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Abstract. We consider error estimates for stabilized finite element approximations of the two-
dimensional Navier-Stokes’ equations on the unit square with periodic boundary conditions. The
estimates for the vorticity are obtained in a weak norm that can be related to the norms of filtered
quantities. L2-norm estimates are obtained for the velocities. Under the assumption of the existence
of a certain decomposition of the solution, into large eddies and small fine scale fluctuations, the
constants of the estimates are proven to be independent of the Reynolds number. Instead they
depend on the L∞-norm of the initial vorticity and an exponential with factor proportional to the
L∞-norm of the gradient of the large eddies. The main error estimates are on a posteriori form, but
for certain stabilized methods the residuals may be upper bounded uniformly, leading to robust a
priori error estimates.
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1. Introduction. It is well known that provided the exact solution is sufficiently
smooth the approximate solution uh of the Navier-Stokes’ equations on velocity-
pressure form can be proved to satisfy estimates of the type

‖(u− uh)(·, T )‖L2(Ω) . e‖∇u‖L∞(Q)h
3
2 |u|L2(0,T ;H2(Ω)), (1.1)

if a consistent stabilized finite element method with piecewise affine approximation
is used. Here u denotes the exact solution, h a meshsize, Q := Ω × I a space time
domain with Ω the space domain and I := (0, T ) a time interval with the final time T .
We use the notation a . b for a ≤ Cb with C a constant independent of the physcial
parameters of the problem and the mesh size. We will also use a ∼ b for a . b and
b . a. We refer to [12, 6] for examples of analyses of Navier-Stokes’ equations on
velocity-pressure form and to [17, 18] for analyses on vorticity-streamfunction form.
We also give a proof of (1.1) for one of the methods proposed herein in appendix.

Note that there is no explicit dependence on the viscosity in the estimate (1.1).
However, for this estimate to be useful the included Sobolev norms must be small,
which rarely is the case in the high Reynolds number regime and hence the dependence
of the viscosity enters in an implicit manner. If we relax the constraint that the
estimate may have no explicit dependence on the viscosity the exponential can be

replaced by an exponential of the type e
√
ReT , which blows up for vanishing viscosity.

The purpose of the present paper is to prove robust error estimates for a subclass
of solutions that satisfy a special scale separation property. This is motivated by
the results of [11], where it is shown theoretically that the amplitude of the small
structures of the flow are exponentially damped for two-dimensional flows. It would
therefore seem reasonable that the constant in the estimate (1.1) could be made to
depend only on the gradient of the large scales of the flow, since the fine scales are
controlled by viscous dissipation. There is still a dependence on the viscosity entering
through the scale separation, since as the viscosity goes to zero, so does the energy
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density of the fine scale component. It appears to be impossible to eliminate this
dependence completely, at least if the error is measured in a Sobolev norm, due to
the lack of uniform continuous dependence on initial data for the limit case of the
incompressible Euler equations (see [13]). In the case of the incompressible Euler
equations we get error estimates under the sole assumption that the velocity gradient
is pointwise bounded.

Our estimates are based on the following three points:
1. the use of a weak norm for the vorticity estimate;
2. stability estimates for an associated dual problem;
3. the use of a stabilized finite element method, giving enhanced a priori control

of residual quantities in the high Reynolds number regime.
The idea of measuring error in filtered quantities was considered in [9, 10], but the
estimates were not robust in the Reynolds number and the constant included high
order Sobolev norms of the exact solution.

In [3] parametrised weak norm estimates were used in order to derive robust error
estimates for the transient advection-diffusion equation under the assumption that the
transport velocity satisfies a certain scale separation hypothesis that we will discuss
in detail below.

To define the subclass of solutions for which our estimates are robust we assume
that there are relatively smooth eddies, with large associated Reynolds number, con-
taining the bulk of the energy and small scale fluctuations that may vary rapidly in
space, but carry a negligible part of the energy. In other words we assume that all the
scales of the flow are subject to a global time scale τF , that is set by the large scales
and therefore moderately small, and that the fine scale Reynolds number is O(1).

To make this precise, we consider the following decomposition of the exact solution
in the large scales ū and a rough fine scale u′, with small energy. Indeed for any t ∈ I
and for ε ∼ ν 1

2 we write

u = ū+ u′, ū ∈W 1,∞(Ω), u′ ∈W 1,p(Ω) ∩ L∞(Ω), p > 2 and ‖u′‖L∞(Ω) < ε (1.2)

where ū is periodic on Ω. Robustness of the estimates are obtained if we assume that
a decomposition on the form (1.2) exists with ‖∇ū‖L∞(Q) ∼ 1. To relate the residual
energy density ε2 to the viscous dissipation we define the following global time scale
for the flow in the space-time domain

τF := ‖∇ū‖−1
L∞(Q). (1.3)

It follows that for smooth large scales τF ∼ 1. Then we assume that the fine scale
Reynolds number is one.

Re′ =
‖u′‖L∞(Q)l

′

ν
= 1.

Under the assumption of a global time scale, the length scale l′ based on ‖u′‖L∞(Q)

and τF writes

l′ := ‖u′‖L∞(Q)τF

and we obtain the following relation between the fine scale energy density and the
kinematic viscosity,

1 =
‖u′‖L∞(Q)l

′

ν
=
‖u′‖2L∞(Q)τF

ν
→ ‖u′‖2L∞(Q) ≤ ν. (1.4)
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We will prove that independent of ν, the abstract decomposition (1.2) always
exists for solutions to the Navier-Stokes’ equations in two dimensions and that it
allows us to replace ‖∇u‖L∞(Q) in the exponential by ‖∇ū‖L∞(Q). Of course we do
not claim that all flows allow for a decomposition with ‖∇ū‖L∞(Q) moderate. Counter
examples, that are sensitive to perturbations in initial data, are easily found, such as
Kelvin-Helmholtz shear flows and we will show some numerical experiments indicating
that the exponential with gradient dependent factor is indeed relevant. How much the
exponential factor can be reduced using scale separation depends on the particular
flow. It is also worth noting that the below analysis uses the two dimensional setting in
several ways. In three space dimensions the appearance of the vortex stretching term
makes it impossible to absorb the fine scale velocities using the viscous dissipation and
the regularity of the exact solution is insufficient for the scale separation construction.
There is no longer a maximum principle for the vorticity and the Sobolev injection
used in the finite element analysis, that is dimension dependent, no longer leads to a
converging method.

We prove error estimates on the vorticity in a weak norm, that will be specified
below, these estimates may then be used to obtain the following bound for the flow
velocities,

sup
t∈(0,T )

‖u− uh‖L2(Ω) ≤ C0(ω0, T )e
T
τF h

1
2 . (1.5)

The constant C0 depends only on the initial vorticity, time and the mesh geometry,
with at most linear growth in time. For solutions that have the scale separation
property discussed above τF ∼ 1 and the computation is robust even in the presence
of rough velocity fluctuations with small amplitude.

Herein our main concern will be the high mesh Reynolds number case

Reh :=
U0h

ν
> 1,

where U0 := ‖u(·, 0)‖L∞(Ω) ∼ 1 denotes the characteristic velocity of the flow, but
many results are independent of the mesh Reynolds number. It will always be explic-
itly stated when a result only holds in the high Reynolds number regime. If the local
Reynolds number is low, other approaches than those presented herein might be more
appropriate.

For the discretization we will use a finite element method with stabilization to
handle the high Reynolds number regime. We will consider both linear methods of
artificial viscosity type restricted to first order accuracy and weakly consistent stabi-
lization operators allowing for high order accuracy. We will also consider nonlinear
stabilization methods of shock capturing type, providing new error estimates for such
methods.

2. The Navier-Stokes’ equations in two space dimensions. Let Ω be the
unit square and define H1

per(Ω) to be the space of functions in H1(Ω) that are periodic
in both cartesian directions. The L2-scalar product over some space or space-time
domain X will be denoted (·, ·)X with associated norm ‖ · ‖X where the subscript
may be dropped for X = Ω. Denoting by ω the vorticity of the flow and by Ψ the
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streamfunction, the equations may be written

∂tω + u·∇ω − ν∆ω = 0, in Q,

−∆Ψ = ω in Q, (2.1)

u = rot Ψ in Q,

ω(x, 0) = ω0,

with ω0 ∈ L∞(Ω). Let L∗ := {q ∈ L2(Ω);
∫

Ω
q = 0}. Continuity of normal fluxes

of ω and Ψ over the periodic boundaries are also imposed. The associated weak
formulation takes the form, for t > 0, find (ω,Ψ) ∈ H1

per(Ω)×H1
per(Ω) ∩ L∗(Ω) such

that

(∂tω, v)Ω + a(u;ω, v) = 0, (2.2)

(∇Ψ,∇Φ)Ω = (ω,Φ)Ω, (2.3)

u = rot Ψ,

for all (v,Φ) ∈ H1
per(Ω) × H1

per(Ω) ∩ L∗(Ω), where the semi-linear form a(·; ·, ·) is
defined by

a(u;ω, v) := (u·∇ω, v)Ω + (ν∇ω,∇v)Ω.

This problem is known to be well-posed, but a priori error estimates on the solution are
in general strongly dependent on the viscosity coefficient reflecting the poor stability
of the equations in the high Reynolds number regime. Note however that the solution
of (2.2)-(2.3), will have a decomposition of the form (1.2), although no quantitative
estimate seems to be obtainable for ‖∇ū‖L∞(Ω) in terms of data.

Lemma 2.1. Let u be the solution of (2.1). Then, for all ε > 0, the decomposition
defined by (1.2) exists independently of ν.

Proof. Since u = rot Ψ, where Ψ solves −∆Ψ = ω, by elliptic regularity and
the maximum principle there holds, for all 1 < p < ∞, ‖u‖W 1,p(Ω) . ‖ω‖Lp(Ω) .
‖ω0‖L∞(Ω). By Sobolev injection for p > 2 we have u ∈ C0(Ω̄). We may then
use a standard mollifier φε to define ū := φε ∗ u ∈ C∞(Ω̄) so that ‖u′‖L∞(Ω) =
‖u− φε ∗ u‖L∞(Ω) < ε.

3. Finite element discretization. Let {Th}h>0 be a family of affine, shape
regular (in the sense of [1]) meshes on Ω. We assume that the meshes are kept fixed
in time. The index h is defined as the maximum diameter hK of any triangle K in
Th, h = maxK∈Th hK . Mesh faces are collected in the set F and we denote the length
of a face by hF . For a smooth enough function v that is possibly double-valued at
F ∈ F with F = ∂K− ∩ ∂K+, we define its jump at F as [[v]] := v|K− − v|K+ , and
we fix the unit normal vector to F , denoted by nF , as pointing from K− to K+. The
arbitrariness in the sign of [[v]] is irrelevant in what follows. Let Pk(K) denote the set
of polynomials of degree less than or equal to k on the simplex K. Define V kh to be
the standard space of piecewise polynomial, continuous periodic functions,

V kh := {vh ∈ C0
per(Ω̄) : vh|K ∈ Pk(K);∀K ∈ Th}.

We let πL denote the L2-projection on V kh and πV the H1-projection on V kh

(∇πV u,∇vh)Ω = (∇u,∇vh)Ω ∀vh ∈ Vh and

∫
Ω

(πV u− u) dx = 0.
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We recall that if u ∈ Hr(Ω), r ≥ 1, the following approximation estimates hold for
πL and πV ,

‖h−1(πLu− uh)‖+ ‖∇(πLu− u)‖ ≤ c0hs−1|u|Hs(Ω), with s = min(k + 1, r) (3.1)

and

‖h−1(πV u− uh)‖+ ‖∇(πV u− u)‖ ≤ c1hs−1|u|Hs(Ω), with s = min(k + 1, r). (3.2)

Observe that we here used the H1-stability of the L2-projection valid on shape regular
meshes (see [1]). We consider continuous finite elements with k = 1 to discretize the
vorticity ω in space and k = 1, 2 for the stream function Ψ. The discrete velocity
is given element wise by uh|K := rot Ψh := (∂yΨh,−∂xΨh). Note that using this
definition ∇ · uh = 0 in Ω, i.e. the discrete velocity is globally divergence free. We
discretise in space using a stabilized finite element method. For t > 0 find (ωh,Ψh) ∈
V 1
h × V l∗ , with l = 1, 2, such that

m(∂tωh, vh) + a(uh;ωh, vh) + s(uh;ωh, vh) = 0, (3.3)

(∇Ψh,∇Φh)Ω − (ωh,Φh)Ω = 0, (3.4)

uh − rot Ψh = 0,

for all (vh,Φh) ∈ V 1
h × V l∗ and with initial data w0 := πLω(·, 0). Here s(·; ·, ·) denotes

a stabilization operator that is linear in its last argument and m(·, ·) denotes the
bilinear form defining the mass matrix, this operator either coincides with (·, ·)Ω or is
evaluated using nodal quadrature, i.e. so called mass lumping. In the latter case we
have

m(uh, vh) :=

∫
Ω

ih(uhvh) dx,

where ih denotes the nodal interpolant on V 1
h . We will assume that the stabilization

term satisfies

U
− 1

2
0 inf

vh∈V 1
h

‖h 1
2 (uh · ∇ωh − vh)‖ . s(uh;ωh, ωh)

1
2 . h

1
2 (U

1
2

0 + U
− 1

2
0 ‖uh‖L∞(Ω))‖∇ωh‖

(3.5)
and

s(uh;ωh, vh) . h
1
2 (U

1
2

0 + U
− 1

2
0 ‖uh‖L∞(Ω))s(uh;ωh, ωh)

1
2 ‖∇vh‖. (3.6)

Lemma 3.1. The following estimates hold for the solution of (3.3)-(3.4).

sup
t∈I
‖ωh(·, t)‖2 + 2‖ν 1

2∇ωh‖2Q + 2

∫
I

s(uh;ωh, ωh) dt . ‖ω(·, 0)‖2, (3.7)

‖uh(·, t)‖L∞(Ω) ≤ cq‖ωh(·, t)‖Lq(Ω), q > 2. (3.8)

If l = 1 and the stabilization operator s(uh;ωh, vh) satisfies (3.5) and (3.6) then,∫
I

‖∇∂tωh‖dt .
∫
I

(h−
3
2 (U

1
2

0 + U
1
2

0 ‖uh(·, t)‖L∞(Ω))s(uh;ωh, ωh)
1
2 + νh−2‖∇ωh‖)dt.

(3.9)
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Proof. Observe that by norm equivalence on discrete spaces the L2-norm defined
using nodal quadrature is equivalent to the standard L2-norm. Then the inequality
(3.7) is immediate by taking vh = ωh in (3.3), integrating and using the stability of the
L2-projection. For the inequality (3.8), consider the auxiliary problem, −∆Ψ̃ = ωh
in Ω and note that by [20] (and [8] for the case l = 2), there holds

‖uh(·, t)‖L∞(Ω) . ‖Ψ̃(·, t)‖W 1,∞(Ω)

and adapting the analysis of [19] we have for the (simpler) case of periodic boundary
conditions,

‖Ψ̃(·, t)‖W 1,∞(Ω) ≤ cq‖ωh(·, t)‖Lq(Ω), q > 2.

To prove (3.9) finally we introduce a function ξh ∈ V 1
h such that

m(ξh, vh) = (∇∂tωh,∇vh)Ω, ∀vh ∈ V 1
h .

It follows by taking vh = ξh and using the Cauchy-Schwarz inequality followed by an
inverse inequality that

m(ξh, ξh)
1
2 ∼ ‖ξh‖ . h−1‖∂t∇ωh‖. (3.10)

The consistency error of the mass-lumping may be estimated as follows

|m(vh, ξh)− (vh, ξh)Ω| = |
∫

Ω

(ih(vhξh)− vhξh) dx|

.
∑
K∈Th

∫
K

h2|D2(vhξh)| dx . (h2|∇vh|, |∇ξh|)Ω. (3.11)

Taking vh = ξh in (3.3) yields

‖∂t∇ωh‖2 = −(uh · ∇ωh, ξh)Ω − (ν∇ωh,∇ξh)Ω − s(uh;ωh, ξh). (3.12)

We may then apply the Cauchy-Schwarz inequality in the second term of the right
hand side of (3.12) and (3.6) in the last term, followed by inverse inequalities on
‖∇ξh‖ and the estimate (3.10). For the first term in the right hand side of (3.12) we
obtain, by adding and subtracting m(vh, ξh) − (vh, ξh)Ω, for any vh ∈ V 1

h , using the
properties of ξh and the bound (3.11)

|(uh · ∇ωh, ξh)Ω| . |(uh · ∇ωh − vh, ξh)Ω|+ |(∂t∇ωh,∇vh)Ω|+ (h2|∇vh|, |∇ξh|)Ω.

Since both uh and ∇ωh are constant per element ∇vh|K = ∇(vh−uh ·∇ωh)|K . Using
inverse inequalities and the bound (3.10) on ξh we have

|(uh · ∇ωh, ξh)Ω| . |(uh · ∇ωh − vh, ξh)Ω|+ |(∂t∇ωh,∇vh)Ω|+ (h2|∇vh|, |∇ξh|)Ω

. h−1‖∂t∇ωh‖‖uh · ∇ωh − vh‖. (3.13)

The bound (3.9) now follows from (3.12) using the bounds (3.13), (3.5), (3.10) and
finally integrating in time.
Taking the difference of the formulations (2.2) - (2.3) (with v = vh) and (3.3) - (3.4)
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and setting eω = ω − ωh and eΨ = Ψ − Ψh, the following consistency relation holds
for all t > 0,

(∂teω + u·∇eω + rot eΨ·∇ωh, vh)Ω + (ν∇eω,∇vh)Ω = m(∂tωh, vh)− (∂tωh, vh)Ω

+ s(uh;ωh; vh) (3.14)

(∇eΨ,∇Φh)Ω − (eω,Φh)Ω = 0.

As mentioned in the introduction, if the solution (u, ω) is smooth one may prove an
error estimate that is robust with respect to ν using standard linear theory and per-
turbation arguments. For the methods we consider herein, this result is an extension
of the works in [18] and [6] and we state it here only with the dominant terms present.
For the readers convenience we briefly outline the proof using one stabilization oper-
ator (defined in equation (6.7)) in Appendix A.

Proposition 3.2. Let (u, ω) be a smooth solution of (2.2)-(2.3) and (uh, ωh) be
the solution of (3.3)-(3.4), with m(·, ·) = (·, ·)Ω and the stabilization term defined by
(6.7). Then for l = 1, 2

‖∇(πV Ψ−Ψh)(·, T )‖+ ‖(πLω − ωh)(·, T )‖+

(∫
I

s(uh;ωh, ωh) dt

) 1
2

. cω((ν
1
2 + h

1
2 )h|ω|L2(I;H2(Ω)) + hl‖Ψ‖L2(I;Hl+1(Ω)))

where cω := e‖∇ω‖L∞(Q)T .
Observe that the exponential factor here depends on ‖∇ω‖L∞(Q), compared to

‖∇u‖L∞(Q) in (1.1). This is the prize we pay for estimating the L2-error of the
vorticity.

4. Dual problem. The consistency relation (3.14) suggests the following (ho-
mogeneous) perturbation formulation for the evolution of {eω, eΨ}

(∂teω + u·∇eω + rot eΨ·∇ωh, ϕ1)Q + (ν∇eω,∇ϕ1)Q = 0,

(∇eΨ,∇ϕ2)Q − (eω, ϕ2)Q = 0,
(4.1)

where ϕ1, ϕ2 are the solutions to a dual adjoint perturbation equation related to the
continuous equation (2.2)-(2.3) and the discretization (3.3)-(3.4). Since the jump of
the tangential derivative of ωh is zero, we may integrate by parts in (4.1), to arrive
at the dual adjoint problem

−∂tϕ1 − u·∇ϕ1 − ϕ2 − ν∆ϕ1 = 0 in Q, (4.2)

−∆ϕ2 −∇ωh·rot ϕ1 = 0 in Q, (4.3)

ϕ1(x, T ) = ξ0(x) in Ω, (4.4)

where ξ0(x) is some initial data to be fixed later, the choice of ξ0 determines the
quantity of interest.

A key result for the present analysis is the stability estimate for the dual adjoint
solution. The stability constant of this estimate generally takes the form exp(T/τF )
where τF denotes a characteristic time scale of the flow. Typically this timescale
is determined by the finest scales of the flow and proportional to the inverse of the
maximum velocity gradient (τF )−1 ∼ ‖∇u‖L∞(Q). Here we will show that for posi-
tive viscosity the finest scales can be absorbed by viscous dissipation leading to the
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following definition of τF

(τF )−1 := inf
ū∈L∞(I;W 1,∞(Ω))

‖σ+
p (Λ(ū, u′, ν))‖L∞(Q) (4.5)

where u′ := u− ū, σ+
p (A) denotes the largest positive eigenvalue of the matrix A and

Λ(ū, u′, ν) is a two by two, symmetric matrix defined by,

Λ(ū, u′, ν) = −∇S ū+
1

2
∇·ū I2×2 +

1

2ν
u′

T
u′, (4.6)

where I2×2 denotes the identity matrix. It follows that the timescale τF now depends
on the maximum gradient of the large scales ū and the amplitude of the fine scales
u′. If the scale separation assumption defined by (1.3) and (1.4) holds with smooth
large eddies ū, then τF ∼ 1.

Proposition 4.1. The following stability estimate holds for the solution (ϕ1, ϕ2)
of (4.2) - (4.4),

sup
t∈I
‖∇ϕ1(·, t)‖+ ‖ν 1

2D2ϕ1‖Q . e
T
τF ‖∇ξ0‖ (4.7)∫

I

‖∇ϕ2(·, t)‖ dt . e
T
τF

∫
I

‖ωh‖L∞(Ω) dt ‖∇ξ0‖ (4.8)

where τF is defined by equation (4.5) and (4.6).
Proof. First multiply (4.2) by −∆ϕ1 and (4.3) by ϕ1 and integrate over Q∗ :=

Ω× (t∗, T ), where t∗ is a time to be chosen. By summing the two relations we obtain

(∂tϕ1,∆ϕ1)Q∗︸ ︷︷ ︸
I1

+ (u·∇ϕ1,∆ϕ1)Q∗︸ ︷︷ ︸
I2

+ (∇ωh·rot ϕ1, ϕ1)Q∗︸ ︷︷ ︸
I3

+‖ν 1
2 ∆ϕ1‖2Q∗ = 0. (4.9)

We will now treat the terms I1-I3 term by term. First note that by integration by
parts first in space and then integration in time we have

I1 = −1

2

∫ T

t∗

d

dt
‖∇ϕ1(·, t)‖2dt =

1

2
‖∇ϕ1(·, t∗)‖2 − 1

2
‖∇ξ0‖2.

The second term is handled using the decomposition of u in the large scale and fine
scale component and then an integration by parts only in the large scale part (the
proof of this was detailed in [3], for completeness we reproduce the arguments in
Appendix B). Let ∇Su denote the symmetric part of the gradient of the vector u.

I2 = −((∇S ū−
1

2
(∇·ū)I2×2)∇ϕ1,∇ϕ1)Q∗ − (u′·∇ϕ1,∆ϕ1)Q∗

≤
∫
Q

(Λ(ū, u′, ν)∇ϕ1)T·∇ϕ1 dxdt+
1

2
‖ν 1

2 ∆ϕ1‖2Q∗ . (4.10)

In the second inequality we used Cauchy-Schwarz inequality followed by a geometric-
arithmetic inequality. Note that (4.10) holds for any decomposition ū, u′. Since
u′ = u− ū, it follows that we can minimize the first term on the right hand side over
all large scale vector fields ū ∈ L∞(0, t;W 1,∞(Ω)) and the infimum value obtained is
the inverse of the optimal timescale of the flow.∫

Q

(Λ(ū, u′, ν)∇ϕ1)T·∇ϕ1 dxdt ≤ inf
ū∈L∞(I;W 1,∞(Ω))

‖σ+
p (Λ(ū, u′, ν))‖L∞(Q)‖∇ϕ1‖2Q

= τ−1
F ‖∇ϕ1‖2Q.
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It is straightforward to see that

(τF )−1 . ‖∇ū‖L∞(Q) + ν−1‖u′‖2L∞(Q).

Therefore under the scale separation assumption discussed in the introduction, that
there exists ū with ‖∇ū‖L∞(Q) ∼ 1 and ν−1‖u′‖2L∞(Q) ∼ 1, we have τF ∼ 1.

By an integration by parts and by using the relations∇·rot ϕ = 0 and∇ϕ·rot ϕ =
0 we have

I3 = −(ωh∇·rot ϕ1, ϕ1)Q∗ − (ωhrot ϕ1,∇ϕ1)Q∗ = 0.

Collecting the results for I1 − I3 in (4.9) we have

‖∇ϕ1(·, t∗)‖2 + ‖ν 1
2 ∆ϕ1‖2Q∗ . τ−1

F ‖∇ϕ1‖2Q∗ + ‖∇ξ0‖2.

The inequality for ϕ1 follows after a Gronwall’s inequality and by taking the supremum
over t∗, resulting in

sup
t∈I
‖∇ϕ1(·, t)‖2 + ‖ν 1

2D2ϕ1‖2Q . e
T
τF ‖∇ξ0‖2.

Elliptic regularity has been used for the second term.
For the bound on ϕ2, multiply equation (4.3) by ϕ2 and integrate over Ω,

‖∇ϕ2(·, t)‖2 = −(ωhrot ϕ1,∇ϕ2)Ω ≤ ‖ωh(·, t)‖L∞(Ω)‖∇ϕ1(·, t)‖‖∇ϕ2(·, t)‖.

Then divide by ‖∇ϕ2(·, t)‖, integrate in time and use that∫
I

‖∇ϕ2(·, t)‖ dt ≤
∫
I

‖ωh(·, t)‖L∞(Ω)‖∇ϕ1(·, t)‖ dt

≤
∫
I

‖ωh(·, t)‖L∞(Ω) dt sup
t∈I
‖∇ϕ1(·, t)‖. (4.11)

Finally use equation (4.7) to bound supt∈I ‖∇ϕ1(·, t)‖.
Note the dependence on the L∞-norm of ωh in the bound (4.8). This appearance
of a finite element function in the stability estimate shows that the global stability
depends on the monotonicity of the approximation scheme. However as we shall
see, strict monotonicity is not necessary, only “sufficient” L∞-control of the discrete
vorticity. We also point out that in case the Reynolds number is low the convection
term I2 may be treated using the inequality

I2 ≤
1

2

U2
0 l

lν
‖∇ϕ1‖2Q +

1

2
‖ν 1

2 ∆ϕ1‖2Q,

where l denotes the characteristic length scale of the flow, and Re = U0l
ν < 1, resulting

in exponential growth with the factor eU0l
−1T .

5. A posteriori error estimates for the abstract method. Let eω = ω−ωh
and define the filtered error ẽω := ω̃ − ω̃h, where a quantity ṽ is related to v through
the problem (with continuity of the traces of ṽ and ∇ṽ·n over the periodic boundaries)

−∆ṽ + ṽ = v. (5.1)
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We introduce a norm on ẽω such that |‖ẽω‖|2−1 := ‖∇ẽω‖2 + ‖ẽω‖2 = (eω, ẽω)Ω. This
norm is related to the H−1-norm of eω.

Using the above norm and the relations (3.14), (4.2)-(4.3) as well as the stability
result of Proposition 4.1 we may derive a posteriori estimates for the filtered quan-
tity ẽω. We here derive the result for the abstract finite element method (3.3)-(3.4)
and then show how these estimates can be transformed into a priori error estimates,
depending on the properties of the stabilization operator s(uh;ωh, vh). The use of
weak norms and stabilized finite element methods in the following estimates draws
on ideas from [15] and [3]. Here the mesh parameters have been factored out, to
stress the close relation between the a posteriori error estimates and the subsequent a
priori error estimates. Using similar techniques one may derive estimates suitable for
adaptivity where the mesh parameter is kept inside the residual expressions in order
to associate mesh sizes to local residuals.

Theorem 5.1. (A posteriori error estimates) Let ω, ωh be the solutions of (2.2)-
(2.3) and (3.3)-(3.4) respectively. Let ω̃, ω̃h be defined by the relation (5.1) and τF be
defined by (4.5). Then there holds

|‖(ω̃ − ω̃h)(·, T )‖|−1 . e
T
τF h

1
2

5∑
i=0

Ri, (5.2)

with

R0 := h
1
2 ‖(ω − ωh)(·, 0)‖,

R1 :=

∫
I

inf
vh∈V 1

h

‖h 1
2 (uh·∇ωh − vh)‖ dt,

R2 := min(h, ν
1
2T

1
2 )‖ν 1

2 [[nF ·∇ωh]]‖F×I ,

R3 :=

∫
I

‖ωh(·, t)‖L∞(Ω) dtmin(c0 sup
t∈I
‖Ψh(·, t)‖∆,0, c1h

1
2 sup
t∈I
‖ωh(·, t)‖)

where

‖Ψh(·, t)‖∆,s := ‖hs[[nF · ∇Ψh(·, t)]]‖F + inf
vh∈V lh

( ∑
K∈Th

‖h 1
2 +s(∆Ψh(·, t)− vh)‖2K

) 1
2

,

R4 := h
3
2

∫
I

‖∂t∇ωh‖ dt

and

R5 := (U
1
2

0 + U
− 1

2
0 ‖uh‖L∞(Q))

∫
I

s(uh;ωh, ωh)
1
2 dt.

The term R4 is omitted if the consistent mass matrix is used. For the velocities we
have the estimate,

‖(u− uh)(·, T )‖ .
(
‖Ψh(·, T )‖∆, 12 + |‖(ω̃ − ω̃h)(·, T )‖|−1

)
(5.3)
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where the second term in the right hand side may is a posteriori bounded by (5.2).
Proof. By the definition (5.1) of ẽω we have, taking ξ0 = ẽω in (4.4) and recalling

that eΨ := Ψ−Ψh

|‖ẽω(·, T )‖|2−1 = (eω(·, T ), ϕ1(·, T ))Ω + (eω,−∂tϕ1 − u·∇ϕ1 − ϕ2 − ν∆ϕ1)Q

+ (eΨ,−∆ϕ2 −∇ωh · rot ϕ1)Q

= (eω(·, 0), ϕ1(·, 0))Ω + (∂teω + u·∇eω + rot eΨ·∇ωh, ϕ1)Q

+ (ν∇eω,∇ϕ1)Q + (∇eΨ,∇ϕ2)Q − (eω, ϕ2)Q.

Using now the consistency relation (3.14) and the L2-orthogonality of the initial data
we obtain

|‖ẽω(·, T )‖|2−1 = (eω(·, 0), (ϕ1 − πLϕ1)(·, 0))Ω

+ (∂teω + u·∇eω + rot eΨ·∇ωh, ϕ1 − πLϕ1)Q

+ (ν∇eω,∇(ϕ1 − πLϕ1))Q + (∇eΨ,∇(ϕ2 −Πϕ2))Q − (eω, ϕ2 −Πϕ2)Q

+

∫
I

[(∂tωh, πLϕ1)Ω −m(∂tωh, πLϕ1)] dt− s(uh;ωh, πLϕ1),

where Π : H1(Ω) 7→ V lh will be taken as either πL or πV . Using the equations (2.2)-
(2.3) and the definitions of the projections πL and πV we deduce for Π := πV ,

|‖ẽω(·, T )‖|2−1 = (eω(·, 0), (ϕ1 − πLϕ1)(·, 0))Ω − (uh·∇ωh − vh, ϕ1 − πLϕ1)Q

− (ν∇ωh,∇(ϕ1 − πLϕ1)Q + (ωh, ϕ2 − πV ϕ2)Q

+

∫
I

[(∂tωh, πLϕ1)Ω −m(∂tωh, πLϕ1)] dt−
∫
I

s(uh;ωh, πLϕ1) dt, ∀vh(t) ∈ V 1
h ,

and similarly for Π := πL,

|‖ẽω(·, T )‖|2−1 = (eω(·, 0), (ϕ1 − πLϕ1)(·, 0))Ω − (uh·∇ωh − vh, ϕ1 − πLϕ1)Q

− (ν∇ωh,∇(ϕ1 − πLϕ1)Q − (∇Ψh,∇(ϕ2 − πLϕ2))Q

+

∫
I

[(∂tωh, πLϕ1)Ω −m(∂tωh, πLϕ1)] dt−
∫
I

s(uh;ωh, πLϕ1) dt, ∀vh(t) ∈ V 1
h .

After some standard manipulation including integrations by parts, Cauchy-Schwarz
inequalities, trace inequalities the approximation results (3.1) and (3.2), (3.11) and
the stabilities (3.5) and (4.11) we may conclude, for Π := πV ,

|‖ẽω(·, T )‖|2−1 . h
1
2

(
h

1
2 ‖eω(·, 0)‖+

∫
I

inf
vh∈V 1

h

‖h 1
2 (uh·∇ωh − vh)‖ dt

+ min(h,ν
1
2T

1
2 )‖ν 1

2 [[nF ·∇ωh]]‖F×I + c1h
1
2 sup
t∈I
‖ωh(·, t)‖

∫
I

‖ωh(·, t)‖L∞(Ω) dt

+ h
3
2

∫
I

‖∂t∇ωh‖ dt+ (U
1
2

0 + U
− 1

2
0 ‖uh‖L∞(Q))

∫
I

s(uh;ωh, ωh)
1
2 dt

)
× (sup

t∈I
‖∇ϕ1(·, t)‖+ ‖ν 1

2D2ϕ1‖Q).

If Π := πL the fourth term on the right hand side is replaced using

(∇Ψh,∇(ϕ2 − πLϕ2))Q . h
1
2 c0 sup

t∈I
‖Ψh(t)‖∆,0

∫
I

‖∇ϕ2(·, t)‖ dt,
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followed by the bound (4.8) on ϕ2. The estimate (5.2) now follows by taking the
minimum of the two expressions and noting that by (4.7)

sup
t∈I
‖∇ϕ1(·, t)‖+ ‖ν 1

2D2ϕ1‖Q . e
T
τF |‖ẽω‖|−1.

The velocity estimate (5.3) is obtained by noting that there holds

‖(u− uh)(·, T )‖2 := ‖∇eΨ(·, T ) ‖2 = (∇eΨ,∇(eΨ − πLeΨ))Ω + (eω, πLeΨ)Ω.

Using the equation (2.3) we have

‖∇eΨ‖2 = −(∇Ψh,∇(eΨ − πLeΨ))Ω + (ω, eΨ)Ω − (ωh, πLeΨ)Ω

= −(∇Ψh,∇(eΨ − πLeΨ))Ω + (ω − ωh, eΨ)Ω.

Let ẽ be the solution of (5.1). Then

‖u− uh‖2 = −(∇Ψh,∇(eΨ − πLeΨ))Ω + (∇ẽω,∇eΨ)Ω + (ẽω, eΨ)Ω.

By an integration by parts in the first term, followed by a Cauchy-Schwarz inequality
and the Poincaré-Wirtinger inequality in the last term we may write

‖u− uh‖2 . ‖h
1
2

F [[∇Ψh]]‖F‖h
− 1

2

F (eΨ − πLeΨ)‖F

+

( ∑
K∈Th

‖h(∆Ψh − vh)‖2K

) 1
2

‖h−1(eΨ − πLeΨ)‖

+ |‖(ω̃ − ω̃h)‖|−1‖u− uh‖.

By element wise trace inequalities and the approximation property (3.1) we have

‖h− 1
2 (eΨ − πLeΨ)‖F + ‖h−1(eΨ − πLeΨ)‖ . ‖u− uh‖

by which we conclude.
If the stability properties of the stabilized method are sufficient, these a posteriori error
estimates translate into a priori error estimates. We propose two strategies for this.
One based on Sobolev injections for discrete spaces and one based on monotonicity,
applicable to monotone stabilized finite element methods. The advantage of the former
is that it allows the use of the consistent mass matrix and (almost) linear stabilization
terms. The latter technique on the other hand allows for the derivation of a priori
error estimates with precise control of the constants in the estimates, but imposes the
use of a diagonal mass matrix.

6. A priori error estimates for finite element methods using consistent
mass matrix. In this section we consider the case of methods using a consistent
mass-matrix, these methods will not be monotone, but do nevertheless allow for error
estimates, using L∞-estimates on the vortcity that may be derived thanks to the
stabilization.

Proposition 6.1. Assume that the meshes are quasi-uniform, that the mass
matrix m(·, ·) is evaluated exactly and that in addition to (3.5) and (3.6) the following
stability estimate holds for all t > 0,

‖ωh‖L∞(Ω) . c(h)(‖ωh‖+ s(uh;ωh, ωh)
1
2 ). (6.1)



Robust error estimates for the two dimensional Navier-Stokes equations 13

Then there holds for all ζ > 0,

|‖(ω̃ − ω̃h)(·, T )‖|−1 . C0e
T
τF h

1
2 (cζh

−ζ + c(h)h
1
2 )

and

‖(u− uh)(·, T )‖ . inf
Φh∈V l∗

‖∇(Ψ− Φh)(·, T )‖+ C0e
T
τF h

1
2 (cζh

−ζ + c(h)h
1
2 ).

Remark 6.1. For the above estimate to be useful we require ζ < 1
2 and c(h) ∼ h−ξ

with ξ < 1. Typical values for these parameters obtained for the methods given in the
next section are ζ = 1/4 and c(h) ∼ h−ξ(1 + |log(h)|), with ξ ∈ {1/4, 1/2}.

Proof. By (3.5) and (3.7) and by using a Cauchy-Schwarz inequality in time we
bound R1,∫

I

inf
vh∈V 1

h

‖h 1
2 (uh·∇ωh − vh)‖ dt . U

1
2

0 T
1
2

(∫
I

s(uh;ωh, ωh) dt
) 1

2

. U
1
2

0 T
1
2 ‖ω(·, 0)‖.

Using an element wise trace inequality and (3.7) we also have for R2,

min(h, ν
1
2T

1
2 )‖ν 1

2 [[nF ·∇ωh]]‖F×I . h
1
2 ‖ν 1

2∇ωh‖Q . h
1
2 ‖ω(·, 0)‖.

For R3 we use (3.7) and the discrete Sobolev injection (6.1) to deduce

R3 ≤ c1h
1
2 sup
t∈I
‖ωh(·, t)‖

∫
I

‖ωh(·, t)‖L∞(Ω) dt

. c1h
1
2 ‖ω(·, 0)‖c(h)

∫
I

(‖ωh(·, t)‖+ s(uh;ωh, ωh)
1
2 ) dt

. c1h
1
2 c(h)(T + T

1
2 )‖ω(·, 0)‖2.

The only remaining term is the stabilization term, R5 where in particular the factor
‖uh‖L∞(Q) needs to be bounded. Here we use (3.8) to deduce, for all q > 2,

U
− 1

2
0 ‖uh‖L∞(Q)

∫
I

s(uh;ωh, ωh)
1
2 dt

≤ cq sup
t∈I
‖ωh(·, t)‖Lq(Ω)U

− 1
2

0 T
1
2

(∫
I

s(uh;ωh, ωh) dt
) 1

2

and by a global inverse inequality and the bound (3.7) we may conclude

U
− 1

2
0 ‖uh‖L∞(Q)

∫
I

s(uh;ωh, ωh)
1
2 dt . cqh

2−q
q U

− 1
2

0 T
1
2 sup
t∈I
‖ωh(·, t)‖‖ω(·, 0)‖

≤ cqh
2−q
q U

− 1
2

0 T
1
2 ‖ω(·, 0)‖2

and the estimate follows taking ζ = (q − 2)/q. Note that the constant cq explodes as
q → 2.
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The bound in the L2-norm for the velocities follows as before from the vorticity
estimate. Let Φh ∈ V l∗ . Then

‖u−uh‖2 = ‖∇eΨ‖2 = (∇eΨ,∇(Ψ− Φh))Ω − (eω,Ψh − Φh)Ω

≤ ‖u− uh‖‖∇(Ψ− Φh)‖ − (−∆ẽω + ẽω,Ψh − Φh)Ω

≤ ‖u− uh‖‖∇(Ψ− Φh)‖+ |‖ω̃ − ω̃h‖|−1(‖Ψ−Ψh‖H1(Ω) + ‖Ψ− Φh‖H1(Ω))

≤ C‖∇(Ψ− Φh)‖2 + C|‖ω̃ − ω̃h‖|2−1 +
1

2
‖u− uh‖2

Where we used a Poincare-Wirtinger inequality followed by the arithmetic-geometric
inequality with suitable weights, in the last inequality.

6.1. Examples of methods with consistent mass matrix satisfying the
assumptions of Proposition 6.1. We consider first the stabilization method ob-
tained by penalizing the jumps of the streamline derivative over element faces. We
use the exact mass matrix in (3.3) and the stabilizing operator

ssd(uh;ωh, vh) := γ
∑
F∈F

U−1
0 (h2

F [[uh·∇ωh]], [[uh·∇vh]])F . (6.2)

For this formulation the following stability estimates hold
Lemma 6.2. Assume that the consistent mass matrix is used in (3.3)-(3.4), then

sup
t∈I
‖ωh(·, t)‖2 + 2‖ν 1

2∇ωh‖2Q + 2γU−1
0 ‖hF [[uh·∇ωh]]‖2F×I . ‖ω(·, 0)‖2 (6.3)

and if l = 1,

‖uh(·, T )‖2 + 2‖ν 1
2 (ωh − ω̄h)‖2Q = ‖uh(·, 0)‖2, (6.4)

where

ω̄h :=

∫
Ω

ωh dx

Proof. the proof of (6.3) is an immediate consequence of (3.7) and the definition
(6.2). The energy equality (6.4) follows by taking vh = Ψh in (3.3) and Φh = ν(ωh −
ω̄h) in (3.4) to obtain∫

I

m(∂tωh,Ψh) dt+ ‖ν 1
2 (ωh − ω̄h)‖2Q = −

∫
I

ssd(uh;ωh,Ψh) dt. (6.5)

The conclusion now follows by observing that by differentiating (3.4) in time we have

m(∂tωh,Ψh) = (∇∂tΨh,Ψh)Ω =
d

dt
‖uh(·, t)‖2

and

ssd(uh;ωh,Ψh) = γ
∑
F∈F

(U−1
0 h2

F [[uh·∇ωh]], [[rot Ψh·∇Ψh]])F = 0.
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Observe that the stabilization in the method dissipates enstrophy but does not con-
tribute to dissipation of energy. Using known results on interpolation between discrete
spaces it is also straightforward to show (see [7]),

U
− 1

2
0 inf

vh∈V 1
h

‖h 1
2 (uh · ∇ωh − vh)‖2 . ssd(uh;ωh, ωh).

Unfortunately this stabilization operator can not be shown to satisfy (6.1). For this
we need the stabilization to act also in the crosswind direction. We therefore propose
the following two stabilization operators, the first is the standard artificial viscosity
method

sav(uh;ωh, vh) := (γh(U0 + |uh|)2U−1
0 ∇ωh,∇vh) (6.6)

and the second is a modification of (6.2) where also the crosswind gradient is penalized
defined by

scd(uh;ωh, vh) := ssd(uh;ωh, vh) + γ1

∑
K∈F

U0h
2
F

∫
F

[[nF · ∇ωh]][[nF · ∇vh]] ds. (6.7)

Observe that the first part of scd ensures the satisfaction of (3.5) and as we shall see
the second part is necessary for (6.1) to hold.

Proposition 6.3. Both stabilization operators (6.6) and (6.7) satisfy (3.5) and

(3.6). The stabilization operator sav(·; ·, ·) satisfies (6.1) with c(h) ∼ h− 1
2 (1+ |log(h)|)

and scd(·; ·, ·) satisfies (6.1) with c(h) ∼ h−
3
4 (1 + |log(h)|).

Proof. The proofs of (3.5) - (3.6) are consequences of the Cauchy-Schwarz in-
equality and in the case of scd trace inequalities. To prove (6.1) we note that in two
space dimensions there holds (see [21]),

‖ωh‖L∞(Ω) . (1 + | log(h)|)‖ωh‖H1(Ω). (6.8)

This allows us to conclude for sav. For scd we first use the inequality (6.8) to bound
the L∞-norm using the H1 norm. We then need to prove that scd gives sufficient
control of the H1-norm. Proceeding using integration by parts in

∫
Ω
|∇ωh|2 dx, using

that the gradient is constant on each element and taking absolute values in the integral
we obtain the bound (see [7])

‖∇ωh‖ ≤
(∑
F∈F

∫
F

|[[nF · ∇ωh]]||ωh| ds
) 1

2

.

A Cauchy-Schwarz inequality followed by a trace inequality in the right hand side
leads to

‖∇ωh‖ .
( ∑
K∈Th

h−
3
2 ‖ωh‖K‖h[[nf · ∇ωh]]‖∂K

) 1
2

. h−
3
4 (U

− 1
2

0 ‖ωh‖+ scd(uh;ωh, ωh)
1
2 ).

We conclude that in this case

‖ωh‖L∞(Ω) . (1 + | log(h)|)h− 3
4 (U

− 1
2

0 ‖ωh‖+ scd(uh;ωh, ωh)
1
2 ).

Since the assumptions of Proposition 6.1 are satisfied, we may conclude that the
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method (3.3)-(3.4) using the stabilization (6.6) satisfies the a priori error bounds for
ζ > 0

|‖(ω̃ − ω̃h)(·, T )‖|−1 . C0e
T
τF h

1
2 (cζh

−ζ + 1 + | log(h)|)

and

‖(u− uh)(·, T )‖ . inf
Φh∈V l∗

‖∇(Ψ− Φh)(·, T )‖+ C0e
T
τF h

1
2 (cζh

−ζ + 1 + | log(h)|).

Similarly we have the following estimates if the stabilization (6.7) is used.

|‖(ω̃ − ω̃h)(·, T )‖|−1 . C0e
T
τF h

1
2 (cζh

−ζ + (1 + | log(h)|)h− 1
4 )

and

‖(u− uh)(·, T )‖ . inf
Φh∈V l∗

‖∇(Ψ− Φh)(·, T )‖+ C0e
T
τF h

1
2 (cζh

−ζ + (1 + | log(h)|)h− 1
4 ).

We see that we obtain an a priori convergence order of O(h
1
2−ζ), for ζ > 0, when

using (6.6), and O(| log(h)|h 1
4 ) for (6.7), provided ζ < 1

4 . Recalling that ζ = (q−2)/q
we readily deduce that for ζ = 1/4 we have q = 8/3 > 2 and hence this choice is
valid. If l = 2 the method using (6.7) has optimal convergence for smooth solutions
by Proposition 3.2.

7. A priori error estimates for finite element methods using lumped
mass matrix. Here we will assume that the finite element method satisfies a discrete
maximum principle, in the sense that the bilinear form has the DMP-property. For
details and theoretical background on these concepts we refer to [4, 5].

Proposition 7.1. (A priori error estimate using monotonicity) Assume that
the meshes are quasi-uniform, that l = 1, that Reh > 1, that the mass m(·, ·) is
evaluated using nodal quadrature, that the form a(uh;ωh, vh) + s(uh;ωh, vh) has the
DMP property as defined in [5] and that (3.5)-(3.6) hold, Then

|‖(ω̃ − ω̃h)(·, T )‖|−1 . C0e
T
τF h

1
2

and

‖(u− uh)(·, T )‖ . inf
Φh∈V l∗

‖∇(Ψ− Φh)(·, T )‖+ C0e
T
τF h

1
2 .

Proof. The terms R0 −R2 are bounded as in the proof of Proposition 6.1. Since
by assumption the spatial discretization of (3.3) has the DMP property and the mass-
matrix is evaluated using nodal quadrature, we know from [4, 5] that

‖ωh‖L∞(Q) ≤ ‖ωh(·, 0)‖L∞(Ω) . ‖ω(·, 0)‖L∞(Ω).

Hence by (3.8) ‖uh‖L∞(Q) . ‖ω(·, 0)‖L∞(Ω). We may then use these L∞-bounds
together with the stabilities of Lemma 3.1 to upper bound the remaining residual
quantities of (5.2). Using (3.8) and (3.7) we immediately have

R3 ≤ h
1
2 sup
t∈I
‖ωh(·, t)‖

∫
I

‖ωh(·, t)‖L∞(Ω) dt . h
1
2T‖ωh(·, 0)‖‖ωh(·, 0)‖L∞(Ω).



Robust error estimates for the two dimensional Navier-Stokes equations 17

For the residual term R4 resulting from the mass lumping we observe that since l = 1
the stability (3.9) holds. Using this result, the bound (3.8) together with the discrete
maximum principle, the high Reynolds number assumption U0h > ν and finally (3.7)
we obtain

R4 = h
3
2

∫
I

‖∂t∇ωh‖ dt

. T
1
2

(∫
I

((U
1
2

0 + U
− 1

2
0 ‖uh‖L∞(Q))

2s(uh;ωh, ωh) + U0‖ν
1
2∇ωh‖2) dt

) 1
2

. T
1
2U

1
2

0 ‖ω(·, 0)‖.

The remaining contribution from the stabilization is bounded as before using the
maximum principle and (3.7). The proof of the L2-norm estimate on the velocities is
identical to that of Proposition 6.1
Note that only the proof of Proposition 7.1 uses the assumption Reh > 1 and only to
control the non-consistent mass term. This constraint is likely to vanish if the method
is analysed using techniques appropriate for parabolic problems, since mass lumping
is known to be stable for dominant diffusion (see for instance [22]).

7.1. Examples of methods with lumped mass matrix satisfying the as-
sumptions of Proposition 6.1. In this section we consider the case where the
mass matrix is evaluated using nodal quadrature leading to a diagonal matrix. We
also assume in this section that the meshes are Delaunay so that the discrete Laplace
operator satisfies a discrete maximum principle, see [23]. Thanks to these two prop-
erties we will be able to design monotone finite element methods, that satisfy the
assumptions of Proposition 7.1.

7.1.1. Linear artificial viscosity. A monotone method using linear artificial
viscosity is obtained by taking (see [5])

s(uh;ωh, vh) := γ
∑
K

U0h
2
K

∑
F∈∂K

(∇ωh × nF ,∇vh × nF )F . (7.1)

We may use the theory of [4, 5] to prove that the operator a(ωh, vh)+s(uh;ωh, vh)
has the DMP-property and hence the following discrete maximum principle holds

‖ωh‖L∞(Q) ≤ ‖ωh(·, 0)‖L∞(Ω). (7.2)

This requires the parameter γ to be chosen large enough, however it does not require
any additional acute condition on the mesh, since the discretization of the Laplace op-
erator results in an M-matrix on Delaunay meshes. Since by the maximum principle,
‖uh‖L∞(Q) . ‖ωh(·, 0)‖L∞(Ω) we have

‖|uh|h
1
2∇ωh‖2Q . ‖uh‖

1
2

L∞(Q)

∫
I

s(uh;ωh, ωh) dt (7.3)

which proves (3.5) with vh = 0. It is straightforward to prove also (3.6). Comparing
with Proposition 7.1 we conclude that the assumptions are satisfied and hence that
the Proposition holds for (3.3)-(3.4) with stabilization given by (7.1) and the mass
matrix evaluated using nodal quadrature.
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7.1.2. Nonlinear artificial viscosity. We propose a stabilization term con-
sisting of one linear part and one nonlinear part. The role of the nonlinear part is
to ensure that the form a(·; ·, ·) + s(·; ·, ·) has the DMP property. The linear part is
necessary to ensure that the inequality (3.5) holds. We define

s(uh;ωh, vh) := ssd(uh;ωh, vh) (7.4)

+ γ2

∑
K

h2
K

∑
F∈∂K

RF (ωh)(sign(∇ωh × nF ),∇vh × nF )F (7.5)

where

RF (ωh) := U0mF ([[nF · ∇ωh]])

with

mF ([[nF · ∇ωh]]) = max
F ′∈F

F ′∈∂K′;K′∩F=F

|[[nF ′ · ∇ωh]]|F ′ |.

It is shown in [5] that with this definition a(uh;ωh, vh) + s(uh;ωh, vh) has the DMP-
property for γ2 large enough and then (7.2) holds. To conclude we only need to show
that the bounds (3.5) and (3.6) hold. From this the conclusions of Lemma 3.1 follows.
Then the assumptions of Proposition 7.1 are satisfied and its estimates hold.

Lemma 7.2. The stabilization operator defined by (7.4) satisfies the bounds (3.5)
and (3.6).

Proof. For the first inequality of (3.5) we observe that as before this holds thanks
to the term ssd(·; ·, ·). The upper bound of (3.5) is also straightforward by repeated

use of the trace inequality h
1
2 (‖n∂K · ∇ωh‖∂K + ‖n∂K × ∇ωh‖∂K) . ‖∇ωh‖K . Due

to the lack of symmetry of the nonlinear operator the bound (3.6) requires a more
detailed analysis. First note that

s(uh, ωh; vh) . h
1
2U
− 1

2
0 ‖uh‖L∞(Ω)ssd(uh;ωh, ωh)

1
2 ‖∇vh‖

+ γ2

∑
K

hK
∑
F∈∂K

|RF (ωh)||∇vh|F ||F |.

Considering the second term in the right hand side we may write

γ2

∑
K

∑
F∈∂K

h2
K |RF (ωh)||∇vh||F | . γ2

(∑
K

∑
F∈∂K

h4
K |RF (ωh)|2

) 1
2 ‖∇vh‖.

It follows that we must prove the bound

γ2

∑
K

∑
F∈∂K

h4
K |RF (ωh)|2 . hU0γ2

∑
K

h2
K

∑
F∈∂K

RF (ωh)‖∇ωh × nF ‖L1(F ). (7.6)

For any face F ∈ F define K+
F and K−F to be the triangles such that K+

F ∩K
−
F = F .

Assume that for a fixed face F ∗ the max in mF∗ is taken in the face F ′, associated
to the elements K+

F ′ and K−F ′ , so that

mF∗([[nF · ∇ωh]]) = |[[nF ′ · ∇ωh]]|F ′ |.

Define the local set of faces F ′∆ := {F : F ∈ ∂K+
F ′ ∪ ∂K

−
F ′}. Observing that

|[[nF ′ · ∇ωh]]|F ′ |hK . ‖∇ωh × nF ‖L1(F ′∆)
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we may write

hK |RF∗(uh, ωh)|2 . U0RF∗(uh, ωh)‖∇ωh × nF ‖L1(F ′∆)

. U0

∑
F∈F ′∆

RF (uh, ωh)‖∇ωh × nF ‖L1(F ). (7.7)

The last inequality holds since the face F ′ that realises the max in mF∗ is in the set
over which the max in mF is taken for all F ∈ F ′∆ in the last expression. Applying
now the inequality (7.7) to each term of the left hand side of (7.6), rearranging the
sum, using the quasi-uniformity of the mesh and the upper bound on the cardinality
of F ′∆ we conclude that (7.6) holds. Hence we have proven inequality (3.6).

8. Numerical examples. Below we will study two model problems. Our ob-
jective is to give numerical evidence of the following four points,

1. the exponential growth proportional to the gradient is indeed sharp and that
the exponential instability is triggered by strong shear layers, i.e. strong
layers in the velocity;

2. the convergence order of Proposition 3.2 is verified before instability sets in;
3. strong layers in the vorticity do not to give rise to exponential perturbation

growth;
4. stabilization is necessary to get accurate results.

In all cases we considered the scheme (3.3)-(3.4) with the stabilization (6.7) and
parameters γ = 0, γ1 = 0.01.

8.1. Kelvin-Helmholtz instability. We consider flow in the unit square with
periodic boundary conditions in the x-direction and slip conditions at y = 0 and
y = 1. The initial condition is chosen as

ω0 = −2

δ
(1− tanh((2y − 1)/δ)2)

leading to the velocities

u1 = tanh((2y − 1)/δ), u2 = 0.

Here δ is a measure of the layer width and we let δ = 1/(7L) with L ∈ N. It follows
that ‖u(·, 0)‖W 1,∞(Ω) = 14L and we expect the maximum gradient to be proportional
to L. The initial vorticity ω0 is a stationary solution to the inviscid problem, but it is
known to be unstable and lead to transition through the Kelvin-Helmholtz vortices.
We consider a small kinematic viscosity ν = 1/28 · 10−4 and study the growth of
‖ωh(·, 0) − ωh(·, t)‖, typically over 5000 timesteps of size dt = 7.8125 · 10−4 for L =
1, 2, 4. This is a reasonable measure of the error since ω0 is a stationary solution
to the inviscid problem and the diffusive effects are negligible for the viscosity and
time-scales considered. Often when studying this problem an initial perturbation is
added to reduce the dependence of the transition sequence on the mesh geometry (see
for instance [16, 2].) Here we have not added any perturbation, so that the transition
is an effect of perturbations induced by the discretization (in particular the use of
penalty on the jump of the cross-wind gradient) and roundoff errors. Snapshots of
the transition sequence for L = 2 is presented in Figure 8.1. In the left plot of Figure
8.2 we show the perturbation growth for L = 1 and L = 2 on an 80 × 80 mesh and
L = 4 on an 160 × 160 mesh, with time step dt/2. In these cases the perturbation
growth is exponential with growth e2Lt when the transition takes place and hence the
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IsoValue
-27.8929
-26.4625
-25.0321
-23.6017
-22.1713
-20.7409
-19.3105
-17.8801
-16.4497
-15.0193
-13.5889
-12.1585
-10.7281
-9.29765
-7.86724
-6.43683
-5.00643
-3.57602
-2.14561
-0.715204

IsoValue
-26.2345
-24.8424
-23.4503
-22.0582
-20.6661
-19.274
-17.8819
-16.4898
-15.0977
-13.7056
-12.3135
-10.9214
-9.52929
-8.13719
-6.74509
-5.35299
-3.96089
-2.56879
-1.17669
0.215415

IsoValue
-26.1856
-24.7873
-23.3889
-21.9906
-20.5922
-19.1938
-17.7955
-16.3971
-14.9988
-13.6004
-12.2021
-10.8037
-9.40537
-8.00702
-6.60867
-5.21031
-3.81196
-2.41361
-1.01525
0.3831

Figure 8.1. Kelvin-Helmholtz instability. Contour plots of the vorticity, for L = 2, on the
80 × 80 mesh. From left to right, T = 0.7125, T = 2.5 and T = 3.21875. Transition from the
quasi-stationary initial data has taken place between T = 0.7125 and T = 2.5
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Figure 8.2. Kelvin-Helmholtz instability. Left: perturbation growth for different layer width,
straight lines with markers give exponential growth e2Lt (L = 1 dashed/circles, L = 2, dash
dot/squares, L = 4, filled/diamond). Center: perturbation growth for different refinement levels
and L = 2 (40 × 40 dotted, 80 × 80 dashed, 160 × 160 dash dot, 320 × 320 filled. Straight line with
square marks e5t). Right: Convergence of the L2-error for L = 2 at T = 1 indicated by the dashed

line. Filled line with circles indicate O(h
3
2 ) and with squares O(h2).

exponential coefficient is proportional to the maximum gradient. In the middle plot
we show the perturbation growth for L = 2 on four meshes, 40×40, 80×80, 160×160
and 320× 320. On the finest mesh we used the smaller time-step size dt/2. Observe
that the exponential growth saturates on the 160 × 160 mesh, but is clearly smaller
on the 40 × 40 mesh. We also observe that the initial time until transition increases
with mesh refinement showing that as the initial perturbation becomes smaller it
takes longer for it to trigger transition. In the right plot of Figure 8.2 we study the
experimental convergence of ‖ωh(·, 0)− ωh(·, 1)‖. Before transition we observe a rate

between O(h
3
2 ) and O(h2) as predicted by Proposition 3.2.
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IsoValue
-1.89414
-1.70961
-1.52508
-1.34055
-1.15602
-0.971486
-0.786954
-0.602423
-0.417891
-0.233359
-0.0488273
0.135704
0.320236
0.504768
0.6893
0.873831
1.05836
1.24289
1.42743
1.61196

IsoValue
-1.89168
-1.70917
-1.52665
-1.34413
-1.16162
-0.979102
-0.796585
-0.614068
-0.431552
-0.249035
-0.0665187
0.115998
0.298515
0.481031
0.663548
0.846064
1.02858
1.2111
1.39361
1.57613

IsoValue
-1.89087
-1.71017
-1.52946
-1.34876
-1.16806
-0.987358
-0.806655
-0.625953
-0.445251
-0.264549
-0.0838463
0.0968559
0.277558
0.45826
0.638963
0.819665
1.00037
1.18107
1.36177
1.54247

Figure 8.3. Discontinuous vorticity. Contour plots of the vorticity on the 80× 80 mesh. From
left to right, T = 0.7125, T = 2.14375 and T = 3.5625

8.2. Discontinuous vorticity, inviscid case. The purpose of this example is
to show the lack of sharpness of the estimate of Proposition 3.2, with the gradient of
the vorticity in the exponential and the lack of robustness of the standard Galerkin
method. Here we consider the case ν = 0 and consider the x - periodic domain
[− 3

2 ,
3
2 ]2, with non-penetration conditions at y = −3/2 and y = 3/2. To reduce the

influence of the mesh we have used a Union Jack type mesh and the initial vorticity
was chosen as

ω0 =

 −(2− r) 0 < r < 1
2

2− r 1
2 < r < 1

0 1 < r

where r =
√
x2 + y2. This vorticity is discontinuous at r = 1

2 and at r = 1. The
resulting velocity field is a shear flow with a counter rotating vortex. This solution
is not stationary, due to the boundary conditions on the domain. Instead the vortex
is deformed by the shear flow as can be seen in the plots of Figure 8.3. We integrate
the equations over the same time interval, with the same time-step, as in the previous
example and as measure of the deformation we study once again the deviation from
the inital data in the L2-norm, ‖uh(·, 0) − uh(·, 1)‖ (observing that this is not an
error quantity.) We also compare with the result of a computation using the standard
Galerkin method. In Figure 8.4 we give the evolution of the L2-norm of the deviation
from the initial data and we see that it grows linearly for the stabilized method,
but blows up for the unstabilized method (we only present the standard Galerkin
on the finest mesh, the coarse mesh solutions diverged even faster.) In a numerical
experiment not presented here we extended the computational time by doubling the
number of timestep, and did not observe any additional nonlinear effects, but the flow
appeared to remain stable.
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Figure 8.4. Discontinuous vorticity. Deviation from the initial data. Filled line standard
Galerkin 160 × 160. Dotted line, stabilized 40 × 40. Dashed line, stabilized 80 × 80. Dash dotted
line, stabilized 160 × 160.

9. Conclusion. We have derived error estimates for finite element approxima-
tions of the two dimensional Navier-Stokes’ equations with a reduced stability factor
that is independent of the finest scales of the flow. We have shown that, under a
certain structural assumption on the solution of the two dimensional Navier-Stokes’
equations, the estimates are robust with respect to the Reynolds number. The con-
stant of the estimates depends on the L∞-norm of the initial vorticity and has expo-
nential growth with exponential factor proportional to the gradient of the large scales
of the flow. We considered error estimates in a weak norm for the the vorticity and
in the L2-norm for the velocities. Several stabilized finite element methods of first or
second order accuracy for smooth solutions ares shown to enter the framework. If the
solution is smooth we also prove that quasi optimal convergence may be obtained,
provided the stabilization operator is weakly consistent to the right order.

Observe that in the low regularity case, even the large scales are assumed to have
moderate gradients only, no H2-regularity, so the convergence rates obtained are
suboptimal either with O(h

1
2 ) which is classical for stabilized finite element methods

or, when no discrete maximum principle is satisfied, with O(h
3
4 ).

It follows from the above analysis that if, for some quantity of interest, the ad-
joint perturbation equation has continuous dependence on inital data in the norm
L∞(0, T ;H

1
2 +ε)(Ω)), ε > 0, independent of the Reynolds number, then this quantity

may be computed using a stabilized finite element method. This observation of a
general nature is true also for the velocity-pressure formulation and in three space
dimensions.

Computational evidence in [14, Figure 1] shows that weaker control of the error,
i.e. quantities of interest based on space and time averages, are expected to result
in weaker growth in the dual problem and therefore more advantageous stability
properties.
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Appendix A. Proof of Proposition 3.2. For simplicity we give the proof only
in the inviscid case, ν = 0 and without crosswind stabilization, γ1 = 0. The solution
ω and u is assumed to have moderate H2-norm we also assume that ∇ω is uniformly
bounded. Consider the discrete errors

eh,Ψ := Ψh − πV Ψ ∈ V lh and eh,ω := ωh − πLω ∈ V 1
h .

First consider the second equation (3.4) and use Galerkin orthogonality (second equa-
tion of (3.14))

‖∇eh,Ψ‖2 = (∇(Ψ− πV Ψ),∇eh,Ψ)Ω − (ω − ωh, eh,Ψ)Ω = −(ω − ωh, eh,Ψ)Ω. (A.1)

Applying a Cauchy-Schwarz inequality followed by a Poincaré inequality we obtain
the following bound for Ψ in terms of the error in the vorticity

‖∇eh,Ψ‖ . ‖ω − πLωh‖+ ‖eh,ω‖. (A.2)

For the vorticity, first note that

1

2

d

dt
‖eh,ω‖2 + s(uh; eh,ω, eh,ω) = m(∂teh,ω, eh,ω) + a(uh; eh,ω, eh,ω)︸ ︷︷ ︸

=0

+s(uh; eh,ω, eh,ω).

Considering the first equation of (3.14) taking vh = eh,ω and there holds

1

2

d

dt
‖eh,ω‖2 + s(uh; eh,ω, eh,ω)

= (∂t(ω − πLω), eh,ω)Ω + (ω, u · ∇eh,ω)Ω

− (πLω, uh · ∇eh,ω)Ω − s(uh;πLω, eh,ω).

By integration by parts in time we see that the first term on the right hand side is
zero, by the orthogonality of the L2-projection. We then add and subtract uh in the
second term on the right hand side to obtain

1

2

d

dt
‖eh,ω‖2 + s(uh; eh,ω, eh,ω) = (ω, (u− uh) · ∇eh,ω)Ω

+ (ω − πLω, uh · ∇eh,ω)Ω − s(uh;πLω, eh,ω) = I + II + III.

In the first term on the right hand side we now reintegrate by parts and use Cauchy-
Schwarz inequality,

I ≤ ‖∇ω‖L∞(Q)‖u− uh‖‖eh,ω‖
. ‖∇ω‖L∞(Q)(‖∇(Ψ− πV Ψ)‖2 + ‖ω − πLω‖2 + ‖eh,ω‖2).

In the second term we use the orthogonality of the L2-projection to retract some
function vh and then apply (3.5),

II = (ω − πLω, uh · ∇eh,ω − vh)Ω ≤ cU
1
2

0 ‖h−
1
2 (ω − πLω)‖s(uh; eh,ω, eh,ω)

1
2

≤ ch3U0‖ω‖2H2(Ω) +
1

4
s(uh; eh,ω, eh,ω).

For the stabilization term finally we apply the Cauchy-Schwarz inequality and an
arithmetic-geometric inequality to obtain

III = s(uh;πLω, eh,ω) ≤ s(uh;πLω, πLω) +
1

4
s(uh; eh,ω, eh,ω). (A.3)
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Then we observe that by adding and subtracting rot πV Ψ we may write

s(uh;πLω, πLω) . s(uh − rot πV Ψ;πLω, πLω) + s(rot πV Ψ;πLω, πLω). (A.4)

Using the definition (6.2) and the stability of the L2-projection on quasi uniform
meshes, we have,

s(uh − rot πV Ψ;πLω, πLω) . U−1
0

∑
F∈F

∫
F

h2|∇eh,Ψ|2|∇πLωh|2 ds

. U−1
0 ‖∇ω‖2L∞(Ω)h‖∇eh,Ψ‖

2

. U−1
0 ‖∇ω‖2L∞(Ω)h(‖ω − πLω‖2 + ‖eh,ω‖2)

and then, once again using trace inequalities,

s(rot πV Ψ;πLω, πLω)

≤ U−1
0 ‖∇πV Ψ‖2L∞(Q)

∑
K

hK
(
‖∇(ω − πLω)‖2K + h2

K‖∇(ω − πLω)‖2
)

≤ U−1
0 ‖u‖2L∞(Ω)Ch

3‖ω‖2H2(Ω).

(A.5)
We conclude by collecting the upper bounds for the terms I − III, applying approx-
imability, integrating in time and using Gronwall’s lemma, that

‖eh,ω(·, T )‖2 +

∫
I

s(uh; eh,ω, eh,ω) . exp(cT‖∇ω‖L∞(Q))‖∇ω‖L∞(Q) (A.6)

× (h3‖ω‖2L2(I;H2(Ω)) + h2l‖Ψ‖2L2(I;Hl+1(Ω))) (A.7)

Here we assumed h‖∇ω‖L∞(Q) . 1 and neglected the dependence on U0 and ‖u‖2L∞(Q)

(that is upper bounded by ‖ω(·, 0)‖2L∞(Ω)). The bound on ‖∇(πV Ψ−Ψh)‖ is imme-

diate from (A.2) and the bound on s(uh;ωh, ωh) follows the triangle inequality

s(uh;ωh, ωh) . s(uh;πLω, πLω) + s(uh; eh,ω, eh,ω)

and the bounds (A.4)-(A.5) and (A.6).

Appendix B. Proof of the bound (4.10). First split the velocity field in the
large and the fine scale component,

I2 = (u·∇ϕ1,∆ϕ1)Q∗ = (ū · ∇ϕ1,∆ϕ1)Q∗ + (u′ · ∇ϕ1,∆ϕ1)Q∗ ,

then integrate by parts in the term representing the large scale transport. Recalling
that ϕ1 ∈ L2(I;H2(Ω)) and ū ∈ L∞(I;W 1,∞(Ω)) we have ū · ∇ϕ1 ∈ L2(I;H1

per(Ω)).
Then the following integration by parts is justified

(ū · ∇ϕ1,∆ϕ1)Q∗ = −(∇(ū · ∇ϕ1),∇ϕ1)Q∗ .

Note that by the product rule

(∇(ū · ∇ϕ1),∇ϕ1)Q∗ =

d∑
i=1

((∂xi ū) · ∇ϕ1, ∂xiϕ1)Q∗ +

d∑
i=1

(ū · (∂xi∇ϕ1), ∂xiϕ1)Q∗ .

(B.1)
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For the first sum of the right hand side we have

d∑
i=1

((∂xi ū) · ∇ϕ1, ∂xiϕ1)Q∗ = ((∇S ū)∇ϕ1,∇ϕ1)Q∗

where ∇S denotes the symmetric part of the gradient tensor. Similarly we obtain for
the second part

d∑
i=1

(ū · (∂xi∇ϕ1), ∂xiϕ1)Q∗ =

d∑
i=1

d∑
j=1

(ūj(∂xi∂xjϕ1), ∂xiϕ1)Q∗

=

d∑
i=1

d∑
j=1

(ūj(∂xj∂xiϕ1), ∂xiϕ1)Q∗ =

d∑
i=1

(ū · ∇∂xiϕ1, ∂xiϕ1)Q∗ . (B.2)

By the divergence theorem we then have

d∑
i=1

(ū · ∇∂xiϕ1, ∂xiϕ1)Q∗ = −1

2

d∑
i=1

(∇ · ū ∂xiϕ1, ∂xiϕ1)Q∗ .

We conclude that, with I2×2 denoting the identity matrix,

(ū · ∇ϕ1,∆ϕ1)Q∗ = ((−∇S ū+
1

2
∇ · ū I2×2)∇ϕ1,∇ϕ1)Q∗ (B.3)

Observing that

(u′ · ∇ϕ1,∆ϕ1)Q∗ ≤ ‖ν−1/2u′ · ∇ϕ1‖Q∗‖ν
1
2 ∆ϕ1‖Q∗

≤ 1

2
‖ν−1/2u′ · ∇ϕ1‖2Q∗ +

1

2
‖ν 1

2 ∆ϕ1‖2Q∗ (B.4)

we have,

I2 ≤
∫
Q∗

(Λ(ū, u′, ν)∇ϕ1)T·∇ϕ1 dxdt+
1

2
‖ν 1

2 ∆ϕ1‖2Q∗ ,

where

Λ(ū, u′, ν) := −∇S ū+
1

2
∇ · ū I2×2 +

1

2
u′Tu′ν−1.
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