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Abstract

Type I spiral ganglion neurons (SGNs) synapse onto cochlear inner hair cells and

constitute the majority of afferent fibres in the auditory nerve (AN). Better

characterisation of their biophysical properties may identify therapeutic targets for

optimising AN sensitivity. This study aimed to characterise the membrane physiology

underlying the firing properties of post-hearing onset SGNs and investigated whether

their properties could be modified by the presence of native and synthetic lipids.

In dissociated ganglionic cultures, SGNs displayed an intrinsic variation in their firing

properties; this could be correlated with the magnitudes of specific membrane currents.

SGNs were categorised by their response to depolarising current injection; SGNs either

adapted to the stimulus rapidly, slowly or not at all. Rapid adaptation, a mechanism that

preserves temporal precision throughout the auditory system, was found to be regulated

by a dendrotoxin-K (DTX-K) and tityustoxin-Kα (TsTx)-sensitive low-threshold 

voltage-activated (LVA) K+ current, suggesting contribution by Kv1.1 and Kv1.2

subunits. As Kv1.2 channels were known to be positively modulated by membrane

phosphoinositides, we investigated the influence of phosphatidylinositol-4,5-

bisphosphate (PIP2) availability on SGN K+ currents. Inhibiting PIP2 production using

wortmannin, or sequestration using a palmitoylated peptide (PIP2-PP), slowed or

abolished adaptation in SGNs. PIP2-PP specifically reduced SGN LVA currents in a

manner that was partly rescued by intracellular dialysis with diC8PIP2, a non-

hydrolysable analogue of PIP2. PIP2-PP application induced similar levels of current

inhibition in Kv1.1/Kv1.2 channels heterologously expressed in HEK293 cells.

Accordingly, the lipid sensitivity of the Kv1.2 channel was further explored with a

range of native and synthetic free fatty acids. Polyunsaturated fatty acids were found to

be strong inhibitors of Kv1.2 currents, offering further potential candidates for SGN

modulation.

Collectively, this data identifies Kv1.1 and Kv1.2 containing K+ channels as key

regulators of excitability in the AN, and potential targets for pharmacological

modulation.
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Chapter 1

Introduction
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1.1 The physiology of hearing

1.1.1 Transmission of sound to the inner ear

The mammalian ear can be broadly divided into three anatomical regions based on their

function in transmitting and processing sound: the outer, middle and inner ear (Figure

1.1). The outer ear provides two important functions in hearing. Firstly, it acts to collect

sound waves from a large area and concentrates them into the auditory canal. This

significantly increases the sound pressure level (SPL) at the tympanic membrane. This

can be as much as 20-30 decibels (dB) for some frequencies (Bergevin and Olson,

2014). Secondly, the outer ear helps to localise sound. The pinna offers complex ridges

and edges that reflect sound into the auditory canal. Waves reflected from these rims

will travel further than if they enter into the auditory canal directly, offering interference

patterns that can be used as spatial cues (Grothe and Pecka, 2014). These spatial cues

are only available when the wavelength of the sound is short compared to the

dimensions of the pinna; the ability of the outer ear to aid in sound localisation drops off

sharply below 2 kHz in humans (Pickles, 2008).

The middle ear couples the sound energy from the auditory canal to the cochlea. The

primary role of the middle ear is to act as a transformer to match the impedance of the

auditory canal to that of the cochlear fluids (without this, much of the sound would be

reflected). Sound energy is conveyed to the inner ear by the cone-shaped tympanic

membrane. The architecture of the tympanic membrane and ossicles ensure that sound

waves are transmitted solely to the oval window of the cochlea and not the round

window ensuring unidirectional entry of sound to the cochlea (Bergevin and Olson,

2014). Furthermore, the actions of the middle ear muscles can modulate the stiffness of

the middle ear bones. Many functions have been suggested for this modulation

including protecting the inner ear from acoustic overexposure, improving the frequency

response of the middle ear and reducing the masking effect of high intensity, low

frequency stimuli on higher frequencies. For a fuller discussion of the role of the outer

and middle ear in hearing see (Pickles, 2012).
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Figure 1.1 Anatomy of the peripheral auditory system. A schematic of the gross anatomical

features of the outer, middle and inner ear and the beginning of the central auditory system.

1.1.2 Anatomy of the cochlea

The cochlea is embedded deep in the mammalian temporal bone (Figure 1.1). It consists

of a spiral cavity divided longitudinally into three fluid filled compartments. The central

compartment, the scala media, is divided from the scala vestibuli above by a partition

known as the Reissner’s membrane and from the scala tympani below by the basilar

membrane. The two outer scalae are joined at the apex of the cochlea at a point termed

the helicotrema (Figure 1.2). These outer scalae are filled with an extracellular-like fluid

called perilymph. The scala media in contrast is filled with endolymph, a solution which

is more akin to intracellular solution as it has a high K+ and low Na+ concentration.

Consequently, endolymph has a highly positive potential (+80 mV) (Patuzzi, 2011).

The vibrations of the stapes are transferred onto a membrane covered opening in the

cochlea called the oval window, resulting in a displacement of the fluid in the scala

vestibuli and scala tympani. This, in turn, results in a wave-like displacement of the
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basilar membrane and organ of Corti (OC; Figure 1.2A, dotted line) (Sohmer, 2015).

The OC sits on the basilar membrane and contains the mechanosensory hair cells that

are central to the transduction of the physical sound wave into neuronal signals (Lim,

1986). The OC contains a single row of inner hair cells (IHCs) and between three and

five rows of outer hair cells (OHCs) and is covered by a gelatinous flap known as the

tectorial membrane. The hair cell stereociliary bundles contact this membrane so that

vibrations of the basilar membrane and OC result in the physical deflection of the hair

cells’ bundles.

Figure 1.2 Anatomy of the cochlea. A Diagram of the “unrolled” cochlea. The dotted lines

show the effects of fluid displacement as a result of vibrations of the middle ear bones on the

membrane of the oval window. This displacement takes the form of a travelling wave which

causes physical vibrations along the basilar membrane. B Transverse section of the cochlea

duct. The three scalae and associated structures are shown.
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The displacement of the basilar membrane follows a travelling wave which moves from

the base to the apex of the cochlea (Sohmer, 2015). This is important as the position and

pattern of the wave depends on the frequency of the sound. In the case of a single

frequency tone, the vibrations of the basilar membrane are confined to a narrow region

of the cochlea. A functional consequence of the travelling wave is that as the frequency

of the stimulus increases, the position of the vibration maximum moves nearer the base

of the cochlea (Bekesy, 1960, Olson et al., 2012). High frequency tones cause the most

vibration near the base of the cochlea whist low frequency tones cause the most

vibration near the apex. This is the basis for a frequency specific response in the

cochlea. This tuning of the wave is further sharpened by active cochlear mechanics

which feed in additional mechanical energy to the travelling wave producing additional

stimulation of the cochlear hair cells (Neely and Kim, 1986). The exact processes that

underlie this are still unclear. It is understood however that these mechanical processes

are mediated, either directly or indirectly, by OHCs (De Boer, 1996).

In vitro recordings from IHCs reveal that displacement of the stereocilia modulates

current flow through the cell (Russell and Sellick, 1978). Displacement of the hair cell

bundles in the excitatory direction (in the direction of the largest stereocilia) produces

large currents and depolarisation of the cell membrane. Deflections of the IHC

stereocilia open ion channels on the tips of individual stereocilia. Once open, ions

(mainly K+) are driven into the hair cell by a combination of the highly positive

endocochlear potential and the negative intracellular potential of the IHC. This results in

rapid depolarisation of the IHC and Ca2+ channel mediated release of neurotransmitter

onto the terminals of the auditory nerve fibres (ANFs) (Fettiplace and Kim, 2014).

1.1.3 Structure and organisation of the spiral ganglion

The cell bodies (somata) of the SGNs reside in a spiral cavity within the modiolus of the

cochlea. This cavity, called Rosenthal’s canal, runs parallel to the coiled labyrinths of

the cochlea. From here, SGNs project neurites peripherally to the OC as well as

centrally into the auditory nerve (AN) (Figure 1.2 & 1.3). Two distinct populations of

neurons have been described in the SG: type I and type II. These neurons differ in their
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peripheral and central targets, as well as in their size, abundance, protein expression and

electrophysiology (Bernard and Spoendlin, 1973, Jagger and Housley, 2003, Liberman

and Kiang, 1984, Nadol, 1988a) underscoring their divergent function in the auditory

system. Type I SGNs constitute 90-95% of SGN. They are characterised by their large

bipolar structure, prominent organelles and the presence of lipid bodies (Rosenbluth,

1962, Spoendlin, 1981). In contrast, type II SGNs are smaller, bipolar or pseudo-

monopolar structures, highly filamentous and absent the usual organelles (Bernard and

Spoendlin, 1973, Spoendlin, 1971). The central and peripheral processes of type I

neurons are highly myelinated (Thomsen, 1966). Myelination of SGN somata is

observed in some mammalian species but seems to be largely absent in human type I

SGN. Type II SGNs are mostly unmyelinated (Ota and Kimura, 1980) (Figure 1.3).

Figure 1.3 Organisation of SGNs in the inner ear. SGN somata occupy a spiral cavity within

the modiolus of the cochlea. Their processes extend peripherally to the organ of Corti and

centrally to the brainstem. The SG houses two major subpopulations of SGNs: type I and type

II. Type I SGNs are large and highly myelinated. They make up the majority of the total SGNs

and provide afferent innervation to IHCs. Type II SGNs are smaller and less prevalent than type

I neurons and synapse onto the OHCs.

The peripheral target for type I SGNs are the IHCs of the OC. The peripheral processes

of the SGN, called radial fibres, travel through the bony spiral lamina and extend out

through a hole known as the habenula perforate, into the OC. The fibres, now
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demyelinated, synapse onto the bottom of IHCs (Figure 1.3) (Kiang et al., 1982). Here

they form a specialised type of synapse known as a ribbon synapse, named after the

ribbon-like presynaptic projections originally observed at the presynaptic terminal in the

retina (De Robertis and Franchi, 1956). These synapses are equipped with a presynaptic

electron-dense structure known as a “ribbon” to which synaptic vesicles are tethered.

These specialised synapses allow high temporal precision and sustained

neurotransmitter release in response to IHC depolarisation, consistent with their

function in coding acoustic information (Safieddine et al., 2012).

Each type I SGN makes a lone synapse onto an IHC. However individual IHCs are

innervated by multiple type I SGNs. This manifold innervation is thought to enable the

auditory system to encode a wider degree of auditory information (see also Physiology

of the Auditory nerve). Type II peripheral neurites form similar radial projections into

the OC but unlike type I SGN that turn upwards toward the IHCs, type II fibres cross

the tunnel of Corti and then turn toward the basal end of the cochlea (Figure 1.4). These

fibres can travel hundreds of micrometres, and give rise to multiple large boutons under

OHCs (Brown et al., 1988, Kiang et al., 1982). Individual fibres vary in their process

length and number of OHCs innervated. Ultrastructural studies of afferent type II-OHC

interactions also reveal the presence of reciprocal synapses, where a classical “afferent”

synapse, is paired with an “efferent” synapse within the same terminal bouton

(Simmons et al., 1998). Type II SGN reciprocal synapses have been observed across

mammalian species where they mediate bidirectional signalling with OHCs and have

been proposed to constitute a local neural network within OHCs, enabling them to

communicate with each other (Thiers et al., 2008). This is supported by findings that

synaptic vesicle release from OHCs offers only small depolarisation at type II terminals

(Weisz et al., 2009). Given the considerable distance between a SGN’s peripheral and

central target and the fact that type II neurons are unmyelinated, it seems unlikely type

II SGNs would code auditory information directly. Interestingly, type II SGNs receive

both axosomatic and dentritic synapses (Nadol, 1988a, Thiers et al., 2000). This has

raised the possibility of efferent control of type II neurons. These efferent fibres

originate from neurons whose somata reside in the medial and superior olivary

complexes. The exact function of this efferent signalling is still under investigation.
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The exact numbers of IHCs, OHCs and SGNs is highly species dependent. The number

of SGN varies considerably from ~50,000 in cats (Chen et al., 2010) to ~15,000 in rats

(Keithley and Feldman, 1979). Humans and other primates have ~30,000 (Nadol,

1988b). IHC and OHC numbers vary similarly; humans typically have ~3,500 IHCs and

~11,000 OHCs per cochlea (Bredberg, 1968), whilst rats contain ~3,500 OHCs and

~1,000 IHCs respectively (Keithley and Feldman, 1982). Finally, the density of type I

SGN innervation shows a similar species dependence. Initial work on cats estimated

that a single IHC is innervated by ~20 SGNs (Liberman, 1980, Spoendlin, 1979). This

seems to be higher than what is found in humans (9-11) (Dunn and Morest, 1975).

Figure 1.4 Type I and type II SGNs have different peripheral targets and innervation

patterns. Each IHC is the target of multiple type I SGNs. In cats, each IHC is innervated by

between 20-30 type I SGNs (Spoendlin 1979). OHCs, in contrast, are targeted by type II SGNs.

Unlike type I SGNs, type II SGNs can innervate multiple hair cell targets making both en

passant and terminal synapses with their targets.

The central axons of the type I and type II SGNs bundle together to form the AN and

exit the cochlea via the modiolus (Figure 1.2). Both neuron types ascend towards the

brainstem, enter the cochlear nucleus and subsequently bifurcate. This creates two

branches which project to the anteroventral cochlear nucleus (AVCN) and the dorsal
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cochlear nucleus (DCN) respectively (Nayagam et al., 2011). These branches, in turn,

can project multiple smaller collateral projections, creating both en passant and terminal

synapses with the cochlear nucleus (CN). The locations of the SGNs’ central targets are

also related to their frequency organisation. In general, low frequency fibres innervate

the CN ventrally, with progressively higher frequency neurons innervating

progressively more dorsally located regions (Berglund and Brown, 1994). Three

dimensional reconstructions of SGN innervations show the presence of spatially

separate tonotopic or “isofrequency sheets” (Nayagam et al., 2011). SGN branching in

the AVCN terminates at a large, axosomatic terminal, known as the endbulb of Held

(Ryugo and Fekete, 1982). This enormous neuronal junction contains up to 2000

different synaptic release sites in cats (Ryugo et al., 1996). Such a structure suggests

that electrical signalling is carried out at very high fidelity; ensuring neurotransmission

is tightly coupled to acoustic events. This has been suggested to be important in order

for the brain to utilise interaural time cues to localise sound in space (Smith et al.,

1993).

1.1.4 Physiology of the auditory nerve

The activity of single ANFs can be measured by placing an electrode close to the

individual fibres exiting the cochlea. Many fibres exhibit random spontaneous activity.

These spikes are generated at the initial segment of afferent SGN near the synaptic

bouton (Hossain et al., 2005). This region contains a high density of voltage-gated Na+

(Nav) channels that are activated in response to depolarising neurotransmitter

(glutamate) from the ribbon synapse. Recordings from SGN boutons reveal that

excitatory postsynaptic currents (EPSCs) and potentials (EPSPs) are regularly large

enough that almost every depolarising event is sufficient to trigger a spike (Glowatzki

and Fuchs, 2002, Rutherford et al., 2012). This maintains the precise timing needed to

code acoustic information by ensuring short spike latencies that vary little. The

spontaneously active fibres are exclusively made up of type 1 fibres which synapse onto

the cochlear IHCs. Type II fibres display no spontaneous or evoked activity in response

to sound (Robertson, 1984). Single tones presented to the ear during recordings affect

the timing and the rate of ANF spiking. This evoked response is not uniform across
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sound frequency however. A plot of ANF activity vs the frequency and sound level (dB)

gives a characteristic V-shaped plot known as a representative tuning curve. Each fibre

exhibits particular sensitivity to certain frequencies known as the fibre’s characteristic

frequency (CF). This CF is correlated largely with the position along the cochlea of the

IHC it contacts (Greenwood, 1996). For a recent review of the basic response properties

of ANFs see Heil and Peterson, 2015.

The spontaneous activities of ANFs exhibit a bimodal distribution of spontaneous

discharge rates (SRs). In cats, approximately one quarter of fibres fire at a rate of <20

spikes/sec. A second broader group has an average discharge rate of around 60-80

spikes/sec with some fibres showing as much as 120 spikes/sec (Evans, 1972,

Liberman, 1978). These SRs are correlated with the sound threshold for the fibre. On

this basis, Liberman and colleagues categorised three subpopulations of afferent fibres:

high SR fibres (>18 spikes/sec) with a low sound threshold, medium SR (0.5–18

spikes/sec) fibres with a moderate sound threshold and low SR fibres (<0.5 spikes/sec)

with a high sound threshold. These subpopulations of firing types were also observed in

rabbit (Borg et al., 1988), chinchilla (Relkin and Doucet, 1991), ferret (Sumner and

Palmer, 2012) and guinea pig (Furman et al., 2013). Structurally, differences have also

been reported; high SR fibres typically have a thicker fibre diameter and higher

mitochondrial number than low or medium SR fibres (Kiang et al., 1982, Liberman,

1980). This is consistent with the need for higher metabolism and rapid signal

conduction. The size and location of the afferent bouton at the IHC is also correlated

with SR and threshold (Kiang et al., 1982, Liberman and Kiang, 1984). Boutons from

fibres with low or medium SR synapse predominantly on the modiolar side of the IHCs,

have large post-synaptic terminals and smaller pre-synaptic ribbons. Conversely, fibres

with high SR and low thresholds terminate on the pillar side of the IHCs, have smaller

post-synaptic terminals and larger pre-synaptic ribbons (Figure 1.5). Interestingly,

acoustic overexposure in guinea pigs seems to cause selective loss of fibres with low SR

(Furman et al., 2013).

For any applied frequency, the average spike rate varies as a function of sound pressure

level (SPL). As SPL increases past threshold, ANF spiking increases from the basal SR.

This spike rate increases monotonically before saturating at high SPL. A plot of this
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activity vs SPL (dB) is known as the rate-level function or rate-intensity function

(Figure 1.5B) (Yates et al., 1990). The shape and position of this function varies with

the frequency of sound as well as the afferent type. Low threshold/high SR fibres at or

near the CF display a high sound sensitivity and steep rate-level function, sometimes

called a saturating response (Winter et al., 1990). This period of increase from the basal

spontaneous rate until saturation is termed the dynamic range (Figure 1.5B, grey area).

This reflects the range of sounds pressure level to which an individual fibre can respond

with changes in its spike rate. Figure 1.5B also shows the typical response of a moderate

threshold/medium SR fibre and high threshold/low SR fibre. High threshold/low SR

fibres exhibit a response to sound that is right-shifted compared to low threshold fibres.

High threshold/low SR fibres typically display shallower rate-intensity functions and a

wider dynamic range allowing them to track increases in sound well above the limit of

high SR fibres.

Figure 1.5 IHC afferents exibit heterogeneous physical and physiological properties. A

Animation of a typical IHC and its innervations. High SR fibres synapse onto the modiolar side

of the IHC and typically have a smaller bouton area, thicker peripheral neurites and larger

synaptic ribbons. Low SR fibres, in contrast, synapse onto the pillar side of the IHC and have

larger boutons, thinner peripheral neurites and smaller synaptic ribbons. B Model rate-intensity

plot showing the different afferent responces. High SR fibres typically respond to low sound

pressure level (SPL) and exhibit a steep rate-intensity relationship. This steep response that

reaches plateau rapidly (saturating response) has a narrow dynamic range (grey area). Medium

and low SR fibres exhibit lower sensitivity to sound and a shallower rate-intensity relationship

(wider dynamic range).
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The utility of such organisation is clear. Manifold innervation of IHCs from fibres with

different rate-level functions allows individual ANFs to code different degrees of sound

intensity from the same IHC. Low threshold/high SR fibres respond to low sound but

saturate at higher levels where high threshold/low SR fibres are only near the bottom of

their rate-intensity functions (Figure 1.5B). In this way the cochlea can sample a wide

range of sound intensities whilst still remaining sensitive to small changes in sound

level (Yates et al., 1990).

The various afferent types have distinct organisations of their central processes, further

vindicating their categorisation into different fibre types. Whilst the main branches of

high and low SR nerve fibres are remarkably similar in their layout and location in the

CN (see Structure and organisation of the Spiral Ganglion), high SR fibres show

considerable less axonal arborisations within the AVCN region compared to low SR

fibres (Fekete et al., 1984). Interestingly, some of this branching from low SR fibres

penetrates into the peripheral borders of the CN, and specifically to a structure called

the small cell cap where they synapse onto the soma and dendrites of small cells

(Ryugo, 2008). These small cell fibres have been shown to send axons to the medial

olivocochlear efferent system (Ye et al., 2000) and implicates low SR fibres in

mediating a high threshold feedback circuit to the inner ear.

Differences in fibre SRs have been ascribed to differences in the rate of

neurotransmitter release at the ribbon synapses (Frank et al., 2009). Differences in

ribbon size and density of voltage-gated Ca2+ channels (Cav), which form Ca2+

microdomains, likely contribute to the differential release of neurotransmitter from

synapses present on the same IHC (Frank et al., 2009). The membrane properties of the

different afferent fibres still remain to be elucidated however. For example, it is unclear

if there are differences between the intrinsic membrane properties of high and low SR

fibres. The principal limitation has been the inability to make whole cell recordings

from SGNs in vivo. SGNs have been studied in vitro however. Interestingly there seems

to be significant variability in the native ionic conductance of these cells suggesting that

some of the heterogeneity observed in vitro may be replicated in the membrane

properties of afferent SGNs (Davis and Crozier, 2015). In vitro studies have already

shown significant differences in the ionic conductances of type I and type II SGNs

(Jagger and Housley, 2003, Reid et al., 2004) underlining their functional diversity.
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Further research is needed on the membrane properties of Type I SGNs to determine if

it contribute to the observed heterogeneity in firing. A comprehensive understanding of

how the AN functions requires an appreciation of how membrane conductances shape

the generation and propagation of action potentials (APs) in the nerve.

1.2 Ion channels

Ion channels are macromolecular, protein pores in the membranes of living cells. They

contain a central narrow, water-filled tunnel which facilitates the diffusion of ions down

their electrochemical gradient. This central pore is often exclusive to a single ion type,

excluding other ions based on their size and charge. They differ from other ion transport

proteins, which involve active processes, by facilitating the passive diffusion of ions

across the membrane. The rate of movement through ion channels is also vastly greater

than in other ion transport proteins, often nearing diffusion-limited rates (107 ions

channel-1s-1) (Sansom et al., 2002).

As early as 1902, Julius Bernstein correctly proposed that excitable cells such as

neurons were selectively permeable to K+ ions at rest. This “membrane hypothesis”

explained how the highly polarised membrane potentials of muscles and nerves could

be established (De Palma and Pareti, 2011). The resting membrane potential is now

known to result from differences in the concentration of a few such ions: Na+, K+, Cl-

and Ca2+. The observed transient excitability which Bernstein referred to as “Membrane

breakdown” in these cells would also later be explained by the opening and closing, or

“gating” of specific sets of ion channels. This gating is controlled by many factors

including changes in membrane voltage and the presence or absence of various ligands.

As well as an electrical gradient, there is also an ion concentration gradient across the

cell membrane. Cells maintain a high concentration of K+ inside the cell relative to the

extracellular solutions. Conversely Na+ and Cl- are kept at relatively low concentrations.

Along with the effects of a selectively permeable membrane, the active transport of ions

by pumps and exchange proteins help establish this gradient (Kurachi and North, 2004).

Under these conditions, the opening of K+ selective channels leads to a rapid efflux of
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K+ ions from the cell. In this way K+ channels play a crucial role in the membranes of

excitable cells; setting the resting membrane potential, establishing the excitatory

threshold at which APs fire and determining the length the AP once fired (Johnston et

al., 2010).

1.2.1 Potassium channel classification

K+ selective channels represent the single largest and most varied family of ion

channels. They are encoded by more than 70 distinct genes within the mammalian

genome and include the voltage-gated (Kv), Calcium-activated (KCa), inward-rectifying

(Kir), and two-pore (K2P) K+ channel families (Figure 1.6) (Gutman et al., 2005). The

largest of these families is the Kv family which include some 40 distinct genes in

humans. K+ channels are principally classified by the architecture of the pore-forming

α-subunits which assemble in the membrane as tetrameric complexes. These ion 

channels are classified by the number of helical transmembrane (TM) domains which

make up the α-subunits; typically 2, 4 or 6 TM domains (Gutman et al., 2005).  

2-TM K+ channels comprise two TM helical domains connected by a short loop region,

known as the P-loop (Figure 1.7). In mammals 2-TM channels are encoded by 15

distinct genes and include the inward rectifying K+ channel family, Kir. The structure of

these channels has been largely determined by solving the KirBac1.1 crystal structure, a

bacterial homolog (Kuo et al., 2003). Several of these channels have important

physiological roles and mutations in their genes have been linked to a number of human

diseases. Kir1.1 channels are involved in recycling K+ in the lumen of the kidneys and

mutations in this gene can cause “Bartter syndrome”, characterised by low potassium

levels or hypokalaemia (Heitzmann and Warth, 2008). These channels lack a voltage

sensor region and therefore their activity is unaffected by changes in membrane voltage,

however some Kir channels are regulated by other signalling pathways such as the G-

protein-coupled Kir3 and the ATP-sensitive Kir6 (Kubo et al., 2005). For a full review

of the structure, functions, and roles of Kir channels, see Hibino et al., 2010.
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Figure 1.6 Phylogenetic tree of human K
+

channel genes. K
+

channels fall broadly into 3

classes based on the architecture of their pore-forming α-subunits: 2, 4 and 6/7 TM domain K
+

channels. K+ genes are detailed here using the ‘KCN’ nomenclature. For simplicity, KCN has

been omitted from the channel name i.e. KCNA1 is A1 (Adapted from Heitzmann 2008).

K+ channels from the 4-TM family include the leak channels TWIK, TREK and TASK.

The naming of these channels, the “two-pore domain” potassium (K2P) channels, arises

from the distinct topology of their channel subunits. Unlike the 2-TM and 6-TM K+

channels, 4-TM proteins contain two pore-forming loop domains in each subunit.
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Accordingly, K2P subunits dimerise as opposed to tetramerise to yield a functional

channel with four pore loop domains (reviewed in Enyedi and Czirjak, 2010).

Kv and KCa channels combined make up the 6/7-TM family of K+ selective channels. In

humans 40 different genes contribute to this family and their structure is characterised

by 6 TM domains, or 7 in the case of the “slo” family of genes (which include the large

conductance BK channel). 6/7-TM channels contain a voltage-sensing S4 segment,

conferring upon them sensitivity to local changes in membrane voltage. They also

contain two pore-forming TM segments connected by an extracellular loop region,

which can assemble into tetramers in a manner similar to the 2-TM channels (Figure

1.7).

Figure 1.7 Membrane topology of mammalian K
+
 channel α-subunits. A 2-TM channels

consist of 2 helical transmembrane segments (M1 and M2) connected by an extracellular P-loop

and are exemplified by the Kir channels. Four subunits combine to make up a functional

channel. B 4-TM channels consist of two 2-TM motifs connected in tandem within a single

subunit. As a result each subunit contains two P-loops and only two subunits are required to

form functional channels. The 4TM family include the leak channels TASK and TREK. C 6/7TM

channels make up the largest family of potassium channels and include in the Kv and KCa

channels. As with all K
+

channels the central pore region is formed from two 2 helical TM

segments (named S5 and S6) connected by the P-loop region. S4 is known as the voltage

sensor region due to its role in controlling channel gating through its response to changes in

surrounding membrane potential.
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1.2.2 Structure of the K+ channel

The basic structure of a K+ channel is a tetramer with each α-subunit contributing one 

pore-forming domain (Yellen, 2002). The general structure of the pore-forming domain

consists of two TM helices connected by a short loop region, known as the P-loop

(Figure 1.7). This canonical motif is a universal feature of all K+ channels regardless of

the total number of TM domains (Choe, 2002). The central P-loop region, sometimes

known as the H5 region, is composed of four conserved signature sequences (TVGYG)

and serves as an “ion selectivity filter”, a motif it shares with all K+ selective ion

channels (Heginbotham et al., 1994).

1.2.2.1 K+ conduction and ion selectivity

The defining feature of K+ channels is their ability to efficiently and selectively conduct

K+ ions across the membrane in the presence of multiple other small ions in the system.

Despite their similar charge and size K+ channels can effectively discriminate for K+

ions (ionic radius of 1.33 Å) against the smaller Na+ ions (ionic radius of 0.95 Å) whilst

conducting K+ ions at a rate close to the diffusion limit (Nimigean and Allen, 2011).

The exact mechanism of selectivity and conductivity remained speculative until the

solution of the crystal structure of KcsA, a bacterial K+ channel from Streptomyces

lividans (Doyle et al., 1998, Morais-Cabral et al., 2001, Zhou et al., 2001b). The

structure of KcsA revealed that the selectivity filter (SF) essentially consists of four K+

binding sites termed S1–S4 as well as a partly hydrated and partly coordinated site

termed S0 (Figure 1.8). As ions move through the channel they encounter different ionic

environments. From the intracellular side through to the central cavity, ions are

hydrated by a shell of water molecules. K+ ions are then dehydrated in the SF, and

subsequently rehydrated as they enter the extracellular mouth of the pore. Dehydration

of ions is an energetically expensive transition. This energy loss is compensated for by

the presence and orientation of carbonyl oxygens in the TVGYG filter (Figure 1.8B).

Each of these sites provides a cage of tightly packed electronegative oxygen atoms

arranged in a square antiprism geometry for the bound K+ ions, which is able to mimic

the hydration shell of the ion in the water-filled cavity of the channel (5–7 hydrating
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water molecules) (Neilson and Skipper, 1985). This stabilises the free cation and helps

overcome the strong energy barrier of dehydration.

Figure 1.8 Structure of the KcsA channel in complex with K
+

ions. A Structure of KcsA, with

the front and rear subunits removed for clarity. Selectivity filter: yellow; K
+

ions: green. M1 and

M2 represent the outer and inner helix respectively. B Magnified view showing the region boxed

in A. The K
+

ion in the cavity is shown hydrated by eight water molecules (red spheres). This

ionic environment is recapitulated in the channel’s filter region by amino acid backbone

carbonyls. The four ion binding sites are labeled 1–4 and the amino acid residues are shown by

letters (Adapted from Alam and Jiang, 2011).

If these K+ sites bind so tightly however, how does the channel promote the rapid

transfer of ions from one side of the selectivity pore to the other? The near diffusion-

limited rate of ion conductance would suggest a very weak binding of ions to the

channel (Kuang et al., 2015). It has been proposed that only two K+ ions occupy the SF

at any given time (Zhou and MacKinnon, 2004, Zhou and MacKinnon, 2003). K+ ions
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simultaneously occupy either the S2 and S4 sites or alternatively the S1 and S3 sites

(Sites 1-4, Figure 1.8B). The corresponding vacant binding sites are thought to be

occupied by two water molecules. The movement of K+ ions is facilitated by the change

of the 2,4-configuration of K+ ions to a 1,3-configuration. The energy cost of such a

transfer is predicted to be very low (Morais-Cabral et al., 2001). K+ movement through

the channel may be driven by the entry of new ions into the SF or by the repulsive

effects between occupying cations within SF (Zhou and MacKinnon, 2003).

Structural determination has also been used to rationalise the selectivity of the channel.

The identified K+ binding sites, with its cages of carbonyl oxygen ligands, offer a

thermodynamically favourable environment for the cycle of K+ ion dehydration,

transfer, and rehydration. The Na+ ions are thought to be too small to effectively

coordinate with the K+ binding sites, making Na+ binding to the channel

thermodynamically unfavourable (Bezanilla and Armstrong, 1972, Doyle et al., 1998,

Zhou et al., 2001b). This thermodynamically driven process is sometimes called the

“snug-fit hypothesis”. This hypothesis is supported by the inability to detect Na+ in the

SF even when vast excesses of Na+ are employed. Furthermore, observation that high

Na+ conditions were seen to “collapse” the KcsA channel into a non-conducting

conformation has led to the proposal that K+ ions are required to stabilise the SF of K+

channels in a conductive conformation (Valiyaveetil et al., 2006, Zhou et al., 2001b).

However this “snug-fit hypothesis” has been challenged by more recent findings that

that suggest KcsA can bind monovalent ions such as Li+ and Na+ (Thompson et al.,

2009). These results have led to a competing kinetics-based model of ion selectivity.

The evidence for kinetic vs thermodynamic based ion selectivity is comprehensively

discussed in (Nimigean and Allen, 2011).

1.2.2.2 The voltage sensor domain and gating in voltage-gated K+ channels

K+ channels usually occupy one of three conformational states: Activated, inactivated or

rest. Channels move, upon stimulation, from a non-conductive, resting state to a

conductive activated state. Activation is often temporary and followed by the adoption

of one or more non-conducting, inactivated states (Kuang et al., 2015). The opening and
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closing of K+ channels is called “gating” and the mechanisms that control it depend on

the K+ channel under investigation. Some K+ channels open in response to the binding

of specific small molecules, and are known as ligand-gated K+ channels. Other K+

channels open in response to changes in membrane voltage and these are termed

voltage-gated K+ (Kv) channels.

The first successfully cloned K+ channel was the voltage-gated Shaker channel from

Drosophila melanogaster (Papazian et al., 1987). Vertebrates express 12 Shaker-like

channels known as the Kv1 channel proteins, termed Kv1.1, Kv1.2, Kv1.3 etc. encoded

by 12 separate genes (KCNA) (Revest and Longstaff, 1998). Three more Kv channels,

Shab, Shaw, and Shal, were further identified in Drosophila melanogaster (Butler et al.,

1989) and are mirrored in vertebrates in the form of KCNB (Kv2), KCNC (Kv3) and

KCND (Kv4) respectively. In all, 40 genes in all are now known, and according to the

Allen Brain Map (http://brain-map.org/), at least 26 of these Kv subunits have been

detailed in the mammalian brain.

The Kv channel α-subunit is composed of sic TM helices containing five linker regions, 

and an intracellular C and N terminus. The last two TM helices (S5 and S6) are

positioned at the centre of the tetramer and make up the above-mentioned pore region,

with the S5 and S6 helices corresponding approximately to the outer and inner helices

in KcsA respectively (Figure 1.7). The first four TM helices (S1-S4) form the

characteristic voltage-sensing domain (VSD) at the periphery of the channel (Jiang et

al., 2003, Long et al., 2005). The VSD and pore domain (PD) can be viewed as

essentially separate units linked by an intracellular chain termed the “S4-S5 linker”.

Access to the water-filled cavity and SF of the Kv channel is controlled by a gate at the

intracellular side of the channel protein (Figure 1.8). This intracellular gate is comprised

of four S6 helices, one from each monomer, which protrude out into the intracellular

cavity and form a bundle which obstructs ion flow in the closed channel state (Doyle et

al., 1998).

The majority of Kv channels open in response to the depolarisation of its constitutive

membrane and close when the membrane is hyperpolarised (Swartz, 2008). The

function of the VSD therefore is to be responsive to changes in membrane voltage and

couple these changes with the mechanical gating of the central pore. Each VSD is
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composed of four to six basic residues separated by two hydrophobic residues which

create a surface of positive charge along the S4 helix (Blunck and Batulan, 2012). This

feature is what gives rise to the important voltage sensitivity of the channel.

Depolarisation of the membrane results in the S4 helix undergoing conformational

changes within the membrane which eventually results in pore opening. The S4 helix

must negotiate several closed states before attaining the activated state, and only upon

activation of all four S4 helices will the pore open (Zagotta et al., 1994a, Zagotta et al.,

1994b). This voltage sensor movement can be detected experimentally as “gating

currents” caused by the movement of the S4 electrostatic charges though an electrical

field. The exact mechanism of gating after that is somewhat more contentions. Various

models of channel reorientation including a “sliding helix” (Larsson et al., 1996),

“helical screw” (Ahern and Horn, 2005) and “paddle” (Jiang et al., 2003) model have all

been suggested. The current favoured model for the gating movement of the voltage

sensor through the membrane is the single consensus model (Blunck and Batulan, 2012,

Jensen et al., 2012, Yarov-Yarovoy et al., 2012). Briefly, in this model the positive

charges in the S4 helix are paired with corresponding negative charges from the S1-S3

regions. During activation these positive charges move from one negative charge to the

next resulting in the translocation of the S4 domain across the membrane. Subsequent

movements are thought to involve tilting of the S4 helix and rotation around its helical

axis as well as vertical and radial movement within the membrane. This results in

displacement of the S4-S5 linker and consequently pore opening (Blunck and Batulan,

2012). The opening of the pore itself is a result of an uncrossing of the S6 bundle at the

base of the Kv channel. In many Kv channels the S6 bundle contains a kink in its axis as

a result of a strongly conserved proline sequence (PxP or PxG). It is thought that the

movement of the C-terminus to PxP motif away from the central pore facilitates ion

entry to the water-filled cavity of the channel.

Opening of the pore itself however, often results in the subsequent inactivation of the

channel. Channels which enter an inactivated state cease conducting K+ ions freely and

cannot be re-stimulated by membrane depolarisation to open. Two primary forms of

inactivation have been described. Rapid, N-type inactivation is a feature of some Kv

channels and is a result of a flexible ball peptide bound to the N-terminus of the

channel. This N-terminus ball peptide is proposed to interact with the open K+ channel

through electrostatic interactions (Fan et al., 2012, Hoshi et al., 1990, Zhou et al.,
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2001b). N-type inactivation is necessarily limited to K+ subunits which contain the

required ball peptide. In contrast, nearly all K+ channels, both prokaryotic and

eukaryotic, undergo slower C-type inactivation. C-type inactivation results from

activation induced changes in the SF, as well as the elimination of water and K+ ions

from the channel protein (Cuello et al., 2010). Studies on the Shaker K+ channel

indicate C-type inactivation is dependent upon external K+ concentration as well as

mutations in the pore region of the channel (Lopez-Barneo et al., 1993). Studies on

bacterial KcsA suggest that the first inactivation step may be the pinching together of

SF backbone carbonyls (Cuello et al., 2010). This slower inactivation response most

likely plays a role in determining Kv channel function in the context of repetitive

electrical activity or in modulating physiological responses to the accumulation of

extracellular K+ (Yellen, 2002).

1.2.2.3 Ancillary subunits associated with Kv channels

In vivo, the tetrameric assembly of four α-subunits is often complexed with accessory 

subunits. These proteins serve a number of functions including modulating channel

kinetics and surface expression (reviewed in Pongs and Schwarz, 2010). Mutations in

these proteins are associated with a range of human diseases including hypertension,

epilepsy, and paralysis (Abbott et al., 2001, Brenner et al., 2000, Schulte et al., 2006).

Accessory Kv channel proteins exhibit varied structure and expression patterns

reflecting their diverse biological roles. Some accessory subunits are integral membrane

proteins (Orio et al., 2006) whilst other accessory proteins are cytosolic and bind to

cytoplasmic domains of Kv channel (Rettig et al., 1994). Auxiliary subunits include the

Kvβ subunit (Pongs et al., 1999), the BKβ-subunits (Orio et al., 2006) the Kv4 Channels 

auxiliary subunits, KChIP and DPPL (An et al., 2000) and the KCNE subunit (Barhanin

et al., 1996).

In mammals, the Kvβ subunits are encoded by three distinct genes: KCNAB1 (Kvβ1), 

KCNAB1 (Kvβ2) and KCNAB1 (Kvβ3) (Heinemann et al., 1995, Leicher et al., 1996, 

Schultz et al., 1996). The genes, KCNAB1 and KCNAB2 also give rise to splice variants

resulting in Kvβ1 and Kvβ2 subunits with varying NH2-terminal sequences (Kvβ1.1-
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1.3). Kvβ subunits associate into octameric complexes with Kv1 α-subunits in a 1:1 

ratio (Heinemann et al., 1996, Long et al., 2005, Rettig et al., 1994). The site of

interaction is formed by a short loop region in the Kv1α tetramerisation domain and 

complementary interacting sites on the Kvβ protein (Gulbis et al., 2000, Long et al., 

2005). This sequence is highly conserved across Kv1α subunits, providing an 

explanation for the specificity of Kvβ proteins for the Kv1α subunit family.

Kvβ subunits are members of the oxidoreductase superfamily of proteins (Gulbis et al., 

1999), a fact nicely exemplified by its complex with NADPH in the Kv1.2 crystal

structure (Long et al., 2005). This implicates Kvβ subunits in coupling the function of 

the channel to the redox state of the intracellular environment (Pongs and Schwarz,

2010). Kvβ subunits can also influence the gating properties and voltage sensitivity of 

the Kv channel, most notably by conferring rapid inactivation to otherwise non-

inactivating Kv channels (Rettig et al., 1994). Kvβ subunits also alter the 

pharmacological profile of the channel; for instance, by reducing the effects of the

intracellular acting anaesthetics, Bupivacaine and Quinidine (Gonzalez et al., 2002). A

final role has also been proposed for Kvβ proteins in determining surface expression 

and subunit localisation of Kv1 channels (see also Kv channel biogenesis). Kvβ has 

been observed to increase Kv1.2α surface expression and macroscopic currents in 

heterologous expression systems (Accili et al., 1997). Further, Kvβ has been shown to 

target Kv1α subunit to the axonal segments of cultured hippocampal neurons (Gu et al., 

2006). However this is still controversial and knockout studies of Kvβ2 knockout mice 

and Kvβ1/Kvβ2 double knockout mice describe unchanged expression patterns of 

Kv1.1 and Kv1.2 subunits at the surface of cerebellar neurons (Connor et al., 2005,

McCormack et al., 2002).

1.2.3.4 Kv channel biogenesis

Kv channels begin their life at the endoplasmic reticulum (ER). Specific amino acid

sequences in the nascent α-subunit peptide (signal peptide) target the peptide/ribosome 

complex to the ER membrane where synthesis of the peptide is completed.

Alternatively, nascent proteins can be targeted to other organelles such as mitochondria
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by the presence of specific mitochondrial presequences (Stojanovski et al., 2012). At the

ER, the ribosome/polypeptide binds to a translocon, an aqueous pore through which

polypeptides enters the ER lumen (Johnson and van Waes, 1999). Along with providing

access to the ER lumen, the translocon actively facilitates the incorporation of the TM

peptide segments into the ER membrane (Figure 1.9) (Crowley et al., 1994).

Translocation dictates the TM topology or “sidedness” of the growing channel and,

along with chaperone proteins and other topological determinants, ensures the correct

folding and orientation of the channel in the membrane (Deutsch, 2003). Even whilst

the formation of this tertiary structure is still taking place, tetramerisation of Kv

recognition domains is thought to initiate (Deutsch, 2003, Liu et al., 2001). The

coupling of primary, secondary, tertiary and quaternary structural assembly is enabled

by the functioning of multiple intracellular protein complexes in close proximity and in

concert along the length of the polypeptide chain (Deutsch, 2003).

Whilst this translation and incorporation into the ER is taking place, post translational

modification of the peptide occurs. Cleavage of the signal peptide is followed by

glycosylation and oxidation of the peptide (Deutsch, 2002). Kv channels are

glycosylated at important core residues and subsequently undergo further glycosylation

at the Golgi. The cell surface expression, localisation and biophysical function of the

channel are largely unaffected by these modifications (Deutsch, 2003, Liu et al., 2001,

Zhu et al., 2014). Interestingly, S-acylation has been shown to be important in the cell

surface expression of some Kv channels (Zhang et al., 2007).

The ER is also the site where Kv channels are coupled with their partner α-subunits and 

accessory subunits (Nagaya and Papazian, 1997). In fact, excepting some gap junction

proteins, the ER is the site of most ion channel oligomerisation (Das Sarma et al., 2002).

The choice of partner subunit will be determined by many factors, not least the presence

and availability of other subunits within the ER at the time of synthesis. The choice of

partner is not free either; only members of the same Kv1-Kv4 α-subunit family can co-

assemble to from functional tetrameric channels (Covarrubias et al., 1991). This subunit

specificity is primarily driven by recognition domains present on the channel proteins

themselves (Xu et al., 1995). In Kv channels this is a highly conserved hydrophilic

motif near the cytosolic N terminus of the protein. This is called the first tetramerisation

domain or “T1 domain” (Lee et al., 1994, Li et al., 1992). If this recognition domain is
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deleted, Kv subunits will still form stable, functional channels. However, T1-deleted Kv

subunits associate promiscuously with other Kv family proteins (Tu et al., 1996). The

T1 domain prevents homogenisation of Kv channels through random mixing,

persevering discrete repertoires of Kv channels (Deutsch, 2002). Although not

ultimately necessary for the association of Kv subunits the T1 domain is suggested to

police channel assembly by bringing T1-compatible subunits into close proximity,

consequently favouring their assembly kinetically over T1-incompatible monomers

(Zerangue et al., 2000). The specific mechanisms of oligomerisation likely depend on

the specific channel of under investigation, varying with the topology and folding

sequence of the protein.

Of similar interest are the associations which govern the assembly of Kv channel

subunits which contain the same T1 recognition domain. The organising principles

which underlie homo vs heteromeric assembly are of great importance to understand

how cells establish their electrophysiological properties. On one hand, an unbiased

association of T1-compatible monomers might predict a binomial distribution of subunit

containing channels with random stoichiometry (Panyi and Deutsch, 1996). Conversely,

preferential association of some subunits could lead to discrete population of

homomeric channels or non-random association of distinct heteromeric complexes with

discrete stoichiometry. How these subunits assemble at the ER or whether they do so

with any preference is still unclear. What is better understood is the expression of these

functional homo/heteromeric channels at the plasma membranes of biological tissues.

Experimental tools such as immunoprecipitation (Coleman et al., 1999), Kv α-subunit 

concatemerisation (Sokolov et al., 2007) and subunit specific toxins (Dodson et al.,

2002) allow the molecular identity and composition of the native electrophysiology to

be determined. However, as will be discussed, this ultimate distribution and expression

is not just determined by the assembly of subunits at the ER, but by ER retention,

trafficking and subcellular localisation.

After assembly of the Kv α-subunits and auxillary proteins into their channel 

complexes, Kv channels undergo so-called “quality control checkpoint” (Braakman and

Bulleid, 2011). This ensures channels with the correct configuration can leave the ER

membrane and is the major determinant of cell surface expression. The ability of

various Kv1 homo- and heteromeric complexes to reach the plasma membrane is not
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uniform. The subunit composition and stoichiometric as well as the presence or absence

of auxillary proteins have a significant effect on ER exportation of the channels. This

presumably leads to a much narrower range of possible channel types and subunit

combinations than are formed at the ER (Vacher et al., 2008).

Figure 1.9 Kv channel biogenesis. After gene transcription and export of mRNA from the

nucleus, translation of Kv channel peptides is initiated by cytosolic ribosomes. This

peptide/ribosome complex is targeted to the nucleus where the growing peptide is integrated

into the ER membrane by a translocon. Further peptide synthesis and folding occurs, forming

the characteristic 6-TM domain architecture. T1-domain mediated tetramerisation follows, along

with the association with auxiliary proteins. If it has the correct ER export signal, channel

complexes will be transported to the Golgi for distribution to the cell surface.

The Kv1.1 subunit contains a strong ER retention signal within the pore domain of the

channel (Manganas et al., 2001). Homomeric Kv1.1 channels show negligible surface

expression in a mammalian cell line. Furthermore, coexpression of the Kv1.1 subunit

with other Kv1 family members reduces the surface expression of the hybrid channel

(Manganas and Trimmer, 2000). Other channels such as Kv1.4, which do not share this

motif, readily reach the cell surface. Similar to Kv1.1, Kv7.3 subunits displays strong

ER retention and must form heteromeric complexes with other Kv7 members to reach

the cell surface (Schwake et al., 2000). Moreover, export of Kv7.2 from the ER has

shown a dependence on the Ca2+ sensitive protein calmodulin, suggesting that

intracellular Ca2+ levels may play a role in determining Kv7 surface expression. The
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Kv4 family of subunit are largely retained at the ER and require binding of accessory

protein in order to reach the cell surface. K+ channel interacting proteins (KChIPs)

stimulate significant cell surface expression of Kv4 α-subunits and can increase Kv4 

current density by up to 100-fold in expression studies (An et al., 2000).

Once a Kv channel is successfully exported from the ER, it is transported to the Golgi

apparatus. From here Kv channels are assigned to specific post-Golgi transport vesicles

and distributed to various neuronal compartments (Jensen et al., 2011). Precise

subcellular localisation of Kv channels is achieved by unique peptide signals encoded

within the Kv channel polypeptide. In neurons the most fundamental demarcation is

between proteins destined for the dendrites and those for the axon. In Kv1 channels

axonal localisation is determined by the N-terminal tetramerisation (T1) domain

(Campomanes et al., 2002, Gu et al., 2006). In other channels these signals are

conserved peptide sequences and motifs such as the PRC signal present at the C-

terminus of the Kv2 channels (Lim et al., 2000), which help localise the channel to the

soma and dendrites of the neuronal structure. Similar targeting sequences have been

identified for Kv4 channels (Rivera et al., 2003) and Kv7.2/Kv7.3 (Chung et al., 2006).

Finally, Kv channels are inserted at the cell surface through the fusion of Kv-containing

transport vesicles with the plasma membrane. This may also contribute to the

localisation of ion channels by limiting the insertion event to specific microdomains

(Jensen et al., 2011). However, very little is known about these ion channel fusion

events. Once inserted Kv channels are most likely tethered to large molecular scaffolds

or kept in place by molecular crowding (Jensen et al., 2011). Kv7 tethering in the axon

initial segment is most likely effected by their binding to ankyrin-G (Chung et al., 2006,

Pan et al., 2006, Rasmussen et al., 2007) whilst Kv1 channels are able to bind a number

of PDZ-domain scaffolding proteins by virtue of a PDZ binding motif at the

intracellular C-terminus (Ogawa et al., 2008).
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1.2.4 Kv channels in neuronal firing

Voltage-gated K+ channels play a major role in the function of excitable cells. They

help set the resting membrane potential of the cell and aid the rapid repolarisation of the

membrane once an AP has been triggered. Mutations in Kv channel genes result in

various forms of neuronal and cardiac dysfunction including epilepsy, episodic ataxia,

cardiac arrhythmias, and congenital deafness (Adelman et al., 1995, Imbrici et al., 2006,

Jentsch, 2000, Neyroud et al., 1997).

1.2.4.1 Determining the role of Kv channel function in neurons

The role of Kv channels in neurons has been primarily driven by the discoveries of the

biophysical properties of recombinant Kv channels in heterologous expression systems.

However these studies provide only a limited understanding of the role of the Kv

channel complexes in functional nerves. Assortments of molecular and pharmacological

tools are now available to dissect out the role of different Kv channel subtypes in situ.

Channel specific toxins can be employed to block specific Kv channel subtypes. This

allows the relative contribution of various Kv channel subtypes to be assessed in native

tissue. Knockdown or knockout of Kv genes has also been used extensively to try and

assess the role of Kv channels. However interpretation of these experiments is

notoriously challenging. The tetrameric nature of Kv channels and their ability to

heteromerise means that knockout of specific Kv genes may not significantly alter the

level of functional ion channel available but rather alter the channel composition. This

can lead to contradictory or unexpected changes in ion channel biophysics and

expression. A good example of this is the finding that knocking out low-voltage-

activated (LVA) Kv channel, Kv1.2, paradoxically results in enlarged neuronal LVA

currents (Brew et al., 2007). This is thought to arise due to the increased contribution of

the more hyperpolarised Kv1.1 subunit in the knockout animal, adjusting the

biophysical properties of the channel accordingly, rather than altering Kv1 channel

density. As discussed above, altering subunit composition and stoichiometry through

gene knockout or knockdown could drastically change the export and trafficking of

channels to the cell surface. Results from knockout/knockdown studies should be
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interpreted with caution and validated with other available tools where possible.

Transgenic and “Knockin” mice have offered a somewhat more subtle approach to

examining Kv channel function; the introduction of specific genetic aberrations into the

Kv channel subunit in vivo allows the examination of non-functional channel mutants

without the confounding effects introduced by simple genetic ablation i.e. differences in

channel composition and stoichiometry or differences in membrane trafficking (Doyle

et al., 2012).

Another difficulty in analysing Kv channel contribution to neuronal electrophysiology

is the membrane architecture of the cell. High quality voltage-clamp data can be

difficult to obtain for large or arborous neurons which make space-clamp imperfect.

Furthermore, neurons often display large magnitudes of outward current resulting in

large voltage-clamp errors, even with series resistance compensation (Williams and

Mitchell, 2008).

1.2.4.1 Kv channels shape the action potential in of a nerve

Neurons use the distinct biophysical and gating properties of Kv channel subfamilies to

regulate excitability and determine the shape of APs. Some channels, such as Kv1, Kv4

and Kv7 are sensitive to changes in voltage close to the neuron’s resting membrane

potential and respond to small depolarisations of the membrane to prevent AP firing, i.e.

during an EPSP (Figure 1.10) (Coetzee et al., 1999, Johnston et al., 2010). LVA Kv

channels also help set the resting membrane potential of the cell by opening at or near

the RMP of the cell. Effective pharmacological blockers now exist and the effect of

blocking these Kv subfamilies can be assessed in neuronal tissues. In some cases, where

toxins are available, it is even possible to assess the relative contributions of a single

channel subtype to the firing of a neuron (Dodson et al., 2002).

In contrast, high-voltage-activated (HVA) channels such as the Kv2 and Kv3 family of

channel proteins only open in response to significant depolarisations of the membrane,

like those seen during AP firing (Figure 1.10). In combination with the rapid

inactivation of Nav channels, HVA Kv channels act to repolarise the neuronal



46

membrane (Johnston et al., 2010). TEA is a cationic blocker of all Kv channels, but at

low concentrations, TEA can act as an effective blocker of the HVA Kv3 channels. In

rapidly firing neurons, inhibition of Kv3 current increases the length of the AP and

reduces the frequency of firing (Winlove and Roberts, 2011).

Figure 1.10 The different biophysical characteristics of Kv channels underlie their utility

in excitable cells. A Under voltage clamp it is possible to examine biophysical properties of Kv

channels in heterologous expression systems. Some channels, such as Kv1, 4 and 7 are

activated by small membrane depolarisations whilst others (Kv2 and 3) require much higher

depolarisations (such as those encountered during an AP) to open. B The different biophysical

properties of Kv channels means they contribute differently to the initiation and propagation of

an AP. The temporal activities of the different Kv channel families are roughly demonstrated

here by the coloured bars/arrows: Low-threshold voltage-activated (LVA) channels, as

exemplified by the Kv1 channels (red) open on depolarisation from typical resting potentials,

therefore influencing the threshold for AP firing. High Voltage Activated (HVA) channels,

exemplified here by the Kv3 family of channels, need further depolarisation, and hence activate

during an AP to aid repolarisation. Kv2 channels (blue) act even later in the waveform due to

their slower kinetics. It is the action of different populations of Kv channels working in concert

that give rise to the characteristic AP waveform, as well as the length of the AP duration and

threshold at which it fires (adapted from Johnston et al., 2010).

The kinetics of the channel is also important; slowly activating Kv channels do not play

a significant role in shaping the immediate AP due to their slower response properties.
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Kv channels with slower response kinetics often serve other functions such as setting

the resting membrane potential of the neuron (Kv7) or influencing the firing properties

of neurons in response to repeated electrical activity (Kv2; see Figure 1.10B). Some Kv

channels such as Kv4 exhibit “A-type” behaviour. They display a significant initial

conductance upon depolarisation which inactivates as depolarisation persists, requiring

hyperpolarisation before becoming available for conduction again (Maffie and Rudy,

2008).

Finally, the targeting of Kv channels to specific subcellular locations is a key

determinant for their biological function. Kv1 family subunits are localised to

multiplicity of microdomains in both the central nervous system (CNS) and the

peripheral nervous system (PNS; reviewed in Lai and Jan, 2006) where they likely

influence different aspects of neuronal activity. Kv1 expression at the presynaptic

terminals of CNS neurons helps regulate neurotransmitter release (Lambe and

Aghajanian, 2001) whilst Kv channels located to axonal and dendritic compartments

influence AP propagation along the neuron (Trimmer and Rhodes, 2004). Kv1 currents

at the post synaptic side of the calyx of Held determine the threshold of depolarisation

required for AP generation (Ishikawa et al., 2003) ensuring only large EPSCs result in

APs. The biophysical properties of Kv channels and their distinct spatial localisation

combine to create a neuron’s unique response properties.

1.2.5 Lipid modulation of Kv channels

Lipids are fundamental biomolecules for life. Thousands of different lipids have now

been identified in mammalian cells with eukaryotes dedicating ~5% of all genes to their

synthesis (Fahy et al., 2009). Lipids serve three primary functions in mammals: energy

storage, as a basis for the plasma membranes and as a first or secondary messenger

system in signal transduction (for review see van Meer et al., 2008). Polar lipids, which

contain both hydrophilic and hydrophobic elements, spontaneously self-assemble into

micelles and bilayers in aqueous environments providing the physical basic for the

formation of plasma membranes. The six TM segments of the Kv channel structure

traverse this lipid bilayer in functional channels and the gating of these channels
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involves the movement of TM domains through this hydrophobic environment. This

fact makes Kv channels (and ion channels in general) ideal candidates for lipid

modulation.

The major lipids in eukaryotic membranes are glycerophospholipids which include

phosphatidyl, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid and

phosphatidylinositol (PI). Phosphatidylcholine accounts for more than 50% of

membrane phospholipids in most eukaryotes (van Meer et al., 2008). Other membrane

lipids include sterols, sphingolipids, glycolipids and free fatty acids. Many models have

been proposed to explain lipid regulation of membrane ion channels. The direct

interaction of negatively charged lipids with K+ channels may facilitate gating and

prevent C-type inactivation (Valiyaveetil et al., 2002), raising the possibility of

conserved lipid interaction sites within K+ channels. Furthermore lipids may be

necessary for electromechanical gating. Kv7 channels have been shown to require the

presence of anionic lipid for VSD coupling to the pore (Zaydman et al., 2013). But

these broad explanations most likely do not account for the molecule specific effects

observed between lipids.

1.2.5.1 Phosphoinositides

Phosphoinositides (PIs) are a family of closely related phospholipid molecules which

play a number of keys roles across a range of biological processes. They are involved in

the control of intracellular vesicle trafficking, lipid transport, cytoskeleton organisation,

ion channel regulation and are also substrates for both receptor-stimulated

phospholipase C (PLC) signalling cascades as well as phosphoinositide 3-kinase (PI3K)

signalling pathways (Balla, 2013). PIs are amphiphilic, ensuring they localise to the

intracellular leaflet of the plasma membranes of cells. Their chemical structure

comprises a glycerol backbone, with two non-polar fatty acids which embed in the

hydrophobic cell membrane, and a phosphate group linking this backbone to an inositol

head group. The inositol head group may also be phosphorylated at the 3-, 4-, or 5-

position on the inositol ring. There are seven PIs excluding the parent molecule

phosphatidylinositol, PI (Figure 1.11). The seven family members; PI(4)P; PI(4,5)P2;
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PI(3,4,5)P3; PI(3,4)P2; PI(3,5)P2; PI(3)P and PI(5)P differ in their relative abundance

and location within cells. The different PIPs are synthesised and broken down by

specific phosphoinositide kinases and phosphatases that catalyse phosphorylation and

dephosphorylation at different positions on the inositol head group (Figure 1.11)

(Lemmon, 2008).

Figure 1.11 Phosphoinositides and their metabolism. The basic phosphoinositide (PI)

molecule is comprised of a highly polar inositol 1-phosphate group and a hydrophobic

diacylglycerol moiety (Acyl groups are shown for phosphatidylinositol (PI) but were otherwise

cropped out for clarity). Shown are the major pathways and important enzymes for the

synthesis and breakdown of the phosphoinositide family members. P, phosphate; PI3K, PI4K,

and PI5K, phosphoinositide 3-kinase, phosphoinositide 4-kinase, and phosphoinositide 5-

kinase, respectively; MTM, myotubularin; PI(3)P, phosphatidylinositol 3-phosphate; PI(3,5)P2,

phosphatidylinositol 3,5-bisphosphate; PI(5)P, phosphatidylinositol 5-phosphate; PI(4,5)P2,

phosphatidylinositol 4,5-bisphosphate; PIP2 4 ptase, phosphatidylinositol 4,5-bisphosphate-4-

phospatase; PTEN, phosphatase and tensin homolog; PIKfyve, FYVE finger-containing

phosphoinositide kinase; SHIP, Src homology 2 containing inositol 5-phosphatase; PI(3,4,5)P3,

phosphatidylinositol 3,4,5-trisphosphate; PI(4)P, phosphatidylinositol 4-phosphate; PI(3,4)P2,

phosphatidylinositol 3,4-bisphosphate.
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PI(4,5)P2, commonly known as “PIP2” is the most abundant of the phosphoinositides

outside of the parent PI, and is arguably the best studied of the PIPs in mammalian

tissues (Lemmon, 2008). PIP2 interacts with a large variety of cellular proteins and

processes including membrane bound ion channels and receptors, GTPases and actin

regulatory proteins (McLaughlin et al., 2002), as well as nuclear proteins (Barlow et al.,

2010). PIP2 is also an important regulator of ionic membrane properties (Hilgemann and

Ball, 1996, Zhang et al., 1999, Suh and Hille, 2002). PIP2 directly binds and enhances

the activity many K+ channels; its presence is obligatory for the functioning of many of

these channels (for a full review see Suh and Hille, 2008). PIP2 can also regulate ion

channel activity through downstream effector pathways. Similarly, mutations in ion

channel proteins which directly affect the affinity of the channel for PIP2 has been

linked to important channelopathies and diseases (Logothetis et al., 2010).

1.2.5.2 Free fatty acids

Fatty acids are ubiquitous within the plasma membrane. However the vast majority of

the fatty acid motif is bound up as fatty acid tails, esterified to glycerol. In this form

they make up the carbon backbone of membrane glycerophospholipids (Figure 1.12).

Here they play a structural role making up the hydrophobic interior of the lipid bilayer.

The influence of fatty acids on membrane proteins in this form is limited; however the

phospholipid fatty acid length and the degree of saturation can impact physical

properties of membranes such as the lateral mobility and fluidity of lipids and proteins

(Lee, 2004).

Free fatty acids (FFAs) only exist as a fraction of the total fatty acid motif in the

membrane but temporal and local increases in the FFA concentration is possible by

cleavage from membrane glycerophospholipids. These temporary and inducible

increases in FFA concentration make it an ideal signalling molecule. Activation of

specific G-protein coupled receptors results in the enzyme-mediated hydrolysis of

membrane phospholipids, which liberates non-esterified fatty acids. Phospholipase A2

(PLA2) generated FFAs in a single step by hydrolysis of an acylester bond in

phospholipids, yielding a FFA (mostly arachidonic acid and docosahexaenoic acid) and
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a lysophospholipid (Figure 1.12) (Farooqui and Horrocks, 2004). FFA can also be

produced in a two-step process by the actions of Phospholipase C and phospholipase D

(PLD) producing diacylglycerol or monoacylglycerol respectively. The subsequent

actions of diacylglycerol- or monoacylglycerol-lipase yield further FFAs.

Figure 1.12 Receptor-mediated release of fatty acids from membrane phospholipids. Fatty

acids can be formed in a single enzymatic step by the action of phospholipase A2 on membrane

phospholipids. In this example free arachidonic acid (AA) is liberated from one of

phosphatidylcholine, phosphatidylserine or phosphatidylethanolamine giving the free fatty acid

and a lysophospholipid (Lyso-PAF). AA can, in turn, act as a substrate for other signalling

pathways. AA can be used to synthesis the important inflammatory mediator prostaglandin H2

and leukotriene through the actions of cyclooxygenases (COX) and lipooxygenases (LOX)

respectively. Alternately, AA can signal directly through a variety of methods

Once cleaved, FFAs diffuse through the membrane where they may enter into further

metabolic pathways as substrates for the production of diglycerides, ceramides,

prostaglandins, leukotrienes and thromboxanes (Figure 1.12) (Tassoni et al., 2008).

Unlike other membrane lipids, fatty acids have intrinsically high dissociation rates from

the membrane and can diffuse into aqueous environments (Balsinde et al., 2002).

Therefore in addition to providing the basis for other bioactive molecules, some FFAs

may function directly as second messengers. Free arachidonic acid has been shown to

have direct modulatory effects on a range of cellular proteins, including protein kinase
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C (Khan et al., 1995), G proteins (Abramson et al., 1991) and adenylate cyclase

(Murphy, 1985). Furthermore, FFAs can directly regulate cellular events such as

exocytosis by their direct interaction with the cellular machinery involved (Darios et al.,

2007). Finally, FFAs can also diffuse into the extracellular space. One suggested

implication of this is that FFAs may act as retrograde signalling molecules, modulating

the presynaptic terminals of brain neurons and playing a role in synaptic plasticity

(Bazan, 2005). Extracellular FFA signalling also regulates energy metabolism through

their action on free fatty acid receptors (Hara et al., 2014); inflammation through their

effects on Toll-like receptors (Glass and Olefsky, 2012); and gene expression through

their activation of peroxisome proliferator-activated receptors, toll-like receptors and G

protein-coupled receptors (Georgiadi and Kersten, 2012).
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1.3 Aims and objectives

There were two major aims of this study. The first was to examine the firing features of

SGNs from post-hearing onset animals. Systematic investigation of SGNs’ firing

features and membrane conductances have up to now been primarily carried out in pre-

hearing animals. Given the significant maturation of the cochlea around the onset of

hearing and after, characterisation of neurons from hearing animals is of great

importance. The second aim was to investigate whether the firing features of

functionally mature SGNs could be modulated. This study focused, in particular, on the

effect of membrane lipids on SGN activity. Membrane lipids are ideally situated for

modulating SGNs’ firing behaviour and membrane conductances and this study aimed

to examine the physiological effects of adjusting the levels of these membrane lipids.

Individual objectives working towards these aims were also pursued. The most

important task was to develop a robust and stable tissue preparation that allowed whole

cell patch clamp recordings to be obtained from the soma of the SGNs. Secondly, in the

absence of genetic tools, pharmacological methods to adjust the levels of membrane

bound PIP2 were investigated. These involved complimentary experimental approaches,

combining traditional strategies of PIP2 reduction, such as inhibiting phosphoinositide

synthesis, with recently developed strategies for PIP2 sequestration and capture.

Another important objective was to develop a heterologous expression system. This

could be employed to correlate the effects of PIP2 modulation on specific SGNs

conductances with similar effects observed on the expressed Kv subunits in isolation.

This would help provide the molecular basis for any observed modulatory effects.

Furthermore, once this molecular basis had been established, a heterologous expression

system would provide an ideal tool to screen other native and synthetic lipids for their

potential modulatory effects in SGNs

Understanding the molecular basis of SGN firing could provide a better understanding

of the heterogeneous firing patterns observed in ANFs in vivo. An analysis of the lipid

modulation of SGN activity could provide two important outcomes. First, it could shed

light on potential lipid-mediated regulatory pathways available to SGNs. Secondly, it

could identify new targets for pharmacological intervention and provide a novel

mechanism of adjusting the sensitivity and output of the auditory nerve.
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Chapter 2

Materials and Methods
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2.1 Materials

2.1.1 Reagents and solutions

All reagents and solutions were obtained from Sigma Aldrich unless otherwise stated

2.1.1.1 Neuronal cell culture solutions

Neuronal cell culture medium was made up of Dulbecco’s Modified Eagle’s Medium

(DMEM) supplemented with foetal calf serum (FCS; 10%), 10 mM HEPES and 1%

penicillin/streptomycin (Invitrogen). Brain-derived neurotrophic factor (BDNF; Insight

Biotechnology LTD) was made up as a stock solution in DMEM to 500 ng/ml before

being aliquoted and stored at -20⁰C until use. Trypsin was made up as a solution of

0.25% w/v in PBS, aliquoted, frozen and stored until use. A stock solution of poly-L-

lysine hydrobromide, (Molecular weight >70,000; M P Biomedicals UK) was made up

as 1 mg/ml in cell culture H20 (ccH20), aliquoted and frozen until use. A working

concentration of 50 µg/ml (1:20 dilution) poly-L-lysine in ccH20 was made up on the

day of use. 11 mm diameter glass coverslips (VWR International LTD) were incubated

in the 50 µg/ml poly-L-lysine for 1 hr in 35 mm dishes (Corning) and washed three

times with 2 ml of ccH20 before use.

2.1.1.2 HEK293 cell culture solutions

HEK293 cell culture medium was composed of DMEM:F12-HAM 1:1 supplemented

with 10% FCS, 2 mM L-glutamine, and penicillin/streptomycin (Invitrogen).

Trypsin/EDTA (1x) was obtained as a solution (Sigma) and used directly. HEK293

cryopreservation medium was composed of DMEM F12: HAM 1:1 supplemented with

20% FCS, 2 mM L-glutamine and 10% dimethyl sulfoxide (DMSO).
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2.1.1.3 Electrophysiology and pharmacology

The extracellular solution (ECS) was made up of (mM): NaCl, 145; KCl, 4; MgCl2, 1;

CaCl2, 1.3; HEPES, 10; glucose, 5; pH adjusted to 7.3 with aq. NaOH. The intracellular

pipette solution (ICS) was made up of (mM): K-gluconate, 130; KCl, 5; MgATP, 2;

Na2ATP, 2; Na3GTP, 0.3; Na2Phosphocreatine, 10; HEPES, 5; EGTA, 1; pH adjusted

to 7.2 using aq. KOH.

Drug stocks: With the exception of wortmannin and LY294002, which were added to

the neuronal culture medium prior to patch-clamp recording, and diC8PIP2, which was

added to the intracellular pipette solution, all drugs were dissolved in AP and added

through the bath perfusion system. Dendrotoxin-K (DTX-K) and tityustoxin-Kα (TsTx) 

were obtained from Alomone Labs and made up as a stock solution in ddH2O at 50 µM

and 100 µM, respectively. Toxins were stored at -20°C before dilution in ECS (100 nM)

for patch-clamp recordings. Wortmannin (Santa Cruz Biotechnology) was prepared as a

1 mM stock in ddH2O and stored at -20⁰C before dilution to 100 nM or 10 µM in

neuronal cell culture medium. LY294002 was prepared as 10 mM stock in ddH2O and

stored at -20°C before added to neuronal cell culture medium (5 µM). Oxotremorine-M

(Oxo-M) and m-3M3FBS were prepared as 10 mM stocks in ddH20and stored at -20⁰C

before dilution to the appropriate concentration in ECS. XE991 (Tocris Bioscience) was

prepared as 1 mM stock in ddH2O stored at -20⁰C and dilution to the appropriate

concentration in ECS on the day of use. PIP2 binding peptides and their analogues:

PIP2-PP, Fluoro-PP and PolyK-PP (generous gifts from Dr Jon Robbins, Kings College

London), were obtained as a 10 mM stock solution, aliquoted into single use aliquots

and stored at -20⁰C until use. The Non-Pal PIP2 Peptide and Neutral-PP analogues were

obtained from Biomatik and made up as a stock solution in ddH2O at a concentration of

10 mM before being aliquoted and stored at -20⁰C until use. Commercial fatty acids,

obtained from Sigma Aldrich, were made up as a stock solution in DMSO at a

concentration of 100 mM before being aliquoted, frozen and stored until use. Fatty acids

were then diluted in bath solution as required. Aromatic fatty acids were synthesised as

described below, made up as a stock solution in DMSO at a concentration of 100 mM

before being aliquoted, frozen and stored until use.
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2.1.2 Animals

The present study was carried out on Sprague Dawley rats (P2–P12) and C57BL6 mice

(P4-P21) of either sex, reared at University College London. All procedures were

carried out in accordance with the United Kingdom Animals (Scientific Procedures) Act

of 1986, and were approved by the UCL Animal Ethics Committee. Animals were

killed by inhalation of CO2 and cervical dislocation.

2.2 Methods

2.2.1 Immunofluorescence of cochlear tissue

P2–P12 rats were killed by inhalation of CO2. The rats were decapitated and the

cochleae were exposed by hemisection of the cranium in ice cold artificial perilymph.

They were fixed in a solution of 4% paraformaldehyde in PBS for 1-2 hrs at room

temperature or left overnight at 4°C. P2 cochleae could be sliced directly but P6 and

P12 were rat cochleae were decalcified in an EDTA solution for 24 hrs prior to being

sliced on a vibrating blade microtome (Vibratome Series 1000 Plus, Intracel Ltd).

Block and permeabilisation of slices was achieved by incubation with 10% goat serum

and 0.1% Triton in PBS for 40 mins at room temperature. The slices were labelled using

primary antibodies: rabbit polyclonal anti-Kv1.1 antibodies and mouse monoclonal anti-

acetylated tubulin antibodies obtained from Alomone and Sigma respectively. These

were used at a 1:400 and a 1:1000 dilution respectively, in 0.1 M lysine and 0.1% Triton

overnight at 4°C. Primary antibody labelling was visualised using Alexa Fluor-coupled

secondary antibodies. Following washes in PBS, primary antibody labelled slices were

incubated in secondary antibodies: goat-anti rabbit Alexa488 (Invitrogen) and goat anti-

mouse Alexa555 (Invitrogen) antibodies were used to visualise the primary antibodies

and phalloidin-Alexa633 was used to visualise actin. This was carried out in 0.1 M

lysine and 0.1% Triton in PBS for 1 hr at room temperature. The slices were then

washed 3 times in PBS before being mounted on glass slides with a ground cavity and

overlaid with a coverslip in Vectashield with DAPI (Vector Labs, Peterborough, UK).

Imaging was carried out using a laser scanning confocal microscope (LSM510; Carl
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Zeiss MicroImaging). Z-stack confocal images were acquired at 2-3 µm intervals and 5-

6 images were acquired per stack. Image processing and analysis were performed on

images derived from each Z-stack series using Zeiss LSM Image Browser and ImageJ.

Images were imported into Inkscape (Inkscape.org, Version 0.48) for optimal contrast

and brightness. All images were oriented with the modiolus at the left hand side for

comparison.

2.2.2 HEK293 cell handling and transfection

2.2.2.1 HEK293 cell maintenance

HEK293 cells, obtained from Sigma Aldrich, were cultured in a 25 cm2 flask containing

5 ml of HEK293 cell culture medium. Cells were maintained in a humidified incubator

at 37⁰C and 5% CO2. When cells reached ~90% confluence they were passaged into a

new 25 cm2 flask. To passage, cells were washed once with PBS and then incubated

with ~0.5 ml trypsin/EDTA for 1-5 mins until cells fully detached from the flask. The

enzymatic reaction was quenched by addition of 4 ml HEK293 cell culture medium and

the cells were further dissociated by gentle trituration through a pipette. 0.5 ml of the re-

suspended cells was added to 4.5 ml of fresh HEK293 cell culture medium in a new flask.

2.2.2.1 Transient transfection of HEK293 cells

Rat cDNAs of Kv1.1 and Kv1.2 (a generous gift from Dr Martin Stocker, UCL), were

cloned into pcDNA3 (Invitrogen) by Dr. Katie Smith. Accession numbers: Kv1.1

(Kcna1), NM_173095; Kv1.2 (Kcna2), NM_012970. 1-2 days before transfection, cells

were plated in 35 mm dishes to obtain a density of ~80%. A total of 2.5 µg of the DNA

(see Table 1) was pre-incubated with the transfection reagent, Lipofectamine 2000

(Invitrogen) for 15 mins. The 2.5 µg DNA was made up to 1.2 µg of pcDNA3

containing either Kv1.1 (pcDNA-Kv1.1) or Kv1.2 (pcDNA-Kv1.2); 1.2 µg of the empty

pcDNA3 or the alternate pcDNA-Kv1.1/ pcDNA-Kv1.2 and finally 0.14 µg of plasmid
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DNA containing EGFP to visualise transfected cells. Table 1 show the possible

permutations.

Table 2.1 Transient transfection of HEK293 cells with Kv1 DNA

Kv channel expression Kv1.1 DNA (µg) Kv1.2 DNA (µg) pcDNA3 (µg) EGFP (µg)

Homomeric Kv1.1 1.2 0 1.2 0.14

Homomeric Kv1.2 0 1.2 1.2 0.14

Heteromeric Kv1.1/1.2 1.2 1.2 0 0.14

After 4 hrs, the Opti-MEM media and transfection complex were replaced with normal

growth medium. After 18 hrs, cells were trypsinised and re-plated onto 11 mm glass

coverslips at low density. After a short recovery (~3 hrs), coverslips with transferred to

a recording chamber for patch-clamp recordings.

2.2.2.2 Stable transfection of HEK293 cells with Kv1.2 DNA

In order to create a stable Kv1.2 expressing cell line, transiently transfected HEK293

cells were exposed to positive selection by the antibiotic G418 (Geneticin). Positive

selection was possible because of the neomycin selection marker present in pcDNA3. In

order to determine the optimal selection dose, G418 was titrated against untransfected

HEK293 cells. HEK293 cells were plated in a 24 well plate and exposed to

concentrations of G418 between 50 and 1000 mg/ml which exhibited effective

cytotoxicity at concentrations above 500 mg/ml.

HEK293 cells transiently transfected with pcDNA-Kv1.2 as described above (but

without empty pcDNA3 or EGFP) were trypsinised and re-plated into a 6 well plate

(Corning), with one well containing untransfected HEK293 cells (Control). Cells were

incubated in standard HEK293 cell culture medium supplemented with 500 mg/ml

G418 until all cells in control well had died (~5 days) and visible colonies appeared in

the transfected wells (~1-2 weeks). Small colonies (<100 cells) were isolated,

trypsinised and re-plated into 24 well plates at a density of ~1-2 cells per well and
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maintained in standard HEK293 cell culture medium. 24 well plates were monitored

closely for the appearance of monoclonal colonies. Selected colonies were trypsinised

and seeded to a 35 mm dish, where their electrophysiological properties were examined

for Kv1.2 currents. Once the presence of Kv1.2 currents was confirmed, cells were

seeded to a 25 cm2 flask where they were maintained as above.

2.2.2.3 Cryopreservation of HEK cells

For freezing, cells were grown to near confluency in a 75 cm2 flask. Cells were washed

once with PBS and then incubated with ~1 ml trypsin/EDTA for 1-5 mins until cells

fully detached from the flask. Cells were subsequently resuspended in 5 ml of HEK293

cell culture medium. To quantity the approximate total number of cells, 10 µl of the cell

suspensions was removed, diluted 1/10 and enumerated in a counting chamber. Cells

were centrifuged at 1000 rpm for 3 min and the pellet was resuspended in HEK293

cryopreservation medium to a concentration of 3x106 cells/ml. Aliquots of 3 million

cells were apportioned to individual cryo-vials and placed into a Nalgene cryo container

containing propan-2-ol. Cryo-vials and propanol container were stored in a -80⁰C

freezer overnight then transferred into liquid N2 for long term storage.

2.2.3 Dissociated spiral ganglion neuron preparation

Several preparations of dissociated neuronal cultures have been described previously

(Whitlon et al., 2006, Chen, 1997, Santos-Sacchi, 1993) and our method is similar to

those reported. Cultures were prepared from P12-P21 mice. Following decapitation, the

cochleae were exposed by hemisection of the midsagittal plane of the cranium. The

outer cochlear capsule was removed, followed by the peeling off of the lateral wall and

the removal of the spiral limbus and the OC. The whole dissected ganglia were divided

into thirds along the cochlear spiral to give apical, mid and basal derived tissues which

were digested separately in 10 µl 0.25% Trypsin/PBS for 30 mins at 37⁰C in a small

falcon tube. Digestion was ceased by addition of neuronal cell culture medium. The
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digested tissue was mechanically dissociated using a P1000 pipette, triturating the

cellular suspension 10-12 times. The suspension was centrifuged at 2000 rpm for 10

mins, the supernatant removed, and the cells resuspended in neuronal cell culture

medium. 30 µl of the cell suspension was administered onto each poly-L-lysine coated

glass coverslip and placed inside 35 mm petri dishes. These were then incubated at

37°C and 5% CO2 levels for 2 hrs to allow the cell suspension to settle and adhere to the

coverslips. 2 ml of neuronal cell culture medium was then added to the 35 mm dish,

supplemented with BDNF to a final concentration of 20 ng/ml. The cultures were

subsequently incubated at 37°C and 5% CO2 levels for 2-3 days during which time the

neurons shed their myelin coating.

2.2.4 Electrophysiology

Recordings from SGNs and HEK293 cells were carried out in whole-cell configuration

using a patch clamp amplifier (Axo-patch 200B; Axon Instruments) and a Digidata

board (Axon Instruments) under the control of computer software (pClamp version 8;

Axon Instruments). Cells were visualised using an upright microscope (E600FN, Nikon,

Tokyo, Japan) equipped with a x40 water-immersion objective. Patch clamp recordings

were performed under infrared differential interference contrast (IR-DIC) video-

microscopy, using a CCD video camera and IR-DIC optics mounted on the microscope.

Patch pipettes were fabricated on a vertical two-stage puller (Narishige, PC-10) from

borosilicate capillary tubes (GC120TF-10; Harvard Apparatus), coated with molten ski

wax and positioned using a piezoelectric micromanipulator (PCS-5000 Series, exfo-

lifesciences). The pipette resistance was 2.5-4.6 MΩ when measured in the bath 

solution. All drugs were applied to the cell bath directly by perfusion using a Gilson

MINIPULS® 3 peristaltic pump. Capacitance transients were cancelled online and series

resistance was compensated 70% in order to limit the voltage error. Series resistance

typically was around 3-10 MΩ, and recordings which exceeded series resistance of 15 

MΩ were rejected. Leak currents were not subtracted for SGN recordings; leak 

subtraction using a P/4 method was routinely performed as part of whole cell recordings

from HEK293 cells. Measurement of membrane voltage was carried out in the ‘fast’

current clamp mode of the amplifier. All experiments were carried out at room
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temperature (20-25oC). The liquid junction potential was measured using a KCl salt

bridge filled with 3 M KCl. Liquid junction potential was measured at -13 mV and

subtracted offline.

2.2.5 Data analysis and statistics

Analysis was performed using Clampfit (Axon Instruments), and Igor (WaveMetrics

Inc.). The voltage dependence of activation was calculated by fitting conductance-

voltage data with the Boltzmann function:

Gnorm = Gmin + (Gmax - Gmin)/(1 - exp((V1/2 + Vm)/k))

where G is conductance, V1/2 is the half-maximal activation, Vm is the membrane

potential, and k is the slope. Single exponential fitting, where used, took the form:

y = Aexp(-x/τ) 

where x is time and τ is the time constant. Statistics were performed on Origin software 

(version 9, Microcal Software Inc.) with a P-value less than 0.05 considered significant.

2.2.5 Chemistry

2.2.5.1 General

All starting materials were commercially available from Sigma Aldrich. Reactions were

monitored by thin-layer chromatography (TLC) on silica gel plates (60 F254, Merck),

visualizing with ultraviolet light and by liquid chromatography-mass spectrometer

(LCMS). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker

Avance III 600 Cryo (600 MHz). 1H NMR chemical shifts are reported in parts per

million downfield from tetramethylsilane. Accurate Mass was reported by UCL
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Chemistry Mass Spectrometry Facility. All compounds were at least 95% pure as

assayed by LCMS (electrospray +ve).

2.2.5.2 General synthesis for 1,2,3-triazole fatty acids

To a solution of the bromoalkane (1.1 eq., 0.4 mmol) in methanol (2 ml) was added the

alkyne (1.0 eq., 0.36 mmol), sodium azide (2.0 eq., 0.8 mmol, 56 mg) and Copper oxide

(0.1 eq., 0.04 mmol, 6 mg). The contents were reacted at 40⁰C overnight before the

methanol was removed under reduced pressure. The precipitate was redissolved in

EtOAc, and the pH adjusted to ~3 using before the addition of ddH2O (10 ml). The

mixture was extracted three times with EtOAc (5ml) and the combined organic phases

were extracted further with brine (10 mL), dried over magnesium sulphate (1 g), filtered

and concentrated under reduced pressure.

2.2.5.2.1 LPB-01 [4-(1-pentyl-1H-1,2,3-triazol-4-yl)butanoic acid]

Appearance: Waxy solid (yield 15%);  δH (600 MHz, Acetone-d6) 0.89 (t, 3H, CH3),

1.29 (dt, 2H, CH2), 1.35 (m, 2H, CH2), 1.89 (m, 2H, CH2), 1.95 (m, 2H, CH2), 2.38 (t,

2H, CH2), 2.74 (t, 2H, CH2), 4.37 (t, 2H, CH2N), 7.77 (s, 1H, aromatic); δC (75.5 MHz,

Acetone-d6) 173.529, 146.653, 121.353, 49.577, 33.038, 31.755, 29.956, 28.244,

24.566, 24.669, 14.349; Monoisotopic Mass (EI); Calculated (C11H19N3O2): 225.1477,

Found: 224.5925 (M-1).

2.2.5.2.2 LPB-02 [3-(1-pentyl-1H-1,2,3-triazol-4-yl)propanoic acid]

Appearance: Waxy solid (yield 17%);  δH (600 MHz, Acetone-d6) 0.87 (t, 3H, CH3),

1.28 (m, 2H, CH2), 1.34 (m, 2H, CH2), 1.87 (m, 2H, CH2), 2.69 (t, 2H, CH2), 2.95 (t,

2H, CH2), 4.35 (t, 2H, CH2N), 7.73 (s, 1H, aromatic); δC (75.5 MHz, Acetone-d6)

174.137, 146.998, 122.362, 51.881, 34.202, 32.090, 29.995, 22.959, 21.688.

Monoisotopic Mass (EI); Calculated (C10H17N3O2): 211.1321, Found: 212.1396 (M+1).

2.2.5.2.3 LPB-03 [10-(4-pentyl-1H-1,2,3-triazol-1-yl)decanoic acid]

Appearance: Waxy solid (yield 42%);  δH (600 MHz, DMSO-d6) 0.91 (t, 3H, CH3) 1.25-

1.50 (m, 16H, 8xCH2), 1.65 (m, 2H, CH2), 1.88 (m, 2H, CH2), 2.66 (t, 3H, CH2), 3.27 (t,
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3H, CH2), 4.34 (t, 3H, CH2), 7.72 (s, 1H, aromatic); δC (75.5 MHz, Acetone-d6)

179.929, 148.478, 120.583, 50.339, 34.489, 32.044, 31.083, 30.398, 29.892, 28.792,

28.236, 26.787, 25.635, 22.721, 22.667,19.473, 14.331. Monoisotopic Mass (EI);

Calculated (C17H31N3O2): 309.2416, Found: 310.2480 (M+1).

2.2.5.2.4 LPB-04 [4-(1-tetradecyl-1H-1,2,3-triazol-4-yl)butanoic acid]

Appearance: Waxy solid (yield 37%);  δH (600 MHz, DMSO-d6) 0.88 (t, 3H, CH3),

1.25-1.50 (m, 22H, 11xCH2) 1.59 (m, 2H, CH2), 1.85 (m, 2H, CH2), 3.33 (t, 2H, CH2),

3.47 (t, 2H, CH2), 4.35 (t, 2H, CH2N), 7.71 (s, 1H, aromatic); δC (75.5 MHz, DMSO-d6)

179.053, 147.958, 123.632, 51.603, 34.226, 33.542, 33.080, 32.811, 32.156, 31.928,

31.075, 30.420, 29.610, 29.282, 29.127, 28.304, 26.506, 24.663, 18.125, 14.886.

Monoisotopic Mass (EI); Calculated (C20H37N3O2): 379.3199, Found: 380.3271 (M+1)

2.2.5.2.5 LPB-05 [10-(4-decyl-1H-1,2,3-triazol-1-yl)decanoic acid]

Appearance: Waxy solid (yield 54%);  δH (600 MHz, DMSO-d6) 0.87 (t, 3H, CH3),

1.25-1.50 (m, 26H, 13xCH2) 1.63 (m, 2H, CH2), 1.86 (m, 2H, CH2), 2.35 (m, 2H, CH2),

2.65 (t, 2H, CH2), 4.30 (t, 2H, CH2N), 7.25 (s, 1H, aromatic); δC (75.5 MHz, DMSO-d6)

174.837, 148.609, 121.883, 51.945, 34.816, 34.192, 33.613, 33.231, 32.644, 31.024,

30.728, 30.253, 30.033, 29.787, 29.081, 28.778, 28.022, 27.380, 26.650, 26.161,

23.124, 14.900. Monoisotopic Mass (EI); Calculated (C22H41N3O2): 379.3199, Found:

380.3271 (M+1)

2.2.5.2.6 LPB-06 [9-(1-tetradecyl-1H-1,2,3-triazol-4-yl)nonanoic acid]

Appearance: Waxy solid (yield 59%); 0.86 (t, 3H, CH3), 1.25-1.50 (m, 30H, 15xCH2)

1.67 (m, 4H, 2CH2), 1.86 (m, 2H, CH2), 2.29 (m, 2H, CH2), 2.69 (t, 2H, CH2), 4.29 (t,

2H, CH2N), 7.24 (s, 1H, aromatic); δC (75.5 MHz, Acetone-d6) 174.475, 147.403,

120.993, 50.977, 35.004, 34.232, 33.661, 33.737, 33.654, 31.534, 31.238, 30.980,

30.743, 30.549, 30.091, 29.872, 29.512, 29.101, 28.551, 27.110, 26.789, 26.589,

26.311, 23.131, 14.498. Monoisotopic Mass (EI); Calculated (C25H47N3O2): 421.3668,

Found: 422.3730 (M+1)
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Chapter 3

A molecular basis for the heterogeneous excitability of

SGNs in post-hearing onset mice
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3.1 Introduction

3.1.1 Investigating the heterogeneity of the auditory nerve

ANFs display significant heterogeneity in their activity and response to sound stimuli.

Fibres differ in their frequency tuning, sound threshold of activation, spontaneous spike

rate and dynamic range (Kiang et al., 1965, Evans, 1972, Liberman and Kiang, 1978,

Heil and Peterson, 2015). This heterogeneity allows the cochlea to encode the full range

of acoustic information in terms of frequency/pitch and loudness. The first successful in

vivo recordings from individual ANFs were achieved by Tasaki in 1954 from

anaesthetised guinea-pigs (Tasaki, 1954). This study and subsequent investigations into

the activity of ANFs typically involved positioning a high resistance electrode close to

the nerve exiting the cochlea, and recording their responses to sound stimuli (Borg et

al., 1988, Evans, 1972, Kiang et al., 1965, Tasaki, 1954). Subsequently, recordings from

IHC afferent synapses were also achieved by the opening of the otic capsule and

insertion of the electrode close to the IHC synapse (Palmer and Russell, 1986, Siegel

and Dallos, 1986, Siegel, 1992). These studies revealed important insights into the

spontaneous and sound evoked activity of the AN in vivo. Nonetheless, a

comprehensive understanding of the physiology of the AN also requires knowledge of

the molecular electrophysiology and intrinsic membrane properties of the constituent

SGNs. To this end, the structure and organisation of the cochlea has so far precluded in

vivo patch clamp recordings from SGNs within the AN. However a wealth of

information has been gleaned from in vitro studies, using a variety of tissue preparations

to examine the properties of isolated neurons. These include mechanically isolated

neuronal preparations (Santos-Sacchi, 1993), gangliotopic preparations (Mo and Davis,

1997) and preparations where the cochlea was sectioned and patched in situ (Jagger et

al., 2000).
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3.1.2 The intrinsic excitability of isolated spiral ganglion neurons

The first successful patch clamp recordings from SGNs were achieved in 1993 by Joe

Santos-Sacchi. SGNs from adult guinea pigs were obtained non-enzymatically by

crushing the cochlear modiolus and triturating in a nominally Ca2+ free medium.

Neurons were plated on glass coverslips and incubated until they were observed to have

lost their myelin sheath (~10 mins). Whole-cell patch clamp recordings showed the

presence of fast inward tetrodotoxin (TTX)-sensitive Na+ currents and somewhat slower

outward K+ currents. Brief current injections produced graded APs with an after

hyperpolarisation that lasted several milliseconds (Santos-Sacchi, 1993). Subsequent

work by Chu Chen in 1997, using the same preparation, identified a significant inward,

non-inactivating current in response to hyperpolarizing voltage steps. Likewise, Chen

demonstrated notable depolarising sag in the membrane voltage during hyperpolarizing

current injections. This also resulted in an overshoot or a rebound firing upon

termination of the current injection (Chen, 1997).

Consistent with the large diversity in responses from fibres within the AN in vivo, SGNs

were also found to display intrinsic variability in their firing properties in vitro. The first

reports of the heterogeneous nature of SGN membrane properties were published

independently in studies by Xi Lin, and Mo and Davis. Whole-cell recordings from P0-

1 gerbil (Lin, 1997) displayed either single APs or trains of actions potentials in

response to sustained current injections. Mo and Davis reported similar findings in

SGNs which had been explanted and cultured from P1-6 mice (Mo and Davis, 1997).

The variation was classified broadly into two categories based on a neurons ability to

“adapt” to the depolarising stimulus. Adaptation can be defined as a decline in neuron

firing rate in response to constant current injection (Granit et al., 1963). Neurons were

described as rapidly adapting (RA) or slowly adapting (SA) based on the number of

APs fired over a period of depolarizing current injection. Further work from the same

group also showed that SGNs from postnatal mice (P3-P8) displayed firing features

which were related to their original position along the tonotopic axis (Adamson et al.,

2002b). Interestingly, this heterogeneity could not be replicated in enzymatically

isolated guinea pig SGNs which displayed only RA responses to current injection

(Szabo et al., 2002).
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Brain-Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT-3), two

neurotrophins released during early development and expressed differentially in the

cochlea, are also important determinants of firing behaviour (Adamson et al., 2002a). In

early postnatal development (P3-P8) BDNF exposure favours an RA phenotype while

NT-3 exposure produces cells with SA characteristics. This tonotopic dependence and

neurotrophic influence on firing phenotype was correlated with differences in the

densities of important ion channel such as KCa, Kv1.1, Kv4.2 and Kv3.1 (Adamson et

al., 2002a, Adamson et al., 2002b). A vast array of ion channels are now known to

contribute to the firing features observed in mammalian SGN, including many different

Cav, Navs and hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels, as

well as Kv7, Kir and others (see Table 3.1 for a comprehensive list).

A significant technical advance has been the ability to make patch clamp recordings in

situ. A technique for slicing the rat cochlea around the onset of hearing was developed

by Jagger and Housley in 2000. This allowed whole-cell patch clamp recordings to be

made from acutely prepared rat SGNs without the need for tissue explant or dissociation

(Jagger et al., 2000). This helps maintain the SGN and their peripheral and central

neurites that are typically lost during trituration and explant. Furthermore, this technique

allowed Lucifer yellow labelling of SGNs and their peripheral projections to provide

post-hoc identification of type I and type II fibres (Jagger and Housley, 2003).

Despite much characterisation of the electrophysiological properties of early postnatal

SGNs (Adamson et al., 2002b, Jagger et al., 2000, Lin, 1997, Mo and Davis, 1997,

Szabo et al., 2002), the characterisation of the firing properties of SGNs from animals

post-onset of hearing has been somewhat ignored. Though the initial work from Santos-

Sacchi and Chen did record from adult SGNs, little characterisation of the firing

features was carried out. Apart from the notable exception of Lv et al. in 2010, which

examined mice as old as 17 months, little investigation into the firing properties of

SGNs from post-hearing onset animals has been conducted (Lv et al., 2010).
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Table 3.1 Ion channels in the spiral ganglion. Abbreviations: BK, large-conductance calcium-

activated potassium channel; HCN, hyperpolarisation-activated cyclic nucleotide-gated channel;

SK, small conductance calcium-activated potassium channel; TASK, two-pore-domain channel;

THIK, tandem pore domain halothane-inhibited K
+

channel; MAP, microtubule-associated

protein channel; MBP, myelin basic protein; SGN, neuronal soma; Ax, axon; M, myelin; LM,

loose myelin; SC, satellite cells; NSC, non-myelinating Schwann cells; MSC, myelinating

Schwann cells; P, postnatal; A, adult; E, embryonic; EP electrophysiology; I,

immunocytochemistry; ISH, in situ hybridisation; R, polymerase chain reaction of RNA; W,

Western blot. (Adapted from (Davis and Crozier, 2015)

Ion

channel

Location Age/species Method Reference

BK SGN E, P, A/Mouse;

A/Guinea pig

EP, I, ISH,

R

(Chen and Davis, 2006, Hafidi et al., 1992,

Langer et al., 2003, Skinner et al., 2003,

Adamson et al., 2002a)

BKβ1  SGN P/Rat ISH, R (Langer et al., 2003)

BKβ4 SGN P/Rat ISH, R (Langer et al., 2003)

CaV1.2 SGN,

NSC,

MSC

P, A/Mouse;

A/Chinchilla;

A/Guinea pig

EP, I, R (Chen et al., 2012, Chen et al., 2011,

Layton et al., 2005, Lin, 1997, Xie et al.,

2007, Zuccotti et al., 2013, Lopez et al.,

2003)

CaV1.3 SGN P, A/Mouse; P,

A/Rat

EP, I, W, R (Chen et al., 2012, Chen et al., 2011, Lv et

al., 2014, Lv et al., 2012)

CaV2.1 SGN,

NSC,

MSC

P, A/Mouse;

A/Chinchilla

EP, I, R (Chen et al., 2011, Lopez et al., 2003, Lv

et al., 2012)

CaV2.2 SGN P, A/Mouse;

A/Chinchilla

EP, I, R (Chen et al., 2011, Lopez et al., 2003, Lv

et al., 2012)

CaV2.3 SGN,

NSC,

MSC

P, A/Mouse;

A/Chinchilla

E, I, R (Chen et al., 2011, Lopez et al., 2003, Lv

et al., 2012)

CaV3.1 SGN,

NSC,

MSC

P, A/Mouse EP, I, R (Chen et al., 2011, Lv et al., 2012)

CaV3.2 SGN P, A/Mouse EP, I, R (Chen et al., 2011, Lv et al., 2012)
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CaV.3.3 SGN P, A/Mouse EP, I, R (Chen et al., 2011, Lv et al., 2012)

HCN1 SGN P, A/Mouse;

A/Guinea pig

EP, I, W (Kim and Holt, 2013, Liu et al., 2014b, Yi

et al., 2010, Bakondi et al., 2009)

HCN2 SGN P, A/Mouse;

A/Guinea pig

EP, I, R, W (Bakondi et al., 2009, Kim and Holt, 2013,

Yi et al., 2010)

HCN3 SGN A/Guinea pig I, W (Bakondi et al., 2009)

HCN4 SGN P, A/Mouse;

A/Guinea pig

EP, I, R, W (Bakondi et al., 2009, Kim and Holt, 2013,

Liu et al., 2014a, Yi et al., 2010)

KV1.1 SGN, SC,

Ax

P, A/Mouse;

A/Guinea pig

EP, I, R, (Adamson et al., 2002a, Chen and Davis,

2006, Liu et al., 2014a, Mo et al., 2002,

Reid et al., 2004, Bakondi et al., 2008,

Wang et al., 2013, Smith et al., 2015)

KV1.2 SGN, SC,

Ax

P/Mouse;

A/Guinea pig

EP, I (Liu et al., 2014a, Bakondi et al., 2008,

Wang et al., 2013, Smith et al., 2015)

KV3.1 SGN P, A/Mouse;

A/Guinea pig

I, R (Chen and Davis, 2006, Adamson et al.,

2002a, Bakondi et al., 2008, Smith et al.,

2015)

KV3.3 SGN P/Mouse I, R (Chen and Davis, 2006)

KV4.2 SGN P, A/Mouse;

A/Guinea pig

I, R (Chen and Davis, 2006, Adamson et al.,

2002a, Bakondi et al., 2008)

KV7 SGN P, A/Mouse EP, I, R (Beisel et al., 2005, Lv et al., 2010)

Kir SC, NSC P, A/Rat I, R (Hibino et al., 1999)

NaV1.1 SGN A/Rat I, R (Fryatt et al., 2009)

NaV1.6 SGN A/Mouse & Rat I, R (Fryatt et al., 2009, Hossain et al., 2005)

NaV1.7 SGN A/Rat I, R (Fryatt et al., 2009)

SK1 Absent or

below

detection

P, A/Rat ISH (Dulon et al., 1998)

SK2 SGN P, A/Rat ISH (Dulon et al., 1998)

SK3 SGN P, A/Rat ISH (Dulon et al., 1998)

TASK-1 P/Mouse R (Chen and Davis, 2006)

TASK-3 P/Mouse R (Chen and Davis, 2006)

THIK-2 P/Mouse R (Chen and Davis, 2006)
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TRAAK P/Mouse R (Chen and Davis, 2006)

TREK-1 P/Mouse R (Chen and Davis, 2006)

TWIK1 SGN P/Mouse I, R (Chen and Davis, 2006)

MAP2 SGN P/Mouse;

A/Human; P,

A/Rat

I (Anniko et al., 1995, Chen et al., 2011,

Hafidi et al., 1992)

MBP MSC P, A/Rat;

A/Guinea pig

I (Toesca, 1996, Liu et al., 2014c)

Characterisation of the mature neurons is essential to determine if the features observed

in immature SGNs are relevant to the working ear, and not just a feature of

development. For instance, in the mammalian cochlea before the onset of hearing, IHCs

fire spontaneous APs that are believed to be vital for the development of the higher

auditory system. However, these APs are not characteristic of IHCs in the mature

sensory system (Johnson et al., 2011). Further, SGN electrophysiology is highly plastic.

BDNF and NT-3 expression, which notably alter firing in SGNs (Davis, 2003), varies

over the course of development with SGNs likely experiencing changing humoral cues

up to and past the post-hearing onset (Fritzsch et al., 2004). In this chapter, the firing

properties of post-hearing onset SGNs were investigated. Initial work focused on

determining a practical neuronal preparation in order to facilitate robust and stable

recordings. Proceeding work then investigated the firing properties of mature SGNs,

and examined the ionic properties which underlie differences in firing. Ultimately, this

chapter attempts to elucidate the molecular components underlying differences in firing

behaviour between SGNs originating from common locations in the cochlea.

3.2 Results

3.2.1 Identifying SGN subtypes in a dissociated ganglion preparation

To investigate the electrophysiology of mature SGNs from post-hearing onset animals,

isolated sections of the spiral ganglion derived from apical, mid and basal thirds of the
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cochlea from mice around the age of hearing onset (P12-15) and one week post-onset

(P20-21) were dissociated using enzymatic and mechanical treatment followed by cell

culture. These “neuronal cultures” contained a variety of cell types derived from the

cochlea. Morphologically, SGNs were identifiable by their large, round cell body,

asymmetric nucleus and single large nucleolus (Figure 3.1A-C; Neurons identified by

*). The neuronal identity of SGNs was confirmed by their ability to fire APs in response

to depolarisation current injection. Consistent with reports from pre-hearing animals,

voltage clamp recordings from mature SGNs showed large inward Na+ transients,

significant outward K+ currents and a slowly activating hyperpolarisation-activated

inward currents (Figure 3.1D) (Santos-Sacchi, 1993). The majority of these recordings

are assumed to come from type I SGNs. Although type II SGNs cannot be

unambiguously distinguished from type I SGN without post hoc labelling to ascertain

their innervation patterns, a small minority of cells displayed morphology and ionic

conductances consistent with the characterised electrophysiology of type II neurons

(Jagger and Housley, 2003). Putative type II SGNs were physically smaller (Figure

3.1B, 5-9 pF, n = 3) than type I SGNs (Figure 3.1A, 5-43 pF n = 82). They also

displayed lower K+ current amplitudes, slower activation kinetics and more prominent

inactivation of their outward K+ currents (Figure 3.1E). As type I SGNs are the focus of

this study putative type II SGNs, once identified, were excluded from further analysis.

Within these cultures some neurons with very large somata and extensive processes

were observed (Figure 3.1C, G). These neurons have been reported elsewhere (Mo and

Davis, 1997, Jagger and Housley, 2003) and have variously been suggested to

correspond to large cell type II neurons (Berglund and Ryugo, 1987) or to the

speculative type III neurons reported in an ultrastuctural study by Romand and Romand

(Romand and Romand, 1987). These neurons often possessed somata with a measured

whole cell-capacitance (Cm) of 30 pF or higher, and shared common

electrophysiological characteristics such as the activation of very large outward K+

currents (often >20 nA) and the generation of spontaneous APs. Other cell types

observed in the preparation were glial like cells (Hansen et al., 2001). These were

morphologically distinct by their elliptical soma and bipolar morphology and can be

seen on the right of Figure 3.1A.
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Figure 3.1 Voltage activated currents from cultured P12 SGNs. Enzymatically dissociated

SGN cultures contained a variety of cell types derived from different tissues within the cochlea.

SGNs, labelled here by *, have large, round cell bodies, asymmetric nuclei and single large

nucleoli. A Type I SGNs, as expected, make up the majority of cultured neurons. Also visible

are putative glial cells, characteristic by their small oval soma and bipolar morphology. B Type I

SGNs display large inward Na+ transients, slowly or non-inactivating outward K
+

currents and

hyperpolarisation-activated inward currents. C DIC image of a putative Type II SGN in culture.

Type II SGN make up 5-10% of neurons in vivo and cannot be distinguished by morphology

alone but were typically smaller than Type I SGNs. D Type II SGNs have distinctly lower current

magnitudes, slower activation kinetics and increased inactivation of their outward K
+

currents. E

Large cell SGNs were a subpopulation observed in neuronal cultures defined here as a cell with

Cm >25pF. F “Large cell” SGNs exhibited large inward Na
+

transients and large non-inactivating

outward K
+

currents (both often exceeding 20 nA). Scale bar: 10 µM for all images.
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3.2.2 Heterogeneous firing properties of post-hearing onset SGNs

In order to investigate the firing properties of SGNs, whole-cell current clamp

recordings were made from the soma of cultured SGNs. Neurons were held at a

potential of -73mV and APs were evoked by depolarising current injection. In total, 85

recording of SGNs firing responses were successful obtained. Consistent with previous

observations from pre-hearing SGNs (Mo and Davis, 1997), a broad range of firing

properties were observed in response to injected depolarising current. Neurons either

fired a single AP in response to the injected current i.e. adapting rapidly to the stimulus,

or fired multiple APs i.e. adapting more slowly or not at all (Figure 3.2B). Spontaneous

APs were also observed in a number of cells in the absence of a depolarising stimulus.

Figure 3.2A shows the distribution of firing responses observed across all recordings for

a single 200 ms current injection of +100 pA. SGNs from both age groups and all three

tonotopic regions displayed these diverse firing properties, suggesting the tonotopic

determination of firing type observed in early postnatal animals (Adamson et al., 2002b)

is not maintained beyond the onset of hearing. In this chapter no distinction was made

between neurons that adapted slowly and neurons that failed to adapt at all e.g. Figure

3.2B, lower trace; all neurons that fired >1 AP in response to +100 pA injection were

classified as SA. This is in line with most studies (Mo and Davis, 1997, Adamson et al.,

2002b). However, further demarcation of the SA classification into slowly and non-

adapting phenotype is carried out in the next chapter.
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Figure 3.2 Heterogeneous excitability in populations of SGNs cultured from post-hearing onset mice. A Scatter-plot of the number of APs

(#APs) in response to a depolarizing current injection versus the Cm. 200 ms current injections of +100 pA were applied from a holding potential of -73

mV (n = 85). B Firing responses of two neurons. Neurons display different responses to injected current, requiring different quantities of current to

stimulate an AP and display varying ability to adapt to sustained current injections.
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Subpopulations of RA and SA neurons exhibited other discernible differences in their

excitability. Spontaneous activity, defined here as the observation of APs in the absence

of injected current, was a common occurrence in SA cells (19/44 cells exhibited

spontaneous activity, 42.2%). Examples of some of these kinds of activity are shown in

Figure 3.3A. This activity included intense regular firing (12/19, left panel), sporadic or

irregular firing (6/18, middle panel) and once as a burst-like firing (1/19, right panel). In

contrast, no example of spontaneous activity was observed in RA cells (0/41, 0%,

Figure 3.3B). RA and SA neurons also displayed different sensitivities to injected

current. In SA neurons all but one neuron (43/44, 97.8%) fired an AP in response to the

minimum current injection examined (+50 pA). In the RA population however, only

15/40 (37.5%) did so. The median current injection in order to evoke an AP was +100

pA, but many SGN needed as much as +200 pA in elicit firing (Figure 3.3C, P<0.001,

unpaired Student’s t-test).

The variability in sensitivity to depolarising stimuli led to comparison of the voltage-

gated currents present in the two populations. Voltage clamp experiments obtained from

the same neurons in Figure 3.4, revealed distinct differences in the voltage-activated

currents between the two groups. RA and SA neurons both displayed prominent

outward K+ currents (Ik) in response to depolarising voltage steps, but the voltage at

which Ik was first activated was shifted between the neuronal phenotypes (Figure 3.4B).

In SA neurons a much greater depolarisation was required in order to evoke comparable

levels of IK. The current-voltage (I-V) plots in Figure 3.4B shows a prominent shift, ~20

mV in the low voltage region. Figure 3.4A shows current traces obtained from typical

RA (left panel) and SA (right panel) neurons. RA neurons displayed characteristic low-

threshold voltage-activated (LVA) K+ currents which were largely absent from SA

neurons. LVA K+ currents are known to be important in setting the RMP of neurons,

increasing the threshold for AP firing and reducing excitability (Johnston et al., 2010).

These results are consistent with the observations in pre-hearing mice that LVA K+

currents are an important determinant of rapid adaptation in SGN (Mo et al., 2002).
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Figure 3.3 Adaptation is correlated with spontaneous activity and firing threshold. A

Spontaneous firing i.e. AP firing in the absence of any current injection, was observed in a

number of recordings. Spontaneous firing was usually observed as either a constant train of

APs (left panel), a sporadic or irregular firing pattern (middle), or in consistent bursts (right). The

lower panels correspond to an expanded 100 ms period denoted by a line in the upper panels.

B Spontaneous firing is an exclusive property of slowly adapting (SA) cells. Spontaneous

activity was observed in 0/41 (0%) cells in rapidly adapting (RA) neurons whilst occurring in

19/45 (42.2%) of slowly adapting cells. C Cells which display rapid adaptation to an injected

current also required more current to evoke an AP. Under current clamp conditions slowly

adapting cells almost exclusively fired APs in response to the lowest injected current stimulus of

50 pA (43/44, 97.8%). In cells which display rapid adaptation, this was considerably lower

(15/40, 37.5%) with some cells requiring as much as 200 pA of current to elicit a response.
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Figure 3.4 Rapid adaptation is correlated with the magnitudes of specfic ionic

conducatances. A Representative voltage clamp traces for two cells which showed either rapid

adaptation (left panel) or slow adaptation (right panel) previously under current clamp. Cells

were held at a holding potential of -73 mV and stepped from -153 mV to +17 mV in 10 mV

steps. Each step was held for 200 ms before returning to the holding potential. Inward sodium

transients were cropped from current traces for expedience but could exceed 20 nA. B Mean

normalised steady-state current-voltage (I-V) relationships for rapidly adapting (white squares)

or slowly adapting (black squares) neurons. Steady-state currents were measured 10 ms from

the end of the voltage steps described for A and normalised steady-state currents were

obtained by divided the current by the measured whole-cell capacitance (Cm). C Calculated low

threshold voltage-activated (LVA) K
+

currents for RA (white) or SA (black) cells. LVA K
+

currents

were calculated by subtracting currents measured at -73 mV from those at -53 mV. D Measured

RMP for RA (white) or SA (black) cells. E Mean normalised steady-state I-V plot showing

hyperpolarisation-activated (Ih) inward currents. F Calculated Peak Ih currents for rapidly

adapting (white) or slowly adapting (black) cells. Peak Ih currents were measured 5 to 15 ms

before the end of a 200 ms step to -153 mV. *P<0.05 **P<0.01 ***P<0.001.
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Due to the role of LVA K+ current in setting the RMP of neurons (Johnston et al.,

2010), RA and SA neurons were investigated to determine whether they displayed

significant differences in their measured RMP. An estimate of the RMP was obtained

by recording the potential at which there was absence of current flow (I = 0 mode of the

amplifier). In both populations of SGNs, large variations in measured RMP were

observed (RA: -51 to -73 mV, SA: -49 to -73mV), and the mean RMP did not vary

significantly between the two populations (Figure 3.4C, RA: -64.9 ± 1 mV, SA: -63.2 ±

1.2 mV, P = 0.27, unpaired Student’s t-test). This was surprising as in other studies

blocking LVA K+ current from adult guinea-pig SGNs caused a notable depolarisation

in the RMP (Szabo et al., 2002). Multiple conductances contribute to setting the RMP of

a neuron however, and the activity of other channels may help maintain a consistent

RMP in the absence of hyperpolarising LVA K+ current: constitutively active M-

currents or hyperpolarising-activated cation currents (Ih) for example. For this reason we

analysed the relative contributions of Ih in the two populations. HCN-mediated Ih is a

prominent feature of both rapidly and slowly adapting SGNs in vitro (Liu et al., 2014b,

Chen, 1997). There was a significant difference in the mean magnitudes of Ih displayed

in RA and SA neurons. RA neurons displaying Ih current magnitudes of 1½ times that of

the SA population (Figure 3.4E, P<0.001, paired Student’s t-test, Figure 3.4F). This

difference might help to explain the lack of variation in RMP between populations.

3.2.3 Dendrotoxin-K blocks LVA K+ currents and increase excitability in

post-hearing onset SGNs

In pre-hearing SGNs (P3-8) rapid adaption has been shown to be regulated by an α-

dendrotoxin (α-DTX) sensitive conductance. Furthermore, dendrotoxin-K (DTX-K) 

demonstrated potent current inhibition and identified Kv1.1 subunits as an important

contributor to the adaptive response (Mo et al., 2002). Accordingly, the effects of DTX-

K were investigated here in post-hearing onset SGNs. 100 nM DTX-K was applied

through the bath to RA neurons from P12-15 mice (Figure 3.5A, C). DTX-K typically

enhanced the excitability of SGNs, as determined by the number of APs fired in

response to a depolarising current injection. It also reduced the amplitude of the

stimulus current required to first evoke an AP (Figure 3.5A, 2/5 cells). In the presence
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of 100 nM DTX-K the number of APs was increased in 4/5 cells in response to a 100

pA depolarising current step (Figure 3.5B), with one cell displaying spontaneous firing

as a result of DTX-K application (shown in Figure 3.5C). This was an important finding

as spontaneous firing is a property normally only observed in SA neurons (Figure 3.3A,

B). The increased excitability observed after DTX-K application confirmed that Kv1.1

subunits remain an important contributor to rapid adaptation in after hearing onset.

Figure 3.5 DTX-K increases the excitability of SGNs cultured from post-hearing onset

mice. A Adaptation was slowed in RA neurons (P12-15) following bath application of

dendrotoxin-K (DTX-K, 100 nM). From a holding potential of -73 mV, responses to 50 pA

current injections are shown before (left) and after (right) the application of DTX-K. The required

current to evoke AP firing was reduced following DTX-K application. B The number of APs

elicited during a +100 pA current injection increased in 4/5 SGNs following application of DTX-

K. Numbers of recorded cells are indicated in parentheses. C DTX-K evoked spontaneous firing

in 1/5 cells, a feature normally observed exclusively in slowly adapting cells. The left hand

traces of both Control and DTX-K panels correspond to a 1 second recording in the absence of

any current clamp (I = 0). The right hand panels are 50 mS enlargement corresponding to the

annotated line in the left traces.
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The effect of DTX-K on the SGN voltage-gated currents was also examined (Figure

3.6). The application of 100 nM DTX-K resulted in a substantial reduction in LVA K+

current amplitudes (Figure 3.6A, B) consistent with the observations from pre-hearing

mice that Kv1.1 subunits are an important contributor to LVA K+ currents (Mo et al.,

2002). In order to quantify the amount of LVA current inhibition, currents activated by

a 20 mV depolarising step from -73 mV were compared before and after DTX-K

application. DTX-K reduced LVA current in 6/6 cells with a mean reduction of 82.2 ±

6.9% (Figure 3.6C, Control LVA: 146 ± 34 pA; DTX-K LVA: 16 ± 9 pA, P = 0.009, n

= 6, paired Student’s t-test). DTX-K block was rapid and irreversible, reaching

maximum block ~2 minutes after bath perfusion began (Figure 3.6E).

Figure 3.6 Rapid adaptation-associated LVA K
+

currents are blocked by the Kv1.1-subunit

specific DTX-K. A Representative outward current responses during 200 ms voltage steps in

10 mV increments from a holding potential of -73 mV, before (Control, upper panel) and after

(middle panel) bath application of 100 nM DTX-K. Subtracted DTX-K-sensitive currents are

shown in the lower panel. B Mean steady-state current-voltage relationships before and after

DTX-K application (n = 6). C Comparison of evoked LVA current from neurons in 5B. LVA

current was calculated by subtracting any steady-state current present at the -73 mV holding

potential from the evoked steady-state current measured at -53 mV. DTX-K application

significantly reduced the measured LVA current. P<0.01. D Normalised G-V plot of the DTX-K-

sensitive component. E The rate of DTX-K inhibition, as measured by reduction in normalised

slope conductance between -63 mV and -53 mV.



82

3.2.4 Kv1.1 is expressed in SGNs around the onset of hearing

Following the pharmacological identification of functional Kv1.1-subunit containing

channels in post-hearing onset animals, immunofluorescence experiments were

performed in order to detail the distribution of Kv1.1 around the onset of hearing

(Figure 3.7 & 3.8). Cochleae were fixed and sectioned along the modiolar plane, which

exposed the individual spiral ganglion and cochlear nerve (Figure 3.7A, B). The cell

bodies of SGNs reside in the spiral ganglion (SG), and their peripheral neurites (PN)

extend from the sensory IHCs in the organ of Corti (OC). Their central neurites project

towards the brainstem (Figure 3.7C, D). As predicted by the previous

electrophysiological recordings, strong immunofluorescence was observed in the SGN

somata; Kv1.1 labelling was also observed in the peripheral and central neurites (Figure

3.7E, F). There was no obvious difference in labelling intensity between apical and

basal SGN as has been reported elsewhere (Adamson et al., 2002b, Liu and Davis,

2007) but no quantitative analysis was carried out. Kv1.1 labelling of the SGN and its

neurites was not seen when the anti-Kv1.1 primary antibody was excluded from the

staining process, nor if the secondary antibody was pre-incubated with a control Kv1.1

peptide (Figure 3.7G, H).

In order to examine the developmental expression of Kv1.1 around the onset of hearing,

cochleae from P2, P6 and P12 animals were fixed and labelled for the Kv1.1 subunit. In

order to avoid any potential tonotopic gradients in subunit expression the basal turn

from each animal was compared. As shown before, P12 SGN displayed clear Kv1.1

labelling which could be localised to SGN somata and neurites (Figure 3.8G-I). In P6

sections, Kv1.1 staining was moderately weaker but still clearly present in both the

somata and neurites of the SGNs (Figure 3.8D-F). In P2 animals however, staining was

completely absent from neuronal structures (Figure 3.8A-C). This points to a clear

developmental increase in Kv1.1 subunit expression in the early postnatal period, and

suggests the appearance of Kv1.1-mediated LVA currents in SGN is important for the

normal functioning of the mature cochlea.
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Figure 3.7 Kv1.1 subunit expression in the spiral ganglion. A DIC image of a cochear cross-

section from a P12 cochlea. Individual regions of the spiral ganglion (SG) can be distinguished.

B Confocal image of the same cross-section showing anti-acetylated tubulin (AcT) antibody

labelling of microtubules (red). Anti-AcT labelled several cochlear tissues, but prominent

labelling of axonal bundles was also observed (also see D) C DIC image of the P12 apical turn

region of the SG and the peripheral neurites (PN) extending from the organ or Corti (OC). Also

labelled is the bony spiral limbus (SL). D Confocal image of the apical SG region. SGN somata

and their peripheral neurites were labelled by anti-AcT. Nuclei were stained with DAPI (Blue). E,

F. P12 SGN were immunolabelled for the Kv1.1 subunit. Anti-Kv1.1 immunofluorescence

(green) was detected in SGN somata and their neurites, in both basal and apical turns of the

cochlea. G No Primary control: P12 basal turn SGN labelled as in E and F but excluding the

primary anti-Kv1.1 antibody. No labelling of the SGN somata or PN was observed. H Kv1.1-

Peptide control: P12 basal turn SGN labelled as in E and F but pre-incubating the primary

antibody with a control Kv1.1 peptide. No labelling of the SGN somata or PN was observed.

Scale bar: 50 µm for all panels.
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Figure 3.8 Developmental expression of the Kv1.1 subunit in SGN. A-C P2 basal turn SGN

labelled for the Kv1.1 subunit. No anti-Kv1.1 immunofluorescence (green) was detected in SGN

somata or neurites. Cell nuclei were labelled with DAPI (Blue). D-F P6 basal turn SGN labelled

for the Kv1.1 subunit. Kv1.1 immunofluorescence (green) was detected in SGN somata and

neurites. G-I P12 basal turn SGN labelled for the Kv1.1 subunit. Kv1.1 immunofluorescence is

observed in SGN somata and neurites. Scale bar: 50 µm is the same for all panels.
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3.2.5  Tityustoxin-Kα blocks LVA K+ currents in post-hearing onset SGNs 

The Kv1.1 subunit can form functional channels by homomeric tetramerisation or by

heteromerically tetramerising with other K+ subunits. Kv1.1 is heteromerised with

Kv1.2 subunits in neurons (Wang et al., 1994, Dodson et al., 2002). To examine the

possibility of Kv1.2 subunit involvement in LVA K+ current in SGNs, sensitivity to the

Kv1.2-specific toxin tityustoxin-Kα (TsTx) was investigated (Werkman et al., 1993). 

Bath application of 100 nM TsTx resulted in a substantial reduction in the LVA K+

current amplitude (Figure 3.9A, B) in RA neurons. In order to quantity the amount of

LVA K+ current inhibition, the currents from a 20 mV depolarising step were compared

before and after 100 nM TsTx application. 100 nM TsTx reduced LVA current in 3/3

cells with an average reduction of 65.9 ± 7.5% (Figure 3.9C, Control LVA: 457 ± 153

pA; TsTx LVA: 141 ± 49 pA, n = 3,). TsTx block was rapid; reaching maximum block

~1.5 minutes after bath perfusion began (Figure 3.9E). In contrast to DTX-K however,

the effects of TsTx could be washed off, albeit slowly. TsTx-sensitive current traces and

I-V plots (Figure 3.9A, D) resembled those of DTX-K-sensitive currents, although

maximal current block was more depolarised in the TsTx-sensitive current-voltage plot

(-23 mV to -3 mV).

Table 3.2 Boltzmann parameters for toxin-sensitive SGN conductances.

Toxin V ½ (mV) k (mV) n

DTX-K -66.2 ± 3.5 6.4 ± 1.3 6

TsTx -47.2 ± 5.1 10.2 ± 1.6 3
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Figure 3.9 SGN LVA K
+

currents are sensitive to Kv1.2-subunit specific tityustoxin. A

Representative outward current responses during a 200 ms voltage steps in 10 mV increments

from a holding potential of -73 mV, before (Control, upper panel) and after (middle panel) bath

application of 100 nM tityustoxin (TsTx). Subtracted TsTx-sensitive currents are shown in the

lower panel. B Mean steady-state I-V relationships before and after TsTx application (n = 3). C

Comparison of evoked LVA current from neurons in B. LVA K
+

current was calculated by

subtracting any steady-state current present at the -73 mV holding potential from the evoked

steady-state current measured at -53 mV. D Normalised G-V plot of the TsTx-sensitive

component. E The rate of TsTx inhibition, as measured by reduction in slope conductance

between -63 mV and -53 mV. TsTx inhibition reached maximum block after ~1.5 minutes.

3.3 Discussion

In this chapter, the membrane properties of SGNs, obtained from post-hearing onset

mice, were investigated. Whole cell recordings from the somata of these neurons

showed diverse heterogeneity in responses to depolarisation. This heterogeneity could

be correlated with differences in ionic conductances such as Ih and LVA K+ current.

Rapidly adapting neurons displayed large LVA K+ currents and smaller Ih than their

slowly adapting counterparts. SGN LVA K+ currents were found to be highly sensitive

to both DTX-K and TsTx channel block, demonstrating that LVA K+ currents must be

mediated, at least in part, by Kv1.1 and Kv1.2 subunits. The developmental expression

of Kv1.1 was also documented, demonstrating that Kv1.1 is not strongly expressed at 2

days after birth. However, by the onset of hearing, strong Kv1.1 expression is seen in
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both the somata and neurites of SGNs suggesting LVA K+ currents play an important

role in the mature cochlea.

3.3.1 Whole cell recordings from post-hearing onset SGNs required

dissociation and cell culture

Preliminary investigation in this project focused on the development of a robust

preparation of adult SGNs for whole-cell patch clamp recordings. A search of the

literature highlighted three well developed approaches: a dissociated cell culture

preparation (Santos-Sacchi, 1993, Szabo et al., 2002), a gangliotypic or explant

preparation (Liu and Davis, 2007, Mo and Davis, 1997) and a cochlear slice preparation

(Jagger and Housley, 2003, Jagger et al., 2000). The cochlear slice preparation is the

closest ex vivo representation of SGN in their native physiological state and was

therefore assessed first. The gradual ossification of the cochlea in the days following

birth made slicing of the mounted cochlea difficult however. Whole-cell access to

neurons from P2 mice was attained but no further success could be achieved in older

cochlea. Despite being the most physiologically representative model, the technical

difficulties encountered at older ages resulted in other models being investigated. The

gangliotypic or explant preparation (the former being distinguished from the latter by

maintaining the entire ganglion in a single piece (Liu and Davis, 2007)) of SGN was

subsequently assessed. Whole sections of spiral ganglion tissue were removed from the

cochlea by careful dissection and cultured. The method was adapted from Adamson et

al., 2002. Again however, electrophysiological recordings from P12-14 explanted tissue

were largely unsuccessful; pipette access of cells was the largest hindering factor. Non-

neuronal structures, such as unshed myelin and other glial cells, likely comprised the

obstructing material. Removal of this material by positive pressure down a large access

pipette or by mechanical abrasion using a second glass pipette proved fruitless. The lack

of success employing this method in older animals was considered to be an age-related

phenomenon. Until 2014, P8 murine SGN cultures were the oldest anyone had reported

success from using this approach. During the progress of this study however successful

recordings from mice as old at P14 were reported from explanted cultures (Davis and

Crozier, 2015). Due to the practical difficulties encountered with the first two models
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investigated, results obtained in this study were from cultures of enzymatic and

mechanical isolated neurons. This was based upon the preparation described in

(Whitlon et al., 2006). Robust and stable recordings from dissociated neurons up to one

week after the onset of hearing (P20-21) were readily achievable by this approach.

Success with mice as old as 17 months has been reported using a similar approach (Lv

et al., 2010) further emphasising its utility in the examination of post-hearing onset

SGN properties.

It is difficult to speculate on the effects of the different preparations on cell

electrophysiology but it would be surprising if there were none. The use of

neurotrophins to maintain SGNs in culture has already been shown to induce significant

changes in firing phenotypes (Adamson et al., 2002a, Zhou et al., 2005). Further,

neurotrophic maintenance of SGNs in culture may have a selective survival effect for

subpopulations of neurons and therefore the distributions of phenotypes observed may

not be representative of the real distribution in animals (Davis, 2003). For this reason,

analysis of the distributions of firing phenotypes from cultures should be treated with

caution and was largely avoided in this study except to note their variation (Figure 3.2).

Some clear preparation-based differences have been documented; gangliotypic

preparations of early post-natal murine SGNs (P3-8) were significantly less excitable

than their enzymatically dissociated counterparts despite identical culture conditions.

Similarly acutely prepared cochlear slice recordings show almost exclusively RA

behaviour with little or no spontaneous or SA cells (Jagger and Housley, 2003, Jagger

and Housley, 2002). Whether this represents a trend towards reduced excitability is

uncertain, but future work should focus on validating the effects observed in neuronal

cultures in more acutely dissected preparation to avoid variation due to neurotrophic

effects. Before discussing the functional properties of SGNs it is important to note that

along with the considerable difficulties discussed above, several other problems hinder

the assessment of the their ionic currents and firing features. Amongst other difficulties,

SGN currents and firing properties show considerable interspecies variability. In vivo

studies and cochlear imaging also demonstrate a well-documented maturation of the

SGNs in early post-natal development with spontaneous firing rates with ABR

thresholds and ion channels expression changing markedly in this time (Rusznak and

Szucs, 2009).
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3.3.2 Heterogeneous excitability is a functional feature of SGNs

Spontaneous activity in the absence of sound is a feature of primary ANFs in vivo.

Results from this study and from others have demonstrated that spontaneous APs can be

generated in isolated SGNs somata (Lin and Chen, 2000, Lv et al., 2010). Spontaneous

activity in vivo is thought to result from the spontaneous release of glutamate at the

ribbon synapse of IHCs (Glowatzki and Fuchs, 2002). However, glutamate receptor

antagonism only reduces spontaneous firing and fails to abolish it entirely (Cousillas et

al., 1988, Puel et al., 1989). This suggests that a portion of the spontaneous activity

observed is as a result of the intrinsic excitability of SGNs. In this study spontaneous

activity was shown to be a feature exclusively of slowly adapting neurons and that

spontaneous activity could be induced in previously non-spontaneous cells by inhibition

of a DTX-K-sensitive LVA K+ current. Spontaneous activity has also been reported as a

feature of ~10% of SGNs around the onset of hearing (Wang et al., 2013). Interestingly,

in the same study Kv1.2 null mutants were shown to have an increased tendency for

spontaneous activity (~18% of total neurons) despite having a more hyperpolarised

RMP, increased current thresholds to generate APs and larger LVA K+ currents. This

suggests LVA currents alone may not be predictive of spontaneous activity.

Each IHC receives multiple innervations from anything between 10 and 30 ANFs

depending on the tonotopic location and species (Bohne et al., 1982, Stamataki et al.,

2006). Despite being stimulated by a single IHC, these multiple ANFs display a

heterogeneity in the spontaneous discharge rates (SR) and as well as in their thresholds

of acoustic stimulation (See Physiology of the auditory nerve). The fibre population

provides a gradient of firing properties, ranging from high-threshold low-spontaneous

rate fibres, to low-threshold, high-spontaneous rate fibres. In this study two separable

subpopulations of cells with distinct differences in their excitability and sensitivity to

depolarisation were observed. In contrast to other studies (Adamson et al., 2002b, Lv et

al., 2010) RA and SA neurons were identified in all tonotopic regions of the cochlea and

at both age ranges investigated.

It is tempting to speculate about a possible connection between the heterogeneity

observed in ANFs thresholds and SRs and the heterogeneity in firing features observed

in SGNs in vitro. There is little direct evidence for this relationship however. Possible
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evidence has been suggested to come from in vivo cat ANF responses to click stimuli

(Adamson et al., 2002a). In these experiments, some neurons could be shown to fire

repetitive APs at intervals corresponding to the period of the cell’s characteristic

frequency. But notably, other neurons were found only to fire singly in response to the

click (Kiang et al., 1965, Ruggero et al., 1992). The current consensus however is that

differential release of neurotransmitter between ribbon synapses gives rise to the

observed heterogeneity. Nevertheless SGNs show significant intrinsic variation in their

firing features and ionic currents.

Studies in pre-hearing cultured SGNs have typically suggested a base-to-apex gradient

in excitability, with basally derived cells comprised exclusively of RA neurons and

apical cells comprising of a mix of RA and SA neurons (Adamson et al., 2002a,

Adamson et al., 2002b). Developmental changes within the cochlea make interpretation

of these results difficult however. The development of the cochlea is not uniform either;

rather it matures with a base to apex gradient with the basal region displaying mature

adult characteristics earlier than the apex (Rubel, 1978, Romand, 1983). Furthermore,

the presence of neurotrophins is graded in the developing cochlea: BDNF is localised

primarily to the apex of the cochlea during development, whilst NT-3 localises in the

base (Farinas et al., 2001). SGN firing shows a high sensitivity not just to the presence

of NT-3 and BDNF, but also their concentrations (Zhou et al., 2005). Increasing levels

of NT-3 exposure slows adaptation, up to a concentration 10 ng/ml. Subsequent

increase in NT-3 however result in an increase in adaptation rate. This complex

interaction between SGNs and neurotrophins casts further doubt on the reliability of

using pre-hearing cultured SGNs as representative of the functionally mature cochlea.

Of the few studies examining the firing features of SGNs in post-hearing onset animals,

the results have been inconsistent. As mentioned, this study reported the presence of

both RA and SA neurons in all regions of the cochlea and at both the onset of hearing as

well as one week after. In other studies, recordings from cultured mouse explants

around the onset of hearing (P10-14) showed little heterogeneity in firing with RA

neurons making up the majority (>75%) of all cells recorded (Davis and Crozier, 2015).

The tonotopic variation observed by the same group in earlier studies was also markedly

reduced, with a RA firing pattern dominating in both apical and basal cultures.

However, the same study noted a large impact of holding potential upon the measured
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excitability. RA was the dominant feature of SGNs when measured from a holding

potential of -80 mV. However, RA neurons made up <30% of the total firing behaviours

when the same cells were measured at -60 mV. This is an interesting finding as reported

RMPs for SGNs vary considerable between -77 and -61 mV (Jagger and Housley, 2003,

Jagger et al., 2000, Santos-Sacchi, 1993, Szabo et al., 2002). Here APs were stimulated

from a holding potential of -73 mV. Contrary to these results, other studies from post-

hearing onset animals have reported a strong tonotopic gradient in firing features (Lv et

al., 2010, Lv et al., 2014). Surprisingly however, the gradient in excitability was in

diametric opposition to that reported for pre-hearing mice; RA was an exclusive

property of apical neurons whilst nearly all basal neurons displayed a SA phenotype (Lv

et al., 2010, Lv et al., 2014). This firing pattern was consistent in mice as young as two

weeks and up until the age of 17 months. However, there is little explanation that can be

offered to account for these markedly different findings but to note their discrepancy

with the results presented here and elsewhere.

The development of vestibular ganglion cells (VGCs) shares many commonalities with

SGNs. VGCs, like SGN, are bipolar afferent neurons whose processes form synapses

with sensory hair cells. These hair cells, however, are located in the utricle, saccule and

semicircular canals. Instead of sound information they relay information relating to

balance. Like SGNs they display an intrinsic heterogeneity in their firing properties

(Iwasaki et al., 2008). Two prominent subpopulations of “tonic” or “phasic” phenotypes

can be identified, with a small number of “intermediate” firing types also present.

Consistent with the results here, the reported phasic firing cells (RA cells in our study)

were also distinguishable for the presence of a prominent LVA K+ current. This LVA

K+ current also displayed DTX-K and TsTx sensitivity and increased excitability was

reported in neuronal firing upon exposure to the LVA K+ current inhibiting toxins

(Iwasaki et al., 2008). There were also significant developmental changes in the

prevalence of different firing types; in early postnatal animals (P5-7) phasic firing

predominated but at older ages and beyond (P12-22) tonic firing begins to dominate.

This is interesting as this shift toward tonic firing is the opposite of what is observed in

the spiral ganglion maturation (Davis and Crozier, 2015).
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3.3.3 Rapid adaptation is dependent on LVA K+ currents in murine SGNs

Rapid adaption in SGNs is determined by a LVA K+ current (This study, Mo et al.,

2002). In pre-hearing SGNs this current shows sensitivity to DTX-I, DTX-α, DTX-K 

and low doses of 4-aminopyridine (Mo et al., 2002, Szabo et al., 2002, Jagger and

Housley, 2002). This study showed the LVA K+ current in post-hearing onset animals

was sensitive to both DTX-K and TsTx. This provides evidence that LVA K+ current in

SGNs is mediated by both Kv1.1 and Kv1.2 containing channels. Consistent with this,

strong immunolabelling was observed for the Kv1.1 subunit as early as six days after

birth. Kv1.1 expression was observed in the somata as well as in the peripheral and

central neurites. This indicates a key role for Kv1.1 in the generation and maintenance

of APs in acoustic coding. Interestingly, no Kv1.1 expression was observed in P2 SGN.

Kv1.1 expression in SGNs only begins after the first few days postnatally, and

expression then continues to increase up to the onset of hearing (~P12). This temporal

expression pattern of Kv1.1 might be expected to lead to adaptation becoming more

prominent as animals mature. Recent evidence has offered support to this idea.

Recordings from explanted SGN tissue from P1-P2 mice revealed a very small

prevalence of RA SGNs (1.5%). By P6–P8 however, RA SGNs made up more than half

of all recordings and by P10-P14 RA SGNs accounted for >75% of neurons (Davis and

Crozier, 2015). Allowing for differences in species variation, these results suggest that

the SGN’s LVA K+ current is established in the early postnatal period (1-2 weeks) and

that rapid adaptation is the predominant phenotype by the onset of hearing.

Notwithstanding these results, some inter-species differences in the response of SGN to

LVA K+ current inhibition have cast doubt on the role of Kv1.1 in adaptation.

Application of DTX-K to isolated guinea pig SGNs depolarised the RMP of the neuron

but did not slow adaptation (Szabo et al., 2002). Despite this reported effect of DTX-K

on RMP, the role of Kv1.1 in setting the RMP in SGN has not been the focus of much

study. It was noted however that in acute cochlear slice preparations of rat SGNs there

seemed a notable hyperpolarising of RMP during development. SGNs from P2–6 rats

were reported as having a mean RMP of −61 mV (Jagger 2002) which dropped to −77 

mV by P7-10 (Jagger 2003). This would be consistent with our observations that Kv1.1

expression increased significantly in the first week after birth and played an important

role in setting the neuronal RMP.
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Functional Kv1 channels are made up of four pore-forming subunits arranged together

as homomeric or heteromeric complexes. In this work, it was demonstrated that the

SGN LVA K+ current was highly sensitive to the actions of both DTX-K and TsTx. The

high levels of block (82.2% and 65.9% respectively) was suggestive that SGN LVA K+

currents are made up of at least some Kv1.1 and Kv1.2 containing heteromers, rather

than unique populations of Kv1.1 and Kv1.2 homomeric channels (Dodson 2002).

Analysis of the voltage dependence of the DTX-K and TsTx-sensitive LVA components

show that the DTX-K-sensitive component has more negative V1/2 than the TsTx-

sensitive components (-66 mV vs -47 mV; Table 3.2). In heteromeric expression

systems, Kv1.1 homomeric channels display a significantly more negative V1/2 that

Kv1.2 homomer channels (Al-Sabi et al., 2013). The different voltage dependences of

the toxin sensitive currents therefore also suggest the presence of homomeric

populations of Kv1 channels.

Further work from our lab has since characterised the block of Kv1 mediate LVA K+

currents further. Co-application experiments using sequential addition of Kv1.1 and

Kv1.2 specific toxins have provided strong evidence that this current is indeed mediated

by Kv1.1/Kv1.2-containing heteromers as opposed to discreet populations of Kv1.1 and

Kv1.2 homomeric channels (Smith et al., 2015). Furthermore confocal

immunofluorescence experiments localised both Kv1.1 and Kv1.2 subunits to specific

neuronal microdomains. These include the somatic membranes of the SGNs, as well as

the juxtaparanodes of the central and peripheral neurites. Kv1.1 and Kv1.2 subunits

were also localised to the first heminode, which forms the spike initiation site of the AN

(Smith et al., 2015). Taken together, these results suggest a key role for Kv1.1/Kv1.2-

containing heteromeric channels in the initiation and propagation of APs in the AN.

3.3.4 The role of rapid adaptation in SGN coding

Rapid adaptation is a key feature of post-synaptic recordings from SGNs boutons

(Glowatzki and Fuchs, 2002). SGNs fire single AMPA-receptor mediated AP spikes in

response to large depolarizing stimuli. This phasic response ensures the high fidelity

encoding of ribbon synapse neurotransmitter release (97% of excitatory post synaptic
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currents result in successful APs) (Rutherford et al., 2012). The result is a system that is

adapted for high temporal precision and phase synchronisation to acoustic signals

(Johnston et al., 2010).

LVA currents have been reported in whole cell recordings from the terminal boutons of

SGNs (Yi et al., 2010). Combined with findings from our lab that Kv1.1 and Kv1.2

subunits are expressed together at the first heminode near the proposed spike initiator

site (Smith et al., 2015), this suggests an important role for Kv1-mediated LVA K+

conductances in AP initiation. The notably large EPSCs and relatively low failure rate

(97% of all EPSC events result in APs) suggest that LVA currents are not acting in a

significant fashion to filter out subthreshold EPSC events. Rather, LVA K+ currents

most likely inhibit spiking in response to slow stimuli and prevent temporal summation

of inputs ensuring a minimum rate of depolarisation is required (Rutherford et al.,

2012). This reduces temporal variations that could arise from normal variation in the

EPSC waveform. This dependency on the rate of rise of membrane voltage is mirrored

in Octopus cells in the CN which require a minimal depolarisation rate of between 5 and

15 mV/ms. Firing in neighbouring T stellate cells, which lack strong dendrotoxin-

sensitive LVA K+ conductances, depends much less strongly on the rate of voltage rise

(Ferragamo and Oertel, 2002).

This provides some interesting questions as the basis for future research. If rapid

adaptation is a feature of all neurons, as is reported in SGN bouton recordings, why do

neurons display such heterogeneity in their intrinsic firing properties? Do differences in

LVA K+ conductances between individual neurons contribute to the difference in

spontaneous firing rates in vivo? What effect does modulating SGN LVA currents have

on signalling in vivo and do SGN modulate their ionic conductances in response to

external or internal signalling, such as in response to input from the Efferent System?

Answers to these questions would significantly improve our understanding of how the

AN encodes sound at the molecular level.



95

Chapter 4

PIP2 regulation of SGN spike adaptation via Kv1

heteromeric channels
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4.1 Introduction

The excitability and firing properties of a neuron is established by its

electrophysiological architecture. The abundance, type and location of ion channels in

the plasma membrane combine to give a neuron its characteristic electrical responses. In

physiological situations however, neurons are more than the sum of their ion channels,

adjusting and modifying the influences of different ion channels, allowing them to adapt

and respond to changing external signals. Phosphoinositides (PI) are now recognised as

key regulators of neuronal electrophysiology, coupling the external activation of

membrane bound receptors to electrical changes in the cell and acting as important

cofactors for the functioning of a variety of native ion channels.

In many experimental systems, neuronal excitability has been shown to be influenced

by PI signalling. The most common mediator of phosphoinositide-based neuronal

regulation is phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 regulates excitability by

acting as a cofactor in the functioning of specific PIP2-sensitive ion channels or via its

hydrolysis into other potent signalling molecules which mediate downstream effects.

The best studied example of PIP2 control over excitability is through its regulation of

the neuronal M-current. In hippocampal CA1 pyramidal neurons for instance, PIP2-

mediated M-currents ‘clamp’ the membrane potential to a hyperpolarised level and so

reduce AP firing (Shah et al., 2002). Stimulating muscarinic acetylcholine receptors

(mAChRs) with muscarinic agonists causes increased neuronal excitability through the

activation of PLC and the resulting PIP2 hydrolysis (Brown and Passmore, 2009).

Angiotensin II’s ability to regulate neuronal excitability in superior cervical ganglion

sympathetic also converges upon this mechanism of neuronal modulation. Activation of

the AT1 receptor results in a PLC-dependent PIP2 hydrolysis, leading to an increase in

excitability (Zaika et al., 2006). M-current inhibition, however, is not the only example

of PIP2 determined excitability. Recently, PIP2 and diacylglycerol (DAG) were shown

to determine the excitability of thalamocortical relay (TC) neurons (Bista et al., 2015).

TC neurons exhibit distinct excitatory states depending upon sleep and wakefulness

behaviour, and fire APs either in high frequency bursts or slower tonic sequences

respectively. PIP2 and DAG determine these distinct excitatory states via their actions

on the two-pore domain potassium channels TASK and TREK. Similarly, muscarinic
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inhibition of K2P channels enhances the excitability of cerebellar granule neurons via

the PIP2 hydrolysis product DAG (Wilke et al., 2014). Another interesting case study of

PIP2 modulation is in thalamic intergeniculate leaflet neurons where PIs act to

upregulate the function of hyperpolarisation-activated cyclic nucleotide-gated channels

HCNs (Ying et al., 2011). The presence of PIP2 results in low-threshold burst firing,

whilst its depletion profoundly inhibits excitability. PI mediated excitability changes

can also result from the production of their potent downstream effectors. For example,

Dopamine D2 receptor stimulation reduces excitability in medium spiny neurons by

suppressing transmembrane Ca2+ currents (Hernandez-Lopez et al., 2000). In this

instance, PI regulation is effected by PIP2 hydrolysis yielding inositol 1,4,5-triphosphate

(IP3), and the subsequent release of intracellular pools of Ca2+ activating calcium-

dependent phosphatase calcineurin.

Whilst PIP2 is the principal PI regulator of neuronal excitability, PIP3 also plays an

important role. Whilst some short-term effects of PIP3 signalling have been

documented, the most notable effects of PIP3 on neuronal excitability occur over longer

timescales than the mechanisms discussed above. PIP3 acts through the AKT/mTOR

pathway to affect processes such as protein translation, cell proliferation and cell

growth. In the CNS, knockout of the phosphatase and tensin homolog (PTEN) protein (a

lipid phosphatase that dephosphorylates PIP3, see Figure 1.11) affects somatic, dendritic

and axonal growth, spine maturation, and results in reduced synaptic plasticity, and

reduced intrinsic excitability (Garcia-Junco-Clemente and Golshani, 2014). Conversely,

mTOR hyper-activation is associated with enhanced synaptic transmission and plasticity

and epileptogenesis, highlighting its impact on neuronal excitability (Lasarge and

Danzer, 2014).

4.1.1 Experimental methods of phosphoinositide modulation

In this chapter the effects of manipulating the levels of PI in SGNs, in particular the

levels of PIP2, were investigated to determine if this could modulate the firing

properties of the neurons. Manipulating the levels of membrane-bound PIP2 in an

experimental setting presents many challenging aspects. The role of PIP2 and its
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metabolic products as signalling molecules, along with its potential for dynamic

interconversion with other PI family members, introduces many potential mechanisms

of action which may confound any simple explanation for a given effect. Additionally,

many of the current methods of PIP2 modulation are crude or represent exaggerated

forms of PIP2 addition or depletion and care must be taken in interpreting these results

and placing them within a physiological context (Suh and Hille, 2008). The methods of

PIP2 depletion employed in this study are discussed here, with a brief discussion of

other methods of PIP2 modulation.

4.1.2 Inhibition of phosphoinositide synthesis

A metabolic focused approach to PI modulation is to interrupt synthesis of PIP2 and

PIP3 by inhibiting the enzymes that synthesise them. In the case of PIP2, this requires

the inhibition of one of two lipid kinases: Phosphatidylinositol 4-kinase (PI4K) or

Phosphatidylinositol 5-kinase (PI5K). PIP3 synthesis requires the inhibition of

Phosphatidylinositol 3-kinase (PI3K; Figure 1.11). Inhibition of PI synthesis is typically

achieved by pharmacological agents such as wortmannin (Suh and Hille, 2005).

Wortmannin, a fungal steroid metabolite, is one of the most widely used modulators of

cellular PI synthesis. This is due to many favourable properties such as cell

permeability, commercially availability, and the fact it is largely ineffective against

other signalling molecules (Wymann et al., 1996). Another useful property is its

difference in affinity for PI3Ks vs PI4Ks. Wortmannin is a potent inhibitor of PI3Ks at

low nanomolar concentrations (Yano et al., 1993), whilst inhibiting PI4K with an

affinity of an order of magnitude lower (Figure 4.1) (Fruman et al., 1998). This

difference provides a diagnostic method of examining the relative contributions of PIP2

and PIP3 to biological processes. LY294002 is a synthetic inhibitor of PI3Ks, which like

wortmannin binds to the ATP binding site of PI3K. It displays low micromolar affinity

against PI3K enzymes in vitro (Walker et al., 2000) but unlike wortmannin however, it

binds reversibly to the enzyme.
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4.1.3 Genetic approaches to PIP2 modulation

One area of investigation which will be briefly mentioned here is the recent

development of a number of genetic based techniques for the modulation of PIs.

Conventional cell biology approaches involving overexpression of important enzymes

or knockdown and knockout using siRNA and gene deletion have long been seen as

unsatisfactory due to the fact these methods alter PI levels over a period of hours or

even days. More recent techniques have focused on rapid and inducible methods of PI

perturbation. These methods, which act over a period of seconds rather than hours,

typically act by recruiting transfected enzymes, such as lipid 5-phosphatase (which

converts PIP2 to PIP) to the cell membrane. Current methods involve a rapamycin-

induced dimerisation, or light-induced optogenetic dimerisation which brings the

phosphatase into proximity with the PIP2 rich plasma membrane (Suh and Hille, 2008).

Of most use to electrophysiological investigation has been the development of a

voltage-sensing lipid phosphatase (VSP). The major advantage is that the enzyme itself

can be activated by depolarizing voltage pulses in whole-cell patch clamp recordings,

allowing both the PIP2 modulation and current measurements to be carried out almost

simultaneously (Suh and Hille, 2005). Although, these approaches provide a sensitive

method of examining the effects of phosphoinositide modulation in cellular systems, the

necessity for genetic manipulation makes their application to primary cell culture a

considerable challenge.

4.1.4 PIP2 sequestration

Certain strategies employed to deplete membrane bound PIP2 levels involve some form

of phosphoinositide capture or sequestration. The popularity of these techniques is

explained by their obvious practicality. Patches of channel rich membrane can be

excised with a patch pipette and PIP2 sequestering agent (often polycations such as

Mg2+, neomycin, polylysine or spermine) directly applied to the exposed cytoplasmic

surface (Suh and Hille, 2007). Specific PIP2 antibodies can also be employed for this

purpose (Suh and Hille, 2008). In fact, PIP2 sequestration may not even be necessary;

post-excision, PIP2 synthesis may slow or even stop and PIP2 becomes depleted over a
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short period. Channel function may decrease in tandem in a process called “channel

rundown”. Conversely PIP2 or other lipids can also be applied to the surface to observe

their effects on ion channel activity (Suh and Hille, 2005).

Recently, innovative new strategies for PIP2 sequestration and capture have been

pursued through the design of targeted peptides (Robbins et al., 2006). These molecules

consist of a peptide with high affinity for PIP2 and a long chain fatty acid group

(palmitoylation) to target it to the plasma membrane (Figure 4.2). This PIP2-binding

palmitoylated peptide (PIP2-PP) consists of a 10 amino acid polypeptide, palmitoylated

on the terminal histidine (Pal-HRQKHFEKRR). This 10 amino acid chain is identical to

the putative PIP2 binding sequence of the Kv7.2-7.5 (Figure 4.2) (Zhang et al., 2003).

The PIP2-PP has some significant practical advantages over tradition polycationic PIP2

sequestering agent. Most notable, PIP2-PP can be applied externally during whole cell

patch clamp recordings and sequester PIP2 at the inner leaflet of the membrane.

4.2 Results

4.2.1 Inhibition of PIP2 synthesis increases excitability in SGNs

To examine the effects of PIP2 and PIP3 modulation on the electrophysiology of SGN,

the synthesis of these PIs were inhibited by pharmacological means. Accordingly, basal

turn cultures were pre-treated for one hour with wortmannin at either a low dose (100

nM), targeting PI3Ks only (Yano et al., 1993), and thus reducing the pools of PIP3

available to the cell, or a high dose (10 µM) to target both PI3Ks and PI4Ks, therefore

also depleting PIP2 levels in the membrane (Fruman et al., 1998). A simplified form of

this pathway and its inhibition is shown in Figure 4.1B. After incubation with drug

concentration or vehicle alone (0.1% DMSO), cells were transferred to the recording

chamber and recordings were made using the current clamp mode of the amplifier to

determine SGN responses to depolarising current injections. Cells were pooled by

number of APs fired in response to a 200 ms depolarizing current injection of 100 pA:

rapidly-adapting, 0-1 APs; slowly-adapting, 2-9 APs; non-adapting, ≥10 APs (Figure 

4.1C).
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Figure 4.1 Excitability in cultured SGNs is dependent on availability of PIP2. A Chemical

structures of the phosphoinositide inhibitors, wortmannin and LY294002. B Simplified schematic

of phosphoinositide metabolism showing the site of action of the various inhibitors. C The

distribution of adaptation phenotypes within the population of cultured SGN exposed to varying

conditions of phosphoinositide inhibition. SGN pre-incubated for 1 hour in 0.1% DMSO (Control,

n = 12) display a predominance of rapidly-adapting phenotypes, as do SGN pre-incubated in

100 nM Wortmannin (‘Low WT’, n = 10). SGN pre-incubated in 10 μM wortmannin, (‘High WT’, n 

= 18) display an increase in excitable firing behaviour, with a reduced proportion of rapidly-

adapting cells. When diC8PIP2 (100 µM) is included intracellularly during recordings from SGN

pre-incubated in 10 μM Wortmannin (‘High WT+diC8PIP2’, n = 8), the proportion of rapidly-

adapting cells returns to near control levels. SGN preincubated with the PI3K inhibitor

LY294002 (‘LY294002’, n = 10) also resembles the control population.

Under control conditions, where cells were pre-incubated with vehicle alone, 75%

(9/12) matched a rapidly-adapting phenotype, with the remaining 25% (3/12) exhibiting

slow adaptation. Pre-incubation of SGN cultures with 100 nM wortmannin had little

effect on the rapidly-adapting phenotype. However, pre-incubation with 10 µM

wortmannin resulted in a substantially reduced proportion of rapidly-adapting neurons

(39%; 7/18), and an increased proportion of non-adapting neurons (33%; 6/18), with the

remaining neurons slowly-adapting (28%; 5/18). Broadly, pre-incubation with 10 µM

wortmannin resulted in a significantly more excitable population of SGN neurons than
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under control conditions. Accordingly, incubation with 10 µM wortmannin produced a

small increase in the proportion of spontaneously active cells, i.e. cells which fired APs

at rest in the absence of any depolarising injection, though this was not significant

(28%; 5/18 in 10 µM wortmannin-treated cells compared to 17%; 2/12 in control). In a

subset of cells pre-incubated with 10 µM wortmannin, a non-hydrolysable PIP2

analogue diC8-PIP2 (100 µM) was added to the intracellular pipette solution. Under

these conditions the proportion of rapidly-adapting cells was identical to the control

(75%; 6/8).

Figure 4.2 Transient application of LY294002 blocks Kv channels in SGNs. A Current

traces evoked by depolarising voltage step protocol in the presence and absence of the PI3K

inhibitor LY294002. Cell was held at -73 mV and stepped to +17 mV in 10 mV increments.

Perfusion of 5 μM LY294002 across the cell caused significant inhibition of steady state IK. 

Peak Ik however showed little to no reduction. Upon washing the Ik quickly recovered. B I-V

trace showing the steady state Ik in the presence and absence of the LY294002 as well as 3

mins after washing off.

In separate experiments, cultures were pre-treated for one hour with the reversible PI3K

inhibitor LY294002 (5 µM). Pre-incubation with LY294002 resulted in a modest

decline in the occurrence of rapid adaptation (60%; 6/10). Together these results

suggested PIP2 availability could be an important determinant in the rapid adaptation of

cells but conversely that PIP3 availability did not seem to influence SGN excitability.

Interestingly, transient bath application of LY294002 resulted in a marked effect on the

outward current which was not observed upon transient application of the other PI3K

inhibitor, wortmannin. Figure 4.2A shows the effects of 5 µM LY294002 perfused over
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a SGN for 3 mins. LY294002 increased the rate of inactivation of outward K+ currents,

an effect that was rapid and reversible, reaching maximum effect after 80 s and

subsequently washing out in a similar period, to recover the initial current inactivation

kinetics (Figure 4.2). It seems therefore, that the LY294002 pre-incubation experiment

should be interpreted with caution due potential non-PI3K related effects.

4.2.2 Sequestration of PIP2 increases excitability in SGN

To further explore the role of PIP2 in the regulation of SGN excitability, other methods

of altering PIP2 availability were explored. To this end, a novel membrane-targeting

palmitoylated peptide with high affinity for cellular PIP2 was employed (Robbins et al.,

2006). In current clamp mode, bath application of 3 µM PIP2-PP enhanced the

excitability of rapidly adapting SGNs (P12-15; Figure 4.3C, D). The extent of this

enhancement was variable, however, with most SGNs becoming more slowly adapting,

firing 2-5 APs instead of 1 (7/10), whilst others became non-adapting, continuing to fire

as long as the current stimulus was applied (Figure 4.3C). In addition to increasing the

number of APs, PIP2-PP also reduced the amount of current required to fire an AP in

2/9 cases, and induced spontaneous firing in the absence of any injected current in those

two cells. Furthermore, PIP2-PP significantly increased the steady-state voltage in

response to depolarising current injection steps (n = 4, p<0.001, two-way ANOVA;

Figure 4.3E), indicating an increased membrane resistance.
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Figure 4.3 A PIP2 sequestering peptide enhances the excitability of post-hearing onset

SGNs. A Cartoon of the structure of the PIP2-binding palmitoylated peptide (PIP2-PP). B

Putative mechanism of action of the PIP2-PP. The PIP2-PP is proposed to act by sequestering

membrane bound PIP2 and making it unavailable for interaction with membranous ion channels.

C Voltage response from a P13 rapidly adapting SGN to depolarizing current injections, before

(Control, left) and after the bath application of 3 μM PIP2-PP (right). 200 ms current injections

were applied in +50 pA increments from a holding potential of -73 mV. Typically, PIP2-PP

slowed the rate of adaptation or removed it entirely, and reduced the current required to elicit

AP firing. D Summary of the effect of 3 μM PIP2-PP on the number of APs (#APs) elicited in

response to a +100 pA current step (number of cells is shown in parentheses). E Comparison of

the mean voltage-current relationship before (Control) and after the bath application of 3 μM 

PIP2-PP (n = 4). Steady-state voltage was measured 10 ms from the end of 600 ms current

injections applied in +20 pA increments from a holding potential of -73 mV.
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The increased membrane resistance following application of the PIP2-PP possibly

indicated a decreased activity of Kv channels, and so separate voltage clamp

experiments were performed to further elucidate the effects of PIP2 sequestration on

SGNs. Bath application of 3 µM PIP2-PP resulted in a prominent inhibition of outward

K+ currents. Furthermore, PIP2-PP was found to have differential effects between HVA

and LVA K+ currents (Figure 4.4A, B). PIP2-PP markedly reduced the outward current

amplitude measured at -53 mV (74.2 ± 2.9%), but had less effect on currents at -13 mV

(34.5 ± 4.6%; P<0.001, n = 15). Subtraction of the PIP2-PP exposed trace from the

control trace gave the PIP2-PP-sensitive component (Figure 4.4A, lower trace), a LVA

current with a V1/2 of -51.1 ± 1.1 mV and slope of 6.7 ± 0.5 (Figure 4.4C). The effects

of the peptide were rapid, with maximal inhibition obtained within ~2 mins of the onset

of the application (Figure 4.4D, control). The effects of the peptide could not be washed

out, either using extracellular solution or extracellular solution supplemented with FBS.

To further examine if PIP2 depletion was the mechanism behind LVA inhibition,

diC8PIP2 was included in the intracellular recording solution. Under control conditions

LVA current inhibition by PIP2-PP reached a maximum after about 2 mins of its

application (Figure 4.4D, control), and this rate of current inhibition could be fitted

using a standard single exponential decay function (τcontrol = 28.4 ± 5.3 s). Inclusion of

diC8PIP2 in the recording pipette was found to significantly slow the rate of LVA

current inhibition by PIP2-PP (τdiC8PIP2 = 115.5 ± 16.6 s, p = 0.002, paired Student’s t-

test, Figure 4.4D). Similarly, the mean% currents remaining after 2 mins of drug

application was significantly higher in the presence of the diC8PIP2 intracellular solution

(23.4 ± 3.9%, n = 5) than with the control solution (59.5 ± 5.4%, n = 5, p = 0.002,

unpaired Student’s t-test). These findings further support the hypothesis that the

channels underlying the LVA current in SGNs are regulated via binding of PIP2.
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Figure 4.4 PIP2 sequestration inhibits a Kv1-like, LVA current in SGNs. A Representative

current responses to 200 ms voltage steps in 10 mV increments from a holding potential of -73

mV. Traces shown are before (Control, upper panel) and after (middle panel) bath application of

3 μM PIP2-PP. PIP2-PP-sensitive currents are shown in the lower panel and were obtained by

subtraction of PIP2-PP from control currents. B Mean steady-state current-voltage relationships

before (Control, open squares), and after (PIP2-PP, filled squared) PIP2-PP application (3 μM; n 

= 15). Steady-state currents were measured between 15 ms and 5 ms from the end of the

voltage steps described. C Normalised G-V plot of the PIP2-PP-sensitive component. D Effects

of PIP2-PP application on normalised slope conductance (Gs), calculated from a voltage ramp

protocol applied every 10 s (Gs; measured between -63 mV to -53 mV). Gs decreases during the

bath application of PIP2-PP (Control; 1 μM; n = 5) reaching near maximal inhibition ~2 mins post 

application. Inclusion of diC8PIP2 (200 μM) in the intracellular solution significantly slows the 

effect of PIP2-PP (diC8PIP2; n = 7). E Comparison of the rates of Gs inhibition in the absence

(Control; n = 5) and presence of diC8PIP2 (200 μM) in the intracellular solution (diC8PIP2; n = 7).

The time constant of Gs inhibition was calculated by fitting mono-exponential functions to the

data in D. *P<0.05.
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Figure 4.5 The effect of PIP2-PP analogues on SGN LVA currents. A Design of the various

PIP2-PP analogues. These analogues were designed to examine the important structural

features which gave rise to ability to sequester PIP2. The Grey filled box indicates the peptide

structure with positively charged residues in red, negatively charge residues in green and

neutral residues in black. B (Replicated from Figure 4.4B) Mean steady-state current-voltage

relationships before (Control, open squares), and after (PIP2-PP, filled squared) PIP2-PP

application (3 μM; n = 15). C Mean current-voltage relationships before and after application of

an unpalmitoylated analogue of PIP2-PP (Non-Pal PIP2 Peptide, 3 μM; n = 7). D Mean current-

voltage relationships before and after application of a neutrally charged analogue of PIP2-PP

(Neutral-PP, 3 μM; n = 5). E Mean current-voltage relationships before and after application of a

Poly K-palpeptide, a poly-cationic analog of PIP2-PP. (Poly K-PP, 3 μM; n = 5). F Timecourse of

the effect of PIP2-PP application and its various analogues as measured by normalised slope

conductance (Gs). G The effects of PIP2-PP and its analogues on SGN LVA steady-state K
+

currents (measured at -53 mv). *P<0.05 .

In order to better characterise the mechanism of action of PIP2-PP and identify the

important structural features which give rise to its pharmacological properties, a set of
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PIP2-PP analogues was designed and tested. These peptides explored the importance of

palmitoylation as well as both the presence and position of cationic peptide residues

within palmitoylated peptide (Figure 4.5A). The importance of the lipid modification

was tested with a non-palmitoylated analogue of PIP2-PP (“Non-Pal PIP2 Peptide”)

which was identical in sequence to the PIP2-PP but was missing the membrane-targeting

acyl group. Robbins and co-workers originally characterised this Non-Pal PIP2 Peptide

as an inactive analogue of PIP2-PP (Robbins et al., 2006). Although a small current

reduction was observed in 2/7 cells, there was no significant effect of the Non-Pal PIP2

Peptide on LVA currents (Figure 4.5B, C, G). The average current remaining after 2

mins of Non-Pal PIP2 Peptide application was 84.6 ± 10.3%, significantly higher than

that of the PIP2-PP (pre- vs post-application: P = 0.187, n = 7, paired Student’s t-test;

PIP2-PP vs Non-Pal PIP2 Peptide application, P<0.001, n = 15 vs n = 7, unpaired

Student’s t-test, Figure 4.5C,G).

The second modification of the PIP2-PP examined was the importance of cationic

residues using a neutrally charged peptide (“Neutral-PP”) where the four positively

charged residues were substituted for uncharged alanine residues in the manner

R2AK8AR9AR10A, to yield an overall neutrally charged, albeit zwitterionic, peptide

(Figure 4.5A). In this case the peptide contained the membrane-targeting palmitoyl

group and only the peptide sequence differed from PIP2-PP. This peptide was not

described in the initial Robbins et al., study but since then other groups have reported

the Neutral-PP to be an inactive analogue and successfully employed it as a negative

control for the PIP2-PP (Buchmayer et al., 2013, Hamilton et al., 2014). The Neutral-PP

showed no activity against LVA current in SGNs. The average current remaining after

Neutral-PP application was 99.6 ± 2.8% (pre- vs post-application: P = 0.5, n = 5, paired

Student’s t-test; PIP2-PP vs Neutral-PP application, P<0.001, n = 15/5, unpaired

Student’s t-test, Figure 4.5D, G).

In order to examine if this cationic charge was the determining factor for PIP2 binding

or whether the specific peptide sequence was also important, a poly cationic analogue of

PIP2-PP (“Poly K-PP”) was tested. In Poly K-PP all the residues in the peptide sequence

were replaced with positively charged lysine residues (Figure 4.5A). The Poly K-PP

mirrored the effect of the original PIP2-PP, inhibiting the LVA current in all of the cells

tested. The average current remaining after Poly K-PP application was 32.1 ± 8.3%
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(pre- vs post-application: P = 0.004, n = 5, paired Student’s t-test; PIP2-PP vs Poly K-

PP: Peptide application, P = 0.36, n = 15/5, unpaired Student’s t-test, Figure 4.5E, G). It

also exhibited a very similar time course of action; a maximal steady-state inhibition

was reached after about 2 mins of perfusion into the bath (Figure 4.5F). This is

consistent with the findings of Robbins et al., that observed that Poly K-PP could induce

similar levels of Kv7 inhibition as PIP2-PP. Additionally, this suggests that it is not the

specific peptide sequence that is required for activity but rather the strong cationic

character which helps it interact with the PIP2 (and most likely other) anionic

phospholipids. Finally, we examined the localisation of a Fluorescein-tagged analogue

of Pal-PIP2 (Fluoro PIP2-PP) under confocal microscopy. 2 mins before examination, 10

µM Fluoro PIP2-PP was added to cultured HEK293 cells. Fluoro PIP2-PP was observed

to localise to the plasma membranes of the cells (Figure 4.6A-C). Very little

fluorescence was observed within the cell cytoplasm suggesting the peptide exerts its

effect by interaction with plasma membrane bound lipids rather than other intracellular

candidates.

Figure 4.6 Fluorescein-tagged PIP2 palpeptide (Fluoro PIP2-PP) localises to the plasma

membrane of HEK293 cells. A Confocal image of cultured HEK293 cells with 10 μM Fluoro 

PIP2-PP in the bathing solution. Fluoro PIP2-PP localises strongly to the plasma membrane.

Excitation wavelength, 488 nm; emission, 543 nm. B DIC image of the same cells. C Combined

confocal and DIC image. Scale bar: 20 μm. 
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In summary, these control experiments demonstrated that PIP2-PP targets the neuronal

plasma membranes and highlighted the importance of palmitoylation and cationic

residues to the efficacy of PIP2-PP in inhibiting SGN LVA currents. Furthermore, the

similarity in the structure-activity relationship between this work and the previous

characterisations provide evidence that the PIP2-PP is acting via PIP2 depletion and not

through an alternate mechanism e.g. direct interaction with the Kv channels.

Figure 4.7 PIP2-PP and DTX-K block the same LVA K
+

current componant in SGNs. A

Mean current-voltage relationships of SGNs before (Control, open squares), and after

sequential application of PIP2-PP (PIP2-PP; 3 µM, black squares), and subsequent application

of PIP2-PP with DTX-K (+DTX-K; 100 nM; n = 3, grey triangles). Application of PIP2-PP blocks

an LVA current as discussed but there is no additive effect observed upon the addition of DTX-

K to the bath. B There was no additive effect when the drugs were applied in reverse order (n =

3). C Normalised G-V plots showing a comparison of the PIP2-PP-sensitive component (open

squares) and PIP2-PP+DTX-K-sensitive component (black squares) obtained from the SGN

currents in A. D Similar comparison of the currents obtained from B.

To confirm whether PIP2-PP was inhibiting Kv1-mediated currents, co-application

experiments using both channel toxins and peptide were performed. Following initial

application of 3 μM PIP2-PP, addition of 100 nM extracellular DTX-K failed to further

reduce the LVA current amplitude (Figure 4.7A). A reversal of the order of application
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of the PIP2-PP and DTX-K similarly did not show any enhancement of inhibition after

application of the latter agent (Figure 4.7B). Overlaying the conductance-voltage

relationship of the two groups in both cases show comparable plots (Figure 4.7C, D).

This suggests that the PIP2-mediated LVA currents in SGNs are mediated by Kv1.1-

containing channels.

Figure 4.8 Inhibition of low-threshold voltage-activated current in SGNs is consistent one

week after the onset of hearing. A Mean steady-state current-voltage relationships, from P12-

P15 mice, before (Control, open squares), and after (PIP2-PP, filled squared) PIP2-PP

application (3 μM; n = 11). Steady-state currents were measured at the end of the voltage steps 

described for Figure 4.4A. B Mean steady-state current-voltage relationships, from P20-P21

mice. (n = 4). C The % current inhibition after application of 3 μM PIP2-PP was not significantly

different between the two ages for either LVA currents (measured at -53 mV) or HVA currents

(measured at +17 mV). D Normalised G-V plots showing the PIP2-PP-sensitive components of

P12-P15 and P20-P21 mouse SGN currents.

The inhibitory effect of PIP2-PP was analysed in mice of different developmental ages.

Of the 15 SGN exposed to PIP2-PP in this study, they could be divided into roughly 2

groups by their age - animals at the onset of hearing (P12-15) and animals one week

after the onset of hearing (P20-21). PIP2-PP showed little difference in its inhibitory
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effect on SGN from P12-15 and P20-21 mice (Figure 4.8A, B). In SGN from P12-15

mice the current remaining at -53 mV after PIP2-PP application (77.2 ± 3.3%, n = 11)

was not significantly different to that in SGN from P20-21 mice (66.2 ± 4.2%, n = 4, P

= 0.094, unpaired Student’s t-test). Analysis of the voltage dependence of the PIP2-PP-

sensitive components showed a small but significant difference in the V1/2 (P12-15: -

49.4 ± 0.9 mV, n = 11; P20-21: -55.7 ± 1.6 mV; P = 0.004, unpaired Student’s t-test;

Table 4.1). This suggests the PIP2-PP-sensitive LVA current established by the onset of

hearing may continue to mature at least one week after hearing onset.

Table 4.1 Boltzmann parameters for PIP2-PP sensitive SGN conductances

Age V ½ (mV) k (mV) n

P12-15 -49.4 ± 0.9 6.35 ± 0.44 11

P20-21 -55.6 ± 1.6 7.71 ± 1.4 4

4.2.3 Inhibition of Kv7 mediated current does not increase excitability

Kv7 subunits are encoded by the KCNQ family of genes and form low-threshold

voltage-gated K+ channels when expressed in cell membranes. The Kv7 family are

composed of five members: Kv7.1-Kv7.5, of which four, Kv7.2–Kv7.5, have been

identifies in the neurons (Brown and Passmore, 2009, Robbins, 2001). Kv7 channels

have relatively slow activation times, but do not inactivate and thus typically generate a

steady outward current. They activate at subthreshold potentials and stabilise the

membrane potential in the presence of depolarizing stimuli (Brown and Passmore,

2009). Kv7-mediated currents are highly PIP2 dependent and have been shown to be

important regulators of excitability in neuronal models (Brown et al., 2007). The

contribution of Kv7-mediated currents to SGN excitability was therefore investigated.

To this end, we examined the effedcts the Kv7 blocker, XE991, had on SGN membrane

physiology.
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Under current clamp mode, bath application of 3 µM XE991 failed to increase AP firing

in five rapidly or slowly adapting SGNs (P12-15) (Figure 4.9A, B). Voltage clamp

recordings were also obtained from the same cells in order to determine if XE991 had

any effect on the native currents. Cells were depolarised from a holding potential of -73

mV in 10 mV steps for 1 second before returning to the holding potential. The extended

step length of 1 s was used to examine the effect of XE991 on the slower activating Kv7

channels (Figure 4.9C, D).

Figure 4.9 Effects of the Kv7 blocker, XE991, on SGN in vitro. A Representative voltage

response from a rapidly adapting SGN to 100 pA depolarizing current injections, before

(Control, left) and after the bath application of 3 µM XE991 (XE991; right). B In 5/5 cells, bath

application of 3 µM XE991 failed to increase or resulted in a decrease in the number of APs

fired. C Representative evoked current responses before (Control, left) and after the bath

application of 3 µM XE991 (XE991; right). Cells were held at a holding potential of -73 mV and

stepped from -93 mV to +17 mV in 10 mV increments. Voltage steps were held for 1 s before

returning to the holding potential. D Mean steady-state current-voltage relationships, from P12-
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P15 mice, before (Control, open squares), and after (XE991, filled squared) XE991 application

(1 mM; n = 5). Steady-state currents were measured between 900 ms and 1 s at the end of the

voltage steps described in C. E Current responses from mouse SGN using an “M-current

protocol” (Hernandez et al., 2008) before (Control, left) and after the bath application of 3 µM

XE991 (XE991; right). SGN, held at a potential of -73 mV and were depolarised to -43 mV for 1

s in order to activate neuronal Kv7 currents before being returned to a holding potential of -73

mV for 500 ms. M-current was calculated by measuring the peak amplitude of the tail currents

and subtracting it from the steady state currents at -73 mV (dotted lines). F Mean M-current

amplitudes as calculated from E. Bath application of 3 µM XE991 reduced neuronal M-currents

in 5/5 cells. *p<0.05.

3 µM XE991 blocked an outward Ik in a manner that was not reversible after 5 mins

wash. The effect of 3 µM XE991 on cellular M-currents was also examined. Recordings

were made using an “M-current protocol” (Hernandez et al., 2008) and the M-current

amplitude was calculated as described in Figure 4.9E. In 5/5 cells M-current amplitude

was reduced, with a mean current reduction of 40.7% (79.98 ± 16.06 pA; control vs

47.4 ± 6.5 pA; p = 0.041, paired Student’s t-test, Figure 4.9F) In light of these results,

despite substantial XE991-sensitive currents in SGNs, they do not seem likely to play a

major role in determining the excitability of SGN in vitro.

4.2.4 PLC activation does not inhibit SGN LVA currents

To test whether available PIP2 in SGN could be reduced via native physiological

mechanisms, we employed activators of normal metabolic pathways which may deplete

membrane bound PIP2. The initial approach was to target activation of the Gq/11 G-

protein-coupled receptor (GPCRs) pathway, which subsequently activates PLCβ and 

results in PIP2 hydrolysis. M1, M3 and M5 muscarinic receptors are metabotropic

GPCRs preferentially coupled to Gq/11 and activate PLCβ (Ishii and Kurachi, 2006), 

and so we examined the effects of Oxotremorine-M (Oxo-M), a broad muscarinic

agonist (Birdsall et al., 1978) on outward evoked Ik in SGNs. Under voltage clamp

mode, recordings were made in the absence and presence of 1-10 μM bath applied Oxo-

M. Oxo-M showed little effect upon outward evoked Ik between -73mV to -3mV
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(Figure 4.10A). LVA currents, measured at -53 mV, showed little inhibition at either 1

or 10 μM Oxo-M (1 μM, 93.5 ± 2.9% current remaining, n = 5, p = 0.08; 10 μM, 91.8 ± 

2.6% current remaining, n = 5, p = 0.054, paired Student’s t-test, Figure 4.10B).

Figure 4.10 Effects of muscarinic receptor agonism on the SGN LVA current. A

Representative evoked outward current responses to 200 ms voltage steps in 10 mV

increments from a holding potential of -73 mV. Traces shown are before (Control, Left) and after

(middle panel) bath application of 10 μM Oxo-M. Oxo-M-sensitive currents are shown in the 

right panel and were obtained by subtraction of 10 μM Oxo-M treated currents from control 

currents. B Mean steady-state current-voltage relationships before (Control, open squares), and

after 1 μM (grey squares) and 10 μM Oxo-M (Black squares, n = 5).  

The potential contribution of PLC was also examined using the PLC activator m-

3M3FBS. At doses of 10-50 μM, m-3M3FBS has been shown to increase the hydrolytic 

activity of PLC against membrane bound PIs (Bae et al., 2003). Recordings from SGNs

were made in voltage-clamp mode, and 10 μM m-3M3FBS was applied for a period of 

at least 10 mins to observe the effects. Application of 10 μM m-3M3FBS showed 

variable effects between different SGN currents. There was an inhibitory effect upon

hyperpolarising IH currents (not shown) as well as on the outward IK, an effect most

obvious at higher voltages (Figure 4.11A). Interestingly, in different cells the LVA K+

currents displayed variously, both inhibition and activation in response to 10 μM m-

3M3FBS. This variable drug response is demonstrated in Figure 4.11C by the

comparison of two individual SGNs isolated from a P21 mouse. The current responses

were obtained from single voltage step applied from -73 mV to -53 mV, showing both

an inhibitory (Figure 4.11C, left panel) or stimulatory response (Figure 4.11C, right
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panel). In total, 6/8 neurons showed a decrease in current at -53 mV, whilst 2/8 neurons

displayed increased current at this test voltage. The mean current remaining after 10

mins of 10 μM m-3M3FBS application was 88.2 ± 8.2% (P = 0.93, paired Student’s t-

test, n = 8, Figure 4.11A, B).

Figure 4.11 Effects of the PLC activator, m-3M3FBS, on the SGN LVA K+ current. A

Representative evoked outward current responses to 200 ms voltage steps in 10 mV

increments from a holding potential of -73 mV. Traces shown are before (Control, Left) and after

(middle panel) bath application of 10 μM m-3M3FBS. m-3M3FBS-sensitive currents are shown 

in the right panel and were obtained by subtraction of m-3M3FBS from control currents. B Mean

steady-state current-voltage relationships before (Control, open squares), and after 10 μM m-

3M3FBS application (Black squares, n = 8). C Current responces to a single voltage step, from -

73 mV to -53 mV, showing SGN currents before (black trace), and after 10 mins of 10 μM m-

3M3FBS application (red trace). m-3M3FBS application shows a variable effect on SGN LVA

currents. Inwards sodium transients can be observed in the “LVA stimulation” trace.

4.2.5 PIP2 sequestration inhibits Kv1.1/Kv1.2 heteromeric channel

currents

This work along with other studies has implicated both Kv1.1 and Kv1.2 as contributing

to the LVA current in SGN (Smith et al., 2015, Mo et al., 2002). Previous
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electrophysiological examination the Kv1 family of channels (Kv1.1/β1.1, Kv1.3, 

Kv1.4 and Kv1.5) expressed homomerically in heterologous systems has revealed an

apparent lack of sensitivity to PIP2 (Kruse et al., 2012). Kv1.2 homomeric channels

however, do display sensitivity to PIP2, with an approximate 20-30% reduction in

current amplitude upon PIP2 depletion, as well as an apparent leftward shift of the

voltage dependence (Kruse and Hille, 2013, Rodriguez-Menchaca et al., 2012).

However, there has been no investigation to date as to the effects of PIP2 modulation on

Kv1heteromeric channels expressed in heterologous systems.

In order to re-examine the effects of PIP2 depletion on Kv1.2 homomeric channels, the

Kv1.2 channel subunits were expressed transiently in HEK293 cells. In line with

previous findings, we observed that Kv1.2 currents were significantly decreased

following application of PIP2-PP (18.6 ± 5.5% at +57 mV, n = 6; Figure 4.12A, B).

Unlike previous findings however, no leftward shift in the V1/2 of activation was

observed (control: V1/2 = -11.7 ± 2.2 mV; PIP2-PP: V1/2 = -11.3 ± 2.2 mV, n = 6, p =

0.64, paired Student’s t-test). The notably greater reduction of the LVA current in SGNs

by PIP2-PP application and the proposal that Kv1.1/Kv1.2 heteromeric channels likely

mediate this LVA current (Smith et al., 2015), led to the investigation of the effects of

PIP2-PP application on Kv1.1/Kv1.2 heteromeric channels. Application of PIP2-PP to

Kv1.1/Kv1.2 channel currents resulted in larger inhibition (77.7 ± 5.1% at +57 mV, n =

5; Figure 4.12A, C) compared to the Kv1.2 homomers (p<0.001, unpaired Student’s t-

test). Once again, there was no significant shift in the V1/2 of activation (control: V1/2 = -

21 ± 3.7 mV; PIP2-PP: V1/2 = -19.7 ± 6 mV, n = 4, p = 0.63, paired Student’s t-test).

Intracellular dialysis with diC8PIP2-containing ICS produced a marked decrease in the

extent and slowing of the rate of inhibition by PIP2-PP (Figure 4.12C, D). This

confirmed that the effect of PIP2-PP on Kv1.1/Kv1.2 channels was caused by PIP2

sequestration rather than a direct action on the channel. It was noted that the reduction

of heterologous Kv1.1/Kv1.2 currents using PIP2-PP resembled the effect observed on

the LVA current in SGNs, further supporting the proposal that the LVA current is

mediated by Kv1.1/Kv1.2 heteromers.
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Figure 4.12 PIP2 sequestration preferentially inhibits Kv1.1/1.2 heteromeric channels

expressed in HEK293 cells. A Representative outward evoked current traces from Kv1.2

homomeric channels (left) and heteromeric Kv1.1/1.2 channels (right), before (top) and after 1

μM PIP2-PP application (middle). PIP2-PP-sensitive currents are shown (bottom) and were

obtained by subtracting PIP2-PP application traces from control traces. B Normalised steady-

state current-voltage plots for Kv1.2 homomeric channels before (control) and after the

application of PIP2-PP (PIP2-PP; 1 μM; n = 6). C Normalised steady-state current-voltage plots

for Kv1.1/Kv1.2 channels before (control) and after the application of PIP2-PP (PIP2-PP; 1 μM; n 

= 5). In B and C, steady-state currents were measured at the end of 200 ms voltage steps

applied in 10 mV increments from a holding potential of -73 mV. D Normalised slope

conductance (Gs) of Kv1.1/Kv1.2, calculated from a voltage ramp protocol applied every 10 s

(Gs; measured between -63 mV to -53 mV) decreases during application of PIP2-PP (Control; 1

μM; n = 7). The addition of diC8PIP2 (200 μM) to the intracellular solution, reduces the effect of 
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PIP2-PP (diC8PIP2; n = 5). E, Comparison of the rate of Kv1.1/Kv1.2 Gs inhibition by PIP2-PP in

the absence (control; n = 7) and presence of diC8PIP2 (200 μM) in the intracellular solution 

(diC8PIP2; n = 5). The time constant of Gs inhibition was calculated by fitting mono-exponential

functions to the Gs data in D.

4.3 Discussion

This chapter presents evidence for a dependence of rapid adaptation in murine, post

hearing-onset SGNs on endogenous PIP2 levels. This was demonstrated by depleting

membrane bound PIP2 levels via two separate methods; inhibition of PIP2 synthesis and

PIP2 sequestration. These experiments revealed that the effect of PIP2 on spike

adaptation was via Kv1.1/1.2 heteromeric channels. This work presents a new

mechanism of action for PIP2 in the regulation of neuronal excitability which merits

further investigation.

4.3.1 Experimental depletion of cellular PIP2

Initial work in this chapter focused on the effects of the inhibition of PIP2 synthesis on

SGN membrane electrophysiology. Here, three conditions of PI depletion were induced

- two focusing on PI3K inhibition and one on PI4K inhibition. Only the PI4K inhibition

produced marked reductions in rapid adaptation. A limitation to this approach is the

inability to make pre and post- incubation recordings from SGNs. Because of the high

degree of heterogeneity inherent in SGN, it is impossible to discern what changes in

SGN membrane properties might be giving rise to the observed differences in

population firing phenotypes. Another potential caveat to this approach is that

wortmannin affects other PI pathways. Though wortmannin discriminates between

PI3Ks and PI4K it shows little discrimination between subtypes of PI3Ks, or the

reactions they catalyse. In practice this means that whilst PI3K inhibition results in

reduced levels of PIP3, it also results in reduced pools of PI(3)P (and consequently

PI(3,5)P2), as well as reduced pools of PI(3,4)P2 (see Figure 1.11). This fact is often

neglected in discussions of wortmannin induced effects, probably because of a paucity
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of knowledge about the biological roles of these other PIs, but also because PI(4,5)P2

makes up 99%, by weight, of all the possible PIP2 molecules in the cell (Lemmon,

2008). Despite these concerns, the fact that PI3K does not substantially affect

excitability and the observation that the inclusion of diC8PIP2 in the patch pipette

rescued the effects of PI4K inhibition suggets that PIP2 is the best candidate as the

regulator of SGN excitability.

One substantial concern was the observed inhibition of outward Ik upon addition of

LY294002 to the bath. Due to rapid onset and wash off of this effect (~1 minute), this

was not believed to be a result of PI3K inhibition. Consistent with this idea, other labs

have noted similar effects of this drug. The first possible non-PI3K electrophysiological

involvement of LY294002 was a reported block of Kv currents in a MIN6 β cell line via 

direct action on the channel (El-Kholy et al., 2003). A detailed study of the effects of

LY294002 on the human Kv1.5 channel determined that it appears to act as an open

channel blocker, independently of its effects on PI3K activity, and provided evidence

for a putative binding site within the pore region of the channel (Wu et al., 2009). This

provides a substantial concern about the use of LY294002 when investigating the role

of PIP3 on ion channels and highlights the need for more specific, electrophysiologically

inert PI3K and PI4K inhibitors for the examination of PIP2 on membrane ion channels.

To overcome some of these potential limitations an alternative method of PIP2

sequestration was attempted. PIP2-PP provides a simple, efficient and rapid method of

PIP2 capture which had been characterised initially to inhibit the activity of the highly

PIP2 dependent Kv7.2/Kv7.3 channels in both heterologous expression systems as well

as rat superior cervical ganglion cells (Robbins et al., 2006). When this work began,

only the initial characterisation of the peptide had been published but since its initial

documentation it has now been employed successfully in a two different studies to

examine the effects of PIP2 on the human dopamine transporter and serotonin

transporter (Hamilton et al., 2014, Buchmayer et al., 2013). PIP2-PP takes advantage of

the known affinity of Kv7 channels for PIP2, and is comprised of a peptide sequence

known to be important in the interaction between PIP2 and Kv7.2/3 (Zhang et al., 2003).

PIP2-PP most likely acts by embedding within the plasma membrane and interacting

with PIs at the intracellular leaflet of the membrane. This is evidenced by the

ineffectiveness of the non-palmitoylated PIP2-PP analogue in our study and experiments
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from Robbins et al. that report inhibition of M-current in response to intracellular

application of a non-palmitoylated PIP2-PP analogue. Interestingly, a concentration of at

least 10-fold higher of the non-palmitoylated peptide was required to produce an

equivalent inhibition to that of the externally applied PIP2-PP (Robbins et al., 2006).

This indicates that the palmitoyl group is not just essential in allowing access of the

PIP2-binding peptide to the inner leaflet of the membrane, but it also markedly

increased its ability to sequester PIP2, most likely by ensuring a high membrane

partitioning of the PIP2-binding peptide. This is consistent with experiments here and

from Robbins et al., that show strong targeting of a fluorescent PIP2-PP analogue the

plasma membrane.

The results here also demonstrated that although the palmitoylated peptide sequence,

Pal-HRQKHFEKRR, is sufficient to sequester PIP2, it is not obligatory for the peptide

to function. Rather, the evidence points to both palmitoylation and the strong cationic

nature of the peptide as the important features for activity. This is consistent with

findings from the original characterisation which also demonstrated the efficacy of

“poly K-PP” to inhibit M-current (Robbins et al., 2006). In the same work it was shown

that up to 2 positive residues in the PIP2-PP could be mutated to neutral alanine (net

peptide charge, +2) without losing considerable potency. Conversely they also showed

that a poly-aspartate or non-palmitoylated analogue of PIP2-PP did not sequester PIP2.

This suggests that PIP2-PP is not acting in the manner of classic protein-substrate

recognition but rather interactions are most likely driven by electrostatics.

Consequently, this also means that PIP2-PP most likely binds a range of anionic

phospholipids present in the plasma membrane. Interestingly, results from Thomas et al.

have shown that the C-terminus peptide from Kv7.1 pulls down a range of different PIs

in various abundances from cell lysates (Thomas et al., 2011). The homologous amino

acid sequence in Kv7.1 varies somewhat from the Kv7.2/7.3 sequence. Nonetheless, the

results from Thomas et al. suggest similar broad electrostatic interactions underlie the

Peptide-PIP2 affinity.

The excitatory effects of the PIP2 depletion were attributed primarily to its ability to

modulate SGN Kv1-mediated LVA currents, as opposed to other ionic conductances.

Other mechanisms cannot be completely ruled out, but some observations lead us to

believe it acts via modulation of Kv1-mediated current. Firstly, PIP2-PP has a negligible
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effect on cells which were previously treated with a Kv1 channel blocker (Figure 4.7),

or which had negligible LVA currents (not shown). Secondly, PIP2-PP recapitulates the

increased excitability observed by other KV1 blockers such as DTX-K (Figure 4.3B).

Finally, the contribution of the other major PIP2 sensitive conductance, Kv7, does not

seem to regulate spike firing (Figure 4.9) (Lv et al., 2010).

4.3.2 Physiological mechanisms of PIP2 depletion in SGN

The question of whether SGNs employ PIP2 modulation of LVA currents in a

physiological context remains open. The advent of recent genetic manipulations has

allowed highly responsive methods of PIP2 depletion; techniques such as voltage-gated

phosphatase activation or drug induced-membrane translocation of specific

phosphatases allow the experimenter to rapidly reduce membrane bound PIP2 levels in a

precise manner. However these techniques, along with the methods of PIP2

sequestration described here, do not fully address the question of whether the effects

observed can be induced by physiological means alone i.e. whether a cell can achieve

the same effects via endogenous methods of PIP2 depletion. Evidence in this direction

would support the hypothesis that PIP2 regulates SGN signalling in vivo. To this end we

employed two alternate methods of PIP2 reduction. The first method involved the

attempted activation of muscarinic G-protein-coupled receptors (GPCRs) to stimulate

PLC activation to hydrolyse PIP2, and the second method involved the use of a PLC

activator.

Based on the results observed in the PIP2 depletion experiments, muscarinic activation

was investigated as a possible mechanism of LVA current modulation. Muscarinic

receptors (mAChRs) respond to the presence of acetylcholine (ACh) and other

muscarinic agonists. They can be classified into 5 subtypes (M1-M5), which are

distinguished by their different G protein-receptor complexes, pharmacological

responses and differential distribution and expression. M1, M3 and M5 receptors act via

the Gq/11 GPCR pathway which signals through the Gα complex and resulting PIP2

hydrolysis. M2 and M4 act via the Gi/o pathway which signals via Gβγ (Brown, 2010). 

This work attempted to take advantage of the M1, M3 and M5 Gq/11 pathway as a
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means to reduce cellular PIP2, a pathway responsible for the muscarinic inhibition of

Kv7-mediated M-currents in neurons (Brown et al., 2007).

Evidence supports a function for Gq/11-linked muscarinic receptors in normal hearing.

Isolated SGNs from post hearing-onset animals showed increased intracellular [Ca2+] in

response to ACh and muscarine (Rome et al., 1999), and muscarinic agonists activate

transient nonselective cation currents in isolated rat SGNs (Ito and Dulon, 2002). The

recordings here did not show the transient cation conductance reported previously, but

slower, rather than transient effects, were the focus of this study. Oxo-M did produce a

small but non-significant reduction in SGN LVA current. The inability of Oxo-M to

produce significant inhibition of the LVA current could have many explanations.

Muscarinic receptor activation may simply not reduce PIP2 levels sufficiently to induce

PIP2 dissociation from the Kv1 channels. For example, the highly PIP2-dependent

channel Kir2.1 was shown to be insensitive to muscarinic activation, but it could be

inhibited by other forms of PIP2 depletion such as VSP activation (Kruse et al., 2012).

Other possible explanations are that mAChRs and PLC exist in spatially distinct

patterns to SGN Kv channels and are thus quite poor at modulation their activity. PLC

has been shown to exist in discrete microdomains within neurons and may act to exert

local control over proximate ion channels (Delmas et al., 2004).

We still have only an incomplete knowledge of the role of mAChRs in the cochlea. The

location and function of the various muscarinic receptors and subtypes in the cochlea

are still under investigation. Immunohistochemistry of the cochlea showed the presence

of moderate levels of M3 and M5 receptor subtypes in the rat SGNs and weak staining

observed for M1 receptor (Khan et al., 2002, Safieddine et al., 1996). These results are

consistent with RT-PCR findings. However, mice lacking the Gq-coupled mAChRs

(M1, M3, or M5) have been shown to display normal cochlear function, as measured by

auditory brainstem response and distortion product otoacoustic emission recordings,

casting doubt on a functional role for Gq-coupled mAChRs (Maison et al., 2010). The

function of such muscarinic signalling is still speculative. ACh represents the primary

neurotransmitter of the olivocochlear efferent system, which provides feedback to

cochlear hair cells and SGNs. Feedback from the lateral olivocochlear (LOC) nerves

therefore may modulate SGN excitability via mAChRs (Maison et al., 2010). The

depolarisation associated with mAChRs activation has been hypothesised to increase
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cochlear nerve fibres’ excitability in vivo, based on observations that cochlear nerve

fibres increase in excitability during ACh perfusion of the inner ear (Felix and

Ehrenberger, 1992). One final caveat to note when interpreting this result is to consider

the limits of the preparation used for these recording. Our cultured SGN preparations

are typically missing both peripheral and central neurites due to the mechanical and

enzymatic treatment of the ganglion prior to recording. In other neuronal systems, such

as the sciatic and vegus nerve, considerable levels of functional M1 and M3 are

localised to the nerve fibres (Day et al., 1991, Sierro et al., 1992). Our system is

necessarily limited to isolated somatic recordings. Repeating the experiment in a more

intact preparation, such as a cochlear slice model (Jagger et al., 2000) where the neurites

are left intact, could circumvent this limitation.

For these reasons, PLC activation was attempted directly, using m-3M3FBS (Bae et al.,

2003). m-3M3FBS considerably inhibited outward Ik in SGNs, but it produced

inconsistent and contradictory effects. One concerning issue was that m-3M3FBS might

be having a direct effect on the outward IK. Much of the (particularly HVA) current

inhibition seemed to occur through a PIP2 independent manner. Inhibition of the HVA

current was observed in cells with no LVA current and in cells with LVA, strong

inhibition of outward Ik persisted even when PIP2-PP had been added beforehand (not

shown). PLC independent effects have been noted for m-3M3FBS; m-3M3FBS has

been shown to increase intracellular [Ca2+] in a PLC-independent manner (Krjukova et

al., 2004), but it is also reported to block outward currents in murine colon cells (Dwyer

et al., 2010). Unfortunately m-3M3FBS is the only well-characterised PLC activator

available commercially, highlighting the need for more specific PLC activators for

electrophysiological investigation. Notwithstanding the above-mentioned caveats, the

lack of an effect Oxo-M and m-3M3FBS on excitability suggests PIP2 depletion via

PLC activation is insufficient for inhibiting SGN LVA in vitro.

4.3.3 Mechanism of PIP2 modulation

Despite the importance of PIP2 modulation across a range of K+ ion channels, the

molecular mechanisms of its actions remain elusive. What is understood, from the
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functional and structural study of K+ channels such as TRP, KCNQ, hERG, Kir and

HCN is that PIP2 seems to play an important role in the stabilisation of the open state

conformation of these channels (Brauchi et al., 2007, Hansen et al., 2011, Zaydman et

al., 2013, Rodriguez et al., 2010) despite its relatively low concentration within cells:

~1% total lipid content (Hilgemann et al., 2001). Whilst investigations into the action of

PIP2 on Kv1.1 and Kv1.2 regulation have been only very recent, the findings from those

studies will be the subject of the following discourse - with mention of the important

finding from both studies on Shaker and KCNQ channels where these may provide

mechanistic insights into the regulation of Kv1.1 and Kv1.2.

An array of biological lipids composes the physical and chemical environment of Kv

channels. They affect membrane channel function primarily in one of two ways. Global

or bulk effects are related to the structure and composition of the cell membrane and

how the channels embed and interact within it. For instance the activation of the Shaker

channel is markedly suppressed if it is reconstituted in a positively charged bilayer

(Schmidt et al., 2006). Changes in the lipid composition have also been suggested to

induce mechanosensory effects in ion channels related to changes in membrane lateral

tension (Combs et al., 2013). However these effects are to be unlikely to account for

PIP2 activity. The primary criticism has been that the levels of PIP2 within cells are

simply too low (~1%) to significantly impact the membrane biophysics in these ways

(Kasimova et al., 2014). Specific or cofactor lipid interactions, in contrast, involve

interactions between particular parts of the ion channel and the lipid (usually the

charged headgroup) which act to promote or restrict channel activity.

One notable effect is the ability of PIP2 to relieve the N-type inactivation that is a

characteristic of particular voltage-gated K+ channels, e.g. Kv1.4 and Kv3.4. These

channels display strong and rapid inactivation of their currents due to the presence of an

N terminus “ball domain” located on one of their α pore-forming subunits. But this form 

of PIP2 modulation and its mechanism will not be the focus here (Decher et al., 2008,

Oliver et al., 2004) but to note that Kv1.1 can show this N-type inactivation property

when it is co-expressed with the ball domain-containing accessory subunit, Kvβ1.1 and 

that the application of exogenous PIP2 in this context removes this N-type inactivation

(Oliver et al., 2004).
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The first direct evidence for PIP2 regulation of Kv channels was the discovery that PIP2

hydrolysis underlay the receptor-mediated inhibition observed in Kv7 channels (Zhang

et al., 2003, Suh and Hille, 2002). Kv7 channels show exquisite sensitivity to the

presence of PIP2 which has made them a useful tool in studying the PIP2 regulation of

ion channels. A series of experiments has now the determined that the long chain C-

terminus to be the most likely site of action for PIP2 on Kv7 channels. This was

elegantly demonstrated by Hernandez and co-workers who looked at the apparent

sensitivities of the Kv7.3 and Kv7.4 homomeric channels (the latter being ~100 fold

less sensitive to PIP2 than the former); by exchanging the long chain C-termini, they

could effectively reverse the apparent phosphoinositide sensitivity (Hernandez et al.,

2008). Mutational analysis of the Kv7 channel subunits lead to the identification of key

residues that bestow PIP2 sensitivity upon the functional channels. These were often,

but not exclusively, basic residues. At least two prospective binding sites for PIP2 have

now been proposed based on clusters of such key residues in close proximity within the

amino acid sequence (Hernandez et al., 2008, Telezhkin et al., 2013, Thomas et al.,

2011). Reduced interactions of the long chain flexible C-termini with the anionic

headgroups of membrane bound PIP2 was proposed to account for the reduced

probability of opening and reduced maximal opening observed in the mutant channels.

Interestingly, much of the same work has revealed that these so-called PIP2 sensitive

Kv7 channels show an affinity for many other phosphoinositides; the C-terminus

peptide effectively pulling down a range of PIs in vitro (Thomas et al., 2011).

Furthermore, PI(4)P, PI(3,4,5) and even some non-PI lipid phosphates have been shown

to be able to stimulate M-type channel activity when expressed in mammalian cells

lines (Telezhkin et al., 2012).

Unfortunately, a lack of homology between C-termini of Kv1 and Kv7 channels, and

the absence of a clear analogous PIP2 binding site, has made inferring information about

the activity of PIP2 on Kv1 channels difficult. In fact little was known about the PIP2

sensitivity of the greater Kv family of channels until 2012, when initial findings

suggested Kv channels may have little or no sensitivity to PIP2 (Kruse et al., 2012). The

Hille laboratory examined the effects of PIP2 depletion on, amongst others,

Kv1.1/Kvβ1.1, Kv1.3, Kv1.4 and Kv1.5 channels expressed in tsA-201 cells. They 

employed 3 distinct mechanisms of PIP2 depletion and found that apart from Kv7

channels, Kv channels were, in general, insensitive to PIP2 (Kruse et al., 2012). In 2012,
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Rodriguez-Menchaca et al., reported the first observed sensitivity of the Kv1.2 channel

to PIP2 in Xenopus oocyte excised patches (Rodriguez-Menchaca et al., 2012). This was

somewhat surprising given the previous findings that many other close members of the

Kv1 family were insensitive to the phosphoinositide. They reported that the presence of

PIP2 stabilised the voltage sensor of Kv channels, decreasing its sensitivity to changes

in membrane voltage (observed as a right-shifted I-V relationship) whilst

simultaneously promoting the stability of the open state of the channel (demonstrated by

an increase in open probability during single channel recording).

Through these experiments Rodriguez-Menchaca et al., also began to make the first

mechanistic insights into the possible mode of action of PIP2. Mutational analysis of a

number of positively charged residues in the N terminus and S4–S5 linker region of

Kv1.2 – a region which acts to couple changes at the voltage-sensor domain (VSD) to

the pore domain (PD) of the Kv channels – along with docking and molecular dynamic

simulations suggested key interaction of PIP2 with polybasic domains in these channels.

These interactions, they suggested, lead to the observed dual regulation of Kv1.2. These

results were soon replicated in the Shaker channel (Abderemane-Ali et al., 2012) which

observed similar decreases in currents and V1/2 shifts. Modelling of the Kv1.2 channel

found a similar site of action (S4–S5 linker region) but expanded the mechanism of

action to include positive residues from the S5 gate region. This model of PIP2

interaction has been leant credibility by its similar pattern of binding interactions to that

of PIP2 with Kir2.2 (Rodriguez-Menchaca et al., 2012, Hansen et al., 2011). The

interactions of PIP2 with positively charged residues in the S4–S5 linker region act to

constrain the movement of the VSD, resulting in desensitisation of the channel to

changes in membrane voltage, and also to stabilise and maintain the channel once it is

in its open state. In their 2012 paper, Abderemane-Ali et al. summarised these effects -

“PIP2 stabilises the gate in the open state and the voltage sensor in the resting state”

(Abderemane-Ali et al., 2012).

Interestingly, the two components of this dual regulation seem to be distinct and

separable phenomenon, distinguishable by differences in kinetics, PIP2 sensitivities and

molecular components i.e. mutation of protein residues could be shown to discriminate

between effects. This insight into the nature of these effects, and the hypothesis that

they may rely on distinct and separable interactions between PIP2 and specific cationic
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residues in Kv1.2, provide a plausible explanation for the difference in responses seen

across a range of experiments, including our own. Differences in the method of PIP2

depletion has been shown to be able to selectively affect the voltage dependence of

activation without reducing overall current amplitude (Rodriguez-Menchaca et al.,

2012). Further example comes from the effects of PIP2 depletion were examined in a

mammalian expression system. Although the effects on the evoked current amplitude

are reproduced (20-30% reduction depending on the method of depletion used), the

effects upon the voltage dependence vary considerably (only -3.5 mV shift in HEK293

cells, compared to -14 mV in oocytes (Kruse and Hille, 2013)). This study reports a

mean reduction of Kv1.2 current by ~20%, in line with others, but there was no

observed change in the V1/2 of activation in either Kv1.2 homomeric channels or

Kv1.1/1.2 heteromers. Without a comprehensive mechanistic understanding of how

PIP2 interacts with Kv1.2 at a molecular level it is impossible to offer a satisfying

explanation as to the variation in results across experiments. But it is conceivable that

differences in experimental conditions, expression systems, or membrane architecture

may differentially affect some PIP2 interactions over others and give rise to the

variations observed.

More in-depth molecular dynamics simulations have borne out the view that PIP2

modulation arises out of electrostatic interactions with the channel at the inner leaflet of

the membrane but has questioned if open-state stabilisation alone accounts for the gain-

of-function effects observed by PIP2. Kasimova et al., in agreement with the previous

work from Rodriguez-Menchaca et al., found that PIP2 made multiple robust salt bridge

interactions with positively charged residues in both the S4 VSD as well as the S4-S5

linker region (Kasimova et al., 2014). They suggested that the proximity of a number of

cationic residues from the S4–S5 linker with positive charges from the bottom of the S4

VSD lead to a pocket of excess positive charge at the inner membrane forming a sort of

“PIP2-binding pocket” for the highly negatively charged PIP2 molecules. Interestingly

however, they found that when the channel is in the activated state, the S4 helix is in a

conformational different position and embedded further in the membrane and none of its

positive residues are involved in electrostatic interactions with PIP2. However there

were still robust interactions between PIP2 and positive residues in the S4–S5 linker, as

well as new interactions made with the distal positive residues of S6 pore forming helix.
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In summary, the modulatory effects of PIP2 on Kv channels can be interpreted in two

ways. One view is that PIP2 stabilises the open configuration of the channel by making

energetically favourable interactions with positive residues when the channel is in its

open state, particularly those in the S5 or S6 gate region. In this model, in the absence

of PIP2, a depolarizing voltage activates the VSD, which is weakly couple to the

channel pore, and results in fluctuations of the channel between an open and closed

state, thus producing a small current. When PIP2 is present however, it interacts with the

channel to stabilise the open conformation, resulting in larger currents. This hypothesis

might suggest that channels lacking a VSD could also avail of this mechanism. This

has, incidentally, proved to be the best current understanding of how the Kir family of

channels are modulated by PIP2 (Huang et al., 1998). This is also consistent with results

from single channel recordings of voltage-independent potassium KATP channels, and

simulations of Kv7.1 and Kv11.1 currents that implicate PIP2 in stabilizing the open

state, by acting on the final concerted opening transition (Loussouarn et al., 2003,

Shyng and Nichols, 1998). It also explains the observations that mutations in the

positive residues which are involved in these putative open-state stabilising interaction

(such as those in the in the distal S6 helix region), significantly reduce the channels

sensitivity to PIP2 (Thomas et al., 2011).

A second interpretation is to reframe the view of PIP2 sensitivity in terms of a Kv

channel’s ability to effectively couple, in the absence of anionic lipids, changes in

membrane potential to changes in channel activity (Kasimova et al., 2014). Kv channels

such as Kv1.3 or Kv1.4 which show no sensitivity to reductions in endogenous levels of

PIP2 (Kruse et al., 2012), can be imagined to produce effective communication between

the VSD and the PD. Therefore, conformational changes in the channel can occur

without needing additional stabilisation from membrane-bound phospholipid. However,

in highly PIP2-dependent channels in the absence of PIP2, although a depolarizing

voltage may activate the VSD, the channel itself will remain closed as a result of

weakened interactions between the S4-S5 region and S6 region. As recent experiments

on the PIP2-dependent Kv7.1 channel have demonstrated, open state stabilisation is not

sufficient to explain PIP2 dependence but rather, this coupling of VSD-PD is not

possible without the stabilisation of anionic lipids (Zaydman et al., 2013). It is obvious

that these two mechanisms of action are, at least in theory, distinguishable with their

modes of action dependent on distinct and separable interactions. Future work should
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focus on identifying which mechanism, if either, best explains PIP2 activity. One key

difference is that the former interpretation requires only that PIP2 make contact with

residues which stabilise the open state of the channel, whilst the latter relies on the PIP2

binding site being at least partly formed by the S4–S5 linker (Kasimova et al., 2014).

Also noteworthy is the fact that this mode of action is distinguishable from that of

negatively charged lipids other than PIP2 that are known to regulate Kv channel activity

such as polyunsaturated fatty acids and ceramide-1-phosphate. In these cases the

negatively charged lipids are proposed to interact with channel at the external leaflet of

the membrane (Combs et al., 2013, Borjesson and Elinder, 2011).

An important finding in this study has been the higher sensitivity of heteromeric

Kv1.1/1.2 channels compared to that of homomeric Kv1.2 channels when expressed in

HEK293 cells. In light of the discussed mechanisms of PIP2 regulation of Kv1.2, there

may be a number of possible explanations for this effect. A simple explanation is that

the Kv1.1 subunit is highly PIP2-dependent and confers a strong PIP2-dependance upon

the heteromer. This is a somewhat naïve hypothesis and there is, of course, no guarantee

that even should Kv1.1 show high PIP2 sensitivity that the heteromer should, as

Kv1.1/Kv1.2 heteromers are known to show quite different pharmacological properties

than the sum of their constituent subunits would predict and even show different

pharmacological sensitivities depending arrangement of the subunits within the

heteromers (Al-Sabi et al., 2013). Notwithstanding these caveats, in order to examine

this possibility, recordings from HEK293 cells transiently transfected with the Kv1.1

subunit were attempted but were largely unsuccessful. The preponderance of transfected

cells displayed no voltage-evoked current responses and the few cells which displayed

voltage-evoked currents were too unstable to obtain meaningful recordings from. This

difficulty most likely arises from the poor protein trafficking ability and low cell surface

expression of the Kv1.1 homomer (Manganas and Trimmer, 2000). Experiments using

cDNA to express the Kv1.1 subunit in HEK293 cells show that although strong Kv1.1

subunit accumulation is seen at the Endoplasmic Reticulum less than 4% of transfected

cells show any Kv1.1 surface expression (Manganas and Trimmer, 2000). This is a

result of an ER retention motif in the Kv1.1 peptide (see Kv channel biogenesis). Kv1.2

homomers in contrast show much higher levels of cell surface expression (~20%). As a

result, Kv1.1 sensitivity to PIP2 has only previously been examined when co-expressed

with auxillary subunits, such as the Kvβ1.1 auxiliary subunit, where it seems to act via 
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different mechanism (Oliver et al., 2004). It would be instructive to learn if Kv1.1 could

confer sensitivity to PIP2 if coexpressed with other PIP2 insensitive subunits such as

Kv1.4, which have been shown to produce surface expressed heteromeric channels in

HEK293 (Manganas and Trimmer, 2000).

Another suggestion is that Kv1.1/Kv1.2 heteromeric channels may have a lower affinity

for PIP2 compared to the Kv1.2 homomer. As a result PIP2-PP may be able to compete

more effectively for channel-bound PIP2. A similar rational was employed to explain

the surprising ineffectiveness of PIP2-PP in inhibiting the highly PIP2-dependent Kir2.1

channel (Robbins et al., 2006). This distinction between “affinity” and “sensitivity” is

an interesting and important one. A channel may be highly PIP2 sensitive and almost

completely unable to function in its absence, but have such a high affinity for the PI that

PIP2 levels have to be reduced very low before PIP2 can reasonably be expected to

become dissociated. This has important experimental and physiological implications.

Channels highly sensitive to, and highly dependent on, changes in membrane bound

PIP2 levels will be best suited to responding to signalling cascades which result in PIP2

hydrolysis. For instance, the strong inhibition of M-current observed upon muscarinic

receptor agonism (Zhang et al., 2003). At a molecular level, it is easy to understand how

these effects arise out of distinct chemical interaction of PIP2 with the channel. The

sensitivity of a channel to the presence of PIP2 arises, as discussed above, from the

activity of PIP2 in stabilising the open configuration of the channel, or alternately, in the

coupling of the VSD with the PD. The affinity of PIP2 for a channel however is a

reflection of the strength of the interactions between PIP2 and the channel. These

interactions are primarily electrostatic interactions between the strongly negatively

charged headgroup of PIP2 and densities of positive charge located at the inner leaflet of

the channel. This distinction is an important consideration when interpreting results

which used PIP2 depletion or addition to modulate channel function.

From what is known about the binding site and putative mechanism of action of PIP2,

explanations of the observed effects based on sequence comparisons alone are difficult

to justify. Figure 4.13 shows the sequence of the putative Kv1.2-PIP2 interacting region

as predicted by mutagenesis and computational studies (Rodriguez-Menchaca et al.,

2012, Kasimova et al., 2014) aligned with mouse Kv1.1 and the Shaker channel

(Drosophila melanogaster). The alignment highlights important interacting residues that
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have been determined by molecular dynamics and docking simulations (yellow) as well

as residues that have been shown empirically to have a role in the channels sensitivity to

PIP2 (boxed). The primary sequences of the two proteins share a high sequence

homology and are identical within the putative PIP2 interacting region. There was no

difference between residues known, by mutagenesis experiments, to be important in

mediating PIP2 sensitivity. Neither, were there were any differences between residues

which have been implicated, by molecular dynamics and docking studies, to interact

with PIP2 at the channel (Figure 4.13). Changes in the molecular interactions which

occur at the putative PIP2 binding site, if responsible for the differences in PIP2

sensitivities between the Kv1.2 homomeric channel and Kv1.1/Kv1.2 heteromeric

channel, must arise out of more long distance residue effects. Finally, despite the high

similarity between Kv1.1 and Kv1.2 subunits within the putative PIP2 binding site, the

global effects of incorporating different subunits into a functioning channel are

unknown. Whether or not the heteromer resembles closely the binding site as projected

onto the crystal structure of the Kv1.2 homomer is not yet clear. Homology modelling

of the heteromer or, more ideally, a crystal structure is needed to speculate further on

the mechanisms that underlie these differences.

________S4______ _ S4-S5_ _ _______S5_________
Shaker KSSNQAMSLAILRVIRLVRVFRIFKLSRHSKGLQILGRTLKASMRELGLLIFFLFIGVVL
mKv1.1 QKGEQATSLAILRVIRLVRVFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVIL
mKv1.2 QQGQQAMSLAILRVIRLVRVFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVIL

:..:** ******************************:********************:*
_________ Pore Helix_ ________S6________

Shaker FSSAVYFAEAGSENSFFKSIPDAFWWAVVTMTTVGYGDMTPVGVWGKIVGSLCAIAGVLT
mKv1.1 FSSAVYFAEAEEAESHFSSIPDAFWWAVVSMTTVGYGDMYPVTIGGKIVGSLCAIAGVLT
mKv1.2 FSSAVYFAEADERDSQFPSIPDAFWWAVVSMTTVGYGDMVPTTIGGKIVGSLCAIAGVLT

********** . :* * ***********:********* *. : ***************
___________________

Shaker IALPVPVIVSNFNYFYHRETDQEEMQSQNFNHVTSCPYLPGTLGQHMKKSSLSESSSDMM
mKv1.1 IALPVPVIVSNFNYFYHRETEGEEQ--AQLLHVSS-PNLASDSDLS-RRSSSTISKSEYM
mKv1.2 IALPVPVIVSNFNYFYHRETEGEEQ--AQYLQVTSCPKIPSSPDLKKSRSASTISKSDYM

********************: ** : :*:* * : . :*: : *.*: *

Figure 4.13 Sequence alignment of the voltage-sensor domain and pore domains of the

Shaker, Kv1.1 and Kv1.2 channels. In bold are the important channel structures. In the Kv1.2

sequence, residues which are thought to be important to PIP2 modulation are highlighted.

Boxed: Mutations in these residues affect PIP2 modulation of the channel. Yellow: Interactions

observed by molecular dynamics and docking simulations. Data on important residues obtained

from Rodriguez-Menchaca 2012, Kasimova 2012, Abderemane-Ali 2012.
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Chapter 5

Investigating the effects of free fatty acids on Kv1.2-

mediated currents
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5.1 Introduction

5.1.1 Free fatty acids are modulators of neuronal electrophysiology

In the preceding chapter, Kv1.1 and Kv1.2-mediated LVA K+ currents were shown to

be highly dependent on the presence of the membrane phospholipid PIP2. For this

reason, further investigation of the effects of native membrane lipids on the constituent

LVA K+ channel, Kv1.2, was carried out. In this chapter the functional effects of

biological fatty acids were investigated for their activity against the heterologously

expressed Kv1.2 channel.

Fatty acids are biological lipids that are usually present as part of triglycerides or

phospholipids, where they play important roles in energy storage and as the structural

basis for the plasma membrane. Free fatty acids (FFAs), uncoupled to any such

structures, have distinct biological roles in energy metabolism, inflammation and

synaptic plasticity (Bazan, 2005, Hara et al., 2014, Tassoni et al., 2008). Alongside

diverse roles in metabolism and signalling, FFAs also influence the activity of

membrane-bound ion channels directly. Voltage-gated ion channels are ideally

positioned for modulation by FFAs. The TM domain of the channel is embedded within

a mass of FFAs and fatty acid precursors and channel gating involves movement of the

protein within this hydrophobic environment. External signalling molecules such as

neurotrophic factors and cytokines stimulate the production of the FFA signalling

molecules by activating their cleavage from the plasma membrane (Papackova and

Cahova, 2015). Combined with other long term changes in membrane fatty acid levels

due to dietary effects, disease etc. this allows short and long term regulation of

membrane ionic conductances. In neurons and cardiac muscle, fatty acids add further

diversity to the mechanisms of fine-tuning the electrical properties of the cell (Boland

and Drzewiecki, 2008).

The first recognised ion channel sensitivity to fatty acids was reported in 1992.

Arachidonic acid (AA) and other long-chain fatty acids modified the activity of voltage

dependent Ca2+ channels in heart and smooth muscle cells (Hallaq et al., 1992, Shimada

and Somlyo, 1992). This was shortly followed by the discovery that Nav channels and

Kv channels are also major targets for fatty acid modulation (Boland and Drzewiecki,
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2008). Fatty acid modification of Kv channel is common across a range of different K+

currents and tissue types. Fatty acids modulate Kv channel activity in cells and tissues

as diverse as glia (Visentin and Levi, 1998), myocytes (Smirnov and Aaronson, 1996),

pinealocytes (Poling et al., 1995), pancreatic islet beta cells (Jacobson et al., 2007),

hippocampal neurons (Keros and McBain, 1997) and IHCs (Sokolowski et al., 2004).

However, modelling how these changes might impact neuronal features has been

difficult. Dietary consumption of unsaturated fatty acids has been shown to change the

lipid composition of neurons in the brain and result in concomitant changes in firing

properties and behaviour (Arsenault et al., 2012, Yang et al., 2012). But the diversity of

potential neuronal targets has resisted any simple mechanistic explanation for the role of

fatty acids in determining this firing behaviour.

Experiments on Kv channels in recombinant expression systems have recapitulated

many of the observed effects of fatty acids on K+ currents in biological tissues.

Interestingly, fatty acids demonstrate clear trends in activity across tissues and channel

types. Typically, externally applied fatty acids (usually arachidonic acid (AA)) affect

the voltage sensitivity of the activation and inactivation, as well accelerating the

inactivation of the channel and/or inducing inactivation in previously non-inactivating

channels (Honore et al., 1994, Oliver et al., 2004, Poling et al., 1995). Table 5.1

catalogues these experiments, the types of fatty acid used, the expression systems and

range of effects observed. These findings point to a key role for fatty acids in

determining the activity of Kv channels.

5.1.2 The structural diversity of free fatty acids

In chemical terms a fatty acids fatty is a carboxylic acid connected to a long aliphatic

carbon chain or “tail”, which is typically unbranched and usually contains an even-

numbered of carbon atoms (McNaught et al., 1997). Figure 5.1 shows the structure of

the common mammalian fatty acid, arachidonic acid. It also highlights the important

structural motifs within the fatty acid structure, variation upon which gives rise to the

large families of fatty acids recognised today. Despite the surprising reproducibility of

effects caused by AA and docosahexaenoic acid (DHA) across diverse K+ channels and
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tissue types, individual fatty acid members can differ markedly in their efficacy and

type of effect produced upon a single channel (see Table 5.1).

Figure 5.1 The chemical structure of a fatty acid. A fatty acid is a carboxylic acid combined

with an aliphatic carbon tail, which is either saturated or unsaturated. Fatty acid family members

primarily differ in the length and organisation of the fatty acid tail and in the degree of saturation.

A The length of the terminal carbon chain is an important classification of fatty acids. In this

example molecule, arachidonic acid has its final carbon-carbon double bond six atoms from the

terminal atom (in the ω-6 position). In this way it is designated a ω-6 fatty acid. B One of the

most important descriptors of fatty acids is the presence or absence or double bonds.

Unsaturated fatty acids vary in the position, number and type (cis/trans) of double bonds

present along the fatty acid tail. C Similar to A the distance between the initial acid group and

first double bond varies between fatty acids. D The carboxylic head group is essential in order

to be a fatty acid. Functionalisation of this acid headgroup is a common metabolic pathway for

fatty acids.

A notable structural feature of fatty acids is the number of carbon atoms that make up

the length between the final carbon double bond and the terminal carbon in the fatty

acid chain (see Figure 5.1A). Counting from the terminal carbon, these acids are thus

classified ω-n fatty acids, where n is the number of carbon atoms. ω-n fatty acids are 

clustered into important groups of dietary fatty acids, most notably ω-3 and ω-6 fatty 

acids. The relative intake of these fatty acids (i.e the ω-3/ω-6 ratio) had been implicated 

as an important contributory factor in cardiac disease and other chronic conditions

(Simopoulos, 2008a, Simopoulos, 2008b). The presence (unsaturated) or absence

(saturated) of double bonds within the fatty acid tail is also an important structural

feature (Figure 5.1B). The number, position and type (cis/trans) of double bonds within
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the fatty acid chain all contribute to the variety of available fatty acids. Mammals have

the capacity to synthesise saturated fatty acid (SFAs) and to a limited extent fatty acids

with a single double bond in its tail (monounsaturated, MUFAs) (Boland and

Drzewiecki, 2008). However, mammals lack the capacity to synthesise fatty acids with

multiple double bonds (polyunsaturated) fatty acids and therefore ω-3 and ω-6 

polyunsaturated fatty acids (PUFAs) are often referred to as essential fatty acids since

they must be obtained from dietary sources or synthesised from precursor molecules

(Jakobsson et al., 2006). The presence and degree of unsaturation has been shown to be

important in the interaction of fatty acids with Kv channels (Honore et al., 1994, Poling

et al., 1996b, Borjesson et al., 2008).

Although not strictly fatty acids themselves, analogues of fatty acids based on esters of

the free carboxylic acid have also been shown to be able to mimic the effects of PUFAs

on Kv channels. For instance, N-arachidonoylethanolamine (AEA, commonly known as

anandamide) and methandamide have been shown to be able to recapitulate the effects

of AA independent of their activity on cannabinoid receptors (Oliver et al., 2004, Sade

et al., 2006). Although the subject of much research the precise relationship between the

structure and activity of fatty acids against various Kv channels is still unclear. The

ubiquitous nature of fatty acids within mammalian cells and their known interactions

with Kv channels however make them an ideal candidate for neuronal ion channel

modulation (Boland and Drzewiecki, 2008). This chapter examines the modulatory

effects of FFAs against the Kv1.2 subunits, which mediate the LVA K+ currents in

SGNs.
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Table 5.1 Fatty acid modulation of recombinant Kv channels. Abbreviations: DHA –

Docosahexaenoic acid; EPA - Eicosapentaenoic acid; AA - Arachidonic Acid; LnA - Linolenic

Acid; HA - Hexadecatrienoic acid; LA - Linoleic acid; αLA - α-Linolenic acid; OA - Oleic Acid; 

ArA - Arachidic Acid; LaA - Lauric acid; AEA - Anandamide; mAEA - Methandamide; VDM11 -

(N-(4-hydroxy-2-methylphenyl) arachidonylamide); SA - Stearic acid; PaA - Palmitic acid; CA -

Caprylic acid.

Recombinant

Kv channels

Expression

system

Fatty acid Effect on current References

Kv1-type

Shaker

Xenopus

oocytes

DHA, EPA,

AA, LnA,

HA, LA,

OA, ArA,

DHA, EPA, AA, LnA, HA, LA:

left-shifted activation curve. DHA

speeds up the on-gating current.

OA, ArA: No effect

(Borjesson et

al., 2008)

Kv1.1 Sf9 cells AA Concomitant acceleration of the

activation and inactivation kinetics

(possibly via Ca2+-independent

phospholipase A2)

(Gubitosi-Klug

et al., 1995)

Kv1.1 and

Kv3.4

Xenopus

oocytes

AA, DHA,

AEA,

ETYA,

VDM11

No inhibition of peak current

magnitude, acceleration of the

inactivation kinetics.

(Decher et al.,

2010)

Kv1.2 and

Kv3.1a

Mammalian

fibroblasts

DHA, AEA Inhibition + increased inactivation. (Poling et al.,

1996a, Poling

et al., 1996b)

Kv3.4 and

Kv1.1/β1.1 

Xenopus

oocytes

AA, AEA Inhibition + increased inactivation

of currents when N-type

inactivation had been removed by

PIP2

(Oliver et al.,

2004)

Kv1.5 CHO cells AA, DHA,

ETYA, OA

AA, DHA, ETYA: Inhibition +

increased inactivation. Left-shifted

inactivation curve. OA: no effect

(Honore et al.,

1994)

Kv1.5 Stably

transfected

fibroblast

cell line

EPA, DHA,

αLA 

EPA and DHA reduced steady-state

currents. ALA left-shifted

activation curve + accelerated

activation kinetics and slowed

deactivation.

(Guizy et al.,

2008)
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Kv1.5 HEK 293 AEA Reduced the magnitude of the peak

and steady-state currents and +

accelerated the rate of current decay

(Moreno-

Galindo et al.,

2010)

Kv1.5 and

Kv2.1

CHO cells αLA Inhibition + Increased rate of 

activation and left-shifted activation

curve.

(McKay and

Worley, 2001)

Kv2.1 HEK 293 AA Inhibition + increased inactivation (Jacobson et

al., 2007)

Kv 4 Xenopus

oocytes

AA, ETYA Inhibition + Increased in rate of

recovery from inactivation. Kv1,

Kv2 & Kv3 family unaffected

(Villarroel and

Schwarz,

1996)

Kv4.2 Xenopus

oocytes

AA, ETYA,

ETI

Inhibition + accelerated inactivation

when co-expressed with KChIP.

(Holmqvist et

al., 2001)

Kv4.2/

KChIPs

Xenopus

oocytes

AA, DHA Inhibition + increased inactivation

of currents.

(Boland et al.,

2009)

Kv4.3/

KChIPs

Xenopus

oocytes

AA, DHA Inhibition + increased inactivation

of currents.

(Boland et al.,

2009)

Kv4.3 CHO cells DHA Inhibition (Singleton et

al., 1999)

Kv7.1 and

KCNE1-

Kv7.1

Xenopus

oocytes

DHA Left-shifted activation curve (Liin et al.,

2015)

Kv7.1/mink Xenopus

oocytes

DHA, OA,

LaA

Increased currents (Doolan et al.,

2002)

BK HEK 293 AEA,

mAEA

Increased activity independent of

cannabinoid receptors or G-protein

activation

(Sade et al.,

2006)

BK Xenopus

oocytes

AA, DHA,

OA, SA,

PaA, CA

AA, DHA, OA: Increased current;

SA, PA, CA: No effect

(Sun et al.,

2007)
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5.2 Results

5.2.1 Arachidonic Acid inhibits Kv1.2 channels in a concentration

dependent manner

To examine the effects of fatty acids upon the Kv1.2 channel, a stable expression line

was first developed, in order to reduce variability between cells and increase

throughput. The construction of the Kv1.2-transfected HEK293 cell line was performed

as described in Material and Methods. Figure 5.2 shows the properties of the cell line as

determined by whole-cell patch clamp recordings. Due to the ability of HEK293 to

electrically couple to adjacent cells via gap junction, transfected cells were plated at a

low density and recordings were made from spatially isolated cells (Figure 5.2C).

Consistent with recordings from transiently transfected cells (see Chapter 4), stably

Kv1.2-transfected cells displayed outward currents upon depolarisation which activated

more rapidly with increasing depolarisation. Inactivation was largely absent during

small depolarisations, but some inactivation was observed for test potentials exceeding

+30 mV (Figure 5.2B, C). Comparable currents were not present in untransfected cells,

where only small outward currents were noted (not exceeding 200 pA at large

depolarisations). 100 nM TsTx inhibited 84.1 ± 3.1% of the current (Figure 5.2 D, E; n

= 3 cells). Residual TsTx-insensitive currents were comparable to native HEK293 cell

currents.
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Figure 5.2 Characterisation of a stably Kv1.2-transfected HEK293 cell line. A

Representative traces from a Kv1.2-transfected HEK293 cell (left) and untransfected HEK293

cell (right) in response to the same voltage step protocol. Cells were stepped from a holding

potential of -73 mV to voltages of between -93 and +57 mV in 10 mV steps. B Current traces

showing inhibitory effects of TsTx on outward K
+

currents. Currents were obtained as in A. C

Transfected HEK293 cells were plated at low density and recordings were made from isolated

cells to avoid gap-junction coupling with other cells. Scale bar: 10 µM D I-V plot of Kv1.2-

transfected HEK293 (closed squares) and untransfected HEK293 cells (open squares).

Currents were measured 50 ms from the end of the voltage protocol described in A. E I-V plot of

Kv1.2 currents before (open squares) and after 100 nM TsTx (closed squares) application of

TsTx to Kv1.2 expressing cells. Currents were measured 50 ms from the end of the voltage

protocol described in A.

Figure 5.3 shows the effects of increasing concentrations of arachidonic acid (AA) on

the Kv1.2 currents characterised above. Addition of 1 µM, 10 µM or 100 µM AA was

found to inhibit Kv1.2 currents in a dose dependent manner. Addition of 1 µM or 10

µM AA accelerated activation, whilst reducing peak currents and increasing

inactivation. 100 µM produced rapid inactivation and 96% block of steady state currents

(Figure 3A, C). AA is a major substrate for the biosynthesis of the lipid messenger

molecule prostaglandin H2. Therefore, in subset of experiments, 10 µM indomethacin (a
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nonselective inhibitor of cyclooxygenase 1 and 2) was added to the culture medium 1 hr

prior to recording (Cuendet et al., 2006). Indomethacin did not prevent the inhibitory

effects of 100 µM AA in the experiments. Figure 5.3D shows the time course of activity

and reversibility of AA application. 100 µM AA reached a steady-state inhibition after

3-4 minutes bath application. Inhibition could be reversed by perfusion with bath

solution over a period of 12 minutes.

Figure 5.3 Effects of increasing concentration of arachidonic acid (AA) on Kv1.2 currents.

A Current traces from a Kv1.2-transfected HEK293 cell in the absence (control) and presence

of 1 µM, 10 µM and 100 µM AA. Cells were stepped, for 200 ms, from a holding potential of -73

mV to voltages of between -93 and +57 mV in 10 mV steps. B Chemical structure of AA. C I-V

plot of the steady-state Kv1.2 currents in the absence (control, open squares) and presence of 1

µM (light grey squares), 10 µM (dark grey squares), and 100 µM (black squares) AA. Currents

were measured from the end of the voltage protocol described in A. D Time course of Kv1.2

current inhibition by AA. AA inhibition was monitored by a voltage protocol applied every 10 s.

Currents were measured 20 ms before the end of the 400 ms ramp from -153 to +47 mV. Inorm

was calculated as the proportion of current remaining compared to the control Kv1.2 currents.

Wash off was carried out using bath solution alone.
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The AA-induced, rapid inactivating of Kv1.2 currents was subsequently characterised.

Figure 5.4A shows the AA treated Kv1.2 outward currents in response to a series of

voltage steps. The voltage dependence of activation AA-treated Kv1.2 current was

determined by plotting the normalised peak conductance against the membrane

potential; the derived GV plot (Figure 5.4C filled squares) could be fitted with a

Boltzmann function. There was no significant effect of the AA on the voltage of half-

maximal activation, V1/2, or slope values respectively. (AA treated V1/2: -16.6 ± 1.7 mV

vs. Control V1/2: -13 ± 2.2 mV, p = 0.08, n = 6, paired Student’s t-test; AA treated slope:

12.1 ± 1.6 vs. Control slope: 11.5 ± 1.2 mV, p = 0.31, n = 6, paired Student’s t-test).

The voltage dependence of steady-state inactivation was also determined using a two-

step voltage-clamp protocol outlined in Figure 5.4B. Briefly, AA-treated, Kv1.2-

transfected cells were exposed to a series of preconditioning voltage steps (-93 mV to

+17 mV) before being stepped to a test potential of +27 mV (corresponding to maximal

activation of Kv1.2, Figure 5.4C), Figure 5.4B shows typical currents obtained from

using this experimental protocol. The voltage dependence of AA treated Kv1.2

inactivation was described by a Boltzmann equation (Figure 5.4D), in which the V1/2 of

inactivation was -50.5 ± 1.1 mV (slope factor 3.9 ± 0.3; n = 7).

To explore the kinetics of recovery of the AA-induced inactivation, a two-step protocol

was employed (Figure 5.4E). A 200 ms depolarising pre-pulse was followed by a 200

ms test pulse after an interval of a variable duration (16 to 8192 ms). The relative peak

magnitudes from the two stimulus pulses could be compared to get a measure of

recovery. Plotting this recovery against the interstimulus interval yielded a single

exponential relationship (Figure 4E, F). Figure 5.4F shows the mean recovery from

inactivation kinetics expressed as normalised peak amplitude against interpulse interval

and fitted with a mono-exponential function, as in D. The time mean constant for the

recovery from inactivation (τ) was 1.11 ± 0.3 s (n = 6). 
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Figure 5.4 Biophysical properties of AA treated Kv1.2 currents. A Representative currents

obtained from AA treated Kv1.2 transfected cells in response to voltage steps from −73 mV to 

potentials between −93 and +57 mV in 10 mV increments. B Steady-state inactivation of AA

treated Kv1.2 currents. Currents were obtained with a double pulse protocol: 200 ms

conditioning pulses to potentials between -93 and +17 mV were applied from a holding potential

of −73 mV and the steady-state inactivation was assessed from the peak outward current during 

the subsequent step to +27 mV. C Normalised GV plot showing the steady-state activation

obtained from peak outward K
+

currents before (open symbols) and after 100 µM AA (closed

symbols). Data was fitted with a Boltzmann function. D Normalised current plot of steady-state

inactivation as obtained from the double pulse protocol described in B. Data was fitted with a

Boltzmann function. E The kinetics of recovery from AA induced inactivation was analysed with

a double pulse protocol shown above: A 200 ms prepulse from −73 mV to +27 mV was followed 

by a second 200 ms test pulse to +27 mV after an interstimulus interval of variable duration (16

to 8192 ms) at −73 mV. Recovery of peak amplitude could be fit with a single exponential 

function. The solid line show a superimposed fit for the normalised peak amplitude against

interpulse interval (τ = 1.91 s) F Mean recovery from inactivation kinetics expressed as

normalised peak amplitude against interpulse interval. Normalised peak amplitudes were fit with

a monoexponetial function as in D (τ = 1.11 ± 0.3 s; n = 6).  



145

5.2.2 PUFAs inhibit Kv1.2 currents

Ion channels modulation is rarely a property of a single fatty acid family member but

rather fatty acids displays trends in activity across series of chemical analogues

(Borjesson et al., 2008, Guizy et al., 2008, Sun et al., 2007). Because of this, structurally

related fatty acids were also examined for potency against stably expressed Kv1.2

currents. Figure 5.5 shows the effects of a series of PUFAs against Kv1.2-mediated

currents: linoleic acid (LA), DHA, and linolenic (LnA) acid. These molecules are

PUFAs which vary in the length of their fatty acid tail and the position and number of

double bonds within their structure and are important biological lipids present in

significant quantities within mammalian cell membranes (Abbott 2012).

LA is an essential fatty acid in humans and used in the biosynthesis of AA. Like AA it

is a member of ω-6 fatty acid family, and it had comparable effects to AA on Kv1.2-

mediated currents (Figure 5A, C). Like AA, the effects were dose-dependent and

partially reversible upon wash off. However LA did not inhibit peak outward currents or

increase the rate of inactivation to the same degree. 100 µM LA resulted in a reduction

of steady-state current by 58.9 ± 9.5% (measured at +27 mV, n = 4). Of the series of

PUFAs tested, the ω-3 fatty acid DHA at 100 µM showed the most comparable effect to 

AA, inhibiting a mean 78.5 ± 6.8% of the steady-state current (Figure 5A, C). DHA is a

highly unsaturated molecule containing two additional carbon atoms and two additional

double bonds, compared to AA. The increased activity of AA and DHA over ALA is

consistent with findings from other channels that the degree of saturation is important

for the effects on ion channels (Borjesson et al., 2008, Sun et al., 2007). Somewhat

surprisingly therefore were the findings that the ω-3 PUFA LnA was largely inactive 

against Kv1.2-mediated currents (<5% block after 100 µM LnA application, n = 3)

despite the high degree of unsaturation in its tail.
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Figure 5.5 The effects of PUFAs on Kv1.2 currents. A Current traces from Kv1.2-transfected

HEK293 cells in the absence (control) and presence of various PUFAs (100 µM). B Chemical

structures of the PUFAs examined in A C Graph showing the normalised steady-state current

remaining after application of various concentrations of PUFAs. Steady-state currents were

measured at 10 ms from the end of a +27 mV voltage step shown in A. Currents were

normalised to the current magnitude as measured in normal bath solution. The number of

successful measurements is shown in parenthesises. Current measurements for “Wash”

represent 10 minutes of perfusion in normal bath solution post PUFA application.
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5.2.3 MUFAs show little activity against Kv1.2 currents

Alongside these PUFAs, a range of MUFAs were also examined for activity. A series of

naturally occurring dietary fatty acids of different lengths and double bond position

were chosen for investigation: palmitoleic acid (PA), oleic acid (OA), elaidic acid (EA),

nervonic acid (NA), erucic acid (ErA) and petroselinic acid (PSA) (Figure 5.6). As a

series, MUFAs caused considerably less inhibition and induced less inactivation than

PUFAs. The measured steady-state currents were reduced 0-23% across the series. 100

µM PA displayed the greatest inhibition (22.4 ± 3.6%, n = 3; Figure 5.6C). Three

MUFAs; EA, ErA and PSA showed no inhibition at any of the concentrations tested.

The general lack of activity of MUFAs as a series prevented any significant analysis of

the structure-activity relationship except to note that the relative inactivity of the

MUFAs is consistent with reports that SFAs and MUFAs are less active than their

polyunsaturated counterparts against some Kv channel members (Borjesson et al.,

2008).

In line with the analysis of the important structural features of fatty acids for their

activity against Kv1.2, the relative contribution of the fatty acid head group was

assessed (Figure 5.7). For that reason, the effects of externally applied ethyl

arachidonate (EtA) and AEA were assessed for activity. AEA, or anadamide is the

ethanolamine ester of AA, and has been the focus of considerable interest due to its

activity against the CB1 and CB2 cannabinoid receptors (Vemuri and Makriyannis,

2015). AEA was found here to have considerable inhibitory effects against Kv1.2-

mediated currents, blocking 16.2 ± 8.9% of the steady-state current at 10 µM and 77.9 ±

4.6% at 100 µM (Figure 5.7B, C; n = 3). This inhibition was slightly less than that

observed for the free AA and was comparable to DHA in the extent of its effect. EtA

also displayed a notable inhibition of Kv1.2 currents. Interestingly however this

inhibition was less than that of AEA (49.7 ± 8.5% at 100 µM; n = 3). These results

suggest that the free acid head group is not as important to the inhibitory effects of the

fatty acid as the presence and organisation of double bonds within the fatty acid tail.
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Figure 5.6 The effects of MUFAs on Kv1.2 currents. A Chemical structures of the MUFAs

examined. B Kv1.2 current traces in the absence (control) and presence of various PUFAs (100

µM). C Graph showing the normalised steady-state current remaining after application of

various concentrations of MUFAs. Steady-state currents were measured as in Figure 5.5C.
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Figure 5.7 The effects of carboxylic acid-functionalised fatty acids on Kv1.2 currents. A

Kv1.2 current traces in the absence (control) and presence of various AA, EtAA and AEA (100

µM). B Chemical structures of the carboxylic acid-functionalised fatty acids examined. C Graph

showing the normalised steady-state current remaining after application of various

concentrations of functionalised fatty acids. Steady-state currents were determined as in Figure

5.5C.

5.2.4 Synthesis of conformationally restricted fatty acid analogues

Fatty acids are highly flexible molecules. They are capable of the participating in highly

ordered structures, e.g. plasma membranes (Feller, 2008), but studies have shown that

even unsaturated fatty acids retain significantly flexibility within their molecule, and are

capable of occupying several distinct low energy conformations (Shaikh, 2012). The

role of polyunsaturation in determining the conformation and topology of fatty acids

was examined through a chemical biology approach. Chemical strategies were

employed to develop fatty acid molecules with inherent conformational restrictions

within their molecule.
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Conformational restriction (sometimes called “rigidification”) is a strategy aimed at

reducing a molecules inherent flexibility. This can help ligands obtain the “best”

conformation for binding and minimise the entropic loss in taking up the bioactive

conformation, thus enhancing the potency and selectivity of a drug (Fang et al., 2014).

This can be achieved by introducing unsaturated double or triple bonds to prevent

rotational movement around carbon-carbon bonds or by the introduction of steric or

chemical moieties which help favour particular conformational states over others.

Additionally, intramolecular interactions through the use of covalent and non-covalent

interactions can significantly alter and restrict the free movement of a molecule (Figure

5.8). Here, the incorporation of ring systems or cycles into saturated or unsaturated fatty

acids was examined to determine its effect on Kv1.2 inhibition. Ring systems can be

either aliphatic or aromatic. Aromatic ring systems were chosen due to their increased

rigidity over aliphatic ring systems and for their better chemical tractability (synthesis

feasibility). Aromatic rings can be comprised of exclusively hydrocarbons, or

Alternatively, contain heteroatoms in their ring system, known as heteroaromatic

systems.

Figure 5.8 Design of conformationally restricted fatty acid analogues. An example of how

conformational restriction can be achieved in AA by creating intramolecular cheminal rings or

cycles. The example cycle comprises 6 atoms, linking atom N and N+3, but could be expanded

to link more distant atoms. These cycles can either be aliphatic or aromatic.
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Incorporation of a phenyl moiety within the aliphatic “tail” of the fatty acid (Scheme

5.1) required the alkylation of a benzene core with the requisite alkyl and acid groups.

The approach adopted here used palladium-catalysed cross-coupling alkynylation to

form the important carbon-carbon bonds. This approach had the advantage of making

fatty acids which, alongside the desired aromatic group, contained multiple alkyne

features. These could be reduced partially and in a stereoselective manner to give access

to the polyunsaturated series of analogues (Scheme 1). Or alternatively they could be

reduced completely to yield saturated aromatic fatty acids. Scheme 5.1A and B shows

the synthetic route to obtain both the 1,4- and 1,3- functionalised aromatic fatty acid

analogue of AA.

Scheme 5.1 Synthesis of aromatic analogues of AA. (i) Pd(PPh3)4, CuI, DIPEA, THF, 40⁰C,

24hr (ii) 1,5-Decadiyne (For condition See Table 5.2) (iii) H2, Lindlar catalyst. Dotted arrows and

grey structures show unsuccessful steps.

The initial synthetic step (Scheme 5.1(i)) involved the cross-coupling of the carboxylic

acid chain with the aromatic core via palladium coupled sonogashira reaction. The

reaction proceeded with good yields (40-70%), under mild temperatures and reacted

selectively with the iodo-functionality. However the 2nd cross-coupling alkynylation
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step proved very difficult and was ultimately the limiting step in this synthesis (Scheme

5.1(ii)). Reaction of the bromophenyl-hexynoic acid product with 1,5-Decadiyne under

thermal conditions showed no appearance of the bi-functionalised benzene, as

monitored by LCMS. Increased temperature, reaction times and catalyst loading (2-10

mol%) also failed to facilitate the alkynylation. Similarly, modifying the amine base

used in the reaction (Et3N/DIPEA/Piperidine) made no impact. Table 5.2 shows the

extensive reaction conditions examined in this study.

A recent advance in transition-metal catalysed reactions has been the use of designer

amphiphiles or surfactant molecules to considerably increase the rate and efficiency of

reactions (Klumphu and Lipshutz, 2014). These surfactant molecules form nanomicelles

in water which are proposed to serve as nanoreactors for transition-metal chemistry. To

this end we examined the effects of performing the alkynylation step in nanoparticles

composed of the surfactant DL-α-Tocopherol methoxypolyethylene glycol succinate 

(TPGS). Accordingly the reaction was carried out in the presence of 2% TPGS in water

at room temperature. After 24 hours agitation, no product could be observed by LCMS.

As an alternative synthetic strategy, microwave-assisted sonogashira chemistry was

explored. Microwave chemistry involves using microwave irradiation to promote

chemical reactions instead of the conventional externally applied thermal heating.

Microwave-assisted reactions have many advantages over traditional thermal heating

and can be associated with increased chemical reaction rates and higher chemical yields

than thermal heating alone (de la Hoz et al., 2005). Microwave-assisted sonogashira

chemistry has been employed successfully in a number of studies and has been shown,

in some cases, to radically improve reaction times and efficiencies (Erdelyi and Gogoll,

2001, Mehta and Van der Eycken, 2011). Because of the higher throughput, a range of

conditions and catalysts were tested. Three different Pd catalysts were examined:

Pd(PPh3)4, Pd((o-tolyl)3P)2Cl2 and Pd(PPh3)2Cl2 along with two other pre-catalyst Pd(II)

complexes: Pd(acac)2 and Pd(OAc)2 which were reduced to their active complexes in

situ by addition of PPh3. Further, Cu(I)I (10 mol%) was either added or left absent from

the reaction mix. These various permutations gave rise to 12 unique reactions (detailed

in Table 5.2). Although trace amounts of the bi-functionalised aryl could be identified

by LCMS, no successful product was yielded by this approach.
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Table 5.2 Reaction conditions examined for the 2
nd

cross-coupling alkynylation step. As

detailed in Scheme 5.1(ii). Abbreviation: TPGS - DL-α-Tocopherol methoxypolyethylene glycol 

succinate DIPEA - Diisopropylethylamine; Solv. - Solvent; DMF - Dimethylformamide.

Catalyst mol

%

CuI PPh3 Base Solv. Therm

/µW

Temp Time

Pd(PPh3)4 2 ●  DIPEA THF Therm 66⁰C 24 hr

Pd(PPh3)4 2 ●  DIPEA DMF Therm 80⁰C 24 hr

Pd(PPh3)4 5 ●  DIPEA DMF Therm 80⁰C 24 hr

Pd(PPh3)4 10 ●  DIPEA DMF Therm 80⁰C 24 hr

Pd(PPh3)4 5 ●  Et3N DMF Therm 80⁰C 24 hr

Pd(PPh3)4 5 ●  DIPEA DMF Therm 120⁰C 24 hr

Pd((PPh3)2Cl2 6 ●  Piperidine DMF Therm 116⁰C 24 hr

Pd(PPh3)4 2 Et3N H20,

TPGS

NA RT 24 hr

Pd(PPh3)4 5 Et3N DMF µW 100⁰C 5 min

Pd((o-tol)3P)2Cl2 5 Et3N DMF µW 100⁰C 5 min

Pd(acac)2 5 Et3N DMF µW 100⁰C 5 min

Pd(PPh3)4 5 ●  Et3N DMF µW 100⁰C 5 min

Pd((o-tol)3P)2Cl2 5 ●  Et3N DMF µW 100⁰C 5 min

Pd(acac)2 5 ●  Et3N DMF µW 100⁰C 5 min

Pd(PPh3)2Cl2 5  ● Et3N DMF µW 100⁰C 5 min

Pd(OAc)2 5  ● Et3N DMF µW 100⁰C 5 min

Pd(PPh3)4 5 ● ● Et3N DMF µW 100⁰C 5 min

Pd((o-tol)3P)2Cl2 5 ● ● Et3N DMF µW 100⁰C 5 min

Pd(OAc)2 5 ● ● Et3N DMF µW 100⁰C 5 min

Pd(PPh3)2Cl2 5 ● ● Et3N DMF µW 100⁰C 5 min
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Finally, the order in which the reactants were attached to the benzene scaffold was also

reversed. Monitoring with LCMS showed the formation of the 1,5-Decadiyne aryl

product which could be purified out and isolated, but subsequent reaction with the

alkyne carboxylic acid resulted in the same non-reactivity. Additional modification of

the synthesis replaced the 1,5-decadiyne reactant in the original synthetic pathway with

potentially more reactive alkyne reagents. Accordingly, the bromophenylhexynoic acid

intermediate was reacted with other terminal alkynes such as Heptyne, Pentyne and

Propargyl alcohol. This failed to improve reactivity however.

For this reason an alternate synthetic approach was pursued. The incorporation of a

heteroaromatic rings into the fatty acid tail provided a much wider scope for chemical

synthesis due to the availability of reactive nitrogen-containing starting reagents and the

ability to form the aromatic structure in situ. To this end, a synthetic approach utilizing

1,3-dipolar cycloaddition was developed. This approach, often referred to as “click

chemistry” was chosen due to its reported effectiveness and versatility. “Click

chemistry” refers to a subset of chemical reactions which are particularly high yielding;

generating products quickly and reliably, usually under relatively mild conditions (Kolb

et al., 2001). This also had the advantage of allowing access to aromatic fatty acid

structures in a single step.

Scheme 5.2A-F shows the synthetic route used to obtain a series of heteroaromatic fatty

acid analogue of varying length. Note that the orientation of the triazole group could be

altered depending on arrangement of the functional groups on the starting materials. The

alkyl azide intermediate was formed in situ and further reaction with the alkyne was

done without isolation of the azide. This effectively allowed heteroaromatic fatty acids

to be formed in a single chemical step. Reactions proceeded rapidly under mild

conditions with total conversion of materials to product after 24 hours. Adjustment of

the resulting reaction mixture to pH3 followed by filtration and extraction yielded pure

product without the need for further purification. Yields varied widely (15-59%) and

correlated with the tail length of the fatty acid being synthesised. The longer chained

fatty acids were isolated in significantly higher yields. This was proposed to result from

the poorer organic solubility of short fatty acids at the extraction step. To examine the
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effect of differences in fatty acid length two acids from each of the medium-chain fatty

acids (MCFAs, 6-12 carbon atoms), long-chain fatty acids (LCFAs, 13-21 carbon

atoms) and very long-chain fatty acids (VLCFAs, 22< carbon atoms) (Lemarie et al.,

2015) were designed and tested for their inhibitory potential against Kv1.2.

Scheme 5.2 Synthesis of heteroaromatic fatty acids. (i) NaN3, Cu(I)O, MeOH, 40⁰C, 24hr.

Yields are shown in parenthesises.
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Figure 5.9 The effect of heteroaromatic fatty acids on Kv1.2 currents. A Chemical

structures of the aromatic fatty acids examined. B Kv1.2 current traces in the absence (control)

and presence of various aromatic fatty acids (100 µM). C Graph showing the normalised

steady-state current remaining after application of various concentrations of aromatic fatty acids

fatty acids. Steady-state currents were measured as in Figure 5.5C.
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Figure 5.9 shows the effects of the six aromatic fatty acid analogues tested against

Kv1.2 currents. The two MCFAs, LPB-01 and LPB-02, displayed a modest inhibitory

effect against Kv1.2. At 100 µM, LPB-01 and LPB-02 reduced the steady-state current

magnitude by 12.3 ± 6.6% (n = 3) and 21.8 ± 2.8% (n = 3) respectively. This effect was

dose dependent and reversible upon washing out. LCFA analogues, LPB-03 and LPB-

04, showed a similar inhibitory potency against Kv1.2. At 100 µM, LPB-03 and LPB-

04 reduced the steady-state current magnitude by 20.8 ± 5.9% (n = 5) and 22.3 ± 4.9%

(n = 5) respectively. This was equivalent to the effects of the most potent MUFAs such

as nervonic acid or palmitoleic acids (Figure 5.6) but considerably less effective than

the PUFAs. The VLCFAs, LPB-05 and LPB-06, produced a current inhibition of 21.7 ±

12.9% (n = 4) and 15.4 ± 11.1% (n = 3) respectively, at 100 µM. At the maximal

VLCFA dose tested however (100 µM), a precipitate was observed. Therefore, the

tested concentration of LPB-05 and LPB-06 were probably less than the desired 100

µM.

5.3 Discussion

Kv1.2-containing channels are important mediators of SGN LVA K+ currents. In this

chapter the effect of native and synthetic fatty acids against the Kv1.2 channel were

investigated. PUFAs, exemplified by AA, were found to be strong inhibitors of stably

expressed Kv1.2 currents, markedly increasing the inactivation rate of the channel.

These effects were also seen in PUFA analogues modified at the carboxylic head group,

such as AEA. The inhibitory effect of fatty acids, however, declined sharply with

increasing saturation of the fatty acid tail, pointing to a key role of the fatty acid chain in

the activity of FFAs. A chemical biology approach was pursued, focusing on

conformational restriction of the free fatty acid carbon tail. Accordingly, a simple and

efficient synthesis was developed to access a range of novel aromatic fatty acid

structures in a single step. Although low activity was noted in the initial series of

analogues, chemically modified fatty acids could provide a useful approach to adjust the

activity and biophysical properties of FFAs against Kv1.2.
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5.3.1 Physiological functions for FFA modulation of voltage-gated ion

channels

Alongside its myriad roles in cellular signalling pathways, FFAs exert important effects

upon membrane bound ion channels directly (Boland and Drzewiecki, 2008). The

modulation of various ion channels has been implicated as an important determinants in

neuronal transmission, synaptic plasticity, cardiac and ischemic disease and aging (Lee

et al., 2008, Horrocks and Farooqui, 2004, Michael-Titus and Priestley, 2014, Boland

and Drzewiecki, 2008).

Evidence of a physiological role for fatty acid modulation in neuronal signalling comes

from the action of PUFAs on ion channels and synaptic plasticity. Kv4 channels are

highly localised to post-synaptic membranes in the hippocampal CA1 region and

regulate long-term potentiation (LTP) through their role in the integration of high

frequency trains of synaptic activity (Tkatch et al., 2000, Andrasfalvy et al., 2008).

Application of DHA or AA to Kv4 currents results in marked inhibition and increase

inactivation (Boland et al., 2009). Inhibition of phospholipase A2 (an enzyme that

produces free fatty acids from a precursor glycerol molecule) blocked LTP in a manner

that could be reversed by direct application of DHA or AA (Fujita et al., 2001, Wolf et

al., 1995). In this way FFAs have been proposed as signalling molecules in synaptic

plasticity.

FFAs have also been proposed as important ameliorators of hyper-excitability in

neurons. Under conditions of ischemic-reperfusion injury and seizure, neurons release

high quantities of AA into the surrounding media (Lipton, 1999). AA has been

postulated to have a neuroprotective effect by dampening the pathological excitability

that may arise under these conditions (Bazan et al., 2002). This effect is achieved

primarily through its inhibitory actions on Na+ and Ca2+ channels. This is of particular

importance in injured neurons where structural degradation of the axolemmal bilayer

can lead to chronically left-shifted or “leaky” Nav channels (Morris et al., 2012). There

is now  considerable evidence to suggest that fatty acids, and in particular ω-3 fatty 

acids, can act as neuroprotective molecules in disease and aging (Michael-Titus and

Priestley, 2014, Lin and Perez-Pinzon, 2013, Denis et al., 2015).
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However, PUFA inhibition of K+ channels might also be expected to oppose these

protective effects. It has been suggested that local differences in the FFA concentration

might lead to preferential inhibition some channels over others (Boland and Drzewiecki,

2008). A simpler and more satisfying explanation is that the neuroprotection observed

in studies of disease and aging arise from the pleiotropic effects of FFA in vivo,

including vasodilation of brain arteries, and neuroplasticity (Blondeau et al., 2015).

An alternative hypothesis suggests that PUFAs can act to reduce the excitability of

neurons by left-shifting the voltage-sensitivity of certain Kv channels in neurons.

Specifically, PUFAs were demonstrated to left-shift the voltage dependence of

activation of the Shaker Kv channel (Borjesson et al., 2008, Borjesson and Elinder,

2011). More recently these effects were recapitulated in the Kv7.1 and KCNE1/Kv7.1

mammalian channel (Liin et al., 2015). These results have not been validated in brain

tissue however so the extent of this effect on neuronal firing is unknown. Together,

these results suggest that FFAs may have heterogeneous effects across different tissue

and channel types.

As shown in this this study, an important factor in determining whether channel

function will be affected is the concentration at which various FFAs are present in the

ion channel environment. In the blood plasma, free fatty acid concentration is heavily

buffered by the presence of fatty acid binding proteins and albumin. On average, two

FFA molecules are bound to each albumin molecule under normal physiological

conditions. Accordingly, serum concentrations of unbound FFAs can regularly be less

than 20 nM (Oliveira et al., 2015). Whilst the relative composition of FFAs within

tissues is routinely reported, considerably less is reported about the absolute

concentrations of these various FFAs. For free AA, the levels are typically described as

“low”. Resting leukocytes reportedly contain around 0.5–1 µM free AA (Chilton et al.,

1996) whilst isolated islets of Langerhans cells, by comparison, have resting level of

AA of about 15 µM, as measured by mass spectrometry (Ramanadham et al., 1992).

Nonetheless, free AA is disproportionately low compared with the vast quantities of the

esterified AA motif contained within the cells’ plasma membrane. This has been

calculated as corresponding to approximately 5 mM in platelets (but in specific

subcellular compartments such as membranes, this may be substantially higher) (Brash,

2001). The low level of AA detected in the cytosol likely reflects the activity of
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enzymes, such as cyclooxygenases and acyl transferases which use AA as a substrate

(Irvine, 1982). This low concentration of free AA would suggest relatively little K+

channel modulation under non-pathological, resting conditions. However, the vast

reservoirs of esterified arachidonate contained in the plasma membrane means receptor-

mediated liberation of as little as 1% of this reserve could give up to 50 µM local

concentration of FFA. In fact, in platelets, the percentage of esterified arachidonate

liberated upon activation is around 10% (Neufeld and Majerus, 1983). Ion channels in

tissues under pathological conditions may also experience abnormally high levels of

FFAs. In samples of inflamed skin tissue from psoriasis patients, free AA is abundant,

with approximately 30 µg/g of free AA detected. This represents an effective cellular

concentration of 100 µM free AA; equivalent to the highest dose tested in our study

(Hammarstrom et al., 1975). This suggests a role for FFA K+ channel modulation in

tissues under conditions of receptor-mediated activation or under conditions of

pathological dysregulation.

Subsequent experiments, building on work in this chapter, should focus on the effects of

FFAs on the membrane properties of SGNs. AA has already been shown to affect the

electrophysiology of SGNs in neonatal rats (Ruel et al., 2008), potentiating the

excitatory effects of NMDA signalling. Further experiments should examine whether

AA inhibits Kv1.2-mediated LVA currents in isolated SGNs and whether AA and other

FFAs can change their firing properties as observed under the influence of other agents

elsewhere in this thesis.

5.3.2 How do fatty acids modulate the activity of Kv1.2?

The fatty acid motif is ubiquitous in the plasma cell membrane, comprising an

important component of both structural phospholipids and triglycerides. The presence of

free FFAs is dynamic and tightly regulated however. These FFAs may modulate the

function of membrane embedded ion channels in a number of ways (Moreno et al.,

2012). First, they may change the biophysical properties of the membrane, changing the

mechanical forces upon the channel or how the membrane conducts charge. Secondly,

they can modify the hydrophobic interactions between the ion channel and the lipid



161

bilayer. Finally, they can interact directly with specific amino acids in the ion channel,

altering gating or affecting the conduction of ions through the pore.

One caveat anticipated here is the heterologous nature of the Kv1.2 expression system

and the differences the Kv1 channels in SGNs. Expressed in HEK293 cells, the Kv1.2

gene produces functional Kv1.2 homomers with an expression profile determined by the

translation and trafficking properties of the cell line as well as the copy number of the

gene. These channels may differ from those in SGNs in a myriad of ways, not least

because they represent a purely homomeric population of Kv channel. Heterologous

channels are also absent co-expression with any auxillary subunits, which can radically

alter the functional and expression characteristics of the Kv channel. Heterologous

channels may also experience different post translation modifications compared to

SGNs. The differences in physical properties of the membrane and the lipid species

which are present can also alter the gating and conductive properties of the channel

(Combs et al., 2013). Finally, the relative proportions and concentrations of FFA most

likely differ in HEK293 cells from those experienced by SGNs in vivo. Nonetheless,

Kv1.2 channels, stably expressed in HEK293 cells, offer a practical and efficient way to

examine the effects of FFAs on LVA K+ channels, which can be subsequently validated

in the isolated SGN preparation. This allows for a much higher throughput than would

be possible in an isolated SGN preparation.

In this study, stably expressed Kv1.2 currents showed a marked sensitivity to externally

applied PUFAs. AA provided the greatest inhibition; 10 µM AA reduced the steady

state current by approximately half. The inhibitory activity of AA at low µM

concentrations is in line with the values reported for plasma concentrations of free,

unesterified AA (1–15 µM) (Burtis et al., 1999). Because of the dynamic

interconversion of fatty acids products near plasma membrane and the potential for

receptor mediated liberation of AA, it is very conceivable that local concentrations of

AA are, at times, much higher (Boland and Drzewiecki, 2008). The induction of rapid

inactivation observed in this study is notable effect of PUFAs across various Kv

channels (Table 5.1). The molecular basis for this effect is still controversial.

Nonetheless, the general effect of PUFAs on the fluidity and mechanics of the lipid

environment has been disfavoured as an “imprecise” explanation for their effects since

not all ion channels are targets for PUFA modulation (Boland and Drzewiecki, 2008).
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There is now a strong body of work suggesting PUFAs make important direct

intermolecular interactions with residues within the Kv channel.

The site of action of PUFAs is also controversial. The current consensus is that PUFAs

act at the cytoplasmic side of the membrane. Evidence for this arrives from multiple

independent observations. TEA reduces the fractional block of AEA against Kv1.5

when applied intracellularly but not when TEA is applied externally (Moreno-Galindo

2010). Similarly, mutation in key pore residues at the intracellular side of the membrane

abolish the inhibitory effects of applied AA against Kv1.1 (Decher et al., 2010). Finally,

external application of the membrane impermeant arachidonoyl-coenzyme A failed to

replicate the inhibition and inactivation displayed by AA against Kv4/KChIP expressed

in Xenopus oocytes (Boland 2009). However, some reports have shown evidence for a

preferential effect of PUFAs on the external leaflet of the membrane and have suggested

they exert their effect by interaction with an external binding site on the channel

(Honore et al., 1994, Guizy et al., 2008). These reports are complicated by the fact that

FFAs can cross the plasma membrane easily to access both sides of the channel.

The exact binding site of FFAs to the Kv channel has also been the focus of some

investigation. Currently the most likely hypothesis has come from Decher and

colleagues, who carried out a systematic mutational analysis of the important

intracellular residues for AA binding to the inner cavity of Kv1.5. This study is

particularly relevant for the analysing AA binding as the inner cavity of Kv1.5 is

identical in sequence to all Kv1.x channels (Decher et al., 2010). They identified a

number of key hydrophobic residues which, when mutated, abolished the effects of AA

current inhibition (Figure 5.10). These residues, representing a “binding site” for AA,

were all in close proximity to the central conducting pore region. Virtual simulations of

AA interaction with these residues suggested a physical occlusion of the central pore via

hydrophobic interactions between the aliphatic tail of the FFA and the pore.

Interestingly the proposed binding overlaps considerably with the binding site for the

Kvβ1.1- and Kvβ1.3- peptide binding site (Decher et al., 2005, Decher et al., 2008, 

Zhou et al., 2001a). AA acid inhibition superficially resembles the N-type inactivation

induced by Kvβ1.1- and Kvβ1.3 action in Kv channels. In fact, when the Kv1.1 

channels are co-expressed with Kvβ1.1, the fractional block of AA was significantly 

reduced. This provides appealing evidence that AA and the Kvβ1.1 ball peptide are 
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competing for the same binding site at the inner pore of the channel (Decher et al.,

2010). The molecular mechanism of AA acid induced inactivation of Kv channels can

be seen as analogous to the N-type inactivation imparted by Kvβ1 auxiliary subunits. 

This proposed mechanism of action is by no means shared across Kv channel subtypes,

or in other voltage-gated ion channels in general. In certain cases such as Kv7.1 and BK

channels, where currents are enhanced by FFA application, this is almost certainly not

the case. But there is some experimental evidence to support the idea of an open channel

block across channel subtypes, and further speculation that implies that this may in fact

be the case. The strongest evidence for a shared mechanism comes from the common

etiology of the fatty acid effect. The inhibition of Ik magnitudes and increased rates of

inactivation are observed in both non-inactivating and inactivating currents alike (Table

5.1). Similar changes in the voltage sensitivity are also observed. Furthermore, these

effects are commonly observed in both Nav and Cav channels (Bendahhou et al., 1997,

Xiao et al., 2006, Chemin et al., 2001, Talavera et al., 2004). Empirical evidence for this

shared mechanism is also provided by evidence that FFA modulation is sensitive to

analogous mutations across different ion channels. Mutation of a key isoleucine residue

which is located in the inner cavity of the pore of the potassium channel Kv1.1 (I400V)

abolishes the modulatory effects of externally applied AA and AEA. This insensitivity

to FFAs can be introduced into other Kv channels such as Kv3.1 channels by making

mutations to the analogous isoleucine residue in the inner cavity (I428). Molecular

dynamics and docking simulations have also reached similar conclusion about the sites

of action of FFAs across different ion channels (Decher et al., 2010).
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______Inner pore region________
Kv1.1 WAVVSMTTVGYGDMYPVTIGGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ 424
Kv1.2 WAVVSMTTVGYGDMVPTTIGGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ 426
Kv1.5 WAVVTMTTVGYGDMRPITVGGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETDHEEP 532
Shaker WAVVTMTTVGYGDMTPVGVWGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETDQEEM 494

****:********* * : ***********************************: **

Figure 5.10 A putative binding site for AA at the inner pore region of Kv1 channels.

Sequence alignment showing the inner pore region of the Kv1.1, Kv1.2 and Kv1.5 channels

along with the Kv1-like Shaker channel. Highlighted residues are sites that were mutated in the

Kv1.5 channel to examine their effect on AA binding. Each residue was mutated to an alanine to

examine its effect on binding, except for A501, A503, and A509 which were mutated to valines

and L510 which was mutated to a methionine. Red: Mutations which resulted in a loss of

channel block in response to AA. Blue: Mutation which enhanced the channels sensitivity to AA.

Grey: residues which made no impact on AA block when mutated. Results from Decher at al.,

2010.

5.3.3 The structure-activity relationship of fatty acids and voltage-gated

ion channels

Despite the activity of certain PUFAs such as AA and DHA against a wide range of

channels, there is surprisingly little room to accommodate changes in the fatty acid

structure itself. Any variation on the structure of AA was found to reduce the activity of

FFA against Kv1.2 or abolish it completely. The most significant effects occurred with

changes to the structure of the fatty acid tail. This is consistent with experiments which

suggest open channel block is achieved through interactions between hydrophobic

residues in the pore region and the hydrocarbon tail of the fatty acid (Decher et al.,

2010).

The effect of FFAs on Kv1.2 showed a sharp drop off in activity between FFAs that

contained multiple double bonds and those that contained just one. In fact, apart from

the notable exception of linolenic Acid, all PUFAs displayed notable Kv1.2 modulation

at 100 µM. In contrast MUFAs displayed little or no effect at the same concentration.

This trend has been replicated in other Kv channels (Borjesson et al., 2008, Honore et

al., 1994) and Nav channels (Xiao et al., 1995). Against the Cav3.1, Cav3.2, and Cav3.3

channels, Chemin et al., starting with the fully saturated arachidic acid, showed a linear

increase in potency with the addition of 1, 2, 3, 4 and 5 double bonds to the molecule
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(Chemin et al., 2007). Some MUFAs, in particular oleic acid, do modulate the activity

of a subset of Kv channels which were positively modulated by PUFAs, i.e Kv7.1 and

BK channels (Sun et al., 2007, Liin et al., 2015).

The relative inactivity of SFAs and MUFAs across voltage-gated ion channels is

difficult to explain in terms of molecular interaction alone. In fact, virtual docking

simulations based on the interaction of AA and the ‘open channel’ Kv1.2 crystal

structure found multiple docking solutions that differed in the orientation of the AA tail.

This suggests that some considerable flexibility is allowed within the proposed binding

site. So why is there such a cliff in activity as FFAs move towards a single double bond

in their chain? One suggestion, which was pursued here, draws on an idea from

medicinal chemistry that a drug-like molecule has a bioactive conformation they must

adopt before it will bind to a target. Double bonds or unsaturation restricts the

movement of the molecule by preventing the free rotation of its atoms. Decreasing the

number of double bonds increases the flexibility of a molecule and greatly increased the

number of conformations it can adopt. In theory, molecules which are hindered in their

movement or have the range of possible conformations restricted are more effective

binders as they do not have to overcome the a entropic loss it requires to adopt a

specific pose (Fang et al., 2014). By synthetically restricting the free movement of

FFAs it was hoped the potency and selectivity of these molecules could be tailored to

the channel.

5.3.4 Click chemistry yields access to aromatic fatty acids in a single step

The introduction of aromatic rings into the chemistry of fatty acids stretches back more

than 120 years when the introduction of phenyl groups into various length fatty acids

was shown to improve their antimicrobial effects (Laws, 1894). Since then, the

incorporation of aromatic groups into fatty acids employed for many different ends. For

instance, novel photo-optic surfactant molecules can produced by the incorporation of

4,4'-substituted stilbenes into the tail of long chain fatty acids (Brown and Whitten,

1985).
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Here the incorporation of aromatic cycles into the fatty acid structure was used to

reduce the flexible movement and free rotation in at least some of the molecule.

Traditional approaches to introducing phenyl rings into the fatty acid tail have focused

on electrophilic addition, i.e Friedel Crafts acylation, to achieve this (Wan et al., 1983).

This is a useful approach but it is limited by the type of starting materials than can be

used for addition to the aromatic ring (reactive carbonyls with no other electrophilic

substituents). The initial approach used here involved a multistep synthetic pathway

involving the bi-functionalisation of a central benzene scaffold with two alkyne

substituents. This had the advantage of allowing access to both saturated and

unsaturated aryl fatty acids by subsequent reduction. In this study the alkyne

functionalisation of the 1,4-halobenzene scaffold could only be partially accomplished

(scheme 5.1) with the second functionalisation step proving to be insuperable. This was

unexpected as the bi- and tri-functionalisation of benzene with alkyne substituents has

been successfully reported using Pd-catalysed sonogashira reactions (Chanteau and

Tour, 2003).

The construction of a central aromatic core was achieved instead by forming a

heteroaromatic 1,2,3-triazole structure in situ. The simple and effective construction of

1,2,3-triazole structures has become a vital tool in the production of a range of

biomolecules and bio-conjugates (Nwe and Brechbiel, 2009). 1,2,3-triazole are

important functionalities across a range of important drugs including anti-cancer drugs

(Soltis et al., 1996) and anti-biotics (Sheng et al., 2011), as well as in the design of drug

delivery nano-structures such as polymeric nanocarriers and “designer micelles” (Avti

et al., 2013).

Cu catalysed 1,3-Dipolar cycloaddition allows access to aromatic fatty acid of any

length and triazole position by simply varying the lengths and functionalisation of the

starting material. Aromatic fatty acids of chain length 12 – 25 atoms were synthesised

successfully by this method. Here, the construction of the 1,2,3-triazole core was

achieved in a one-pot synthesis without the need to isolate the alkyl azide intermediate.

The alkyl azide intermediate was a stable compound and its production and

consumption could be monitored by LCMS during the reaction. Initial reaction

conditions involved reducing Cu(II)SO4 to catalytic Cu(I) in situ using sodium

ascorbate as a co-catalyst within the reaction. The resulting reaction mix could be
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purified by column chromatography to obtain the desired acid. However, replacing

Cu(II)SO4/sodium ascorbate with the catalytic Cu(I)O allowed the final product to be

isolated with in purity without the need for column chromatography. The heterogeneous

nature of the Cu catalyst as well as the production of ionic salts as the only bi-products

allowed the isolation of the fatty acid by filtration and extraction alone. This synthesis

yields access a wide range of aromatic fatty acids in a single step and without the need

for further purification. In order to reproduce the high inhibitory effects of PUFAs on

Kv1.2, future work should focus on modifying the structures of the reactants to

incorporate double bonds within the alkyl chain of the aromatic fatty acid.
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Chapter 6

Final Discussion
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6.1 Summary

The aim of this study was to examine intrinsic firing properties of SGNs and probe their

regulation by native and synthetic lipid molecules. In Chapter 3, the intrinsic firing

properties of SGNs were examined and found to correlate with the magnitudes of

particular ionic currents, notably LVA K+ current and Ih. These LVA K+ currents were

DTX-K- and TsTx-sensitive, implicating Kv1.1 and Kv1.2 as contributing to the

subunit composition of the LVA channels. The elucidation of some of the molecular

subunits of SGN LVA led to an examination of their potential regulation. Chapter 4

detailed an investigation into the phosphoinositide sensitivity of SGN LVA K+ currents.

Depletion of PIP2 by wortmannin or PIP2-PP had a significant effect on SGN adaptation

rates via the inhibition of Kv1.1- and Kv1.2-mediated LVA K+ current. Finally, in

Chapter 5 the effects of native and synthetic free fatty acid molecules were examined on

Kv1.2 currents stably expressed in a HEK293 cell line and a series of polyunsaturated

fatty acids were shown to provide strong inhibition of Kv1.2 currents.

Understanding the molecular basis of SGN excitability is essential for a complete

understanding how the auditory nerve encodes sound. Understanding the difference in

membrane electrophysiology in the distinct SGN subpopulations may also shed light on

the heterogeneous firing patterns observed in ANFs in vivo. Furthermore, identifying

biological targets that alter SGN firing provides a potential mechanism to adjust the

output of the AN. This is of particular interest for improving the functioning of cochlear

implants to aid “electrical hearing” or for modifying inputs to the central auditory

pathway in cases of aberrant neural signalling i.e. tinnitus. The wider utility of LVA K+

currents in the auditory system are now discussed and some of the important questions

that remain unanswered are addressed. Finally, the potential therapeutic implications of

SGN modulation are discussed along with a discussion of the practical limitations to

pharmacologically treating SGNs in humans.
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6.1.1 The wider role of LVA K+ currents in the auditory system

LVA currents are a prominent feature of neurons throughout the auditory system

(Schwarz and Puil, 1997, Brew and Forsythe, 1995, Smith, 1995, Barnes-Davies et al.,

2004, Bal and Oertel, 2001). This is consistent with findings from Grigg et al., which

reported heavy Kv1.1 subunit expression in the auditory brainstem, in particularly in

octopus and bushy cells of the VCN, the MNTB, the MSO and LSO (Grigg et al.,

2000). Strong Kv1.1 and Kv1.2 channel expression has also been reported in regions of

the VCN (Rusznak et al., 2008) and the MNTB (Tong et al., 2010). Kv1.1/Kv1.2

heteromeric channels therefore, have been proposed as likely mediators of LVA

currents throughout the auditory system (Brew et al., 2007, Dodson et al., 2002), with

the Kv1.6 subunit also implicated in some tissues. Functional examination of these

current indicate that the exact composition and stoichiometry of these channels may

differ between tissues, most likely to accommodate the diverse functional roles of their

tissues in signal propagation and integration. Notable interspecies variation in LVA

composition and stoichiometry is also apparent, perhaps contributing to the variation in

auditory characteristics observed across species (Dodson et al., 2002).

Behavioural studies on Kcna1 (Kv1.1) knockout mice report significant deficits in the

animals ability to localise sound (Allen et al., 2008, Allen and Ison, 2012, Brew et al.,

2003). In vivo single-unit recordings from the VCN and MNTB cells of Kcna1-null (-/-)

mice and littermate control (+/+) mice show that whilst the thresholds and spontaneous

firing rates of these neurons may remain unchanged between genotypes, the evoked

firing rates of these neurons were significantly lower in -/- mice at higher sound

stimulus (Kopp-Scheinpflug et al., 2003). Further deficits were observed at high rates of

sinusoidal amplitude modulation, where MNTB neurons from Kcna1-/- mice discharged

on significantly fewer cycles of the stimulus than their Kcna1+/+ littermates. The

observed cognitive deficits are likely a result of increased temporal variability in the

onset response of neurons, known as jitter. This increased jitter reduces a neuron’s

ability to code acoustic information at the required millisecond or even sub-millisecond

accuracy (Brew et al., 2007).

These behavioural and single-unit experiments are correlated with results from in vitro

experiments that show a significant reduction in the LVA K+ currents of brainstem
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nuclei that mediate binaural processing (Kopp-Scheinpflug et al., 2003). Neurons in the

MSO process sound localisation cues via a process known as binaural coincidence

detection. This process uses excitatory synaptic inputs from each ear and separates them

onto different branches of a bipolar dendritic structure. These inputs are then summed at

the soma and axon of the neuron with submillisecond timings. LVA K+ channels have

been shown to accelerate membrane repolarisation improve the temporal resolution of

synaptic integration (Mathews et al., 2010).

LVA K+ current also contributes to synaptic integration in the cochlear nucleus.

Octopus cells in the VCN receive inputs from ~50 ANFs across the tonotopic axis; APs

are only evoked robustly and consistently when these inputs are synchronised to

millisecond accuracy. Octopus cells have a low input resistance and membrane time

constant, ensuring the amplitude of voltage changes associated with a synaptic input is

small. LVA K+ currents prevent the slow temporal summation of inputs and ensure that

octopus cells fire only when they are depolarised quickly by multiple synchronous

inputs. Blockage of Kv1-mediated LVA currents with α-dendrotoxin results in a 

significant loss of this synchronisation (Ferragamo and Oertel, 2002).

LVA K+ currents are also present in presynaptic terminals such as at the Calyx of held

where their presence prevents the occurrence of aberrant spikes following an incoming

AP (Dodson et al., 2003). LVA K+ currents have been shown to enhance the signal-to-

noise ratio of MSO neurons in vitro by filtering out weak synaptic conductance

transients (Svirskis et al., 2002).

6.1.2 Implications for cochlear implants and “electrical” hearing

Many forms of sensorineural hearing loss are characterised by the loss of the

mechanosensory hair cells and their afferents. The loss of the SGN peripheral processes

can precede SGN cell death by some considerable period however. As a result many

individuals with sensorineural hearing loss retain considerable numbers of SGN bodies

within their modiulos capable of sending signals to the brain. This is the basis for

auditory prostheses. Cochlear implants (CIs) are a series of electrodes positioned along
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the spiral of the cochlea close to the cell bodies of the SGNs (Yawn et al., 2015). An

external component positioned outside the head detects acoustic inputs which are

translated into evoked current along the internal electrode array. Auditory prostheses

have helped restore functional hearing to many deaf individuals. CI can enable good

speech understanding in ideal listening conditions. However CIs are suboptimal in more

challenging listening conditions i.e, understanding speech in noisy environments,

discerning multiple competing speeches, listening to music, etc.

In electrical hearing acoustic information is limited to signalling from the CI down

different electrodes or “channels”. The most significant difficulty arises from the poor

spectral resolution provided by implants. CI studies have revealed that basic speech

recognition in quiet listening conditions requires as few as 4 spectral channels (Shannon

et al., 1995). However for the more challenging task of speech recognition in noise (10

dB signal-to-noise ratio or less) 8 spectral channels are needed (Fu et al., 1998, Friesen

et al., 2001). For more complex tasks, such as perceiving music or discerning competing

speeches, even more channels are required (Shannon et al., 2004). The limitations in

spectral resolution are not on the CI side; commercial CI signal processing devises

provide up to 22 channels. Despite this, current CIs have exhibited a notable upper limit

in their efficacy with CI recipients rarely performing better than as if they had 8-10

effective channels (Landsberger et al., 2012).

The major limitation to CI improvement is the phenomenon of current spread in the

cochlea. Channel electrodes provide stimulation to the cochlea by charging the SGN

bodies with current. This current is most effective in proximity to the electrode but

current spread from the electrode source can also charge more distant neurons. As a

result CI users are often able to discriminate between channel activation when compared

in isolation. However stimulation of adjacent channel electrodes is often perceived as a

single intermediate pitch (McDermott and McKay 1994). Thus, the spectral resolution

of CI users is significantly limited by channel interactions. This has been proposed as

the primary limiting faction for CI performance (Fu and Nogaki, 2005). Bingabr et al.

showed that a reduction in the spread of current excitation improved performance

during speech discrimination tasks in patients with only a few spectral channels.

However this reduced overall performance, suggesting both strong excitation of SGNs

and narrow current spread are needed for good CI performance (Bingabr et al., 2008).
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To overcome the limitations imposed by current spread in the cochlea, many strategies

have been proposed, such as experimenting with different methods of current

application to reduce the spread of excitation, e.g. (Landsberger et al., 2012) and

(Srinivasan et al., 2013). Other studies have suggested reducing the neural gap by

stimulating the regrowth of SGN neurites towards the stimulus electrode with

neurotrophins such as BDNF (Pinyon et al., 2014). The advent of new optogenetic

techniques has also opened the door to the promising new idea of optical cochlear

implants. Incorporation and stimulation of light sensitive proteins into the membranes

of SGNs would allow considerable greater stimulus precision and sidestep the

limitations imposed by current spread. For a discussion of the possible application for

optogenetic stimulation for cochlear implants see (Jeschke and Moser, 2015).

A complementary approach could be to adjust the excitability of SGNs via

pharmacological manipulation of neuronal LVA K+ currents. Whilst LVA K+ currents

play an important role under normal physiological conditions, they may hinder the

activity of CIs in providing electrical hearing to the damaged ear. LVA K+ currents

reduce the membrane resistance of SGNs, requiring significantly more current to charge

the membrane. Indeed, maintaining a strong current stimulus is necessary to maintain a

fixed loudness in CI, but as current increases so does the spread of excitation along the

cochlear axis (Landsberger et al., 2012). Minimizing the necessary input energy to elicit

the same loudness precept would reduce the current spread and area of excitation. In

theory this would increase the number of perceptual channels available to CI users.

Methods of LVA K+ currents modulation could provide a new and complementary

approach to optimising CI technologies.

6.1.3 Localised drug delivery to the inner ear

Attempts to medicate neuronal tissue in the inner ear face some significant challenges.

Conventional routes of drug bioavailability such as injection or oral administration are

not effective because of the presence of the blood-perilymph barrier (BPLB) that

separates the inner ear from the blood (El Kechai et al., 2015). The BPLB is a

continuous capillary endothelium which lines the blood vessels of the cochlea. The
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BPLB acts to protect the cochlea and maintain the homeostasis of the inner ear fluids

(Juhn et al., 2001). Importantly it acts as a barrier to undesirable chemicals and contains

efflux pump systems such as P-glycoprotein and multidrug resistance-related protein-1

(Saito et al., 2001a, Saito et al., 2001b). Like the blood-brain barrier, the BPLB is only

permeable to highly lipophilic molecules, excluding other molecules based on size,

charge and water-solubility (Swan et al., 2008). The absence of a viable systemic drug

route has led to the development of strategies for localised drug delivery to the inner ear

(Staecker and Rodgers, 2013, Pararas et al., 2012, McCall et al., 2010). There are

primarily two approaches for local drug delivery; administration into the middle ear

(intratympanic) or directly into the cochlea itself (intracochlear). Both have shown

effectiveness in delivering drugs to cochlear tissues (Pararas et al., 2012).

Intratympanic administration is achieved by the direct application of drugs to the round

window of the cochlea. This can be achieved by direct injection of the drug solution

into the middle ear cavity and subsequent diffusion across the round window. Though

still used for some drugs such as corticosteroids, the reliance on passive diffusion along

the cochlea results in a longitudinal drug gradient from base to apex (Salt and Plontke,

2009). In reality this means drugs often do not reach the apical regions (Mynatt et al.,

2006). Combined with rapid elimination via the Eustachian tube other methods of

prolonged intratympanic drug administration have been developed. Implantable medical

devices such as microcatheters and osmotic pumps have been shown effective in

humans for sustained drug application for anything up to 6 weeks (El Kechai et al.,

2015). Intracochlear administration avoids these diffusion based problems but

encounters the considerable task of accessing the interior of the cochlea. Furthermore

any drug that is introduced must be careful to maintain a relatively constant fluid

volume, ion composition and osmolality. Intracochlear injection has been achieved

(Stover et al., 1999) but is technically difficult and not viable for continued drug

administration (Pararas et al., 2012).

Once present in the perilymph, drugs access the tissues of the cochlea by diffusion.

Access to the SG has now been demonstrated in numerous studies (Zhang et al., 2012,

Buckiova et al., 2012, Warnecke et al., 2012). Typically, these studies have used the

neurotrophic agent BDNF as their drug and measured SGN neuroprotection as an

assessment of the efficacy of their drug delivery. Typically, delivery of the drug to the
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round window or directly into the perilymph is sufficient to provide neuroprotection to

the SGNs. This provides an important proof of concept that SGNs are in practice

druggable, with delivery of the drug to the cochlear perilymph the primary practical

limitation.

Finally, the nature of CI implant technology may provide an intriguing opportunity for

drug delivery to the SGN. By design, CI electrodes are inserted along the cochlear

spiral, in proximity to the SGN cell bodies. Combined CI/drug delivery systems have

drawn considerable interest as a means of reducing local tissue trauma during CI

surgery and for delivering neurotrophins and growth factors to promote sensorineural

cell growth (Quesnel et al., 2011a, Quesnel et al., 2011b, El Kechai et al., 2015).

Biodegradable polymeric coatings on the surface of cochlear implant electrodes have

been proposed as a means to deliver drug along with the implant. Embedding the

cochlear implant in a polymeric matrix has already been shown to be effective in

delivering drugs to the scala tympani of guinea pig (Kikkawa et al., 2014). Drug release

can be sustained for up to several months using this method depending on the polymer

and drug under investigation (Astolfi et al., 2014, Kikkawa et al., 2014, Wrzeszcz et al.,

2015), although the long term effects of this approach have yet to be tested. The

development of novel neuromodulatory agents in combination with improving drug

delivery strategies for the inner ear could provide a powerful new approach to adjusting

the output of the AN, particularly in the deafened ear.
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