolution..60
3.3. Concluding Remarks...61

Chapter 4: Discontinuities in Constructed Models..63

4.1. Discontinuities in the Reactor Model..64
4.2. PSA Model Construction and Discontinuities...67

4.2.1. PSA Process Description and Differential Equations....................................67
4.2.2. Formulation of the PSA synthesis problem...83
4.2.3. Encountered Discontinuities in the PSA Model..93

4.3. Concluding Remarks...97

Chapter 5: Regularizing Discrete Functions..98

5.1. One-dimensional Functions...99
5.1.1. One-dimensional Discontinuity Detection..101
5.1.2. One-dimensional Discontinuity Resolution..104
5.1.3. Perfecting the Connection and the Bounding Box Problem........................109
5.1.4. Are four control points enough?..111
5.1.5. Regularizing boundary and initial conditions..113
5.1.6. Regularizing conflicting boundary conditions...116
5.1.7. Differential models embedding other models..119

5.2. Two-Dimensional Functions...120
5.2.1. Two-Dimensional Discontinuity Detection..124
5.2.2. Two-Dimensional Discontinuity Resolution...126
5.2.3. How legal is “illegal” extrapolation?..129
5.2.4. Mesh Generation...131

5.3. N-Dimensional Functions...134
5.3.1. N-Dimensional Discontinuity Detection...134

6

5.3.2. N-Dimensional Discontinuity Resolution...134
5.4. The Algorithm...139
5.5. Summary and Concluding Remarks..143

Chapter 6: Applications to Some Complex Models...145

6.1. Regularizing a Discontinuity in Heat Transfer Coefficient Calculation.............146
6.2. Regularizing Boundary and Initial Conditions of a PSA Column......................150
6.3. Summary and Concluding Remarks..179

Chapter 7: Summary and Conclusions...180

 References..189

 Appendix A: A Novel Formula for Calculating Pressurization and De-pressurization

Velocity Profiles..198

 Appendix B: Models' Validations with the Minkinnen Process.....................................204

 B.1 A Brief Description of the Process...204
 B.2 The Reactor Model...207

 B.2.1 Reactor Sizing Calculation...210
 B.2.2 Reactor Model Validation...212

 B.3 The PSA Model..214
 B.3.1 Constitutive Equations Used in Constructing the PSA Column Model......214
 B.3.2 PSA Model Validation...224

 Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials.............................232

 C.1 Introductory..232
 C.2 Osculating Polynomials..237
 C.3 C1 Hermite Interpolating Polynomials..240

 Appendix D: Approach II 3-D Vector Tracking and Mesh Generation Equations.........248

 D.1 Three-D Vector Tracking..248
 D.2 Mesh Generation Using Approach II..251

 Appendix E: A Brief on The Developed Code...253

 E.1 One-Dimensional Hermite interpolation..253
 E.2 Two-Dimensional Interpolation..254
 E.3 Past Interpolation to Determine the Value of the missing hermite Point when
Regularizing Boundary Conditions...255
 E.4 Regularizing Initial and Boundary Conditions...256
 E.5 Generating a Two-Dimensional Interpolation Mesh based on Approach II to
Discontinuity Resolution...257
 E.6 Determining the location of the cutting planes for Nu=f(Re,Pr)........................258
 E.7 The regularized Nu=f(Re,Pr) Function...259
 E.8 The discretized Nu=f(Re,Pr) Function...261

7

List of Figures
Figure 2.1 : A flash drum with a pressure safety valve..35

Figure 2.2 : Vapour and liquid benzene viscosities as functions of temperatures. [Reid et

al, 1987]..39

Figure 2.3 : A diagram illustrating the flow of information between entities of a

conventional integration routine, its associated main driver and the model

routine...44

Figure 2.4 : The number of machine bits reserved for a double-precision variable as

outlined by IEEE 754 standard...46

Figure 2.5: The behaviour of the stiff system defined by equation (2.15).........................49

Figure 3.1 : Types of mathematical discontinuities [Swokowski, 1991]...........................54

Figure 3.1: Transformation of a discontinuity into either a regularization or discretization

problem. [Borst, 2008]..57

Figure 4.1 :A plot of Nusselt number versus Prandtl and Reynolds numbers illustrating a

discontinuity in the transition between Laminar and Turbulent flow regimes

at Re = 2300..65

Figure 4.2: A PSA process flow diagram illustrating the connections between feed and

product streams for columns undergoing pressurization, adsorption,

blowdown (co- & counter- current) and desorption steps respectively..........69

Figure 4.3 : Pressure profile versus time for a single [Skarström, 1960] PSA Cycle........70

Figure 4.4: A diagram illustrating the basic [Skarstrom, 1960] cycles a PSA column

undergoes..73

Figure 4.5: Comparison between linear, parabolic and exponential pressure profiles for

pressurization and depressurization steps...74

Figure 4.6: Trends illustrating the imbalance in mass when assuming that pressure

equalization steps act as two separate steps; namely: pressurization-

8

equalization and blowdown-equalization...79

Figure 4.7: Location of the strong-adsorptive purge step relative to the co-current

depressurization step as suggested, but not verified, by [Yang, 1987]. Arrows

indicate the flow direction for each of the steps...88

Figure 4.8: Optimising integer variables as continuous ones through the introduction of

an intermediate layer...92

Figure 4.9: Velocity and component balance boundary conditions for each of [Skarström,

1960] PSA cyclic steps...94

Figure 5.1: Forms of domain switch points between two functions and types of

discontinuities between two adjacent domains...100

Figure 5.2: Behaviours of various error (difference) functions e(x)................................102

Figure 5.3: Location of mesh control points relative to the minimum jump-effort point g.

..106

Figure 5.4: A four-point hermite interpolating polynomial between two intersecting

unidimensional functions using tension (t)=0...109

Figure 5.5: Comparison between 3, 4 and 5 control points using a hermite interpolating

polynomial with various p values...113

Figure 5.6: Past interpolation points at , and in addition to the g point at are used to

estimate the value of at ..116

Figure 5.7: One- and two-interval regularizations of a conflicting boundary discontinuity.

..121

Figure 5.8: One-interval regularization of the conflicting boundary discontinuity between

Desorption and Pressurization steps in a PSA unit.......................................122

Figure 5.9: Two-interval regularization of the conflicting boundary discontinuity between

..123

Figure 5.10: An example illustrating applicability domains of two-dimensional

overlapping functions f1 and f2 and the effect of conditional nesting on

9

boundaries segregation...124

Figure 5.11: Approaches I and II to resolving discontinuity..129

Figure 5.12: Four ways to construct a mesh around a vector-plane intersection point....133

Figure 5.13: Representation of the two types of generated meshes in a 3D cuboid overlap

domain..136

Figure 5.14: A semi-log plot of number of mesh points required versus discontinuous

function dimension...137

Figure 5.15: A simplified flowchart illustrating flow of the presented algorithm. Solid

lines represent the more preferred path while the dashed line represents the

less preferred one. The bounded dotted area represents offline part while the

rest represents the online part...142

Figure 6.1: (a) Discretized and (b) regularized Nusselt functions plotted against time. The

quasi independent variables, Reynolds and Prandtl numbers, are also plotted

for illustration purposes..147

Figure 6.2: A zoomed view of Re-Pr trajectory vector as it approaches the discontinuity

and smoothly slides over it...148

Figure 6.3: Simulation Run Length versus number of internal discretization nodes.......149

Figure 6.4: Comparison between a discretized and a regularized PSA cycle illustrating

relative time span for each of the cycle steps and valve opening/closure span

for w=10. The arrows indicate cycle direction...155

Figure 6.5: Curves representing velocity profiles at the period between Pressurization and

Adsorption steps for both ends of the PSA column. The curves represent

Reference, Discretized and Regularized models at w=5. For the Regularized

model, curves representing p=0.05 and p=0.3 are plotted............................156

Figure 6.6: Curves representing concentration profiles for n-C5 and n-C6 at the period

between Pressurization and Adsorption steps at z=0. The curves represent

Reference, Discretized and Regularized models at w=5. For the regularized

model, curves representing p=0.05 and p=0.3 are plotted............................158

10

Figure 6.7: Curves representing the change in concentration spatial derivatives at both

ends of the PSA column between pressurization and adsorption steps. The

curves represent reference, discretized and regularized models at w=5. For

the regularized model, curves representing p=0.05 and p=0.3 are plotted.. .162

Figure 6.8: Curves representing velocity profiles at the period between adsorption and

depressurization steps for both ends of the PSA column. The curves represent

reference, discretized and regularized models at w=5. For the regularized

model, curves representing p=0.05 and p=0.3 are plotted............................163

Figure 6.9: Curves representing concentration profiles for n-C5 and n-C6 at the period

between adsorption and de-pressurization steps at z=0. The curves represent

Reference, Discretized and Regularized models at w=5. For the Regularized

model, curves representing p=0.05 and p=0.3 are plotted............................164

Figure 6.10: Curves representing the change in concentration spatial derivatives at both

ends of the PSA column between adsorption and depressurization steps. The

curves represent reference, discretized and regularized models at w=5. For

the regularized model, curves representing p=0.05 and p=0.3 are plotted.. .165

Figure 6.11: Curves representing velocity profiles at the period between de-pressurization

and desorption steps for both ends of the PSA column. The curves represent

reference, discretized and regularized models at w=5. For the Regularized

model, curves representing p=0.05 and p=0.3 are plotted............................166

Figure 6.12: Curves representing concentration profiles for n-C5 and n-C6 at the period

between de-pressurization and desorption steps at z=0. The curves represent

reference, discretized and regularized models at w=5. For the Regularized

model, curves representing p=0.05 and p=0.3 are plotted............................167

Figure 6.13: Curves representing the change in concentration spatial derivatives at both

ends of the PSA column between depressurization and desorption steps. The

curves represent reference, discretized and regularized models at w=5. For

the regularized model, curves representing p=0.05 and p=0.3 are plotted.. .168

Figure 6.14: Curves representing velocity profiles at the period between desorption and

11

pressurization steps for both ends of the PSA column. The curves represent

reference, discretized and rregularized models at w=5. For the Regularized

model, curves representing p=0.05 and p=0.3 are plotted............................173

Figure 6.15: Curves representing concentration profiles for n-C5 and n-C6 at the period

between desorption and pressurization steps at z=0. The curves represent

reference, discretized and regularized models at w=5. For the Regularized

model, curves representing p=0.05 and p=0.3 are plotted............................174

Figure 6.16: Magnified version of the curves presented in Figure 6.15a illustrating

concentration profiles for n-C5 at the period between desorption and

pressurization steps at z=0. The curves represent reference, discretized and

regularized models at w=5. For the Regularized model, curves representing

p=0.05 and p=0.3 are plotted..175

Figure 6.17: Curves representing concentration profiles forn-C6 at the period between

desorption and pressurization steps at z=0. The curves represent reference,

discretized and regularized models at w=5. For the Regularized model,

curves representing p=0.05 and p=0.3 are plotted. Curves are identical for all

models. Thus, only one curve appears in each of the figures.......................176

Figure 6.18: Curves representing the change in concentration spatial derivatives at both

ends of the PSA column between desorption and pressurization steps. The

curves represent reference, discretized and regularized models at w=5. For

the regularized model, curves representing p=0.05 and p=0.3 are plotted.. .177

Figure 6.19: The cumulative difference between Y-nC5 and Y-nC6 inlet concentrations

(z=0) predicted by the discretized and regularized models (p=0.05) compared

to the reference model after the first PSA cycle...178

Figure A.1: Dimensionless inlet velocity during pressurization step calculated using a:

parabolic pressure profile, b: exponential pressure profile. The value of

M=2.3076923 corresponds to an initial velocity value (at t=0) that is

equivalent to the one provided by the parabolic profile200

Figure A.2: Dimensionless pressurization step inlet velocity based on a: a fixed value of

12

upstream feed pressure that is equivalent to the high pressure value (parabolic

profile based on equation A.8), b: a variable upstream pressure that is based

on equation A.10...203

Figure B.1: Simplified process diagram for the [Minkkinen et al, 1993] Process.

Individual stream specifications are outlined in Table B.2...........................205

Figure B.2: 3D Temperature profile versus normalized axial distance x and time τ. and

where. Initial higher temperature profiles are due to the release of heat of

adsorption...209

Figure B.3: Steady state reactants and products concentration profiles and temperature

profile versus normalized axial distance...213

Figure B.4: Evolution of raffinate and extract concentrations during the Cyclic Steady

State (CSS) adsorption and desorption steps..225

Figure B.5 : Axial concentration and temperature profiles at the end of the Cyclic Steady

State..228

Figure B.6: Comparison of CSS spatial profiles for temperature and composition between

results produced in this work and those reported by [Silva and Rodrigues,

1998]...229

Figure C.1: A plot of the third degree polynomial constructed from Example A.1.........236

Figure C.2: A plot of sin(x), its respective 2nd order osculating o2(xi) and hermite

polynomials over the interval [-1,0] and with segment discretisation of h=0.1.

..242

Figure C.3: The basic functions of a hermite interpolating polynomial..........................245

Figure D.1: Progression of towards a discontinuity plane...251

Figure D.2: The behaviour of a 2D interpolating polynomial demonstrating the continuity

of the polynomial along the continuous coordinate while interpolating along

the discontinuous axis. (CP = Control Point)...252

13

List of Tables
Table 6.1: Reported Simulation Time for several runs using varying discretization nodes

..149

Table 6.2: Regression results for correlating simulation run length with number of

discretization nodes..150

Table 6.3: Cumulative relative error in velocity at z=0 spanning regularization interval

..171

Table 6.4: Cumulative relative error in velocity at z=L spanning regularization interval

..171

Table B.1: Original [Minkkinen et al, 1993] and approximated feeds to Minkkinen

Process..206

Table B.2: Properties of individual streams described by [Minkkinen et al, 1993]. Shaded

areas indicate information that is obtained through material balances. Bold-

faced figures with white backgrounds refer to information supplied by

[Minkkinen et al, 1993] in their patent...208

Table B.3: Comparison between reactor effluent concentrations and temperatures reported

by [Minkkinen et al, 1993] and those produced in this work.......................214

Table B.4: Comparison between Minkkinen and Silva & Rodrigues experiments'

recoveries and purities..229

Table C.1: Deriving coefficients of Newton interpolating polynomial...........................237

Table C.2: Using Newton divided differences technique to obtain the coefficients of an

osculating polynomial for the set of data presented in Example C.3...........239

Table C.3: Regression results for correlating simulation run length with number of

discretization nodes..240

14

Chapter 1: Introduction

Introduction

Chemical Engineering is one of the most versatile disciplines in science. Its stamp is

sensed in almost every aspect of our life from the fuel that drives our cars to the cement

that builds our homes and to pesticides that remove harmful bacteria and insects from

agricultural products, etc. The current chemical engineering practice covers wider areas

than it used to be in the old days when the discipline was just shaping. Chemical

engineers are now contributing to areas such as design of integrated circuits and

production of composite materials.

In most of these disciplines, experimenting with a product to improve its quality or

reduce production costs comes at a cost. Sometimes the cost is so high that plant

managers will prohibit engineers from making any changes to an existing process unless

or until it is bullet-proofed that these changes will cause no harm to the plant production.

Even when plants are green built, companies resort to old practices that are proven to

work over the uncertainty that accompanies new innovations. Of course, such practices,

although acceptable and sometimes appreciated, hinder development. To overcome

difficulties associated with adopting newly developed practices, engineers resort to either

the use of pilot plants that mimic current operating practices or to the use of mathematical

models that simulate the behaviour of the system.

15

Chapter 1: Introduction 16

Pilot plants, when properly built, constitute a very effective method to experiment with a

small model of an existing process, optimize or completely alter it to make the same

product or redesign it to produce a better product. However, in general, pilot plants are

expensive to build and operate. Their cost is sometimes prohibitive to justify their

construction.

The other route to prove the feasibility of a new idea would be to construct a

mathematical model that resembles the process to be tested whether an operating one or

just being newly built. This route is normally less expensive than building pilot plants. It

is also not uncommon that successful simulation results justify the construction of a pilot

plant.

In order for a mathematical model to be useful, it needs to serve a purpose [Cameron et

al, 2005]. Serving the purpose requires a balance between the level of model detail and its

accuracy. Detailed models would always be preferable if it were not to the fact that they

take longer time to build and more time to test and troubleshoot. Thus, a compromise is

usually struck between model accuracy and its level of detail. This compromise is

achieved through the use of simplified models that only address the main contributing

phenomena to a process while either ignoring or simplifying models of non-core

phenomena. An Inclusion/exclusion of a certain phenomena into/from a mathematical

model is both scientific and judgemental.

When modelling dynamics of slow processes, faster dynamics that occur below a specific

time scale are ignored. Similarly, when modelling faster dynamics, slow dynamics

occurring beyond a certain time scale are ignored. For example, when modelling

ecological systems, scientists seldom care about the fast changes that are happening

Chapter 1: Introduction 17

within a tissue of a living species. Similarly, when modelling the cellular activity of a

human body, human life span is seldom included in such models.

Many similar examples exist in chemical engineering. For example, when modelling flow

distribution networks between several plants, the modeller usually ignores modelling of

smaller plant constituting equipment such as pumps and valves because they exits at a

lower detail level. Also, modellers who model industrial reactors are usually not

concerned with including equations that model molecular level dynamics and vice versa.

There are several reasons behind excluding or approximating models resembling non-core

phenomena:

1. The time and effort used to build such models might not be justifiable considering

the added accuracy. New developments in multi-scale modelling might reduce the

time required to build such models. However, this approach to modelling is still at

its infancy.

2. Computational power required to run such models might not be justifiable.

Development of faster computers might resolve the required computational power

for today's produced models. However, with advances in computational power,

scientists are usually tempted to move from simplified models to more rigorous

ones, increasing the demand for more computational power.

Until the above mentioned problems are resolved, scientists will almost always be forced

to simplify models by excluding non-core phenomena. However, the line that is drawn

between core and non-core phenomena is itself a blurred one. Simulation results deviate

from accuracy when important phenomena are ignored or not properly modelled in the

Chapter 1: Introduction 18

name of simplicity.

Nature can be thought of as a sequence of numerous continuous events. Studying nature

as a whole is virtually an impossible task. That's why scientists prefer encapsulating

selected pieces of a system before studying them in a controlled environment. To extend

the usability of such experiments, scientists fit the results obtained from such experiments

to equations that are preferably derived from basic principles. When it is not possible to

formulate an analytical equation to describe a certain phenomena, scientists resort to

fitting results to empirical or semi-empirical formulas. Regardless of the origin of the fit,

the resulting equation only resembles the generated output within a specified accuracy.

More experiments at different controlled conditions lead to generating different formulas

with differing accuracies.

These scientific practices lead to differing formulas to calculate a certain property at

different conditions. Such situations leave the modeller no choice but to use two differing

formulas to model the behaviour of a particular phenomena that extends between the

boundaries provided by two differing formulas. The model switches from calculating the

property using one formula to the other through the use of conditional statements. If a

condition is met, the model uses one formula. Otherwise, it uses the other one.

This direct use of conditional statements raises what is referred to in mathematics as a

“jump discontinuity”. Such discontinuities raise difficulties when solving mathematical

models. Handling of a discontinuity is a solver dependent problem. Some solvers

reinitialize model equations while others generate bridging interpolating functions. This

means that for the same discontinuous model, different solvers will probably produce

different model outputs. The lack of generality when addressing such a problem raises a

Chapter 1: Introduction 19

question about the accuracy of one provided solution over the other.

A mathematical “removable discontinuity” is generated when the formulas at both sides

of the conditional statement do not cover the full range of their respective independent

variables. Because of the current modelling practices, none of the available modelling

languages or their respective solvers is able to detect such discontinuities. In this work, I

illustrate how a better modelling practice reveals such discontinuities. I will also provide

means to resolve them.

Sometimes, reinitialization is inevitable, mainly because of restrictions imposed by

current modelling practices. However, how much information is lost because of

reinitialization? and whether there is a better solution that avoids reinitialization? are two

questions that remain unanswered.

The first objective of this work is to prove the inaccuracy of some of the practices

adopted with simplified models. In particular, the focus is devoted to the way a simplified

model behaves when crossing two adjacent domains possessing different modelling

equations. The second objective is to provide a better solution to this problem that

requires minimum intervention from the modeller.

I will provide a brief introductory to modelling in Chapter 2. I will start by defining what

is meant by a model and provide a brief history of modelling. Then, I will discuss model

development and highlight how assumptions emerge during the modelling process. A

brief introductory to error analysis will also be provided in this chapter. Due to their

importance in simulation of mathematical models in general and to this work in particular,

a small section is devoted to integrating stiff mathematical models and integrator variable

step sizing.

Chapter 1: Introduction 20

In Chapter 3, I survey the available approaches to handling discontinuities in

mathematical models. I classify the approaches into two types and survey current

practices of each type separately.

Chapter 4 focuses on the encountered discontinuities in the models that are constructed to

prove the novel concepts outlined in Chapter 5. A particular emphasis are drawn to the

way I modelled the Pressure Swing Adsorption (PSA) column. The PSA column model is

built with an objective in mind to build a model that includes all possible steps occurring

in today's operating PSA columns. Then, an MINLP optimizer would be built on the top

of the model to determine the optimum operating conditions of a PSA unit based on a

particular feed and an objective function. Integer parameters in the optimization include

the minimum required number of PSA columns in addition to elimination or inclusion of

some steps. The maximum number of pressure equalization steps is also included as

integer optimisation parameter.

In Chapter 5, I discuss a generic methodology to handle discontinuities in mathematical

models. I start by introducing the concept and illustrate how it applies to one-dimensional

systems. Then, the concept is expanded to cover multi-dimensional systems.

Lastly, Chapter 6 will demonstrate how the ideas developed in Chapter 5 apply to the

complex models constructed in Chapter 4.

CHAPTER 2: An Overview of Modelling with Emphasis on Mathematical Models

An Overview of Modelling with Emphasis on Mathematical

Models

The purpose of this chapter is to provide the reader a brief background

on modelling. Through the discussion, I shed light at the definition of

a model in its general and restricted forms. Then, I follow it by a brief

introductory to the history of modelling. The core ideas behind the

development of mathematical models are explored in the third section.

I also discuss why model assumptions originate and their implications

on the numerical integration of the model. I also briefly discuss the

sources of numerical errors associated when integrating an ODE

system and how variable integration step-size contribute to increased

solution accuracy. Last, I briefly introduce stiff systems and how

they're specially handled through the use of implicit integration

methods.

21

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 22

2.1. Definition of a Model

According to [Schichl, 2004], the word modelling originated from the Latin word

modellus. Modellus refers to the regular way humans cope with reality. [Ritchey, 2012]

states that various kinds of models are used in all aspects of science in ways that make it

difficult to agglomerate the definition of modelling into a clear and concise statement.

However, he points out that two distinguishing criteria stand behind each model. First, a

model should have more than one dimension or as he puts it: mental construct. Each

dimension should support ranges of values or states. Second, a relationship must exist

between model dimensions or their respective ranges.

In earlier papers, an extra restrictive criterion on the definition was imposed, namely:

connections between dimensions should be identified on the basis of connections between

their respective value ranges. However, this additional criterion rules out some of the

classic models such as influence diagrams and analytical hierarchy models. Such models

do not possess direct relationships between the values of their dimensions. In fact, the

dimensions of some of these models are not defined as they are treated as black-boxes.

[Ritchey, 2012] also claims that by the above definition, he relaxed his earlier criterion for

defining a model from those presented in his earlier papers ([de Waal and Ritchey, 2007],

[Ritchey, 2011]).

[Frigg and Hartman, 2012] point out that models refer to a variety of things. They named

physical and fictional objects, descriptions and equations as examples. Below is a brief

description of each of these things:

1. Fictional Objects: Models are also constructed to represent fictional objects and

hence named fictional models. Examples of this class include the Bohr model of

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 23

an atom, a frictionless moving object, ideal collision of billiard balls, etc. Such

models only exist in the mind of the scientist and they don't need to be physically

realizable. In this class, the model becomes the object.

2. Physical objects: Models are constructed to model physical objects. The class of

models that falls into this category covers all physical entities. In such instances,

the model serves as a representation of something else. Wooden models of

vehicles, planes, ships are examples of models that fall into this category.

However, interestingly, [Frigg and Hartman, 2012] points out that some living

creatures can be and are looked at as models to other creatures. Such an analogy is

very evident in life sciences where animals such as rats and monkeys are used as

models to understand human reactions to certain internal/external influences.

Science refers to such models as material models.

3. Descriptions: Some scientists think of models as a stylized description of the

objects under study [Achinstein, 1968][Black, 1962]. Each model is assumed to be

uniquely identified with a description. However, this unique identification raises a

contradiction. If the description is simplified, would it still be representative of the

same model? Would it represent a different model? If a model can be uniquely

identified with a description A, then any other identifying description of the same

model would have to be connected to a different model. Thus, models cannot be

equated with descriptions as the relationship is not one-to-one based.

4. Equations: Some scientists indulge the idea that models are equations. This view

of models also suffers from the same drawback of treating models as descriptions.

[Frigg and Hartman, 2012] also point out that models can be constructed as a combination

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 24

of these elementary constructs. Thus, they define models as representations of objects.

Represented objects can be either real (representing phenomena) or mere theories. A

model can even extend further to include a combination of a partial representation of

reality and a posed theory [Morgan, 2001].

[Schichl, 2004] provides the following definition: “A model is a simplified version of

something that is real”. [Hangos and Cameron, 2001] follow a similar path when they

define a model as an imitation of reality. The term real implies that the fictional models,

discussed earlier, cannot be considered as models in these definitions. This restricted form

of the definition undermines the role of fictional models into the development of science.

Looking at the above introductory concepts, one can easily deduce that a clear and

concise definition that encapsulates all types of models is difficult to construct.[Ritchey,

2012] clearly articulates this problem:

“What is, and what is not, to be considered a scientific model is a matter

of convention, as long as we make our1 rules clear and we apply them

consistently”

2.2. Brief History of Modelling

Ancient cavemen, and cavewomen, paintings are evident examples of humans early use

of abstractions to represent objects. Paintings are considered as models crudely

representing reality whether that reality is an event, a sequence of events (story) or a mere

representation of a number. However, according to [Schichl, 2004], breakthroughs in

modelling were introduced by cultures of the Ancient Near East and Ancient Greece.

[Schichl, 2004] claims that mathematical models can be traced back to ancient

1 As per the author, it has been mistakenly scripted as “are” instead of “our” in the original paper.

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 25

civilizations in Babylon, Egypt, and India. These cultures used mathematical models to

better organize and advance their life. In particular, algorithmic mathematics was used to

solve problems related to irrigation, tax payments, construction, etc.. [Schichl, 2004]

Deductive reasoning emerged with developments in philosophy and its interaction with

mathematics. This development gave rise to the seeds of mathematical theory in the

Hellenic era. Thales of Miletus (624-546 BC), a pre-Socratic Greek philosopher, started

the use of geometry to analyse reality. This introduction of geometry into analysis of

reality facilitated the development of pure mathematics as a science that is independent

from its applications [Kallrath, 2004].

Succeeding Thales, Pythagoras of Samos (570-495 BC) is known as the first pure

mathematician basing his work on Thales. In the 300 years to follow, philosophers such

as Aristotle (384-322 BC) and Eudoxos (408-355 BC) added more contributions to the

science of mathematics. Climax was reached in 300 BC by Euclid of Alexandria (Mid 4 th

century- Mid 3rd century BC). He scripted a collection of books that contained most of the

available mathematical knowledge available at his time. The Elements was the title of the

collection. The Elements contained the first concise axiomatic description of geometry. It

also included a treatment on number theory among other subjects. The Elements remained

as a classic text for teaching mathematics for hundreds of years to follow. Around 250

BC, the theories in The Elements were used by Eratosthenes of Cyrene (276-194 BC) to

calculate distances between Earth and Sun and between Earth and Moon. Eratosthenes of

Cyrene is claimed to be the first applied mathematician [Kallrath, 2004].

By 150 AD, a mathematical model describing the solar system with circles and epicircles

to predict the movement of the sun and the surrounding planets was developed by

Ptolemy (100-170 AD). The accuracy of the model ensured its application for years that

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 26

followed. In 1619, Johannes Kepler (1571-1630 AD) devised a better and simpler model

to predict planetary motion. Newton and Einstein enhanced Kepler's motion model. The

final model is still in use until today.

Development in models and model building methods was not only evident in Europe.

Similar modelling methods were independently developed in countries such as China,

India and Islamic countries such as Persia. Abu Abd-Allah Ibn Musa Al-Khwarizmi (780-

850 AD) was famous of his work on algorithms. In fact, the word algorithm was derived

from his last name. He authored a collection of books on what was known at the time as

Indian numbers (known now as Arabic numerals). His book titled “Al-kitab Al-Mukhtasar

fi Hisab Al-gabr wa Al-muqabala” is rich in mathematical models and problem solving

algorithms. The term Algebra was derived from the title of this book [Kallrath, 2004].

After the decline of Greek civilization, Leonardo da Pisa Fibonacci (1170-1250 AD) is

considered the first great western mathematician. Fibonacci realized the advantage of

Indian numbers over their Roman counterparts. He used the algebraic methods recorded

in Al-Khwarizmi books to succeed as a merchant. In 1202, he authored his book Liber

Abaci. The book marked the introduction of the zero as a number to Europe [Kallrath,

2004].

To advance the use of visual models, artists started novel development in the principles of

geometry. Giotto (1267-1336 AD) and Filippo (1377-1446 AD) were among the first to

introduce the concept of perspective into visual models in Anatomy [Kallrath, 2004].

Although Diophant (201-285 or 215-299 AD) and Al-Khwarizmi made great

contributions to algebra, it wasn't until Vieta (1540-1603 AD) that variables were

systematically introduced into mathematics. Nevertheless, it took 300 more years to fully

articulate and understand the role of variables in the formulation of mathematical theory.

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 27

Cantor (1845-1918 AD) and Russel (1823-1913 AD) were among the first scientists that

contributed to variable formulations. Deriving laws of physics that described the

principles of nature was the major driving force behind developments in modelling and

mathematical theory. The introduction of models into economics came at a later stage

[Kallrath, 2004].

Process Systems Engineering (PSE) has evolved as a science after the industrial

revolution to advance problem solving techniques using models derived from many of the

physical sciences and engineering disciplines. The motive behind this development is the

growing trend to reduce complex physical behaviour to simple mathematical forms for

easier process design. This motive has continued and increased after the Second World

War. The development of faster computers, high level programming languages and

advances in mathematical modelling have all lead to considerable progress in the area of

Process Systems Engineering. [Hangos and Cameron, 2001]

2.3. Model Development

The great interest in model building and model use is because it is a means to gaining

insight into the behaviour of systems, probing them, controlling them, and optimizing

them. The process of model building and use is divided into four steps [Hangos and

Cameron, 2001]:

1. Transforming a real problem into a mathematical model.

2. Solving the mathematical model.

3. Interpreting model output.

4. Using results in real world.

Models are built to serve a variety of functions. Examples include:

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 28

1. Explaining Phenomena: Most developed theories in physics fall into this category.

Examples include : Newton’s mechanics, thermodynamics, Einstein’s theory of

relativity, quantum mechanics, the Standard Model of particle physics, etc.

Models in engineering follow a similar trend. Examples include models of

distillation columns, fluid behaviour around objects, circuit analysis, channel

hydraulics, etc.

2. Making Predictions: Models that are built to explain certain phenomenon can be

further used to predict the behaviour of a system under certain conditions. The

most obvious example falling into this category is weather forecast models.

3. Decision Making: quite a number of models are built to aid in decision making

process.

The process of designing models begins with a goal in mind. The modelling goal specifies

the intended use of the model. The modelling goal has a major impact on the level of

detail and on the mathematical form of the model to be built. Models can be developed to

test dynamic or steady state aspects of a system, to help in design problems and to address

process control issues [Hangos and Cameron, 2001]. According to [Cameron et al, 2005],

modelling objectives in current modelling practice are forgotten, implicitly considered, or

remembered in a blurred manner at a later stage in the building cycle of the model. The

lack of an explicit goal statement significantly affects the focus, task efficiency, model

coherency and eventually might lead to termination of model cycle, especially in model

conceptualization. Lack of explicit goals often results in a model that is not suitable for

the stated purpose, consumes an enormous amount of time to develop and is either too

simplistic or exhaustively complex for the required application. In their paper, [Cameron

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 29

et al, 2005] defined a modelling goal triplet

<<Model>> to/for <<Application>> of/from/for <<System>>

The short notation for this triplet is <<M-A-S>>. They also pointed out that

decomposition of a modelling objective is not an easy task. Their means-end analysis for

process modelling is focused on introducing a framework that permits the modeller to

develop model structures that possess the required functionality to achieve the declared

goals. Model functionality includes a model representation of the basic character of the

system as well as the required functionality for the application area [Cameron et al, 2005].

The effort of setting up a detailed mathematical model for a chemical process is high due

to the large variety of chemical process units and physical phenomena in addition to

increasing requirements on the sophistication of models. To overcome this modelling

bottleneck, considerable effort needs to be exerted into systemising process models,

formalizing their representation, and developing knowledge-based software tools.

[Bogusch et al, 2001] used conferences, industrial project meetings and a field study to

collect requirements on modelling environments from a practitioner’s point of view. Their

findings are summarized as follows:

1. Support should be provided for development and storage of groups of models that

serve a particular process need.

2. Interaction between modeller and modelling package needs to be transformed

from equation level to knowledge level.

3. Support should be provided to maintain process models up-to-date with process

changes.

4. Modelling packages should be capable of storing and retrieving modelling

knowledge to be used to guide the model development process.

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 30

5. A library of predefined model building blocks of fine granularity should be

supplied.

6. Automation of some stages of the modelling process. For examples, Knowledge

propagation, documentation and report generation can be automated.

7. Models are more than equations. Model assumptions and limitations, degrees of

freedom, model initialization, etc, should also be included in a model

representation.

In their paper, [Bogusch et al, 2001] describe how ModKit has evolved as a process

modelling environment to meet these needs.

Mathematical models can be classified in pairs, as (Mechanistic or Empirical), (Stochastic

or Deterministic), (Lumped or Distributed), (Linear or Nonlinear) or (Continuous,

Discrete or Hybrid) [Hangos and Cameron, 2001]. The approach to modelling a particular

problem can also be classified. [Marquardt, 1996] classified modelling approaches in

current commercial process simulators into two groups: block-oriented (or modular) and

equation-oriented. In the Block-oriented approach, the main focus is to model at the

flowsheet level. Process entities are described through block diagrams that are built from

standard library of building blocks. The blocks and their connectivities model the

behaviour of a process unit or part of it. Blocks are connected via signals representing

stream flow of information, material and energy. Standard formats are used to construct

each stream. Advantages of this modelling approach include ease of accessibility and use.

Despite its great advantages, this approach is considered inadequate for supporting

solutions of more complex problems. The reason is the lack of precoded models for

various unit operations with adequate level of detail. Examples include multiphase

reactors, membrane processes, polymer reactors and most units involving particulates. As

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 31

a result, expensive and time consuming model development for a particular unit is often

needed during project work [Marquardt, 1996].

Equation-oriented modelling tools implement unit models and incorporate them in a

model library through declarative modelling languages. Aspen+ equation-oriented

modeller and Aspen dynamics (formerly SPEED UP) are examples of this approach.

Languages developed in these modelling tools extensively support model implementation.

However, users do not have the freedom of developing models from basic engineering

concepts. In addition, support is lacking for appropriate design and documentation of the

model library. Thus, the concept of validated model re-usability, by a group of engineers,

for these types of models is impossible. Reinventing models becomes imperative. Models

that are initially well developed deteriorate over time. [Marquardt, 1996].

The realised disadvantages in both approaches has excited researchers to look for better

modelling approaches. The main aim is to ease model development and maintenance

through developing model formulation capabilities, enhancing model reuse and

adaptation as well as facilitating model's maintenance and documentation.

Recent developments have led to modelling languages that are more declarative (explicit

and symbolic) and multilevel model based. These developments can generally be

classified into four groups:

1. Process Modelling Languages: Although the fundamental concepts of these

languages are similar to those of the generic modelling languages, they are

designed from the start to address the specific issues of a selected application

domain in the definition of the language. Examples include MODEL.LA or

VEDA. In these languages, chemical engineering specific elements are included in

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 32

the language definition. It should be noted that VEDA is a basic language

definition platform [Marquardt, 1996]. The language definition syntax is based on

the use of Objects derived from Object Oriented programming concepts

originating from computer science. Although originally developed to model

chemical engineering phenomena, the structure of the language is generic enough

to accommodate models from any scientific discipline. Currently, implementations

are carried out using different software platforms. An example is the frame-based

knowledge representation language FRAMETALK [Rathke, 1993] as well as the

expert system shell G2 [Gensym, 1995] and the process-centred design

environment PROART/CE [Dömges et al , 1996].

2. Modelling Expert Systems: the objective behind these modelling environments is

to produce a sufficient process model from a formal description of the modelling

problem that is initially introduced by a user with a minimum or no further

interaction. Similar to all expert systems, the system should contain a knowledge

base that is built on some formalism of a hybrid knowledge representation, an

interface for knowledge acquisition, a description facility in addition to a discrete

reasoning system that allows automatic model generation from the provided

specification. The early attempts to model such a system constituted MODEX. In

addition, MODASS exhibits some aspects of this general idea. After prototypes of

both modelling languages were implemented and enhanced, they were suspended.

PROFIT encompasses recent advances in expert systems. In PROFIT, the user

supplies details of structural specification in addition to the phenomenological

characteristics that comprehensively define the considered process abstraction. An

inference engine, that is rule-based, automatically determines a set of balance

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 33

equations based on the supplied facts [Marquardt, 1996].

3. Interactive (Knowledge-Based) Modelling Environments: knowledge-based design

environments or construction kits are built to enforce the traditional concept of

elementary building blocks that result in a robust model. Various possible

configurations can result from those elementary building blocks because of their

generic structure that provides few restrictions on combined blocks. Instead of

directly solving the problem, the system provides a variety of solution paths that a

modeller can select from. Consequently, problem specifications are constructed

side-by-side with the solution. There isn't, so far, a practically built system that

complies with this idea. Nevertheless, Some of its concepts are found in

MODASS or in knowledge-based user interface of DIVA [Bär and Zeitz, 1990].

4. General modelling languages: Examples of this group include DYMOLA,

OMOLA , ASCEND or gPROMS. These languages can be looked at as the second

generation of equation oriented simulation languages that can be traced back to

the 1960s specification of CSSL [Augustin et al, 1967]. Their design supports

hierarchical decomposition of complex models. This hierarchical decomposition

facilitates model reuse and maintenance. All of these languages utilise concepts

originated from Semantic Data Modelling [King and Hull, 1987] and Object

Oriented Programming [Stephik and Bobro, 1986]. They exhibit structured

representations of encapsulated submodels that are organized in terms of

inheritance and aggregation hierarchies. The use of these languages is not

restricted to chemical engineering applications. This is because the definition of

the language is reduced to a relatively small number of generic elements

[Marquardt, 1996].

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 34

The development of any software package that supports an engineering task requires a

model conceptualization of the problem domain. This abstraction level should eventually

reveal a reasonable process modelling methodology that well suits computer

implementation. This methodology should include:

1. Models' decomposition and identification of elementary modelling objects that

can be combined to form a coherent model of virtually any chemical process.

2. Generic modelling algorithms that support building models from the ground up,

maintenance and modifications of existing models to serve the requirements of a

new context [Marquardt, 1996].

2.4. Assumptions in Mathematical Model Building

Mathematical models constitute a class of models that are built based on mathematical

equations to study the behaviour of an existing system under different scenarios or to

study the effect of pushing the system close to or beyond its known boundaries.

In general, equations in a mathematical model are divided into conservation laws and

constitutive equations [Hangos and Cameron, 2001]. Conservation laws are equations that

restrict and align the behaviour of the model with the system it is presenting. When

modelling, the differential variables belonging to this class of equations are called state

variables as they determine the state of the system at any particular time or spatial instant.

Integration routines usually integrate these variables from particular initial to final

conditions, between predetermined boundary conditions, or a combination of initial and

boundary conditions. Differential variables are assumed continuous in nature. However,

discontinuities may occur in differential equations. Such discontinuities usually result

from model formulation and its underlying assumptions. Let us illustrate this with an

example.

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 35

Figure 2.1 : A flash drum with a pressure safety valve.

Example 2.1 An over-pressurized column.

Let us draw a mass balance envelope around a simple flash drum that

contains a pressure safety relief valve as illustrated in Figure . In normal

process operating conditions, the pressure relief valve is closed since the

pressure is lower than the set value of the relief valve Ph . In such

conditions, the overall dynamic mass balance around the flash drum can

be written as:

dm
dt

=ṁ1− ṁ2−ṁ3 (2.1)

Once drum pressure reaches the pressure set by the PSV (Ph), the mass

balance will immediately shift to the form:

dm
dt

=ṁ1− ṁ2− ṁ3− ṁ4 (2.2)

This sudden change in the mass balance equation results in an explicit

model discontinuity.

Conventional integration routines properly tackle this type of discontinuity mainly

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 36

because the discontinuity appears in the state variable. Such routines use an interpolating

polynomial to bridge the gap between the two sides of the discontinuity. Some of modern

integration routines (e.g. [gPROMS, 2012]) prefer re-initialization of variables over

bridging with an interpolating polynomial. However, in such cases, bridging with an

interpolating polynomial should arguably provide a more accurate solution than mere

initialization. The increase in accuracy is attributed to the fact that an interpolating

polynomial would implicitly assume that there is a spatial or temporal transition between

the two adjacent sides of the discontinuity. Smooth transition more resembles reality

regardless of the difference between the relative rates of change exhibited by system

behaviour and the interpolating polynomial representing the transition over the

discontinuity.

On the other hand, reinitialization assumes an instantaneous transition between the sides

of the discontinuity. This instantaneous transition overlooks the smoothness of the system

transition. In doing so, model behaviour information during transition is not captured. In

addition, the use of an interpolating polynomial is computationally less exhaustive as I

will prove in section 6.1. Reinitialization is computationally exhaustive because the

integrating routine does not only reinitialize the discontinuous variable or equation.

Rather, it reinitializes the entire system of equations. Thus, computational effort is

directly proportional to model size when reinitializing. Such computational deficiency

mandates the use of more powerful computing platforms as the size of the model

increases.

Let us turn our attention to constitutive equations. These equations are formulated and

added to conservation laws (equations) in order to determine values of particular

constants/variables appearing in the differentiable equations. The reason behind the need

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 37

for such equations lies in the fact that when conservation balances are written, few of

their underlying terms require either definition or calculation [Hangos and Cameron,

2001]. Constitutive equations are, unlike balance equations, particular to the system under

study. They define the characteristics of a particular system and to some extent

differentiate it from other systems [Aris, 1999]. Examples of model variables that can be

calculated using constitutive equations include the density of a two-phase fluid in a

crystallizer, thermal conductivity of a substance, the overall heat transfer coefficient of a

particular system, stresses within a rock, etc. These properties are usually functions of the

state of the system (temperature, pressure, flow and composition) in addition to other

system specifications.

In some cases, the constitutive variable may reduce to a simple constant such as the

resistance in a simplified electrical circuit. However, in other cases, equations may extend

beyond that. The complexity of calculating a constitutive variable in a conservation

equation is usually a direct function of the accuracy required for the value of that variable.

Thus, in general, more accurate values require more complex equations.

To overcome the need to implement high accuracy calculations over the entire range of

the property to be estimated, scientists and engineers resort to formulating relatively

simplified equations that calculate the value of a constitutive variable to a certain degree

of accuracy. Such equations are based on theoretical grounds, experimental data or a

combination of both. Regardless of the origin of the calculation method, it is almost

always associated with a domain at which it can be applied with some confidence, a

minimum acceptable accuracy and few simplifying assumptions.

Extrapolating the use of the calculation method beyond its applicability domain results in

loss of either confidence or accuracy of the reported values, if not resulting in both. To

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 38

overcome this barrier, researchers opt to define an equation or a set of equations that

satisfy minimum acceptable accuracy for each of the domains a simulation model might

run into. This approach works well within the applicability domain of the equation.

However, it introduces another problem when simulation moves from the applicability

domain of one equation (or correlation) to that of another. The problem is illustrated in

Example 2.2.

Example 2.2 Viscosities of liquid and vapour benzene:

The viscosities of saturated pure vapour and liquid benzene against the

temperature are plotted in Figure 2.2. Saturated liquid viscosity is plotted

on the left y-axis while saturated vapour viscosity is plotted on the right

axis. The saturated liquid viscosity at any given temperature is roughly

about thirty times that of the saturated vapour. A modeller can account

for the value of the viscosity at any given phase through an expression

such as:

if Phase=Vapour
Viscosity=Vapour Viscosity

else if Phase=Liquid
Viscosity=Liquid Viscosity

endif

A simulation model involving a transition between the two phases will

most probably run into a discontinuity at the phase transition point

because of the large differences between the viscosity values of the two

phases.

Since the origin of constitutive equations differ from one applicability domain to

the other, it becomes natural to realise that these equations will most probably

violate continuity at the intersecting points of their applicability domains

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 39

although they are calculating the value of the same property. Such a discontinuity

introduces a problem when a simulation integration routine moves from one

domain to an adjacent one exhibiting different equations to calculate the same

variable.

Figure 2.2 : Vapour and liquid benzene viscosities as functions of temperatures. [Reid et

al, 1987]

As discussed earlier, conventional integration routines use an interpolating polynomial to

resolve the discontinuity. However, conventional integration routines cannot detect the

exact location of the discontinuity. They rather detect the discontinuity in the state

variable resulting from a discontinuous constitutive equation. Since discontinuity is

detected at the state variable level, the bridging interpolating polynomial is constructed at

the state variable level. Thus, the resulting interpolating polynomial is not representative

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 40

of system behaviour any more. Such a resolution leads to:

1. a diversion of the simulation from its original trajectory. This diversion creates an

error and reduces confidence in simulation results post discontinuity. The error

accumulates with every passage through a constitutive-equation discontinuity.

What worsens the situation is that the error is not calculated as it is passed

undetected. At best, the modeller is merely notified of the existence of a

discontinuity and its respective resolution.

2. a situation known in literature as a sticky discontinuity. A sticky discontinuity

happens when the change in the simulation trajectory, introduced by the

interpolating polynomial, lands the model at a pre-discontinuity point leading to a

regeneration of the same polynomial and a re-landing at the same pre-

discontinuity conditions. The situation continues until the integrating routine

surrenders after a certain preconfigured number of iterations.

Modern solvers such as [gPROMS, 2012] reintialize the entire model equation when such

a discontinuity is encountered. Reinitialization in this situation is better than the use of an

interpolating polynomial since it, at least, preserves the structure of the model and avoids

sticky discontinuities. However, the aforementioned reinitialization problems still exist

and a proper solution remains to be found.

A third form of a discontinuity appears in a model when a sudden change exists, not in

model equations but in their respective boundary and/or initial conditions. Examples of

such discontinuity include a sudden open/closure of a motor-operated valve, the start-up

or shut-off of a pump or a sudden reroute of flow network. The discussion is best

explained through an example.

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 41

Example 2.3 Pressurizing and de-pressurizing a vessel.

In this example, I will model a simple gaseous pressurization of a vessel

through one end and its immediate depressurization through the other end.

The interest is focused on concentration and velocity profiles throughout

the vessel over space and time. Thus, I will discretize the axial dimension

of the vessel. Uniformity will be assumed in radial direction. To further

simplify the problem, I will assume isothermal conditions and negligible

pressure gradient. The differential component concentration of the system

can be written as:

dc i

dt
=DL

d2 ci

d z2 −
d(c i u)

dz
(2.3)

Also, since no reaction or adsorption is occurring inside the vessel, the

total concentration becomes a function of pressure only. Assuming an

ideal gas behaviour:

C t=f (P)=
P

RT
(2.4)

Thus, velocity becomes a function of total concentration and its time

derivative:

dv
dz

=
1
C t

dCt

dt
(2.5)

To complete the problem specification, I need a function representing the

change in vessel pressure with respect to time (P = f(t)). An exponential

form is presented in equation (2.6)

P=Plow− (Phigh−Plow)[1−e
−M pt] (2.6)

Since the component concentration balance is presented through a PDE

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 42

that is first order in time and a second order in space, I need to specify the

initial conditions as well as the boundary conditions. For this example,

The focus is devoted to boundary conditions of the PDE. Thus, initial

conditions (feed component concentrations) can be arbitrary selected.

When pressurizing the vessel, the feed is introduced at one end (z=0) while

the other is closed (z=L). The boundary conditions for the feed

introduction end and the closed end during pressurization step are

respectively outlined below:

−DL

∂c i

∂z
|z=0=u|z=0 (ci

f− c i|z=0) (2.7)

−DL

∂c i

∂z
|z=L=0 (2.8)

For the depressurization step, the respective boundary conditions are as

follows:

−DL

∂c i

∂z
|z=0=0 (2.9)

−DL

∂c i

∂z
|z=L=0 (2.10)

Note how the boundary condition changes form from equation 2.7 to equation 2.9.

Such a change creates a discontinuity in the mathematical formulation of the

problem.

Almost all modelling literature treats discontinuities in boundary conditions similarly.

Simply stated, no known integration routine can smoothly integrate over changing

boundary conditions. Thus, almost all modelling languages allow modellers the flexibility

to split a discontinuity in boundary condition into two separately treated problems. The

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 43

integration routine integrates over the first set of mathematical equations, stops

integration, reinitializes model equations and continues integrating into the next set of

equations.

As I stated earlier, although reinitialization overcomes the discontinuity, it comes at the

cost of introducing an error into subsequent integration steps. In addition, it is

computationally exhaustive as all system equations need reinitialization and not only the

discontinuous set.

It appears from the above discussion that there is still a room to improve the accuracy and

computational efficiency when integrating discontinuous functions whether the

discontinuity occurs in the state variable, the constitutive equation or the boundary

condition.

2.5. Numerically Integrating Mathematical Models and the Inherent

Errors

In order to solve any mathematical model, it needs to be reduced to a set of ordinary

differential equations (ODEs) before linking it to an integration routine (sometimes an

integration routine is referred to as a solver). If a model contains higher order differential

equations such as Partial Differential Equations (PDEs), the equations are reduced to a set

of ODEs using readily available techniques in literature before passing the final system to

the integration routine.

A typical relationship between the model and the solver, as implemented in most

conventioal solvers, is represented int Figure 2.3. As illustrated in the figure, the main

driver routine (Block A) is responsible for providing the initial conditions and the overall

integration interval. This routine is almost always written by the model developer. Once

information is passed to the ODE integrator (Block B), the integration routine initializes

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 44

integration and starts integrating between initial and final points defined by the main

driver routine in a sequence of integration steps.

Figure 2.3 : A diagram illustrating the flow of information between entities of a

conventional integration routine, its associated main driver and the model routine.

For each integration step i, the integration routine passes the current integration position

(xi), the values of the yi,j vector evaluated at xi and the integration step size h=Δx to the

ODE model routine (Block C). The ODE model routine evaluates the Δyi,j/Δxi and passes

results to the integration routine. Once the integration routine receives a new set of

Δyi,j/Δxi, it checks solution accuracy by one of the following methods:

1. Recalculating derivatives using xi and yi,j vectors that correspond to a smaller h

(normally half of the original one) while maintaining the integration algorithm.

|Δ y i , j

Δ xi
|
xx i
+Δ x i

−
Δ y i, j

Δ xi
|

xxi
+0.5Δ x i

|<ϵ ∀ j (2.11)

2. Computing the error using two different integration algorithms with the first (A)

being more computationally efficient while the second (B) being more accurate.

Both algorithms will integrate through a fixed integration step size h=Δx.

ODE Integrator ODE ModelMain Driver

xo=a , yo ,
Δ yo

Δ xo

, [a ,b]
x i∈[a, b] , yi , j

Emax

Δ y i, j

Δ xi
yb

A B C

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 45

|Δ y i , j

Δ xi
|
xx i
+Δ x i

A

−
Δ y i, j

Δ xi
|

xxi
+Δ xi

B |<ϵ ∀ i (2.12)

Regardless of the error calculation method, the integration step is accepted if the error is

less than a specified tolerance ϵ and h is increased for the subsequent integration step.

Otherwise, h is reduced and integration is repeated over the newly calculated h.

The difference between the two integral values, calculated using either of equations 2.11

or 2.12, constitutes the local error, or at least an approximate numerical representation of

it. The inaccuracy that results from using equation 2.11 arises from the fact that

integrating using any value h̄ , representing the magnitude of the halved step, that is less

than h carries its own errors. An exact representation of the local error is only achievable

when h̄ approaches an absolute 0. Of course, the calculation then becomes

computationally prohibitive. So, a compromise is usually struck between acceptable

accuracy and computational efficiency.

The inaccuracy associated with using equation 2.12 as error evaluation criterion stems

from the fact that the more accurate algorithm is not the exact solution to the integral.

Thus, it also carries its own error within its computation. We are simply stating that a

numerical solution is as good as the computing algorithm and, with an infinite

computational power and/or highly accurate numerical solution algorithm, the numerical

solution might reach the exact one.

Errors resulting from the use of a particular numerical algorithm can be reduced by

deploying better numerical algorithms, increasing efficiency of certain existing ones or

tightening solution error-tolerance criterion. The first two solutions are handled by the

modelling language developer while the last one is handled by the modeller.

In addition to errors resulting from the use of a particular numerical algorithm, there is

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 46

another source of numerical error that is associated with machine precision. It is

sometimes referred to as the round-off error. Each computing machine stores numbers to a

finite precision. If the calculated number requires a precision that is more than what the

machine can store, an error is introduced that is equivalent to the difference between the

true numeric value and that stored by the machine.

[Cheney and Kincaid, 1999] state that round-off errors are negligible when integrating

few steps. However, error magnitudes start playing an important role when integrating

over hundreds to thousands of steps. The IEEE 754 double precision format, illustrated in

Figure 2.4, stores a float number using 15-17 decimal figures (depending on the sign).

This number representation significantly reduces errors associated with rounding-off.

 Sign (1 bit)

Exponent =

(11 bits)

Mantissa

(52 bits)

Figure 2.4 : The number of machine bits reserved for a double-precision variable as

outlined by IEEE 754 standard

Another solution that overcomes machine precision limitations is rescaling of ODE

variables. Sometimes, it is also called normalization. Basically, the ODE variables are

transformed from their original domains to normalized ones. For example, let us assume

that an integral of an ODE y'(x) = f(x,y) is required to be carried over x∈[a ,b] with an

initial condition y(a) = g and a known y domain of y∈[c ,d] . All variables and their

respective domains can be normalized to fall within a range of [0,1]. For the independent

variable x, the transformation will take the form x̄=(x−a)/(b− a) resulting in x̄∈[0,1] .

Similar transformation over the dependent variable y using ȳ=(y−c)/(d−c) , results in

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 47

ȳ∈[0,1] and an initial condition of ȳ (0)=(g−c)/(d−c) .

The error that results from a one-time execution of the numerical algorithm is referred to

as the local error. This error is the sum of the last two pre-mentioned errors over a single

execution interval of a particular numerical algorithm. When integrating polynomial

ODEs, the local error resulting from a single integration step can be easily calculated

using Taylor's series expansion of the form:

EL=
f ' (x i , y i)

2!
h2
+

f ' '(x i , y i)

3 !
h3
+

f (4)(x i , y i)

4 !
h4
+

f (n)(x i , y i)

n!
hn (2.13)

The integer n in equation (2.13) corresponds to the order of the polynomial to be

integrated since any derivatives beyond the nth derivative will be zeros as per polynomial

definition. The calculation of the local error is more accurate when exact derivatives of

(2.13) are available and computable. When these derivatives are not available, their

numerical counterparts can replace them with a compromise on accuracy.

When a particular numerical algorithm is repeatedly executed to solve a particular

numerical problem (as in ODE integration), the sum of the local errors introduced by a

particular execution step in addition to errors introduced by previous executions is called

the Cumulative or Global error. When the exact solution is available, for comparative

purposes, the global errors is calculated as the difference between the exact solution and

its numerical counterpart..

2.6. Stiffness and Stiff Mathematical Models

In this discussion, a particular interest is devoted to stiffness of ODE systems because

discontinuities in ODEs originate at the boundaries of stiffness where conventional

numerical integration methods do not apply. Conventional methods to resolving

discontinuities in ODE systems are discussed in Chapter 3: .

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 48

A stiff system of equations is a system that inherently involves mixed, slow and fast,

dynamics. The bigger is the difference between the fast and slow dynamics of a system,

the stiffer is the system [Chapra and Cancale, 2002].

In numerical mathematics, stiffness is described as a phenomenon rather than a property

of the system. This is mainly because there is no concise definition to stiffness. In

addition to the description outlined earlier, here are few more definitions:

• An ODE system is considered stiff if the size of the integration step is defined by

a stability criterion and not by solution accuracy.

• An ODE system is is considered still if explicit integration methods fail to

integrate it or take longer time to integrate.

• A linear ODE system is stiff if all its associated eigenvalues posses negative real

part, and the stiffness ratio (the ratio of the magnitudes of the real parts of the

largest to smallest eigenvalues) is large.

• In general, An ODE system is considered stiff if the magnitudes of eigenvalues of

its Jacobian matrix greatly differ.

In the vast majority of systems, the rapid changing dynamics are only evident in a fraction

of the integration interval. Afterwards, the system behaviour is dictated by the slower

dynamics [Chapra and Cancale, 2002]. For example, consider the ODE system:

dy1

dt
=1000∗(1− y1)

dy2

dt
=1− y2

 (2.14)

with initial conditions y1(0) = y2(0) = 0. The analytical solution takes the form:

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 49

y1(t)=1−e−1000 t

y2(t)=1−e− t
 (2.15)

The behaviour of the system is plotted in Figure 2.5. Note how fast the response of y1(t)

compared to y2(t).

Figure 2.5: The behaviour of the stiff system defined by equation (2.15).

If a small integration step h is used, the dynamics of the fast response ODE will be

captured. However, despite the fact that the fast response ends after a fraction of the

integration interval, any variable step-size routine that is not equipped to handle stiff

systems (mainly explicit integration routines) will fail to increase the step-size afterwards

[Chapra and Cancade, 2002]. Note the difference in time constants defining the system in

equation 2.14 (0.001 and 1). If the time constant of the fastest response equation in an

ODE system is denoted as τ fastest and that of the slowest response equation is denoted as

τslowest , stiffness ratio Rs is defined as:

y1(t)=1−e−1000t

y2(t)=1−e−t

t

y1(t)=1−e−1000t

y2(t)=1−e−t

y(t)

Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models 50

RS=
τslowest
τ fastest

 (2.16)

2.7. Concluding remarks

In this introduction to modelling, I defined modelling and provided a brief historical

background. The importance of defining a modelling goal is also navigated. The concepts

of equation-oriented and block-oriented modelling were introduced. I also provided a

summary of available modelling languages and their categorization. The difference

between conservation laws and constitutive equation has been highlighted. I also provided

an insight on how discontinuities appear in formulation of mathematical equations. I

discussed the building blocks required to integrate any given model and introduced

variable step-size as a mean to to efficiently integrate ODEs without a significant loss of

accuracy or overload of the computing machine. Lastly, I briefly introduced Stiff ODE

systems with methods to integrate them.

When the response time of the fastest ODE in the system approaches 0, RS in equation

2.16 approaches infinity. Literature refers to this type of problem as a discontinuity

problem. Discontinuities in mathematical ODEs require special handling techniques that

are presented in Chapter 3. The chapter presents conventional approaches to resolve a

discontinuity in an ODE system. Chapter 4 introduces the models that are constructed to

prove the novel concepts in Chapter 5. In Chapter 5, I present a novel approach to handle

discontinuities. This novel approach better bounds the discontinuity, minimizes the error

around it and reduces computational power. Chapter 6 presents some of the applications

to the novel approach presented in Chapter 5.

CHAPTER 3: Discontinuities and Their Conventional Resolutions

Discontinuities and Their Conventional Resolutions

In this chapter, I define the mathematical discontinuity, shed light on

the previous work dedicated to handling discontinuities in modelling

languages. The previous work on handling discontinuities is classified

into two types. This chapter reviews previous literature on both types.

51

Chapter 3: Discontinuities and Their Conventional Resolutions 52

A process can be thought of as a complex system that is described by, mostly, continuous

mathematical functions (algebraic or differential). Solution of these differential equations,

usually through integration, brings insights into the behaviour of the process under study.

However, as discussed earlier, the continuity of these mathematical functions is

sometimes broken by internal or external influences. Breakage of a continuity occurs

because of the tendency of scientists to treat each process condition with differing

constitutive equations and/or boundary conditions. Once simulation shifts from one

condition to another, the underlying equations change; usually with no reservation of

mathematical continuity. A rapid phase change or flow reversal are examples of an

internally generated discontinuity in a ODE/DEA system whereas switching a pump on or

off can be considered as an external influence that raises a mathematical discontinuity in

the modelled system.

A mathematically continuous function at a point c is one that satisfies three conditions

[Swokowski, 1991]:

f(c) is defined (3.1a)

lim
x→c

f (x) exists (3.1b)

lim
x→c

f (x)=f (c) (3.1c)

Satisfying condition (3.1c) implies that(3.1a) and (3.1b) are automatically satisfied.

Discontinuities in mathematical functions arise when one or more of the above conditions

are not satisfied. Mathematics classify discontinuity into removable, jump and infinite.

Figures 3.1 illustrate the various forms of discontinuities encountered in mathematics.

Figure 3.1a and 3.1b illustrate two types of removable discontinuities. For Figure 3.1a,

the value of the function at point c is not defined. Thus, condition 3.1a is not satisfied and

the function is deemed discontinuous at c. Figure 3.1b illustrates a different type of

Chapter 3: Discontinuities and Their Conventional Resolutions 53

removable discontinuity. Although the function is defined at point c (condition 3.1a),

condition 3.1c is not satisfied as lim
x→c

f (x)≠ f (c) . The discontinuity in Figure 3.1c is

generally referred to as jump discontinuity. Note that although f(c) is defined at one side

of the function, condition 3.1c is still not satisfied as lim
x→c-

f (x)≠ f (c) . The last form of

discontinuity is called infinite discontinuity and is illustrated by the example in Figure

3.1d. In such cases, condition 3.1a and 3.1b are always not satisfied. Note that at this

stage of the discussion we are only addressing the continuity of a function but not the

continuity of its respective derivatives.

A discontinuity in a mathematical model arises because of a change in a system state

leading to a change in mathematical equations representing the system. In some cases, the

discontinuity presents itself explicitly in the form of a conditional statement to describe a

transition from one state of the system to another. For example, a modeller would transit

from a laminar to turbulent flow regime through a conditional statement that sets the

boundaries for each regime. Because each regime is described by a different function

(correlation), the conditional statement used to transit simulation between two adjacent

regimes would probably cause a jump discontinuity.

Other discontinuities might not be modelled in an explicit conditional statement form.

However, the structure of the model causes a state change that consequently alters the

underlying mathematical equations and eventually leads to a model discontinuity.

Examples of this form include model boundary conditions related to disc ruptures, pump

start/stop, sudden opening/closure of valves, etc. Such discontinuities can be triggered by

a time, space or state-variable event. Such discontinuities can still be reformulated as

conditional statements and hence facilitate the derivation of a unified solution for this

Chapter 3: Discontinuities and Their Conventional Resolutions 54

class of problems resulting from discontinuities in conditional statements.

a. Removable discontinuity b. Removable discontinuity

c. Jump discontinuity d. Infinite discontinuity

Figure 3.1 : Types of mathematical discontinuities [Swokowski, 1991].

Ideally, conditional statements should not be used to describe continuous dimensions as

continuous dimensions are described by continuous functions. Thus, if functions

representing continuous models exist with an equivalent accuracy to those with

discretized models, continuous functions should be preferred over discretized ones. The

method of negative saturations for modelling two-phase compositional flow [Abadpour

and Panfilov, 2009] presents an interesting example that resolves a discontinuity in model

equations through reformulating the problem definition to eliminate the discontinuity.

However, in some cases, the modeller would want to simplify the modelling task because

x

y

c x

y

c

x

y

cx

y

c

Chapter 3: Discontinuities and Their Conventional Resolutions 55

of computational cost, inapplicability to the problem at hand, insignificance of rigorously

modelling some parts of the model, etc. In other instances, information about specific

parts of the model are not readily available. As [Cameron et al, 2005] stated, a model is

built to fit a purpose. Thus, if the purpose does not call for a rigorous model, a simplified

model is constructed. In such cases, the modeller probably resorts to assumptions that

lead to discretizing some of model's continuous dimensions through the use of conditional

statements. Discretization contradicts the nature of the assumed continuity of the original

rigorous continuous function and presents itself as a jump discontinuity that mandates a

resolution during a simulation run.

Even when rigorously tested functions/correlations are available in literature, they are

usually bound by the conditions set for their validation experiments. Such bounds leave

the modeller no choice but to combine more than one function to cover a certain

applicability domain for the intended simulation. Any combination of heterogeneous

functions leads to a model discontinuity.

Once a discontinuity in a simulation run is detected, it should be properly handled by the

ODE/DAE solver. Handling discontinuity through ODE/DAE solvers is performed

through two steps: discontinuity detection and discontinuity resolution; although some

solvers combine the two steps [Mao and Petzold, 2002]. The literature refers to the

problem of locating a discontinuity as discontinuity detection [Javey, 1988]. Process

simulators usually couple their integrators with the modelling language. This coupling

eases detection of jump discontinuities.

Regardless of the form or source of discontinuity, it needs to be resolved either before

starting to integrate the ODE/DAE system (if possible) or whenever it is encountered

during the evolution of integration process. Methods for the resolution of discontinuities

Chapter 3: Discontinuities and Their Conventional Resolutions 56

arising during integration of differential equations can be divided into two types:

1. Type I tries to handle discontinuities using methods that are usually integrated

with the solver (integrator) of the ODE/DAE system. Those methods are usually

generic, irrespective of the system to be modelled and handle discontinuities at the

time they are encountered during integration (or simulation). Most literature on

discontinuity detection and resolution covers this class (eg. [Ellison, 1981], [Mao

and Petzold, 2002], [Javey, 1988] and [Park and Barton, 1996]).

2. Type II handles discontinuities using knowledge about the process to be modelled.

It remodels the ODE/DAE system in a way that eliminates discontinuities.

Literature is very sparse in this area (e.g. [Borst, 2008], [Brackbill et al, 1992]

[Helenbrook et al, 1999] and [Carver, 1978]).

[Borst, 2008] refers to the two types as discretization and regularization, respectively

(Figure 3.1). He also points out that internal model discontinuities are better handled

using type II methods irrespective of the solver integration routine. Surprisingly, both

types use some form of an interpolation to convert a discontinuous region into a

continuous one when dealing with internally generated discontinuities. Externally

generated discontinuities are usually handled by reinitialization of the model equations

and their respective new initial and boundary conditions. In the following discussion, I

will briefly touch on recent literature covering each of the categories.

3.1. Type I - Integrator Based Discontinuity Resolution

[Cellier, 1979] demonstrated that the most efficient approach to locating a state event is

through discontinuity locking. In discontinuity locking, the system of ODE/DAE is

locked until the end of the integration step regardless of the existence of a state event

Chapter 3: Discontinuities and Their Conventional Resolutions 57

during the step. After completion of the integration step that involves a state event, the

exact location of the state event is detected. Several event location algorithms that use

discontinuity locking mechanism are reported and for a comprehensive review of state

event detection algorithms, the reader may refer to [Park and Barton, 1996].

Figure 3.1: Transformation of a discontinuity into either a regularization or discretization
problem. [Borst, 2008]

[Mao and Petzold, 2002] have introduced an event detection algorithm that is based on

regulating the integration step size based on discontinuity functions that are appended to

the DAE system. Recently, [Archibald et al, 2008] introduced a state event detection

algorithm that is based on polynomial annihilation techniques. Their method relies on the

difference of the Taylor series expansions behaviour between continuous and non-

continuous intervals of the tested function. The authors also indicate that their method is

applicable to one-dimensional problems only.

Once a discontinuity is detected, it needs to be resolved before the integrator passes it.

[Javey, 1988] reports three methods for resolving discontinuities. In all methods, the

integrator checks the sign change of a discontinuity-function after each integration step as

an indication of having located a discontinuity:

1. Once the discontinuity is located, the integrator switches modelling equations to

Chapter 3: Discontinuities and Their Conventional Resolutions 58

those after the discontinuity and starts at the end of the current step. This

procedure is inaccurate as it accumulates error each time a discontinuity is

encountered. [Mao and Petzold, 2002] warn about mere stepping over

discontinuities without carefully handling them with some rigour.

2. Once the discontinuity is located, the integrator halves the step and repeats the last

integration step in a hope to resolve the discontinuity. Resolution is generally

achieved if the function is continuous but the integrator fails to resolve the

discontinuity due to the use of a large integration step. Thus, repeating the

integration step with smaller step sizes, where the discontinuity is detected should

eventually reveal the continuity of the function. This solution, although better than

the first one, is still considered inefficient because the integrator needs to iterate at

the discontinuity until an acceptable error tolerance is achieved. If the acceptable

error tolerance is not achieved after repeated step-halving (usually because of an

instantaneous discontinuity) , the integrator aborts integration. The method is then

unable to resolve the discontinuity [Carver, 1978].

3. Once the discontinuity is located, the integrator reinitializes the differential and

algebraic variables using post discontinuity conditions after interpolating all

differential and algebraic variables at the discontinuity using a discontinuity

function (an interpolating polynomial). It should be noted that this method implies

mathematical continuity of differential equations through the discontinuity domain

regardless of the validity of the resulting solution, as demonstrated by [Cellier,

1979]. This method is the most commonly adopted in recent integration routines

used for process simulation.

The mismatch between the results obtained using the interpolating polynomial and

Chapter 3: Discontinuities and Their Conventional Resolutions 59

those obtained when reinitializing the ODE/DAE system after crossing a

discontinuity sometimes creates what is known as a sticky discontinuity. Sticky

discontinuities occur because sometimes after reinitializing the ODE/DAE system,

the state of the differential variables returns to the value it had before triggering

the discontinuity resolution resulting in an infinite loop: locating the discontinuity,

interpolating to conditions after the discontinuity, reinitializing ODE/DAE after

the discontinuity, re-evaluating discontinuity trigger and falling back to the same

discontinuity, interpolating to conditions after discontinuity, etc.

Two problems arise from Type I discontinuity resolution:

1. Reinitialization effort is directly proportional to the number of DAE/ODE

equations. Even if a discontinuity is encountered in one equation of the system,

the integrator still needs to reinitialize the entire system. This procedure is

computationally exhaustive. What we need is an approach that detects and

eliminates localized discontinuities leaving the rest of the system's continuous

functions intact.

2. Some integration routines use interpolating polynomials to bridge discontinuous

domains. The use of integrator-based interpolating polynomials can produce

inaccurate results at or after the discontinuous region. [Park and Barton, 1996]

demonstrate that sticky discontinuities arise because the interpolating polynomial

used by the integrator to overcome a ODE/DAE discontinuity may land the ODE

system at a point before the discontinuity. This is mainly due to the difference in

behaviours between the ODE/DAE system and the interpolating polynomial that is

used to approximate its behaviour at the discontinuity although both the

ODE/DAE system and the interpolating polynomial share the same initial

Chapter 3: Discontinuities and Their Conventional Resolutions 60

conditions at the location immediately preceding the discontinuity.

We may easily deduce that even if the interpolating polynomial has managed to

cross the discontinuity, it will probably land at a location post the discontinuity

that is different from that corresponding to the destination of the ODE/DAE

system. So, even when discontinuities are resolved using integrator-based

interpolating polynomials, the solution post a discontinuity loses accuracy. The

error accumulates with every resolved discontinuity.

3.2. Type II – System Dependent Discontinuity Resolution

In this section, we shed light on resolution of discontinuities using bridging functions that

are derived from laws surrounding the physical system or their approximation. The first

published attempt was by [Carver, 1978]. He appended the discontinuous functions to the

ODE system after a slight transformation. Then, he applied [Gear, 1970] algorithm to

detect discontinuities. Carver's attempt was the only encountered attempt to generalize a

solution using Type II although the problem was still left discretized (i.e. no

regularization functions used). [Brackbill et al, 1992] resolved a discontinuity resulting

from the contact of two fluids at an interface point by a smooth interpolation between

discontinuities using the following function:

P (x)={ C 1(FLUID 1)
C 2(FLUID 2)

0.5∗(C 1+C 2)(INTERFACE)
(3.2)

[Helenbrook et al, 1999] criticized Brackbill's approach as introducing an error that is

linearly proportional to the formed grid. Instead they recommended replacing

discontinuities with moving boundaries that retain the interface region between the two

fluids. [Borst, 2008] emphasized that the use of regulating functions derived from the

physics of the problem (Type II) will better eliminate discontinuities than the sole use of

Chapter 3: Discontinuities and Their Conventional Resolutions 61

Type I discretization techniques . He attributes the enhancement to the increase in length

(or time) scale over that resulting from the use of discretization techniques as illustrated

in Figure 3.1. He illustrated the concept by modelling fractures of solid material at their

break points.

3.3. Concluding Remarks

In this chapter, I discussed how conventional numerical integration routines (solvers)

handle discontinuities. I also highlighted the drawbacks of handling discontinuities using

conventional integrator-based approaches.

Conventional approaches to handling discontinuities are classified into Integrator-Based

(Type I) and System-Dependent (Type II). Type II focuses on model behaviour during

integration rather than model equations. It addresses the resolution through devising

better regularizing functions. Literature favours Type II discontinuity resolution approach

over Type I. However, apart from the attempt by [Carver, 1978], literature reports no

generic methodology for Type II resolutions.

In Chapter 4, I will introduce the discontinuities in the constructed models that are used to

prove the applicability of the novel approach introduced in this work. I will also highlight

the sources of the embedded discontinuities within these models.

In Chapter 5, I provide a generic approach to Type II problems that is problem

independent. Once included within a simulation package, this approach eliminates the

need for the solver to reinitialize state variables whenever a discontinuity is located. In

addition, since the approach tackles discontinuities at their appropriate level, interpolating

polynomials resulting from this approach more resemble the accurate simulation path

than those generated by an integration routine that resolve discontinuities at state variable

level only. The resolution is generic enough to be adopted in:

Chapter 3: Discontinuities and Their Conventional Resolutions 62

1. implicitly defined discontinuities arising from discontinuous constitutive

equations.

2. implicitly defined discontinuities arising from discontinuities in state variables.

3. explicitly defined discontinuities that are formulated as boundary conditions.

An implicit discontinuity is a discontinuity arising from model differential or constitutive

equations. On the other hand, an explicit discontinuity is a discontinuity raised through a

sudden change in model boundary conditions.

Chapter 4: Discontinuities in Constructed Models

Discontinuities in Constructed Models

In this chapter, I will present discontinuities arising in the modelling

of a chemical reactor and a Pressure Swing Adsorption (PSA) unit.

The reactor model posses an implicit two-dimensional discontinuity in

the calculation of its heat transfer coefficient when transitioning

between Laminar and Turbulent flow regimes.

The constructed PSA model exhibits multiple one-dimensional

discontinuities in its boundary conditions when the PSA column shifts

between each of its cyclic steps. To simulate various PSA column

configurations, additional intermediate steps are modelled along with

the basic cyclic steps reported by [Skarstrom, 1960]. The additional

steps include co-current depressurization and multiple pressure

equalization steps.

The PSA model is structured to allow its use as an optimisation model

for PSA units. I will devote some pages to outline the modelling

scheme I followed to include various PSA column steps in one model

in order to construct a PSA model that will prove useful for synthesis

and optimisation of PSA units.

63

Chapter 4: Discontinuities in Constructed Models 64

To demonstrate the ideas on discontinuity handling presented in this thesis, I need to

prove that the concept is applicable to both implicitly and explicitly defined

discontinuities. Thus, I need to construct models exhibiting implicit and/or explicit

discontinuities. In the next two sections, I will walk through model construction, illustrate

the philosophy behind constructing each model and highlight encountered discontinuities

in the process of model building.

4.1. Discontinuities in the Reactor Model

A simplified model of the isomerization reactor patented by [Minkkinen et al, 1993] is

constructed. The reactor is basically used to isomerize part of the normal alkanes

introduced by the process feed to elevate the feeds octane number. Details of reactor

modelling and validation are discussed in Appendix B. In this section, my primary focus

is to present discontinuities occurring in the constructed model.

Discontinuities in the reactor model arise when transitioning from laminar to turbulent

flow regimes and vice versa. Modelling any constitutive equation that posses a separate

function to represent Laminar flow regime and another one to represent turbulent flow

regime will result in a discontinuity when simulation shifts from one flow regime to

another. Unless the values of the two functions are close enough for the integrator routine

to pass its error tolerance test, a discontinuity is inevitable.

To simplify the problem and only focus on a single discontinuity, I reduced the values of

the other variables calculated through constitutive equations to constants evaluated at feed

conditions. The only exception is the fluid heat transfer coefficient. To calculate fluid heat

transfer coefficient for Laminar flow, I used the simplified constant heat-flux equation of

Nud = 4.364. I assumed that Reynolds number ranges from 0 to 2,310. For turbulent flow,

Chapter 4: Discontinuities in Constructed Models 65

I used the Gnielinski correlation [Keith, 2000]:

Nud=
(f /2)(Red− 1000)Pr

1+12.7 (f /2)1 /2
(Pr2/3−1) [1+(

d
L)

2/3

] (4.1)

where: f=[1.58 ln (Red)−3.28]
− 2

2300<Red<106

0.6<Prd<2000

0<d/L<1

Thus, Nusselt number for the range covering both laminar and turbulent regimes

becomes:

Nud={ 4.34 1<Red<2,310

(f /2)(Red−1000)Pr

1+12.7 (f /2)1 /2
(Pr2/3−1) [1+(dL)

2/3

] 2300<Red<106 ,0.6<Pr d<2000

(4.2)

A plot of Nud versus Re and Pr for Laminar and Turbulent flow regimes is

illustrated in Figure 4.1.

Figure 4.1 :A plot of Nusselt number versus Prandtl and Reynolds numbers illustrating a
discontinuity in the transition between Laminar and Turbulent flow regimes at Re = 2300.

A typical pseudo code of equation 4.2 is presented in 4.3:

Chapter 4: Discontinuities in Constructed Models 66

If (Re < 2300)

Nud=4.364 Nud=4.364

Else

Nud=
(f /2)(Red−1000)Pr

1+12.7(f /2)1/2(Pr2 /3−1) [1+(dL)
2/3

]
EndIf

(4.3)

A typical mistake, that modellers usually fall into, is not accounting for the proper

boundaries of both branches of the conditional statement. A better conditional statement

encapsulating the bounds of 4.2 would be in a form similar to 4.4:

If (Re > 1) and (Re < 2310)

Nud=4.364

ElseIf (Re > 2300) and (Re < 106)

if (Pr > 0.6) and (Pr < 2000)

Nud=
(f /2)(Red− 1000)Pr

1+12.7 (f /2)1 /2
(Pr2/3−1) [1+(

d
L)

2/3

]
Else

flag a warning and continue or flag an error and quit

EndIf

EndIf

(4.4)

Note how expression 4.4 well encapsulates the composite Nud function within its proper

bounds. However, such encapsulation creates a problem during simulation run. What if

Re started or passed through at a value that is less than 1? What if Re is above 2310 but

Pr is less than 0.6 or greater than 2000?

Also, from the structure of the conditional statement, the language compiler or interpreter

would not shift to the second branch of the conditional statement until the the first logical

statement evaluates to false although an overlap exists between the domains of the two

sub-functions representing both sides of the conditional statement (Re∈[2300,2310]). Is

it better to leave the conditional statement intact or alter it to a better one? If a better one

Chapter 4: Discontinuities in Constructed Models 67

exists, on what basis should we alter the expression?

Lastly, in modern modelling languages, any transition between two consecutive branches

of a conditional statement is treated as a discontinuity that mandates reinitialization of all

state variables and their underlying constitutive equations. But, do we need to reinitialize

all model equations when the discontinuity is occurring only in a subset of the model

equations? In the context of this work, I will provide a generalized framework to better

treat models involving discontinuities. In the discussion, I will be providing answers to all

of these questions.

4.2. PSA Model Construction and Discontinuities

Pressure Swing Adsorption is one of the very competitive separation techniques to

distillation. When the right adsorbent is identified, purities can reach values beyond those

of conventional distillation columns. PSA is also useful in separating equiboiling point

mixtures that are otherwise deemed difficult or expensive to separate using distillation

columns.

This introductory will begin by a process description of PSA. Within the description, I

will highlight differences between each of the cyclic steps and the boundary conditions

surrounding each of the steps.

4.2.1. PSA Process Description and Differential Equations

The first PSA patents were published between 1930 and 1933. However, early published

work on PSA processes was overlooked by recent authors in favour of the works

published separately by [Skarstrom, 1960] (filed in 1958 and accepted in 1960) and

[Guerin and Domine, 1957] (filed in December 1957).

The [Skarstrom, 1960] PSA cycle consisted of four main steps: pressurization, adsorption,

Chapter 4: Discontinuities in Constructed Models 68

counter current depressurization (blowdown) and desorption. It used an inert material to

desorb. On the other hand, [Guerin and Domine, 1957] used vacuum to desorb material

off adsorbents.

After the introductory of the basic steps, few other steps were added that contributed to

either an increased purity or a reduced energy utilization. Examples of the later added

steps include co-current de-pressurization, pressure equalization and strong-adsorptive

purge steps. Also, Rapid PSA eliminated the adsorption step from the basic cycle.

In this section, I will detail the efforts I made to to create a generalized PSA model

encompassing most of the available steps. The intent is to use the mode as a synthesis

optimization tool that determines the best combination of steps that serve a particular feed

with specified objectives (purity and/or recovery). In the following paragraphs, I will

describe each of the modelled steps, outline the underlying differential equations, their

respective boundary conditions and the available optimisation variables.

In this discussion, the term adsorbent refers to the solid pellets which adsorb certain

components from the gas phase. Sometimes, it is referred to as molecular sieve. The term

inert is used to refer to the material that is weakly adsorbed from the gas phase by

adsorbent. The term adsorbate refers to the material that is strongly adsorbed into the

adsorbent.

During adsorption step, as the mixture to be separated passes through the adsorbent bed,

adsorbent pellets preferentially adsorb some of the mixture components over others based

on either separation kinetics or equilibrium constants of mixture constituents. As time

passes, more adsorbates accumulate in the adsorbents. At a certain point, adsorbents reach

a saturation limit beyond which no adsorption occurs. Once the entire bed, or a portion of

it, reaches a certain saturation level, the bed needs to be purged to remove the adsorbed

Chapter 4: Discontinuities in Constructed Models 69

material. Following the analogy of liquid-liquid extraction, the stream containing the

weakly adsorbed components (inerts) is sometimes referred to as the Raffinate and that

containing the strongly adsorbed is referred to as the Extract.

Adsorption is usually favoured by high pressure and low temperature and desorption is

hence favoured by low pressure and high temperature. Thus, PSA beds continuously cycle

over periods of high and low pressures and temperatures. Most of the Raffinate is

collected at high pressure cyclic steps and most of the Extract is collected at low pressure

ones (Figure 4.2). Between these two cyclic steps, a PSA vessel, naturally, needs to

pressurize and depressurize. Figure 4.3 illustrates a typical PSA cycle pressure profile

starting with Pressurization step and moving through Adsorption and De-pressurization

steps before concluding with a Desorption step.

Figure 4.2: A PSA process flow diagram illustrating the connections between feed and
product streams for columns undergoing pressurization, adsorption, blowdown (co- &
counter- current) and desorption steps respectively.

Column 1
(Pressurization)

Column 2
(Adsorption)

Column 3
(Counter-Current

Blowdown)

Column 5
(Desorption)

Feed

Raffinate Purge

Extract

Column 4
(Co-Current
Blowdown)

Chapter 4: Discontinuities in Constructed Models 70

Figure 4.3 : Pressure profile versus time for a single [Skarström, 1960] PSA Cycle.

When constructing the PSA model, I started with the four-step process described by

[Skarström, 1960]; namely: Pressurization, Adsorption (feed introduction), Counter-

current Blowdown (Depressurization) and Desorption. Figure 4.4 illustrates the

interconnections of streams between columns undergoing various steps.

After constructing the basic [Skarström, 1960] cycle, I introduced the co-current

blowdown ([Cassidy and Holmes, 1984][Keller II, 1983][Avery and Lee, 1962]) and

pressure equalization steps ([March et al][Berlin, 1966][Wagner, 1969]).

Because of computational difficulty of modelling the full set of PSA units, I initially

opted for simulating one PSA unit and scaling the resulting output to neighbouring non-

PSA units as suggested by [Nilchan and Pantelides, 1998]. However, this modelling

scheme proved to be inaccurate when modelling pressure equalization steps as I will

discuss later. This limitation mandated the modelling of multiple PSA columns.

I used an axial dispersion model to model the PSA column. To discretize the spatial

Chapter 4: Discontinuities in Constructed Models 71

dimension, I used the finite difference method. Thus, fluid phase component mass balance

is written as:

−DL

∂2ci
∂ z2

+
∂ (uci)
∂ z

+
∂ci
∂t

+ρs

(1− ε)

ε

∂qi

∂t
=0 (4.5)

The overall mass balance is written as:

C t
∂u
∂ z

+
∂C t

∂t
+ρs

(1− ε)
ε
∑
j

∂q j

∂t
=0 (4.6)

The mass transfer rate follows a linear driving force (LDF) expression:

ρs

∂qi

∂t
=apkgl(ci−<ci>) (4.7)

The adsorption equilibrium isotherm follows that introduced by [Nitta et al, 1984]:

<ci>RT=
1

Ki ,ads

θi

(1−∑j
θ j)

ni (4.8)

Fluid phase energy balance is written as:

εK L

∂2T g

∂z2 =εCρgCt

∂(uT g)
∂z

+εCρgCt

∂T g

∂t
+ (1−ε)aphp(Tg−T s)+aihwi (T g−Tw) (4.9)

Energy balance around adsorbent is written with the assumption that adjacent adsorbent

pellets do not exchange heat and that heat is only exchanged with the surrounding fluid.

This assumption reduces heat balance around adsorbent pellets from a PDE to an ODE:

ρsCρs

∂T s

∂t
=aphp(T g−T s)+∑

j
(−ΔH j , ads)ρs

∂q j

∂t
(4.10)

Energy balance around the column shell is formulated as:

kw

∂2Tw

∂ z2
=ρwCρw

∂Tw

∂t
+hwiawi(Tw−T g)+hweawe(Tw−T∞) (4.11)

The pressure drop inside the column is assumed to follow Ergun's equation:

Chapter 4: Discontinuities in Constructed Models 72

∂P
∂ z

=
150 u ε

dp
2

(1− ε)2

ε3 +
1.75ρ gu2

dp

(1− ϵ)

ε 3 (4.12)

Although Ergun correlation is originally derived to estimate pressure drop across the

entire length of the column, it has also been widely used to estimate infinitesimal pressure

drop across two points along the axial dimension of the bed (e.g. [Yang et al, 1998] and

[Buzanowski and Yang, 1989]). In this work, I adopt the latter use. [Crittenden et al,

1994] showed that pressure drop predictions from Ergun equation do not accurately

represent experimental data. Nevertheless, they should suffice for the material to be

demonstrated in this thesis.

The boundary conditions for the energy balance around the wall are the same regardless

of the cyclic step the column is undergoing:

∂Tw

∂z
∣z=0=

∂Tw

∂z
∣z=L=0 (4.13)

Boundary conditions for other differential equations are cyclic step dependent. I will

detail them after a brief description of their respective steps.

Pressurization step is regarded as the first step in a PSA cycle. The purpose of the

pressurization step is to elevate the pressure from a predetermined low to high value. The

feed to this step can be introduced from a battery-limit fresh feed, from a bleed (recycle)

stream from the raffinate or a combination of both. Pressurizing with a recycled stream

from the raffinate has the advantage of enhancing raffinate purity.

It should be noted that it is always better to have a higher [high : low] pressure ratio as it

enhances separation. However, higher pressure ratios are accompanied with higher

compression power costs. No effluent stream is collected from this step (Figure 4.2).

Once the pressure reaches its high value, this step ends and the closed end is opened for

Chapter 4: Discontinuities in Constructed Models 73

raffinate collection signalling the start of the Adsorption step.

Figure 4.4: A diagram illustrating the basic [Skarstrom, 1960] cycles a PSA column
undergoes.

The diagram also indicates the steps where feed is introduced and those where Raffinate
and Extracts are collected in addition to the effluent of the cocurrent-blowdown step.

Literature reports the use of three functions to simulate pressurizing and depressurizing a

vessel; namely: linear, parabolic and exponential. Figure 4.5 illustrates the shape of the

curves for respective functions during pressurization and depressurization steps.

The linear pressurization profile is the simplest to model although it does not represent

the reality of a fast pressurization rate when the driving force is high (Pressure difference

between feed and vessel) and a low pressurization rate when the driving force reduces.

Linear pressurization equation is presented in 4.14 and linear depressurization equation is

presented in 4.15.

Chapter 4: Discontinuities in Constructed Models 74

P=Plow+[Phigh− Plow

t p
]t (4.14)

P=Phigh+[Plow− Phigh

t p
]t (4.15)

Two functions that demonstrate a better behaviour are the exponential and the parabolic

functions. The exponential function provides a steeper departure pressure at the start of

the pressurization/depressurization step with a pressure profile that is close to flat line

towards the end of the step. On the other hand, the parabolic function provides a

relatively even distribution of pressure profile.

a. Pressurization b. Depressurization

Figure 4.5: Comparison between linear, parabolic and exponential pressure profiles for
pressurization and depressurization steps.

Equations 4.16 and 4.17 represent parabolic pressure profiles for pressurization and

depressurization steps, respectively. Similarly, equations 4.18 and 4.19 represent

exponential pressure profiles for pressurization and depressurization steps, respectively.

P=Phigh− (Phigh−Plow)[t
t p

− 1]
2

(4.16)

P=Plow− (Plow−Phigh)[t
t p

−1]
2

(4.17)

t 0 t0+ t p

P low

Phigh

Parabolic

Exponential

Linear

Phigh

P low

t 0 t0+ t p

Exponential

Parabolic

Linear

Chapter 4: Discontinuities in Constructed Models 75

P=Plow− (Plow−Phigh)[1−e
−M pt] (4.18)

P=Phigh− (Phigh−Plow) [1− e
−M dp t] (4.19)

Nevertheless, all the above modelling equations suffer a fundamental drawback. They all

exhibit an instantaneous change in the feed velocity when the feed is initially introduced

to the pressurization step. A better novel treatment of this drawback is presented in

Appendix A where a combination of parabolic and exponential pressure profile equations

is used to provide a realistic inlet velocity evolution from the start to the end of the

pressurization step.

Another typical optimization variable for this step is the pressurization rate (Mp) when

using exponential pressurization profiles or the pressurization velocity when using

parabolic pressurization profiles. Typical boundary conditions for this step are as follow:

−DL

∂c Ai

∂ z
|z=0=u|z=0(cAi f

− cAi
|z=0) (4.20)

−DL

∂c Ai

∂ z
|z=L=0 (4.21)

−K L

∂T g

∂ z
∣z=0=εC pg C t u∣z=0T g f−T g∣z=0  (4.22)

−K L

∂T g

∂ z
∣z=L=0 (4.23)

u∣z=L=0 (4.24)

Pressurization-Equalization step can be considered as a partial pressurization step from

the perspective of the vessel to be pressurized. The difference between a pressurization

step and pressurization-equalization step lies in the feed. In the pressurization step, the

feed is usually coming from a continuous stream with a fixed pressure, flow and

composition such as fresh feed from unit battery-limits or a recycled raffinate. However,

Chapter 4: Discontinuities in Constructed Models 76

in pressurization-equalization, the vessel that is at the end of an adsorption step is

connected to pressurize a vessel that has just been purged; resulting in pressure changes

for both vessels during pressure equalization. The main reason behind pressure

equalization steps is the conservation of mechanical energy, that would otherwise be

drawn from a compressor, by equalizing pressures of these two connected vessels.

Boundary conditions of a pressurization-equalization step can be regarded as similar to

those of a pressurization step. However, [Delgado and Rodrigues, 2008] have shown that

these boundary conditions do not conserve mass and energy between interconnected

vessels; especially for long equalization times. They analysed two sets of boundary

conditions from literature. They also proposed a third set of boundary conditions and

concluded, from simulation runs, that the third set better conserves mass and energy

between interconnected beds. Nevertheless, and for the purposes of this study, I will stick

to those boundary conditions that are similar to pressurization step for reasons outlined in

the next few paragraphs.

In modelling multiple vessels, I followed the suggestions by [Nilchan and Pantelides,

1998]. They suggested that modelling one PSA vessel is sufficient to predict bed profiles

of the entire PSA cycle. Indeed, modelling one vessel and scaling the output to multiple

vessels substantially reduces simulation computational power and consequently time.

However, to incorporate [Delgado and Rodrigues, 2008] suggestions regarding

equalization step boundary conditions, at least two vessels need to be simulated: one

undergoing pressurization-equalization and the other undergoing blowdown-equalization.

An additional vessel is needed per each additional equalization step. To compromise, I

opted for the use of an intermediate vessel to store a well-mixed product of the bed

undergoing blowdown-equalization. The amount stored in the intermediate vessel will be

Chapter 4: Discontinuities in Constructed Models 77

discharged to a running PSA bed when the bed reaches the next pressurization-

equalization step. The intermediate vessel acts as a well-mixed tank. Thus, time and

spatial profiles are not stored. Only the integral of the amount released from the bed and

its average concentration over the elapsed time are stored for later use. I am still using the

exact boundary conditions of regular pressurization and blowdown steps for the beds

undergoing pressurization-equalization and blowdown-equalization, respectively. The

idea of introducing and intermediate storage vessel is not new. It was implemented in the

original patent that introduced equalization steps to the community [Marsh et al, 1964]

before eliminating the intermediate vessel in the patents filed by [Berlin, 1966] and

[Wagner, 1969].

The question would then be, why should we still treat this step as a separate one instead

of treating it as a pressurization step? It is mainly to conserve mass balance. As would be

expected, the mass of an equalization step is conserved between the interconnected high

and low PSA vessels. No raffinates or extracts are collected during equalization steps. In

addition, this segregation allows independent future developments of separate boundary

conditions for depressurization, depressurization-equalization, pressurization and

pressurization equalization steps inside the model.

The final pressure of an equalization step lies somewhere between the pressures of the

two interconnected vessels. Arithmetic (Peq=0.5∗(Phigh+Plow)) and geometric (

Peq=√(Phigh Plow)) means are used in literature to calculate the final settling

(equalization) pressure. Examples of works that use these formulas include [Chiang,

1996] and [Banerjee et al, 1990]. [Warmuzinski, 2002] showed that arithmetic mean

corresponds to the frozen solid approximation. However, due to the nature of this step,

both averages do not reflect the actual final settling pressure. [Warmuzinski and Tanczyk,

Chapter 4: Discontinuities in Constructed Models 78

2003] calculated the equalization pressure for a binary adsorbed components using this

equation (assuming component A is the strongly adsorbed):

Peq=
C+1√Phigh

C Plow (4.25)

Where:

C=
1

α y A
f
+ 1

 , α=
αB
αA

, αi=
ϵt
ϵb
+

1− ϵb
ϵb

K i , ads
, i = A, B

However, their analysis is based on linear isotherms. Since we are fitting our adsorption

isotherm curves to a non-linear model [Nitta et al, 1984], more testing is required to

verify the validity of this formula. [Chahbani and Tondeur, 2010] have proved that, for an

accurate prediction of equalization pressure, segregation of the equalization step into

pressurization-equalization and blowdown-equalization steps ceases to be valid as I noted

earlier. This demonstrates the invalidity of the assumption that modelling a single PSA

bed suffices to predicting the performance of an entire PSA unit, proposed by [Nilchan

and Pantelides, 1998], when it comes to equalization steps. As can be seen from Figure

4.6 , there is a noticeable mass imbalance between the two interconnected vessels when

assuming that each vessel preserves independent boundary conditions, as reported by

[Delgado and Rodrigues, 2008]. However, I opted to accept this difference and reinitialize

content of the virtual tank after the end of each pressurization-equalization step. The

constructed model is designed to allow the calculation of equalization pressure using

arithmetic, geometric or [Warmuzinski and Tanczyk, 2003] equation based on user

selection.

Since this work is aimed as a proof of a concept more than a rigorous design and/or

operation, I think [Nilchan and Pantelides, 1998] assumption is sufficient for the purpose.

However, for the PSA optimization work discussed in section 4.2.2, pressure equalization

Chapter 4: Discontinuities in Constructed Models 79

is modelled using a number of PSA units.

Figure 4.6: Trends illustrating the imbalance in mass when assuming that pressure
equalization steps act as two separate steps; namely: pressurization-equalization and
blowdown-equalization.

The mass of the virtual tank is trended at the lower section of the figure. Trends were
produced using geometric average pressure.

The typical optimization parameter for equalization steps is the number of equalization

steps to be performed with a column undergoing pressurization and a set of columns that

need to be de-pressurized. The absence of equalization steps result in a considerable loss

of mechanical energy that needs to be compensated by power-driven compressors;

leading to energy inefficient process. On the other hand, after a certain number of

equalization steps, the driving force (pressure difference) between the interconnected

vessels reaches a very low value that renders further equalizations infeasible. Boundary

conditions for this step are the same as those for pressurization steps (eq. 4.20-4.24).

Adsorption step (sometimes referred to as feed introduction step) is the high pressure step

since pressure remains at its high value for the entire period of the step. This is also the

step at which raffinate is collected (Figure 4.2). When PSA units were introduced, this

Chapter 4: Discontinuities in Constructed Models 80

step used to be run until the bed was saturated with adsobates before switching to counter-

current blowdown (depressurization) step. However, after introduction of the co-current

blowdown step, beds are prematurely switched to co-current blowdown to allow

additional recovery of raffinate. A typical optimization parameter for this step is the step

duration (ta). Boundary conditions for adsorption step are written as:

−DL

∂ cAi

∂ z
∣z=0=u∣z=0c Ai f

− cAi
∣z=0 (4.26)

−DL

∂ cAi

∂ z
∣z=L=0 (4.27)

−K L

∂T g

∂ z
∣z=0=εC pg C t u∣z=0T g f−T g∣z=0  (4.28)

−K L

∂T g

∂ z
∣z=L=0 (4.29)

u∣z=0=u f (4.30)

The discussion related to pressurization-equalization step is also applicable to

depressurization-equalization step. The purpose of the depressurization-equalization step

is to reduce the pressure from its high value, to an intermediate value, by pressurizing a

vessel at a lower pressure. This step allows for conservation of mechanical energy

required to pressurize low-pressure vessels. No products are collected during this step.

The Boundary conditions for depressurization-equalization step are:

−DL

∂ cAi

∂ z
| z=0=0 (4.31)

−DL

∂ cAi

∂ z
| z=L=0 (4.32)

−K L

∂T g

∂ z
∣z=0=0 (4.33)

Chapter 4: Discontinuities in Constructed Models 81

−DL

∂ cAi

∂ z
| z=0=0 (4.31)

−K L

∂T g

∂ z
∣z=L=0 (4.34)

u∣z=L=0 (4.35)

De-pressurization (blowdown) is originally the step that is used to reduce bed pressure

from its high value to the low one. However, after introduction of equalization steps, this

step became either an intermediate step between equalization steps (e.g. [Cassidy and

Holmes, 1984]) or a final step after a series of equalization steps to bring bed pressure to

the value of the purge stream in the desorption step. The main difference between this

step and an equalization step is that the bed in this step is connected to a low pressure end

(in contrast to a variable pressure vessel in equalization step). The direction of the flow of

this step determines the collecting end. Co-current blowdown effluent is usually collected

as a raffinate while counter-current blowdown effluent is usually collected as an extract as

illustrated in 4.2. In both cases, one end of the vessel is closed. The advantage of co-

current blowdown, before saturating the bed, is that it increases the concentration of the

strongly adsorbed components in the gas phase by discharging the weakly adsorbed

components that were trapped in the adsorbent to the raffinate product. The resulting

increased concentration of strongly adsorbed components enhances extract purity when

collected later at the counter-current blowdown step. Thus, this step simultaneously

enhances raffinate and extract recoveries and purities.

The depressurization rate (Mdp) or depressurization time (tdp)is a typical optimization

variable. Another optimization variable is the fractional time utilized for co-current

pressurization versus that of the counter-current pressurization in relation to the total time

devoted for depressurization (tdp). Boundary conditions for the blowdown step are exactly

Chapter 4: Discontinuities in Constructed Models 82

the same as those of the Blowdown-equalization step.

Desorption step is the last step in a cycle. The purpose of this step is to clean the saturated

adsorbent from the adsorbate that was mainly adsorbed during adsoprion step. Since

desorption is favoured by low pressure, this step is entirely run at low pressure. In

addition, part of the raffinate is used as a purge gas. In fact, raffinate recovery and purity

are influenced by the amount of the purge used. So, for an operating unit, more purge

results in a purer raffinate at the expense of its recovery and vice versa. Extract is

collected as an effluent from this step. Desorption step (td) duration is a typical

optimization variable. Typical desorption step boundary conditions are:

∂c Ai

∂ z
∣z=0=0 (4.36)

−DL

∂ cAi

∂ z
∣z=L=u∣z=L cAi p

− cAi
∣z=L  (4.37)

−K L

∂T g

∂ z
∣z=0=0 (4.38)

−K L

∂T g

∂ z
∣z=L=εC pg C t u∣z=L T gp−T g∣z=L  (4.39)

u∣z=L=u p (4.40)

To accurately represent the unit, two separate tanks are added to store both products'

(raffinate and extract) quantities and qualities. Also, to avoid the infinite accumulation of

mass, as the simulation, progresses, tanks' respective inventories are reduced, or simply

reinitialized, to a specified inventory once the inventory exceeds the specified limit. In

addition to mimicking real PSA units, this provision prevents the tanks from turning into

concentration sinks; specially after the passage of a large number of cycles.

All beds initially contain no adsorbates in both fluid and solid phases. Also, initial bed

Chapter 4: Discontinuities in Constructed Models 83

temperature is assumed to be equal to the fresh feed temperature. Thus, initial conditions

become:

c i(z ,t=0)=0 (4.41)

qi (z ,t=0)=0 (4.42)

T (z ,t=0)=T f (4.43)

where CAi refers to the concentration of each adsorbate component.

4.2.2. Formulation of the PSA synthesis problem

As I indicated earlier, the PSA model was developed generically enough to be applied to

the synthesis of any PSA process provided that constitutive equations related to the

composition of the feed to be processed and those related to the adsorbent are available.

In this section, I will outline the formulation of the optimization problem as a disjunctive

programming problem [Grossmann and Ruiz, 2011].

since this is a synthesis optimization problem, the objective function can be written as:

max P=(Y R FR $R+Y E FE $E−PC $C−N SD $SD)C L−(N C $NC
+N Aux $ Aux)

(4.44)

where:

Y R : composition of valuable components in Raffinate
stream

F R : Raffinate stream flow

$R : Raffinate stream Price

Y E : composition of valuable components in Extract stream

F E : Extract stream flow

$E : Extract stream price

Chapter 4: Discontinuities in Constructed Models 84

PC : consumed power (mainly compression)

$C : Price of consumed power

N SD : Number of shut downs per cycle length

$SD : Cost of production loss per shut down

N C : Number of PSA columns (optimisation variable)

$NC
: Capital cost of a single PSA column

N Aux : Number of auxiliary equipment (mainly compressors)

$Aux : Capital cost of a single compressor

CL : Life cycle

The first right hand side term corresponds to the operating cost while the second term

corresponds to the capital cost. For simplicity, all auxiliary equipment (piping, valves,

compressors, etc) are combined into a compressor term. This is usually a valid

assumption since the capital cost of the compression supersedes the cost of other

equipment.

Compression power PC is represented as combination of the compression power saved

with pressure equalization steps and that consumed during elevation of extract pressure to

feed pressure before using it to co-current purge at high pressure:

PCN=PPress+PSA−PEQ (4.45)

where:

PPress : Total compression power required to pressurize a vessel.

PSA : Power required to elevate the extract pressure from its low
value to that of the strong adsorptive purge pressure.

PEQ : Compression power required if equalization steps are used.

Both terms in equation will be discussed later in this section.

Chapter 4: Discontinuities in Constructed Models 85

When there is a premium on the quality of either Raffinate or Extract flows, the premium

can be included as a variable cost function:

$R=f (Y R) (4.46)

$E=f (Y E) (4.47)

The overall material balance is a constraint:

FF=FR+FE (4.48)

where:

FF : fresh feed stream flow

For the pressurization step, the only optimization variable is the pressurization rate (Mp)

or the pressurization time (tp). [Shirley and Lemcoff, 1996] demonstrated that the

performance of an Air-nitrogen PSA separation unit approaches a maximum as the

pressurization rate increases before dropping afterwards. I expect other PSA units to

follow similar behaviour. Thus, pressurization rate is added as an optimisation variable.

For the adsorption (feed introduction) step, the only optimization variable is the duration

of the step (ta). Low durations result in high purity raffinate and maintain bed

temperatures at relatively steady values, preventing high temperature swings between

adsorption and desorption steps. However, a low step duration might underutilize the PSA

bed, resulting in frequent shifts between cycle steps. These frequent shifts lead to short

valve life cycles. Cost of valve replacements is usually not that high. However, the cost of

production loss due to unplanned shut downs is high enough. PSA units are usually used

as intermediate units to aid in production. Thus, the cost of a unit shut down is usually not

directly associated with the cost of separated products from the PSA unit but is directly

associated with the cost of the final products produced from the plant.

Longer adsorption step durations result in an increase in bed temperature. This increase in

Chapter 4: Discontinuities in Constructed Models 86

bed temperature lowers adsorption capacity (adsorption capacity increases with the

decrease in temperature). Thus, a longer adsorption step duration is also not favourable.

an optimum adsorption time for a specified process that balances between process failure

and separation efficiency should exist.

The term NSD$SD captures the cost of production loss due to probable shut downs resulting

from a valve failure. Assuming a valve can function for a specified number of open/close

sequences (SMAX), dividing the number of total open/close sequences (S) over SMAX

calculates the number of probable shut downs. To include the term as part of the operating

cost, it needs to be divided by the life cycle (CL). Thus,

N SD=
S

SMAX CL
(4.49)

Co-current Purging with strongly adsorptive (Extract) product was introduced in the

patent by [Tamura, 1974]. The basic idea is to purge the amount of feed that is left inside

a PSA column with a portion of the Extract stream after elevating Extract stream pressure

to that of the feed as illustrated in Figure 4.7a. The effluent of this step is combined with

the effluent of the adsorption step and thus is considered as part of the Raffinate. The

introduction of this step (in addition to co-current depressurization) enabled the

production of high purity extract in addition to high purity raffinate [Yang, 1987].

However, the downside of this step is that it involves pressure elevation for the amount of

extract that will be used as a purge stream. Remember that extract is mostly (with the

exception of counter-current de-pressurization) a low-pressure product. Thus, elevation to

a higher pressure incurs power costs. The consumed compression power during purge

pressure elevation is captured within the objective function in the variable (PP).

[Yang, 1987] suggested that an optimization opportunity may exist if purging with strong

adsorptive is performed between two co-current de-pressurization intervals as illustrated

Chapter 4: Discontinuities in Constructed Models 87

in Figure 4.7b. The amount of power saved by elevating the Extract pressure to a value

that is lower than that of the feed might justify the suggestion. However, no attempt has

been made to verify the feasibility of this suggestion. One of the objectives of this PSA

model development work is to prove such feasibility. An optimization variable (xcc) will

be introduced. An xcc=0 indicates that the high pressure purge will occur immediately

after the adsorption step as illustrated in Figure 4.7a. This leads to purging with a pressure

that is equivalent to that of the feed. An xcc=1 indicates that the purge step will occur after

the co-current pressurization step as illustrated in Figure 4.7c. This would result in the

strong-adsorptive purge taking place at the lowest possible pressure at which raffinate is

collected. An xcc value between 0 and 1 would indicate a strong-adsorptive purge that

occurs sandwiched between two co-current de-pressurization steps as illustrated in Figure

4.7b. The value of xcc will dictate the amount of de-pressurization time after which the

strong-adsorptive purge step would occur.

Once a strong-adsorptive purge step is introduced, the duration of this step (tsa,p) becomes

an optimisation variable. A short duration will result in lower recovery of inerts (weakly

adsorptive). A long duration will result in an escape of the strong adsorptive components

into the raffinate leading to lower raffinate purity. A good estimate for the upper bound of

the duration would be the length of the adsorption step (ta). Using pressurization step time

duration (tp) as an upper bound might not be sufficient to discharge all inerts from the

column if the column is too long.

Chapter 4: Discontinuities in Constructed Models 88

a. Before co-current depr. (xcc = 0) b. Between two co-current depr. (0< xcc <1)

c. After co-current depr. (xcc = 1)

Figure 4.7: Location of the strong-adsorptive purge step relative to the co-current
depressurization step as suggested, but not verified, by [Yang, 1987]. Arrows indicate the
flow direction for each of the steps.

Chapter 4: Discontinuities in Constructed Models 89

For Depressurization (blowdown) step, the first optimisation variable is the

depressurization rate (Mdp) or the depressurization time (tdp). The second optimization

variable is the fraction of the depressurization time that is devoted to co-current

depressurization (xc). The remaining depressurization period (1-xc), after subtracting the

time required for pressure equalization, is devoted to counter-current depressurization.

For Pressure Equalization step, the optimization variable would be the number of feasible

equalization steps (NE). Since each equalization occurs between two columns, the

minimum number of columns required for a PSA process that involves equalization steps

is 3. The third PSA column is required to maintain continuity of production. Also, for the

same reason, the maximum number of equalizations should not exceed the number of

available PSA columns.

After a number of successive equalization steps, the pressure difference between the

column to be pressurized and the pressurizing column becomes small enough to hinder

subsequent equalizations. Thus, an optimum number of equalization steps exists.

For desorption step, the optimisation step is desorption step duration (td). Short td values

result in under desorption of strongly adsorptive from adsorbent pellets. Long td values

lead to lower raffinate recovery.

Another variable that affects the performance of the desorption step is the location of the

effluent stream at the desorption step. In their patent, [Guerin and Domine, 1957] purged

their extract from the middle of the PSA column (not from either of the column ends).

Purging from the middle of the column cuts the residence time of the material inside the

vessel by almost a half. The location of desorption step effluent stream (xd) also

constitutes an optimisation variable with the optimum leaning probably towards the feed

end. An xd=0 indicates an extract that is collected from the feed end. An xd=1 indicates an

Chapter 4: Discontinuities in Constructed Models 90

extract that is collected from the product end (z=L). The importance of the location of the

desorption step effluent has not been studied in any earlier work. The second objective of

this work is to determine the optimum location of the effluent stream during desorption

step.

The last optimisation variable of the Desorption step is the [purge : feed] ratio. In his

patent, [Skarstrom, 1960] indicated that for the desorption step to be effective, the

volumes of the feed and purge streams, at their respective pressures, should at least be the

same. This suggestion proved to be useful in future PSA implementations. It also sets the

minimum purge volume (or volumetric flow rate). It can be formulated as a minimum

constraint. Assuming ideal gas behaviour, the constraint can be formulated as:

[V P=
nP RT P

PP
]≥[V F=

nF RT F

PF
] (4.50)

Dividing VP by VF in Equation 4.51 , the ratio becomes:

V P

V F

=
nPT P

PP

PF

nF T F

≥ 1 (4.51)

To complete problem formulation, I need to specify a minimum raffinate purity and/or

recovery or a minimum extract purity and/or recovery. I also need to specify the

maximum number of columns required to achieve such specifications. The problem can

be further extended to optimize columns sizing (i.e. length and diameter). Thus, the

optimization problem can be summarized as:

max P=(Y R FR $R+Y E FE $E−PC $C−N SD $SD)C L−(N C $NC
+N Aux $ Aux)

s.t. :

1. Pressurization rate: M (p,min)<M p<M (p,max)

2. Pressurization Feed (fresh or recycled raffinate) [Boolean]:

[PF=0]∨[PF=1]

Chapter 4: Discontinuities in Constructed Models 91

3. Adsorption step duration: 0<ta<t a,max

4. Strong Adsorptive Purge:

[0<xcc≤1
0<t sa , p≤ ta,max

]∨[xcc=0
t sa, p=0a,max

]
5. Depressurization rate: M (dp ,min)<M dp<M (dp ,max)

6. Fraction co-current de-pressurization from the total de-pressuirzation time:
0≤ xc≤ 1

7. Desorption step duration: 0<td≤ td,max

8. Desorption step effluent stream location: 0≤ xd≤1

9. Column length: Lmin≤ L≤ Lmax

10. Column diameter: dc ,min≤ dc≤ dc ,max

11. Number of PSA columns: 1≤N c≤N c ,max

12. Number of Presssure-Equalization steps: 0<N E≤NC−1

13. Minimum raffinate purity: Y R ,min<Y R≤1

14. Minimum extract purity: Y E,min<Y E≤ 1

The only equality constraint is the total material balance:

1. Material Balance: F D=F R+F E

Note that the NE and NC are pure integer variables and not an either-or boolean variables. I

am intending to connect these variables to an MIP optimizer using real variables. The

optimisation routine should search an integer space of the these two variables and not the

real one. This constitutes a mapping problem. How should the optimiser behave when it

requests the value of the cost function at NC =1.5? To overcome this difficulty, I am

planning to introduce an intermediate layer between the optimizer and the constructed

model specifically tailored to these two variables as illustrated in Figure 4.8.

The purpose of the intermediate layer is to rescale the integer variables in order to present

them as real variable to the optimizer. Thus, using the transformation xC=Nc/NC,Max, the NC

Chapter 4: Discontinuities in Constructed Models 92

variable is transformed to the variable xC that is bounded by real bounds: xC∈[0,1] .

Applying similar scaling transforms the NE variable: xE=NE/Nc,max. The variables NC and

NE will be visible to the constructed model while their respective transformations xC and

xE will be visible to the optimizer. The reader should note that since the lower bound of

NE is dependent on NC (N E∈[0, NC]), a variable-bound optimisation routine should be

selected for optimization.

Figure 4.8: Optimising integer variables as continuous ones through the introduction of an

intermediate layer.

The third objective behind this optimisation exercise is to search for a possible existence

of any new PSA operating region that was not revealed in any of the earlier PSA works by

freely varying all optimization variables within their specified limits.

In summary, this section outlined the developmental work performed in modelling the

PSA unit that was used to prove the concepts developed in this thesis. The next section

outlines the discontinuities occurring as a result of shifts between boundary conditions of

Optimization Routine

PSA Model

NC=Round (XC⋅N C , Max)

N E=Round (X E⋅NC , Max)

If N E≥NC Then N E=NC−1

xExC

N ENC

In
te

rm
ed

ia
te

 L
ay

er

Chapter 4: Discontinuities in Constructed Models 93

the intermediate steps that form a PSA cycle.

4.2.3. Encountered Discontinuities in the PSA Model

Noting the variations in boundary conditions between each of the steps a PSA column

undergoes, one can easily deduce that each change in boundary conditions requires a

model reinitialization. A typical set of [Skarström, 1960] cycle boundary conditions is

outlined in Figure 4.9.

Although the same set of differential equations is used throughout a PSA model, each of

the pre-mentioned steps carry its own boundary and initial conditions. To shift from one

to another set of boundary conditions, integration of the previous step is stopped and

model equations are reinitialized to the new set of boundary conditions before resuming

integration. Because transitions between boundary conditions occur within the time line,

modellers don't usually think of the altering sequence of boundary conditions as a

composite function. Nevertheless, it is a composite one. Taking component mass balance

as an example, one can view the alteration of boundary conditions, at a specified vessel

end, as a strip of time or state events. For example, the conditional statements in 4.52a

and 4.52b (and their respective mathematical representations in 4.53 and 4.54) illustrate

how boundary conditions change as a function of cyclic time (tcycle) at each of the

respective ends of the column. Boundary conditions switch between Nuemann and Robin

throughout the cycle.

Chapter 4: Discontinuities in Constructed Models 94

Figure 4.9: Velocity and component balance boundary conditions for each of [Skarström,

1960] PSA cyclic steps.

Similarly, the axial velocity vector initial condition value and location change as the

active column step changes. The respective mathematical formulation of this composite

function is illustrated in 4.55.

The PSA model was constructed using [gPROMS, 2012] modelling language. For the

purposes of this work, I converted all state based transitions into time based transitions.

For example, pressurization step concludes when the pressure of the PSA vessel reaches

that of the feed. Since Pressure variation is modelled as function of time as outlined

earlier, it becomes an easy task to calculate the time required for the pressure to move

from a lower value to a higher one and thus replacing the state transition between

pressurization and adsorption steps into a time transition. Thus, transitions between

(Pressurization) (Adsorption) (Counter-Current
Depressurization)

(Desorption)

z=0

z=L

− 1
Pem

∂ y i

∂ x
|z=0=U|z=0 (y i

f− y i|z=0)

− 1
Pem

∂ y i

∂ x
|z=L=U|z=L(y i

p− yi|z=L)
∂ yi

∂ x
|z=L=0

∂ y i

∂ x
|z=L=0

∂ y i

∂ x
|z=L=0

∂ y i

∂ x
|z=0=0

∂ yi

∂ x
|z=0=0

U |z=L=0

U |z=0=
u f

u ref

U |z=L=0 U |z=L=−
u p

u ref

Chapter 4: Discontinuities in Constructed Models 95

boundary conditions are written as functions of time only as illustrated in equations 4.53,

4.54 and 4.55. The reason behind taking this course is that it facilitates the construction of

a composite discretized boundary conditions function within gPROMS as illustrated in

4.52. It also prevents gPROMS from reinitializing variables when a state transition is

encountered in a regularized boundary conditions model. These concepts will be

discussed in the next chapter.

If (tcycle > 0) and (tcycle ≤ tPressurization)

−DL

∂c Ai

∂ z
|z=0=u|z=0(cAi f

− cAi
|z=0)

ElseIf (tcycle > tPressurization) and (tcycle ≤ tAdsorption)

−DL

∂c Ai

∂ z
|z=0=u|z=0(cAi f

− cAi
|z=0)

ElseIf (tcycle > tAdsorption) and (tcycle ≤ tDe-pressurization)

−DL

∂c Ai

∂ z
|z=0=0

ElseIf (tcycle > tDe-pressurization) and (tcycle ≤ tDesorption)

−DL

∂c Ai

∂ z
|z=0=0

EndIf

If (tcycle > 0) and (tcycle ≤ tPressurization)

−DL

∂c Ai

∂ z
|z=1=0

ElseIf (tcycle > tPressurization) and (tcycle ≤ tAdsorption)

−DL

∂c Ai

∂ z
|z=1=0

ElseIf (tcycle > tAdsorption) and (tcycle ≤ tDe-pressurization)

−DL

∂c Ai

∂ z
|z=1=0

ElseIf (tcycle > tDe-pressurization) and (tcycle ≤ tDesorption)

−DL

∂c Ai

∂ z
|z=1=u|z=1 (cA i f

− cA i
|z=1)

EndIf

(4.52a). BCz=0 (tcycle) (4.52b). BCz=L(tcycle)

I should emphasise that conversion of state events into time events does not limit the

applicability of the concepts that will be discussed in the next chapter. It just facilitates

proving the concept when the modeller is not at liberty to alter the code of the simulation

package.

∂C i

∂ z
|z=0=f (tCycle)={ −(u |z=0/DL)(C i

f−C i |z=0) 0 ≤ tCycle ≤ T Pressurization

−(u |z=0/DL)(C i
f−C i |z=0) T Pressurization < tCycle ≤ T Adsorption

0 T Adsorption < tCycle ≤ T Depressurization

0 T Depressurization < tCycle ≤ TimeDesorptionStep

(4.53)

Chapter 4: Discontinuities in Constructed Models 96

∂C i

∂ z
|x=L=f (tCycle)={ 0 0 ≤ tCycle ≤ T Pressurization

0 T Pressurization < tCycle ≤ T Adsorption

0 T Adsorption < tCycle ≤ T Depressurization

−(u |z=L/DL)(Ci
p−C i |z=L) T Depressurization < tCycle ≤ T Desorption

(4.54)

u|z=0 or z=L=f (tCycle)={ u |Z=L=0 0 ≤ tCycle ≤ T Pressurization

u|Z=0=uf T Pressurization < tCycle ≤ T Adsorption

u|z=L=0 T Adsorption < tCycle ≤ T Depressurization

u |z=L=−u p T Depressurization < tCycle ≤ TimeDesorptionStep

(4.55)

Note that gPROMS immediately reinitializes state variables when transiting between each

two consecutive cyclic steps as illustrated by the conditional statement in 4.56. Also, note

how the entire simulation run time is converted into a sequence of repetitive steps in 4.56.

The question to be posed at this stage is whether immediate/instantaneous transition

between boundary conditions, constitute a good modelling practice? Can we avoid

reinitialization and yet achieve the same results? Can we avoid reinitialization and yet

achieve better simulation results? I will answer these questions in the next chapter.

Chapter 4: Discontinuities in Constructed Models 97

Cycle = 0

Repeat

Cycle Time = 0

If (Cycle Time >= 0) and (Cycle Time <= Pressurization Time)

Step = Pressurization; reinitialize model equations based on Pressurization BCs;

run simulation for cyclic step time-span;

ElseIf (Cycle Time > Pressurization Time) and (Cycle Time < Adsorption Time)

Step = Adsorption; reinitialize model equations based on Adsorption BCs;

run simulation for cyclic step time-span;

ElseIf (Cycle Time >= Adsorption Time) and (Cycle Time <= Depressurization Time)

Step = Depressurization; reinitialize model equations based on Depressurization BCs;

 run simulation for cyclic step time-span;

ElseIf (Cycle Time > Depressurization Time) and (Cycle Time < Desorption Time)

Step = Desorption; reinitialize model equations based on Desorption BCs;

run simulation for cyclic step time-span;

Endif

Cycle = Cycle + 1

Until (Cycle = Max Cycles) or (| YCycle – YCycle-1 | <= Tolerance)

(4.56)

4.3. Concluding Remarks

In this chapter, I highlighted the discontinuities encountered in the developed reactor and

PSA columns. For the reactor model, the discontinuity occurs as the reactor moves from

laminar to turbulent flow region because of the increase in feed flow. The discontinuity

affects the wall heat transfer coefficient. It is a two-dimensional discontinuity as Nusselt

number is dependent on both Reynolds and Prandtl numbers.

In the PSA model, I demonstrated how the shift in boundary conditions from PSA cyclic

sub-step to the other (e.g. pressurization to adsorption and adsorption to depressurization,

etc) results in a one-dimensional discontinuity.

I also took the opportunity to present the ongoing work on the formulation and

construction of the generic optimization of the PSA synthesis problem. I also introduced a

novel method to properly model transient inlet velocity profile during the pressurization

and depressurization of columns without introducing discontinuities (Appendix A).

CHAPTER 5: REGULARIZING DISCRETE FUNCTIONS

Regularizing Discrete Functions

This chapter discusses regularizing discrete functions that were

introduced in Chapter 3. I begin by introducing some of terminologies

that will be adopted throughout the discussion. Then, I will discuss the

resolution starting with univariate functions and, later, extending it to

bivariate and multivariate functions. For all resolutions, I will discuss

novel approaches to detection and resolution of discontinuities.

98

Chapter 5: Regularizing Discrete Functions 99

5.1. One-dimensional Functions

Let us assume that we have a composite function f that is defined by two separate sub-

functions f1(x) and f2(x) that span two adjacent domains [a', b] and [a, b'], respectively:

 f (x)={ f 1(x) , x∈[a ' , b]
f 2(x) , x∈[a ,b ']

(5.1)

For demonstration purposes, we will assume that a > a'. The ideal situation for the

modeller is to have a continuous composite function across the entire simulation domain

regardless of the sub-domains defining the respective sub-functions. To achieve this

situation, the switch between f1 and f2 has to occur at a changeover (switch) location g

satisfying the following condition (Figure 5.1a):

 f 1(g)= f 2(g) (5.2)

However, switch point g is seldom searched for, or even considered, when modelling.

Instead the modeller usually opts for the selection of a point g' based usually on a widely

adopted convention. A Reynolds number (Re) of 2300 is an example of a conventionally

used break point between Laminal and Turbulent flows. If Re is below 2300, the flow is

assumed Laminar. Otherwise, it is Turbulent. Such an arbitrary selection often raises a

discontinuity between sub-domains at any arbitrary switch point g' as illustrated in Figure

5.1a. In such a case, the objective is to eliminate a discontinuity between two intersecting

functions spanning overlapping domains. In this case, sub-functions intersect and

functions' domains overlap. Thus, their exists a point g that satisfies equation 5.2.

When equation 5.2 is not satisfied, the sub-functions are said to be non-intersecting as

illustrated in Figures 5.1b and 5.1c. For non-intersecting functions, there is usually a

location g, along the dimension of the independent variable, that minimizes the distance

between the two functions and hence allows for a smoother jump. Jumping between the

Chapter 5: Regularizing Discrete Functions 100

two functions at any point other than g would result in an extra effort by the integration

routine to resolve the discontinuity. Thus, in such cases, the objective of this work is to

minimize jump effort between two overlapping but non-intersecting sub-functions

spanning overlapping domains as illustrated in Figure 5.1c. It should be noted that Figure

5.1b is a special case of Figure 5.1c where the intersection domain reduces to a single

point. In such cases respective sub-functions' domains overlap (a≤b). However, unlike the

case in Figure 5.1a, sub-functions do not intersect.

a. b.

c. d.
Figure 5.1: Forms of domain switch points between two functions and types of

discontinuities between two adjacent domains.

The first objective of this work is to find the best switch point g for any given set of two

overlapping sub-functions, whether intersecting or non-intersecting. The second objective

is to eliminate discontinuities in non-intersecting sub-functions by devising an

f 1

f 2

a ' ba b 'g

g'

g @ f 1∩ f 2

f 1

f 2

a ' a=b=g b '

g=b=c

f 1
f 2

a ' a b 'bgg '

g @ Min∣f 1− f 2∣

f 1

f 2

g=?

a ' a b 'b

Chapter 5: Regularizing Discrete Functions 101

interpolating polynomial at the location of the discontinuity between the two functions.

To achieve both objectives, the method is decomposed into discontinuity detection and

discontinuity resolution sub-problems.

5.1.1. One-dimensional Discontinuity Detection

First, we must sort the ranges for the respective sub-functions using their starting points

in an ascending or descending order and then compare the location of the domain end of

one function, (e.g. b for f1), with the domain start of its successor, (e.g. a for f2). If the end

and start domain limits of two respective successive sub-functions are equal (i.e. a=b),

the discontinuity is said to be non-overlapping. The point g is immediately identified for

non-overlapping domains as g=a=b as illustrated in Figure 5.1b. Sorting and comparison

will also immediately detect if sub-functions f1 and f2 do not satisfy the continuity

assumed for the main function f spanning [a', b'] as illustrated in Figure 5.1d. A

resolution to removable discontinuities, such as that illustrated in Figure 5.1d, is

presented in section 5.2.3.

Having identified an overlapping domain, to find g for overlapping discontinuous sub-

functions, we will transform the problem into an optimization problem. As an example,

the overlap domain for Figure 5.1a and Figure 5.1c is [a,b]. We define an error function

as:

e (x)=| f 1(x)− f 2(x)| (5.3)

Our objective is to find a point g that minimizes e(x) over the domain [a,b]. It can be

argued that the use of the absolute function will alter the convexity of the objective

function as illustrated in Figures 5.2a and 5.2b. However, it should be noted that, in this

problem, the objective is to search for e(x)=0, not the minimum e(x). The problem is a

Chapter 5: Regularizing Discrete Functions 102

root finding problem, not an optimization one. Thus, using the absolute value function

helps formulating a better solution in this case. If the value of e(x) is always above zero,

the optimisation algorithm will report the optimum x that corresponds to the minimum

e(x). Even if the function contains multiple zeros (Figure 5.2c), locating one of the zeros

is sufficient for the search algorithm to succeed. Nevertheless, since the absolute value

function is not differentiable at sign-change locations, it will introduce problems when

used by optimization routines. A better differential function that achieves the same

objective is the square function (illustrated in Figure 5.2d):

e (x)=[f 1(x)− f 2(x)]2 (5.4)

a. b.

c. d.
Figure 5.2: Behaviours of various error (difference) functions e(x).

Chapter 5: Regularizing Discrete Functions 103

The advantage of formulating the problem as an optimization problem instead of a root-

finding one is that the optimum will always return a value whether roots are available or

not. When roots are available, the minimum resembles that of Figure 5.1a (i.e. e(g) = 0).

When roots are not available, the minimum resembles one of the cases illustrated in

Figures 5.1b and 5.1c. Since this is a fairly simple optimization problem, it can be solved

using any of the commercially available optimisation routines.

Once g is detected, it can be immediately inserted into the conditional statement of the

composite function; replacing any arbitrary selected g' by the modeller. For example, if

the detection algorithm resulted in locating a minimum jump effort point g between two

discontinuous functions f1 and f2, g can easily be inserted into the final conditional

statement as illustrated in (5.5):

If (x<g) then (Domain I)

f = f1(x)

Else if (x>=g) then (Domain II)

f = f2(x)

 or

If (x<=g) then (Domain I)

f = f1(x)

Else if (x>g) then (Domain II)

f = f2(x)

(5.5)

For cases where sub-functions intersect and overlap (Figure 5.1a), a discontinuity

detection algorithm is sufficient to grant at least smooth continuity between the

discontinuous functions but not their respective first and second derivatives. For cases

where functions touch or overlap but do not intersect (Figures 5.1b and 5.1c,

respectively), discontinuity detection algorithm might be sufficient if the simulation

integrator routine is able to jump between the functions without the need for reinitializing

the state variables. As indicated by [Borst, 2008], resolution of discontinuity using Type I

discontinuity handlers might not always be appropriate because of the exhaustive need to

reinitialize state variables and the fact that, in some cases, re-initialization might alter the

solution path. Thus, I propose a discontinuity resolution algorithm to avoid falling into

Chapter 5: Regularizing Discrete Functions 104

state-variable re-initialization.

5.1.2. One-dimensional Discontinuity Resolution

Discontinuity resolution takes the form of bridging the two discontinuous domains

through an interpolating polynomial, f3. Linear interpolation requires at least two points.

However, we will attempt to link functions using a smooth interpolating polynomial

preferably to the 3rd degree. Linking functions with a third degree interpolating

polynomial ensures continuity up to the second derivative of the interpolating function.

To construct any smooth polynomial, we need at least three points. One would think that

three points are sufficient to construct the polynomial around the discontinuity point.

However, as we will demonstrate later, at least four points are required in order to

minimize first and second derivatives' discontinuities at the junction points between the

interpolating polynomial f3 and the corresponding discontinuous sub-functions f1 and f2.

To simplify computations, I will evenly separate the points by an interval h from each

other. Their exact locations will be relative to the location of the discontinuity location (g)

in the independent variable dimension. The location of the mesh control points, relative to

g, takes one of three forms depending on its location within the overlap domain [a,b]:

• If a minimum g∈(a ,b) exists, mesh control points will be respectively located at

distances g-1.5h, g-0.5h, g+0.5h and g+1.5h as illustrated in Figure 5.3a. This

selection of points' locations ensures even distribution of the interpolating points

on both sides of the point g.

• If the minimum g∉(a ,b) , then g must reside at one end of the domain. If g is

located at the start of the overlap domain (g=c), mesh control points will be

respectively located at g, g+h, g+2h and g+3h as illustrated in Figure 5.3b.

Chapter 5: Regularizing Discrete Functions 105

• If g is located at the end of the overlap domain (g=b), mesh control points will be

respectively located at g, g-h, g-2h and g-3h as illustrated in Figure 5.3c.

To perform a smooth transition, we need at least one point to lie on each of the functions'

curves at the respective sides of the discontinuity location. Let us call these points point 1

and point 2. Taking Figure5.3a as an example for the case where g∈(a , b) , the respective

locations of points 1 and 2 will be (g-1.5h, f2(g-1.5h)) and (g+1.5h, f1(g+1.5h)),

respectively. Of course, one can argue that we could also position the points at (g-1.5h,

f1(g-1.5h)) and (g+1.5h, f2(g+1.5h)). However, we should bear in mind that the sorting

algorithm, explained earlier, decides on the order of the functions based on their span over

the independent variable dimension.

For the case where g is located at the start of the overlap domain (g=a), the respective

locations of points 1 and 2 will be (g, f2(g)) and (g+3h, f1(g+3h)). For the case where g is

located at the end of the overlap domain (g=b), points 1 and 2 will be located at (g-3h,

f1(g-3h)) and (g, f2(g)), respectively. Respective examples of both cases are illustrated in

Figures 5.3b and 5.3c. Of course, the sorting algorithm argument still holds.

Chapter 5: Regularizing Discrete Functions 106

a. b.

c. d.

Figure 5.3: Location of mesh control points relative to the minimum jump-effort point g.

For the last two points (points 3 and 4), of the four point set, we utilized the length of the

line segment |AB|, defined by equation 5.6 and illustrated in Figure 5.3d, to shift f3

function values at these points from the respective discontinuous functions values. Since

the location of g, on the independent variable dimension, corresponds to the point that

exhibits minimum distance between the two functions f1 and f2 within the overlap domain,

the length of the line segment |AB| corresponds to that minimum distance.

As an example, let us take the case where g∈(a ,b) . The y-axis values of the points

located at distances -0.5h and +0.5h from the point g will be calculated as the values of

the functions at these respective points after adding or subtracting a fraction p of ∣AB∣.

f 1

f (x)

f 2

x

1.5h

f 3

h

Additional
hermite
control
point

Additional
hermite
control
point

hh

1.5h

f 1

f (x)

f 2

x

f 3

Additional
hermite
control
point

Additional
hermite
control
point

f 1

f (x)

f 2

x

f 3Additional
hermite
control
point

Additional
hermite
control
point

f 1

f 2

a bg

f (x)

Point 3Point 4

Point 1

Point 2

f 3

A

B

p∣AB∣

B

Chapter 5: Regularizing Discrete Functions 107

For lower valued functions (e.g. f2), Point 3 would have the coordinates

(g−0.5h , f 2(g−0.5h)+ p∣AB∣) . For higher valued functions (e.g. f1), Point 4 would

have the coordinates (g+0.5h , f 1(g+0.5h)− p∣AB∣) .

∣AB∣=∣f 1(g)− f 2(g)∣ (5.6)

[Fritsch and Carlson, 1980] detail the necessary and sufficient conditions to ensure

monotonicity of the interpolating polynomial control points. Basically, they prove that in

order to ensure a monotonically increasing or decreasing function, slopes of control

points should have the same sign or a value of zero. To emphasise the same concept, the

value of p should satisfy the condition in 5.7:

0≤ p≤0.5 (5.7)

Naturally, providing a separate p value for each of the functions f1 and f2 would add to the

degrees of freedom as long as they satisfy the condition in (5.7). These two p values can

act as tuning parameters to smooth the transition between f3 and the discontinuous sub-

functions f1 and f2. In addition, the original formulation of hermite interpolating

polynomials (to be discussed later) uses a tension parameter (t) that extends between 0

and 1. We could use either t or p to perfect the resulting interpolation curve. However, we

intend to keep both parameters in order to smooth the transition between the interpolating

polynomial and the discontinuous sub-functions.

To demonstrate the effect of the interpolation algorithm on the conditional statement, let

us consider the case in (5.5) and assume g∈(a ,b) . After generating the four-point

interpolating polynomial, the logical statements in (5.5) will be transformed into (5.8).

We should also note that, because of the uniqueness of the solution for one-dimensional

functions, the devised procedure can be run off-line prior to the start of the simulation

Chapter 5: Regularizing Discrete Functions 108

run. Indeed, we recommend embedding the algorithm into the modelling language

compiler to automate generation of polynomials and their respective additional

conditional expressions.

If (x<g-1.5h) (Domain I)

f = f1(x)

ElseIf (|x-g|≤1.5h) (Interpolating polynomial Domain)

f = f3(x)

ElseIf (x>g+1.5h) (Domain II)

f = f2(x)

EndIf

(5.8)

The algorithm can be extended to account for complex conditional statements such as

(5.9) by solving w(x) for x. It can also be extended to account for complex logical

expressions involving logical operators ∧ or ∨ .

If (w(x) ≤ 0) (Domain I)

f = f1(x)

ElseIf (w(x)>0) (Domain II)

f = f2(x)

EndIf

(5.9)

Lastly, an additional side benefit resulting from the use of the line segment |AB| to locate

the intermediate points at g-0.5h and g+0.5h is that the locations of these points

automatically coincide with the locations of the respective sub-functions f1 and f2 if f1 and

f2 posses a common intersection point since |AB|=0 in this case regardless of the value of

p. This benefit indicates that detection and resolution algorithms can be integrated

seamlessly without the need to treat intersecting sub-functions separately. Figure 5.4

illustrates the resulting interpolating polynomial linking two intersecting sub-functions.

Chapter 5: Regularizing Discrete Functions 109

Figure 5.4: A four-point hermite interpolating polynomial between two intersecting

unidimensional functions using tension (t)=0.

5.1.3. Perfecting the Connection and the Bounding Box Problem

The smoothing of the transition between the interpolating polynomial and the

discontinuous functions can be transformed into an optimization problem that minimizes

first or second derivative differences between the interpolating polynomial and the

discontinuous functions at Point 1 and Point 2. The optimization problem can be

formulated as:

min :[f P 1
' - − f P 1

' +
]
2
+[f P 2

' - − f P 2
' +
]
2

s . t .={ 0≤ pi<0.5
0≤t≤1

min :[f P 1
' ' -− f P 1

' ' +
]
2
+[f P 2

' ' -− f P 2
' ' +
]
2

s . t .={ 0≤ pi<0.5
0≤t≤1

(5.10)

a. first order derivative optimization b. second order derivative optimization

If the derivatives of the discontinuous sub-functions, appearing in the cost function, are

readily available, they can be directly evaluated through the available expressions.

Otherwise, any derivative estimation numerical technique (e.g. secant method) can be

used to evaluate the required derivatives.

Once the position of the points is determined, we need to connect them with a continuous

x

f (x)

Intersection Point

f1 f2

Interpolating Polynomial

f3

Chapter 5: Regularizing Discrete Functions 110

interpolating function that is preferably 2nd order smooth to aid in calculation of Jacobian

and Hessian matrices when required by the numerical ODE/DAE solver. Two

interpolation methods satisfy our criterion: cubic splines and cubic hermite interpolating

polynomials (Appendix C). However, we selected hermite interpolating polynomials for

the following reasons:

1. For the same set of interpolating points, cubic spline interpolating polynomials

exhibit more overshoot than their cubic hermite counterparts [Fritsch and Carlson,

1980].

2. Cubic hermite interpolating polynomials have one more degree of freedom to

better control the shape of the interpolating polynomial ([Kochanek and Bartels,

1984] and [Bartels et al, 1987]). This degree of freedom is granted by the extra

tension parameter (t). As the name implies, t is roughly a measure of how

stretched or lose is the connecting polynomial between the mesh control points.

Assuming that mesh control points are connected through a thread, a t=0 indicates

a loose thread while a t=1 indicates a tightly wrapped thread. I encourage using

hermite interpolating polynomials for the extra degree of freedom they provide.

The discussion from this point onward assumes the utilization of hermite

interpolating polynomials. Hermite interpolating polynomials are discussed in

Appendix C.

Nevertheless, the reader should note that hermite interpolating polynomials require two

additional mesh control points over cubic splines as illustrated in Figures 5.3a, 5.3b and

5.3c. Interpolation will still occur between the four control points discussed earlier. The

two additional control points only aid in forming the shape of the curve.

Chapter 5: Regularizing Discrete Functions 111

Let us now turn our attention to an issue that will further constrain the value of the p

parameter. At lower values of pi and/or tension parameter (t), the bounds of the

interpolating polynomial tends to cross the maximum function boundaries set by the

control points as illustrated in Figure 5.5. This situation might not create an issue for most

discontinuous functions. However, certain types of discontinuous functions mandate

proper bounding of interpolating polynomial to the upper and lower limits set by the

control points. For example, if x denotes valve opening and f(x) represents flow, then it

would not be expected for the flow to arrive at its maximum value until valve opening

reaches 100% (x=1). An interpolating polynomial that is not properly bounded will result

in the undesirable situation leading to either a maximum flow before reaching 100%

valve opening or worse leading to a negative flow before the valve is fully closed. This

problem is known as the bounding-box problem in computer-graphics literature [Filip et

al, 1986].

To resolve the problem, we need to bound the maximum and minimum values of the

interpolating polynomial to the values set by control points 1 and 2 so that:

f 1(xP 1
)≤ f 3(x)≤ f 2(x P2

) for x P1
≤ x≤ x P2

(5.11)

The solution to the problem comes straight forwardly from calculus. To do so, the

optimization routine needs to identify the maximum and minimum values of f3(x),

compare them to those of control points 1 and 2, and finally, reject or accept the pair of

(pi, ti) values based on adherence to condition 5.11.

5.1.4. Are four control points enough?

The discussion, so far, has assumed that we need at least four points to properly

interpolate. However, we need a good justification to favour four points over three or five.

This can be demonstrated by considering the plots of the hermite interpolating polynomial

Chapter 5: Regularizing Discrete Functions 112

for three, four and five interpolating points shown in Figures 5.5a, 5.5b and 5.5c.

When using a three-point interpolating polynomial, two of the points lie on the respective

discontinuous functions. The x coordinate of the third point corresponds to the minimum

jump effort location (g). The only degree of freedom available to tune the curvature,

excluding the hermite tension parameter, is through the manipulation of the function

value at the minimum jump effort point g. I varied p/|AB| values from 0 to 0.5 relative to

f1 and f2 in the upper and lower sections of the figure, respectively. As illustrated in Figure

5.5a, the drawback of a three-point interpolating polynomial is that it always favours

better closure towards one of the discontinuous functions over the other.

For the case of four control points, I omitted the g point and relied only on two points

separated by a distant h from each of the sides of the minimum jump effort location g.

The interpolating function values, at the junctions with f1 and f2 are fixed at the values of

their respective functions f1 and f2. I used equal values of p to distance interpolating

function values at points 4 and 5. Thus, one degree of freedom is remaining (again

excluding hermite tension) to smooth the transition between the interpolating polynomial

f3 and the functions f1 and f2, namely p. The common intersection point between all

generated curves is purely curvature related and has no relation to the g point discussed

earlier.

For the case of five control points, I made use of the minimum jump effort location (g) to

add the fifth point. The value of the interpolating polynomial f3, at this point, is calculated

and fixed at the mean of the two discontinuous functions f1 and f2 (i.e. f3(g) = 0.5[f1(g)

+f2(g)]). The values of the control points at the junctions with f1 and f2 are assigned the

respective values of the functions. The values of these two points are also fixed. I also

used constant values of p to distance the points located at g-h and g+h from their

Chapter 5: Regularizing Discrete Functions 113

respective functions f1 and f2. The resulting interpolating values of p/|AB| ranging from 0

to 0.5 are plotted in Figure 5.5c.

The resulting curves for four-point interpolating polynomials (Figure 5.5b) provide

similar degrees of curvature to those obtained using five-point interpolating polynomial

(Figure 5.5c). Thus, we may comfortably conclude that a four-point interpolating

polynomial is sufficient to provide good closure between the interpolating polynomial and

the discontinuous functions.

a. Three Points b. Four Points

c. Five Points
Figure 5.5: Comparison between 3, 4 and 5 control points using a hermite interpolating

polynomial with various p values.

5.1.5. Regularizing boundary and initial conditions

Discontinuities in boundary conditions usually take the form presented in Figure 5.1b (i.e.

f 1

x

f (x)

f 2

p=0.0
p=0.1
p=0.2
p=0.3
p=0.4
p=0.5

p=0.0
p=0.1
p=0.2
p=0.3
p=0.4

Fixed Point

Fixed Point

}
{

Relative to f 2

Relative to f 1

f 1

x

f (x)

f 2

p=0.0
p=0.1
p=0.2

p=0.3
p=0.4
p=0.5

Fixed Point

Fixed Point

f 1

x

f (x)

f 2

p=0.0
p=0.1
p=0.2

p=0.3
p=0.4
p=0.5

Fixed Point

Fixed Point

Fixed Point

Chapter 5: Regularizing Discrete Functions 114

g=a=b). Because the overlap domain is so small, any regularization will force f3 to lie

outside the overlap region. Moreover, since the switch between value reported by each

side of the conditional statements (f1 to f3) or (f2 to f3) can be state variable or time

dependent, we cannot evenly distribute f3 span between f1 and f2. Even distribution could

violate state variable dependency. Thus, the solution would be to insert an additional time

interval to accommodate f3 between f1 and f2. This makes sense since the set of boundary

conditions at the overlap region does not coincide with any of the sets of boundary

conditions belonging to the either of the discontinuous sub-functions.

Regularizing the form in Figure 5.1b can take one of the forms in Figures 5.3a-c. Using

the forms presented in Figure 5.3a and 5.3c would require calculation of more control

points at locations before f3 (points at the left side of the g point when replacing the x-axis

with a time axis). The use of the form presented in Figure 5.3b reduces the number of

points located to the left of the g point to only one point, namely the additional control

point required by the hermite interpolating polynomial.

I should mention that accurate estimation of the value of the state variable at this point is

not very important. This is due to the fact that the additional hermite control points are

used to adjust the shape of the resulting curve bounded by the four points discussed

earlier. The algorithm would work with any arbitrary value of the state variable at that

point. However, accurate determination provides a better initial interpolation curve. After

optimizing the shape of the curve through (5.10), the final curve would have better

closure at both ends of the interpolation region than a curve optimized with an arbitrary

selection of the additional hermite control point.

To accurately calculate the value of f1 at this point, the integrator needs to pass through

the control point and record a snapshot of the boundary condition values at that point. For

Chapter 5: Regularizing Discrete Functions 115

time events, the event can be marked in the integrator time-line. For state events, the

integrator needs to switch to the branch of the conditional statement containing the

regularization function before realizing the existence of a shift in boundary conditions.

Then, it needs to return back an interval h in time to record the snapshot. In both time and

state event cases, such approaches add an extra unnecessary burden on the integrator. To

mask the problem from the integrator, I allowed the integration routine to freely control

integration step-size while taking snapshots of the time steps taken by the integrator. Once

the regular expression shifts to the regularizing function, the location of that hermite

control point is calculated through approximating past integration steps with an

interpolating polynomial.

The concept is illustrated in Figure 5.6. The past points (diamond-shaped) along with the

g-point (intersecting f2 with the interpolating polynomial) are used to estimate the value of

f2(g-h). In the figure, four interpolating points are used to generate a third degree

interpolating polynomial that past-interpolates to find f2(g-h). Of course, we could have

used a hermite interpolating polynomial to perform the same task. However, there is no

added benefit in using hermite polynomials for past interpolation as no tight control over

the estimation of function value is required. In this case, a hermite interpolating

polynomial would unnecessarily increase computational power.

Although computationally exhaustive, I think this approach provides a better estimation

of the past value of the state variable. To avoid such computations, we can assume the

value of the state variable at the left hermite control point to be equal to that at the g

point. This assumption is used to calculate the additional hermite control point located to

the right side of the g point.

Chapter 5: Regularizing Discrete Functions 116

Figure 5.6: Past interpolation points at t i−1 , t i−2 and t i−3 in addition to the g point at t i

are used to estimate the value of f 2 at g−h .

5.1.6. Regularizing conflicting boundary conditions

The main reason behind conventional initialization of variables at a discontinuity is the

large change in one or more of the state-variables. The change is usually larger than the

accepted value of the tolerance set by integration routine. The large change is sometimes

a direct result of a conflicting boundary conditions between the two discontinuous

functions. An example of such conflict is the sudden changes in flow or flux directions

between the one set of boundary conditions and its neighbouring one.

Conflicting boundary conditions arise when the boundary conditions before

reinitialization of variables conflict with those after reinitialization. A discontinuity in a

boundary condition resulting from flow reversal can be regarded as a conflicting

boundary condition. The flow before the discontinuity occurs in one direction. After the

discontinuity, the flow direction reverses.

Chapter 5: Regularizing Discrete Functions 117

The problem that arises with regularizing conflicting boundary conditions is that the

developed algorithm cannot directly move from one boundary condition to the other

without stumbling in the middle and eventually failing. Taking the example of flow

reversal at the discontinuous region, we can realize that one set of boundary conditions is

mandating the flow to move in one direction while the other set is asking it to move in a

counter-current direction to the first set.

Reinitialization of variables resolves the conflict by simply ignoring past boundary

conditions and focusing only on the present boundary conditions. However, such a

resolution introduces an error into the model as it assumes that flow reversal happened

exactly at the start of the discontinuity. Reinitialization assumes the existence of no

intermediate transition region.

The solution to such regularization problems lies in breaking the discontinuous region

into two regularized regions that share a common interchange point. This common

interchange point is hopefully physically realizable. For example, before a flow reverses

its direction, it needs to move from a positive or negative flow to a point were the fluid is

stagnant. This stagnation point is a good transition point between the two sets of boundary

conditions as the point belongs to both sets of boundary conditions.

The concept is best understood with an example. In section 4.2, I detailed the general

layout of a discretized PSA model. Components boundary conditions of the model are

illustrated in Figure 4.9. One-interval regularization between the two steps is illustrated in

Figure 5.7. Note how the direction of spatial flux for the component mass balance

changes from Desorption step to Pressurization step. In the Desorption step, velocity and

component fluxes move in a direction that is counter-current to that of the Pressurization

step. Trying to directly bridge the discontinuity at the two boundaries (z=0 or x=L) using

Chapter 5: Regularizing Discrete Functions 118

one regularization interval results in a regularizing function having a negative flux at one

end while exhibiting a positive one at the other end. This situation leads to a solver

instability and eventually results in the solver failing to integrate. Indeed, the solver

should not integrate such a scenario as it is not physically realizable.

Looking deep into the process, it can easily be realized that the boundary discontinuity is

summing two process actions. At the end of Desorption step, the purge valve starts

closing. After the purge valve is completely closed, the feed valve is opened and feed is

introduced at high pressure signifying the start of the Pressurization step. So, effectively,

the discontinuity is compacting two process actions in an instantaneous time point.

Two regularization intervals are required to resolve this problem. The first regularization

interval closes the purge valve, effectively moving the flow and its respective component

mass fluxes from their negative direction to an intermediate stagnant point where there is

no flow in any of the directions. The flow and component fluxes then start moving into

the positive direction with the opening of the feed valve. The two-interval regularization

concept is illustrated in Figure 5.7. Also, two-interval regularization between Desorption

and Pressurization steps is illustrated in Figure 5.9.

As I outlined, the two-interval regularization solves the problem. However, it comes at an

expense. It is not an easy task for an algorithm to decide whether a discontinuity requires

one- or two-interval regularization. Until a future algorithm is devised to tackle such a

limitation, it becomes the task of the modeller to point the number of regularizations

required per a discontinuity to the modelling language. In addition, for a two-interval

regularization, the modeller needs to define the intermediate point that is shared by both

regularization intervals and define its corresponding boundary conditions.

Chapter 5: Regularizing Discrete Functions 119

5.1.7. Differential models embedding other models

Complex models usually combine boundary conditions, initial conditions and constitutive

equations. The model in such cases is built from different layers. However, as outlined in

Chapter 3: , the integrating routine focuses only on the layer that it immediately integrates

through. This is the layer at which model state variables are integrated with respect to an

independent variable such as time. Other model layers are normally overlooked by

conventional integrators.

For example, in the PSA model outlined in section 4.2.1, velocity distribution is a

function of the spatial dimension and not the temporal one. The distribution is modelled

as an initial value problem in space only although a small time contributing factor is

evident from the component adsorption term. Thus, to a conventional integrating routine,

velocity distribution does not exist and hence will not be regularized unless pointed out

through any mean by the modeller to the integrating routine implementing the

regularization algorithm. Moreover, the fact that the location of the initial conditions for

velocity (whether at x=0 or at x=1) is a process step dependent (refer to Figure 4.9) adds

to the complexity of the situation.

It is an easy task for a modelling language/algorithm to identify the state variables in a

model. This easiness facilitates the insertion of appropriate state-variable regularization

algorithms. However, this is not the case with embedded models since these models are

transparent to the modelling language. Some of the embedded models might require

regularization. Others might not. Thus, when regularizing models, modelling languages

should provide the modeller the option to select which of the embedded models to

regularize along with model state variables and which to ignore.

Unless the integration routine is clever enough (normally not) to realize the existence of

Chapter 5: Regularizing Discrete Functions 120

embedded constitutive equations within the model that require regularization, it becomes

a difficult task for it to regularize these embedded equations. Currently, very little

information is exchanged between the model and the integrating routine (refer to Figure

2.3). I think this problem marks a good direction for continuing research on this subject.

5.2. Two-Dimensional Functions

So far, we have discussed tackling the problem for one dimensional functions. What if z is

a function of two variables (e.g. z = f(x,y)), where z poses one or more discontinuities

along each of the dimensions. The discontinuous function may take a form like:

f (x , y)={ f 1(x , y) , x∈[a ' x , bx] , y∈[a ' y , b y]

f 2(x , y) , x∈[ax , b ' x] , y∈[a y , b ' y]
 (5.12)

Assuming a ' x<ax≤ bx<b ' x and a ' y<a y≤b y<b ' y (Figure 5.10a), if g ' x and g ' y are

arbitrary selected as discontinuity boundaries along the x and y dimensions, respectively,

a possible pseudo code of (5.12) could be written as either of the forms in (5.13).

If (a'x < x < g ' x)
If (ay < y < b'y)

f(x,y) = f1(x,y)
ElseIf (ax < x) and (a'y < y <ay)

f(x,y) = f2(x,y)
EndIf

ElseIf (g ' x < x < b'x)
If (a'y < y < by)

f(x,y) = f2(x,y)
ElseIf [(x < bx) and (by < y < b'y)]

f(x,y) = f1(x,y)
EndIf

EndIf

If (a'y < y < g ' y)
If (a'x < x < ax) and (y > ay)

f(x,y) = f1(x,y)
ElseIf [(ax< x < b'x)]

f(x,y) = f2(x,y)
EndIf

ElseIf (g ' y < y < b'y)
If (a'x < x < bx)

f(x,y) = f1(x,y)
ElseIf [(bx < x < b'x) and (y < by)]

f(x,y) = f1(x,y)
EndIf

EndIf

(5.13a). (5.13b).

Chapter 5: Regularizing Discrete Functions 121

Figure 5.7: One- and two-interval regularizations of a conflicting boundary discontinuity.

+ve Flux

-ve Flux

+ve Flux

-ve Flux

a. Discontinuity

b. One-Interval
 Regularization

c. Two-Interval
 Regularization

w

w2w1

-ve Flux

+ve Flux
Zero Flux

g

time

Chapter 5: Regularizing Discrete Functions 122

Figure 5.8: One-interval regularization of the conflicting boundary discontinuity between

Desorption and Pressurization steps in a PSA unit.

+ve Flux

-ve Flux

a. One-Interval time
 Regularization at z=0

w−DL

∂ cA i

∂ z
| z=0=0

−DL

∂ cA i

∂ z
| z=0=u|z=0 (c Ai f

− c Ai
| z=0)

+ve Flux

-ve Flux

w

−DL

∂ cA i

∂ z
| z=L=0

b. One-Interval time
 Regularization at z=L

−DL

∂ cA i

∂ z
| z=L=u|z= L(c Ai f

− c Ai
| z=0)

g

time

Chapter 5: Regularizing Discrete Functions 123

Figure 5.9: Two-interval regularization of the conflicting boundary discontinuity between

Desorption and Pressurization steps in a PSA unit.When dealing with two dimensional

relations, discontinuities present themselves as planes as illustrated in Figure 5.10a. We

can deduce some conclusions from projecting the domains of f1 and f2 into the x-y plane.

The discontinuity planes formed by using form (5.13a) are illustrated in Figure 5.10b.

Similarly, The discontinuity planes formed by using form (5.13b) are illustrated in Figure

5.10c. Notice that the difference in nesting of conditional statements only affects the

resulting output within the overlap domain that is illustrated in Figure 5.10a.

+ve Flux

-ve Flux

a. Two-Interval
 Regularization at z=0

b. Two-Interval
 Regularization at z=L

w2w1

-ve Flux

+ve Flux

−DL

∂ cA i

∂ z
| z=0=u|z=0 (c Ai f

− c Ai
| z=0)

−DL

∂ cA i

∂ z
| z=0=0

g

time

−DL

∂ cA i

∂ z
| z=L=0

−DL

∂ cA i

∂ z
| z=L=u|z=L(c Ai f

− c Ai
| z=0)

w2w1

-ve Flux

−DL

∂ cA i

∂ z
| z=0=0

−DL

∂ cA i

∂ z
| z=0=0

Chapter 5: Regularizing Discrete Functions 124

The solution strategy remains the same as for one dimension: the problem is still

decomposed into discontinuity detection and discontinuity resolution sub-problems.

a. 2D overlapping functions b. Nesting based on x-dimension at the outer
if statement.

c. Nesting based on y-dimension at the outer
if statement.

Figure 5.10: An example illustrating applicability domains of two-dimensional
overlapping functions f1 and f2 and the effect of conditional nesting on boundaries
segregation.

5.2.1. Two-Dimensional Discontinuity Detection

Before elaborating on the approach to handle discontinuity detection and resolution in

2D, let us look at how functions overlap in two dimensional space. Figure 5.10a

illustrates the case where there are overlaps between the two functions in both domains.

In such cases the detection algorithm will detect an optimum switch point for each of the

domains respective overlap intervals. When functions are adjacent to each other in one

x

y

f 1

f 2

Overlap domain
between f1 and f2

a y

b ' y

a ' x b x

b y

a ' y

a x b ' xg ' x

g ' y

?

?

x

y

?

f 1

f 2

f 1

f 2

a y

b ' y

b y

a ' y

g ' y

a ' x
b xa x b ' xg ' x

?

x

y

?

f 1

f 2

f 1

f 2

?f 1

a y

b ' y

b y

a ' y

g ' y

a ' x b xa x b ' xg ' x

Chapter 5: Regularizing Discrete Functions 125

dimension and overlap in the other, the overlap domain in 5.10a reduces to a line. In such

cases, the detection algorithm will only have one degree of freedom: that is to find the

optimum switch point for the dimension where overlap exists. When functions are

adjacent to each other in both domains, the overlap domain reduces to a point in the

projected 2D space. The detection algorithm has zero degrees of freedom in this case and

the resulting discontinuity locations will correspond to the intersection point between the

two functions.

It should be noted that, in 2D problems, detection of optimum switch points does not

guarantee passage of the simulation trajectory through these points. It only helps in

formulating the conditional statement around the minimum jump effort point to aid in

minimizing discontinuity while switching. This conclusion stimulates us to questioning

the credibility of the obtained conventional simulation results when the simulation

trajectory does not pass through an overlapping domain (shown as question marks in

Figure 5.10). When not passing through an overlap domain, conditional expressions will

extrapolate the use of discontinuous functions regardless of extrapolation applicability.

This statement holds for all conditional statements involving the use of functions bounded

by specified intervals. Since conventional modelling packages do not provide an apparent

fix to this problem, it becomes the responsibility of the modeller to either ensure that the

selected functions cover the intended unknown simulation path, or to insert as many

functions as possible (with differing domains) to cover a wider area to, hopefully,

minimize extrapolation. Thus, I think it is essential to include the applicability domains of

each logical branching expression as part of the model input file. Then, the simulation

package would check whether the solution falls within the specified applicability domains

and flags an alert (or stops simulation execution) when the simulation trajectory deviates

Chapter 5: Regularizing Discrete Functions 126

from the applicable domains of the branched conditional statements.

The detection of an optimum jump points for 2D functions can be formulated as an

extension of the 1D problem. For two discontinuous functions overlapping at [ax,bx] and

[ay, by] in x and y dimensions, respectively; the optimum switch point g(x,y) is found

through solving the optimization problem:

min.e(x , y)=∣f 1(x , y)− f 2(x , y)∣

s . t .={ x∈[a x ,b x]

y∈[a y ,b y]

(5.14)

As I indicated in the 1D case, once the gx and gy locations are determined, their values can

be directly substituted into the constructed conditional statement to minimize jump effort

between the two adjacent discontinuous functions. The model can, then, be solved using

any of the available integration packages. Nevertheless, since detection of optimum

switch points does not always guarantee elimination of reinitialization of the ODE/PDE

model at the switch point or accuracy of integrator-based interpolated solution afterwards,

the need arises for a discontinuity resolution algorithm.

5.2.2. Two-Dimensional Discontinuity Resolution

Once overlap boundaries between the discontinuous functions are determined through the

detection algorithm, we need to interpolate between the discontinuous functions in order

to eliminate discontinuity. I propose two approaches and highlight their pros and cons.

The simplest approach (approach I) is to cover the entire overlap domain with an

interpolating polynomial. Boundaries of the interpolating polynomial will correspond to

those of the continuous function at the boundary location as illustrated in Figure 5.11a.

The fact that the values of the interpolating polynomial at its boundaries matches that of

Chapter 5: Regularizing Discrete Functions 127

the neighbouring functions facilitates smooth transition in all directions.

However, this approach comes at a cost. For a fixed number of control points per

dimension, interpolation mesh size is overlap-domain size dependent. This means that

mesh resolution will decrease as the size of the overlap domain increases and vice versa.

Of course, increasing the number of control points for large overlap domains will resolve

this problem but at a heavy computational cost. Thus, I recommend adopting this

approach for a relatively small overlap domain size. A typical if structure using this

approach (based on Figure 5.11a) is illustrated in (5.15).

Note that the conditional statement well encapsulates the bounding domains of the

discontinuous functions. Thus, the last Else statement is needed to indicate to the user that

simulation trajectory is deviating from the specified functions' boundaries.

An alternative approach (approach II) would be to track a two dimensional trajectory

vector v⃗n as simulation progresses and generate the grid points of the interpolating

polynomial once the conditional statement shifts to the branch containing the

interpolating polynomial as illustrated in Figure 5.4b. The v⃗n vector tracks the coordinates

of the independent variables of the composite function as simulation progresses. Full

derivation of the underlining equations is presented in Appendix D.

If [{(a 'x≤ x<ax)∧(ay<y<b' y)}∨{(ax≤ x≤bx)∧(by<y≤ b' y)}]
f(x,y) = f1(x,y)

ElseIf [{(bx<x≤ b 'x)∧(a' y≤ y≤ by)}∨{(ax≤ x≤bx)∧(a ' y≤ y<ay)}]
f(x,y) = f2(x,y)

ElseIf [(ax≤ x≤bx)∧(ay≤ y≤ by)]

f(x,y) = interpolate
Else

Print “Illegal extrapolation”
EndIf

(5.15)

In this approach, the mesh is constructed at the intersection point between v⃗n and the

Chapter 5: Regularizing Discrete Functions 128

overlap domain. The aim of the constructed mesh is to facilitate transition from the

currently active discontinuous function to the function towards which v⃗n is heading. Once

transition to the destination discontinuous function is complete the rest of the overlap

domain is considered as a seamless part of the destination discontinuous function. This

approach allows generation of a high resolution variable grid size that is independent of

the size of the overlap domain and with a fixed number of control points.

The approach works well with one exceptional situation. This situation arises when v⃗ i

changes direction, within the overlap domain, and returns back to the discontinuous

function where it originally came from as illustrated in Figure 5.11b. Since the overlap

domain, with the exception of the interpolation region, has been replaced with the values

of the destination discontinuous function a discontinuity would probably occur at the

boundaries of the overlap domain with the function where the vector has originally come

from. Such a situation is solvable through formulating an additional exit interpolating

polynomial with the original function as illustrated in Figure 5.11c. Note that even the

entry region (cross-hatched) is treated as a possible interpolating region to move back to

f1 from the overlap region. The fine-hatched region resembles the entire area at which

interpolation might occur. However, the generated mesh will only cover the portion at

which v⃗ i is heading as illustrated in Figure 5.11d. Note that this problem would never

occur if approach I is used because v⃗ i will always fall in the region of the interpolating

polynomial once it is inside the overlap region as illustrated in Figure 5.11a. Two

advantages arise from using approach II:

1. It allows for variable size mesh, i.e. hx and hy can be arbitrary selected as long as

the resulting mesh does not cross the overlap domain.

Chapter 5: Regularizing Discrete Functions 129

2. Only four points are needed (six when using hermite interpolating polynomials)

per interpolation dimension regardless of the size of the overlap domain.

However, more checks are needed in this approach over approach I. A typical 2D

conditional structure pseudo code is illustrated in (5.16).

a. b.

c. d.

Figure 5.11: Approaches I and II to resolving discontinuity.

5.2.3. How legal is “illegal” extrapolation?

As we discussed earlier, extrapolation occurs when trying to join the two discontinuous

sub-functions by a polynomial that lies outside their designated domains. This is

illustrated in Figures 5.1d and 5.10 (domains marked by question marks) for 1D and 2D

functions, respectively. There are two reasons (cases) behind alerting the modeller about

illegal extrapolation:

f 1

f 2

y

x

v1

v2

v3

a ' x b xa x b ' x

a ' y

b y

a y

b ' y

f1 exit interpolation
region

f1 exit interpolation
region

f 1

f 2

y

x

v1

v2

v3

a ' x b xa x b ' x

a ' y

b y

a y

b ' y

3 hx

3h yv i

f 1

f 2

y

x

v1

v2

v3

a ' x b xax b ' x

3hx

3h y

a ' y

b y

a y

b ' y

v i

Boundary Matching
 f1 value

Boundary Matching
f1 value

Boundary Matching
f2 value

Boundary Matching
f2 value

f 1

f 2

y

x

v1

v2

v3

a ' x bxax b ' x

3hx

3hy

a ' y

b y

a y

b ' y

v i

Probable
discontinuity due to
direction reversal

Probable
discontinuity due to
direction reversal

Chapter 5: Regularizing Discrete Functions 130

1. The extrapolation domain might be defined by a function exhibiting a behaviour

that is different from the behaviours of the sub-functions to be extrapolated. In

such cases, extrapolation will result in erroneous simulation output.

2. Either or both of the functions to be linked might not be mathematically defined in

the extrapolation region (e.g. division by zero). In such cases control points 3 and

4 cannot be calculated due to unavailability of function values at the location of

these points.

The modeller will obtain a less than accurate result in the first case. However, if the

modeller is confident about the consistency of the behaviour between the extrapolation

region and the functions to be extrapolated, he or she can simply alter domain boundaries

of the functions to append the extrapolated region to one of them, divide it between the

two functions or, even better, append it to both functions and rely on the detection

optimizer to locate the best transition point g.

As for the second case, the integrator will simply stop integrating because the values of

the functions at points 3 and 4 are dependent on the respective values of functions 1 and

2. However, the dependency can be broken by eliminating function evaluations at these

two points. We should recall that function evaluations at points 3 and 4 are needed to

calculate the amount of dip based on p parameter. If some curvature smoothness at the

junction points between the interpolating polynomial and the discontinuous functions can

be sacrificed in the quest for continuity, then the integrator can extrapolate between the

values of the two discontinuous sub-functions using their respective boundaries that are

adjacent to the extrapolation domain.

Chapter 5: Regularizing Discrete Functions 131

If (active_point_coordinate∉overlap_domain)
entry_completed = false; first_overlap_entry = true; first_exit_attempt = true
If (active_point_coordinate∈ f 1range)

f= f1(x,y)
Active_function = f1

ElseIf (active_point_coordinate∈ f 2range)
f= f2(x,y)
Active_function = f2

Else
Print “Illegal Extrapolation”

EndIf
ElseIf (active_point_coordinate∈overlap_domain)

detect_entry_intersection_plain;
If first_overlap_entry = true

construct_entry_mesh;
first_overlap_entry = false

EndIf
If (active_point_coordinate∈entry_interpolation)∧(not entry_completed)

f = entry_interpolate
Else

entry_completed = true
If (active_point_coordinate∈exit_interpolation)

If first_exit_attempt = true
construct_exit_mesh
first_exit_attempt = false

EndIf
f = exit_interpolate

Else
f = fDestination_function(x,y)

EndIf
EndIf

EndIf

(5.16)

As we might expect, the second solution will work for cases 1 and 2. However, it will not

eliminate errors associated with the first extrapolation case. So, it still becomes the

modeller's responsibility to tackle the first case by inserting an appropriate function to

define the region that might otherwise be erroneously extrapolated.

5.2.4. Mesh Generation

In order to interpolate, a mesh needs to be generated. For one-dimensional problems, the

Chapter 5: Regularizing Discrete Functions 132

mesh reduces to a one-dimensional set of points. The 2D+ problems require an

elaboration on mesh generation methods.

Mesh generation is an approach dependent exercise. Generating the mesh using approach

I is a fairly easy task since the mesh will cover the entire overlap region. The values of the

boundary points surrounding the overlap region will always correspond to the

neighbouring continuous sub-functions adjacent to the overlap domain as illustrated in

Figure 5.11a.

For approach II, mesh generation is more complex. The extra complication arises from the

tracking of v⃗ i . I will discuss four methods to construct the mesh around the intersection

of the v⃗n with the discontinuity plane. I will briefly explain each method and provide my

reasoning for selecting one of them. For simplicity, I will demonstrate examples using a

discontinuity plane orthogonal to x-axis. However, the concept applies to discontinuities

orthogonal to either of x- or y-axis.

The first method constructs a squared mesh around the discontinuity point as illustrated in

Figure 5.12a. Values of h '
x

 and h '
y

are measured with respect to their respective x- and y-

axes. The size of the mesh is fixed. The distribution of the mesh control points along the

sides of v⃗n is dependent on the slope of v⃗n . Thus, v⃗n might lean towards some of the

control points over others.

The second method is similar to the first one with the exception that the size of the mesh

is expandable in the direction that is perpendicular to the discontinuity plane. The

advantage of this method is that it allows a better distribution of the control points along

each side of the v⃗n vector as illustrated in Figure 5.12b. As can be deduced from the

figure, vector v⃗n is still almost always leaning towards one set of the mesh control points

Chapter 5: Regularizing Discrete Functions 133

over the other.

a. b.

c. d.

Figure 5.12: Four ways to construct a mesh around a vector-plane intersection point.

The third method aligns the grid with the direction of v⃗n . This method better distributes

grid points along the sides of v⃗n , compared to the former two methods as illustrated in

Figure 5.12c. Note that h '
1

 and h '
2

are respectively measured parallel and orthogonal to v⃗n

but not relative to x- and y-axes. Since the grid is aligned to v⃗n while the conditional

statement is based on a discontinuity that is orthogonal to either x- or y-axis, logical

statements around interpolation region become functions of the direction of v⃗n . Since the

generated mesh is not aligned with overlap domain, it becomes a difficult task to

superimpose the mesh on the conditional statement.

hx
'

f 1

f 2

vn
h y

'

y

x

hx
' hx

'

h y
'

h y
'

a ' x bx
a x b ' x

f 1

f 2

vn

y

x

h1
'h1

'h1
'

h2
'

h2
'

h2
'

a ' x b x
ax b ' x

f 1

f 2

vn

y

x

hx
' hx

' hx
'

h y
'

h y
'

h y
'

a ' x b x
ax b ' x

f 1

f 2

vn

ax bx
c x d x

y

x

hx
' hx

' hx
'

h y
'

h y
'

h y
'

Chapter 5: Regularizing Discrete Functions 134

The fourth method relies on fixing an h' along each of the dimensions while shifting the

location of the line segments that are parallel to the discontinuous domain to align the grid

with v⃗n . The fourth method resolves the drawbacks of the previous three methods. Thus,

I opted for implementing this method in grid construction for Approach II. The extension

of this approach to the construction of 3D meshes is detailed in Appendix C.

5.3. N-Dimensional Functions

5.3.1. N-Dimensional Discontinuity Detection

To generalize, for two n-dimensional discontinuous functions, discontinuity detection

detects the overlap region between the two discontinuous sub-functions. It also detects the

optimum switch point between the two discontinuous functions. The position of the two

sub-functions, relative to the overlap region and the location of the optimum switch point,

assists in formulating the conditional statement. If sub-functions do not overlap in any of

the dimensions, the algorithm flags an error and simulation execution stops.

5.3.2. N-Dimensional Discontinuity Resolution

Discontinuity resolution takes the form of an interpolating polynomial that connects the

two discontinuous sub-functions. For one-dimensional discontinuous functions, the

interpolating polynomial is best formulated around the minimum jump effort point.

For discontinuous functions of dimensions greater than one, the solution can follow one

of two approaches:

1. The first approach relies on constructing an interpolating polynomial that covers

the entire overlap domain. This path is suitable for relatively small overlap

Chapter 5: Regularizing Discrete Functions 135

regions. For large overlap domains, the interpolating polynomial mesh resolution

can be enhanced by increasing the number of control points at a heavy

computational cost.

2. The second approach constructs one mesh and possibly a second one. The first

mesh is constructed at the entry to the overlap domain. It facilitates smooth

transition between the active discontinuous sub-function at the entry point of the

overlap domain and the destination one. Once transition occurs, the rest of the

overlap domain is treated as if it were part of the destination sub-function. In

situations where the simulation vector reverts back to the sub-function where it

originally came from within the overlap domain, an exit mesh is constructed to

resolve discontinuity at exit location. This path has the advantage of varying the

mesh size based on user specification while maintaining a fixed number of control

points.

Figures 5.13a and 5.13b illustrate generated meshes for an overlap-domain between two

3D discontinuous functions using approaches I and II to discontinuity resolution,

respectively.

The total required number of mesh points is an exponential function of the dimensions of

the composite function and can be calculated as:

Number of mesh points=mn (5.17)

where m: number of control points per dimension

n: number of dimensions

To ensure smooth transition between the two discontinuous sub-functions, at least

four control points are required per a dimension. In the case of hermite

interpolating polynomials, six control points are required per a dimension to assist

in curvature closure as outlined in Appendix C. Figure 5.14 illustrates the

Chapter 5: Regularizing Discrete Functions 136

relationship between the number of control points required and the dimensions of

the composite function. Although computational power and capacity are machine

dependent, we can deduce from the plot the existence of a threshold beyond which

computational power and machine space (memory or hard disk) becomes

prohibitive. For example, for a tenth dimension discontinuous function, a cubic

spline would require a mesh composed of 1,048,576 points. That is a megabyte of

memory/disk space per discontinuity. The problem becomes worse when using

hermite interpolating polynomials. For a tenth dimension discontinuous function,

the hermite interpolating polynomial requires 60,466,176 mesh points. This is

about 58 megabytes of memory/disk space per discontinuity encountered.

a. Mesh covering entire overlap domain (Approach
I).

b. Mesh covering entry/exit regions only (Approach
II).

Figure 5.13: Representation of the two types of generated meshes in a 3D cuboid overlap
domain.

A person might think that we could use sparse matrix algebra to conserve memory.

However, this is not possible since we only have four or six points per dimension, all of

which contribute to the shape formation of the interpolation curve, resulting in a very

dense matrix. Yet, some solutions can help reducing the implications of this problem or

eliminating it. For example, the number of dimensions can be reduced if any dimension

overlap cuboid

x

y

z

vnoverlap cuboid

Chapter 5: Regularizing Discrete Functions 137

exhibiting constant values throughout the interpolation region is omitted from the

interpolation mesh. Also, since usually hard disk space is more abundant than memory,

the entire mesh can be saved in a computer hard drive using binary files to accelerate

simulation program access to these mesh-point files. Lastly, instead of generating the

mesh once at the first entry to the interpolation region and saving it, the simulation

routine can opt to generate the mesh at each interpolation run and immediately dispose it

after the composite function value is computed to free memory/hard disk space. The latter

resolution saves a tremendous amount of disk space by dynamically allocating mesh

space to compute function values and freeing the space once the function value is

computed. However, additional CPU time is required to construct the exact same mesh at

every function evaluation within the interpolation region.

Figure 5.14: A semi-log plot of number of mesh points required versus discontinuous
function dimension.

Of course, a combination of one or more of the above resolutions will result in a more

efficient and/or robust algorithm. For example, the simulation routine can be programmed

to:

1. Generate interpolation mesh only once in memory when memory space is

dimension

hermite
cubic

Chapter 5: Regularizing Discrete Functions 138

abundant.

2. Once memory occupied space reaches a specified maximum, the simulation

routine switches to storing a one-time generated mesh in the machine hard drive.

3. If hard drive space is limited or has reached a critical level, the routine shifts to

dynamically creating and destroying meshes at each function evaluation inside the

interpolation region.

To further enhance efficiency, the routine can be programmed to optimize memory

utilization by loading lower dimension functions' meshes into memory while saving

higher dimension ones to hard disk. The prior knowledge of the dimension of each

composite function will assist the simulation routine in calculating the maximum amount

of occupied hard disk/memory space beyond which dynamic allocation and destruction of

interpolation meshes (bullet 3) should be used instead of a single-time generated mesh

(bullets 1 or 2).

Such a resolution is hardware dependent. Thus, below certain machine hardware

specifications and based on computed mesh size for each interpolating polynomial in a

simulation model, the simulation routine can flag an error message prior to starting

simulation run indicating the inability to run the model on a specified machine. However,

I think modern hardware capabilities extend far beyond such minimum specifications.

Last, it is good to shed some light on whether this work eliminates the need for implicit

solvers and their respective variable integration step size. The answer is no. Taking Figure

5.3 as an example, we notice that slope changes are very evident between each of the sub-

functions and their respective interpolating polynomial. An explicit integration routine

with a fixed integration step size can easily overlook these slope changes, even in a

Chapter 5: Regularizing Discrete Functions 139

regularized composite function, resulting in sever simulation errors. Of course,

minimizing integration step length might resolve the issue but at the cost of increased

simulation run-length. The use of variable integration step-size in implicit solvers ensures

the adjustment of the step-size as required. Larger integration steps are used when

integration error is within bounds. Whenever integration error exceeds the bounds,

integration step is halved and error is recalculated. The implicit integration routine adjusts

integration step size when moving between discontinuous sub-functions and their

respective interpolating polynomial. Thus, the use of implicit integration routines is still

favoured even after model regularization.

5.4. The Algorithm

The algorithm implementation is programming language dependent as it involves either a

modification of conditional statements or a complete rewrite of the discrete composite

function to regularize it. In compiler-based modelling languages such as [gPROMS,

2012], it is recommended to embed the code within the language compiler. However, this

solution might not be feasible for general purpose modelling languages such as MATLAB

or GNU Octave or even general purpose imperative languages such as C++, FORTRAN

or Pascal. In such cases, the programmer can write his/her custom code to iterate through

discretized composite functions and transform them to their regularized counterparts.

Generic packages to perform such tasks can also be developed by the scientific

community and added to the language as a language library module.

Regardless of the implementation platform, the modeller needs a mean to enter the

domain of each dimension of a sub-function that is part of a composite discontinuous

function. The detection algorithm sorts the discontinuous sub-functions of a composite

function based on the applicability of the respective domain for each of the dimensions.

Chapter 5: Regularizing Discrete Functions 140

Figure 6.3 illustrates a simplified flowchart of the algorithm. A simplified step-by-step

procedure that should be executed by the modelling language follows:

STEP-01: Start simulation run

STEP-02: Check for the availability of any functions containing conditional statements

or standalone conditional statements involving continuous variables (i.e. of

real or float types) inside original model code.

STEP-03: Search for an optimum switch point that minimizes the difference in values

between any two sub-functions within their overlap domain.

STEP-04: Adjust the standalone conditional statement or the one within the composite

function to account for the new switch point.

STEP-05: If resolution is enabled by the modeller, reconstruct a regularized conditional

statement from the discretized one (recommended).

STEP-06: Repeat STEP2 and STEP3 until all conditional statements within modeller's

code are handled.

STEP-07: Start the integration and Initialize variables.

STEP-08: The integration routine advances integration step if final integration limit is

not reached.

STEP-09: Update v⃗ i for each composite regularized function.

STEP-10: If composite regularized function parameters are not within the interpolation

region, the value of function f is calculated using the provided discontinuous

sub-function that lies within the active domain. If parameters are within the

overlap domain, check if this is the first entry to the overlap region in order to

generate the interpolation grid. If the grid is already generated, use

interpolating polynomial f3 to calculate f.

Chapter 5: Regularizing Discrete Functions 141

STEP-11: Repeat steps 8-11 until simulation completes.

In the present work, the search for discontinuous functions within a simulation code is not

implemented. As I explained earlier, this task is programming-language dependent.

However, the search for an optimum switch point within the conditional statements, that

are used as examples in this work, is implemented and tested using [gPROMS, 2012]

Foreign Object Interface (FOI). It has also been independently tested using GNU Octave

[GSL, 2011].

Similarly, regularizing functions have been tested using both [gPROMS, 2012] and GNU

Octave [GSL, 2011] programming languages. Again, the automatic formulation of the

composite regularizing function is language compiler specific. It is also outside the scope

of this work and thus not implemented.

For the online part, the vector tracking algorithm has also been implemented in

[gPROMS, 2012] FOI. Binary (record) files are used to record vectors' paths of Prandtl

and Reynolds numbers during simulation run of the reactor model. For the PSA model,

the same routines are used to track velocity, inlet and outlet concentration profiles.

For Approach II to discontinuity resolution, a complete C++ routine is written to handle

the regularization of the discontinuity. The possibility of the vector reversing direction

within the interpolation region is also programmed.

A special C++ routine is also written to estimate the location of the left-most control point

when regularizing boundary conditions. As discussed earlier, the purpose of the routine is

to interpolate using available pre-discontinuity history points in order to calculate the

value of the independent variable immediately preceding the regularization region.

Chapter 5: Regularizing Discrete Functions 142

Figure 5.15: A simplified flowchart illustrating flow of the presented algorithm. Solid lines
represent the more preferred path while the dashed line represents the less preferred one.

Any
composite
functions
within
model?

Locate optimum
switch point.

Adjust conditions of
logical-expression.

Is
resolution
enabled?

Transform discretized
logical structure

to a regularized one using
either approach I or II.

Sort logical expression
sub-functions based on

their applicability domains.

Yes

Start Simulation RunStart simulation run

Start integration

No

Yes

No

Last
 composite function

executed?

No

Advance to next
composite function

within model

Yes

Initialize variables

Update for each
composite regularized

function f

v⃗i

Within
interpolation

region?

Calculate f based
 on provided sub
function within
active domain

Is first
entry?

Find -cutting plain
Intersection point

Generate grid

Interpolate to
Find f

Advance
integration step

Has
 last integration

step
passed?

End
Simulation

Yes

No

Yes

Yes

No

No

v⃗n

Offline part

Chapter 5: Regularizing Discrete Functions 143

The bounded dotted area represents offline part while the rest represents the online part.

A separate C++ routine is written to handle the generation of the mesh control-points for

Approach II to discontinuity resolution. The routine is linked to [gPROMS, 2012] and

tested using the reactor model that is described in Appendix B. The mesh generation

algorithm is also simultaneously tested using GNU Octave [GSL, 2011].

I implemented the algorithms in a C++ code. Then, I linked the compiled code to a

[gPROMS, 2012] models described in Chapter 4 and Appendix B through gPROMS

Foreign Object Interface (FOI). A simplified one-dimensional hermite interpolation code

is presented by [Bourke, 2011]. [Breeuwsma, 2011] presented a general C++ and Java

codes for multidimensional interpolation that can be used in conjunction with any one-

dimensional interpolation method. I combined the codes of [Bourke, 2011] and

[Breeuwsma, 2011] to formulate the C++ multidimensional hermite interpolation routines

that are used in this work.

5.5. Summary and Concluding Remarks

In this chapter, I introduced a novel approach for detecting and resolving discontinuities

originating from the use of conditional statements within a modelling code. The approach

is based on targeting the discontinuity at its origin and hence eliminates the need for

interpolating polynomials that do not truly represent the discontinuity.

I outlined how the one-dimensional detection and resolution approach can be applied to

regularize constitutive equations. I also discussed how the approach can be extended to

handle discontinuities resulting from shifts in boundary conditions during simulation run.

I demonstrated the uniqueness of the resolution for one-dimensional discontinuous

functions. Thus, the one-dimensional detection and resolution approach can be applied

offline before starting the model integration.

Chapter 5: Regularizing Discrete Functions 144

The one-dimensional detection approach is extendible to multi-dimensional composite

functions. For multi-dimensional resolution, I devised two discontinuity resolution

approaches. Approach I relies on covering the entire overlap domain with an interpolating

polynomial. This approach is more applicable to small overlap domains since the mesh

resolution reduces as the size of the overlap domain increases.

Approach II to discontinuity resolution relies on tracking a vector of the independent

variables of a composite function. The vector is used to construct the multi-dimensional

interpolating polynomial once the conditional statement shifts to the overlap domain. A

procedure is also devised to best generate a mesh of control points for the interpolating

polynomial based on the direction of a tracked vector.

The last section of this chapter outlined the sequence of the steps for the algorithm and

how they should be implemented either within the compiler of the language or as an

independent code. The next chapter demonstrates the implementation of the algorithm,

discussed in this chapter, to two models of chemical processes.

CHAPTER 6: Applications to Some Complex Models

Applications to Some Complex Models

In this chapter, I will demonstrate the discussed concepts using two

examples, one for one-dimensional functions exhibiting dynamic

boundary conditions and the other for a two-dimensional function

embedded within a model's constitutive equation.

145

Chapter 6: Applications to Some Complex Models 146

6.1. Regularizing a Discontinuity in Heat Transfer Coefficient
Calculation

I tested the effect of transition from Laminar to Turbulent flow regimes on the wall heat

transfer coefficient described by equation 4.1 and plotted in Figure 4.3.

When using the approach presented in this work, I expected to observe a decline in the

time required to perform a simulation run compared with conventional simulation

reinitialization procedures. Since the developed reactor model discretizes axial space to

convert PDEs to ODEs, I intend to use the number of discretization points as a variable to

test our theory.

The code is expected to best perform at large numbers of discretization points. The

performance should approach that of conventional simulation techniques as the number of

discretization points is reduced. This is due to the fact that the number of equations

requiring initialization is directly proportional to the number of discretization points.

To establish a baseline for the analysis and to eliminate the bias introduced by every

simulation run on the analysis, I recorded machine time taken to complete a constant

velocity simulation that does not pass through any discontinuities for a set of axial

discretization nodes that span from 10 to 500 as outlined in Table 1. To eliminate any

variance in reported data (due to interfering machine background tasks) I repeated each

run three times and reported the average outcome of the three runs on the table. I should

also mention that the reported base case is based on conventional simulation runs. A

consistent additional one second is noticed when using FOI to report base case results.

The additional one second is probably attributed to initiation and termination of the link

between [gPROMS, 2012] and the FOI. I should also mention that results on Table 6.1 are

generated using a single lumped heat transfer coefficient that is based on feed conditions

Chapter 6: Applications to Some Complex Models 147

and an average axial reactor temperature. Also, the simulation runs were performed on a

machine equipped with an Intel i5 processor using 4GB RAM and running a Linux

operating system.

a. Discretized Discontinuity b. Regularized Discontinuity

Figure 6.1: (a) Discretized and (b) regularized Nusselt functions plotted against time. The
quasi independent variables, Reynolds and Prandtl numbers, are also plotted for
illustration purposes.

It should be noted that points in the Nu curve do not represent control points but
simulation reporting intervals.

After establishing the base case, I applied a sinusoidal input to the feed velocity that

crosses Reynolds boundary of 2,300 between the two correlations ten times. Plots of Nu,

Pr and Re against time when passing through the first discontinuity are illustrated in

Figure 6.1a for the discretized model and in Figure 6.1b for the regularized one. For the

regularized model, Figure 6.2 represents a 3D view of the regularized interpolating

polynomial that is constructed based on v⃗n direction.

The simulation run-length is plotted against the number of axial discretization nodes for

the reference case, the discretized and the regularized models in Figure 6.3a. The

difference between the discretized model and the base case run lengths is plotted in

Figure 6.3b gainst the number of discretization nodes. The difference between the

regularized model and the base case run lengths is also plotted in the same figure. With

the exception of the reported time using ten discretization nodes, the rest of the points

Re

Pr

Nu

Re

Pr

Nu

Re

Pr

Nu

Re

Nu

Pr

Chapter 6: Applications to Some Complex Models 148

closely resemble straight lines. Excluding the point corresponding to ten discretization

nodes (explained later) and applying regression analysis between the number of

discretization nodes and the absolute simulation run length for the conventional case and

this work yields the tabulated results in Table 6.2. The slopes resulting from the

regression analysis represent the run length time per discretization node. Dividing the

slope resulting from this work (0.12263) by the slope resulting from conventional runs

(0.15869) provides the fractional run length time elapsing from this work per elapsed run

length of conventional runs (0.7728). The results show that using the approach provided

in this work results in about 23% saving in run length time over conventional

discontinuity handling techniques at least for 2D discontinuous functions. Of course, the

same conclusion would have been achieved had we directly regressed run length time for

conventional discontinuity handlers against the results obtained in this work bypassing

the inclusion of discretization nodes in regression analysis.

Figure 6.2: A zoomed view of Re-Pr trajectory vector as it approaches the discontinuity
and smoothly slides over it.

As it appears from the figures and supported by the computational results, there is a

consistent drop in the reported simulation time when using the new approach for two

dimensional discontinuous functions. Also, the new approach becomes more attractive as

Re

Pr

Nu

Chapter 6: Applications to Some Complex Models 149

the number of the state variables, to be initialized, increases.

As the number of state variables decreases, both approaches to resolving discontinuity

report closer simulation times. However, since initialization itself introduces errors in the

solution, the new approach still holds the advantage of not reinitializing any state

variables.

a. Absolute time b. Relative to base case
Figure 6.3: Simulation Run Length versus number of internal discretization nodes.

Table 6.1: Reported Simulation Time for several runs using varying discretization nodes

Time (seconds)

Discretization
Nodes

Base Case Conventional This Work

Absolute Above Base Absolute Above Base

10 37 38 1 42 5

20 4 7 3 8 4

50 8 11 3 11 3

100 9 20 11 17 8

200 14 34 20 28 14

300 21 50 29 41 20

400 29 69 40 55 26

500 35 82 47 66 31

Chapter 6: Applications to Some Complex Models 150

Table 6.2: Regression results for correlating simulation run length with number of discretization nodes.

Slope Intercept Correlation Coefficient

Conventional 0.15869 3.40857 0.9992

This Work 0.12263 4.78063 0.9993

As illustrated in Figure 6.3a, there is a sudden increase in the reported time when using

ten discretization points. This sudden increase in simulation time is mainly attributed to

the decline in discretization resolution. As the number of space discretization points

decreases, the integrator is forced to take smaller integration steps in order to meet the

specified error tolerance criterion for a successful integration step.

6.2. Regularizing Boundary and Initial Conditions of a PSA Column

Pressure Swing Adsorption (PSA) processes are considered among few of the processes

that exhibit continuous dynamics from the moment they are started until they are shut

down. As discussed in Section 4.2.3, any PSA column undergoes a sequence of steps

whereby inlet and exit valves are automatically opened and closed or products are

redirected through switch (Motor Operated) valves. Feeds are introduced at some steps

and products are collected at either the same step or at different steps. A simplified

isothermal set of the PSA model equations, presented in Section 4.2, is used to

demonstrate the concept. The PSA cycle is described in Section 4.2.1 is reduced to its

simple [Skarström, 1960] form.

Each step undergone by a PSA column possesses differing boundary conditions that

uniquely identifies the step from its sister steps as illustrated in Figure 4.9. The switch

from one step to the other is either time dependent (e.g. adsorption and desorption steps)

or state variable dependent (e.g. pressurization and de-pressurization). Regardless of the

solver used, conventional solution of PSA column differential equations requires

Chapter 6: Applications to Some Complex Models 151

reinitialization of the ODE/DAE system at the start of each step in the sequence as

outlined in Section 4.2.3. The model repeats the cycles until a desired maximum number

of cycles is reached or an error tolerance is reached on exit concentrations between two

consecutive cycles at the end of either depressurization or desorption step signifying the

reach of a cyclic steady state.

In this work, I regularized the components mass boundary and velocity initial conditions

illustrated in equations 4.20-4.24, 4.26-4.30, 4.31-4.35 and 4.36-4.40 for pressurization,

adsorption, depressurization and desorption steps, respectively. Regularization is

performed through the use of 1D hermite interpolating polynomials. One-interval

regularization is added between every two consecutive steps as illustrated below for

velocity, inlet and exist concentrations composite functions:

u|z=0 or z=L=f (TimeCycle)={ u|z=L=0 0 ≤ TimeCycle ≤ TimePressurization Step

Interpolate TimePressurization Step < TimeCycle < TimePressurization Step+w
u|z=0=(u f) TimePressurization Step+w ≤ TimeCycle ≤ TimeAdsorption Step

Interpolate TimeAdsorption Step < TimeCycle < TimeAdsorption Step+w
u|z=L=0 TimeAdsorption Step+w ≤ TimeCycle ≤ TimeDepressurization Step

Interpolate TimeDepressurizationStep < TimeCycle < TimeDepressurization Step+w
u |z=L=−u p TimeDepressurization Step+w ≤ TimeCycle ≤ TimeDesorptionStep

Interpolate TimeDesorptionStep < TimeCycle < TimeDesorptionStep+w

(6.1)

∂ c i

∂ z
|z=0=f (TimeCycle)={ u |z=0(c i

f−c i|z=0) 0 ≤ TimeCycle ≤ TimePressurization Step

Interpolate TimePressurization Step < TimeCycle < TimePressurization Step+w
u |z=0(ci

f−ci|z=0) Time PressurizationStep+w ≤ TimeCycle ≤ Time AdsorptionStep

Interpolate TimeAdsorption Step < TimeCycle < TimeAdsorption Step+w
0 Time AdsorptionStep+w ≤ TimeCycle ≤ TimeDepressurizationStep

Interpolate TimeDepressurization Step < TimeCycle < TimeDepressurizationStep+w
0 TimeDepressurization Step+w ≤ TimeCycle ≤ TimeDesorptionStep

Interpolate TimeDesorptionStep < TimeCycle < TimeDesorptionStep+w

(6.2)

Chapter 6: Applications to Some Complex Models 152

∂ c i

∂ z
|z=L=f (TimeCycle)={ 0 0 ≤ TimeCycle ≤ TimePressurization Step

Interpolate TimePressurization Step < TimeCycle < TimePressurization Step+w
0 TimePressurization Step+w ≤ TimeCycle ≤ TimeAdsorptionStep

Interpolate TimeAdsorption Step < TimeCycle < TimeAdsorption Step+w
0 TimeAdsorptionStep+w ≤ TimeCycle ≤ TimeDepressurizationStep

Interpolate TimeDepressurization Step < TimeCycle < TimeDepressurizationStep+w
u |z=L(ci

p−ci|z=L) TimeDepressurizationStep+w ≤ TimeCycle ≤ TimeDesorptionStep

Interpolate TimeDesorptionStep < TimeCycle < TimeDesorptionStep+w

(6.3)

Initially, I was planning to demonstrate the concept of two-interval regularization through

implementing it in the regularizing interval between desorption and pressurization steps.

However, a better modelling of the regularization period through reformulation of the

velocity calculation function (Appendix A) allowed the use of one regularization interval

between these two steps. Nevertheless, it should be noted that the two-interval

regularization can still be used to resolve discontinuities similar (but no exactly the same

as I will discuss later) to the one outlined between desorption and pressurization steps.

At each time step, the velocity profile is obtained through solving an ODE equation with

one boundary condition. However, the location of the boundary condition is PSA cycle

step dependent. So, in order to regularize velocity boundaries, I initially had to calculate

the entire velocity profile in the FOI through an independent integration routine provided

through GNU Scientific Library [GSL, 2011]. The resulting profile is then passed to

gPROMS model. This approach provided the anticipated results. However, since the

profile is calculated outside gPROMS solver with no available Jacobian vector, the

execution time of every model run tended to take longer time than required. This is

presumably because gPROMS solver is trying to construct a Jacobian vector for the

velocity by forcing more function calls to the FOI object.

Later on, I eliminated use of the GSL integrator and relied solely on gPROMS integration

routine to solve for velocity profile. The FOI only determines the location of velocity

initial condition and its value. Both parameters are passed to gPROMS which evaluates

Chapter 6: Applications to Some Complex Models 153

velocity boundary conditions through complex indexing of vector parameters as

illustrated below:

 Velocity|Velocity Location=Velocity Value (6.4a)

d (Velocity)
dx |(1−Velocity Location)=0 (6.4b)

Although results were satisfactory, they were less than acceptable due to a presumed bug

in gPROMS solver. Although gPROMS solver accept passing regular expressions as

vector indices, it does not reevaluate the regular expression until a discontinuity is

encountered, an if statement switches branches or the model is reinitialized after a

discontinuity.

To resolve the above problem, I had to force evaluation of the regular expression through

adding a dummy if statement. Only then, the model demonstrated acceptable results

within reduced execution time. However, this resolution comes at a cost as I will

demonstrate later.

[Borst, 2008] refers to the length of the regularization function with the symbol w as

illustrated in Figure 3.1. Since the overlap domain is small enough to apply approach I to

discontinuity resolution, one can easily relate w to h through the formula in equation 6.5.

w=3 h (6.5)

There is always a physical meaning to the length (time span) of the regularizing function.

In the PSA example, w refers to the amount of time it takes the valve to move from fully

closed (0%) to fully open (100%) or vice versa. The valve travel speed can easily be

calculated as:

v=
100%

w
(6.6)

Chapter 6: Applications to Some Complex Models 154

From (6.6), we can easily deduce that w=0 (a discretized model) corresponds to a valve

exhibiting an infinite speed. This is unrealistic. Moreover, with a regularized model, the

modeller can study the effect of valve speed on process performance by varying w and

possibly optimizing process performance through manipulating w . Thus, with

regularization, we are able to add one more parameter to the PSA unit optimization

problem. This addition couldn't have been brought into the optimisation problem had we

used a discretized model.

In order to test the directional accuracy of the developed algorithm, I need to compare

both the discretized and regularized models to a reference model. I could not locate any

literature that discusses or experiments with the effect of valve dynamics on the operation

of a PSA unit. So, I added a simplified valve model to the original disretized model. The

resulting model (referred to as “reference model” hereafter) is still a discrete model.

However, it assumes linear changes (not instantaneous) in flow overtime after each

reinitialization between steps. This linear transformation closely mimics the operation of

a motor operated valve (MOV) that is normally used in PSA units using conventional

PSA modelling techniques. I should also stress that this model has its own flaws since it is

still a discretized model. However, the closeness of this model results to one of the

predefined models (discretised or regularized) over the other provides confidence in the

obtained results. Last, the interval used to apply the linear change in flow for the

reference model corresponds to w in the regularized model.

To ensure a unified starting point, I ran regularized and reference models at regularization

interval of w=0.001 seconds. This value corresponds to a valve moving from a fully

closed to fully open position or vice versa in 0.001 seconds. Although not realistic, it

provides confidence that all models' will provide similar, if not exact, outputs at this valve

Chapter 6: Applications to Some Complex Models 155

travel time. It should also be noted that hermite tension parameter is set to a value of one

in all regularized models. Setting it to a value less than one generates a loose interpolation

curve that results in a state variable limit violations. At w=0.001, all models reported

almost exact figures. The calculated absolute error between all models was no more than

0.0004.

I then ran all models at w=5. To keep a fixed cycle length for all models, I divided the

added regularization period w between adsorption and desorption steps of the discretized

model as illustrated in Figure 6.4.

a. A discretized PSA cycle b. A regularized PSA cycle

Figure 6.4: Comparison between a discretized and a regularized PSA cycle illustrating
relative time span for each of the cycle steps and valve opening/closure span for w=10.
The arrows indicate cycle direction.

The vessel velocity at z=0 is plotted in Figure 6.5a. The velocity at z=L is plotted in

Figure 6.5b. Two curves representing regularization trends at p=0.05 and at p=0.3 are

plotted to illustrate how the value of p changes the shape of the regularization curve. A

p=0.3 is selected to closely mimic the reference model although I think a value of p=0.05

more resembles a typical valve behaviour. It should be noted that between Pressurization

and Adsorption steps, the valve at z=L moves from 0 to 100% opening. This means that

the initial condition for velocity at the interpolation region is set by the velocity at z=L

(Figure 6.5b). Thus, the velocity at z=0 is a direct result of the ODE solution.

Pressurization

Adsorption

De-pressurization

Desorption

Pressurization

Adsorption

De-pressurization

Desorption

Product Valve Opens

Product Valve ClosesPurge Valve Opens

Purge Valve Closes

Chapter 6: Applications to Some Complex Models 156

a. Velocity at z=0

a. Velocity at z=L

Figure 6.5: Curves representing velocity profiles at the period between Pressurization and
Adsorption steps for both ends of the PSA column. The curves represent Reference,
Discretized and Regularized models at w=5. For the Regularized model, curves
representing p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 157

Although regularized models appear to follow the reference model, there is a fundamental

difference between the curves. Since, the Reference model is a ramped-discretized model,

the model shifts to the adsorption step before opening the valve. Since the velocity initial

condition for the adsorption step is set at z=0, the reference model simulates the opening

of the valve at z=0. This is a fundamentally flawed concept as the valve at z=0 has already

been opened during the previous pressurization step. It should not be opened twice.

As can be seen from the discretized model, there is an instantaneous change in the

velocity at z=0 from 0 to 1 (Figure 6.5a). The velocity maintains a value of 1 afterwards.

Since the reference model is a ramped-discretized model, it follows the same path of the

discretized model with the exception of the ramp. At the other end of the vessel (z=L), it

can be noticed that for the discretized model, the velocity is calculated using the spatial

differential equation. Thus, it jumps to an unacceptable value because of reinitialization.

Then, the model corrects itself by recalculating subsequent velocity values based on

model differential equations as illustrated in Figure 6.5b. On the other hand, the

regularized model simulates the opening of the valve at z=L. Thus, it more resembles the

actual process. The implications of this fundamental difference are evident in the

concentration curves of Figures 6.6a and 6.6b for n-C5 and n-C6, respectively.

The sudden change in the direction of the concentration curves is due to the dummy

reinitialization code implemented in gPROMS to force it to shift velocity boundaries as

discussed earlier and outlined in equations 6.4a and 6.4b. As discussed, this is a bug in

gPROMS software that should be addressed by [gPROMS, 2012] development team.

The reader should also note that for concentration profiles, the regularized model is not

regularizing concentrations directly. It is rather regularizing their spatial derivatives

(continuity of fluxes) as outlined in equations 6.2 and 6.3.

Chapter 6: Applications to Some Complex Models 158

a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure 6.6: Curves representing concentration profiles for n-C5 and n-C6 at the period
between Pressurization and Adsorption steps at z=0. The curves represent Reference,
Discretized and Regularized models at w=5. For the regularized model, curves
representing p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 159

The changes of concentration fluxes for all models at z=0 and z=L for the regularization

interval extending between pressurization and adsorption steps are plotted in Figure 6.7.

Note how regularized models inlet concentration flux increases with time until it reaches

a maximum. Afterwards it continues declining to a value of zero. This behaviour is

expected since opening the product end valve increases velocity across the column and

hence allows components to move across the vessel. The spatial flux increases as velocity

increases. Once velocity settles at the value corresponding to maximum valve opening,

the inlet spatial flux starts dropping until it reaches a value of zero. Such a phenomena is

hardly noticeable in the discretized models because of the rapid reintialization.

Figures 6.8a and 6.8b illustrate velocity profiles for the regularization interval between

adsorption and depressurization steps. After adsorption step is complete, the valve at z=L

is closed. Thus, the initial velocity condition is set at z=L. Velocity changes at z=0 follow

the calculated profiles based on the differential equation. All models simulate this

behaviour regardless of the regularization interval. Note that the sharp decline in velocity

at z=0, to the right of the regularized and reference model curves of Figures 6.8a, is a

direct result of the dummy reinitialization that is discussed earlier and outlined in

equations 6.4a and 6.4b. At this step, the reinitialization is required to shift the location of

the velocity boundaries from z=0 for adsorption step to z=L for depressurization step.

Figure 6.9 demonstrates how concentration profiles for the respective n-C5 and n-C6

components change across the transition between adsorption and depressurization steps.

Although very small, the effect of the dummy reinitialization is also noticed in the

concentrations of both components. The dummy reinitialization will only be evident in

the first regularization step between pressurization and adsorption steps and in the second

regularization step between adsorption and depressurization. The model changes the

Chapter 6: Applications to Some Complex Models 160

velocity initial condition location from z=L to z=0 in the first regularization step and from

z=0 to z=L in the second regularization step. Transitions between other steps do not

require dummy reinitialization as their velocity initial condition locations are set at z=L.

Figure 6.10a illustrates the change in inlet spatial concentration derivatives (fluxes) for

the period between adsorption and depressurization steps. The peaks of the regularized

models are expected. As the valve at z=L closes, the back-end flux reduces. The front-end

flux also reduces. However, due to the negative slope of the velocity profile, the inlet flux

exhibits an increase. As the valve further closes, the negative slope of the velocity profile

decreases resulting in a decrease in inlet flux.

The negative flux represented by the reference model is due to the pre-mature change in

concentration boundary conditions. For the reference model, concentration boundary

conditions change from those representing adsorption to those representing

depressurization before valve closure. This premature change results in concentration flux

moving towards the feed end instead of moving towards the product end. The discretized

model maintains the same boundary conditions and fluxes throughout the regularization

period before switching to depressurization boundary conditions immediately after the

regularization period. Thus, no change is noticed in the flux of the discretized model

during the regularization period.

Concentration fluxes at z=L (Figure 6.10b) do not change because the boundary

conditions at this location are the same for both adsorption and depressurization steps.

The velocity profiles for the regularization period between de-pressurization and

desorption steps are plotted in Figures 6.11a and 6.11b for the respective ends of the

vessel at z=0 and z=L. Figure 6.12a illustrates the concentration profile for n-C5 at z=0

while Figure 6.12b illustrates n-C6 concentration profile at the same end. Note the

Chapter 6: Applications to Some Complex Models 161

continuity in the profiles for the regularized and reference models because of the absence

of reinitialization.

Figures 6.13a and 6.13b illustrate the changes in spatial flux at z=0 and z=L, respectively.

The reason behind no observable flux changes at z=0 is because boundary conditions for

depressurization and desorption steps at this location are the same. The noticeable jump in

flux curves at the end of the regularization period (marked as 1 in the figure) is due to the

concentration flux reaching its intended desorption value. Thus, the flux afterwards drops

to zero indicating a perfect match between the final value reported by the interpolating

polynomial and the destination function (inlet flux of desorption step).

Before discussing regularization curves for the period between desorption and

pressurization steps, it is worth shedding some light on how inlet velocity is calculated

during pressurization step. For the parabolic profile, this velocity instantaneously changes

from a value of 0 to 15 times that of the feed velocity. For the exponential velocity

profiles, the initial inlet velocity depends on pressurization rate Mp. However, regardless

of the value of Mp, pressurization is almost always instantaneous. The exception is

associated with low values of Mp which are not representative of the system.

Chapter 6: Applications to Some Complex Models 162

a. dY-nC5/dz at z=0

b. dY-nC5/dz at z=L

Figure 6.7: Curves representing the change in concentration spatial derivatives at both
ends of the PSA column between pressurization and adsorption steps. The curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted.

For the Figure 6.7b, all curves are superimposed on each other.

Chapter 6: Applications to Some Complex Models 163

a. Velocity at z=0

b. Velocity at z=L

Figure 6.8: Curves representing velocity profiles at the period between adsorption and
depressurization steps for both ends of the PSA column. The curves represent reference,
discretized and regularized models at w=5. For the regularized model, curves representing
p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 164

a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure 6.9: Curves representing concentration profiles for n-C5 and n-C6 at the period
between adsorption and de-pressurization steps at z=0. The curves represent Reference,
Discretized and Regularized models at w=5. For the Regularized model, curves
representing p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 165

a. dY-nC5/dz at z=0

a. dY-nC5/dz at z=L

Figure 6.10: Curves representing the change in concentration spatial derivatives at both
ends of the PSA column between adsorption and depressurization steps. The curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted.

For Figure 6.10b, all curves are superimposed on each other.

Chapter 6: Applications to Some Complex Models 166

a. Velocity at z=0

b. Velocity at z=L

Figure 6.11: Curves representing velocity profiles at the period between de-pressurization
and desorption steps for both ends of the PSA column. The curves represent reference,
discretized and regularized models at w=5. For the Regularized model, curves representing
p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 167

a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure 6.12: Curves representing concentration profiles for n-C5 and n-C6 at the period
between de-pressurization and desorption steps at z=0. The curves represent reference,
discretized and regularized models at w=5. For the Regularized model, curves representing
p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 168

a. dY-nC5/dz at z=0

b. dY-nC5/dz at z=L

Figure 6.13: Curves representing the change in concentration spatial derivatives at both
ends of the PSA column between depressurization and desorption steps. The curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted.

For the Figure 6.13a, all curves are superimposed on each other.

Chapter 6: Applications to Some Complex Models 169

Such a sudden change in velocity profile does not correspond to the reality of a

continuous process. Also, since this sudden change is hard coded as a change in the

constitutive equation value that results from a change in boundary conditions (not as a

conditional statement), it becomes hard to detect and regularize. In such cases, if the

modeller is not willing to alter the model to a better one that more accurately represents

the inherent dynamics, there would be no escape from reinitializing the model between

desorption and pressurization steps. Simply stated, there is no substitute for good

modelling practices.

Note that there are two sources for this discontinuity. The first source is the switch in

boundary conditions between the desorption step that exhibits constant counter-current

flow to that of the pressurization step. The second source is the formulation of the

pressure profile equation (whether using parabolic or exponential profile equation). Both

equations assume an instantaneous change in inlet pressure from Plow to Phigh. The first

source can be eliminated through one-interval regularization that was discussed in the

previous chapter. The second source requires reformulation of the pressure profile

equations. A complete derivation of a novel velocity calculation function is discussed in

Appendix A. The novel velocity calculation approach is used to calculate velocity profiles

in the constructed PSA column.

Figures 6.14a and 6.14b illustrate the velocity profiles for the period between desorption

and pressurization at z=0 and z=L, respectively. Note that at this transition, the active

velocity initial condition is located at z=L. Concentration profiles are illustrated in

Figures 6.15a and 6.15b for normal pentane and hexane, respectively. To better illustrate

the transition, Figure 6.15a is magnified in Figure 6.16. Similarly, 6.15b is magnified in

Figure 6.17. The noticeable sudden shifts in concentration profiles trended in Figures

Chapter 6: Applications to Some Complex Models 170

6.15a and 6.15b after the regularization period are due to the introduction of the fresh

feed that possesses differing concentrations from those encountered at the end of the

desorption step.

Spatial fluxes for the desorption-pressurization regularization periods at z=0 and z=L are

trended in Figures 6.18a and 6.18b, respectively. The sudden changes in fluxes of the

discretized and reference models at z=L are due to model reinitialization. The values of

these fluxes should have stayed at zero due to the restriction imposed by the boundary

condition. However, reinitialization deviated the values from their intended path. Note

how the regularized models maintain the flux at the value imposed by the boundary

condition.

Now, let us shed some light on the accuracy of the developed algorithm when compared

to conventional discretization algorithms. I used inlet and exit velocities as basis for the

comparison. Inlet and exit concentrations or their respective spatial fluxes cannot be used

as a base for comparison because each is dependent on the velocity profile. I used the

reference model as a base for the comparison although it has its own flaws. For each of

the steps, the cumulative relative error in dimensionless velocity that spans the entire

regularization period is calculated as:

 EC∣z=0∨ z=1=∑
i=1

n | |vi−v i, ref|
vi , ref

| (6.7a)

The cumulative errors calculated for each of the steps at z=0 and z=L are tabulated in

Tables 6.3 and 6.4, respectively. It should be noted that the increased accuracy of the

regularized model with p=0.30 over the one with p=0.05 is primarily because the

regularized model with p=0.30 closely resembles the profile of the reference model.

Nevertheless, I think the regularized model with p=0.05 more resembles a real valve

Chapter 6: Applications to Some Complex Models 171

operation as the velocity profile starts with a non-linear range between valve opening and

flow. It then follows that with a linear range before closing the opening-velocity curve

with another non-linear profile.

Table 6.3: Cumulative relative error in velocity at z=0 spanning regularization interval

Regularization Period

Cumulative Relative Error in Velocity at z=0

Discretized Regularized at

p=0.05

Regularized at

p=0.30

Pressurization-Adsorption 45 4 1

Adsorption-Depressurization 90 5 3

Depressurization-Desorption 41 5 7

Desorption-Pressurization 47 5 1

Table 6.4: Cumulative relative error in velocity at z=L spanning regularization interval

Regularization Period

Cumulative Relative Error in Velocity at z=L

Discretized Regularized at

p=0.05

Regularized at

p=0.30

Pressurization-Adsorption 58 5 2

Adsorption-Depressurization 60 5 2

Depressurization-Desorption 68 5 1

Desorption-Pressurization 52 5 1

To further illustrate differences between discretized and regularized models, the

cumulative difference in n-C5 and n-C6 concentrations at z=0 between the discretized

model and the reference one and its regularized counterpart (p=0.05) are plotted in Figure

6.19 for values of w=5 and w=10. The x-axis time spans a full PSA cycle. Note how the

regularized model always provides better results over the discretized one. It is also

arguable that the regularized model provides better results than the reference model itself.

The error analysis clearly indicate the substantial increase in accuracy of the developed

algorithm over conventional discretization algorithms.

Moreover, what adds to the accuracy of the developed algorithm is the strict adherence of

Chapter 6: Applications to Some Complex Models 172

the interpolating polynomial to the bounds set by the model equations. Figures 6.5b and

6.18b clearly demonstrate how a discretized solution violates model bounds at the

reintializatation time. Although the error is corrected by the model equations in

subsequent steps, the introduced error resides in the calculation of the cumulative error

and alters the subsequent model solution path. We can comfortably conclude that

regularization supersedes discretization.

Appendix E demonstrates how the concepts, presented in Chapter 5 and demonstrated by

the applications in this chapter, are coded in C++

Chapter 6: Applications to Some Complex Models 173

a. Velocity at z=0

b. Velocity at z=L

Figure 6.14: Curves representing velocity profiles at the period between desorption and
pressurization steps for both ends of the PSA column. The curves represent reference,
discretized and rregularized models at w=5. For the Regularized model, curves
representing p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 174

a. Y-nC5 at z=0

a. Y-nC6 at z=0

Figure 6.15: Curves representing concentration profiles for n-C5 and n-C6 at the period
between desorption and pressurization steps at z=0. The curves represent reference,
discretized and regularized models at w=5. For the Regularized model, curves representing
p=0.05 and p=0.3 are plotted.

Reference and
Discretized Models

Regularized Models
with p=0.05 and
p=0.30

Regularization Interval

Chapter 6: Applications to Some Complex Models 175

a. Y-nC5 at z=0

a. Y-nC5 at z=0

Figure 6.16: Magnified version of the curves presented in Figure 6.15a illustrating
concentration profiles for n-C5 at the period between desorption and pressurization steps at
z=0. The curves represent reference, discretized and regularized models at w=5. For the
Regularized model, curves representing p=0.05 and p=0.3 are plotted.

Chapter 6: Applications to Some Complex Models 176

a. Y-nC6 at z=0

a. Y-nC6 at z=0

Figure 6.17: Curves representing concentration profiles forn-C6 at the period between
desorption and pressurization steps at z=0. The curves represent reference, discretized and
regularized models at w=5. For the Regularized model, curves representing p=0.05 and
p=0.3 are plotted. Curves are identical for all models. Thus, only one curve appears in
each of the figures.

Chapter 6: Applications to Some Complex Models 177

a. dY-nC5/dz at z=0

b. dY-nC5/dz at z=L

Figure 6.18: Curves representing the change in concentration spatial derivatives at both
ends of the PSA column between desorption and pressurization steps. The curves
represent reference, discretized and regularized models at w=5. For the regularized model,
curves representing p=0.05 and p=0.3 are plotted.

For the Figure 6.18a, all curves are superimposed on each other.

Chapter 6: Applications to Some Complex Models 178

a. Y-nC5 using w=5 seconds b. Y-nC6 using w=5 seconds

c. Y-nC5 using w=10 seconds d. Y-nC6 using w=10 seconds
Figure 6.19: The cumulative difference between Y-nC5 and Y-nC6 inlet concentrations (z=0)
predicted by the discretized and regularized models (p=0.05) compared to the reference
model after the first PSA cycle.

Chapter 6: Applications to Some Complex Models 179

6.3. Summary and Concluding Remarks

In this chapter, I demonstrated how the algorithm that was developed in Chapter 5

can be applied to regularize one and two dimensional discontinuous composite

functions. I demonstrated the application to one-dimensional models by

implementing the algorithm in a PSA column model. The algorithm is used to

regularize the change in the boundary conditions between the steps of a

[Skarstrom, 1960] cycle. It is also used to regularize the velocity profile initial

condition value and location.

To demonstrate the applicability of the algorithm to two-dimensional

discontinuous functions, the algorithm is implemented to regularize the transition

of heat Nusselt number between laminar and turbulent flow regimes. Nusselt

number is calculated using two separate equations for each of the flow regimes.

Since Nuseelt is a function of Reynolds and Prandtl numbers, the discontinuous

function is a two dimensional one.

I illustrated how the application of the regularization algorithm reduces simulation

runtime by 23% compared to models relying on reinitialization of variables. The

main reason behind the reduction in simulation run length is the localized

resolution of the discontinuity. This localized resolution eliminates the

unnecessary reinitialization of the entire set of model equations.

In addition to increased simulation run efficiency, I also demonstrated how the

regularized model provides more accurate results by better resembling what is

happening in an actual process.

In the next chapter, I summarize the outcome of this work and introduce possible

areas for future research that can further enhance the developed algorithm.

CHAPTER 7: SUMMARY AND CONCLUSIONS

SUMMARY AND CONCLUSIONS

In the previous chapters, I demonstrated how discontinuities arise when simplifying

mathematical models during their construction. I illustrated how jump discontinuities

rise through the use of conditional statements. I also demonstrated how sometimes a

discontinuity can easily be removed or minimized through altering the limits of the

bounds of the conditional statement. I also classified the previous work on resolving

discontinuities in mathematical models into two approaches. Approach I to

discontinuity resolution relies solely on the integrating routine to resolve a

discontinuity once it is encountered. The conventional resolution techniques relied on

either generating an interpolating function at the state-variable level or reinitializing

model variables. The drawbacks of each approach have been discussed. I also

highlighted the situations at which each of these resolution approaches outperform the

other.

An algorithm has been developed to automatically detect discontinuities based on the

applicability boundaries of the discontinuous functions and to minimize or eliminate

them based on the behaviour of the discontinuous functions at the discontinuity. The

discontinuity detection algorithm can be programmed to run within a modelling

language or to run independently. In both cases, the detection algorithm should be run

prior to the start of the simulation to adjust model conditional statements based on the

output of the algorithm. It can also be run independently of the discontinuity

180

Chapter 7: Summary and Conclusions 181

resolution algorithm. If a discontinuity is resolved through the detection algorithm

without the need for regularization, the resulting model can be directly run without the

need to pass it through a discontinuity resolution algorithm.

When the discontinuity detection algorithm fails to resolve a discontinuity (mainly

because of the behaviour of the sub-functions around the conditional statement), the

discontinuity should be resolved through the discontinuity resolution algorithm. The

discontinuity resolution algorithm basically bridges the missing gap between the

discontinuous functions lying on adjacent sides of the conditional statement through the

use of an interpolating polynomial. I demonstrated that the use of four control points to

construct the interpolating polynomial provide a good compromise between accuracy and

computational effort.

To bridge the gap, hermite interpolating polynomials are used because they offer two

advantages over other readily available interpolating polynomials. They are third order

polynomials which assist the solver in calculating Jacobian and Hessian matrices of the

simulation model even when integrating through an interpolation region. Cubic splines

offer such a feature. However, when using Cubic splines, there is no control over the

shape of the curve for a given set of control points. This means that the spline is fixed for

a fixed set of control points. On the other hand, hermite interpolating polynomials provide

two extra parameters to adjust the shape of the curve while preserving its continuity,

namely tension and bias parameters. In this work, I only made use of the tension

parameter. I also introduced the dip parameter to assist in better control over the shape of

the curve.

However, the use of hermite interpolating polynomials comes at a cost. With cubic

splines, only four control points are required per dimension to construct a cubic

Chapter 7: Summary and Conclusions 182

interpolating polynomials. With hermite interpolating polynomials, two additional points

are required resulting in a total of six control points. The additional control points are

required to shape the curvature between the interpolating polynomial and the

discontinuous functions at the closing ends of the curve. The relationship between the

number of dimensions and the required number of control points is exponential.

In addition to resolving jump discontinuities, I demonstrated how removable

discontinuities can be resolved by bridging the gap through the use of interpolating

polynomials. Although it is always better to close a removable discontinuity gap by

adding a properly bounded function representing the gap domain, bridging the gap using

an interpolating polynomial will serve when such functions do not exist. The decision on

which path to follow is completely left to the modeller discretion.

Discontinuity resolution approaches are demonstrated to work on problems with many

dimensions. They are generic enough to be adopted in solving any ODE/DAE system

involving discontinuities in either state variables and/or their respective constitutive

equations.

For 1D discontinuous functions, it is recommended to run the discontinuity resolution

algorithm before running the simulation. The main reason behind this recommendation is

that in 1D functions, the interpolating polynomial between two adjacent discontinuous

functions is unique. Thus, regularization solution is independent of simulation path. The

same argument holds for Type I discontinuity resolution of 2D+ functions where the

interpolation mesh covers the entire overlap domain.

For 2D+ discontinuous functions, I demonstrated two resolutions. The first (Type I)

resolution relies on covering the entire overlap domain with a single interpolating

polynomial. Type I discontinuity resolution is suitable for relatively small overlap

Chapter 7: Summary and Conclusions 183

domains. The bigger the overlap domain, the greater is the number of control points

required to properly interpolate. Using a fixed low number of control points results in a

coarse interpolation mesh.

Type II discontinuity resolution relies on a fixed-size mesh of control points that is

instantaneously constructed once the expression leaves a discontinuous branch of the

conditional statement. However, unlike Type I discontinuity resolution generated mesh,

the generated mesh in Type II discontinuity resolution does not cover the entire overlap

domain between the two discontinuous functions. Instead, it covers a small portion of the

domain that allows for regularizing the discontinuity while maintaining acceptable mesh

resolution. The compromise when using this type of resolution is the steep departure

slope that results in a faster transition between the discontinuous functions. Nevertheless,

the conducted experiments demonstrated no decline in integrator efficiency due to the fast

transition. The main reason behind maintaining a good performance, despite the

resolution of the mesh, is mainly attributed to the fast variable-step search algorithm

embedded within [gPROMS, 2012].

To eliminate the exhaustive need to generate unnecessary meshes along the entire course

of the simulation, both discontinuity resolution approaches rely on storing a vector of the

independent variables required to construct the mesh. The mesh is only created once the

conditional statement leaves one sub-function and immediately destroyed after it lands on

the adjacent discontinuous one to reserve computer memory space. For Type II

discontinuity resolution, a proper method to generate an evenly distributed mesh around

the tracking vector is also devised.

Few sections are devoted to regularizing boundary conditions because of the nature of

their discontinuities. I demonstrated how boundary conditions can be transformed into

Chapter 7: Summary and Conclusions 184

conditional statements involving spatial discontinuities. I also provided a generic

resolution approach that relies on the same principles outlined earlier.

Discontinuity resolution completely eliminates re-initialization of state variables because

it bridges a discontinuity at its localized origin whether the origin is a state variable or a

constitutive equation. Elimination of reinitialization reduces simulation run length by

23%. The reduction in simulation run-length is attributed to the localized treatment of the

discontinuity at its origin instead of reinitializing the entire model equations to resolve a

local discontinuity. Nevertheless, this reduction is not the major achievement of the work.

This work achieves two other goals that were not present in previous works in this field:

1. Regularization more resembles reality than mere re-initialisation of variables

because it takes into account the time and/or space factors between state changes.

States transit through time and space from their initial to final values. Failing to

take this fact into account jeopardises model accuracy. This failure is clearly

evident in conventional model variables' re-initialization as I presented in PSA

unit example.

2. Sticky discontinuities result from the use of interpolating polynomials that are not

derived from model equations to bridge model discontinuities as outlined earlier.

Even if the integration routine manages to overcome sticky discontinuities, the

generated error between the equations representing the actual model and those

used by the approximating interpolating polynomial might lead to misleading

simulation results. This work completely eliminates the use of integrator-based

polynomials to bridge discontinuities by relying on interpolating polynomials that

are derived from model equations with strict adherence to bounds that match both

ends of interpolating polynomial to its adjacent discontinuous sub-functions.

Chapter 7: Summary and Conclusions 185

In order for this generic approach to discontinuity resolution to function, the following is

required:

1. When a conditional expression is to be inserted into a mathematical model,

domains of all independent variables belonging to each branch of the conditional

expression need to be identified by the modeller and fed to the algorithm. This is

an essential requirement for the discontinuity detection algorithm to search for the

optimum switch point that minimizes the jump between the two branches and to

reconstruct the conditional statement based on the supplied domains. It also helps

flagging a warning message and continuing or flagging an error message and

stopping the simulation when the algorithm that detects the simulation trajectory

is stepping out of the bounds provided for each branch of the conditional

statement. Some modelling languages such as [gPROMS, 2012] include an option

for the modeller to define bounds of model variables during modelling. Then, the

integrator ensures integrating variables within these bounds when simulation is

running. Such a capability can be extended to bound an independent variable to a

sub-domain of its full domain when a branch of a conditional statement is

executed.

2. When regularizing a discontinuity in boundary conditions, it also becomes the

modeller's responsibility to identify what and how model-embedded constitutive

equations are to be regularized along with the boundary conditions. Automating

such a task is also a promising area for a continuing research. Changing modelling

practices by formulating equations requiring regularization as differential

equations and others as algebraic ones can also act as a starting point. However,

such a starting point imposes unnecessary restrictions on the modelling task.

Chapter 7: Summary and Conclusions 186

Another challenge would be to automatically set the bounds of the interpolating

polynomial that will be used to regularize these variables.

3. When regularizing a discontinuity that involves conflicting boundary conditions,

the modeller should decide whether to use one or more regularization intervals

depending on the physics of the problem. When opting for more than one

regularizing interval, the modeller should also specify the location and the

conditions of the common interchange point between the two regularization

intervals.

Automating such a task is a promising area for continuing research that requires a

person who is equipped with the knowledge of modelling and computer

programming. The work can also easily be split into a group of two persons from

two disciplines. A starting point would be to realize that only three boundary

conditions exist (Dirichlet, Robin and Dankwert). The challenge is to determine

which two-combinations of the three known boundary conditions lead to a

boundary conflict when regularized. If the automated procedure can detect

conflict, it can advise the use of two regularizing intervals or even automatically

insert them into the model. The next challenge would be to identify the common

interchange point between the two regularizing intervals. In the examples we

demonstrated, it just happened that the interchange point is located at a point that

shares a common boundary conditions between the two regularizing functions.

Whether the same argument holds for all other modelling problems remains a

question that requires an answer.

4. When using hermite interpolating polynomials, care must be practised when

assigning values to the tension parameter. This point particularly holds when the

Chapter 7: Summary and Conclusions 187

interpolating polynomial is to be strictly restricted to the bounds assigned by the

control points. Setting the tension to 1 ensures proper bounding to the limits set by

the control points. Setting lower values result in smother curvature but with a

compromise on proper bounding.

Although, in the context of this work, examples have been drawn from the chemical

engineering discipline, the approach is generic enough to be applied to modelling

practices in all scientific and engineering disciplines. For example, the algorithm can be

used to regulate the transition between equations representing elastic and plastic regions

of a string.

Multiscale modelling is an area where this approach to modelling might prove useful. The

algorithm brings into the modelling problem some information about the behaviour of

phenomena that are occurring at a faster time scale or more detailed hierarchical level

than that of the model equations without the need to detail the modelling of the high

resolution phenomena. For example, the approach was able to provide information about

the behaviour of PSA unit valves without the need to model them.

Does this approach to discontinuity handling apply to all problems involving

discontinuities? Not entirely. In the context of this work, I am addressing a resolution to

naturally occurring continuous processes that are discretized through modelling practices.

Naturally occurring discontinuous processes should not be regularized through these

approaches. An example would be modelling the fracture of a broken glass. Phase change

can also be relatively regarded as discontinuous phenomena.

A very interesting aspect of this approach is that it brings back the intimate relationship

between model equations and their solver. It proves that one way to resolve today's

integration problems is by allowing the solver to navigate through model equations and

Chapter 7: Summary and Conclusions 188

adjust them when appropriate to generate a better simulation path and ultimately lead to

better results. However, the question about which equations a solver need to regularize

and which are not remains unanswered when the regularization problem involves special

kinds of constitutive equations. I have illustrated that it is very difficult for the approach

at its current state to detect and resolve discontinuities in the spatial velocity profile

without the modeller pin pointing them to the algorithm. A change in modelling practices

to distinguish regularizable equations from others might lead to automatic resolution.

However, some problems will still be open to mind exploration. Automatically detecting

the location and value of the velocity initial condition is an evident example of such

problems.

With this work, I hope that I am able to open a door to overcome difficulties associated

with reinitialization and hopefully eliminating reinitialization as a whole.

189

References

1. Abadpour, A. and M. Panfilov, "Method of Negative Saturations for Modeling

Two-phase Compositional Flow with Oversaturated Zones.", Transport in

Porous Media, vol. 79, pp. 197-214, 2009.

2. Achinstein, P., Concepts of Science. A Philosophical Analysis, Baltimore: John

Hopkins Press, 1968.

3. Archibald, R., A. Gelb and J. Yoon, "Determining the Locations and

Discontinuities in the Derivatives of Functions", Applied Numerical

Mathematic, vol. 58, pp. 577-592, 2008.

4. Aris, R., Mathematical Theory of Diffusion and Reaction in Permeable

Catalysts, London: Oxford University Press, 1975.

5. Aris, R., Mathematical Modelling : A Chemical Engineer's Perspective,

Academic Press, 1999.

6. Augustin, D. C., M. S. Fineberg, B. B. Johnson, R. N. Linebarger, F. J.

Sansom and J. C. Straus, "The SCI continuous system simulation language

(CSSL)", Simulation, vol. 9, pp. 281-303, 1967.

7. Avery, W.F. and M.N.Y. Lee, "ISOSIV Process Goes Commercial", Oil and

Gas Journal, 1962.

8. Banerjee, R., K.G. Narayankhedkar and P. Sukhatme, "Exergy Analysis of

Pressure Swing Adsorption Processes for Air Separation", Chemical

Engineering science, 1990.

9. Bär, M. and M. Zeitz, "A knowledge-based flowsheet oriented user interface

for a dynamic process simulator", Computers & Chemical Engineering, vol.

14, pp. 1275-1283, 1990.

10. Bartels, R.H., J.C. Beatty and B.A. Barsky, An Introduction to Splines for Use

in Computer Graphics and, Morgan-Kaufman, pp. 422-434, 1987.

11. Berlin, N.H., Method for Providing an Oxygen-Enriched Environment, U.S.

Patent No. 3,280,536.

References 190

12. Black, M., Models and Metaphors: Studies in Language and Philosophy, New

York : Cornell University Press, 1962.

13. Bogusch, R., B. Lohmann and W. Marquardt, "Computer-aided process

modelling with ModKit", Computers & Chemical Engineering, vol. 25, pp.

963-995, 2001.

14. Borst, R., "Challenges in computational materials science: Multiple scales,

multi-physics and evolving discontinuities", Computational Materials Science,

vol. 43, pp. 1-15, 2008.

15. Bourke, 2011: Bourke, Paul, Interpolation Methods, 2011,

http://paulbourke.net/miscellaneous/interpolation/

16. Breeuwsma, 2011: Breeuwsma, 2011, Cubic Interpolation, 2011,

http://www.paulinternet.nl/?page=home

17. Cameron, Ian T., E. S. Fraga and I.D.L. Bogle, "Process modelling goals:

concepts, structure and development", European Symposium on Computer

Aided Process Engineering – 15, 2005.

18. Carver, M.B., "Efficient Integration Over Discontinuities in Ordinary

Differential Equation Simulations", Mathematics and Computers in

Simulation, vol. XX, pp. 190-196, 1978.

19. Cassidy R.T. and E.S. Holmes, "Twenty-Five Years of Progress in `Adiabatic`

Adsorption Processes", 1984.

20. Cellier, F.E., "Combined Continuous/Discrete System Simulation by Use of

Digital Computers ", 1979.

21. Chahbani, M.H. and D. Tondeur, "Predicting the Final Pressure in the

Equalization Step of PSA Cycles ", Separation and Purification Technology,

vol. 71, pp. 225–232, 2010.

22. Chapra, S.C. and R.P. Canale, Numerical Methods for Engineers, McGraw-

Hill, 2002.

23. Cheney, W. and D. Kincaid, Numerical Mathematics and Computing,

Gary W. Ostedt, 1999.

References 191

24. Cheney, Ward and David Kincaid, The American Heritage Dictionary,

Brooks/Cole Publishing, 1985.

25. Chiang A.S.T, "An Analytical Solution to Equilibrium PSA Cycles", Chemical

Engineering Science, vol. 50, 2, , 1996.

26. Crittenden, B.D., J. Guan and W.N. Ng, W.J. Thomas, “Dynamics of

Pressurization and Depressurization during Pressure Swing Adsorption”,

Chemical Engineering Science, vol. 49, issue 16, 1994, pp. 2657-2669.

27. Chung, T.-H, M. Ajlan, L.L. Lee and K.E. Starling, "Application of kinetic gas

theories and multiparameter correlation for prediction of dilute gas viscosity

and thermal conductivity ", Ind. Eng. Chem. Fundam., vol. 19, p. 186, 1984.

28. Chung, T.-H, M. Ajlan, L.L. Lee and K.E. Starling, "Generalized

Multiparameter Corresponding State Correlation for Polymeric, Polar Fluid

Transport Properties ", Ind. Eng. Chem. Res. Design Development,Submitted

1986.

29. de Montgareuil, P. Guerin and D. Domine, French Patent 1,223,261, 1957.

30. de Waal, A. and T. Richey, "Combining morphological analysis and Bayesian

networks for strategic decision support", Orion, vol. 23, ed. 2, pp. 105-121,

2007.

31. Delgado, J.A. and A.E. Rodrigues, "Analysis of the Boundary Conditions for

the Simulation of Pressure Equalization step in PSA Cycles ", Chemical

Engineering Science, vol. 63, , pp. 4452 - 4463, 2008.

32. Dixon, A.G. and D.I. Cresswell, "Effective Heat Transfer Parameters for

Transient Packed-Bed Models ", AIChE Journal, vol. 32, 5, pp. 809-819, 1986.

33. Dömges, R., K. Pohl, M. Jarke, B. Lohmann and W. Marquardt, "PRO-

ART/CE – An Environment for Managing the Evolution of Chemical Process

Simulation Models", Proceedings of the 10th European Simulation

Conference. Geril, P. (Ed.) , pp. 1012-1017, 1996.

34. Ellison, D, "Efficient Automatic Integration of Ordinary Differential Equations

with Discontinuities", Mathematicsand Computers in Simulation, vol. XXIII,

References 192

pp. 12-20, 1981.

35. Evans, R.B., G.M. Watson, E.A. Mason, "Gaseous Diffusion in Porous Media

at Uniform Pressure", Journal of Chemical Physics, vol. 35, 6, pp. 2076-2083,

1961.

36. Filip, Daniel, Robert Magedson and Robert Markot, "Surface Algorithms

Using Bounds on Derivatives", Computer Aided Geometric Design, vol. 3, ,

pp. 296-311, 1986.

37. Frigg, R. and S. Hartman, Models in Science, Stanford Encyclopedia of

Philosophy, 2012.

38. Fritsch, Fred and Ralph Carlson, "Monotone Piecewise Cubic Interpolation",

SIAM Journal on Numerical Analysis, vol. 17, No. 2, pp. 238-246, 1980.

39. Fuller, E.N., K. Ensley and J.C. Giddings, "Diffusion of Halogenated

Hydrocarbons in Helium", J. Phys. Chem., 73, , pp. 3679-3685, 1969.

40. Fuller, E.N., P.D. Schettler, and J.C. Giddings, "A New Method for Prediction

of Binary Gas Phase Diffusion Coefficients", Ind. Eng. Chem., 58, , pp. 19-27,

1966.

41. Gear, C.W., "The Automatic Integration of Ordinary Differential Equations",

Cmm. ACM , vol. 14, , pp.176-190, 1970.

42. Gensym, 1995: Gensym Corp., G2 Version 4.0 Beta Release Notes, 1995

43. Gnielinsky, V., "New Equations for Heat and Mass Transfer in Turbulent Pipe

Channel Flow", Int. Chem. Eng., vol. 16, p. 359, 1976.

44. gPROMS, gPROMS Modelling Language, Copyright © 1997-2012,, 2012

45. Grossmann, I. E. and J. P. Ruiz, Generalized Disjunctive Programming: A

Framework for Formulation and Alternative Algorithms for MINLP

Optimization, Springer, pp. 93-115, , 2011.

46. GSL, 2011: GSL, GNU Scientific Library, 2011,

47. Hangos, Katalin and Ian Cameron, Process Modelling and Model Analysis,

Academic Press,2001.

References 193

48. Helenbrook, B.T., L. Martnelli and C.K. Law, "A Numerical Method for

solving Incompressible Flow Problems witha Surface of Discontinuity",

Journal of Computational Physics , vol. 148, pp. 366-396, 1999.

49. Javey, S., "A Language Construct for the Specification of Discontinuities",

Journal of Systems and Software, vol. 8, issue 5, pp. 409-417, 1988.

50. Brackbill, J.U., D.B. Kothe and C. Zemach, "A Continuum Method for

Modelling Surface Tension", Journal of Computational Physics, vol. 100, pp.

335-354, 1992.

51. Kallrath, J., Modelling Languages in Mathematical Optimization (Applied

Optimization), Kluwer Academic Publishers, 2004.

52. Kauzmann, W., Kinetic Theory of Gases, Benjamin, , New York, 1966.

53. Keller II, G.E., "Gas Adsorption Processes: State of the Art in Industrial Gas

Separations", 1983.

54. King R. and R. Hull, "Semantic database modelling: survey, applications, and

research issues", ACM Comput. Surv., vol. 19, pp. 201-260, 1987.

55. Kochanek, D. H. U. and R. H. Bartels, "Interpolating Splines with Local

Tension, Continuity and Bias Control", Computer Graphics, vol. 18, ed. 3, pp.

33-41, 1984.

56. Kreith, Frank, CRC Handbook of Thermal Engineering, CRC Press, 2000.

57. Lioyd, E.A., The Structure of Confirmation of Evolutionary Theory, Princeton

University Press, 1994.

58. Lioyd, E.A., "A Semantic Approach to the Structure of Population Genetics",

Philosophy of Science, vol. 51, pp. 242-264, 1984.

59. Little, Donald M., Catalytic Reforming, PennWellBooks, 1985.

60. Mao, G. and L.R. Petzold, "Efficient Integration over Discontinuities for

Differential-Algebraic Systems", Computers and Mathematics with

Applications, vol. 43, pp. 65-79, 2002.

61. Marquardt, W., "Trends in Computer Aided Process Modelling", Computers &

References 194

Chemical Engineering, vol. 20, , pp. 591-609., 1996.

62. Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, “Pressure

Equalization Depressuring in Heatless Adsorption”, Patent No. 3,142,547,

1964

63. Mason, E.A. and S.C. Saxena, "Approximate Formula for the Thermal

Conductivity of Gas Mixtures", Phys. Fluids, vol. 1,p. 361, 1958.

64. mcCabe, W.L., J.C. Smith and P. Harriott, Unit Operations of Chemical

Engineering, 2005.

65. Minkkinen, A., L. Mank and S. Jullian, “Process for the Isomerization of C5

and C6 Normal Paraffins with Recycling”, Patent No. 5,233,120.

66. Minkkinen, A., L. Mank, and S. Jullian, Process for the Isomerization of of

C5/C6 Normal Paraffins with, U.S. Patent No. 5,233,120,1993.

67. Moler, Cleve B., Numerical Computing with Matlab, SIAM, 2004.

68. Morgan, M., "Models, Stories and Economic World", Journal of Economic

Methodology, vol. 8, ed. 3, pp. 361-384, 2001.

69. Nilchan, S. and C.C. Pantelides, "On the Optimisation of Periodic Adsorption

Processes", Adsorption, vol. 4, 2, 1998.

70. Nitta, T., M. Kuro-Oka and T. Katayama, "An Adsorption Isotherm of Multi-

site Occupancy Model for Homogeneous Surface", J. Chem.Eng. Jpn., 17, pp.

39-45, 1984.

71. Park, T. and P.I. Barton, "State Event Location in Differential-Algebraic

Models", ACM Transactions on Modelling & Computer Simulation, vol. 6,

issue 2, pp. 137-165, 1996.

72. Pollard, W.G. and R.D. Present, "On Gaseous Self-Diffusion in Long Capillary

Tubes", Phys. Rev., vol. 73, pp. 762, 1948.

73. R.C. Reid, J.M. Prausnitz and B.E. Poling, The Properties of Gases and

Liquids, McGraw Hill, 1987.

74. Rathke, C., "Object oriented programming and frame-based knowledge

representation", 5th International Conference, pp. 95-98, November 1993,

References 195

Boston.

75. Ritchey, T., "Outline for a Morphology of Modelling Methods", Acta

Morphologica Generalis, vol. 1, , pp. 1-20, 2012.

76. Ritchey, T., Wicked Problems/Social Messes : Decision Support Modelling

with Morphological Analysis, Springer, 2011.

77. Ruthven, D.M., Principles of Adsorption and Adsorption Processes, John

Wiley and Sons, 1984.

78. Ruthven, D.M., S. Farooq and K.S. Knaebel, Pressure Swing Adsorption,

John Wiley and Sons, 1994.

79. Satterfield, C.N., Heterogenious Catalysis in Practice, McGraw Hill, 1980.

80. Schichl, H., Models and the History of Modeling, in: Modeling Languages in

Mathematical Optimization (J. Kallrath, ed.), Boston: Klower Academic

Publishers, pp. 25-36, 2004.

81. Scott, D.S. and F.A.L. Dullien, "The Flux-Ratio for Binary Counter Diffusion

of Ideal Gases", Chemical Engineering Science, vol. 17, pp. 771-775, 1962.

82. Shah, R.K. and A.L. London, Laminar Flow: Forced Convection in Ducts,

Academic Press, , New York, 1978.

83. Shirley, A. I. and N. O. Lemcoff, "Effect of Pressurization Rate on the

Performance of Nitrogen Pressure Swing Adsorption Processes",

Fundamentals of Adsorption, vol. 36, pp. 837-844, 1996.

84. Sieder, E.N. and C.E. Tate, "Heat Transfer and Pressure Drop of Liquids in

Tubes", Ind. Eng. Chem., vol. 28, p. 1429, 1936.

85. Silva, J.A. and A.E. Rodrigues, "Separation of n/iso- Paraffins Mixtures by

Pressure Swing Adsorption", Separation and Purification Technology, vol. 13,

pp. 195-208, 1998.

86. Silva, J.A.C., F.A.D. Silva and A.E. Rodrigues, “Separation of n/iso paraffins

by PSA”, Separation and Purification technology, vol. 20, pp. 97-110, 2000.

87. Skarström, C.W., “Method and Apparatus for Fractionating Gaseous Mixtures

References 196

by Adsorption”, U.S. Patent No. 2,944,627, 1960.

88. Spivey, J.J. and P.A. Bryant, "Hydroisomerization of n-C5 and n-C6 Mixtures

on Zeolite Catalysts", Industrial & Engineering Chemistry Process Design

and Development, 21, pp. 750-780, 1982.

89. Stephik, M. and D.G. Bobrow, "Object-oriented programming: themes and

variations", AI Magazine, vol. 6, , pp. 40-62, 1986.

90. Swokowski, E.W., Calculus, Brooks/Cole, 1991.

91. Tamura, T., U.S. patent 3,797,201, 1974.

92. Taylor R. and R. Krishna, Multicomponent Mass Transfer, John Wiley &

Sons, 1993.

93. Wagner, J.L., Selective Adsorption Process, U.S. Patent No. 3,430,418, 1969.

94. Wakao, N. and T. Funazkri, "Effect of Fluid Dispersion Coefficients on

Particle-To-Fluid Mass Transfer Coefficients in Packed Beds", Chemical

Engineering Science, vol. 33, pp. 1375-1384, 1978.

95. Wakao, N., S. Kaguei and T. Funazkri, "Effect of Fluid Dispersion

Coefficients on Particle-to-Fluid Heat Transfer", Chemical Engineering

Science, vol. 34, pp. 325-336, 1979.

96. Warmuzinski, K., "Effect of Pressure Equalization on Power Requirements in

PSA Systems", Chemical Engineering Science, vol. 57, pp. 1475-1478, 2002.

97. Warmuzinski,K. and M. Tanczyk, "Calculation of the Equalization Pressurein

PSA Systems", Chemical Engineering Science, vol. 58, pp. 3285-3289, 2003.

98. Wassiljewa, A., "Warmeleitung in Gasgemischen", Physik Z., vol. 5, p. 737,

1904.

99. Wen, C.Y. and L.T. Fan, Models for Flow Systems and Chemical Reactors,

Dekker, 1975.

100. Wilke, C.R., "Diffusional Properties of Multicomponent Gases", Chem. Eng.

Prog., vol. 46, pp. 95-104, 1950.

101. Yang, Ralph T., Gas Separation by Adsorption Processes, Imperial College

References 197

Press, 1987.

Appendix A: A Novel Formula for Calculating Pressurization and De-
pressurization Velocity Profiles

198

APPENDIX A: A Novel Formula for Calculating Pressurization
and De-pressurization Velocity Profiles
The spatial velocity profile during pressurization or depressurization of any vessel is

calculated using equation 4.6. Assuming no adsorption at the boundaries, equation 4.6

reduces to:

C t
du
dz

+
dCt

dt
=0 (A.1)

Equation A.1 can be normalized using the following transformations :

v=u/Umax , CT=Ct /Ct ,max , x=z /L and

τ=t /tref where t ref=L/Umax

(A.2)

The normalized equation takes the form:

CT
dv
dx

+
dCT

d τ
=0 (A.3)

Realizing that:

C t=
P
RT

→CT=
P /RT
Pref /RT

=
P
P ref

→
dCT

d τ
=
d P
d τ

(A.4)

Where P=P /P ref . Equation A.1 can then be written in terms of P as :

P dv
dx

+d P
d τ

=0 (A.5)

Since P is independent of x, v is independent of τ and v(1) =0, equation A.5 can be

integrated to yield:

v (x , P)= 1
P
dP
d τ

(1− x) (A.6)

At x=0 (inlet velocity), equation A.6 reduces to :

v (P)= 1
P
d P
d τ

(A.7)

The pressure P can be calculated using a normalized version of either equation 4.16 or

Appendix A: A Novel Formula for Calculating Pressurization and De-
pressurization Velocity Profiles

199

4.18. Equations 4.16 and 4.18 can be written in their dimensionless form with their
respective time derivatives as:

P=
Phigh

Pref

−(Plow

Pref

−
Phigh

Pref
)[ττp

− 1]
2

(A.8a)

d P
d τ

=− 2
τ p (Plow

Pref

−
Phigh

Pref
)[ττp

− 1] (A.8b)

P=
Plow

Pref

+(
Phigh

Pref

−
Plow

Pref
)[1− e

(−M p τ)] (A.9a)

d P
d τ

=−M p(
Phigh

Pref

−
Plow

Pref
)[1−e

(−M p τ)] (A.9b)

Substituting either equation A.8 or A.9 into A.7 yields an expression for inlet velocity as

a function of time. Figure A.1a illustrates the response of inlet velocity to time changes

using equations A.8 (parabolic profile). Figure A.1b illustrates the response of inlet

velocity to time changes using equations A.9b (exponential profile). The value of MP =

2.3076923 corresponds to an initial pressurization velocity (at τ=0) that is equivalent to

that provided by the parabolic profile.

These two equations are widely adopted in literature. However, they posses a fundamental

drawback. They instantaneously change bed initial velocity from a value of zero to a

value that corresponds to multiples of feed velocity at adsorption step.

For the parabolic profile, this velocity instantaneously changes from a value of 0 to 15

times that of the feed velocity during adsorption step. For the exponential velocity

profiles, the initial inlet velocity depends on pressurization rate MP. However, regardless

of the value of MP, pressurization is almost always instantaneous.

Appendix A: A Novel Formula for Calculating Pressurization and De-
pressurization Velocity Profiles

200

a. Inlet velocity evolution based on parabolic pressure profile.

b. Inlet velocity evolution based on exponential pressure profile.

Figure A.1: Dimensionless inlet velocity during pressurization step calculated using a:
parabolic pressure profile, b: exponential pressure profile. The value of M=2.3076923
corresponds to an initial velocity value (at t=0) that is equivalent to the one provided by
the parabolic profile .

Appendix A: A Novel Formula for Calculating Pressurization and De-
pressurization Velocity Profiles

201

This sudden change in velocity profile does not correspond to the reality of a continuous

process. In order to derive a better representing equation, we should realize first that

pressure changes in this step are due to introduction of high pressure feed through

opening of the feed valve. The opening of the feed valve is a continuous function that is

mistakenly modelled as an instantaneous one. The pressure rises downstream of the feed

valve before reaching the PSA column. The pressure downstream of the valve is a

function of valve opening, In addition, the pressure always rises downstream of the feed

valve before reaching the vessel. Such a change is an incremental and not an

instantaneous one. It can be modelled by substituting the constant value of Phigh in

equations A.8 or A.9 by an incremental function in pressure that is bounded by pressure

limits [Plow, Phigh]. Referring to Figure 4.5, it can be realized that the exponential pressure

profile is always leading the parabolic one yet the exponential profile is still an

incremental one and bounded by Plow and Phigh. Thus, replacing the constant Phigh value in

equation A.8 will result in an incremental pressure profile and simultaneously result in an

incremental velocity profile. Thus, equation A.8 becomes:

P(τ)= 1
Pref
[Phigh(τ)−(Plow−Phigh(τ))[ττ p

−1]
2

] (A.10a)

d P(τ)
d τ

=
1

Pref
[T 1+T 2+T 3] (A.10b)

Where:

Phigh(τ)=Plow+(PFeed− Plow)[1−e(− M p τ)] (A.10c)

T 1=
2
τp

[Plow+(PFeed− Plow)(1− e
−M p τ)](1− τ

τ p
) (A.10d)

T 2=[1−(ττp
− 1)

2

][(P Feed−Plow)M e(−M τ)] (A.10e)

Appendix A: A Novel Formula for Calculating Pressurization and De-
pressurization Velocity Profiles

202

T 3=
2 Plow
τp [ττp

− 1] (A.10f)

Several trends of equation A.10 with various MP values are plotted in Figure A.2. The

value of MP=170.83164 corresponds to a dimensionless inlet velocity peaking at a value

of 15. This value is exactly the same as that reported by equation A.8. However, the value

provided by equation A.10 does not peak at the start of pressurization step. Thus, the

value calculated by equation A.10 provides a better regularization.

Appendix A: A Novel Formula for Calculating Pressurization and De-
pressurization Velocity Profiles

203

a. Inlet velocity profile Based on Equation A.8

b. Inlet velocity profile based on Equation A.10

Figure A.2: Dimensionless pressurization step inlet velocity based on a: a fixed value of
upstream feed pressure that is equivalent to the high pressure value (parabolic profile
based on equation A.8), b: a variable upstream pressure that is based on equation A.10.

Appendix B: Models' Validations with the Minkinnen Process 204

APPENDIX B: MODELS' VALIDATIONS WITH THE MINKINNEN

PROCESS

I centred the validation of the modelling work around the [Minkkinen et al, 1993] process

which hydroisomerizes normal pentane and normal hexane compounds to their branched

isomers in a reactor before separating products from reactants using a Pressure Swing

Adsorption unit.

B.1 A Brief Description of the Process

The [Minkkinen et al, 1993] process consists principally of:

1. a distillation column (deisopentanizer) to separate isopentane from the feed (not

modelled),

2. an isomerization reactor to convert normal alkanes to their branched isomers,

3. a distillation column (product separator) to separate Hydrogen from reactor

effluent (not modelled),

4. and two Pressure Swing Adsorption columns to separate normal alkanes from

their branched isomers.

In their patent, [Minkkinen et al, 1993] presented an original scheme for the process and

also introduced a modified variant. I only focused on the original scheme of the process

which is illustrated in Figure B.1. The original Minkkinen process feed composition is

outlined in the left column of Table B.1. To simplify calculation and modelling tasks, I

approximated the feed composition to that presented at the right column of Table B.1 by

averaging concentrations of various i-C6 isomers into one isomer, namely 2-2 Dimethyl

Butane. I deliberately averaged the concentrations of i-C6 isomers instead of

Appendix B: Models' Validations with the Minkinnen Process 205

agglomerating them. Agglomerating them would lead to an isomer feed composition that

is higher than normal hexane composition and hence shifting equilibrium towards

producing normal hexane instead of iso-hexane. Process stream flows, composition,

temperatures and pressures are outlined in Table B.2. Any missing information is obtained

through drawing an overall and individual component material balances around process

units. Respective stream numbers are outlined in Figure B.1.

Figure B.1: Simplified process diagram for the [Minkkinen et al, 1993] Process. Individual
stream specifications are outlined in Table B.2.

In Minkkinen process, the feed consisting of normal and iso- parafiins is feed to a

distillation unit. Lighter components are stripped at the top of the column and the rest of

the material is collected as a bottom product and fed to an isomerization reactor. The

stripped top product is used as a purge stream during the desorption step of the PSA unit.

The bottom draw of the distillation column is mixed with a recycled hydrogen stream

before entering the isomerization reactor. Hydrogen acts as a reaction promoter. More

than 60% of n-C5 and 73.0% of n-C6 are converted to their respective isomers. Reactor

effluent is fed to a product separator where essentially all hydrogen is stripped off the

Fresh Feed
77.6 kg/hr

Recycle 46.8 kg/hr

13.9% nC5

7.5 % nC 6

8
4.

6
 k

g/
hr

17.5 % nC6

39.7 % nC5

12.0 % iC5

D
is

til
la

tio
n

 C
o

lu
m

n

R
ea

ct
o

r
~ 100 % H 2

S
ta

b
ili

zi
ng

C
o

lu
m

n

P
S

A
 C

ol
u

m
n

 I

P
S

A
 C

ol
u

m
n

 I
I

4.6% nC6

8
 k

g/
h

r

31.8 kg/hr

7
7

 k
g/

h
r

39.8 kg/hr
93.1 % iC5

6.9 % nC5

27 % nC5

H 2 Make up

Appendix B: Models' Validations with the Minkinnen Process 206

product separator feed and recycled back to the reactor. A Hydrogen feed line is present at

the bottom of the distillation column to compensate for any loss in Hydrogen recycle

loop.

Table B.1: Original [Minkkinen et al, 1993] and approximated feeds to Minkkinen Process.

Compound Original Feed (mol %) Approximated Feed (mol %)

Isobutane 0.4 25.38

Normal Butane 2.4 2.4

Isopentane 21.0 23.2

Normal Pentane 29.0 29.0

Cyclopentane 2.2 0.0

2-2 Dimethyl Butane 0.5 6.03

2-3 Dimethyl Butane 0.9 0.0

2 Methyl Pentane 12.7 0.0

3 Methyl Pentane 10.0 0.0

Normal Hexane 14.0 14.0

Methyle Cyclopentane 5.0 0.0

Cyclohexane 0.5 0.0

Benzene 1.3 0.0

C7+ 0.1 0.0

Since conversion is incomplete, a need arises to separate normal paraffins from the

isomers. This separation is performed in a two-bed PSA unit. The bottom of the product

separator is mixed with a bleed stream from the top of the distillation column before it is

fed to the PSA column undergoing pressurization and adsorption steps (Column I in

Figure B.1).

Each PSA column is filled with an adsorbent that is selective to normal paraffins. Iso-

paraffins pass, unadsorbed, through the column and are collected as a raffinate product.

Simultaneously, PSA Column II is undergoing depressurization and desorption steps to

remove normal paraffins that were accumulated as a result of a previous adsorption step.

The effluent from PSA Column II (extract) is recycled and mixed with the main feed

Appendix B: Models' Validations with the Minkinnen Process 207

before entering the distillation column. Once PSA Column I adsorbent is saturated with

normal paraffins, the feed is switched to PSA Column II and PSA Column I is purged

with distillation column top product. The cycle between the two PSA columns is repeated

indefinitely until the unit is shut down.

B.2 The Reactor Model

Isomerization reactors (commercially known as reformers) are mainly used to convert

normal alkanes to their isomers using a catalytic reactor in the presence of Hydrogen.

Isomerization is one of the reactions required to raise the octane number of the feed

stream by converting normal alkanes to their branched isomers. Other side reactions

occurring inside reformers include the desirable Dehydrogenation, Dehydrocyclization,

Hydrocracking, and the undesirable Demethylation reaction [Little, 1985]. High octane

numbers reduce knocking characteristics and increase the efficiency of combustion

engines that are used to power most of today's auto-mobile industry.

[Minkkinen et al, 1993] recommended the use of a high activity catalyst that is based on

Chlorinated Alumina and Platinum in order to operate the reactor at temperatures between

130-220ºC and pressures ranging from 20-35 bars in addition to the low Hydrogen to

hydrocarbon [H:HC] ratios of 0.1 to 1.0. In their laboratory test unit, they used 52 litres of

a η alumina-based isomerization catalyst that contains 7 wt% chlorine and 0.23 wt%

Platinum. They also mention the suitability to use Zeolite based catalysts such as

Mordenites although they dismissed their use due to the higher activation energies

required by such catalysts that eventually require higher reactor inlet temperatures to

achieve the required conversion.

Appendix B: Models' Validations with the Minkinnen Process 208

Table B.2: Properties of individual streams described by [Minkkinen et al, 1993]. Shaded areas indicate information that is obtained through material balances. Bold-faced figures

with white backgrounds refer to information supplied by [Minkkinen et al, 1993] in their patent.

Appendix B: Models' Validations with the Minkinnen Process 209

The catalysts used in such processes are usually Platinum based, hence the name noble.

[Spivey and Bryant, 1982] classify catalysts used into Mordenite and Faujasite with the

former exhibiting the highest activity.

In this work, I modelled the Modernite catalyst that was presented by [Spivey and

Bryant, 1982] in their paper as they reported the required reaction rate constants.

In their study on Hydroisomerization of n-C5 and n-C6 mixtures on Zeolite

catalysts, they used a 0.5 wt% Platinum H-mordenite (Pt-H-M) with [SiO2: Al2O3]

ratio of [14:1] and a 0.5 wt% Palladium H-faujasite type Y (Pd-H-Y) with a

[SiO2:Al2O3] ratio of [6.4:1]. Since the catalyst used by Minkkinen is a Platinum

based one, I picked the corresponding rate constants from the paper by [Spivey

and Bryant, 1982].

Figure B.2: 3D Temperature profile versus normalized axial distance x and

time τ. x= z /LR and τ=t / tref where t ref=LR /U ref . Initial higher

temperature profiles are due to the release of heat of adsorption.

Appendix B: Models' Validations with the Minkinnen Process 210

B.2.1 Reactor Sizing Calculation

Other than the total volume of the catalyst used (52 litres), [Minkkinen et al, 1993] did

not provide any information on reactor geometry. So, I had to perform a simple

isothermal reactor design exercise to estimate reactor length and diameter. The n-C5

Hydroisomerization reaction is a reversible reactions that can be expressed as:

CnC5
⇄
k iC

5

knC5

CnC5
(B.1)

The rate of the reaction is expressed as:

−r nC5
=k nC5

CnC5
− k iC5

C iC5
(B.2)

Where:

knC5
: forward reaction rate constant

k iC5
: reverse reaction rate constant

C nC5
: normal-pentane concentration

Ci C5
: iso-pentane concentration

Equation B.2 can also be written based on one of the reaction rate constants and the

reaction equilibrium constant:

−r nC5
=k nC5(CnC5

−
C iC 5

K C
) (B.3)

Where:

K C=
k nC5

k i C5

[Spivey and Bryant, 1982] discuss temperature and pressure dependency of the forward

and reverse reaction rate constants. However, for a simplified design calculation we will

assume isothermal operation. Since the reactor is operated at a constant pressure and a

relatively fixed feed composition, the assumption of isobaric operation seems a valid one.

Appendix B: Models' Validations with the Minkinnen Process 211

Under these conditions, and assuming a plug flow reactor, the reactor design equation can

be written as:

τ=
LR

uf

=CnC5
∫
0

X nC
5 dX nC5

−rnC 5

=CnC5
o

K C

knC5

∫
0

X nC
5 dX nC5

B−C X nC5

(B.4)

Where:

B=K CC nC5
o−C iC5

o

C=Cn C5
o(1+K C)

LR : Reactor Length

Equation B.4 can be analytically integrated and solved for normal pentane conversion (

X nC 5
):

X nC 5
=

B
C
[1−e

(−
LR

A
)] (B.5)

Where:

A=
uf

k nC5
[K C

1+KC
]

Reactor feed flow and composition can be obtained from the material balance presented

in Table B.1 after assuming a reasonable [H:HC] ratio. Equation B.5 still holds two

degrees of freedom, namely column length (LR) and feed velocity uf. Feed velocity can

easily be calculated from feed molar/mass flow rates by assuming a reasonable reactor

diameter (dR). The diameter dR and length LR are correlated through reactor volume. For a

fixed catalyst volume, total bed volume can be calculated using equation B.6:

V T=
V C

(1− εB)
(B.6)

Where:

VT : Total reactor volume

VC: Catalyst volume

εB: Bed void.

Appendix B: Models' Validations with the Minkinnen Process 212

So, for a specified dR and LR, Equation 9 can be solved to obtain reactor exit conversion

X nC 5
.

Equilibrium conversion can be calculated by taking the limit of (B.5) as reactor length LR

approaches infinity as illustrated in equation B.7. At 140ºC, respective equilibrium

conversions for n-C5 and n-C6 are 0.70 and 0.31. A reactor [H:HC] ratio of [1:1] is

adopted in constructing the material balance in Table B.1.

X nC 5

eq
= lim

LR→∞

B
C
[1− e

(−
LR

A
)]= B

C
=[K C

(1+K C)][
(Cn C5

o−C i C5
o)

Cn C5
o]

(B.7)

B.2.2 Reactor Model Validation

The constructed reactor model is validated against experimental exit concentrations and

temperatures provided by [Minkkinen et al, 1993] and summarized in Table B.1. Steady

state reactants and products axial concentration profiles, along with the temperature

profile, are illustrated in Figure B.3. Table B.3 compares reactor effluent concentrations

and temperatures reported by [Minkkinen et al, 1993] to those produced in this model.

The wall external heat transfer coefficient is used as a tuning parameter to match the exit

temperature to that reported by [Minkkinen et al, 1993].

Typical [Minkkinen et al, 1993] Reactor feed and effluent streams' properties are also

respectively outlined in streams 7 and 8 of Table B.2.

Figure B.3 illustrates the spatio-temporal profile of reactor temperature. As can be

noticed, reactor temperature sharply rises after initial start-up of the reactor and drops as

the reactor reaches steady state. The steady-state drop in the temperature profile is due to

the saturation of the catalyst pellets. Reactor effluent n-C5 and i-C5 concentrations closely

Appendix B: Models' Validations with the Minkinnen Process 213

match those reported by [Minkkinen et al, 1993]. The noticeable difference between n-C6

and i-C6 concentrations reported in this work and those produced by [Minkkinen et al,

1993] is due to averaging the concentrations of hexane isomers at the reactor feed as

outlined earlier.

Figure B.3: Steady state reactants and products concentration profiles and temperature
profile versus normalized axial distance.

Temperature profile is plotted against the right y-axis while all other profiles are plotted
against the left y-axis.

Appendix B: Models' Validations with the Minkinnen Process 214

Table B.3: Comparison between reactor effluent concentrations and temperatures reported by [Minkkinen et

al, 1993] and those produced in this work.

Variable Minkkinen This Work Absolute Difference % Difference

n-C5 0.0894 0.0689 0.0205 23.0

n-C6 0.0261 0.0354 0.0093 36.0

i-C5 0.2431 0.2240 0.0191 8.0

i-C6 0.1233 0.0879 0.0354 29.0

Exit Temperature 160.0 159.6 0.4 0.3

B.3 The PSA Model

B.3.1 Constitutive Equations Used in Constructing the PSA Column Model

In this section, I highlight constitutive relations used in constructing the pressure swing

adsorption model discussed in Chapter 4: .

B.3.1.1 Adsorption Isotherm

[Nitta et al, 1984] adsorption isotherm is used to calculate solid phase concentration. The

isotherm assumes occupation of the adsorbed molecule to multiple sites on the surface of

the adsorbent. For a single component adsorption, the isotherm takes the form:

nKP= θ
(1−θ)n

 (B.8)

The additional parameter n accounts for non-linearities associated with components

exhibiting adsorption behaviours that are not captured by the Langmuir isotherm.

Basically, it slows down the decline in adsorption capacity due to the decrease in

adsorbate concentration. For n =1, the isotherm reduces to that of Langmuir. Also, when

the surface coverage is infinitesimally small, the denominator reduces to unity and the

equation reduces to Henry's law. In presence of multicomponent adsorption, Nitta derives

the following equation:

Appendix B: Models' Validations with the Minkinnen Process 215

niK ipi=
θi

(1−∑j=1 θ j)
ni

(B.9)

assuming ideal gas behaviour and substituting pi=RT < c i> into equation B.9, leads to

the form used in our model:

ni<ci>RT=
1

K i
ads

θ
i

(1−∑j θ j)
ni

(B.10)

where the adsorption equilibrium constant K i
ads follows Arrhenius behaviour with

respect to changes in temperature.

B.3.1.2 Gas-Solid Mass Diffusivity

Calculation of effective diffusivity is required to determine the gas-solid mass transfer

coefficient. Effective diffusivity is composed of two terms: molecular (or bulk) diffusivity

and Knudsen diffusivity. Molecular diffusivity is evident with dense gases and/or

relatively large solid pore sizes. On the other hand, Knudsen diffusivity is dominant in

low density gases and/or small pore sizes. The reason behind the distinction between the

two diffusivities is related to relative number of collisions between gas molecules to that

with the solid surface. In molecular diffusion, collisions between gas molecules are more

often than that between a gas molecule and the solid surface. The opposite is true with

Knudsen diffusion.

Knudsen diffusivity is calculated using the equation reported by [Kauzmann, 1966] that is

derived from kinetic theory of gases:

Dk=
2 d p

6 (8 RT
πM)

1
2 (B.11)

Since collisions are more often encountered with the gas molecule than with the solid

surface and due to the relative small pore sizes, molecular weight is taken as that of the

Appendix B: Models' Validations with the Minkinnen Process 216

colliding gas. [Satterfield, 1980]. However, [Ruthven et al, 1994] used a mean molecular

weight of the binary diffused substances:

1
M
=

1
M 1

+
1

M 2

 (B.12)

In this work, we followed the equation by Ruthven et al to calculate M.

Binary molecular diffusivity is also derived from kinetic theory of gases and reported as :

D12=CT
(

3
2
)√[M 1+M 2

M1 M2
]

Pσ12
2
ΩD

(B.13)

However, because data is scarce on values for collision diameter σ12
and collision

integral ΩD
, [Fuller et al, 1966] and [Fuller et at, 1969] provided a simplified equation

that is based on atomic diffusion volumes:

D12=10−3 T1.75 √[M 1+ M 2

M 1 M2]
P [3√Σ(v1)+

3√Σ(v2)]
2

(1)

The noticeable symmetry of the equation implies that D12=D21 for both equations.

A simplified form for calculating “ideal” effective diffusivity, based on the assumption of

equal but opposing fluxes of components A and B:

1
D
=

1
Dm

+
1
Dk

 (B.14)

Interestingly, although literature is consistent about the form of the equation , it is not firm

about the source of the equation. For example, [Yang et al, 1998] reports that the equation

was obtained by Bosanquet [referenced in [Aris, 1975] and [Pollard and Present, 1948].

On the other hand, [Ruthven, 1984] reports that the equation was simultaneously

Appendix B: Models' Validations with the Minkinnen Process 217

published by [Evans et al, 1961] and [Scott and Dullien, 1962].

In addition to Knudsen and Molecular diffusivities, we added an additional term that

accounts for Poiseuille flow diffusivity that is evident in large pore sizes and/or high

pressures:

D p=
d p

2 P
16μ

 (B.15)

The final equation for “ideal” diffusivity becomes [Ruthven et al, 1994]:

1
D
=

1
Dm

+
1
Dk

+
1
Dp

 (B.16)

Since the actual diffusion path is not always equivalent to the radius of the pore, the

diffusivity resulting from equation B.16 needs to be corrected. Correction is made

through dividing by a factor that accounts for tortuosity effects. Also, to account for the

fact that pore diffusion volume is only a fraction of the total pore volume, diffusivity is

multiplied by intra-particle void. The resulting diffusivity is called effective diffusivity:

De=
ε p D
τ (B.17)

For multicomponent adsorption, [Taylor and Krishna, 1993] discuss the difficulty of

obtaining a general formula to calculate mixture diffusivity. They have also indicated the

conditions for which assumptions of effective diffusivity would be valid:

1. Binary diffusion coefficients are equal, as we pointed out earlier.

2. The concept of effective diffusivity is also applicable in cases where one

component is in large excess of the rest. In this case, effective diffusivity of

component i that is not in excess reduces to its pure diffusivity Dii.

3. When diffusion occurs through a stagnant gas. In this case the [Wilke, 1950]

Appendix B: Models' Validations with the Minkinnen Process 218

approximation holds:

Di ,eff=
1−x i

∑
j=1, j≠i

x j

Dij

(B.18)

The third case is eliminated by default in this work due to the continuous flow of the

processes studied. To preserve relative generality, we will be limiting our examples to

case 1.

B.2.1.3 Gas-Solid Overall Mass Transfer Coefficient

Overall mass transfer coefficient using an equation combining both internal and external

mass-transfer coefficients, referenced in [McCabe et al, 2005]:

1
K gl

=
1
k i

+
1
ke

 (B.19)

Where: k i=
10 De

d p

,

The external mass transfer coefficient is evaluated using the correlation suggested by

[Wakao and Funazkri, 1978]:

Sh=2.0+ 1.1Sc
1
3 Re0.6 (B.20)

or

ke d p

Dm

=2.0+1.1(
μ

ρg Dm
)

1
3(ρg u d p

μ)
0.6

 (B.21)

The equation is suitable for calculating packed beds axial dispersion coefficient within:

3<Re<104

B.3.1.4 Axial Dispersion Coefficient

Although dispersion usually occurs in axial and radial directions, radial dispersion is

usually neglected when bed diameter is substantially bigger than adsorbent particle

Appendix B: Models' Validations with the Minkinnen Process 219

diameter. In our simulations, we will try to hold to a minimum Bed-to-particle diameter

ratio of 5 when bed diameter is included as an optimization variable; unless it becomes an

optimization constraining variable. For axial dispersion, we used the correlation

recommended by [Wen and Fan, 1975]:

1
Pe

=
0.3

ReSc
+

0.5

(1+ 3.8
ReSc)

(B.22)

or

D zρ

d pμ
=

0.3
ρu d p
μ

μ

ρg Dm

+
0.5

(1+
3.8

ρgu d p
μ

μ

ρg Dm
)

(B.23)

The readers attention should be drawn to the definition of Pem in this equation (that differs

from the definition of Pem in the rest of the document. The equation is valid in the range

of:

0.008<Re<400 and 0.28<Sc<2.2

B.3.1.5 Particle-to-Fluid Heat Transfer Coefficient

Particle-to-Fluid heat transfer coefficient is calculated using the correlation provided by

[Wakao et al, 1979]:

Nup=2.0+1.1 Pr
(

1
3
)

Re0.6 (B.24)

or

hp d p

k
=2+1.1(C pgμ

k)
(1
3
)(ρ gu d p

μ)
0.6

 (B.25)

This equation is valid in the range of:

15<Re<8500

It is also worth noting that this correlation was based on the form that was provided by

[Wakao and Funazkri, 1978] and outlined in equations B.19 and B.20.

Appendix B: Models' Validations with the Minkinnen Process 220

B.3.1.6 Fluid-to-Wall Heat Transfer Coefficient

For wall heat transfer coefficient, we divided the use of correlations based on the flow

regime. Furthermore, whenever applicable, we further divided flow regimes into entrance

and fully developed. For entrance region Laminar flow, we used the equation

recommended by [Sieder and Tate, 1936]:

Nud=1.86 (Red Pr)
(1 /3)(d c

L)
(1 /3)

(μμw)
0.14

 (B.26)

 [Sieder and Tate, 1936] indicate that the properties of this correlation should be evaluated

at the arithmetic mean bulk temperature 0.5∗(T in+ T out) . However, because of the

dynamic nature of the process, it is very difficult to estimate (and/or fix) bulk entrance

T in and exit T out temperatures. So, we opted for evaluating all properties at unit fresh

feed conditions. Evaluating all properties at fresh feed conditions leads to elimination of

the viscosity effects, between bulk fluid and wall, appearing at the end of the correlation.

The correlation is valid when:

(Red Pr)(dc

L)>10 (B.27)

In addition, [Sieder and Tate, 1936] limited the use of the correlation to Prandtl numbers

in the range of 0.48<Pr<16,700 . Reported errors of this correlation are in the range of

±25 % . For fully developed laminar flow, I applied the recommendation by [Shah and

London, 1978]. Basically, they state that, for fully developed laminar flow, Nusselt

number tends to settle at a constant value. For flow through ducts the correlation is

simply:

Nud=4.364 (B.28)

For turbulent flow, I used the correlation proposed by [Gnielinsky, 1976]:

Appendix B: Models' Validations with the Minkinnen Process 221

Nud=
(f /2)(Re−1000)Pr

1+ 12.7 (f /2)(1 /2)(Pr(2/3)−1) [1+ (dc

Lc
)
(2 /3)

] (B.29)

f =[1.58ln (Red)−3.28]
(−2)

(B.30)

The correlation captures the effects of entrance and fully developed regions. For fully

developed turbulent flow, the term (dc /Lc) is set to zero. It is valid in the following

ranges:

 0.5<Pr<2000

2300< Red<106

0<
dc

Lc

<1

It should be noted that all these correlations are developed for the case of constant heat

flux. Although heat flux might not be uniform in our model, I still think that these

correlations are more appropriate than their constant wall temperature counterparts

because although the heat flux is not constant, it is evident.

B.3.1.7 Pure Component Thermal Conductivity

Pure component thermal conductivity is estimated using the method of Chung et al

([Chung et al, 1986], [Chung et al, 1984]). The method is tested over wide range of

hydrocarbons but not with polar substances. However, the authors indicated that the

formula can be used for polar substances if values of parameter β for the polar substances

are available. The method was originally established to estimate thermal conductivities at

low pressures but, later on, modified to account for high pressures too. As reported by

[Chung et al, 1986], error resulting from this formula, at high pressures, is within the

range of 5-8%:

Appendix B: Models' Validations with the Minkinnen Process 222

λ=
31.2 ηo

ψ

M
(G2

− 1
+B6 y)+qB7 y2 T r

0.5 G2 (B.31)

Where:

G1=
1−0.5 y

(1− y)3

G2=

(
B1

y
)[1−e(−B 4 y)

]+ B2G1 e(B5 y)
+ B3G1

B1 B4+ B2+ B3

Bi=ai+biω+c iμr
4
+diκ

Values of constants ai , bi , c i and c i are tabulated below:

i ai bi c i d i

1 2.4166E+0 7.4824E-1 -9.1858E-1 1.2172E+2

2 -5.0924E-1 -1.5094E+0 -4.9991E+1 6.9983E+1

3 6.6107E+0 5.6207E+0 6.4760E+1 2.7039E+1

4 1.4543E+1 -8.9139E+0 -5.6379E+0 7.4344E+1

5 7.9274E-1 8.2019E-1 -6.9369E-1 6.3173E+0

6 -5.8634E+0; 1.2801E+1 9.5893E+0 6.5529E+1

7 9.1089E+1 1.2811E+2 -5.4217E+1 5.2381E+2

B.3.1.8 Mixture Gas-Phase Thermal Conductivity

As suggested by [Reid et al, 1987], mixture thermal conductivity is estimated using the

same equation for pure thermal conductivity but with evaluation of parameters using

mixing rules provided by [Wassiljewa, 1904] for equation B.32, and [Mason and Saxena,

1958] for equations B.33 and B.34:

Appendix B: Models' Validations with the Minkinnen Process 223

λm=∑
i=1

n y iλi

∑
j=1

n

y j A ij

(B.32)

Aij=

ϵ[1+ (λ tri

λtr j
)

0.5

(M i

M j
)

0.25

]
2

[8(1+ M i

M j
)]

0.5
(B.33)

λ tr i

λtr j

=
Γ j [e

0.0464 Tr i−e−0.2412Tr i]

Γi [e
0.0464Tr j−e

−0.2412Tr j]
(B.34)

B.3.1.9 Gas-Phase Axial Effective Thermal Conductivity

Axial effective thermal conductivity is estimated using the correlation provided by

[Dixon and Cresswell, 1986]. After excluding radial dispersion term (refer to Appendix

C), the correlation is simplified to:

1
Pea

=
1

Peaf

+
kas /kaf

RePr
 (B.35)

or

k a

ṁ c t d p

=
kaf

ṁ c t d p

+
k as/ kaf

(ρgu d
μ)(

C pgμ

kaf
) (B.36)

As pointed out by the authors, this equation covers ranges of Re below and above 100, as

opposed to a previous work that only focused on laminar flow. It also accounts for

transient heat effects which better suits our model. It should be noted that k af is

calculated using the correlations for mixture thermal conductivity outlined earlier.

B.3.1.10 Gas-Phase Pure Component Viscosity

Pure component viscosity is estimated using the method of ([Chung et al, 1984], [Chung

et al, 1986]):

Appendix B: Models' Validations with the Minkinnen Process 224

η=40.875
Fc (MT)0.5

V c
(2 /3)

Ωv

(B.37a)

F c=1−0.2756ω+ 0.059035μr
4
+ κ (B.37b)

Ωv=[A(T*
)
−B]+ C [e−DT*

]+ E e(−FT) (B.37c)

T *
=1.2593 T r (B.37d)

μr=131.3
μ

(V c T c)
0.5 (B.37e)

A=1.16145
B=0.14874
C=0.52487
D=0.77320
E=2.16178
F=2.43787

(B.37f)

B.3.1.11 Gas Phase Mixture Viscosity

Gas phase mixture viscosity is calculated using a simplification of the kinetic theory of

gases that is proposed by [Wilke, 1950]:

ηm=∑
i=1

n yiηi

∑
j=1

n

y jϕ i , j

(B.38)

ϕi , j=
[1+(η i

η j)
0.50

(M j

M i
)

0.25

]
2

[8(1+ M i

M j
)]

0.5
ϕi , j=

[1+ (ηi
ηj)

0.50

(M j

M i
)

0.25

]
2

[8(1+ M i

M j
)]

0.5 (B.39)

B.3.2 PSA Model Validation

The validity of the constructed PSA model is tested against the PSA patent for separation

of iso- from normal paraffins that was filed by [Minkkinen et al, 1993]. A variant of the

PSA section of this process was modelled by [Silva and Rodrigues, 1998]. Silva and

Rodrigues have published results for isothermal and non-isothermal cases. Spatial

Appendix B: Models' Validations with the Minkinnen Process 225

distributions of normal pentane and normal hexane concentrations (as mole fractions) for

the cyclic steady state (CCS) step are reported for the isothermal case. In addition,

temperature profiles are reported for the non-isothermal case. Our verification process

will target two goals. The first goal is to produce raffinate and extract products

concentrations that match those reported by [Minkkinen et al, 1993]. The second goal is

to compare CSS concentration and temperature profiles obtained in this work with those

reported by Silva and Rodrigues and discuss the sources of bias between reported results.

According to [Minkkinen et al, 1993], the PSA column undergoing Adsorption phase

produces iso-pentane with purity greater than 99%. Since the PSA process is totally

dynamic, calculation of isopentane purity is only attained through averaging effluent

concentration throughout adsorption step.

a. Adsorption (at x = z/L = 1) b. Desorption (at x = z/L = 0)

Figure B.4: Evolution of raffinate and extract concentrations during the Cyclic Steady
State (CSS) adsorption and desorption steps.

Raffinate is collected at the back-end of the vessel during Adsorption step. Extract is
collected during Desorption step at the front end of the vessel. Normal hexane
concentration is omitted from the figure to allow better scaling of axes. The normal
hexane exit concentration is always zero as can be realized fromFigures B.5b and B.5d.

Figure B.4a illustrates the exit concentration of normal and iso pentane (molar fractions)

against time for the CSS adsorption step. For the first 5 minutes, the curve indicates that

the process is producing a nearly steady 99+ mol% pure iso pentane. Purity starts

dropping at the end of the step due to a slight breakthrough of normal pentane. The

Appendix B: Models' Validations with the Minkinnen Process 226

average isopentane purity throughout the adsorption step is 99.06 mol%. Thus we may

comfortably conclude that simulation results coincide with experimental data reported by

[Minkkinen et al, 1993]. The exit concentration of normal hexane is omitted from the

figure to allow better scaling for the left y-axis where normal pentane concentration is

plotted. Normal hexane concentration at product end of the column during adsorption step

is always zero. The axial profile plotted in Figure B.5b supports this fact.

Following the same path, [Minkkinen et al, 1993] reports that desorption step effluent

consists of 27 mol% normal pentane, 7.5 mol% normal hexane with the balance being iso

pentane. The model reports average concentrations of 26.31 and 8.15 mol% for normal

pentane and normal hexane, respectively. Differences between reported figures are less

than 1 mol%.

Concentration evolution profiles for the depressurization and desorption steps are

illustrated in Figure B.4b. The increase in normal pentane and hexane concentrations at

the beginning of the step is due to the rapid escape of isopentane from the column and the

desorption of normals from adsorbent pellets to the gas phase when depressurizing the

vessel from 15 to 2 bars. However, isopentane concentration picks up once the purge

stream is introduced during desorption step. Minkkinen does not distinguish between

depressurization and desorption steps as the effluent of both steps is combined and

recycled back to the distillation column (De-isopentanizer).

Minkkinen also reports that average column temperature is maintained at about 300ºC in

both adsorption and desorption steps. The model confirms these results as illustrated in

Figures B.5a-B.5d with the exception of the sharp temperature wave that is located close

to the product end during adsorption step (Figure B.5b). The sharp temperature wave

illustrated in Figure B.5b is due to dynamic adsorption. During pressurization step, the

Appendix B: Models' Validations with the Minkinnen Process 227

adsorbate is concentrated at the front end (left) of the vessel with unadsorbable material

(inerts) occupying the rest of the vessel. Adsoption requires high pressures . Thus, little

adsorption occurs during pressurization step. However, at the start of adsorption step, the

bed is already fully pressurized and the product end (right) is open for collection of inert

material. Adsorption process is exothermic by nature. Any adsorbed material releases

energy that heats up the bed causing a temperature rise. As the bed saturates, no localized

adsorption occurs at saturated locations and the temperature at these locations drops to

that of the feed due to heat exchange with feed. However, since adsorption is still evident

in unsaturated locations of the bed, temperature rises in these locations causing a sharp

temperature wave. This consecutive saturation of the bed constructs a temperature wave

that starts at feed introduction end when adsorption step starts and moves towards the

product end as the front end of the bed is saturated with adsorbates. The wave settles at its

final location, illustrated in B.5b, before switching the bed to the depressurization step.

Let us now turn our attention to the results reported by [Silva and Rodrigues, 1998]. Silva

and Rodrigues modelled and laboratory tested an exact copy of the PSA unit described by

Minkkinen with few modifications. The major difference between both processes lies in

the composition of the purge stream. Minkkinen used the top effluent of the de-

isopentanizer column to purge the PSA column undergoing desorption step. This scheme,

although resulting in a better PSA unit recovery, the purity of the raffinate deteriorated.

[Silva and Rodrigues, 1998] opted for recycling part of the pure product stream as a purge

stream for the desorption step. This new setup resulted in a high purity product but on the

expense of recovery. Purge feed compositions, product purity and recovery of both

processes is summarized in Table B.4.

Appendix B: Models' Validations with the Minkinnen Process 228

a. Pressurization b. Adsorption

c. Depressurization (Blowdown) d. Desorption

Figure B.5 : Axial concentration and temperature profiles at the end of the Cyclic Steady
State.

Plots are generated using the model developed in this work for the case described by
[Minkkinen et al, 1993] in his patent. Temperature profiles are plotted against the right y-
axis while composition profiles are plotted against the left one.

The high recovery of the Minkkinen process is due to the setup of the process flowsheet.

As indicated earlier, Minkkinen uses the stream existing the depentaniser column

overhead as a purge to the PSA column undergoing desorption step. This means that all

the product stream is recovered since no amount is recycled as a purge stream.

Appendix B: Models' Validations with the Minkinnen Process 229

Table B.4: Comparison between Minkkinen and Silva & Rodrigues experiments' recoveries and purities.

Purge Stream Composition (mol%)
% Recovery % i-C5

PurityProcess n-C5 n-C6 i-C5

Minkkinen 6.9 0.0 93.1 100.00 98.941

Silva and Rodrigues 0.0 0.0 100.0 14.89 99.998

a. Pressurization b. Adsorption

c. Depressurization (Blowdown) d. Desorption
Figure B.6: Comparison of CSS spatial profiles for temperature and composition between
results produced in this work and those reported by [Silva and Rodrigues, 1998].

Dotted lines represent results published by [Silva and Rodrigues, 1998]. Continuous lines
represent the results produced in this work.

Silva and Rodrigues published CSS axial composition and temperature profiles. Their

results formulate good bases to validate the CSS axial profiles produced in this work.

Since no tabular data were provided by [Silva and Rodrigues, 1998], I had to digitize their

plots before re-plotting them in Figure B.6. For each of the CSS steps, continuous lines in

Appendix B: Models' Validations with the Minkinnen Process 230

Figure B.6 represent results obtained from this work while dotted ones represent the work

published by Silva and Rodrigues. Temperature profiles are plotted against the right y-

axis whereas molar concentrations of normal pentane and normal hexane are plotted

against the left y-axis.

The noticeable difference between the two works lies in the temperature profiles. In

general, Silva and Rodrigues report higher temperature profiles than those produced in

this work. Silva and Rodrigues attribute the rise in the temperature to the use of a

parabolic temperature profile to simulate the oven used in their experiments. However,

they do not outline the nature of the parabolic profile or how it is incorporated in the

simulation model. The higher temperature profile also explains the higher saturation of

their PSA bed at the end of the adsorption step compared this work. At higher

temperatures, adsorbents saturate at lower concentrations of adsorbates and vice versa. In

fact, the influence of the extra oven in the data reported by Silva and Rodrigues explains

almost all discrepancies between results. Minkkinen reported an average axial

temperature of 300ºC. The results in this simulation work are more aligned with

Minkkinen experimental results.

Another noticeable difference is in the concentration front of the pressurization step. Silva

and Rodrigues results report higher concentration fronts at the end of the pressurization

step. This is probably due to the use of a lower pressurization rate (M). Silva and

Rodrigues use exponential function to build up pressure during pressurization step and to

depressurize it during depressurization step. The adjustable variable in this exponential

function is the pressurization rate M. Although they mention the use of the pressurization

rate constant M, they don't make any notes about the magnitude of that constant. To

produce the curves in this work, we used a pressurization rate M=1/ t ref (s-1) where tref is

Appendix B: Models' Validations with the Minkinnen Process 231

the refrence time defined as L/Uref , L being the length of the column and Uref is the

refrence velocity. This choice of M corresponds to M̄=1 for normalized equations.

To conclude, the profiles produced in this work closely resembles those reported by

[Minkkinen et al, 1993] and [Silva and Rodrigues, 1998]. Discrepancies where explained

and justified whenever encountered. Thus, the developed model well suits further work

on this area.

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 232

APPENDIX C: PIECE-WISE CUBIC HERMITE INTERPOLATING
POLYNOMIALS

C.1 Introductory

In one dimensional polynomial interpolation, a polynomial p(x) is created from either a

function f(x) or a set of (xi, f(xi)) data representing f. When interpolating, the (xi, f(xi)) data

points are interchangeably called nodes, interpolants or control points. Polynomial

interpolation guarantees the existence of p(x) that satisfies:

p(x i)=f (x i) (C.1)

for all nodes. However, the accuracy of the match within the nodes does not imply

accuracy of interpolation between them [Cheney and Kincaid, 1999]. In fact, a perfect

interpolation match only exists when the interpolating polynomial is an exact replica of

f(x). Thus, as x deviates from the control points, the error between f(x) and p(x) increases.

One would think that a higher order p(x) might result in a better interpolation. However,

this is not the case. As [Cheney and Kincaid, 1999] state it, the news were shocking when

the scientific community realized that higher order polynomials deteriorate interpolation

accuracy.

To solve this problem, scientists resort to using low order polynomials and dividing the

interpolation region into segments. The term spline refers to such segmentation whether

even or uneven [Kochanek and Bartels, 1984].

The lowest order polynomial that can be interpolated is the first order polynomial or the

straight line. However, straight line interpolation suffers several drawbacks. It is not

curved. Thus, it does not follow the intended curvature of the original function. It can

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 233

only be differentiated once and the derivative (a constant) is not a function of space,

marking it impractical for mathematical or engineering applications requiring the estimate

of derivatives to approximate maxima, minima and inflection points of functions among

other uses.

The second obvious alternative is second order polynomials (parabolic functions). These

functions provide better curvature alignment with original functions. However, they suffer

the drawback of constant second derivatives. This drawback prevents scientists from

estimating inflection points of the original function.

Third order interpolating polynomials solve the problems encountered in first and second

order ones. However, although most third order polynomials well interpolate a given data

set, some provide advantageous features over others. Let us start our discussion with a

well known theorem:

Theorem A.1:

For a set of distinct points x0, x1,...xn having corresponding y values of y0, y1, …. yn, a

unique polynomial of a degree ≤ n exists such that p(xi) = yi for 0 ≤ i ≤ n.

According to Theorem A.1, the shape of the unique polynomial is only a function of the

selected data set within the interpolation segment. There are numerous ways to construct

an interpolating polynomial from a data set. Newton divided difference and Lagrange

interpolating polynomials are among the most popular [Cheney and Kincaid, 1999]. As

Newton interpolating polynomials constitute a subset of hermite interpolating

polynomials, we will start our discussion by demonstrating their construction from a set

of data.

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 234

Example C.1 Constructing a Newton interpolating polynomial

Let us construct a Newton interpolating polynomial from the below set of

scattered data assuming x is the independent variable:

x -1 1 0 2

y 4 3 6 -11

The final interpolating polynomial is a combination of n-1 sub

polynomials where n represents the number of data points. The first

polynomial resembles a horizontal line, the second is a sloped line, the

third is a parabola and so forth. For this example, since n=4, we will only

be able to construct a third degree interpolating polynomial. Using the

first point from the left (selection of points is arbitrary as long as each

point is utilized once) and realizing that the first polynomial is of degree 0:

p0(x)= y0=4 (C.2)

The second polynomial (degree 1) is constructed by adding an extra term

to the first one:

p1(x)=p0(x)+c1(x− x0) , where c1 is a constant (C.3)

Substituting equation C.2 in equation C.3:

p1(x)=4+c1(x− x0) (C.4)

Using the second point from the left, we can easily calculate that c=-0.5.

The third polynomial (degree 2) is constructed by adding an additional term to the

second polynomial:

p2(x)=p1(x)+c2(x− x0)(x− x1) , where c2 is a constant (C.5)

Substituting equation C.4 in equation C.5:

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 235

p2(x)=4−0.5(x− x0)+c2(x− x0)(x− x1) (C.6)

Substituting appropriate values from the first three points, c2 is calculated to be

-2.5. Hence,

p2(x)=4−0.5(x+1)−2.5 (x+1)(x−1) (C.7)

Following the same pattern, the forth polynomial becomes:

p3(x)=4−0.5 (x− x0)− 2.5(x− x0)(x− x1)+c3(x− x0)(x− x1)(x− x2) (C.8)

Inserting appropriate substitutions results in:

p3(x)=4−0.5 (x+1)−2.5 (x+1)(x−1)− (x+1)(x−1) x (.9)

The combined polynomial is additive. Thus,

p(x)= p3(x)=4−0.5(x+1)−2.5(x+1)(x−1)−(x+1)(x−1)x (C.10)

A plot of the final polynomial is illustrated in Figure C.1.

The reader can easily notice the recursive nature of the procedure. Also, the formula

ensures that each added polynomial passes through all the nodes of all previously

constructed polynomials. In fact, the adherence to forcing the polynomial into passing

through each node is what creates highly oscillatory behaviour when interpolating

between nodes using higher order polynomials.

A more convenient way to obtaining these coefficients would be to use Newton divided

difference recursive formula [Cheney and Kincaid, 1999] and [Chapra and Cancade,

2002]. The general form of the formula is:

f [xn , xn−1 ,..... x1 , x0]=
f [xn , xn−1 ,x2, x1]− f [xn−1 , xn−2 ,..... x1 , x0]

xn− x0

(C.11)

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 236

Figure C.1: A plot of the third degree polynomial constructed from Example A.1.

Using the above formula, c0 is immediately realized to be c0= f [x0]= y0 . c1 is calculated

as:

c1=
f [x1]− f [x0]

x1− x0

=
y1− y0

x1− x0

(C.12)

The coefficient c2 is calculated using equation (C.13):

c2=f [x0, x1, x2]=
f [x2, x1]− f [x1, x0]

x2− x0

(C.13)

The theory is best explained by an Example:

Example C.2: Obtaining Coefficients using Newton divided difference formula

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 237

The tabulated data in Example are used to calculate the coefficients of

equation (C.10) as illustrated in the table below:

Table C.1: Deriving coefficients of Newton interpolating polynomial

C.2 Osculating Polynomials

Note that in the preceding discussion, nothing has been assumed about the conformity of

interpolating polynomial derivatives to those of the original function at the nodes. Thus,

although the interpolating polynomial nodes' values confirm to the provided function

values (or data set), the derivatives of the interpolating polynomial may or may not

coincide with those of the original function. If the derivatives of the interpolating

polynomial are required to match the derivatives of the original function, Osculating

interpolating polynomials should be used.

“Osculating2 polynomials” is a general term used to describe a set of interpolating

polynomials that agree with a set of n observation values as well as their m+1 derivatives.

The degree of the resulting osculating polynomial depends on the amount of information

available around the nodes.

Osculating polynomials are also called hermite polynomials [Moler, 2004]. They are

named after the French mathematician Charles Hermite. The maximum degree of an

Osculating polynomial can be calculated as:

2 In Latin, “Osculari” means “to kiss”.

xi f[xi] = yi f[xi,xj] f[xi,xj,xk] f[xi,xj,xk,xl]

-1 4 = c0

1 3 -0.5 = c1

0 6 -3 -2.5 = c2

2 -11 -8.5 -5.5 -1 = c3

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 238

r=n−1+∑
i=0

n

mi (C.14)

Where n represents the number of observations and mi represents the number of available

derivatives per ith observation. The coefficients of the polynomial can be evaluated using

Newton divided difference technique that was outlined earlier. The difference between the

original Newton divided difference procedure and the one used for osculating

polynomials is that in osculating polynomials the same observation is repeated a number

of times that are equal to the available derivatives at the observation. The discussion is

better understood with an illustration.

Example C.3 Constructing an osculating polynomial

The following table of observations is constructed using the trigonometric sine

function and its subsequent first and second derivatives:

xi f(xi) f(1)(xi) f(2)(xi)

-1 -0.8414710 0.5403023

0 0 1.0 0.0

The second derivative of the first observation is deliberately omitted to demonstrate

that the procedure can always be applied to the available derivatives. For this table

of observations, n=2. Also, Since only one derivative is available for the first

observation, m1 = 1. Similarly, for the second observation, two derivatives are

available. This leads to m2 = 2. Thus, the resulting polynomial is a fourth degree (r =

2-1+1+2) polynomial.

To construct the coefficient matrix using Newton divided differences, each

observation should be repeated mi+1 times. Thus the first observation is repeated

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 239

twice and the second observation is repeated thrice. Since it is impossible to use

equation (C.11) for repeated observations, equation (C.11) is replaced with the

respective available derivatives from the observations table. The resulting table is

illustrated below. Note that the zi column is only used to count the number of used

observations to construct the table.

Table C.2: Using Newton divided differences technique to obtain the coefficients of an osculating

polynomial for the set of data presented in Example C.3.

zi xi f[xi] f[xi,xj] f[xi,xj,xk] f[xi,xj,xk,xl] f[xi,xj,xk,xl, xm]

1 -1 -0.84147 =c1

2 -1 -0.84147 0.54030=c2

3 0 0.0 0.8414709 0.30116= c3

4 0 0.0 1 0.15852 -0.14263=c4

5 0 0.0 1 -0.17255 -0.33108 -0.18844=c5

The final polynomial, constructed from the above table, is presented in equation

(C.15). The equation is split into two rows due to space limitations. Since the

resulting polynomial has a match with the original function, at the nodes, up to the

second derivative, the function is said to be second degree parametrically continuous,

or simply C2.

f (x)={−0.84147+0.54030 (x+1)+0.30116(x+1)2

−0.14263(x+1)2(x−0)−0.18844 (x+1)2(x−0)2} (C.15)

The original sine function and its 4th order osculating polynomial are plotted in

Figure C.2. using discretisation intervals of h=0.1. Also, error values between the

original function and the interpolating polynomial are outlined in Table C.3.

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 240

Table C.3: Regression results for correlating simulation run length with number of discretization
nodes.

xi

f(xi) % Error

sin(xi) o2(xi) h(xi) o2(xi) h(xi)

-1.000 -0.841 -0.841 -0.841 0 0

-0.900 -0.783 -0.785 -0.783 0.172 0.023

-0.800 -0.717 -0.722 -0.717 0.595 0.078

-0.700 -0.644 -0.652 -0.643 1.146 0.144

-0.600 -0.565 -0.574 -0.563 1.715 0.208

-0.500 -0.479 -0.490 -0.478 2.201 0.256

-0.400 -0.389 -0.399 -0.388 2.508 0.280

-0.300 -0.296 -0.303 -0.295 2.541 0.271

-0.200 -0.199 -0.203 -0.198 2.204 0.225

-0.100 -0.100 -0.101 -0.100 1.394 0.135

0.000 0.000 0.000 0.000 0 0

It is worthy at this point to discuss some of the continuity aspects of spline functions.

Since spline functions use several segments to construct a given curve, the continuity at

the points connecting the segments is of critical importance as it determines smoothness

of the final curve. If the function only matches observations but not their subsequent

derivatives, the function is called a G0 geometric function. If the resulting function

matches the observations and the directions of their first derivatives but not their

respective values, the function is called G1 geometric function. In G1 functions, the curve

leans more toward the tangent of one side of the segment compared to the other.

Parametric continuity imposes more restrictions on joints between segments. Ck

parametric continuity implies a match between the connecting segments up to the kth

derivative of the interpolating function. Thus, by definition, Osculating functions are Ck

compliant.

C.3 C1 Hermite Interpolating Polynomials

A C1 hermite interpolating polynomial is a hermite polynomial were only observations

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 241

and their respective first derivatives (tangents) are utilized to construct it. The same

methods used in the previous section will be repeated in this section. In addition, we will

explore some of the behaviours of C1 interpolating polynomials. The construction of a

polynomial from a data set is illustrated in Example C.4.

Example C.4: Constructing a C1 hermite polynomial from a data set

Let us use the observations in Example C.3 to construct a C1 hermite interpolating

polynomial. Since the coefficients are readily available in Table C.2, it becomes a

trivial exercise to construct the polynomial following the technique used earlier.

Since no derivatives beyond the first derivative will be required, the resulting

polynomial will be of a third degree (r = 2-1+1+1 = 3). The last row and last

column of Table C.2 will be omitted since they involve the second derivative of the

second observation. The resulting polynomial is outlined in equation A.16:

f (x)=−0.84147+0.54030(x+1)+0.30116(x+1)2−0.14263(x+1)2(x−0) (C.16)

Note that the polynomial in equation (C.16) is exactly the same as the one in

equation (C.15) after omitting the last term involving the second derivative. The

behaviour of the original function, its second order (O2) osculating polynomial and

its C1 hermite equivalent are plotted in Figure C.2 for a discretisation interval

h=0.1. Also, interpolation results and error values are tabulated in Table C.3.

Apart from a good fit of both interpolating polynomials to the original function,

Figure C.2 does not reveal much. However, the error reported in Table C.3 clearly

indicate that the additional term used in the osculating polynomial is a source of

noise rather than an error reduction term. Error is reduced by about 10 orders of

magnitude just by omitting the extra term.

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 242

Figure C.2: A plot of sin(x), its respective 2nd order osculating o2(xi) and hermite
polynomials over the interval [-1,0] and with segment discretisation of h=0.1.

Although C1 hermite interpolating polynomials can be constructed from Newton divided

difference formula, a more convenient (and widely used) method to construct them is to

to think of the polynomial as a piece-wise polynomial. Piece-wise polynomials are

complex polynomials that are constructed from a set of known elemental polynomials.

Since we are dealing with cubic hermite polynomials, we will restrict the discussion to

this class of polynomials. However, the concepts apply to any hermite polynomial with a

lower or higher degree. The concept is better illustrated in a matrix form. Also, since we

are dealing with spatial coordinates, it is better to use parametric notation instead of

explicit coordinate notation. This means that any dimensional curve will be defined using

a parameter t to denote its location. The coordinates x(t), y(t) and z(t) are functions of the

parametric variable t. We will limit our discussion in this appendix to one dimensional

polynomials. Appendix D covers interpolation in multi-dimensional space.

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 243

A hermite curve can be described as a matrix multiplication of a basis functions matrix M,

a geometry vector g and a polynomial vector p. Also, to simplify derivations, both the

parametric variable t and the geometric coordinate (e.g. x) will be scaled to extend

between [0,1] The polynomial vector p can be written in a parametric form as:

p3=[t
3 t 2 t 1] (C.17)

The geometric vector g is a vector holding the basic properties of the curve. For cubic

hermite polynomial, this vector translates into a four-elements vector. Two of the

elements hold the coordinates of the control points and the other two hold the values of

their respective first derivatives. Thus, g can be expressed as:

g=[Po P1 Ro R1] (C.18)

The matrix M is the coefficient matrix of all base polynomials. Since we are dealing with

a third order polynomial, the matrix M will have to contain four columns, each column

corresponding to a coefficient of the p3 vector. Also, since the curve is constrained, by two

control points and their respective derivatives, the number of rows corresponding to the

constrains should be equal to 2 control points + 2 derivatives = 4 columns. The final

matrix is thus a 4x4 matrix:

M=[
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44
] (C.19)

Thus, the parametric form for any of the coordinates (e.g. x) can be expressed as:

x (t)=p3 M gx
T
=[t 3 t2 t 1][

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44
][

g1 x

g2 x

g3 x

g4 x
] (C.20)

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 244

Using the four constraints defining the curve, we can construct a matrix A satisfying all

constraints as follows:

A=[
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

] (C.21)

Note that the first row of the matrix corresponds to the first control point having a value

of 0 (x(0) = [0 0 0 1]Mgx) since at x(0) all tk (k=1,2,3) terms will evaluate to 0. The

second row corresponds to x(1) = 1. The third term corresponds to x'(0) = Ro and so forth.

The goal of this exercise is to evaluate the coefficients of the basis functions. This goal is

achieved through solving :

g*
=[

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

]M g*
(C.22)

Of course, the only way to satisfy this equation is to conclude that AM=I or M = A-1.

Solving for M yields the coefficients of the elemental functions in a matrix form as

outlined in (C.23). Note that the coefficients of each elemental function are arranged

column wise because of the order of the M matrix in equation (C.23).

M=[
2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0

] (C.23)

From (C.23), the elemental functions can be written as:

b1(t)=2 t3−3 t 2
+1 (C.24)

b2(t)=−2t 3+3 t2

b3(t)=t 3−2 t2
+t

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 245

b1(t)=2 t3−3 t 2+1
(C.24)

b4(t)=t3− t 2

Figure C.3 illustrates the individual behaviour of each of the base functions. The final

hermite polynomial is written as:

hx(t)=M g=(3 t3−3 t 2+1)P0 x+(−2 t 3+3t 2)P1 x+(t
3− 2t 2+ t)R0 x+(t

3− t2)R1 x (C.25)

Figure C.3: The basic functions of a hermite interpolating polynomial

The hermite polynomial form presented in equation (C.25) is more convenient to program

and reduces computational power when compared to Newton divided difference formula.

Nevertheless, more computationally efficient formulas can also be derived out of equation

(C.25).

If the derivatives (tangents) at the first and second control points (R0x and R1x,

respectively) are readily available, they can be directly substituted into equation (C.25).

b
1
(t)

b
2
(t)

b
3
(t)

b
4
(t)

b i(t
)

t

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 246

However, in many applications, this is not the case. If tangents are not available, they can

be approximated using additional point or points before and after the control points to

estimate the derivatives.

Several techniques are available to evaluate tangents based on additional points. The

simplest is to use a three-point data set, two of which are control points. This technique

results in equal tangents (i.e. R0x = R1x) which implies C1 continuity:

Ri=Ri−1=
1
2 [(Pi+1− Pi)

(t i+1− t i)
+
(P i− Pi−1)

(t i− ti−1)] (C.26)

For a data set consisting of a number of points that is greater than three, the central

difference formula in equation (C.26) can be used for all points except for one of the end

points where either a forward difference or a backward difference formula can be used to

estimate the first or last tangent, respectively. [Kochanek and Bartels, 1984] Use this

technique to demonstrate their Kochanek-Bartel spline. Their spline is essentially a

hermite interpolating polynomial.

A better estimate of tangents is achieved by using two additional points instead of one as

illustrated in equation (C.27).

Ri=(1− τ)[Pi+1− P i−1

t i+1− ti−1
] (C.27)

Splines that use equation (C.27) are called canonical splines. Note the appearance of the

tension parameter (τ∈[−1,1]) in the equation. The tension parameter controls the

sharpness of the curve when it bends based on the position of the control points

[Kochanek and Bartels, 1984]. When the value of the tension parameter is zero, the

resulting spline is called Catmull–Rom spline.

Bias (β∈[−1,1]) is the second parameter that affects the direction and value of the

Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials 247

derivative. It can be used to control the direction of the path as it passes through a control

point. Equation (C.27) is written assuming a zero bias and a uniform distribution of

points. When the value of the bias differs from zero and the points are not evenly

distributed, the general form in equation (C.28) replaces that in equation (C.27) :

Ri=(1− τ)[(1+β)
(Pi+1− P i)

t i+1− ti

+(1− β)
(P i− Pi− 1)

t i− t i−1
] (C.28)

Similarly, equation (C.29) presents the general form of equation (C.26) when the value of

the bias deviates from zero.

Ri=Ri−1=
1
2 [(1+β)

(Pi+1− Pi)

(ti+1− t i)
+(1− β)

(Pi− Pi−1)

(t i− t i−1)] (C.29)

[Bourke, 2011] provided a C++ code representing a one-dimensional hermite

interpolating polynomial. His code is presented in Appendix E.

Appendix D: Approach II 3-D Vector Tracking and Mesh Generation Equations 248

APPENDIX D: APPROACH II 3-D VECTOR TRACKING AND MESH
GENERATION EQUATIONS

This appendix details the vector tracking procedures that is used in Approach II for

discontinuity resolution. The first section details how a vector is tracked during the

simulation run. The second section details how a mesh is constructed at the discontinuity

location once a discontinuity is reached. Although the discussion is illustrated using a 3D

function, the approach is applicable to functions of any dimension.

D.1 Three-D Vector Tracking

Let us assume that at time to, the 3D function f initializes at xo and yo coordinates of their

respective axes in a region bounding f1. The resulting starting point is Po(xo, yo, zo, f(xo, yo,

zo)). Since f(xo, yo, zo) can be calculated at any P(x, y, z), we do not need to track function

values. As the simulation advances by one step to t1, the coordinates of another point

P1(x1, y1, z1) are identified. The locations of these two points are sufficient to determine

the trajectory vector v1 that is accurate to time t1 only. Using linear algebra notation,

vector v1 can be written as:

v⃗1=P⃗o P1=[
x1− xo

y1− y o

z1− zo
] (D.1)

Now, let us transform the conditional statement into a discontinuity plane. A plane can be

uniquely identified through either:

1. a point inside the plane and a vector orthogonal to that plane,

2. or through three non-collinear points inside the plane. In this case the vector in

case 1 is calculated using the three non-collinear points.

Appendix D: Approach II 3-D Vector Tracking and Mesh Generation Equations 249

We will define the plane using the second case. To start, we need to locate arbitrary points

PA(xA,yA,zA), PB(xB,yB,zB) and PC(xC,yC,zC) located inside the discontinuity plane. We will

demonstrate the procedure for the discontinuity plane cutting the x dimension. Since the

plane is cutting the x dimension at x=xn, the x-coordinates of the three points will take the

value of xn. The discontinuity plane is extending infinitely in all coordinates. This

extension allows us to select arbitrary values for the y coordinates yA ,yB and yC and the z

coordinates zA , zB and zC . So, the coordinates of the points become:

PA (x A ,y A ,z A)
PB (x B ,y B ,zB)
PC (xC ,yC ,zC)

 
 
 CCCC

BBBB

AAAA

z,y,xP

z,y,xP

z,y,xP
 (D.2)

A check for non-co-linearity needs to be performed before proceeding to the next step. If

the points are identified as collinear, then another set of arbitrary values for yA, yB and yC

needs to be assumed and the above procedure is to be repeated. Once points pass the non-

collinearity test, v⃗ p that is orthogonal to the discontinuity plane is obtained via

multiplying vectors P⃗A PB with P⃗A PC (or any similar combination) as vector cross

product. Thus,

v p=P⃗ A PB x P⃗ A PC=[
xB− xA

yB− yA

zB− zA
]x[

xC− xA

yC− yA

zC− zA
]=[

(yB− yA)(zC− z A)− (zB− zA)(yC− yA)
(zB− zA)(xC− x A)− (xB− xA)(zC− z A)

(xB− xA)(yC− y A)− (yB− yA)(xC− x A)]=[
avp

bvp

c vp
]

(D.3)

Since the general equation of any plane passing through point Po(xo, yo, zo) and orthogonal

to
















c

b

a

v
 is:

      0=zzc+yyb+xxa ooo  , (D.4)

we could easily formulate the equation of the discontinuity plane as one of the equations

Appendix D: Approach II 3-D Vector Tracking and Mesh Generation Equations 250

in (D.5):

avp (x− xA)+bvp(y− y A)+cvp (z− z A)=0 (D.5a)

avp (x− xB)+bvp(y− y B)+cvp (z− zB)=0 (D.5b)

avp (x− xC)+bvp (y− yC)+cvp (z− zC)=0 (D.5c)

using points PA(xA, yA, zA), PB(xB, yB, zB) or PC(xC, yC, zC) as an example.

Next, we need to find the intersection point of the line, directed by v1 that is passing

through Po and P1, with the discontinuity plane defined by equation (D.5). To do this, we

need to write the equation for this line in the form:

x=xo+(x1− xo)τ (D.6a)

y=yo+(y1− yo)τ (D.6b)

z=zo+(z1− z o)τ (D.6c)

Substituting (D.6) into (D.5), we get:

avp(xo+(x1−xo) τ−x A)+bvp (y o+(y1−yo) τ−yA)+cvp (zo+(z1−zo) τ−z A)=0 (D.7)

Equation (D.7) has only one unknown (τ). Solving for τ and substituting the resulting

value into (D.6a), (D.6b) and (D.6c), we obtain the x, y, and z coordinates of the

intersecting point between the line (vector) Po P1 with the discontinuity plane. Since the

vector will intersect the plane at time tn, we will call the intersection point Pn(xn, yn, zn).

The discussion is illustrated in Figure D.1.

Appendix D: Approach II 3-D Vector Tracking and Mesh Generation Equations 251

Figure D.1: Progression of v⃗ i towards a discontinuity plane.

D.2 Mesh Generation Using Approach II

Next, we need to construct the coordinates of the 64-point interpolating polynomial. To

do so, we will rely on the direction of the P⃗o P1 vector. The idea is to generate 4 planes

that are parallel to the discontinuity dimension and separated by a distance h along the

discontinuous dimension as illustrated in Figure 5.12b for an intersection at z plane. Since

we assumed intersection at x-plane, the planes will be separated by a distance hx. Hence,

the x dimensions of the 4 discontinuous planes become: xn, xn+hx, xn+2hx and xn+3hx if v⃗n

is entering the overlap domain from the left end. If v⃗n is entering the overlap domain

from the right end, the x dimensions of the 4 discontinuous planes become: xn, xn-hx, xn-

2hx and xn-3hx. Since we are aiming for a symmetrical distribution of control points

around the v⃗n vector, we need to calculate the coordinates of the other dimensions (y and

z) for the points lying on v⃗n vector and having the 4 x-coordinates mentioned above. To

do so, we will calculate a new τ for each of the newly generated x-values:

A

B
C

Po P1

v 2
P 2

Pn

v1

vn

v p

f 1

f 2

f (x , y)

x y

Pn−1
P n−2

Appendix D: Approach II 3-D Vector Tracking and Mesh Generation Equations 252

τx n+1h x
=

(xn+1hx− xo)

(x1− xo)
(a)

τx n+2h x
=
(xn+2hx− xo)

(x1− xo)
(b)

τ xn+3hx
=

(xn+3h x− xo)

(x1− xo)
(c)

 or

τ xn− 1hx
=

(xn− 1hx− xo)

(x1− xo)
(a)

τx n− 2hx
=

(xn− 2hx− xo)

(x1− xo)
(b)

τ xn− 3hx
=

(xn−3hx− xo)

(x1− xo)
(c)

(D.8)

Next we substitute the newly obtained τ values into equation D.6 to get the other

coordinates of the points at which v⃗n intersects with other planes. Last, we construct a

mesh of sixteen points surrounding each of the four newly calculated points on v⃗n .

Figure D.2 illustrates the concept when applied to 2D discontinuous functions.

a. (3D view) b. (Planar view)
Figure D.2: The behaviour of a 2D interpolating polynomial demonstrating the continuity

of the polynomial along the continuous coordinate while interpolating along the

discontinuous axis. (CP = Control Point)

Appendix E: A Brief on The Developed Code 253

APPENDIX E: A BRIEF ON THE DEVELOPED CODE

This appendix is meant to serve as a starting point for researchers who would like to have

a look at the developed code, copy it or copy some parts of it, mimic it in another

environment or even develop a better code. Thus, I don't claim perfection in the written

code. I am just presenting a working code.

Some of the concepts are verified using C++. Others are verified using GNU Octave. I

will write a brief introductory to each code before presenting it.

E.1 One-Dimensional Hermite interpolation

Below is the C++ implementation of the one-dimensional hermite interpolation

polynomial that is presented by [Bourke, 2011]. The code uses four function values to

interpolate between two points. Thus, the function only interpolates between y1 and y2.

Nevertheless, it uses y0 and y3 to determine the appropriate slope of the interpolating

polynomial at the points y1, y2 and any intermediate point within [y1,y2]. Note that since

the x-coordinates of the points are equally spaced, their absolute values are irrelevant to

the interpolating function. Instead, the fraction mu∈[0,1] is used to reflect the x position

of the point at which the interpolating polynomial should report its y value. The code also

reflects how tension and bias parameters (explained in Appendix C) are used.

double HermiteInterpolate(double y0,double y1, double y2,double y3, double mu,
double tension, double bias) {

 double m0,m1,mu2,mu3, a0,a1,a2,a3;
 mu2 = mu * mu;
 mu3 = mu2 * mu;
 m0 = (y1-y0)*(1+bias)*(1-tension)/2;
 m0 += (y2-y1)*(1-bias)*(1-tension)/2;
 m1 = (y2-y1)*(1+bias)*(1-tension)/2;
 m1 += (y3-y2)*(1-bias)*(1-tension)/2;
 a0 = 2*mu3 - 3*mu2 + 1;
 a1 = mu3 - 2*mu2 + mu;
 a2 = mu3 - mu2;
 a3 = -2*mu3 + 3*mu2;
 return(a0*y1+a1*m0+a2*m1+a3*y2); }

Appendix E: A Brief on The Developed Code 254

Since the above function is x-dimension independent, a separate function should be

written to calculate the value of mu. An example implementation of such function is

presented below:

double interpolate(double *xv, double *yv, double x, double tension, double bias) {

 // mu is the scaled location of point x relative to the two bounding points.
 double mu;

 int i = -1;
 while (xv[++i] <= x);
 if (xv[i-1] == x)

--i;
 else

i-=2;

 mu = (x - xv[i+1]) / fabs(xv[i+2] - xv[i+1]);

 return hermite_interpolate(yv[i], yv[i+1], yv[i+2], yv[i+3], mu, tension, bias); }

Note that two vectors of six points (*xv and *yv) are passed to the above function along

with the point x at which the value of the interpolation polynomial is to be computed. The

function searches for the location of x within the provided *xv vector, calculates mu and

passes four of the six interpolation points to the HermiteInterpolate function. The

conditional statement is used to insure using the same set of interpolation points even

when x is at the border of the interpolation interval.

E.2 Two-Dimensional Interpolation

[Breeuwsma, 2011] presented a general C++ and Java codes for multidimensional

interpolation that can be used in conjunction with any one-dimensional interpolation

method. His C++ code is presented below:

Appendix E: A Brief on The Developed Code 255

double bi_interpolate (double *xv, double *yv, zm[MAX_POINTS][MAX_POINTS],
double x, double y, double tension, double bias) {
double arr[MAX_POINTS];

for (int i=0; i<MAX_POINTS;++i)
arr[i] = interpolate(yv, zm[i], y, tension, bias);

return interpolate(xv, arr, x, tension, bias); }

Looking at the interpolation mesh as a squared one (zm), the idea behind the code is to

interpolate each of the six-point row vectors in the x-dimension to produce the six-point

interpolation vector for the y-dimension. Thus, the two-dimensional interpolation is

treated as a double one-dimensional interpolation. The code can easily be extended to

cover multi-dimensional interpolation by nesting additional for loops or using dynamic

arrays.

E.3 Past Interpolation to Determine the Value of the missing hermite

Point when Regularizing Boundary Conditions

Past Interpolation is to find the value of the passed hermite point is discussed

in section 5.1.5. A spline interpolating polynomial is used to perform the

interpolation. The spline interpolation code is taken from the GNU Scientific

C++ Library [GSL, 2011]. The calling function is presented below.

double past_interpolate (int n, double t[], double y[], double tval, double *yval) {
int ibcbeg = 0, ibcend = 0;

 double ybcbeg=0, ybcend=0, ypval, yppval, *ypp;

 ypp = spline_cubic_set (n, t, y, ibcbeg, ybcbeg, ibcend, ybcend);

 *yval = spline_cubic_val (n, t, y, ypp, tval, &ypval, &yppval);

 return *yval; }

Appendix E: A Brief on The Developed Code 256

E.4 Regularizing Initial and Boundary Conditions

The code below is used to regularize velocity initial and concentration

boundary conditions.

double present_interpolate (double *inputs) {

 double

g = inputs[0],
 h = inputs[1],

Tau = inputs[2],
norm_dip = inputs[3], // dip-parameter
tension = inputs[4],
bias = inputs[5],
t = inputs[6], // current simulation time
initial_bound = inputs[7],
final_bound = inputs[8],

// Past interpolated value (Calculated using past_interpolate function)
initial_bound_mh = inputs[9],

// Magnitude of Jump
AB = fabs(final_bound-initial_bound);

double tv[MAX_POINTS], // time interpolation vector
yv[MAX_POINTS]; // velocity or BC interpolation vector

// initializing t interpolation vector
tv[0] = (g-h)/Tau; / (tp-h)/tau/
for (int i=1; i<MAX_POINTS; ++i)

tv[i] = (Tau*tv[i-1]+h)/Tau;

// initializing boundary velocity interpolation vector
yv[0] = initial_bound_mh; // @(tp-h)/Tau
yv[1] = initial_bound; // @(tp)/Tau
if (initial_bound > final_bound) {

yv[2] = initial_bound-norm_dip*AB; // @(tp+h)/Tau
yv[3] = final_bound+norm_dip*AB; // @(tp+2h)/Tau

}
else {

yv[2] = initial_bound+norm_dip*AB; // @(tp+h)/Tau
yv[3] = final_bound-norm_dip*AB; // @(tp+2h)/Tau

}
yv[4] = final_bound; // @(tp+3h)/Tau
yv[5] = final_bound; // @(tp+4h)/Tau

return interpolate(tv, yv, t, tension, bias); }

Appendix E: A Brief on The Developed Code 257

E.5 Generating a Two-Dimensional Interpolation Mesh based on

Approach II to Discontinuity Resolution

The code below is a C++ implementation to the concepts provided in

Appendix C.

void mesh_grid(dim_info *dim, double *inputs, int discont_dim,
double norm_dip, // Normalized Dip [0-->1]

 double zpm[MAX_POINTS][MAX_POINTS],
 double f (int, double, double, double*)) {

// Calculating interp_loc for discontinuous dimension
double shift = - 0.5*dim[discont_dim].h*(MAX_POINTS-1);
for (int j=0; j<MAX_POINTS;++j) {

dim[discont_dim].interp_loc[j] = dim[discont_dim].v[2] + shift;
shift+=dim[discont_dim].h;

}

 // Calculating interpolation location for other dimensions
double slope;
for (int i=0; i<DIMENSIONS;++i)

if (i!=discont_dim) {
shift = -0.5*dim[i].h*(MAX_POINTS-1);
for (int j=0; j<MAX_POINTS; ++j) {
slope = calc_slope(dim[discont_dim].v[0], dim[discont_dim].v[1],

dim[i].v[0], dim[i].v[1]);
dim[i].interp_loc[j] = slope*(dim[discont_dim].interp_loc[j] -

dim[discont_dim].v[0]) + dim[i].v[0] + shift;
shift+=dim[i].h;

}
 }

// Generating z mesh points
for (int i=0; i<MAX_POINTS;++i)

for (int j=0; j<MAX_POINTS;++j) {
if (in_range(dim[0].interp_loc[i], dim[1].interp_loc[j], dim[0].v[2],

dim[1].v[2], 1))
zpm[i][j] = f(1, dim[0].interp_loc[i], dim[1].interp_loc[j], inputs);

else
zpm[i][j] = f(2, dim[0].interp_loc[i], dim[1].interp_loc[j], inputs);

}

// Dipping intermediate points using p parameter
int index1, index2, diprow1 = MAX_POINTS/2-1, diprow2 = diprow1+1;
double
A = f(1, dim[0].v[2], dim[1].v[2], inputs),
B = f(2, dim[0].v[2], dim[1].v[2], inputs),
AB = A-B;

for (int i=0; i<MAX_POINTS; ++i) {
// dipping first row/column
if (dim[0].discontinuous) { index1 = diprow1; index2 = i; }
else { index1 = i; index2 = diprow1; }

if (in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2], dim[1].v[2],

Appendix E: A Brief on The Developed Code 258

1)) {
if (A < B)

zpm[index1][index2] -= norm_dip*AB;
else

zpm[index1][index2] += norm_dip*AB;
}
else if (in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2],

dim[1].v[2], 2)) {
if (A < B)

zpm[index1][index2] += norm_dip*AB;
else

zpm[index1][index2] -= norm_dip*AB;
}

 // dipping second row/column
 if (dim[0].discontinuous) { index1 = diprow2; index2 = i; }
else { index1 = i; index2 = diprow2; }

if (in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2], dim[1].v[2],
1)) {
if (A > B)

zpm[index1][index2] += norm_dip*AB;
else

zpm[index1][index2] -= norm_dip*AB;
}
else if (in_range(dim[0].interp_loc[index1], dim[1].interp_loc[index2], dim[0].v[2],

dim[1].v[2], 2)) {
if (A > B)

zpm[index1][index2] -= norm_dip*AB;
else

zpm[index1][index2] += norm_dip*AB;
}

}
}

E.6 Determining the location of the cutting planes for Nu=f(Re,Pr)

To determine the best location for the cutting planes, corresponding to

minimum(e), I used a simple sequential search algorithm. This algorithm is

used only to prove the concept. For practical applications, a faster and more

rigorous search algorithm should be used.

void get_cut_plains(double *Re1_limit,
double *Re2_limit,
double *Pr1_limit,
double *Pr2_limit,
double *x_plain,
double *y_plain,
double *inputs,

Appendix E: A Brief on The Developed Code 259

double f(int , double , double , double*)) {

double x=Re1_limit[1],
y=Pr1_limit[1],
min_x=x,
min_y=y;

// initializing error function to one of the corners of the overlap domain
double error = fabs(f(1, x, y, inputs) - f(2, x, y, inputs)), min_error = error, step = 0.1;

// Searching Re-Pr space for an optimum jump location
for (x=Re2_limit[0]; x<Re1_limit[1]; x+=step) {

for (y=Pr2_limit[0]; y<Pr1_limit[1]; y+=step) {
error = fabs(f(1, x, y, inputs) - f(2, x, y, inputs));
if (error < min_error) {

min_error = error;
min_x = x;
min_y = y;

}
}

}

*x_plain = min_x;
 *y_plain = min_y;
}

E.7 The regularized Nu=f(Re,Pr) Function

The below code represents the regularized Nu=f(Re,Pr) function I used to

interpolate between the values of the heat transfer coefficient corresponding

to laminar and turbulent flow regimes. In practical implementations, this

function should be generated by the language compiler. Note the use of C++

static function to track the first entry to the overlap region. This detection

facilitates a one-time generation of the interpolation mesh. Also, note how

the composite function well-encapsulates the boundaries of the its sub-

functions leading to the “illegal extrapolation” message if the simulation

crosses the boundaries that are set by the domains of the sub-functions.

double Nud_interp (double *inputs) {
static bool first_entry_to_Nud_interp=true, first_entry = true;

static double zpm[MAX_POINTS][MAX_POINTS];

// Renolds limits per function
double Re1_limit[] = { inputs[2], inputs[3]}, Re2_limit[] = {inputs[4], inputs[5] },

Appendix E: A Brief on The Developed Code 260

// Prandtl limits for each function
Pr1_limit[] = {inputs[6], inputs[7]}, Pr2_limit[] = {inputs[8], inputs[9]},

// Current Values of Re and Pr
Re = inputs[15], Pr = inputs[16];
double tension = inputs[10], bias = inputs[11], norm_dip = inputs[13];
int discont_dim = inputs[14]-1;

// declaring and initializing dim structure
static dim_info dim[DIMENSIONS];
if (first_entry_to_Nud_interp) {

fisrt_entry_to_Nud_interp = false;
for (int i=0; i<DIMENSIONS; ++i) {

// all dimensions should be continuous except one
 dim[i].discontinuous = false;

 for (int j=0; j<BOUNDARIES;++j)
 for (int k=0; k<PROPERTIES;++k)
 dim[i].boundary[j][k] = 0;
 dim[i].h = 0;

dim[i].cut_plain = 0;
 for (int j=0; j<MAX_POINTS;++j)

dim[i].interp_loc[j]=0;
}

get_cut_plains(Re1_limit, Re2_limit, Pr1_limit, Pr2_limit, &dim[0].cut_plain,
&dim[1].cut_plain, inputs, Nud);

for (int i=0; i<DIMENSIONS; ++i) {

// Initial values of h in each dimension
dim[i].h = inputs[12];

// Assigning discontinuity
(i == discont_dim) ? dim[i].discontinuous = true : dim[i].discontinuous =

false;
}

// copying respective arrays' limits
// for discontinuous dimension, check against absolute low and high of both

functions
dim[0].boundary[0][0] = inputs[2]; // Re2_low_limit
dim[0].boundary[1][0] = inputs[5]; // Re1_high_limit
// for continuous dimension, check against overlap violations.
dim[1].boundary[0][0] = inputs[8]; // Pr2_low_limit
dim[1].boundary[1][0] = inputs[7]; // Pr1_high_limit

}

// updating moving vector
for (int i=0; i<DIMENSIONS;++i) {

 // pushing old v vector values to the back of the array
for (int j=0; j<VECTOR_LENGTH-2;++j)

 dim[i].v[j] = dim[i].v[j+1];
 // updating the v vector with new array values
 dim[i].v[VECTOR_LENGTH-2] = inputs[i+15];

}

double h = dim[discont_dim].h,
interp_span = (MAX_POINTS-1-2)*h;

Appendix E: A Brief on The Developed Code 261

// Laminar
if ((Re > Re1_limit[0]) && (Re < dim[0].cut_plain - 0.5*interp_span)) {

first_entry = true;
// For uniform heat flux (Taken from Holman, p. 291)
return Nud(1, Re, Pr, inputs);

}
// Interpolation Region
else if (fabs(Re - dim[0].cut_plain) <= 0.5*interp_span) {

// Generating mesh points at first entry only
// ensuring that mesh generation is executed only once per entry to interpolation

region
if (first_entry) {

first_entry = false;
// locating intersection point of moving vector with cutting plain
find_i_point(dim, discont_dim);
// resizing (reducing) h if necessary
get_gaps(dim, discont_dim);
// generating interpolation matrix
mesh_grid(dim, inputs, discont_dim, norm_dip, zpm, Nud);

}
// Interpolating
return bi_interpolate (dim[0].interp_loc, dim[1].interp_loc, zpm, Re, Pr, tension,

bias);
}
// Turbulent
else if ((Re < Re2_limit[1]) && (Re > dim[0].cut_plain + 0.5*interp_span)) {
/* Gnielinski correlation: Gnielinski is a correlation for turbulent flow in tube.
 taken from CRC Handbook of thermal engineering (p. 3-49) */

return Nud(2, Re, Pr, inputs);
}
else

cout << "Illegal Extrapolation\n";
}

E.8 The discretized Nu=f(Re,Pr) Function

The code in this section represents the discretized Nu=f(Re,Pr) function that

is written by the modeller. I coded each function separately and then coded

the composite function as a separate one calling either laminar or turbulent

functions depending on the domain. The composite discretized function is

called by the regularized one to determine the values of the composite

function outside the interpolation region.

// Nud in Laminar Regime
double NudL(double Re, double Pr, double *param) {

 return 4.36;
}

Appendix E: A Brief on The Developed Code 262

// Nud in Turbulent Regime
double NudT(double Re, double Pr, double *param) {

double Lc = param[0],
dci = param[1],
f = pow((1.58*log(Re) - 3.28),-2);

return ((0.5*f)*(Re-1000.0)*Pr) / (1+12.7*pow(0.5*f,0.5)*(pow(Pr,2.0/3)-1)) * (1 + pow
(dci/Lc, 2.0/3));

}

double Nud(int domain, double Re, double Pr, double *param) {
switch (domain) {

case 1: {
// Laminar regime
return NudL(Re,Pr, param);

 break;
}
default: {

// Turbulent regime [case 2]
return NudT(Re,Pr, param);

}
}

}

Nomenclature 263

Nomenclature

ap Specific area of pellet hp Particle heat transfer coefficient

awe Wall external specific area hwe Wall external heat transfer
coefficient

awi Wall internal specific area hwi Wall internal heat transfer coefficient

ci Concentration of component i k Thermal conductivity

<ci> Average concentration of
component i

ke External mass transfer coefficient

Cpg Fluid heat capacity kgl Overall mass transfer coefficient

Cps Solid heat capacity ki-C5 Reverse reaction constant

Cpw Wall heat capacity kn-C5 Forward reaction constant

Ct Total gas phase concentration kw Wall thermal conductivity

Ct,max Maximum total concentration Ki,ads Adsorption equilibrium isotherm
constant for component i

CT Dimensionless total
concentration

KL Axial thermal conductivity

dc Column diameter L Column Length (cm)

dp Particle diameter LR Reactor length (cm)

D Ideal diffusivity m Mass (grams)

Deff Effective diffusivity ṁ Mass flowrate (grams/second)

Dk Knudsen diffusion coefficient M Molecular weight

DL Axial mass dispersion coefficient Mdp De-pressurization rate (1/seconds)

DM Molecular diffusion Mp Pressurization rate (1/seconds)

Dz Axial dispersion coefficient n Polynomial Order or nth derivative

Emax Maximum allowed error in a
single integration step

n-C5 Normal pentane

f Friction factor n-C6 Normal hexane

g Optimum transition point
between two discontinuous
functions

NE Number of equalization steps

h Integration step or distance
between mesh control points

nF Number of feed moles

Nomenclature 264

ni [Nitta et al, 1984] Isotherm
exponent

xO Initial condition of independent
variable

nP Number of purge moles yO Initial condition of dependent
variable

Nud Nusselt number based on vessel
diameter

yb Value of dependent variable at end
of integration step

P Pressure (bar) yi,j The value of the jth element in the y
vector at the ith integration step

P Dimensionless pressure ȳ Dependent variable scaled value

Pe Peclet number z Absolute axial distance (cm)

Peq Equalization pressure

PF Feed Pressure

PP PSA column purge pressure Greek Letters

TF Feed Temperature α Ratio between two equilibrium
constants

Tg Fluid Temperature αA Equilibrium constant of strongly
adsorbed component

TP Purge Temperature αB Equilibrium constant of weakly
adsorbed component

u velocity Δ xi Change in independent variable x at
ith integration step

v Dimensionless velocity Δ y i , j Change in the jth value of the
dependent vector y at ith integration
step

vi Dimensionless velocity at time
indexed interval i

−ΔH j ,ads Component i heat of adsorption

w Regularization interval ϵ Maximum acceptable error in an
integration step

x Dimensionless distance Εb Bed void

x̄ Independent variable scaled
value

η Pure component Dynamic viscosity

xi Value of the independent
variable at ith integration interval

ηm Mixture Dynamic viscosity

Xn-C5 N-pentane conversion λ Fluid pure component thermal
conductivity

Nomenclature 265

λm Fluid mixture thermal
conductivity

μ Dynamic viscosity

μw Dynamic viscosity at wall

ΩD
Collision integral

ρg Fluid density

ρs Solid (adsorbent) density

ρw Vessel wall density

σ 12 Collission diameter
τ Dimensionless time or tortuosity
τp Dimensionless pressurization

time

θi Surface coverage of component I

	Chapter 1: Introduction
	Chapter 2: An Overview of Modelling with Emphasis on Mathematical Models
	2.1. Definition of a Model
	2.2. Brief History of Modelling
	2.3. Model Development
	2.4. Assumptions in Mathematical Model Building
	2.5. Numerically Integrating Mathematical Models and the Inherent Errors
	2.6. Stiffness and Stiff Mathematical Models
	2.7. Concluding remarks

	Chapter 3: Discontinuities and Their Conventional Resolutions
	3.1. Type I - Integrator Based Discontinuity Resolution
	3.2. Type II – System Dependent Discontinuity Resolution
	3.3. Concluding Remarks

	Chapter 4: Discontinuities in Constructed Models
	4.1. Discontinuities in the Reactor Model
	4.2. PSA Model Construction and Discontinuities
	4.2.1. PSA Process Description and Differential Equations
	4.2.2. Formulation of the PSA synthesis problem
	4.2.3. Encountered Discontinuities in the PSA Model

	4.3. Concluding Remarks

	Chapter 5: Regularizing Discrete Functions
	5.1. One-dimensional Functions
	5.1.1. One-dimensional Discontinuity Detection
	5.1.2. One-dimensional Discontinuity Resolution
	5.1.3. Perfecting the Connection and the Bounding Box Problem
	5.1.4. Are four control points enough?
	5.1.5. Regularizing boundary and initial conditions
	5.1.6. Regularizing conflicting boundary conditions
	5.1.7. Differential models embedding other models

	5.2. Two-Dimensional Functions
	5.2.1. Two-Dimensional Discontinuity Detection
	5.2.2. Two-Dimensional Discontinuity Resolution
	5.2.3. How legal is “illegal” extrapolation?
	5.2.4. Mesh Generation

	5.3. N-Dimensional Functions
	5.3.1. N-Dimensional Discontinuity Detection
	5.3.2. N-Dimensional Discontinuity Resolution

	5.4. The Algorithm
	5.5. Summary and Concluding Remarks

	Chapter 6: Applications to Some Complex Models
	6.1. Regularizing a Discontinuity in Heat Transfer Coefficient Calculation
	6.2. Regularizing Boundary and Initial Conditions of a PSA Column
	6.3. Summary and Concluding Remarks

	Chapter 7: Summary and Conclusions
	Appendix A: A Novel Formula for Calculating Pressurization and De-pressurization Velocity Profiles
	Appendix B: Models' Validations with the Minkinnen Process
	B.1 A Brief Description of the Process
	B.2 The Reactor Model
	B.2.1 Reactor Sizing Calculation
	B.2.2 Reactor Model Validation

	B.3 The PSA Model
	B.3.1 Constitutive Equations Used in Constructing the PSA Column Model
	B.3.1.1 Adsorption Isotherm
	B.3.1.2 Gas-Solid Mass Diffusivity
	B.2.1.3 Gas-Solid Overall Mass Transfer Coefficient
	B.3.1.4 Axial Dispersion Coefficient
	B.3.1.5 Particle-to-Fluid Heat Transfer Coefficient
	B.3.1.6 Fluid-to-Wall Heat Transfer Coefficient
	B.3.1.7 Pure Component Thermal Conductivity
	B.3.1.8 Mixture Gas-Phase Thermal Conductivity
	B.3.1.9 Gas-Phase Axial Effective Thermal Conductivity
	B.3.1.10 Gas-Phase Pure Component Viscosity
	B.3.1.11 Gas Phase Mixture Viscosity

	B.3.2 PSA Model Validation

	Appendix C: Piece-Wise Cubic Hermite Interpolating Polynomials
	C.1 Introductory
	C.2 Osculating Polynomials
	C.3 C1 Hermite Interpolating Polynomials

	Appendix D: Approach II 3-D Vector Tracking and Mesh Generation Equations
	D.1 Three-D Vector Tracking
	D.2 Mesh Generation Using Approach II

	Appendix E: A Brief on The Developed Code
	E.1 One-Dimensional Hermite interpolation
	E.2 Two-Dimensional Interpolation
	E.3 Past Interpolation to Determine the Value of the missing hermite Point when Regularizing Boundary Conditions
	E.4 Regularizing Initial and Boundary Conditions
	E.5 Generating a Two-Dimensional Interpolation Mesh based on Approach II to Discontinuity Resolution
	E.6 Determining the location of the cutting planes for Nu=f(Re,Pr)
	E.7 The regularized Nu=f(Re,Pr) Function
	E.8 The discretized Nu=f(Re,Pr) Function

