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Abstract

A novel approach is demonstrated to approximate the effects of complex urban inter-
ference on the wind-induced surface pressure of tall buildings. This is achieved by decom-
position of the domain into two components: the obstruction model (OM) of the static
large-scale urban context, for which a single computational fluid dynamics (CFD) simula-
tion is run; and the principal model (PM) of the isolated tall building under design, for
which repeatable reduced-order model (ROM) predictions can be made. The ROM is gen-
erated with an artificial neural network (ANN), using a set of feature vectors comprising
an input of local shape descriptors and a range of wind speeds from a training geometry,
and an output response of pressure. For testing, the OM CFD simulation provides the
flow boundary condition wind speeds to the PM ROM prediction. The result is vertex-
resolution surface pressure data for the PM mesh, intended for use within generative design
exploration and optimisation. It is found that the mean absolute prediction error is around
5.0% (σ:7.8%) with an on-line process time of 390s, 27-times faster than conventional CFD
simulation; considering full process time, only 3.2 design iterations are required for the ROM
time to match CFD. Existing work in the literature focuses solely on creating generalised
rules relating global configuration parameters and a global interference factor (IF). The
work presented here is therefore a significantly alternative approach, with the advantages
of increased geometric flexibility, output resolution, speed, and accuracy.

1 Introduction

In the context of wind simulation for tall buildings, meaningful results can only be achieved
through an appropriate application of boundary conditions. One example is the effect of the
surrounding environment on the wind field around a chosen building. In practice, the difference
between flow behaviour with and without such context, termed ‘wind interference,’ can have a
significant effect on predictions.

Computational fluid dynamics (CFD) analysis in architectural practice typically involves
response times that are obstructive to the fast iterations of contemporary generative design.
In this parametric paradigm, architects can easily generate immense numbers of alternative
scenarios but are then faced with the time-consuming task of evaluation and selection. The
assessment of isolated tall buildings in itself is an intensive task, which is exacerbated when
extending the scope to include context. A coarser resolution is required due to the larger
domain size and computational restrictions, therefore slower simulations means fewer options
can be evaluated and optimisation is infeasible.

Previous work [1] demonstrated the speed and accuracy of a reduced-order model (ROM)
based on the use of a geometric feature vector (P{z,n,nσr,u}). The objective, as here, is to
match the rapid generation of design alternatives with accurate analysis of equal speed. The
method was applied to the prediction of wind-induced surface pressure on isolated tall buildings,
and aimed at parametric CAD tools such as GenerativeComponents. The ROM was generated
with an artificial neural network (ANN) trained on a set of procedural tall building models which
are evaluated with steady, time-averaged RANS (Reynolds-Averaged Navier-Stokes) CFD. A
limitation of this previous work however was the exclusion of surrounding context; that is, the
predictions were in isolation with unrealistic boundary conditions.

In our work, their problem definition and feature vector is extended to include local fluid
properties (P{v,n,nσr,u}) in order to support complex urban scenarios. For the training set, vS
is derived as the vertex’s upstream wind speed from a set of principal models (PMs, the isolated
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design geometry) evaluated under a range of wind speeds; whereas for the test set, vT is derived
from the vertex’s position in the field of the obstruction model (OM, the context geometry
without the design). This equates to a superimposition or combination of a large-scale, one-off
contextual CFD simulation and a small-scale, repeatable design ROM prediction.

Many attempts have been made to approximate or generalise wind interference, i.e. the
effect of multiple buildings in the domain (Tables 1 and 2). However, all have relied on a top-
down problem definition in relating the position of identical surrounding building cuboids with
a global Interference Factor (IF) for the design building. Significant improvement can be made
here by: (i) increasing the geometric complexity of both the context and design models; and (ii)
increasing output resolution from a single global factor to the vertex-level.

In this paper, a background review is initially presented to identify existing limitations,
followed by the proposed methodology. This is then demonstrated for a realistically complex
design case along with parametric sensitivity analyses on the training set size, number of required
training simulations, and location of the test wind speed; leading to a discussion on the speed,
accuracy, and limitations of the method.

1.1 Contribution

The primary aim of this work is to test the scalability of the ROM to cases with complex urban
interference by extending the shape-based feature vector to include local wind speed. This
work is therefore a development on the methodology and results of [1, 2]. Predictions of the
isolated tall buildings are inadequate when considering the significant effects that dense urban
environments can have on the wind-induced surface pressure. Following this, existing methods
found in the literature to include interference are both limiting and not amenable to the basic
ROM methodology (§3.2). The difference in approaches is fundamental: existing work focuses
on explicitly describing the OM, PM, and their relation to one another with global parameters;
our approach describes the PM through local shape features and the effect of the OM implicitly
through local wind speeds.

2 Literature Review

Our work investigates the design of tall buildings, particularly with respect to the use of gen-
erative CAD tools. In conjunction with these tools, computational analysis can be used for
guidance, exploration and optimisation of an increasingly broad selection of potential designs.
The review covers analysis for generative design and the time-accuracy tradeoffs inherently
involved, approaches to resolving this problem through solver (CFD) and solution (model re-
duction) approximation, and finally sensitivity analyses and generalisation of wind interference.

2.1 Performance-Based Generative Design

In current generative design practice, enabled by the ubiquity of computation and advances in
computer aided design, integrating performance behaviours into generative models has entered
the foreground [3]. Examples can be seen in the use of structural, energy and thermal, mate-
riality, fabrication, and air movement (either internally for comfort and indoor air quality; or
externally for structural or facade aerodynamics, pedestrian comfort, or pollution dispersal).

Air movement, predicted through CFD, suffers the most from restrictive response times,
predominantly because of the historical focus on accuracy rather than speed (due to low-tolerance
high-risk scenarios in aerospace engineering). Arguably, the margins for acceptable error are
more tolerant in building design, meaning that the simulation accuracy requirements can be
relaxed or traded off for speed improvements (particularly at early design stages).

In these early stages of light-weight (fast and less-accurate) performance feedback, there can
be more allowance for design exploration and optimisation. This is supported by the idea of
speed-accuracy trade-offs (SATs) [4], which suggests that for low-risk problems, it is often better
to make faster, less accurate decisions. In other words, in the scope of the larger problem of
building design, it is better to have a broader perspective on the performance variability rather
than an extremely accurate but narrow perspective on fewer cases.
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2.2 Time-Accuracy Tradeoffs

CFD simulation can be one of the most intensive and time-consuming stages in the assessment
of building performance. Difficulty therefore typically arises in guidance for early project stage
decisions due to the slow feedback from conventional CFD approaches. Paradoxically, although
the simulations are most valuable at early stages, the slow-and-accurate CFD simulation is
better suited to later stages where the design scope is more constrained. This leads to the
fundamentally opposing requirements of a fast-yet-accurate tool.

It is therefore prudent to consider compromises in the speed-accuracy trade-off during these
early stages; that is, by sacrificing accuracy for speed, so that more design options can be
explored. This ongoing problem was recognised over two decades ago by [5], as the need for
both speed and simulation accuracy to meets the demands of early design stages. They generate
a range of reduced-order models of a combustion engine simulation, with varying accuracy and
speed that can be used throughout the design process. Their solution is posed as a Pareto front
of non-dominated solutions, rather than a simpler trade-off curve based on biological decision
making as suggested by [4].

Approximation of some description is key to this relationship between time and accuracy. An
ideal approximation of reality can replicate it instantly with no error, at least for the variables of
interest. In our work, the variable of interest is wind-induced surface pressure. This in itself is a
product of a number of field variables which can effectively be discarded, so long as the pressure
is approximated well. This is the fundamental premise of modelling, of which approximation is
a like-term, and of which two distinct approaches will now be introduced.

2.3 Solver Approximation

Most approaches towards CFD approximation focus on simplification of the solver itself. For
instance: simplified meshes (spatial discretisation); the use of lower-order equations; or the
treatment of turbulence through modelling. These methods can be classed as type-one, solver
approximation (Figure 1). For instance, RANS (Reynolds-Averaged Navier-Stokes), LES (Large
Eddy Simulation), and DNS (Direct Numerical Simulation) all treat turbulence with different
numerical approaches, i.e. temporally, spatially, and directly.

Figure 1: CFD solver approximation taxonomy.

Another example is the ‘Stable Fluids’ fast fluid dynamics (FFD) solver developed by [6] for
the computer graphics and games industries, which has subsequently been developed and tested
for architectural applications [7, 8, 9, 10]. Development and application for architectural design
was motivated by three factors: a limited, low Reynolds number validation which suggested it
as suitable for purposes beyond the scope of the validation [11, 12]; the qualitative appearance
of accuracy for turbulent flows; and its remarkable speed compared to traditional CFD methods
like RANS (Reynolds-Averaged Navier-Stokes). [11] implemented the FFD with a zero-equation
turbulence model but found that it performed worse since it was not designed or suited to the
FFD approach. It should be noted, however, that with a lack of turbulence model, the solver
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relies on continuous interaction (such as game character movement) to compensate for numerical
dissipation.

The general benefit of solver over solution approximation is the availability of full fluid field
data, since this is discarded with the latter. Although currently with the FFD, production of
surface data is also difficult due to the structured mesh approximation (voxelisation) which gives
a poor geometric representation. Improving the FFD mesh is possible, and would significantly
increase accuracy, but at the cost of its attractive real-time speed.

2.4 Solution Approximation

Another possible approach to this problem, type-two, is solution approximation. CFD originated
in aeronautics and astronautics, as such there is a large quantity of work directed towards
modelling and optimisation of aerofoils, fuselages, and turbine blades. An optimisation routine
will often generate large data sets of simulation data, from which knowledge of the problem
can be extracted. The following fall into the greater category of supervised machine learning
approaches where the relationship between an input feature vector extracted from some geometry
and the ground truth data output from full CFD simulation is learnt.

In one such case, a large model set of turbine blades is used with a decision tree to analyse the
relationship between point deformation of models and their change in surface pressure [13, 14].
Areas of high sensitivity can then be mapped onto a pre-defined base geometry and used to focus
subsequent analysis. [15] extend this work further to incorporate an evolutionary optimisation
process, so as to use the information extracted from previous cases to create non-random initial
populations of solutions and to guide the evolution.

Analyses that are potentially obstructive to the design process may involve partial differential
equations (PDEs), such as the Navier-Stokes equations of fluid flow and the Maxwell equations
in electromagnetism [16]. Whilst these methods give high-accuracy results, they are computa-
tionally expensive and cannot be computed in real-time. As a result, a design process using
high-accuracy techniques has inherently slow response times and loses any desired interactivity.

Significant efforts have been made to reduce the complexity of these systems in order to make
them interactive; this is generally referred to as model reduction. Reduced-order models (ROMs)
approximate representations of system behaviours, namely for computational simulations with
slow response times; with the aim to create a lower-dimensional system model whilst retaining
predictive fidelity [17, 18].

The distinction between solver and solution approximation is shown in Figure 2. Solver
approximation (Figure 2a), i.e. the various approaches to CFD simulation, have boundary
conditions (X) and geometry as input, and direct field (Z) and derived surface (Y) simulation
outputs. Typical reduced-order models (Figure 2b) act as approximations between boundary
conditions (X) and a key output of interest (Y). In our case however (Figure 2c), we alter this
to create a model between geometry input and Y.

(a) Simulation (b) Typical ROM (c) Proposed ROM

Figure 2: Reduced-order model schematic.

[19] use spatial and behavioural parameters as input feature vectors to a radial basis func-
tion (RBF). The RBF is used to interpolate and merge CFD and wind-tunnel data on pres-
sure coefficient values (lift and drag) for aerofoil analysis. They use an input feature vector
Cp{x, y, z, a,M,Re}: where x, y, z is the spatial position; a the angle of attack; M the Mach
number; and Re the Reynolds number.

Whilst this method proved successful for linking behavioural characteristics (a, M , and Re)
to data sources (CFD and wind-tunnel), it is limited to a single geometry, thus the use of
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explicit spatial positions (x, y, and z). For cases of differing geometry between training and
testing, spatial positions become non-unique and can therefore not be used within the feature
vector. This necessitates the use of either explicit global design parameters or implicit local
shape description.

Using spatial positions (or mesh node numbers) for a feature vector is also proposed by [20].
In this case, an ANN is used to predict post-processed CFD data for rapid visualisation and
interpolation of boundary conditions with an augmented reality user display system. The input
feature vector, X, and output response, Y, are defined as: X{n, S, P},Y{T, V }, where T is the
air temperature and V is the air speed at a node, n is the mesh node number (1224 nodes in the
cubic room), S is the supply temperature, and P is the supply pressure. Again the proposal is
strongly limited to not only a single geometry but to a single mesh by the use of spatial positions
or node numbers corresponding consistently with fixed locations. The limitation again is that
for differing training/test geometry the positions are non-unique.

[1] developed the ROM feature vector using P{z,n,nσr,u} for tall building surface pressure
prediction. Predictions are made through training an ANN on these local shape features ex-
tracted from a set of procedural tall building models evaluated with RANS. The separate test
set of 10 models is a selection of existing tall building models (Figure 3), showing results of a
mean absolute error of between 1.994 and 4.440% (σ:2.096 to 5.088%), and an on-line response
time of between 14.720 and 809.983s.

Figure 3: ROM test model prediction errors, Y ′-Y [%]: (a) The Shard; (b) Willis Tower; (c)
Taipei 101; (d) Shanghai World Financial Centre; (e) Exchange Place. [1]

Existing work on extracting features from the fluid field is primarily focused on knowl-
edge extraction or data mining from large sets. [21] review a number of applications such
as flow topology classification, vortex identification and tracking, shock wave detection, and
separation/attachment detection. Identification of flow characteristics (vortex cores, separa-
tion/attachment, and shock waves) can be ‘mined’ during a CFD simulation [22]. In extremely
high resolution problems (up to 300 million grid-point transonic turbofan simulation with RANS)
it can often take weeks or months for a single run to converge on a stable result. Therefore
employing feature detection during the simulation can give insight into the development and
stability of the actual fluid structure rather than physical properties of the simulation (e.g. mass
and momentum residuals). This results in considerable time-savings if features of interest can
be observed and tracked directly, potentially allowing the user to cut short the simulation when
they are confident that the flow is stable enough for the accuracy requirements of the problem.

2.5 Wind Interference

Interference refers to the positive or negative effect that nearby buildings may have upon the
wind behaviour of one another. Within an urban situation this is very common, and since the
effects can be significant it is necessary to consider the context within the simulation; that is,
independently designed buildings can not be treated in isolation.

A common misconception is that interference always reduces wind loads in comparison to
the isolated case. Whilst this may be true for a uniformed array of similar buildings in close
proximity, wind loads can be increased in the more complex, realistic case. The key factors in
determining the effects of interference are the size, shape, and configuration of the buildings
with respect to the direction of flow. The effects have been shown to be as great as up to 46%
under-prediction and 525% over-prediction from regulatory loads on simple prismatic buildings
[23]. An over-prediction of wind pressure is less dangerous than an under-prediction, since the

5



latter may cause discomfort or safety issues. [24] present a thorough review of the full past and
present state of research in interference. A summary of typical studies can be found in Table 1.

Within the paradigm of such global parametric analysis, simplifications of both the problem
and the solution are necessary. For all the cases in Table 1, simple cuboids are used with typical
variables such as aspect ratio and position configuration; in other words, translating the objects
over the two-dimensional horizontal plane. These studies analysed the effects of a small number
of adjacent structures, leading to the development of the Interference Factor (IF). This is a ratio
between the wind loads with and without the interference from adjacent structures. No such
studies, however, have been undertaken which consider realistically complex shapes or contexts
since they are typically esoteric and difficult to generalise.

Table 1: Summary of existing interference global parameter sensitivity studies.

No. Evaluation method O. SD. AR. C. α Source

2 WT •X,Y • 0.14 [25]
2 WT •X,Y • - [26]
2 WT •X,Y • 0.14 [27]
2 WT •X,Y • 0.14 [28]
2 WT •X,Y • 0.14 [29]
2 WT •X,Y • 0.14 [30]
2 WT • •X,Y •Z 0.19 [31]
2 WT + CFD (RNG k-ε) • 0.16 [32]
2 WT •X,Y •X,Y 0.14 [30]
2 & 3 WT •X,Y •X,Z 0.16 [33],

[34]
5 WT • • • • [35]
5 WT • •X,Y 0.15 [36]

Multi. CFD (RNG k-ε) • • 0.22 [37]

• varied in study; - no data; WT wind-tunnel; No. Number of Study Buildings; O. Orientation; SD. Sepa-
ration Distance; AR. Aspect Ratio; C. Configuration; α Wind profile exponent; X is direction perpendicular
to flow; Y stream-wise; and Z vertical.

2.6 Interference Approximation

In a few cases generalisation, or regression, has been attempted (Table 2) with the IF used as
output response and basic scenario parameters as input features.

Table 2: Summary of existing interference global parameter generalisation studies.

No. Evaluation / O. SD. AR. C. α Source
Regression method

2 WT / Polynomial •X,Y • 0.14 [38]
2 WT / RBF •X • • [39]
2 WT / RBF •X,Y [40]
2 WT / RBF • •X,Y • • [38]
2 WT / RBF • • • [41]

No. Number of Study Buildings; O. Orientation; SD. Separation Distance; AR. Aspect Ratio; C. Configu-
ration; α Wind profile exponent; X is direction perpendicular to flow; Y stream-wise; and Z vertical.

In the first case by [38], regression curves are fitted with either second-, third-, or fourth-
order polynomials; whilst in the remaining four studies a radial basis function (RBF) ANN
was used. In all five cases, the IF was collected from new or existing wind-tunnel data. The
common limitations of all these studies are the simplistic geometries (cuboids of a single height),
basic configurations (typically two or three buildings), and lack of output data (only a single
performance metric: the IF, rather than the varied surface pressure distribution). It should be
noted that in every case the studies were constrained to a limited number of cuboids, a significant
simplification in attempting to create generalised interference rules.

3 Methodology

The approach here is to combine: i) a large-scale CFD simulation of an urban context, the
obstruction model (OM), which remains static throughout the design process and can therefore
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be simulated only once; and ii) a small-scale ROM prediction of an isolated tall building, the
principal model (PM), which can be iteratively changed through generative design.

Considerable time can be saved if it can be demonstrated that a CFD simulation can effec-
tively be used for boundary conditions to a ROM. The clear advantage is that the full OM does
not need to be re-run with every change of PM.

A realistic OM of the dense City district in London is used (Figure 4a), along with a realistic
design PM (Figure 4b). These are put together for the full validation model, OM+PM (Figure
4c). Note that the geometry in Figure 4a also shows the level of detail typically found from
source, and Figure 4c shows the same geometry after simplification and meshing. The geometry
intends to replicate a scenario that would be found in practice. The design model (Figure 4b)
is arbitrary, but is based on prior models generated at competition, massing, or form-finding
project stages within practice. The design model has a height of 310m (Z-axis), a cross-wind (X-
axis) width of 55.4m, and an along-wind (Y -axis) depth of 41.8m; the aspect ratio (width:height)
is therefore roughly 1:6. In comparison, the upstream Swiss Re is 180m and the downstream
Tower 42 is 183m.

(a) OM (b) PM (c) OM+PM

Figure 4: Components of the principal model (PM) and obstruction model (OM).

3.1 Simulation Methodology

CFX 13.0 [42] is used for the steady-state Reynolds-Averaged Navier-Stokes (RANS) simula-
tions. Due to the wind speed, and the complexity and scale of the geometry, flow separation
occurs, as well as the Reynolds number being relatively high, therefore the flow is turbulent;
as such, a k-ε turbulence model was used. Typically the models are meshed with roughly an
equal number of cells (up to the maximum available computational resources), of around four
million elements. The PM simulations, for the training set, therefore have a finer resolution than
the OM. The geometry is created in GenerativeComponents [43]. Process times are based on a
2.66GHz i7 quadcore, 4GB RAM.

The CFD simulation domains and significant dimensions are given for the OM and PM in
Figure 5. For the ground, a no slip smooth wall is assigned (i.e. fluid velocity at wall boundary
is zero); for the sides and top parallel to the flow, a free slip wall (i.e. zero shear stress from wall
friction); and for the outlet, a zero relative pressure opening. For the inlet, the wind profile is
applied as described below, with a medium intensity turbulence and eddy viscosity ratio [44].

Basic simulation parameters are: high-resolution advection and turbulence numerics; isother-
mal fluid at 25◦C; a scalable wall function; and a convergence residual target of 1.0e−6 RMS.
The following meshing parameters are used: an unstructured tetrahedral domain mesh, with
patch independence; a boundary surface element size of 5m; a model surface minimum size of
0.20m and maximum face size 0.25m; for prismatic expansion, a growth rate of 1.2, a transition
ratio of 0.77, and a maximum of 3 layers. The wind direction is shown in Figure 6, where the
flow streamlines are visualised for both OM (left) and OM+PM (right). Note that, unlike for
an isolated building where the wind direction can be easily changed by rotating the model, now
with the contextual OM the two are independent of one another.

In the test case (the OM simulation), the wind speed is applied at an upstream inlet with a
reference speed (vr) of 10m · s−1 at a reference height (zr) of 10m. The most commonly used
distribution of wind speed with height is the ‘power-law’ expression:

vx = vr · (zx/zr)α (1)
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Figure 5: Simulation domain sizes: (left) OM; (right) PM.

The exponent α is an empirically derived coefficient that is dependent on the stability of the
atmosphere. For neutral stability conditions it is approximately 0.143, and is appropriate for
open-surroundings such as open water or landscape [45]. In the training models a constant
vertical wind profile is used, albeit with varying speeds, so as to generate a range of upstream
wind speeds across the simulated training set for every vertex, i.e. vx = vr.

Figure 6: CFD flow field of (a) OM for testing and (b) OM+PM for validation.

A transient large eddy simulation (LES) could alternatively be used instead of RANS to
achieve more accurate and time-dependent peak pressures. However, due to time and resource
limitations it was not possible to include a comparison in this study.

3.2 Reduced-Order Model Generation

For a training set, S, consisting of vertex feature vectors and simulated pressure extracted from
the CFD, the ANN approximates the function fANN : X → P where X is the vertex feature
vector and P is the vertex pressure. X is defined as:

X{v,n,nσ1−5,u} (2)

where nx,y,z are the vertex normal components (Figure 7a); nσ1−5
x,y,z are the vertex-ring (one

through five) neighbourhood curvature (non-absolute) standard deviation components (Figure
7b); and ux,y,z are the normalised relative vertex position within the model limits (Figure 7c).
For training, v=vS , simply the inlet wind speed of the training simulation which is constant
with height, i.e. no profile. For testing however, this is replaced with v=vT , the wind speed at
the vertex’s transformed position in the OM fluid field.

This is essentially the same as in previous work [1], except that previously the vertex height
z was used instead of the wind speed v. This was acceptable for interference-free predictions
since the wind profile was the same in both the training and test models, which is now not the
case.
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(a) n{x, y, z} (b) nσ1−5{x, y, z} (c) T{x, y, z}

Figure 7: Locality of feature definitions.

The transformation of the vertex is either a normal offset (Figure 8a) or a projection upstream
(Figure 8b) from the original location. This results in either vT.offset or vT.upstream, both of
which are tested for different distances d in the following section. For both transformations, d
is increased from 0 at increments of 1m until an obstruction is encountered; 12m for the normal
offset, and 9m for the upstream projection.

(a) Offset (b) Upstream

Figure 8: Test feature wind speed location from OM.

From the training feature set, the reduced-order model is generated by a back-propagation
artificial neural network (ANN), with a hyperbolic tangent sigmoid transfer function [46]:

tansig(x) = 2/(1 + exp(−2 · x))− 1 (3)

The ANN structure X:H:Y is 22:20:1, i.e. 22 input neurons, 20 hidden layer neurons, and 1
output. The sensitivity analysis on the number of neurons in the hidden layer, and the number
of layers, is not included here; although 20 in a single layer has been seen to be sufficient. There
is generally no rule-of-thumb or guidance to define either, necessitating sensitivity analysis for
each problem.

4 Results

The distinction is drawn between the simulation output response Y from CFD, and the prediction
output response Y ′ from the reduced-order model. For a single vertex sample i, the difference
between the Y and Y ′ is used to calculate the sample prediction error, δi:

δi = (Y ′i − Yi)/(Ymax. − Ymin.) (4)

The descriptive statistics used for reporting the errors throughout are:
There are two types of test used here: sample-based (Figure 9a) is the training error, and

model-based (Figure 9b) is the validation error. In the sample-based assessment, test data set
T of size m and training data set S of size n are drawn from the same set of available data D,
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δmin. real-valued minimum of the error range [%]
δmax. real-valued maximum of the error range [%]

|δ| mean of the absolute error range [%] (|δ| 6= ¯|δ|)
σ|δ| standard deviation of the absolute error range [%] (σ|δ| 6= σδ)

meaning that m = D − n. Both T and S are randomised in this case, and are used to monitor
error convergence during the ANN training. For model-based tests, a completely different test
set is used so that T and S are independently generated. In this case, the procedural geometry is
simply the single PM model, simulated under a range of inlet wind speeds; and the test geometry
is the OM.

However, the study is focused on the difference between the wind speed component in the
training and test features. The sample-based test here, more precisely, is purely composed of
data from the training simulation; whereas the model-based test derives its data from the OM
simulation.
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Figure 9: Testing of sample- and model-based data sets.

Whilst the descriptive statistics for the sample- and model-based accuracy are a good in-
dicator of the ROM’s performance, a qualitative visual comparison of simulated and predicted
surface pressure is also included at the end.

4.1 Training Set Size (n)

Sample-based errors are given at the converged training set size (Figure 10) of n=10000. The
test set size m, being the full data set D minus the training set n, is therefore 210000− 10000 =
200000. These are randomly selected for each training run, which is repeated 20 times. The
individual runs are shown as grey crosses, with the black lines showing the limits and the blue line
the mean over the 20 re-runs. The training set size is increased incrementally, by an increment of
100 from 100 to 1000, and an increment of 500 from 1000 to 10000. The converged sample-based
errors are: δmin. = -51.906%, δmax. = 40.115%, |δ| = 1.217%, and σ|δ| = 1.756%.
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(b) Maximum error, δmax.

4.2 Training Set Wind Speed (vS)

Varying the increments of inlet wind speed in the training set simulations has an impact on
the time required for initially generating the ROM. The range of wind speeds is kept constant,
between 1 and 15m·s−1, and the increments varied between 1, 2, 7, and 14m·s−1. The difference
in error between an increment of 1 and 2m · s−1 is minimal, yet the time saving is substantial
with nearly half the number of simulations required. In fact, even with an increment of 7m · s−1
the difference in error is still minimal, but with a fifth of the time required for generating training
data.
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(c) Standard deviation absolute error, σ|δ|
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Figure 10: Sample-based training error convergence.

Table 3: Error results summary for vS sensitivity analysis: model-based.

Inc. vS [m · s−1] No. Models D δmin. δmax. |δ| σ|δ|
1 {1,2,3,...,15} 15 210000 -57.435 30.801 5.082 7.793
2 {1,3,5,...,15} 8 112000 -66.017 29.099 5.055 7.699
7 {1,8,15} 3 42000 -55.179 28.301 5.673 8.122
14 {1,15} 2 28000 -65.854 25.884 9.995 10.162

Figure 11 shows the probability density distribution of the wind speeds in the test data set
from the OM with an offset of 0m, i.e. no transformation. The probability density distribution
uses a smoothing kernel with a normal distribution and a width of 0.02m · s−1.

A peak (about 46%) at 11.2m · s−1 is clear due to the inlet wind profile reference speed of
10m ·s−1 at a reference height of 10m. Further work should establish a methodology for robustly
sampling wind speeds: that is, a training set that fits the above distribution would be optimal
for this case, but not for another case.
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Figure 11: Test set wind speed probability distribution at PM.

4.3 Test Set Wind Speed Location (vT.offset vs. vT.upstream)

Two transformation methods, normal offset and upstream projection, are tested for varying
distances d (Figure 8). The geometric transformation is applied to the PM mesh, positioned in
the OM field; from which the wind speeds for the test feature vector, vT.offset or vT.upstream,
are calculated.

In fact, the prediction errors in Table 4 for both transformation methods with a varying
d, suggest they are relatively invariant to the test feature wind speed location. For the offset
there is a standard deviation over the range of absolute mean errors of only 0.024%, and only
0.014% for the upstream. Figures 12 and 13 plot the mean absolute (left) and standard deviation
absolute (right) errors against distance for both the offset and upstream transformations. The
individual runs are shown as grey crosses, with the black lines showing the limits and the blue
line the mean over the 10 re-runs.
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Table 4: Error results summary for test location sensitivity analysis: model-based.

vT.offset vT.upstream
d [m] δmin. δmax. |δ| σ|δ| d [m] δmin. δmax. |δ| σ|δ|

0 -57.435 30.801 5.082 7.793 0 -57.711 30.793 5.240 7.934
1 -57.404 30.807 5.079 7.789 1 -57.796 30.793 5.232 7.942
2 -57.386 30.811 5.078 7.786 2 -57.744 30.794 5.221 7.946
3 -57.363 30.814 5.077 7.783 3 -57.688 30.794 5.209 7.952
4 -57.342 30.817 5.075 7.779 4 -57.653 30.795 5.203 7.965
5 -57.323 30.819 5.070 7.775 5 -57.669 30.795 5.201 7.981
6 -57.304 30.819 5.065 7.775 6 -57.686 30.795 5.201 7.997
7 -57.286 30.818 5.057 7.779 7 -57.705 30.796 5.204 8.012
8 -57.303 30.813 5.047 7.786 8 -57.747 30.796 5.209 8.027
9 -57.335 30.806 5.038 7.794 9 -57.828 30.796 5.216 8.045
10 -57.386 30.794 5.028 7.805
11 -57.427 30.773 5.020 7.817
12 -57.425 30.772 5.014 7.828
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(b) Standard deviation error, σ|δ|

Figure 12: Test wind speed location: vT.offset distance vs. error.
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Figure 13: Test wind speed location: vT.upstream distance vs. error.

With the normal offset transformation, the mean absolute error decreases as the offset dis-
tance increases so the minimum is at the greatest distance, d=12m. For the upstream projection
transformation, the mean absolute error decreases with distance until d=5 or 6m, at which point
it starts to increase again.

As mentioned, the variation of error with distance or transformation method is small so
the optimal location at which to measure the wind speed for the test feature is still unclear.
However, it is likely to be esoteric for each problem or OM and should be studied further.

4.4 Model-Based Pressure Distribution

The following model-based results use n=10000, a training wind speed increment of 1m·s−1, and
no transformation on the test feature wind speed location. The model-based errors are: δmin. =
-57.435%, δmax. = 30.801%, |δ| = 5.082%, and σ|δ| = 7.793%. Figures 14 and 15 visualise the
surface pressures and errors on the PM.

In Figure 14, the top three figures are from an upstream perspective; the bottom three from
downstream. Within each triplet: the left figure is the CFD simulation (Y [Pa]), centre the
ANN prediction (Y ′ [Pa]), and right the difference (δ [%]) between predicted and simulated
pressures. The inlet wind direction is indicated by an arrow on each figure.
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(a) CFD (b) ROM (c) Error

(d) CFD (e) ROM (f) Error

Figure 14: Model-based test: (a-c) upstream; (d-f) downstream side.

(a) CFD (b) ROM (c) Error

Figure 15: Model-based test: plan view.

There is generally good agreement in the spatial distribution of positive and negative pressure
between the simulated and predicted models. Although the localised over-prediction (i.e. |Y ′| >
Y ) of positive and negative pressure values, relative to the simulated values, is apparent in an
exaggeration of the visual results. The probability distribution, or density function, of non-
absolute errors [%] for 10 re-runs (grey) and their mean (black) are shown in Figure 16. A
training set of 10000, an increment of 1m · s−1 in the training set wind speeds, and no test
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feature wind speed location transformation are applied.
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Figure 16: Probability distribution of prediction errors.

A smoothing kernel with a normal distribution and a width of 0.01% is used. The errors fit a
normal distribution, with a peak probability of about 18% that the error will be 1.1%. Towards
the minimum and maximum of the error range (-10 and 10%), the probability is only between
1.5 and 0% respectively.

5 Discussion

These developments represent an alternative approach that is fundamentally different to previous
attempts at interference generalisation found in the literature. The use of local features rather
than global parameters allows for arbitrary complexity in the obstruction model and for vertex
surface pressure visualisation rather than the global interference factor.

Compared to solver approximation techniques, such as the FFD solver, solution approxima-
tion has the benefit of being based on a conventional, higher accuracy CFD solver. As such,
the validity of the basis data can, to a larger extent, be trusted or verified. The comparative
disadvantage is that the FFD can produce field rather than surface data which is useful for
identifying flow patterns, assessing pedestrian comfort, and to gauge the secondary downstream
effects that a new building will have on others.

Three sensitivity analyses were run on the training set size, the training set wind increment,
and the test set wind speed location. The first found that a sample size of 10000 was adequate to
reach error convergence during the ANN training. Secondly, the number of training simulations
can be reduced safely from an increment of 1m·−1 to 2 without much effect on the result, or
even to 7 with still a reasonable effect considering the time saving. And thirdly, the results were
found to be mostly invariant to the test set wind speed location, i.e. the transformation of the
PM in the OM field.

Following these, the final model-based test was visualised to check the predicted pressure
distribution qualitatively against the simulation. Generally, over-prediction can be seen, but
general patterning or distribution of both positive and negative pressure remains intact.

5.1 Process Time Analysis

The feature extraction times are based on a calculation speed of 0.02784s/sample, for n=10000
off-line ROM generation and m=14000 on-line prediction. And the number of PM models in the
training set is 15, although it has been shown that this can be reduced to 8 or even 3 without
significant reduction in accuracy. The PM simulation time is 1517s (28minutes) per model. The
ANN training time, for n=10000, is averaged over 20 runs; the mean time is 38.269s (σ:17.143s).

The model-based prediction times show that, in comparing only on-line processes, the ROM is
27.47-times faster than the conventional CFD method. However, this does not take into account
the full process. By comparing the off-line plus on-line processes for repetition, where x is the
number of design iterations, the CFD time=10709x and the ROM time=389.783x+33151.669
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Table 5: CFD and ROM process times.

Conventional CFD Process Test time [s]
PM + OM simulation Total 10709

Off-line ROM Process Test time [s]
PM simulations (15no.) 22755
OM simulation 10080
Feature extraction 278.4
ANN training 38.269

Total 33151.669

On-line ROM Process Test time [s]
PM feature extraction 389.76
PM prediction 0.023

Total 389.783

(Figure 17). In solving for x, the minimum number of iterations before the full ROM process
time equals the CFD is x=3.21.
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Figure 17: Process time t against number of design iterations x for CFD and ROM.

The point at which the design team should switch from this methodology to conventional
analysis depends upon the exact application and a specific consideration of the balance between
accuracy and speed. Typically this might occur once the number of design alternatives has
been reduced to, or any optimisation procedure suggested, a small enough number to feasibly
manage with CFD or wind-tunnel. It is perhaps naive to suggest an absolute saving in time,
since whatever project time is available will be filled one way or another, but rather that this
fixed amount of time can be used to explore more options to the benefit of the final building.

5.2 Limitations

It is key to stress the primary limitation of this work is the similarity between the training and test
geometry, i.e. the training model is the same as the PM. The paper is therefore constrained in the
conclusions it can draw without subsequent testing. Further improvements and generalisation
could be made by generating training shape features from a procedural model. This remains to
be tested due to the combinatorial problem of sampling a procedural model under a large range
of wind speeds. For instance, [1] shows that a set of 400 procedural models evaluated with RANS
could be used to make predictions on isolated tall building models. Following that method, the
training set would be up to 400 multiplied by the number of training wind speed iterations, i.e.
3, 8, or 15 simulations per procedural model instance. Although this would require substantial
investment, it is an off-line process which would only be required once.

Further testing on alternative geometries and optimisation of the feature vector and its
calculation will likely improve robustness, accuracy, and speed. The benefits of the ROM also
increase with the cost of the basis simulation, for instance if a more costly RANS or LES is used.
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6 Conclusion

In summary, the methodology and results presented here demonstrate an alternative approach
to urban wind interference approximation for tall building design. The results indicate that
significant improvements in response time (27-times faster when comparing on-line prediction
times with conventional CFD) can be made with a reasonable trade-off in accuracy (mean
absolute errors of around 5.0% σ:7.8%). It should be highlighted that this method is intended for
use in conjunction with existing CFD and wind-tunnel analysis which, at later stages, retain their
role in safe-guarding the final structural safety and performance of a building. For generative
design exploration and optimisation, the current alternatives to including complex interference
in wind simulations are either fast-inaccurate CFD simulations or the application of rules-of-
thumb. The novel method presented in this paper has been demonstrated as a viable alternative
which moves closer to the notional fast-accurate ideal.

Sensitivity analyses suggested that: i) a training set size of n=10000 samples was adequate;
ii) wind speed increments of the training simulations vS can be increased to 2 or even 7m · s−1
without great effect, although it may potentially affect the generalisability to other scenarios;
and iii) the accuracy with the test set wind speed location vT is relative invariant to both offset
or upstream transformation and distance d. Although there remain limitations to our approach
before use in practice, predominantly the applicability to varying PM geometry, we believe that
in conjunction with previous work it represents a significant step towards interactive building
design via reduced-order wind interference modelling.

Acknowledgements

This research was sponsored by the UK Engineering and Physical Sciences Research Council,
Bentley Systems, and PLP Architecture.

References

[1] Samuel Wilkinson, Sean Hanna, Lars Hesselgren, and Volker Mueller. Inductive Aerody-
namics. In Proceedings of eCAADe 2013: Computation and Performance, Delft, NL., 2013.

[2] Samuel Wilkinson, Gwyneth Bradbury, and Sean Hanna. Approximating Urban Wind
Interference. In Proceedings of SimAUD SCS SpringSim’14, number Malkawi, Tampa, FL.,
2014.

[3] Ali M. Malkawi. Developments in Environmental Performance Simulation. Automation in
Construction, 13(4):437–445, 2004.

[4] Lars Chittka, Peter Skorupski, and Nigel E. Raine. Speed-Accuracy Tradeoffs in Animal
Decision Making. Trends in Ecology & Evolution, 24(7):400–407, 2009.

[5] S. C.-Y. Lu, D. K. Tcheng, and S. Yerramareddy. Integration of Simulation, Learning and
Optimization to Support Engineering Design. Annals of the CIRP, 40(1):143–146, 1991.

[6] Jos Stam. Stable Fluids. Technical report, Alias-Wavefront, Seattle, 1999.

[7] Angelos Chronis, Martha Tsigkari, Adam Davis, and Francis Aish. Design Systems, Ecology
and Time. In Proceedings of ACADIA12: Synthetic Digital Ecologies, San Francisco, CA,
2012.

[8] Angelos Chronis, Alasdair Turner, and Martha Tsigkari. Generative Fluid Dynamics: In-
tegration of Fast Fluid Dynamics and Genetic Algorithms for Wind Loading Optimization
of a Free Form Surface. In Proceedings of SimAUD SCS SpringSim’11, pages 79–86, 2011.

[9] Chrysanthi Sandy Karagkouni, Ava Fatah, Martha Tsigkari, and Angelos Chronis. Façade
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