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Abstract
Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset

price volatility, and is considered a possible contributor to market fragility. While numerous

studies investigate herd behaviour in financial markets, it is often considered without refer-

ence to the pricing of financial instruments or other market dynamics. Here, a trader interac-

tion model based upon informational cascades in the presence of information thresholds is

used to construct a new model of asset price returns that allows for both quiescent and

herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network,

parametrised by information thresholds and a network coupling probability. Agents may

possess either one or two information thresholds that, in each case, determine the number

of distinct states an agent may occupy before trading takes place. In the case where agents

possess two thresholds (labelled as the finite state-space model, corresponding to agents’

accumulating information over a bounded state-space), and where coupling strength is

maximal, an asymptotic expression for the cascade-size probability is derived and shown to

follow a power law when a critical value of network coupling probability is attained. For a

range of model parameters, a mixture of negative binomial distributions is used to approxi-

mate the cascade-size distribution. This approximation is subsequently used to express the

volatility of model price returns in terms of the model parameter which controls the network

coupling probability. In the case where agents possess a single pulse-coupling threshold

(labelled as the semi-infinite state-space model corresponding to agents’ accumulating

information over an unbounded state-space), numerical evidence is presented that demon-

strates volatility clustering and long-memory patterns in the volatility of asset returns.

Finally, output from the model is compared to both the distribution of historical stock returns

and the market price of an equity index option.

Introduction
For more than a decade, herd behaviour [1, 2] in financial markets has been the subject of
much research [3–7], in parallel with research investigating the phenomenon of stock market
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crashes [8–10], and the identification of certain stylised features of financial market data (see
the excellent reviews by R. Cont [11] and P. Bouchaud [12]). Recent extraordinary market
events [13, 14], reviewed by Cincotti, et. al [15], demonstrate that herd behaviour can have
material consequences for investors, and regulators, alike [16]. While identifying and estimat-
ing the impact of herd behaviour on financial markets remains a challenge, technological and
market developments have increased the potential for herding to arise. For instance, investor
sentiment mined from social media [17–19], and the availability of data sets quantifying collec-
tive behaviour [20, 21], have the potential to facilitate both intentional and spurious herding
(using the terminology of Bikhchandani and Sharma [3]). Evidence suggests [22] that such
data are already being used by global asset managers. Furthermore, in a report commissioned
by the UK government [23], herd behaviour is identified as a possible consequence of high-fre-
quency trading, which constitutes a significant and growing proportion of trading activity [24].

Previous attempts at understanding the dynamics of financial markets have primarily
focused on accurately describing the observed data using time-series analysis, or purely statisti-
cal methods. It is well-documented that price returns of financial assets exhibit significant
deviations from the Gaussian model [11, 25], which has resulted in a plethora of alternative
representations. Models such as α-stable distributions [26], generalised hyperbolic models
[27], generalised autoregressive conditional heteroskedasticity (GARCH) models [28] and sto-
chastic volatility models [29] attempt to account for features, such as high kurtosis, long-mem-
ory [30] and volatility clustering [31, 32] which are inconsistent with Gaussian behaviour. In
addition, various studies [33–35] have demonstrated financial returns may be better described
by a power law with exponent, α, outside of the stable-Lévy regime of 0< α< 2.

Alternative descriptions of financial market dynamics using agent-based models [4, 7, 36,
37] have contributed to the qualitative understanding of asset price processes (for an excellent
review of this area, see the report by Chakraborti [38]), but have not yet achieved widespread
acceptance amongst market participants. Feng, et al [39] suggests one reason for the lack of
acceptance of agent-based financial market models is the insufficient quantitative accuracy of
such models—and the paper advocates combining an agent-based approach with classical sto-
chastic modelling in order to link microscopic agent behaviour with macroscopic phenomena
[40]. Following this line of enquiry, we develop a new archetypal probabilistic interacting agent
(trader) model to describe price fluctuations in a market for a single asset where agents stochas-
tically accumulate information, up to some threshold (the information threshold) prior to
initiating a trade. The information accrual of agents is modelled using a discrete state-space
enumerated by integers. Under this assumption, agent information thresholds correspond to
maximal and minimal integers that define the information state-space. In this study, we con-
sider both bounded and unbounded information state-spaces, as described in the methods sec-
tion. In line with Feng et.al [39], we model only those agents in a market considered to be
technical traders [41] as a result, all agents may engage in either buying or selling of the asset,
determined by a binary random variable (modelling the result of some decision process) taking
the values +1 for a buy and −1 for a sell with equal probability, prior to agents reaching their
information threshold. Under this assumption, the average demand is 0, and therefore the mar-
ket fluctuates around equilibrium.

Agents are considered to have recourse to two sources of information: private information
(of a level unknown to other agents) and public information inferred probabilistically from the
actions (trades) of other agents. It is assumed that agents combine information from both
sources additively when determining if their information threshold is reached. Therefore,
when one agent reaches their information threshold and instigates a trade—this information is
(probabilistically) incorporated into the information set of other agents who observe the mar-
ket impact of the trade on the asset price. We define the event of an agent reaching their
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information threshold immediately after observing the trade of some other agent, as a cascade
—and for notational convenience—define the event of a single agent reaching their informa-
tion threshold, but inducing no other agents to their respective information thresholds, as a
cascade of size one. When agents are brought to their information threshold as part of a cas-
cade, their individual demand is taken to be equal to that of the agent that initiated the cascade
—and the aggregate demand is considered to be excess demand that changes the market price
according to a given price impact function. In contrast to economic models, we do not model
the decision process, or its optimality, explicitly.

In order to model this situation, we utilise a network of stochastic pulse-coupled integrate
and fire oscillators [42], in which oscillators are identified as agents. The integrate phase,
bounded by the information thresholds, is identified with agent information accrual, and the
firing phase is identified with agent trading. Instantaneous pulse-coupling is used to capture
implicit agent interaction, which differentiates our model from those that employ continuous
Ising-like coupling [43], the latter being difficult to justify in a financial markets context where,
for fiduciary, competitive and regulatory reasons, agents are not expected to intentionally and
directly interact for prolonged durations. In line with model parsimony, different agents may
be endowed with differing information thresholds although they remain constant for each
agent.

Under the condition that agent decesions are economically rational, our model can be inter-
preted in the economic context of rational herding via (probabilistic) informational cascades
[44, 45]. An informational cascade is said to occur when agents obtain information by observ-
ing the actions of others and who may then (optimally) decide to act against their own private
information as a result. For instance, an agent whom would otherwise arrive at a decision to
sell an asset after accruing their private information may be led to instead buy the asset, upon
observing enough investors buying the security, through the impact on asset price. Although
the notion of an informational cascade is frequently encountered in economic contexts, it is of
general applicability to scenarios consisting of agents that are subject to social learning, while
possessing a limited action space (Ellis and Fender [46] provide an example of the use of infor-
mational cascades in the context of political regime change).

In terms of agent behaviour, our study differs from similar existing analyses [39], by model-
ling both sequential asynchronous agent trading (cascades of size one), and simultaneous syn-
chronous trading (cascades of size greater than one) which may facilitate application to
scenarios involving markets consisting of a subset of high-frequency traders. Furthermore, the
method used here to model agent informational accrual allows for the case when agent infor-
mation accumulates over an unbounded region, which may realistically account for the times
when agents withdraw from the market, or may be otherwise unwilling to trade.

It is important to note that here we are primarily concerned with the quantity of informa-
tion accrued, and not with the quality of the information. In particular, we do not stipulate
how agents obtain their private information, nor their decision making processes. Although
not incorporated into the current study, our model does not preclude the scenarios of corre-
lated private agent information, unequal weighting of private and public information, or that
of agent decisions being governed by a well-defined mechanism (such as adherence to quanti-
tative trading rules).

Phenomenologically, our model is related to the class of stochastic volatility models known
as multifractal and multiplicative cascade models [47–50], although in contrast, ours is based
upon agent (trader) interactions and information thresholds, and not on fixed heterogeneous
time scales. The network used here comprises of N vertices, which represent the N agents, and
the model may be parametrised by information threshold, K, and network pulse-coupling
probability, Kq/N (with q> 0 a network coupling probability parameter) when all agents have
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identical information thresholds. In this case, as N tends to infinity, this model is known to
transition from a quiescent state to a synchronised herd-like state as q surpasses one. By com-
puting the logarithmic asset price-returns (log-returns) arising from our model, we demon-
strate that a number of stylised facts concerning financial returns can be reproduced. Certain
features of empirical data, such as long-tailed and power law distributed price returns, are
reproduced. The so-called (Black-Scholes [51] implied) volatility smile [52], obtained from the
price of index option contracts [53], is approximately also recovered. The presentation of our
results begin by establishing a number of mathematical properties of the underlying models
used to describe our financial market model. In the case where agents’ information accrual
occurs over a bounded state-space (labelled as the finite state-space model) and with K = 1, an
asymptotic expression for the cascade probability is derived, while for K� 1, comparison with
the negative binomial distribution enables the functional form of price return standard devia-
tion (also known as volatility in the lexicon of financial markets) to be expressed in terms of q.
Substantial numerical simulations are used to demonstrate volatility clustering, and a long-
memory pattern in asset return volatility autocorrelation, occurs in the case where agents’
information accrual occurs over an unbounded state-space (labelled as the semi-infinite state-
space model). Our results suggest that a range of stylised facts can be attributed to how agents
process and accumulate information, and that explicit expressions of asset return volatility and
kurtosis can be obtained in terms of information thresholds and network coupling probability.

Results

Stochastic cascade process and cascade size
In the finite state-space model, with N agents and a constant information threshold of K for all
agents (described in the methods section), the information accrual of agents is represented by a
random walk on the finite set of integers {0, 1, 2, . . ., 2K}. Recall that state K represents a neu-
tral information state, while states 0 and 2K represent information threshold states. When an
agent’s information accumulation level reaches either one of the threshold states, it is permitted
to instigate a trade, which may probabilistically induce other agents to carry out the same trade
as part of a cascade. For the semi-infinite state-space model, agents accumulate information
represented as transitions on the unbounded set {. . ., K − 2, K − 1, K}, with the information
threshold state represented as K. Similar to the finite-state model, when an agent reaches their
information threshold, the remaining agents can be induced into a cascade, the size of which
depends upon K and q. In both the finite state-space and semi-infinite state-space cases, the
total number of agents that are induced to their information threshold as part of a cascade is
referred to as the cascade size, and is denoted by the variablem. When such a system is simu-
lated, the size of the i-th cascade is denoted asmi, and the sequence {mi}i � 1 is referred to as
the stochastic cascade process, or similarly as the (K, q) process. Fig 1 shows the maximal cas-
cade size magnitude obtained during simulations of semi-infinite state-space models, each con-
sisting of agents with identical information thresholds at K. Results for K = 1, 2, 6, 10 are
shown varying with q. The corresponding results for the finite state-space model is qualitatively
similar.

Cascade distribution of the K = 1 finite state-space model
Here, agents are homogeneous by virtue of possessing identical information thresholds, repre-
sented by K, and accumulate information over an identical bounded state-space. In this case,
the agent information threshold is considered part of the system specification, for notational
convenience. The model details are recounted in the methods section.
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The K = 1 system represents a special case as it can be most readily analysed using standard
statistical methods. In this case, the system has three states: two firing states and a rest state.
This implies that after each cascade event all agents will occupy the rest state, unconditional on
their state prior to the cascade event and the cascade size. The system then repeats in this way.
As a result, the cascade sizes can be considered to be independent and identically distributed
statistical random variables. For K> 1, the system can be said to possess memory, because cas-
cade sizes depend upon the outcome of previous cascades due, in part, to the distribution of
agents among the system states generally differing after each cascade event.

When a cascade is initialised, the number of agents that are subsequently induced to fire is
governed by a stochastic process. Furthermore, during the course of a single cascade, agents
can only be induced to the firing state at which the cascade is initialised, as agents either transi-
tion closer to the firing state, or do not transition at all. We proceed by breaking the develop-
ment of an arbitrary cascade into discrete levels. Let X0 = 1 represent the initial firing, and Xk

represent the number of agents that fire at the k-th level. The total number of agents that have

Fig 1. Maximal cascade size of semi-infinite state-space models.Maximal cascade size, expressed as a fraction of system size (N = 1000) in the case of
agents possessing identical information thresholds, K. For each K = 1, 2, 6, 10 and each q 2 [0.5, 3.5], the system is simulated until 107 cascades are
produced. The magnitude of the largest cascade size, disregarding sign, is then plotted. As K increases, the transition to the large cascade regime (q > 1)
becomes increasingly abrupt.

doi:10.1371/journal.pone.0151790.g001
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fired by level n is written as

Fn ¼
Xn
k¼0

Xk: ð1Þ

Once agents are induced to the firing state, for a given level of the cascade, they fire serially
and then enter a refractory state—reducing the number of agents available to be induced to the
firing state at the next level. Hence,

X0 ¼ 1;Xk ¼
XXk�1

i¼1

Yi;k ð2Þ

where Yi, k is a binomial random variable given by

Yi;k � BinðN � Fk�1 �
Xi�1

j¼0

Yj;k; pÞ ð3Þ

and Y0,k = 0. The cascade stops at some level T< N, with

T ¼ min fn j Fn ¼ N or Xn ¼ 0g

and the cascade size is taken to be FT. The process defined by Eqs (1)–(3) is similar to a Galton-
Watson process [54], with the exception that our model is finite (meaning the process always
stops) and “offspring” distributions do not satisfy the independence requirement (Xk for k> 1
is the sum of dependent binomial random variables).

Shrinking N-ary trees. To obtain an asymptotic expression for the probability of a given
cascade size, combinatorial methods are applied to a variant of rooted incomplete N-ary trees
[55]. A graphical interpretation of the tree-representation of an arbitrary cascade, described
below, is presented in Fig 2. Starting with a given single root node (level 0, X0 = 1), the evolu-
tion of a single cascade can be represented exactly by a tree consisting of two types of nodes:
internal nodes and perimeter nodes [56]. An internal node, at a given level of the tree, repre-
sents an agent induced to the firing state by an agent at the preceding level. A perimeter node
represents an unsuccessful attempt, by an agent in a firing state at the previous level, to induce
an agent to the firing state. Thus, perimeter nodes are connected to parent internal nodes, and
do not produce any further branches. The collection of all perimeter nodes is called the perime-
ter of the tree, and the size of the perimeter, Q, is equal to the number of perimeter nodes. A
cascade terminates when the firing state becomes unoccupied—which is represented in the tree
as all nodes of a given level consisting of perimeter nodes (which means the tree stops grow-
ing). Therefore, a tree consisting ofm internal nodes, and Q perimeter nodes, represents a cas-
cade of sizem. It follows the probability of a cascade of sizem can be written in the form

PðmÞ ¼
X
Q

Gðm;QÞpm�1ð1� pÞQ ð4Þ

where the summation is taken over different values of Q that correspond to a single value ofm,
and G(m, Q) is the number of trees consisting ofm internal, and Q perimeter, nodes. When the
number of agents remain constant at each level, for instance equal to (N − 1), an arbitrary cas-
cade can be modelled using a standard (rooted, incomplete) (N − 1)-ary tree. In this case the
number G(m, Q) is given by the Fuss-Catalan numbers (generalised Catalan numbers) [57, 58]

Gðm;QÞ ¼ Q�1
ðN � 1Þm

m

� �
ð5Þ
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Fig 2. Tree representations of a single arbitrary cascade incorporating dependency between levels. Filled nodes are internal nodes, representing
agents induced to the firing state during the course of the cascade. Open nodes are perimeter nodes, representing the unsuccessful attempt of a connected
parent node at the preceding level to induce an agent to the firing state. For all panelsN = 6. a) depicts a cascade of sizem = 4, with perimeterQ = 8, b)m = 4
withQ = 10, c)m = 4 withQ = 11, d)m = 5 withQ = 8.

doi:10.1371/journal.pone.0151790.g002
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where Q is a 1–1 function ofm given by

Q ¼ mðN � 2Þ þ 1: ð6Þ

When dependence between levels of the tree is taken in to account, according to Eqs (1)–
(3), the arity of the tree representing a cascade shrinks monotonically as the cascade progresses
(see Fig 2). For example, level 1 consists of a single-level (N − 1)-ary tree, while level 2 is a sin-
gle-level tree, distributed over X1 root nodes, able to produce up to (N − 1 − X1) internal nodes
in total—and so on. For this tree structure we obtain the perimeter size, given the number of
internal nodesm, as

Q ¼ mðN �mÞ þ 1
2
ðm� 1Þ2 � 1

2

X
k�1

X2
k ð7Þ

and asymptotically for large N the probability of cascade size reduces to,

PðmÞ � ð2pÞ�
1

2m
�
3

2 eð1�qÞmqm�1: ð8Þ

The details of the derivations of Eqs (7) and (8) are presented in the methods section. When
q = 1 the asymptotic cascade distribution takes the form of a power law with exponent −3/2,
consistent with the infinite sub-critical Galton-Watson process [59, 60]. For q 6¼ 1 Eq (8) repre-
sents a truncated power law. Fig 3a displays the distribution of absolute cascade sizes for vari-
ous K near the critical point of q = 1, obtained via simulation, reflecting the findings for K = 1.

Analysis and approximation of finite state-space models with K� 1
When K> 1 each agent requires more than one pulse to induce it to a firing state, from the rest
state. As a result, this dampens the ability of cascades to sweep through the entire system. Fig
3a displays the distributions of cascades sizes for K = 2, 3, 4 when q = 1. The exponents are esti-
mated via maximum likelihood estimation (MLE) and the distribution fit tested using the Kol-
mogorov-Smirnov test. Estimates of the exponent (with standard error in parenthesis) range
from α� −2.25(0.001) for K = 2, to α� −3.5(0.06) for K = 4, although the quality of the power
law fit decays rapidly as q deviates from the critical value q = 1. We leave the derivation of a
closed-form expression for the cascade distribution (equivalent to Eq (8)) when K> 1 for
future research. Instead, the negative binomial distribution is sufficient for expressing the
approximate moments of the cascade distribution in terms of q< 1.

Fitting a negative binomial distribution. Even though the mean and variance of the
K = 1 cascade distribution can be expressed in closed form using special functions, we provide
numerical evidence for a range of K values showing that a negative binomial distribution [61]
may be used as a good approximation to the cascade distribution, when q< 1. Fig 3b shows the
cascade distribution K = 1, q = 0.75 compared to a moment-matched negative binomial distri-
bution with good agreement. Fig 4 shows how the parameters, r and pNB, of moment matched
negative binomial distributions vary with q. Except for the case of pNB when K = 1, both sets of
parameters can be well approximated as varying linearly with q, for all K tested. The benefit of
this approach is that the moments of the cascade distribution are easily expressed in terms of q,
the key parameter of interest.

In Fig 5a and 5b, the Kolmogorov-Smirnov test statistic (see [62] for methodological details)
is reported for both a power law and negative binomial fit, and the regions of q in which each
distribution provides the best relative fit to the distribution of (K, q) is highlighted (via filled
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Fig 3. Log-log probability plots of cascade distributions. a) log-log probability plot of absolute cascade
sizes when the system is near the transition value q = 1 for K = 1, 2, 3, 4 with N = 1000. The case K = 1,
corresponding to the maximal coupling strength, displays an exponentially truncated tail due to finite size
effects. b) log-log probability plot of cascade size for the system with parameters K = 1, q = 0.75 andN = 1000
(filled circles), compared to a geometric distribution (crosses) of equal mean, and a negative binomial (open
squares) with both mean and variance matched.

doi:10.1371/journal.pone.0151790.g003
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shapes). In the case K = 1, the negative binomial provides a good fit for 0< q< 0.6, and the
power law provides a better relative fit in the range 0.79� q� 1.

Cascades occur with both positive and negative signs, with equal probability. As a result, we
obtain the (approximate) full distribution of cascades sizes (both negative and positive) as a
mixture distribution of two equally weighted negative binomial distributions, symmetric about
0. Using standard moment calculations (see methods) we obtain the variance of this full distri-
bution written in terms of the parameters of the negative binomial distribution parameters,
considered as a function of q

s2ðqÞ ¼ 1

pNBðqÞ2
rðqÞð1� pNBðqÞÞ þ pNBðqÞ þ rðqÞð1� pNBðqÞÞ½ �2� �

ð9Þ

where r(q) = a1 + a2 q, pNB(q) = b1 + b2 q + b3 q
2 and the constants a1, a2, b1, b2, b3 vary with

each value of K (see Fig 4). For K = 1, pNB(q) = (1 − q)2 and mean values of a1 and a2 over 1000
observations are 0.53(0.016) and −0.40(0.024), respectively (standard deviation displayed in

Fig 4. Extracting negative binomial parameters.When approximating the distribution of cascade sizes with a negative binomial distribution with
parameters r and pNB, the parameters of moment matched negative binomial distributions are presented as a function of q, for K = 1, 2, 3. a) r and b) pNB.

doi:10.1371/journal.pone.0151790.g004
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parenthesis). For K = 2, a1 = 0.52(0.03), a2 = −0.19(0.04) and b1 = 0.96(0.007), b2 = −0.77(0.01),
b3 = 0.

When K = 1, the standard deviation can be written

sðqÞ ¼ ða1 � a2qÞ 1� ð1� qÞ2� �
ð1� qÞ4 þ 1þ ða1 � a2qÞ 1� ð1� qÞ2� �

ð1� qÞ2
� �2

" #1=2

: ð10Þ

A similar calculation can be performed for excess kurtosis, and is presented in the methods
section.

Financial market model
As an application of the (K, q) process, we illustrate how it may be incorporated into a simple
model of financial returns. Let the logarithmic price return, rt, Δt over some interval Δt starting
at time t be given by

rt;Dt ¼ log PtþDt � logPt ¼ log
PtþDt

Pt

� �
ð11Þ

Fig 5. Kolmogorov-Smirnov statistic values obtained by fitting a power law and negative binomial model to absolute cascade size data. Filled
shapes represent the minimum divergence of the two fits, calculated using the Kolmogorov-Smirnov statistic. N = 1000 for all panels. a) K = 1 and negative

binomial fits well for q < 0.6, but power law (zeta distribution) is a better fit for q > 0.79, with exponent a ¼ logðqÞ � 3
2
in this region. b) K = 2 and negative

binomial provides a good fit up to q < 0.85. c) and d) show the typical cascade sizes versus q for the case K = 1 and K = 2 respectively.

doi:10.1371/journal.pone.0151790.g005
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where, Pt is the price of a traded asset—such as a stock, bond or commodity. We regard the cas-
cade sizesm, generated by the actions of traders in our model, as excess demand for a financial
asset. When the excess demand is positive, the price of the asset will increase and vice-versa it
will decline when excess demand is negative (excess supply). Given an excess demand (cascade
size) ofm, the price impact function [63], f, dictates the magnitude of the price change by map-
pingm to a positive real variable, so that f ðmÞ 2 R. In order to keep the model as simple as
possible, we follow previous works [7] and take f(m) = λm, for some λ> 0 referred to as the
market depth parameter. For a description of more realistic choices of price impact function,
see the article by R. Almgren [64].

To summarise, by rearranging Eq (11) and setting Δt = 1, we can formulate the 1-period
price update

Ptþ1 ¼ Pte
lm ð12Þ

where we have identified λm with the 1-period return: rt, 1. More generally, letM be a variable
representing observations {m1,m2, . . .} from the (K, q) cascade process. Then we can write the
n-period price as

Pn ¼ P0e
l
Pn

i¼1
mi : ð13Þ

Recall that for the case K = 1, cascades are statistically independent identically distributed
events, and trades occur in continuous time with an exponentially distributed inter-arrival
times. In order to fully specify the price process, we write this as a compound Poisson process

JðtÞ ¼
XnðtÞ
i¼1

Mi: ð14Þ

EachMi follows the distribution ofM and {n(t)} is a Poisson process with rate θ, used to
describe the time between trades (and any ensuing cascades). Finally, for time t> 0 we write,

Pt ¼ P0e
lJðtÞ ) r0;t ¼ lJðtÞ: ð15Þ

Using standard results of compound Poisson processes, and noting that the mean cascades
size is zero due to symmetry, the variance of J(t) can be given as: VarðJðtÞÞ ¼ yt EfM2g. When
M is approximated as a mixture distribution of two equally weighted negative binomial distri-
butions symmetric about 0 we have

VarðJðtÞÞ ¼ yts2ðqÞ ð16Þ

where σ2(q) is given by Eq (9). This connects the variance of model price returns, of all periods,
to the network coupling probability.

A comparison between simulated values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðJðtÞÞp

(the standard deviation of period t

returns r0,t with λ = 1) and
ffiffiffiffiffi
yt

p
sðqÞ, using Eq (9), is shown in Fig 6. Parameter values used are

N = 1000 and q = 0.6. For each t shown, 100 values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðJðtÞÞp

are plotted, where the vari-
ance is taken over 200 period t returns. By appealing to standard results concerning random
diffusion without drift between two symmetric absorbing barriers [65], θ = N/K2.

Volatility clustering and semi-infinite state-space model
While the finite state-space model describes a plausible trader interaction model, in its current
form (without a time-varying network coupling probability parameter q) it does not account
for certain features observed in the volatility autocorrelation of real asset returns. In particular,
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the finite state-space model does not exhibit volatility clustering, identified by a slow decay of
return volatility autocorrelation, which is a well-documented property of asset returns [32, 66]
that manifests over different times-scales and assets classes. Asset return volatility autocorrela-
tion, C, is measured in a direct way by computing the autocorrelation between lagged observa-
tions of log-returns

CðL; dÞ ¼ Corr jrtþL;dj; jrt;dj
� �

; ð17Þ

where the log-return r is defined by Eq (11), and d represents the horizon over which the return
is computed.

Fig 6. Comparison of simulated standard deviation and closed form approximation. Simulated values of the standard deviation (volatility) of period t
returns, for 0 < t� 1, given by Eq (15) with λ = 1, compared to values given by Eq (9). Values for both K = 1 (open circles) and K = 2 (filled circles) are
displayed. For K = 2, the formula underestimates the mean simulated value, due to dependence between returns and deviation from the compound Poisson
process.

doi:10.1371/journal.pone.0151790.g006
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In this section, the finite state-space model is adapted to allow for the integrate phase of
agents—representing the accumulation of agents’ information or sentiment—to take place
over a semi-infinite state-space. For this model, in addition to zero serial correlation of log-
returns, numerical results show volatility clustering is produced generically, and a condition
under which volatility autocorrelation may exhibit a long-memory pattern [30] is described.
Although such a model may not be representative of high-frequency trading, the accumulation
of information represented as transitions on an unbounded set with a single firing state is con-
gruent with the behaviour of agents with heavy-tailed inter-trade durations. The decision mak-
ing of traders whom employ buy-and-hold strategies, or who temporarily withdraw from the
market or who otherwise trade infrequently [67], may be better described by the semi-infinite
state-space model, rather than the finite state-space model.

The semi-infinite state-space model is obtained by permitting agents to possess a single fir-
ing state, and allowing state transitions to take place between states labelled with the integers
{. . . , − 2, − 1, 0, . . . , K − 2, K − 1}, with the firing state represented by the state labelled as K
and the reset state labelled 0 (see methods section). While the mean first passage time for an
unbiased nearest-neighbour random walk of a single particle in a semi-infinite region is well-
known be infinite [65], because pulse-coupling between N agents induces agents to move closer
to the firing state, rather than away from it, each agent can be considered to undergo a biased
random walk in the semi-infinite region. Therefore, when there is a non-zero pulse-coupling
probability p the mean first passage time, tðp̂;KÞ, for an agent to reach the firing state is finite,
and given by

tðp̂;KÞ ¼ x0 þ K
2p̂ � 1

; 1
2 < p̂ � 1; K > 0; ð18Þ

where p̂ is the biased probability, starting at position x0, of moving towards the firing state K at
each time step.

Two distinct scenarios of the financial market model, given by Eqs (11)–(13), are numeri-
cally analysed. The first consists of agents with homogeneous firing thresholds (all agents pos-
sess the same threshold, K> 0). For the second case, agents in the population possess differing
firing thresholds, described by a probability distribution ϕ(K) over the N agents. In this case
two probability distributions, given by ϕ, are examined. For the first case,

�ðKÞ � ð1þ Kmax � KÞ�a
; ð19Þ

with parameters α> 1 and K 2 [1, Kmax], and is taken to reflect a market that is composed of a
small number of relatively influential traders (small K), together with a larger number of easily
influenced traders (large K). The second probability distribution examined is,

�ðKÞ � ð1� pGÞK�1pG; ð20Þ

with parameter 0< pG � 1 and K� 1, which describes a geometric distribution.
For a homogeneous population of agents each having an identical firing threshold K> 0, it

is noted p̂ defined by Eq (18) varies non-linearly with the pulse-coupling probability p = qK/N
as can be seen in Fig 7.

It is clear that when q! 0, p̂ ! 0:5, since tðp̂;KÞ ! 1 in this case. As q surpasses the crit-
ical value of q = 1, a randomly identified agent becomes more likely to reach the firing thresh-
old as part of a large cascade, making fewer agents available from which it may receive pulse-
coupling events upon reset, on average. As a result, this agent’s random walk in the semi-infi-
nite state-space when q� 1 is less biased by pulse-coupling effects when compared to the case
q = 1.
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Fig 8, presents the results of the numerical simulation of the financial market model when
agents have an identical firing threshold of K = 2, while Fig 9 shows the same information
when firing thresholds are distributed amongst the agent population according to Eq (19), with
parameter values Kmax = 20 and α = 1.93.

Volatility clustering is generated which decays exponentially in the homogeneous case, and
hyperbolically when agent pulse-coupling thresholds are inhomogeneous and distributed
according to Eq (19). The hyperbolic decay visible in Fig 9c is exhibited for all α tested in the
range α = 1.5 to α = 5, and Kmax 2 [10, 100], although the hyperbolic nature of the decay
becomes less pronounced as the distribution ϕ deviates from the power-law form given by Eq
(19), and becomes virtually non-existent when ϕ is changed so as to produce a market consist-
ing of many relatively influential (low K) agents together with fewer easily influenced (large K)
agents. Fig 10 demonstrates this change when the distribution of agent firing thresholds is geo-

metric, according to Eq (20), with parameter pG ¼ 1
6
.

In terms of economic implications, these results are consistent with previous studies that
incorporate heterogeneity of agent time-scales into statistical models of market volatility

Fig 7. Implied biased probability p̂ versus thresholdK for a range of values for q. For a range of q values, representing the pulse-coupling probability
parameter, from q = 0.8 to q = 1.05, a random agent from a population of agents each with identical threshold K, is selected and its mean hitting time to the

threshold is computed from 10,000 simulations. Using Eq (18), the implied bias probability, p̂, is then computed. For every K value tested, p̂ attains its
maximum value when q = 1.

doi:10.1371/journal.pone.0151790.g007
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Fig 8. Simulation of the financial market model with semi-infinite state-space and homogeneous firing thresholds. The results from ten independent
simulations each of 150,000 cascades is presented. (a) A sample from one of the ten simulated log-returns series. (b) Comparison of the distribution of log-
returns arising from the model (4) with a moment matched Gaussian distribution (•), shown in log-log scale clearly showing fat-tails. (c) one standard
deviation envelope around the mean volatility autocorrelation of log-returns (r and black) and absolute log-returns (|r| and red) with lag L, together with the
non-linear least squares fit of exponential (labelled E—solid line), logarithmic (labelled G—dashed line) and hyperbolic (labelled P—dotted line) decay
functions, with exponential decay providing the best fit. (d) a random sample of three out of ten volatility autocorrelation computations with hyperbolic decay
lines of best fit, shown in log-log scale.

doi:10.1371/journal.pone.0151790.g008
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Fig 9. Simulation of the financial market model with semi-infinite state-space and inhomogeneous firing thresholds. The results from ten
independent simulations each of 150,000 cascades is presented where firing thresholds are distributed among the agent population according to Eq (19). (a)
A sample from one of the ten simulated log-returns series. (b) Comparison of the distribution of log-returns arising from the model (4) with a moment matched
Gaussian distribution (•), shown in log-log scale clearly showing fat-tails. All simulated data used. (c) one standard deviation envelope around the mean
volatility autocorrelation of log-returns (r and black) and absolute log-returns (|r| and red) with lag L, together with the non-linear least squares fit of
exponential (labelled E—solid line), logarithmic (labelled G—dashed line) and hyperbolic (labelled P—dotted line) decay functions, with hyperbolic decay
providing the best fit. All simulated data used. (d) a random sample of three out of ten volatility autocorrelation computations with hyperbolic decay lines of
best fit, shown in log-log scale.

doi:10.1371/journal.pone.0151790.g009
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Fig 10. Simulation of the financial market model with semi-infinite state-space and inhomogeneous firing thresholds. The results from ten
independent simulations each of 150,000 cascades is presented where firing thresholds are distributed among the agent population according to a geometric

distribution, given by Eq (20), with parameter 1
6
. This distribution is right-skewed meaning there are many more agents with low K firing thresholds than agents

with high K thresholds. In contrast to when the distribution of firing thresholds is left-skewed, as in Eq (19), hyperbolic decay is not exhibited. (a) A sample
from one of the ten simulated log-returns series. (b) Comparison of the distribution of log-returns arising from the model (4) with a moment matched
Gaussian distribution (•), shown in log-log scale clearly showing fat-tails. All simulated data used. (c) one standard deviation envelope around the mean
volatility autocorrelation of log-returns (r and black) and absolute log-returns (|r| and red) with lag L, together with the non-linear least squares fit of
exponential (labelled E—solid line), logarithmic (labelled G—dashed line) and hyperbolic (labelled P—dotted line) decay functions, with exponential decay
providing the best fit. All simulated data used. (d) a random sample of three out of ten volatility autocorrelation computations with hyperbolic decay lines of
best fit, shown in log-log scale.

doi:10.1371/journal.pone.0151790.g010
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[68–70], although in the models presented here, an explicit trader interaction mechanism is
responsible for patterns in asset volatility autocorrelation. Moreover, this model shows how
hyperbolic decay of volatility autocorrelation, associated with statistical long-memory, may be
the result of a leadership effect [71] resulting from the structure and composition of markets
with agents of differing trading, or informational, thresholds. Such an understanding may aid
investors in determining appropriate trading strategies for a given market, or in examining if a
particular trade or market is crowded [72], with an abundance of either influential, or easily
influenced, traders.

Comparison to market data
Equity returns. As an example of the use of the (K, q) finite state-space financial market

model, we compute indicative values of K and q (with N = 1000 nominally set) to estimate the
distribution of market returns for a randomly selected instrument (General Electric equity
stock) over two different time scales. The finite state-space model is used here, rather than the
infinite state-space model, as the distribution of log-returns is not significantly altered by vola-
tility clustering. Our results are summarised in Fig 11.To produce the plot shown in Fig 11a, we
take end of day closing prices from January 3 2003 to February 6 2015, compute the daily log-
return distribution and compare this to a K = 2 q = 0.85 distribution with a market depth
parameter, λ, of 8.2 × 10−3. For Fig 11b we use intraday data to compute non-zero log-returns,
of approximately 1.5-second intervals, over a period of time capturing the so-called flash-crash
of May 6 2010. In particular, we use data fromMay 6 2010 14:05 to 15:25 (EST), resulting in
3390 data points to compute the cumulative probability and compare this to a K = 2, q = 1.05
distribution with λ = 5.2 × 10−5. While these comparisons are provided as illustrative, rather
than representing detailed statistical best-fits, it is of interest to note Fig 11b showing q> 1
during the extremely volatile period of the flash-crash, as one might expect.

Option on an equity index. One of the reasons for the persistence of Gaussian-based
models of financial returns, is the body of knowledge accumulated to price derivative contracts
[53]—and most notably the framework of Black, Scholes and Merton (BSM) [51], that enables
a price of certain derivative contracts to be computed using closed form formulae. To account
for the gap between real market characteristics and the Gaussian assumptions that underpin
the BSM framework, traders make an adjustment to the volatility of returns (a parameter of the
BSM pricing formula) to account for the observed heavy tails of financial returns [52, 73]. As a
result, when the volatility used to price derivative contracts is plotted against the strike price of
option contracts, the resulting implied volatility curve is known as the volatility smile, due to
its curved appearance, indicating larger values at the extremes of strike price.

We demonstrate that the (K, q) model is able to recover approximate market prices of Euro-
pean options (see methods section) by matching the market price implied volatility smile.
We use data consisting of European call options written on the afternoon settled S&P 500
(SPXpm) index as of November 25 2014, with an expiry of December 20 2014. We use options
with a strike price between 2000 to 2250, with the SPXpm index level at 2067.03 at the close of
November 25 2014. Fig 12 demonstrates the recovered volatility smile for these data.The fit,
while not perfect, does match the general shape of the smile well. To obtain the volatility smile,
we take a large number of draws from a (K, q) process, and apply the empirical option pricing
procedure outlined in [74] to obtain prices for call options of given expiry and strike prices.
The implied volatility is then recovered by using a simple numerical root-search. The recovered
implied volatilities are compared to those obtained via the market data, and the process is
repeated with different values of K and q until a suitable fit is found.
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Methods

Model description
Finite state-space. The model consists of N agents, or traders, operating in a financial

market for a single asset, and represented as integrate-and-fire stochastic pulse-coupled oscilla-
tors connected via an all-to-all interaction network with N vertices. Let the information state of
agent i be given by θi(t). In the case where all agents possess identical information thresholds
determined by an integer K> 0, each agent can transition stochastically between 2K + 1 infor-
mation states enumerated as {0, 1, 2, . . ., 2K}. Inbetween trades (that is, during the integrate
phase of the oscillators), each agent accumulates private information unobserved by other
agents at times described by a continuous exponential random variable with mean 1. In the
absence of any structure relating to how agents accumulate such private information, this is
represented by the agents randomly transitioning between the information states of the system
(similar to so-called noise traders), thus agents perform a random-walk with step size equal to
one over the finite set of integers {0, 1, . . ., 2K}. When an agent has accumulated enough infor-
mation so as to reach either state 0 or 2K (the firing states), a market transaction is executed
that reduces or increases (with equaly probability) the market asset price, respectively. Each
transaction is assumed to impact the market price of the traded asset according to some

Fig 11. log-log probability plots of (K, q) compared to mid price market data. a) The cumulative probability distribution of daily non-zero returns for a
randomly selected stock, General Electric, computed using data for the period January 3 2003 to Feb 6 2015 (3045 points) (filled circles). Overlaid is the
distribution of K = 2, q = 0.85 using market depth λ = 8.2 × 10−3. b) The cumulative probability plot of the same stock as in a), but using intraday price returns
computed at, on average, 1.5 second intervals over the period May 6 2010 (flash crash), 14:05 to 15:25 (3390 data points) (filled circles). Overlaid is the
distribution of K = 2, q = 1.05 using market depth λ = 5.2 × 10−5. In both cases N = 1000 is used.

doi:10.1371/journal.pone.0151790.g011
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specified price-impact function [63]. Since market prices are observed by all agents, for each
agent that transitions to the firing state X, where X = 0 or X = 2K, each market agent not
already in one of the firing states updates their information set by moving one state closer to
state X, independently with probability equal to p, parametrised as p = Kq/N, with q being a
parameter such that 0< q< N/K. With probability (1 − p), an agent ignores the change in the
asset price and does not update their information set. As a result, a cascade may form with
agents inducing other agents into the same firing state who are then assumed to mimic the
same buy or sell decision as the agent that instigated the cascade. The cascade size,m, is defined
by the number of agents,mA, that accumulate in the firing state during a cascade, prior to
being reset to state K. If the trade instigated by the originator of the cascade is a buy, we take
m = |mA| otherwise we takem = −|mA|. It is assumed that cascades form instantaneously. After
a reset, all agents resume stochastic accumulation of private information until the next transi-
tion into a firing state occurs, and the system repeats. The cascade process (K, q) is taken to
refer to the sequence of cascade sizes, {m1,m2, . . .}, generated from such a system.

Fig 12. Fitting the implied volatility smile for index options. The Black-Scholes implied volatility smile obtained frommarket data of European call options
on the SPXpm index is compared to the implied volatility obtained from empirical option prices, generated using a K = 2, q = 0.78 model.

doi:10.1371/journal.pone.0151790.g012
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Semi-infinite state-space. The semi-infinite state-space model consists of agents with a
single information threshold set at K, which may differ amongst agents. Let Ku represent the
information threshold of an agent receiving a pulse-coupling event. As a result, during the inte-
grate phase, an agent with firing state K transitions between states enumerated by the infinite
set of integers {. . . , − 2, − 1, 0, 1, . . . , K − 1, K}. Succinctly, the semi-infinite information state-
space is simply the set of integers less than or equal to K. Upon an agent transitioning to the
firing state, K, all other agents are either successfully pulse-coupled with probability Ku q/N,
and transition closer to their firing state, or with probability 1 − Ku q/N the pulse-coupling in
unsuccessful. Cascades are formed using the same mechanism described for the finite state-
space case. Once a cascade has terminated, agents that were induced to trade are reset to state
0, and the system repeats as in the finite state-space case.

Combinatorial methods for cascade probability
The composition [75] of an integer, x, is the sequence of strictly positive summands of x. That
is, if x = x1 + x2 + . . . + xk then the sequence {x1, x2, . . ., xk} is called a composition of x. There
are exactly 2x − 1 distinct compositions of an integer x. We use the concept of integer composi-
tions to derive Eqs (7) and (8). To make it clear when we are working with compositions we
use the notation x = [x1, . . ., xk].

Consistent with Eqs (1) to (3), an arbitrary (unsigned) cascade of sizem> 0, initiated
by a single agent, may be written in composition form asm = [1, x1, . . ., xk], and therefore
m − 1 = [x1, . . ., xk]. We identify xi as being the number of internal nodes at level i in the tree
representation of a cascade (see Fig 2).

We proceed by enumerating the ways such a cascade can arise. Given a cascade expressed as
[x1, . . ., xk], at an arbitrary level i we have xi − 1 copies of a single level (N − 1 − x1 − . . . − xi)-
ary tree. We then have

xxii�1

N � 1�Pi�1

j¼1 xj
xi

� �
ð21Þ

ways to select the xi nodes. Proceeding recursively, we form the product

N � 1

x1

� �
:::xxii�1

N � 1�Pi�1

j¼1 xj
xi

� �
:::xxkk�1

N � 1�Pk�1

j¼1 xj
xk

 !

¼ ðN � 1Þ!
ðN �mÞ!

xx21 x
x3
2 :::x

xk
k�1

x1!x2!:::xk!
;

ð22Þ

where the right hand side of the equality is achieved after pairwise cancellation and using the
fact thatm = 1 + [x1, . . ., xk]. Hence for a given composition (with k parts) we can write the
probability as

Pðm j ½x1; :::; xk�Þ ¼
ðN � 1Þ!
ðN �mÞ!

xx21 x
x3
2 :::x

xk
k�1

x1!x2!:::xk!
pm�1ð1� pÞQ; ð23Þ

where p is the probability that an agent is induced to a firing state during a cascade andQ is the
perimeter of the tree representation of the cascade. By simple counting, and using the fact thatP

i�1;j>ixixj ¼ 1
2
ðm� 1Þ2 �Pi�ix

2
i

� �
we can express Q ¼ mðN �mÞ þ 1

2
ðm� 1Þ2 � 1

2

P
i�1x

2
i .

By removing the composition-dependent term, 1
2

P
i�1x

2
i , from Q since it is relatively small, we
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can write the unconditional probability of a cascade of sizem as

PðmÞ ¼
X

k�1;½x1 ;::;xk �
Pðm j ½x1; ::; xk�Þ

¼ pm�1ð1� pÞmðN�mÞþ1
2 ðm� 1Þ2 ðN � 1Þ!

ðN �mÞ!
X

k�1;½x1 ;:::;xk �

xx21 x
x3
2 :::x

xk
k�1

x1!x2!:::xk!

¼ pm�1ð1� pÞmðN�mÞþ1
2 ðm� 1Þ2 ðN � 1Þ!

ðN �mÞ!
mm�2

ðm� 1Þ! :

ð24Þ

For large N,m

ðN � 1Þ!
ðN �mÞ! ¼

N � 1

m� 1

� �
ðm� 1Þ! � Nm�1 ð25Þ

and

mm�2

ðm� 1Þ! ¼
mm�1

m!
� ð2pÞ�

1
2 m�3

2 em ð26Þ

follow from Stirling’s approximation. The final equality in Eq (24) can now be rewritten as

PðmÞ ¼ ð2pÞ�
1
2 ðpNÞm�1ð1� pÞmðN�mÞþ1

2 ðm� 1Þ2m�3
2 em; ð27Þ

and recalling p = qK/N, with K = 1 as N!1 we obtain the asymptotic relation given by Eq (8).

Mixture distribution moments and negative binomial denisty
First note that since cascade evolution is stochastic, each agent will undergo a random number
of unsuccessful attempts before they are induced to fire—if at all. It is this simple observation
that motivates the choice of the negative binomial statistical model to approximate the cascade
distribution. The density of the negative binomial distribution used is

Gðx þ rÞ
x!GðrÞ prNBð1� pNBÞx; x ¼ 0; 1; :::; r > 0; 0 < pNB � 1: ð28Þ

Recall in the K = 1 case each cascade is an independent event occurring with equal probabil-
ity either side of 0. Hence, the cascade distribution, for fixed q, is simply the equally weighted
mixture distribution of negative binomial components: a negative tail and a positive tail. The
resulting distribution, D, is symmetric about 0 and therefore VarðDÞ ¼ EðD2Þ. The moments
of D are obtained using standard methods. In particular,

VarðDÞ ¼ 1

2

2

0

� �
E

2ðY1Þ þ E
2ðY2Þ

� �

þ 1

2

2

2

� �
E ðY1 � m1Þ2
� �þ E ðY2 � m2Þ2

� �� �
¼ VarðXÞ þ 1þ EðXÞð Þ2:

ð29Þ
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With Y1 = 1+X1 and Y2 = − 1 − X2, with X1,2(n, p) distributed negative binomial. For kurto-
sis we follow the same procedure as above.

E D4f g ¼ 1

2
E

4ðY1Þ þ E
4ðY2Þ

� �
þ 1

2

4

2

� �
E

2ðY1ÞE ðY1 � m1Þ2
� �þ E

2ðY2ÞE ðY2 � m2Þ2
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þ 1

2

4

3

� �
EðY1ÞE ðY1 � m1Þ3

� �þ EðY2ÞE ðY2 � m2Þ3
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þ 1

2
E ðY1 � m1Þ4
� �þ E ðY2 � m1Þ4
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:

ð30Þ

The excess kurtosis expressed as a function of q is then,

KurtðDÞ ¼ C 1� ðq� 2Þqða1 þ a2qÞ
ðq� 1Þ2

 

� 4ðq� 2Þqðq2 � 2q� 1Þða1 þ a2qÞðq2ða1 � 2a2 � 1Þ � 2ða1 � 1Þqþ a2q
3 � 1Þ

ðq� 1Þ8

� 6ðq� 2Þqða1 þ a2qÞðq2ða1 � 2a2 � 1Þ � 2ða1 � 1Þqþ a2q
3 � 1Þ2

ðq� 1Þ8

�ðq� 2Þqða1 þ a2qÞð�3q2ða1 � 2a2Þ þ ð6a1 þ 8Þq� ð3a2 þ 4Þq3 þ q4 þ 1Þ
ðq� 1Þ8

!
� 3

ð31Þ

where

C ¼ ðq� 2Þqða1 þ a2qÞ
ðq� 1Þ2 � 1

 !2

� ðq� 2Þqða1 þ a2qÞ
ðq� 1Þ4

 !�2

Power law distribution and Kolmogrov-Smirnov test
We use the discrete power law zeta distribution, which has density

f ðxÞ ¼ x�a=zðaÞ; ð32Þ

where z(α) is the Riemann zeta function z(α) = ∑x x
− α with the sum over all integers x. The

computation of the MLEs and Kolmogorov-Smirnov test statistics follow the procedures
described in [62].

Recovery of the implied volatility smile
We recover the implied volatility smile from quoted option prices using a numerical root
search on the pricing formula for European call options [51]. Second, we use the simple empiri-
cal option pricing scheme outlined in [74] to compute the price an option via simulations of
the probability distribution. From this we can again obtain the implied volatility from our
model, and iterate the process until a reasonable fit is found to the market implied volatility.
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Discussion
We introduce two variants of a trader interaction model resulting in stochastic cascade pro-
cesses and demonstrate a number of stylised facts of financial returns can be captured by incor-
porating the cascade processes into a simple financial market model. A novelty of the model is
in its parametrisation by network coupling probability, which can be viewed as an order
parameter for herd behaviour. Related research stresses the importance of heterogeneous
trader time-scales in examining volatility clustering and long-memory patterns in asset price
returns. While the analysis presented here is consistent with this view, our model allows for a
study of such time scales as they arise from agents’ information accumulation process, and
interaction with other agents. In the context of informational cascades, when agents are per-
mitted, informationally, to be very far from instigating a trade (represented as accumulating
information on an unbounded state-space), long-memory patters in asset return volatility are
exhibited in situations where the distribution of firing thresholds amongst agents is left-
skewed, resulting in a few relatively influential agents, and many more agents that have a higher
propensity to herd.

Supporting Information
S1 Dataset. Market data price returns and implied volatility. A compressed file containing
log-returns computed from empirical market data for General Electric at both daily, and intra-
day, frequencies. Dates or timestamps are included in the files where relevant, and only non-
zero returns are used. A separate file containing the implied volatility market data for SPXpm
European call options, as of 25 November 2014, is included.
(ZIP)

S1 Code. Computer code used to simulate the cascade processes. A compressed file contain-
ing separate R and C++ files, together with a description file containing instructions for their
use within the open source R programming environment.
(ZIP)
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