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Motivated by the goal of improving and augmenting stochastic Lagrangian models of

particle dispersion in turbulent flows, techniques from the theory of stochastic processes

are applied to a model transport problem. The aim is to find an efficient and accurate

method to calculate the total tracer transport between a source and a receptor when the

flow between the two locations is weak, rendering direct stochastic Lagrangian simulation

prohibitively expensive. Importance sampling methods that combine information from

stochastic forward and back trajectory calculations are proposed. The unifying feature of

the new methods is that they are developed using the observation that a perfect strategy

should distribute trajectories in proportion to the product of the forward and adjoint

solutions of the transport problem, a quantity here termed the ‘density of trajectories’

D(x, t).

Two such methods are applied to a ‘hard’ model problem, in which the prescribed

kinematic flow is in the large Péclet number chaotic advection regime, and the transport

problem requires simulation of a complex distribution of well-separated trajectories. The

first, Milstein’s measure transformation method, involves adding an artificial velocity to

the trajectory equation and simultaneously correcting for the weighting given to each par-

ticle under the new flow. It is found that although a ‘perfect’ artificial velocity v∗ exists,

which is shown to distribute the trajectories according to D, small errors in numerical

estimates of v∗ cumulatively lead to difficulties with the method. A second method is

Grassberger’s ‘go-with-the-winners’ branching process, where trajectories found unlikely

to contribute to the net transport (losers) are periodically removed, while those expected

to contribute significantly (winners) are split. The main challenge of implementation,

which is finding an algorithm to select the winners and losers, is solved by a choice

that explicitly forces the distribution towards a numerical estimate of D generated from

a previous back trajectory calculation. The result is a robust and easily implemented

algorithm with typical variance up to three orders of magnitude lower than the direct

approach.
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1. Introduction

A common scenario in scalar transport problems in fluids is that a tracer is released at

one location (the ‘source’ S) and at some later time is measured at another (the ‘receptor’

R). In many practical problems there is little interest in the tracer concentration at

locations far from R. For this type of problem a grid-based Eulerian transport model,

designed to provide global solutions for the tracer concentration, is evidently inefficient.

For certain flow set-ups, a Lagrangian model will offer greater efficiency, provided that

sufficient numbers of trajectories are advected from source to receptor, i.e. the relative

tracer concentration at the receptor is large in some sense. The present work addresses

the opposite situation, in which the relative concentration at the receptor is not large,

because the flow of particles from source to receptor is (in a certain sense) weak. The

aim is to alleviate the difficulty associated with this situation by modifying and applying

variance reduction / importance sampling methods developed for stochastic differential

equations (e.g. Øksendal 2007; Kloeden & Platen 1992; Gardiner 2009), such as are widely

used in mathematical finance and statistical physics, in order to redirect trajectories into

the region of interest. Subsequently, we will refer to this process as adaptive trajectory

modelling.

There are many possible practical applications. Consider, for example, an isolated

release of a chemical that is highly toxic at low concentrations with the receptor an

isolated centre of population. Alternatively, the source could be an erupting volcano and

the receptor an airport or flight corridor (e.g. Devenish et al. 2011). Further, a common

problem for meteorological and atmospheric chemistry aircraft measurement campaigns

(e.g. Methven et al. 2006) is to quantify the influence of an upstream airmass (e.g. near

a chemical source) upon another airmass downstream where measurements have been

made. In addition to atmospheric dispersion modelling, adaptive trajectory modelling

will have applications in ocean tracer studies (e.g. Proehl et al. 2005; Spivakovskaya

et al. 2007), and the modelling of pollutants in ground water, i.e. flow through porous

media (e.g. Dagan 1987; Zimmermann et al. 2001). Nor are there significant obstacles to

extending our results to more sophisticated atmospheric models of turbulent dispersion

(for example the so-called ‘Lagrangian particle dispersion models’ (LPDMs) e.g. Thomson

1987; Rodean 1996; Stohl et al. 2005, which are more sophisticated than the advection-

diffusion set-up considered here). More broadly, the application of importance sampling

detailed here may serve as a useful model problem for the development of ‘particle filters’

in data assimilation problems (Ades & van Leeuwen 2013), where many similar issues

arise. For fluid dynamicists, the problem is of fundamental interest in that it brings to
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the fore some interesting connections between Lagrangian and Eulerian descriptions of

advection-diffusion problems (see e.g. Majda & Kramer 1999).

Here, two specific importance sampling techniques will be considered in the context

of a model problem. These are the measure transformation method of Milstein (1995)

(see also Kloeden & Platen 1992; Milstein & Tretyakov 2004), and the ‘go-with-the-

winners’ (GWTW hereafter) branching process (Grassberger 1997, 2002). Both methods

have recently (Haynes & Vanneste 2014) been used with some limited success in simple

parallel flows, to obtain far-field concentrations in Taylor dispersion problems (Taylor

1953). Due to their relative simplicity, however, parallel flow problems obscure key issues

as to how these methods might be applied effectively in situations of practical interest,

such as large-scale atmospheric or oceanic transport.

The model problem to be investigated is chosen to highlight some of the key issues

arising in practical atmosphere-ocean fluid transport problems. One important feature,

perhaps unlikely to be encountered in the finance or molecular dynamics problems for

which importance sampling methods have been developed, is ‘chaotic advection’, i.e. the

exponential divergence of nearby trajectories of the underlying deterministic flow. It will

be argued below that in the chaotic advection regime an important class of importance

sampling techniques of the ‘small noise’-type, which are based on results from large-

deviation theory (e.g. Vanden-Eijnden & Weare 2012), are rendered impractical. Here the

advection-diffusion equation is solved in a periodic channel bounded by sidewalls, with the

prescribed flow in the channel consisting of a uniform current, on which is superimposed

a linear combination of two waves propagating with different frequencies. Previously this

flow has been used to explore chaotic advection in Rayleigh-Bernard convection (Weiss

& Knobloch 1989) and in geophysical flows dominated by Rossby waves (Pierrehumbert

1991; Haynes et al. 2007). Other aspects of the model problem are also relevant to

layer-wise two-dimensional (near isentropic) transport in the extratropical troposphere

and stratosphere (e.g. Plumb 2002). For example, the Péclet number Pe is relatively

high (Pe = 5000 in the numerical calculations below), and the flow exhibits a partial

barrier to mixing (for details see Haynes et al. 2007). This partial mixing barrier, which

is approximately co-located with the region of maximum flow speed, is representative

of observed geophysical phenomena such as the edge of the stratospheric polar vortices,

the extratropical tropopause, or the core of ocean currents such as the Gulf stream and

Kuroshio, as well as in the Southern ocean (see e.g. Weiss & Provenzale 2008). The focus

here will be on the (weak) transport across the barrier, which often needs to be quantified

in practical applications.

A further reason for investigating the chosen model problem is that, provided the

diffusivity exceeds a numerically determined threshold, a spectral method can be used

to solve the advection-diffusion equation in the channel to very high accuracy (the ‘PDE
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solution’ hereafter). It is to be emphasised that our model problem has been selected with

the availability of this numerical PDE solution in mind. In a more general setting, a global

PDE solution will be expensive and (typically) less accurate, and the advantages of the

Lagrangian approach (e.g. flexibility, positivity, effortless computational parallelisation)

will be more to the fore. Here, however, the PDE solution will act to benchmark the

Lagrangian methods developed, and crucially can be used to deduce much about what

an optimal importance sampling strategy should look like.

In section 2 the model problem is described, benchmark results from both forward and

adjoint PDE solutions are presented, and a quantity termed the density of trajectories

D(x, t) is introduced. It is argued that the aim of an optimal importance sampling strat-

egy for S → R transport should be to distribute particles in proportion to D. In section 3

the stochastic representations of the forward and adjoint problems are introduced. Mil-

stein’s measure transformation method is then reviewed from an applied mathematics

perspective. The choice of correcting velocity is discussed, and it is shown that under

Milstein’s optimal choice trajectories are indeed distributed in proportion to D(x, t). The

resulting insight is used to define an effective scoring strategy for the GWTW algorithm.

In section 4 practical ‘adaptive’ Lagrangian strategies to solve the model problem are

developed and assessed using the PDE solution. A gain of several orders of magnitude in

efficiency is shown to be possible. Section 5 gives the conclusions.

2. The model problem

2.1. The forward problem

The broad class of advection-diffusion problems that concern us here satisfy

(∂t + u · ∇) c−∇ · (κ · ∇c) = s(x, t). (2.1)

Here c(x, t) is a passive tracer mixing ratio, u(x, t) is a known ‘smooth’ incompressible

velocity field, κ(x, t) is a symmetric diffusivity tensor, and s(x, t) a source term. The

relevance of (2.1) as a model for large-scale transport in the atmosphere, at least in

regions where the flow is dominated by stratification and rotation (i.e. away from the

planetary boundary layer and regions of active convection), is well-established (see e.g.

Haynes 2011, and refs. therein). In atmospheric applications the ‘smoothness’ property

of u applies only to a suitably temporally or spatially averaged flow, with the effects

of three-dimensional turbulent perturbations about this averaged flow incorporated into

the eddy diffusivity κ (see e.g. Majda & Kramer 1999, for discussion of the applicability

and limitations of the eddy diffusivity approach).

In the model problem to be considered, (2.1) will be solved in a domain D, a channel

that is periodic in the x-direction and is bounded by sidewalls in the y-direction, with

dimensions 2π × π. No-flux boundary conditions are applied on the boundaries ∂D (i.e.
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the sidewalls at y = 0, π)

n · κ · ∇c = 0 on ∂D. (2.2)

The flow velocity u = −k×∇ψ is specified by the streamfunction

ψ(x, t) = −0.5y + sinx sin y + ε sin (x− ct) sin 2y (2.3)

with the amplitude and phase speed of the second wave taken below to be ε = 0.6 and

c = 0.3 respectively. A geophysical interpretation of the flow associated with (2.3) is

that of a steady meandering jet supporting a travelling Rossby wave, hence (2.3) serves

as a qualitative model of the flow experienced by fluid parcels on isentropic surfaces in

(for example) the extratropical troposphere or stratosphere. At low values of ε, complete

barriers to transport exist in the flow (2.3), most strikingly at the location of the jet core

(region of maximum flow) which divides the channel into two (Haynes et al. 2007). At

the present value ε = 0.6 no formal barrier exists, nevertheless very little fluid is advected

across the jet core, i.e. in practice there is a ‘leaky’ or partial transport barrier at the jet

(see also Esler 2008). In the numerical simulations here the diffusivity κ is uniform and

isotropic, i.e. κ = κI where I is the identity matrix and κ = 2 × 10−4. With the given

non-dimensionalisation κ can be identified with the inverse of the flow Péclet number

Pe = UL/K, which is more generally defined in terms of the dimensional magnitudes U ,

L and K of the flow speed, flow length scale and diffusivity respectively. Here Pe = 5000.

Several integrations have also been performed for other values of κ, including for spatially

non-uniform configurations, for which the qualitative results described below have been

reproduced.

The particular focus here will be on transport between a small isolated source region

S active at t = 0 and a similar receptor region R at t = T . Hence the source in (2.1)

will have the form s(x, t) = S(x)δ(t). This choice is equivalent to setting s = 0 in (2.1)

and solving the initial value problem with c(x, 0) = S(x). However the formalism of

(2.1) is retained, as it allows the straightforward extension of all our results to sources

with a more general time-dependence. Defining a general ‘measurement’ to be an integral

quantity of the form

I =

∫ ∞
−∞

∫
D
c(x, t)r(x, t) dx dt, (2.4)

where the receptor function r(x, t) can in general be any integrable function, with the

case of the isolated receptor at t = T recovered by setting r(x, t) = R(x)δ(t− T ).

The stochastic Lagrangian methods described below will be verified against a numerical

PDE solution of (2.1). The numerical method is a standard spectral method, exploiting

the fact that, taking the Fourier transform of (2.1), the complex amplitudes of each

Fourier mode of c satisfy an ordinary differential equation that is coupled only to its near

neighbours in wavenumber space. High accuracy is possible once a resolution threshold
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Figure 1. Left: Snapshots from the PDE simulation of the forward problem (2.1). The quantity

contoured is log10 c(x, t), for t = 0, 20, 30, 50, with contour interval 0.5 (see colour bar). Right:

Scatterplot of 104 solutions Xt of the SDE (3.1) at the same times.

is crossed, because the spectral power of c drops off rapidly for wavenumbers k & κ−1/2.

The integrations used below, mainly at a resolution of 512×256 wavenumbers, have been

verified against a 1024× 512 calculation with excellent agreement.

The specific initial condition S(x) = exp
(
−|x− xs|2/2W 2

s

)
, centred on xs = (π, π/4)†

and with horizontal scale Ws = 1/20
√

2, is applied at t = 0. Fig. 1 (left) shows snapshots

of the developing PDE solution (note the logarithmic contour interval) at t = 0, 20, 30 and
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t = 50 = T , where T is the receptor time, which corresponds to approximately five cycles

of the periodic flow (2.3). The partial barrier to transport is evident in fig. 1, because

the tracer is stirred and mixed across the lower left of the domain with little penetrating

into the upper right. The receptor function, which is chosen to pick out a typical tracer

filament (not visible in the t = 50 panel in fig. 1 as its concentration c . 10−5), is taken

to be R(x) = exp
(
−|x− xr|2/2W 2

r

)
with xr = (4.35, 2.05)† and Wr = 1/5

√
2 (see the

circle in the t = 50 panel). Although concentrations in R are relatively low the quantity

I can be calculated to high accuracy by the PDE method (I = 1.522583 × 10−7 to 7

sig. figs.). The focus of all that follows is to develop efficient Lagrangian methods that

can be used to estimate both I and the (weighted) distribution of tracer c(x, T )R(x)

throughout the receptor region at the end of the simulation.

2.2. The adjoint problem

In the Lagrangian methods to be described below, a central role is taken by the solution,

or approximate solution, of the adjoint of (2.1) (sometimes the ‘retro-transport equation’

e.g. Hourdin & Talagrand 2006), which provides an alternative means of obtaining I. A

brief review is warranted. The retro-transport equation is obtained by first expressing

(2.1) using the operator formalism,

Lc = s, (2.5)

where

L ≡ ∂t + (u · ∇)−∇ · (κ · ∇)

is the forward linear transport operator. Next it is necessary to define an inner product

for integrable functions f(x, t), g(x, t) defined on D × R

〈f, g〉 =

∫ ∞
−∞

∫
D
f(x, t)g(x, t) dx dt. (2.6)

The inner product (2.6) can be used to define the adjoint L† of L, according the usual

definition 〈f,L†g〉 = 〈Lf, g〉 for all admissible f , g. It is a straightforward exercise in

integration by parts to show that the adjoint transport operator satisfies

L† ≡ −∂t − (u · ∇)−∇ · (κ · ∇).

In terms of the inner product, the integral quantity (2.4) is given by I = 〈c, r〉. If we

now define the retro-transport equation to be

L†c∗ = r, (2.7)

then I can be manipulated as follows

I = 〈c, r〉 = 〈c,L†c∗〉 = 〈Lc, c∗〉 = 〈s, c∗〉. (2.8)

In other words, rather than solving (2.1) to obtain I, an alternative is to solve (2.7) for
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c∗, and then obtain I by evaluating the inner product with s. It is clear from the sign of

the diffusion term in L† that for (2.7) to remain well-posed, it must be solved backwards

in time. In the case of our instantaneous receptor at t = T (2.7) takes initial conditions

c∗(x, T ) = R(x).

A formal interpretation of the adjoint solution c∗(x, t) is that it denotes sensitivity of

I with respect to a small change in the source s at location (x, t), as can be expressed

mathematically using the Frechet derivative c∗ = δI/δs. Alternatively, a more physical

interpretation is that c∗ is a measure the quantity of fluid at a given point that will

subsequently arrive at the receptor at time t = T , weighted by R(x). Fig. 2 (left) shows

snapshots from the PDE solution of (2.7) at times t = 50, 30, 20 and 0. The transport

barrier is again evident, as c∗ remains low in the lower left of the domain. The accuracy

of the solution can be checked directly by re-calculating I = 〈s, c∗〉. Agreement with the

forward calculation (I ≈ 1.522583× 10−7) is obtained to 11 sig. figs., demonstrating the

accuracy of the PDE algorithm.

2.3. The density of trajectories

A useful quantity is the product of the solutions of (2.1) and (2.7), i.e. the density

of trajectories D(x, t) = c(x, t) c∗(x, t). Some intuition as to why D is significant for

importance sampling follows if one interprets c(x, t) as (proportional to) the probability

density of a trajectory originating in S at t = 0 arriving at x at time t. Then c∗(x, t)

is the analogous quantity measuring the probability of the trajectory at (x, t) ending

up in R at t = T . The product D(x, t) is therefore proportional to the probability of

a trajectory passing through (x, t) as it travels from S → R. Intuitively, an optimal

Lagrangian algorithm for S → R transport should distribute trajectories in proportion

to D(x, t), as will be demonstrated below.

Fig. 3 (left) shows snapshots of D(x, t) for our model problem. The t = 20 and t = 30

panels illustrate at a glance why we have described our problem as ‘hard’. The greater

part of the D(x, t) field is seen to occupy around ten or so small and disjoint regions of

the domain. An effective adaptive trajectory algorithm must sample each of these disjoint

regions efficiently without wasting trajectories elsewhere.

A property of D(x, t) (e.g. Hourdin & Talagrand 2006) is that, during times when

source function s(x, t) and receptor function r(x, t) are zero, its domain-integral is con-
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Figure 2. Left: Snapshots from the PDE simulation of the forward problem (2.1)). The quan-

tity contoured is log10 c
∗(x, t), for t = 50, 30, 20, 0, and with contour interval 0.5. Right: Scat-

terplot of 104 solutions Xτ of the SDE given by (3.1) again at τ = 0, 20, 30, 50 (equivalently

t = 50, 30, 20, 0).

stant. The divergence theorem in two-dimensions can be used to show this as follows:

d

dt

∫
D
D(x, t) dx =

∫
D

(
ct(x, t)c

∗(x, t) + c(x, t)c∗t (x, t)

)
dx (2.9)

=

∫
D

(
(−u · ∇c+∇ · (κ · ∇c)) c∗ + c (−u · ∇c∗ −∇ · (κ · ∇c∗))

)
dx

=

∫
D
∇ · (ucc∗ + c∗κ · ∇c− cκ · ∇c∗) dx

=

∫
∂D

(
u · ncc∗ + c∗ (n · κ · ∇c)− c (n · κ · ∇c∗)

)
ds = 0,
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where n is the unit normal to ∂D. The final equality follows from no-normal flow at the

boundary ∂D, (i.e. u · n = 0) and the no-flux boundary conditions (2.2) for c and c∗

on ∂D.

For our problem it follows that∫
D
D(x, t) dx = I, at all times t ∈ [0, T ]. (2.10)

3. Stochastic representations of the advection-diffusion problem

3.1. Direct and adjoint stochastic representations

The direct stochastic Lagrangian model corresponding to (2.1) consists of an Itô-type

stochastic differential equation (SDE) for the particle position Xt. The SDE in ques-

tion is chosen in order that the probability density p(x, t) of the random variable Xt

evolves in time according to a Fokker-Planck equation (sometimes forward Chapman-

Kolmogorov equation) that is identical to (2.1). The method for deriving an SDE from a

given Fokker-Planck PDE (or vice versa) is standard in stochastic calculus (e.g. section

4.3.4 of Gardiner 2009). In the case of (2.1), the SDE is

dXt =
(
u(Xt, t) +∇ · κ(Xt, t)

)
dt+ (2κ)1/2(Xt, t) · dWt, X0 ∼ S(x)/S00. (3.1)

where dWt are the increments of a two-dimensional Brownian (Wiener) process, and

the square root of a symmetric positive-definite tensor κ follows the standard definition.

Notice that in (3.1) the probability density of the initial particle position X0 is specified

to ensure p(x, 0) = S(x)/S00 (where the normalising constant S00 is the domain integral

of S(x)). The consequence is that at subsequent times the respective distributions are in

direct proportion, i.e. p(x, t) = c(x, t)/S00 .

Fig. 1 (right) shows scatterplots of Xt for an ensemble of N = 104 realisations of (3.1).

Equation (3.1) is solved numerically using a suitable second-order Runge-Kutta time-

stepping scheme for time-dependent SDEs (see Tocino & Ardanuy 2002, note that their

scheme simplifies considerably when the diffusivity is constant and isotropic). Note that

the Tocino-Ardanuy scheme is ‘weak’ in the sense that it convergences only in probability

as step-size is reduced, as opposed to ‘strong’ in the sense of converging to individual

sample paths of the stochastic process. It is weak convergence that is appropriate for the

problem in hand. In comparison tests with the PDE solution, using the kernel density

method described below, a time-step of δt = 0.01 was found to be adequate to ensure that

the numerical error was significantly less than the statistical error when using N = 106

particles. It is immediately evident in Fig. 1 that the distribution of Xt follows that

of c(x, t) as expected. It is equally apparent that exactly zero particles end up in the

receptor region R (based the PDE solution, the probability of a particle arriving in R
at T = 50 under (3.1) is about 2 × 10−5). The integral I can be estimated from the
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Figure 3. Left: Snapshots of the density of trajectories D(x, t) defined in §2.3 and calculated

from the numerical solutions of forward (2.1) and retro (2.7) PDEs. The quantity contoured

is log10 (D(x, t)), for t = 0, 20, 30, 50, and with contour interval 0.5. Right: Scatterplot of 104

solutions Yt of the SDE experiment CHEAT also at t = 0, 20, 30, 50). CHEAT solves (3.6) with

the correcting velocity v given by (3.16), as interpolated from the numerical solution of (2.7).

stochastic process using

I = S00 E(R(XT )) = S00

∫
D
R(x)p(x, T ) dx = 〈c, r〉. (3.2)

Fig. 1 makes clear, however, that efforts to calculate I by estimating the expectation in
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(3.2) will require very large ensembles. Estimators based on (3.2) are described as ‘high

variance’ estimators in the stochastic calculus literature, and efforts to improve them

‘variance reduction methods’ (e.g. Kloeden & Platen 1992).

The same approach can be taken with the adjoint ‘retro-transport’ equation (2.7). Its

stochastic representation is

dX̄τ =
(
−u(X̄τ , τ)+∇·κ(X̄τ , τ)

)
dτ+(2κ)1/2(X̄τ , τ) ·dWτ , X̄0 ∼ R(x)/R00. (3.3)

where τ = T − t runs backwards in time, and I is obtained from

I = R00 E(S(X̄τ=T )).

Fig. 2 (right) shows scatterplots of solutions of (3.3). The distribution of X̄τ=T−t by

design matches c∗(x, t).

Kernel density methods (e.g. Silverman 1986; Wand & Jones 1994) can be used to

estimate c and c∗ from ensembles (e.g. X
(i)
t , i = 1, ..., N) of solutions of (3.1) and (3.3)

respectively. In terms of a symmetric kernel function K(x) with unit integral and finite

variance, suitable estimators are

c̄(x, t) =
1

Nh

N∑
i=1

K

(
x−X

(i)
t

h

)
+ ‘image terms’ (3.4)

c̄∗(x, t) =
1

N∗h

N∗∑
i=1

K

(
x− X̄

(i)
τ=T−t
h

)
+ ‘image terms’.

Here h is a (small) kernel bandwidth, and ‘image terms’ refer to contributions from the

images of trajectories, introduced to satisfy the boundary conditions. Formally, there

are an infinite number of images generated by repeated reflection in the boundaries at

y = 0, π, and located at periodic intervals of 2π in x. In practice, however, only the

former need be considered and only for particles close to the boundaries. The accuracy

of the estimate c̄∗ of the adjoint solution will prove important in the construction of the

Lagrangian estimators to be developed in sec. 4 below.

It is worth commenting that, if the kernel density estimates (3.4) are used to estimate

I using the density of trajectories formula (2.10), the ‘forward-reverse’ representation of

Milstein et al. (2004) is recovered as a straightforward consequence

I ≈
∫
D
c̄(x, t)c̄∗(x, t) dx =

1

NN∗h

N∑
i=1

N∗∑
j=1

K(2)

(
X

(i)
t − X̄

(j)
τ=T−t

h

)
+ ‘image terms’

(3.5)

Here K(2) is a new kernel generated from the self-convolution of the original kernel

K (see e.g. pg. 49 of Silverman 1986). In many practical circumstances, particularly

where source and receptor regions S and R are spatially and temporally localised, the

forward-reverse estimator will have lower variance. It is particularly useful when the

Green’s function of the transport operator L (in the terminology of probability theory,
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the transition density) is sought (corresponding to source S and receptor R being points

in D, for which case the estimator (3.2) has infinite variance). For non-localised S and

R the estimator (3.5) is biased, and converges more slowly with ensemble sizes N and

N∗ compared with the unbiased estimator (3.2). However, because it can have a much

lower starting variance, it can often be of practical value, see e.g. the ocean transport

modelling study of Spivakovskaya et al. (2005).

3.2. Importance sampling using Milstein’s measure transformation method

The measure transformation method of Milstein (1995) is based on Girsanov’s theorem in

stochastic calculus ( e.g. Øksendal 2007, chap. 8). Usually, Girsanov’s theorem is proved

using results from measure theory, including the use of the Radon-Nikodym derivative,

which may be unfamiliar to some applied mathematicians. Consequently, all of the re-

sults used here will be first proved using a relatively elementary, (and to the author’s

knowledge, novel), PDE-based approach. The starting point of Milstein’s method is the

extended stochastic process

dYt =
(
u(Yt, t) + v(Yt, t) +∇ · κ(Yt, t)

)
dt+ (2κ)1/2(Yt, t) · dWt,

dΘt = −2−1/2Θt v(Yt, t) · κ−1/2(Yt, t) · dWt. (3.6)

It is to be emphasised that it is the same three-dimensional Brownian increment dWt in

each equation of (3.6). The initial conditions of (3.6), which must be consistent with the

initial condition c(x, 0) = S(x) of (2.1), are in general given by

Y0 ∼ g(x)S(x)/G00, Θ0 = G00g(Y0)−1,

(
G00 =

∫
D
g(x)S(x) dx

)
. (3.7)

In (3.6) v(x, t) is a smooth but otherwise arbitrary vector field defined everywhere in D
and similarly in (3.7) g(x) is a smooth function in D. Evidently, the particle trajectories

Yt in (3.6) differ from those of (3.1) in that they are advected by the corrected velocity

field u + v, instead of by u. There is also an additional equation for a stochastic variable

Θt coupled to the trajectory equation. The key result obtained from Girsanov’s theorem

(following e.g. Kloeden & Platen 1992) is that, for any choice of v and g the process (3.6)

satisfies

I = E (ΘTR(YT )) . (3.8)

The result (3.8) will be established below using a PDE method. Note that the original

direct estimate (3.2) is recovered under the choice v = 0, g = 1. Note also that in order to

frame our discussion in terms of ‘correcting velocities’, a form of the result has been given

that is valid only when the diffusivity tensor κ is everywhere strictly positive definite,

and thus invertible. In the more general situation in which one or more eigenvalues of κ

is sometimes zero, care must be taken to restrict v to the direction of the eigenvector(s)

of κ associated with its non-zero eigenvalue(s).



14 J. G. Esler

The aim of Milstein’s method is to choose v and g judiciously in order that (3.8) is a

‘lower variance’ estimator of I compared with (3.2). The variable Θt can be understood

as a trajectory ‘weight’, which is constant in the uncorrected process (3.1), but is here

allowed to evolve. Under a particular choice of v, the system (3.6) samples trajectories

that, though (possibly) important for the problem of interest, may be highly improbable

under the direct process (3.1). The trajectory weight Θt is designed to keep track of ex-

actly how improbable the sampled trajectories are, essentially by integrating the relative

probabilities of stochastic increments in the corrected versus the uncorrected process.

The result (3.8) can be established as follows. First, consider (3.6) as a three-dimensional

vector-valued stochastic process, i.e. for Zt = (Y1t Y2t Θt)
†. The Fokker-Planck equation

for the joint probability density p(y, θ, t) for Zt is then obtained as

pt +∇ · ((u + v) p)−∇ · (κ · ∇p) +∇ · (v (θp)θ)−
1
4

(
v · κ−1 · v

) (
θ2p
)
θ θ

= 0, (3.9)

where ∇ ≡ ∇y acts on the spatial variable y only. Next consider the integrated quantity

P (y, t) =

∫ ∞
0

θp(y, θ, t) dθ. (3.10)

Multiplying (3.9) by θ and then integrating leads to (following some integration by parts)

∂tP +∇ · (uP )−∇ · (κ · ∇P ) = 0. (3.11)

In other words (since here ∇ · u = 0) P satisfies our original advection-diffusion equa-

tion (2.1). Noting that the SDE initial condition (3.7) corresponds to p(y, θ, 0) = δ(θ −
G00g(y)−1)g(y)S(x)/G00 it follows that the correct initial condition for (3.11), i.e. P (y, 0) =

S(x), also holds. Consequently

P (y, t) = c(y, t)

at subsequent times t. The result (3.8) then follows from the definition of expectation

E(ΘTR(YT )) =

∫
D

∫ ∞
0

θR(y)p(y, θ, T ) dθ dy =

∫
D
R(y)P (y, T ) dy = 〈c, r〉 = I.

(3.12)

The fact that the PDE analogue of Girsanov’s theorem / Milstein’s method involves

solving a PDE (3.9) in a higher dimensional space than the original, perhaps explains

why the approach has not previously been exploited in the context of PDE methods

for advection-diffusion problems. The great advantage of the stochastic representation is

that the extra dimension can be accommodated at little extra cost.

The key question remains how to choose v in (3.6) and g in (3.7). This is a more

delicate matter than might be supposed, as the following two examples will demonstrate.

3.3. Milstein’s method with a uniform correcting velocity

Some intuition about the consequences of a poor choice of the correcting velocity v follows

from setting v = V i, where V is a constant and i is the unit vector in the x-direction,
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Figure 4. Left (UNIFORM): Normalised histograms of trajectory weight Θt in the uniform

correcting velocity experiment with V = 0.01 at times t = 1 (blue),3 (green),5 (red), versus

the corresponding analytic solutions (curves) given by (3.14). Right (CHEAT): Histograms of

ΘTR(Yt)/I in the CHEAT experiments described in the text. Blue histogram: interpolation

time ∆t = 0.1, red histogram: ∆t = 0.2.

together with g(x) = 1. For the case of the constant and isotropic diffusivity problem

under consideration, the trajectory weight equation (3.6) can be integrated explicitly to

give

Θt = Θ0 exp

(
−V

2t

4κ
+

VW1t

(2κ)1/2

)
, (3.13)

where W1t is the x-component of the vector-valued Wiener process Wt. It follows that

the random variable Θt/Θ0 has probability density

ρ(θ) =
1

(πt∗)1/2θ
exp

(
−

(log θ + t∗
4 )2

t∗

)
, t∗ = V 2t/κ. (3.14)

The distribution ρ(θ) has a very long-tail for t∗ � 1. It follows that after sufficient time,

the estimator (3.8) will necessarily have very high variance, making it a poor estimator

of I . By way of illustration Fig. 4 (left) shows the evolution of the distribution (3.14) at

t∗ = 0.5, 1.5, 2.5. The results are compared to histograms of Θt in at corresponding times

t = 1, 3, 5 in a numerical integration of (3.6), with V = 0.01 (recall that κ = 2 × 10−4).

Even though the correcting velocity V = 0.01 is so small that it is difficult to distinguish

by eye between corrected and uncorrected particle distributions (not shown), it is obvious

that the variance of Θt is already alarmingly high after only 10% of the total integration

time.

To make the above observations more precise a lower bound can be derived for the

variance of the random variable Π ≡ ΘTR(YT ). Exploiting the facts that E(Π) = I
(from 3.12), that R(x) is bounded, and that the distribution of ΘT is given by (3.14)
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with t∗ = V 2T/κ, it is shown in Appendix A that

Var(Π) > X(t∗, I)S00I − I2, (3.15)

where X(t∗, I) is a function which, for fixed I > 0, can be shown at large t∗ to grow

exponentially. For problems with fixed κ and T , as here, the inequality (3.15) allows

an upper bound for V to be calculated, beyond which Var(Π) will certainly exceed the

variance of the original estimator Var(S00R(XT )). For the problem at hand (with T = 50,

κ = 2 × 10−4, I ≈ 1.52 × 10−7, S00 ≈ 7.85 × 10−3) the bound obtained is rather low,

|V | < 0.03. As above, a correcting velocity V of this magnitude has a very modest impact

on the distribution of particles, making it clear that a naive application of Milstein’s

method with a uniform correcting velocity is worse than useless for our problem.

The broader significance of this result is that it gives an explicit demonstration that,

unless v is chosen with great care, the variance of Θt will grow and overwhelm any

possible reduction in variance obtained from directing more particles into the receptor

region R. In fact, as will be demonstrated next for the problem under consideration,

great care is necessary in the choice of v to result in any variance reduction at all.

3.4. Milstein’s method with the optimal correcting velocity

Kloeden & Platen (1992) comment that, in principle, a ‘zero variance’ estimator for I, i.e.

an optimal importance sampling strategy, can be constructed by setting v = v∗ where

v∗ is an ideal correcting velocity given by

v∗ = 2c∗−1κ · ∇c∗. (3.16)

Here c∗ is the solution of the retro-transport (adjoint) equation (2.7). The standard proof

for this is given in Appendix B, where it is shown that the corresponding optimal choice

in (3.7) is g(x) = c∗(x, 0). Of course, the expression (3.16) cannot be used directly to

construct a purely Lagrangian estimator, because it requires knowledge of c∗, from which

I can in any case be obtained directly using (2.8). Nevertheless, investigating solutions

of the SDE system (3.6) with v = v∗ is instructive, both in providing intuition about

how the ‘perfect’ importance sampling Lagrangian solution behaves, and as a test of the

numerical implementation of (3.6).

Some results regarding the optimal importance sampling strategy follow from the ob-

servation that when v = v∗ and g(x) = c∗(x, 0), the Fokker-Planck equation (3.9) has

the exact solution

p(y, θ, t) = δ
(
θ − Ic∗(y, t)−1

)
c∗(y, t) c(y, t) I−1. (3.17)

The result (3.17) can be verified by the straightforward, if tedious, process of insertion

in (3.9), provided that care is taken over the properties of generalised functions, i.e. the
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Dirac delta and its derivatives. That (3.17) is correctly normalised follows from (2.10).

The solution (3.17) reveals the following:

(a) In the optimal importance sampling strategy, the distribution of particles in the

domain is given by

p̄(y, t) =

∫ ∞
0

p(y, θ, t) dθ = D(y, t) I−1. (3.18)

In other words, Lagrangian particles are distributed according to the density of trajecto-

ries defined in section 2.3. (Note that this result can also be obtained, avoiding the use

of generalised functions, by first integrating (3.9) with respect to θ to obtain an equation

for p̄.)

(b) In the optimal importance sampling strategy, the trajectory weights are everywhere

inversely proportional to the local value of the adjoint solution, i.e. Θt ∼ c∗(Yt, t)
−1.

The results (a) and (b) show that the optimal strategy for Milstein’s method, i.e. with

v = v∗, is exactly consistent with the intuitive description of the importance of D given

in §2.3. This intuition will be the basis of the purely Lagrangian strategies developed to

estimate I in §4 below, including the means to choose ‘winners’ in the GWTW algorithm

to be discussed next.

Equation (3.6) has been solved numerically using a correcting velocity v = v∗ obtained

from numerical interpolation of the Eulerian solution of (2.7) described in §2.2 and shown

in Fig. 2. The aim of this numerical experiment, named ‘CHEAT’ because the Eulerian

solution that is being exploited can obviously be used to obtain I independently, is

to check the results above and to gain some insight into their practical limitations. In

the main experiment, cubic interpolation is used from the 1024×512 gridded Eulerian

solution, with linear interpolation in time between outputs at intervals ∆t = 0.1.

The particle positions for an ensemble of N = 104 realisations of CHEAT are shown

in Fig. 3 (right). It is clear from Fig. 3 that the particles distribution in CHEAT closely

follows D as predicted by (3.18). The trajectory weights, however, deviate from the

prediction (b). Fig. 4 (right) shows a histogram (blue) of ΘTR(YT )/I for CHEAT. If v∗

were exact (and the numerics were perfect) then ΘTR(YT )/I would be equal to unity. It

is seen, however, to deviate substantially from this deterministic ideal. The main source

of error is found to come from the linear interpolation in time between the calculated

v∗ fields which are stored at discrete time intervals ∆t = 0.1. Evidence comes from a

test in which ∆t is increased to 0.2 (red histogram) which shows a large increase in the

standard deviation of ΘTR(YT )/I.

The sensitivity of the CHEAT results to ∆t is illustrative of a major practical difficulty

with Milstein’s method. Even relatively small errors in v∗ cumulatively lead to large in-

creases in the variance of the Lagrangian estimator. This finding influences our approach

in section 4 below.
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3.5. Grassberger’s ‘go-with-the-winners’ (GWTW) branching process

An alternative to Milstein’s method is the GWTW importance sampling strategy (Grass-

berger 1997, 2002). GWTW is a branching process which in its simplest form is applied at

discrete intervals ∆t in time. Trajectories are first assigned an initial position and weight

Θ0, according to (3.7), exactly as for Milstein’s method. An ensemble of N realisations

of the direct SDE (3.1) is then integrated forwards from t = 0, with each member of

the ensemble having weight Θ0. However in contrast to Milstein’s method, in GWTW

trajectory weights Θt are updated only at discrete times t = tj (tj = j∆t), instead of

continuously in time. Nevertheless the weight Θt performs exactly the same function for

each algorithm.

At each branching time tj = j∆t (j = 1, 2, 3...), our implementation of the algorithm

proceeds as follows:

(a) A scoring algorithm (see below) is used to assign each trajectory in the ensemble a

score S
(i)
tj (i = 1, ..., N). The trajectories are then sorted into order of decreasing score.

(b) The trajectories with the lowest scores are then considered sequentially. The trajectory

with the mth lowest score is designated as a ‘loser’ if its score is less than 1/3 of the

score of the trajectory with the mth highest score. The total number of losers found is

denoted L.

(c) The weights of the L loser trajectories are then randomly, with probability one-half,

either doubled Θtj → 2Θtj or set to zero. The W (≈ L/2) trajectories with score zero are

then removed from the calculation.

(d) The W trajectories with the highest scores, designated as the ‘winners’, are then split

into two trajectories, each with half the weight of its parent, i.e. Θtj/2.

The steps (a-d) act to reduce the variance of the distribution of scores {S(i)
tj , i = 1, ..., N}

at each branching time. This variance reduction occurs because any trajectory with a

score less than around half of the ensemble mean score will be identified as a loser,

and will either have its score doubled or will be removed completely. Any trajectory

with a score much greater than 2-3 times the ensemble mean will likely be identified as

a winner, and will be reproduced with each daughter trajectory having half its score.

Provided that steps (a-d) are implemented sufficiently frequently in time, the net effect

is to keep all scores within a factor of two or so of the ensemble mean. Crucially, this is

achieved without either changing the number of trajectories, or by changing the overall

expectation of the process.

The effectiveness of GWTW evidently depends upon the selection of an appropriate

score Stj for each trajectory, together with the choice of g(x) in the initial condition (3.7).

There is a clear analogy between choosing Stj and choosing the correcting velocity v in

Milstein’s method. Just as with Milstein’s method, we have found that a poor choice leads
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Figure 5. Solution c∗(x, 0) of the retro-transport equation (2.7) versus kernel density recon-

structions c̄∗(x, 0) from ensembles of solutions of (3.3) with N = 104, 105 and 106 trajectories

respectively. The Gaussian kernel widths h = 0.015, h = 0.02 and h = 0.04 are used, which are

close to the optimum value in each case.

to poor performance. Based on the above, the ideal choice can be guided by result (b)

in §3.4, which gives the trajectory weights in the ‘perfect’ implementation of Milstein’s

method. If the ideal score at time t is taken to be the product of the trajectory weight

and the local value of the adjoint solution, i.e.

St = Θt c
∗(Xt, t), (3.19)

then, based on the arguments given above, the GWTW algorithm will ensure that the

distribution of values of St will remain within a factor of two or so of the ensemble mean

〈St〉. Hence the trajectory weights will satisfy 1
2 〈St〉c

∗(Xt, t)
−1 . Θt . 2〈St〉c∗(Xt, t)

−1,

i.e. at any instant in time Θt is approximately inversely proportional to c∗, as it is in in

the ideal implementation of Milstein’s method. Of course, as with Milstein’s method the

exact field c∗ is not available, but the result (3.19) will nevertheless guide our practical

implementation of GWTW described in §4.2 below.

4. Adaptive Lagrangian estimators for S → R transport

Motivated by the above analysis, we proceed by considering forward estimators of I in

which importance sampling is controlled by an estimate of the adjoint solution c∗, which

is generated from a preliminary ensemble of integrations of the retro-transport SDE (3.3).

Much depends on the quality of the estimate c̄∗ of c∗, of which some illustrative examples

generated using the kernel density method, are shown in Fig. 5.

Alternative approaches are possible. For example Vanden-Eijnden & Weare (2012)

describe how results from large deviation theory can be used to obtain an estimate of v∗
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for Milstein’s method that is asymptotically exact in the limit of small noise. To do this,

it is necessary solve a variational problem for each trajectory at regular time intervals,

with this problem being posed on the time interval [t, T ]. Our efforts to use this method

for our model problem have not been successful for reasons to be given below.

The restriction here to forward estimators is simply to focus the discussion. Indeed,

because both forward and backwards trajectories are used, each of our approaches can

be straightforwardly adapted to exploit the forward-reverse representation of Milstein

et al. (2004) (see eqn. 3.5 above), which may lead to significant further improvements,

particularly for very localised sources and receptors.

4.1. Estimators based on Milstein’s measure transformation method

A purely Lagrangian forward estimator for I can be created using the the following

four-stage algorithm:

(a) Generate an ensemble, of size N∗, of solutions of the retro-transport SDE (3.3).

(b) Use the kernel density method (3.4) to generate a gridded estimates c̄∗ at time

intervals ∆t, of the retro-transport solution c∗ of (2.7), using the back trajectory

ensemble.

(c) Use the field c̄∗ to generate a correcting velocity v̄∗ based on (3.16). This is multi-

plied by a smoothed step-function Fε(·) designed to smoothly reduce v̄∗ to near zero

in regions where c̄∗ is low, i.e.

v̄∗ = 2Fε(c̄
∗) c̄∗−1κ · ∇c̄∗, (4.1)

Here Fε(x) approaches unity for x� ε and decays monotonically and rapidly to zero

for x� ε (below Fε(x) = exp (−8(log x/ log ε)12) is used).

(d) Solve (3.6) using correcting velocity v = v̄∗ from (4.1), using initial conditions (3.7),

where the function g(x) = ε + c̄∗(x, 0). This particular choice for g(x) is consistent

with trusting the estimate c̄∗ to be a reasonable approximation for c∗ only in regions

where c̄∗ & ε.

The algorithm above requires the selection of a large number of numerical parameters

(e.g. retro-ensemble size N∗, kernel size h, grid-spacing ∆x, time interval ∆t etc.), in

addition to those associated with the SDE solutions themselves (e.g. timestep), and the

choice of the function Fε(·). A complete numerical analysis and optimisation is therefore

a formidable task, which we do not attempt here. Instead we focus on the key, and not

immediately transparent, role of the parameter ε. The reason that a finite ε is required

is that Milstein’s method will fail whenever the trajectory passes through regions where

the estimate v̄∗ differs significantly from the ideal v∗. The failure can be explained by

analogy with the ‘uniform correcting velocity’ problem of §3.3, which showed that the

increase in Var(Θt) due to a poorly directed correcting velocity can rapidly overwhelm

any variance reduction due to redirecting trajectories into the region of interest.
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Figure 6. Trajectory distributions at t = 20 (left panels) and t = 50 (right panels) in (top row)

the experiment CHEAT described in §3.4, in (second row) Milstein’s method with N∗ = 105

and ε = 10−5, in (third row) GWTW with N∗ = 105 and ε = 10−5 and (bottom row) GWTW

with N∗ = 105 and ε = 10−7.

In our problem the estimate v̄∗ is poor where there are few adjoint trajectories con-

tributing to c̄∗, i.e. in all regions where c̄∗ is small, and it turns out to be effective to

set the correcting velocity v to be zero in these regions. It seems that such a fix will

be necessary regardless of the method used to estimate c̄∗, because the relative error

in c̄∗, which controls v̄∗, will be inevitably be higher where c̄∗ is low. The smoothed

step-function in (4.1) acts to suppress v̄∗ everywhere that c̄∗ . ε. Broadly speaking, it
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Figure 7. Upper panels (a,c): Calculated variance of the estimator ΘTR(YT ), as a function

of ε, for calculations using estimates of c̄∗ based on N∗ = 104, 105 and 106 trajectories. Points

for which the calculated variance is inconsistent with the error in the sample mean are marked

grey. (a) Milstein’s method. (c) Go-with-the-winners. The variance of the direct estimator is

indicated by the dotted line in each panel. Lower panels (b,d): As above, but showing MISE(T )

(eqn. 4.2) for the same calculations.

turns out to be important to choose ε to be sufficiently large so that the estimate (4.1)

is accurate throughout the region with c∗ & ε. It will be seen below that the algorithm

is not sensitive to the precise value of ε, with near optimal results obtained provided ε is

within an order of magnitude or so of its optimal value.

Fig. 6 shows the trajectory positions at t = 20 and t = 50 in the CHEAT experiment

(top row) and in Milstein’s method with N∗ = 105 and ε = 10−5. In the CHEAT

experiment, trajectories are distributed almost exactly according to D(x, t), so CHEAT

serves here as a reference which allows us to determine easily where the other methods
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are over- and under-resolved in terms of their distribution of particles. It can be seen

in the t = 20 panel that the Milstein’s method integration with ε = 10−5 maintains

some resolution in all relevant regions, but is over-resolved where c(x, t) is relatively

large (compare Fig. 1) and somewhat under-resolved elsewhere. The distributions of

trajectories for runs with other values of ε (not shown) are similar, but with fewer particles

reachingR as ε is increased. It appears from Fig. 6 that the errors in Milstein’s method do

not primarily stem from a failure to simulate some of the S → R transport pathways, but

from the excess variance in ΘT introduced due to errors in v∗, as discussed in section 3.3-

3.4 above. Because Var(ΘT ) decreases as ε is increased, there is an optimal value of ε for

which sufficient trajectories reach R with Var(ΘT ) not too large, and this optimal value

depends on the details of the problem.

To quantify the influence of the quality of the estimate of c̄∗ and the selection of ε,

Fig. 7a shows calculated variances of the Lagrangian estimators, i.e. Var(ΘTR(YT )). The

variance of the direct estimator (i.e. Var(S00R(XT ))), calculated directly from the PDE

solution, is marked by the dotted line. The results are plotted as a function of ε, and

are given for the three kernel density reconstructions of c̄∗, for N∗ = 104, 105 and 106,

as shown in Fig. 5. The variance in each case is calculated from a forward ensemble of

size N = 105, using the standard statistical estimator. A difficulty is that the random

variable ΘTR(YT ) becomes long-tailed for calculations with ε = 10−6 or smaller, and

in these case the values obtained for the variance are likely to be underestimates due to

poor sampling of the tail. Points for which the error in the sample mean, compared to the

expected value I, is greater than the calculated value of 3(Var(ΘTR(YT ))/N)1/2 (i.e.

three standard deviations), are highlighted as being inconsistent and are consequently

marked in grey. If these points are ignored, the results show that between one and two

orders of magnitude of variance reduction is possible, and confirm that performance

improves with increasing N∗ as is expected. The optimal value for ε is seen to be in the

range 10−4 − 10−5.

An alternative measure of the accuracy of the calculations is given by the mean in-

tegrated square error (MISE) of the reconstructions of the tracer field within R. Here

MISE is defined to be

MISE(t) =

∫
D

(c(x, t)− c̄(x, t))2R(x)2 dx, (4.2)

where the reconstructions are obtained from the weighted kernel density formula (c.f.

eqn. 3.4)

c̄(x, t) =
1

Nh

N∑
i=1

Θ
(i)
t K

(
x−Y

(i)
t

h

)
+ ‘image terms’. (4.3)

Contour plots of c(x, T )R(x) from the exact (PDE) solution, together with kernel density

reconstructions c̄(x, T )R(x) from the Milstein method (MILS) with N = 105, N∗ = 105
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Figure 8. (Top left) Weighted PDE (Eulerian) solution log10 c(x, T )R(x) in the vicinity of the

receptor region R. (Remaining panels) Kernel density estimates of log10 c(x, T )R(x) from the

stochastic Lagrangian integrations: DIRECT with N = 106, CHEAT with N = 105, MILSTEIN

with N = 105 (N∗ = 105, ε = 10−5), GWTW with N = 105 (N∗ = 105, ε = 10−5) and finally

an experiment combining both methods (BOTH) also with N = 105.

and ε = 1 × 10−5, are shown in Fig. 8 (optimal kernel sizes are used). The results are

clearly superior to the direct calculation with N = 106, for which only around 20 trajec-

tories arrive in R. Fig. 7b shows MISE(T ) for the same set of simulations as in Fig. 7a,

confirming that performance improves with increasing N∗ and that ε = 10−4 − 10−5.

A further disadvantage of the implementation (a-d) of Milstein’s method is the expense

of calculating and storing the gridded correcting velocity v̄∗, as well as interpolating it

during the forward calculations. As is clear from Fig. 4b, v̄∗ must be obtained and stored

at a relatively high temporal resolution (here ∆t = 0.1). The overall cost of this increases

the expense of our forward calculations by around a factor of ten compared to the direct

calculations, significantly reducing the gains made by variance reduction. Fortunately,

better results are obtained with the GWTW algorithm, as will be seen next.

4.2. Estimators based on ‘go-with-the-winners’ (GWTW)

To create a purely Lagrangian estimator based on GWTW, steps (a-b) are followed as

above, followed by:

(c 2) A forward run with GWTW scored according to

St = Θt (c̄∗(Xt, t) + ε) . (4.4)
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In close analogy with Milstein’s method, introducing an ε > 0 acts effectively to switch

off GWTW in regions where c̄∗ � ε, in order that particles are not removed and added

erroneously in regions where the estimate c̄∗ of c∗ is inaccurate.

The importance of choosing ε to be sufficiently large is seen in the lower two rows of

Fig. 6, which shows the trajectory positions in GWTW runs with N∗ = 105 and ε = 10−5

(third row) and ε = 10−7 (bottom row). For the ε = 10−7 GWTW run, from the t = 20

panel it is clear that some S → R transport pathways are significantly under-resolved,

mainly in regions where c(x, t) is large (e.g. regions highlighted by arrows). The under-

resolution is due to trajectories being removed too rapidly from regions where c∗ is low,

because in these regions there are no back trajectories, meaning that c̄∗ is effectively zero

and trajectory scores are too low. Elsewhere, there is evidence of erroneous trajectory

clustering on the scale of the kernel size h, which is due to trajectories being reproduced

close to local maxima in c̄∗ associated with individual back trajectories. The consequence

of the poor sampling of S → R transport pathways in the ε = 10−7 simulation is that,

despite the spatial distribution of particles at t = 50 appearing to be reasonable, there

is increased variance in statistics of the trajectory weights at t = 50, consistent with

a relatively poor estimate of I. Choosing ε = 10−5 improves the sampling of S → R
pathways, but at the expense of over-resolving where c is large, and consequently a

lower proportion of trajectories reaching R at t = 50. As with Milstein’s method, there

is evidently a trade-off between competing effects, and an optimal value of ε for the

algorithm.

The performance of GWTW is quantified as a function of ε and N∗ in Fig. 7c and d. It

is clear that our implementation of GWTW performs substantially better than Milstein’s

method, with robust behaviour over a wide range of ε centred on the optimal value of

around 10−5. For runs with N∗ = 105 the variance is reduced by 2.5 orders of magnitude,

increasing to 3 orders of magnitude for N∗ = 106. An even greater improvement over

Milstein’s method is evident for MISE(T ), which is also apparent in the kernel density

reconstructions of Fig. 8.

GWTW is also much cheaper to implement than Milstein’s method. Interpolation of c̄∗

and sorting of winners and losers happens only at longer intervals ∆t = 0.1, whereas v̄∗ in

Milstein’s method must be obtained by interpolation at every SDE time-step δt = 0.01 in

order to integrate the trajectory weight equation. As a result GWTW adds only 10-20%

to the cost of a forward run, making it remarkably cheap as well as robust. For our model

problem, the computational cost of integrating N = 105 trajectories is comparable to

that of using the kernel density method to make 500 constructions of c̄∗ from the results,

hence the overall cost of the algorithm (backwards run, construction of c̄∗, forwards run)

is around three times that of the direct method. In our model problem, fixing a level
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of accuracy required for I in advance, the GWTW algorithm can obtain the required

estimate at roughly 1% of the computational cost of using the direct method.

5. Conclusions

The focus of this work has been to address the following question: how is transport in an

advection-diffusion problem, between a pre-selected source region S and receptor region

R, modelled most efficiently using stochastic Lagrangian methods? The main theoretical

result, which underpins each of the methods subsequently formulated, and which we

believe to be fundamental to the understanding of advection-diffusion problems, is that

the ideal distribution of particles is proportional to the density of trajectories field D(x, t)

defined by (2.9). The field D is the product of c, the solution of the forward transport

problem (S → R), and the adjoint solution c∗ (R → S). The corresponding ideal particle

weights are inversely proportional to c∗.

Motivated by the above observations, a robust and flexible Lagrangian adaptive algo-

rithm has been developed based on the ‘go-with-the-winners’ (GWTW) strategy (Grass-

berger 2002). The algorithm uses both forward and back trajectories, with the selection

of winners and losers in the forward calculation controlled by an estimate of the adjoint

solution, which is obtained from the preliminary backwards calculation. In our model

problem, trajectories in the adaptive calculation have variance three orders of magni-

tude lower than those of the direct calculation, with the computational cost increased

by just over a factor of two. There is also plenty of room for further optimisation, per-

haps most promisingly because the method can be combined with the complementary

forward-backwards representation of Milstein et al. (2004).

The GWTW algorithm is particularly suited to advection-diffusion in the chaotic

advection regime, in which the underlying deterministic trajectories separate exponen-

tially. Alternative ‘small noise’ approaches based on large-deviation theory (e.g. Vanden-

Eijnden & Weare 2012) appear to be prohibitively expensive and complicated to imple-

ment in chaotic advection. In the method of Vanden-Eijnden & Weare (2012) a variational

problem is solved for each trajectory, at regular time intervals, to obtain an correcting

velocity v for use with Milstein’s method. In the chaotic advection regime, the solutions

to this variational problem are discontinuous in time and space across multiple interfaces

which are not a priori predictable. This means that a solution for a particular trajectory

cannot be found reliably using an iteration that begins with a previous solution.

The main weakness of the GWTW method described here, is that it is limited by the

measurement ratio I/S00, i.e. the total tracer in the measurement region divided by the

total released. Unlike the small noise methods discussed above, the GWTW method will

fail when the measurement ratio is sufficiently low that there is little or no spatial overlap

between forward and backwards trajectories at intermediate times in the calculation.
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The Péclet number (Pe) dependence of the GWTW method is felt primarily through

its influence on this measurement ratio. Further experiments with the simple model here

indicate that GWTW will succeed over a wide range of Pe provided that the measurement

region is chosen so that I/S00 is not too small (i.e. I/S00 & 10−6− 10−7 for the number

of trajectories N = 105 − 106 used here). Note that, however, considering a sequence

of flows with increasing Pe, the measurement region R will be required to be located

increasingly close to the deterministic trajectories, to maintain the measurement ratio.

Although measurement ratios much smaller than the value (≈ 2× 10−5) considered here

are unlikely to be of much practical interest in fluid problems, it is notable that values of

I/S00 in the range 10−10 − 10−20 are typical in the molecular dynamics problems which

have motivated the development of the small noise methods. For these problems, which

are generally not in the chaotic regime, the small noise methods discussed above can be

used.

Will the GWTW algorithm be straightforward to implement in state-of-the-art opera-

tional atmospheric Lagrangian trajectory models, such as FLEXPART (Stohl et al. 2005)

or NAME (Jones et al. 2007)? Some practical and technical issues must be overcome,

such as the increase from two to three dimensions, and the fact that diffusivities in the

atmosphere are highly anisotropic, with dispersion in the horizontal primarily driven by

a combination of vertical diffusivity and vertical shear in the mean wind (c.f. shear dis-

persion, Taylor 1953). Further, turbulent diffusivities are spatially inhomogeneous, most

notably at the top of the atmospheric boundary layer where there is a rapid decrease. Fi-

nally, Poisson (jump) processes are likely to be required in regions of convection (Forster

et al. 2007). Notwithstanding these potential difficulties, there is no obstacle in princi-

ple to the suitable adaptation of the principles outlined in this work to the operational

scenario.

Thanks are due to Alexandre Truong for his collaboration on some preliminary inte-

grations. This work was supported by UK NERC grant NE/G016003/1.

Appendix A. Lower bound on the variance of Milstein’s estimator

with uniform drift

In §3.3, the estimator Π = ΘTR(YT ) for I, given by (3.8), was discussed for the case

with a uniform correcting velocity v = V i. Here we obtain the lower bound (3.15) on its

variance.

We will work under the assumption that R(x) is non-negative and bounded above by

a constant C, (C = 1 in our example). The fact that Θ0 = S00 (because g(x) = 1) can

then be used to write the inequality

P(x < Π <∞) 6 P(x/CS00 < ΘT /Θ0 <∞) (A 1)
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If the (unknown) probability density of Π is introduced as π(x), (A 1) can be expressed

as

Pπ(x) 6 P (x/CS00) (A 2)

where the cumulative densities Pπ and P are defined to be

Pπ(x) =

∫ ∞
x

π(q) dq, P (x) =

∫ ∞
x

ρ(q) dq,

and ρ(x) is the density of the random variable ΘT /Θ0 given by (3.14).

Next, note that the variance of Π can be written, using integration by parts, as

Var(Π) =

∫ ∞
0

x2π(x) dx− I2 = 2

∫ ∞
0

T (x) dx− I2, where T (x) =

∫ ∞
x

Pπ(q) dq,

where the fact that E(Π) = I has been used. Using the inequality (A 2) we can write

T (x) = I −
∫ x

0

Pπ(q) dq > I − S00C

∫ x/S00C

0

P (q) dq.

Next define X = X(t∗,R), where R = I/S00C satisfies 0 < R < 1, to be the root of the

equation ∫ X

0

P (q) dq =
R
2
. (A 3)

After integrating, a nonlinear equation satisfied by X is found

erfc

(
t∗ − 4 logX

4
√
t∗

)
+Xerfc

(
t∗ + 4 logX

4
√
t∗

)
= R (A 4)

where erfc(·) denotes the complementary error function. The quantity X has been defined

in order that the inequality

T (x) > I/2, for 0 6 x 6 S00CX,

is satisfied. As a consequence, because T (x) is non-negative everywhere,

Var(Π) = 2

∫ ∞
0

T (x) dx− I2 > 2

∫ XS00C

0

T (x) dx− I2 > I2 (X/R− 1)

which is (3.15) as required.

For the bound (3.15) to be useful it is necessary to understand the behaviour of

X(t∗,R) as t∗ → ∞ for fixed R. Note that for t∗ � 1 X ≈ R/2 and the bound is

negative (i.e. useless). At large t∗, the asymptotic behaviour of (A 4) can be seen to be

X ∼ exp (t∗/4), hence the bound will always become useful as t∗ (or V ) increases. For the

results discussed in §3.3 numerical solutions of (A 4) have been obtained using a standard

root finding method.

Appendix B. The zero variance property of the ‘ideal’ estimator

The result that setting v = v∗ in Milstein’s method leads to a zero variance estimator

is a standard one in stochastic calculus (see e.g. exercise 16.2.1 of Kloeden & Platen
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1992) but is included here as a useful alternative perspective on the results of §3.4. To

show the result it suffices to apply the multivariate version of Itô’s lemma, which states

that, for a smooth function f(z, t) and a vector-valued random process Zt,

df(Zt, t) = (∂tf)dt+ (∇zf) · dZt + 1
2dZt · ∇z∇zf · dZt.

The lemma is applied to the stochastic variable Θtc
∗(Yt, t), with the identification Z†t =

(Y†t Θt) as in §3.2. Then,

d (Θtc
∗(Yt, t)) = Θt(∂tc

∗)dt+ c∗dΘt + Θt∇c∗ · dYt

+ 1
2Θt (dYt · ∇∇c∗ · dYt) + dΘt (dYt · ∇c∗) . (B 1)

Next, using (3.6) to substitute for dYt and dΘt, and discarding terms of o(dt), after

some working it can be seen that

d (Θtc
∗(Yt, t)) = Θt

(
∇c∗ − 1

2c
∗v · κ−1

)
· (2κ)1/2 · dWt −ΘtL†c∗ dt (B 2)

= 0 on setting v = v∗. (B 3)

Integrating in time, ΘT c
∗(YT , T ) = Θ0c

∗(Y0, 0) = constant provided we make the choice

Θ0 = G00c
∗(Y0, 0)−1, or equivalently that g(x) = c∗(x, 0) as anticipated in §3.4. Since

ΘT c
∗(YT , T ) = ΘTR(YT ) we have the desired result that the latter is a deterministic

(i.e. zero variance) estimator of I.
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