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Modifications undertaken in response to the recommendations of the 

reviewers re article:  

Cornerstone Mathematics: Designing Digital Technology for Teacher 

Adaptation and Scaling    C. Hoyles, R. Noss, P. Vahey,  & J. Roschelle 

 
Thank you and the reviewers for the careful and perceptive remarks.  
Responding to their comments has provoked us to take another long and 
careful look at the paper.  We are trying to be ambitious in this publication: we 
report design research, which was, on the one hand derived from a prior 
project in another country thus raising issues and dilemmas, while on the 
other hand was intended as a basis for scaling, something which is itself a 
challenge for mathematics innovation in general and maybe even more so for 
innovation embedding technology.  
 
We have made both of these points more clearly in the paper, and, we hope 
you will find the paper improved and satisfactory now for publication in ZDM. 
In particular we have:  
 

1. Re-written the abstract and indeed much of the paper (and modified its 
structure) to include clarifying the relationship of the UK design 
research reported to the prior US work and how one of its aims is to 
leverage the technological infrastructure to achieve change at scale 
(this was at least partly provoked by the comments of reviewer 2 last 
two sentences). 

2. Reframed the quantitative results from the United States so that the 
point of reporting on the US study is more clear: to ensure that the 
changes made to the materials and CPD did not reduce the amount of 
student learning found in the US 

3. Made the idea of teachers’ instrumentalisation more central to the 
overall argument 

4. More fully described our data and analysis methods, and adjusted the 
order of the paper to include 

 details of the approach taken and samples in both the original US 
study  and the design research in England  

 specific research questions that were investigated using the 
qualitative data 

5. Clarified how we derived the qualitative results and included some 
general evaluations rather than only positive ones  

6. Recast the conclusions and we hope clarifying their warrants as well as 
where they will lead in terms of the scaling of the project 

7. Adjusted the Figure.   
 
 

Please do not hesitate to contact us if you have any additional questions or 
comments. 
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Abstract 

We report the results of a design-based research project in England that embeds digital technology. 

The research followed from two phases in the United States: (1) a design phase that used dynamic 

representations to foster conceptual understanding of hard-to-teach mathematical ideas, and (2) a 

research phase that measured the efficacy of the resulting technology-based curriculum units as 

implemented in Texas schools. The goal of the third phase in England was initially to “scale up” 

the U.S. approach. We determined, however, that the materials had to be re-designed for 

adaptability by English teachers. We report how the features of the innovation—particularly its 

technological infrastructure—could be leveraged, not only to achieve positive learning outcomes, 

but also to lay the foundations for change in pedagogy and learning at scale. We identify an 

emergent framework of design affordances for teacher adaptability that are particularly salient 

when technology is a critical element. 

Keywords 

design-based research; digital technology; dynamic representations; 

professional development 

0 Introduction 

The first two authors have argued that changes in the computational domain open 

up only the potential for change, not actual change in the didactical field (Hoyles 

and Noss, 2003). We cited Kaput (1992), who attributed the continuing 

marginalisation of technology in mathematics education to the complex issues that 

surround its use: 

 Technology requires continually rethinking pedagogical and curricular 

motives and contexts. 

 Classroom-based research is difficult, because exploiting the real power of 

the technology requires such innovative approaches that comparison to a 

traditional class is inappropriate. 

 The practical complications of student access to computers, cost of 

software, and development of curricular materials often prohibit research. 

 Given rapid changes in technology, research is often out-dated by the time 

it is complete.  

Despite substantial developments in theory, and massive changes in technology, 

the core challenge of ‘implementation’ remains: how to ensure that digital 

technology is used at all in mathematics classrooms, and, if it is used, how to 

enhance mathematical thinking rather than simply reiterating current practice or, 

as is sometimes the case, circumventing mathematics altogether. How can 

research inform efforts to embed technology in transformational ways that support 

scalable models of classroom change?  

This paper reports on research undertaken as part of the Cornerstone Mathematics 

(CM) project, a collaboration between researchers in the United States and 

England for a moderately large-scale, design-based implementation project in 
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England. U.S. researchers completed two phases of work before CM came to 

England: (1) design of the core use of dynamic representations in ‘modules’ that 

include curriculum workbooks and teacher professional development; and (2) 

efficacy trials that established causality linking the modules to improved student 

conceptual understanding of challenging mathematics. The goal of the project in 

England was eventually to reach 100 or more schools using the US-developed 

materials and approach. However, the team determined that before going directly 

to scale, a further phase focused on designing materials and processes to support 

teacher adaptation and instrumentalisation was needed. 

As well as presenting results from research focused on these design concerns, we 

also present hypotheses about the key features required for scaling a 

technologically-based innovation in the field of mathematical learning.  

1 Theoretical background 

Sinclair et al.’s (2010) model of the development of digital technologies in 

mathematics education describes a shift in research attention from “Wave 1” with 

an exclusive focus on the relationship between individual learners and 

mathematics, to “Wave 2,” which involves the broader context of learning, the 

teacher, and the curriculum. The authors argue that this trajectory is almost 

inevitable. Any project that seeks to scale demand must, in addition to assessing 

individual students’ interactions with technology and teacher/peers, address the 

curriculum and the teacher’s role in using and deploying the digital technologies. 

Hoyles and Lagrange (2009) provide an overview of these trends.  

Two challenges for the current research were to identify existing or evolving 

theories that (1) provided an adequate underpinning for such a complex, 

intertwined set of components (technology, teachers and students, curricular 

context, materials), and (2) supported the generalisability of research findings. 

Drijvers, et al. (2010), who provide an overview of the theoretical frames used in 

technology-related research in mathematics education, argue that integrative 

frameworks allow for articulating different theoretical perspectives. This paper 

represents a step towards developing such a framework. It takes as its starting 

point the curricular activity system framework described in Roschelle et al. (2010) 

and Vahey et al. (2013). This framework is based on the recognition that an 

instructional activity includes a learning objective, available materials, the 

intended use of tools, and the roles of diverse participants. However, focus on 

such activities is not sufficient. An activity must fit into the structure of those 

classrooms that are expected to engage in the activity. The curricular activity 

systems approach integrates learning requirements, teacher professional 

development (PD), curriculum materials, and technology; the approach recognizes 

that these elements are situated in an educational context that includes people, 

conventions, and policy considerations.  
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We also look to design-based implementation research (Penuel, Fishman, Cheng, 

and Sabelli, 2011), which expands on traditional design of an artefact or 

intervention by developing the capacity for sustained change. Central to our 

scaling approach is building teachers’ capacity as they both strive to adopt the CM 

materials, and participate in adapting and instrumentalising those materials. By 

building teachers’ capacity to use the materials effectively and still maintain the 

core pedagogical approach, we optimise our chances of scaling up to large 

numbers of teachers, classrooms, and students. 

We first provide a brief outline of the U.S. studies that formed the basis for the 

research in England. 

 

2 Preliminary Phases in the United States: the 
SimCalc Intervention 

Over the course of about 6 years, the U.S. team developed integrated technology, 

curriculum, and professional designs to address big ideas in the algebra and pre-

calculus strand of mathematics. The technology design emphasized linked 

dynamic representations such as graphs to motions, tables, and equations (Kaput 

et al. 2007; Vahey et al. 2013; see Figure 1). Many evaluations show, at best, 

small positive effects for technology (Cheung and Slavin, 2011; Dynarski et al., 

2007). However, dynamic representations have been shown to be powerful in 

developing conceptual understanding (Heid and Blume 2008). Consistent with the 

Multimedia Principle (Fletcher and Tobias 2005), those representations can help 

students make important connections between intuitive and formal ideas, and 

between graphical and linguistic understandings. The curriculum modules design 

is based on organizing key mathematical ideas and important mathematical 

practices into integrated paper- and technology-based materials that are 

straightforward to use in classrooms. Within the modules, students solve 

increasingly challenging problems in one content area organized around a high-

interest theme such as ‘Designing Mobile Games’. Teachers focus on the key 

mathematical ideas, valuing conceptual understanding and guiding development 

of mathematical practices. The professional development design emphasizes 

practical ‘mathematical knowledge for teaching’ (Hill et al., 2008)—the 

knowledge teachers need to make sense of and extend their students’ 

mathematical reasoning. This design also emphasizes technological pedagogical 

content knowledge (Mishra and Koehler, 2006), which is the knowledge teachers 

need to teach effectively with technology. Modules emphasize a small set of 

teaching practices (Ball and Forzani, 2009; Hammerness, 2006), with a focus on 

supporting argumentation in the classroom (Kim, 2012). 

This integrated design of technology, curriculum, and PD was formalized as an 

instructional package that could be implemented at scale. Subsequently, a 

randomized controlled trial (RCT) in Texas investigated whether a wide variety of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 

teachers, when provided with appropriate PD and a replacement unit that 

integrated curriculum and software, (the “SimCalc intervention”), could increase 

student learning of important and complex mathematics. In this RCT, teachers 

were randomly assigned to participate in the treatment or the control group. The 

treatment group received the integrated intervention, which began with a 3-day 

teacher PD workshop in which teachers learned to teach using the technology-

based unit. Treatment teachers were then asked to teach the replacement unit in 

place of their usual unit on linear function, and most teachers completed the unit 

in 2-3 weeks. Teachers in the control group received PD on the integration of 

technology into mathematics teaching, but the PD addressed different content. 

Working with five Texas Education Service Centers (the primary support and PD 

providers in Texas), teacher volunteers were recruited whose students reflected 

the regional, ethnic, and socioeconomic diversity of the state. Complete data were 

returned by 56 teachers and 825 students. At intake, the Treatment group (33 

teachers) and the Control group (23 teachers) did not differ in any important way 

(e.g., with respect to teaching experience, ethnicity, gender, mathematical content 

knowledge, or by socioeconomic status as indicated by percent of students eligible 

for free or reduced-price lunch in school). The greater number of teachers in the 

Treatment group was an artefact of teachers’ scheduling conflicts with the 

workshops to which they were assigned. Because teachers were not informed 

about the workshop type until the workshop occurred, the consequences for 

randomization and thus the validity of the experiment were minimal. The attrition 

rate was comparable to other large experiments with educational technology 

(Dynarsky et al., 2007), and no evidence suggested differential attrition, which 

would be the principal threat to validity. 

The primary outcome measure in this study was student learning of core 

mathematical content. The research team employed a bespoke assessment 

instrument. Working with a panel of mathematicians and mathematics education 

experts, the assessment encompassed both simple (M1) and more complex (M2) 

aspects of linear function. The simpler items (M1) were based on those used in 

existing standardised tests in Texas; for example, students were asked to calculate 

using a linear relationship represented in different ways. More complex M2 items 

required comparing multiple rates or finding average rates, and typically the rate 

information was not provided directly; for instance, students had to infer it from 

slopes in graphs. The assessment was administered in a single class period to 

students immediately before and after their linear function unit was taught.  

The analysis of student gain scores from pre-test to post-test showed a large and 

significant main effect, with an effect size of 0.56 (Roschelle et al., 2010). This 

effect was robust across a diverse set of student demographics. Students who used 

the SimCalc materials outperformed students in the control condition regardless of 

gender, ethnicity, teacher-rated prior achievement, and socioeconomic status. This 

finding provides evidence that the use of dynamic representations, when 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

embedded in a set of replacement units designed within a curriculum activity 

system framework, can result in substantial learning gains.  

3 The Cornerstone Mathematics Project 

CM seeks, as did its U.S. predecessor, to exploit the dynamic and multi-

representational potential of digital technology to enhance learners’ engagement 

and understanding of mathematical ideas. CM consists of four units, each focused 

on key mathematical topics in middle school (students aged 11-14 years). Each 

unit embeds activities in a quasi-realistic digital context in which students need to 

use mathematical knowledge to achieve their—and our—goals. This is an 

important design decision, because although mathematics is a high status and 

compulsory subject, students still need to be motivated to think mathematically 

and to do so by tapping into their digital lives and making the work “realistic” 

(e.g., Confrey et al., 2009). 

Unit 1, the focus of the research reported here, concerns piecewise-linear 

functions, with the work in England replicating the SimCalc intervention (see 

Roschelle et al. 2010; Roschelle and Shechtman 2013). However, for success at 

scale in England, two levels of changes were required. For the initial, and simpler, 

level, the mathematical content and language were adjusted to fit the English 

setting. For example, numerous changes in vocabulary had to be made to account 

for differences between U.S. and UK English usage and spelling. Changes were 

also made to conform to local school mathematical conventions (e.g., y=mx+c 

rather than y=mx+b). Third, we sought to align the unit to the English National 

Curriculum, which is statutory and places greater emphasis on ‘mathematical 

processes’.  

This paper focuses on more complex changes. In an RCT, experimenters try to 

hold the ‘inputs’ fixed and attempt to have teachers adopt the materials with high 

fidelity. However, in scaling up, innovators recognize that teachers and schools 

are not identical, and the metaphor of teacher adoption will not suffice. On the 

contrary, it is inevitable that each new classroom, teacher, and school context 

introduces new features that could knock the innovation off course. A key 

challenge, therefore, was to move beyond adoption and design for robustness 

(Roschelle et al., 2008). We did so by encouraging teachers to appreciate the 

goals of the innovation, and to make the innovation their own through a process of 

adaptation and instrumentalisation. Thus the more complex change, and the focus 

of this paper, involved designing the materials to better support this intended 

process.  

We wanted all CM teachers to develop pedagogical and technological confidence 

through PD and supporting their teaching of the unit. We also wanted teachers to 

work together in a mutually supportive community through a blend of face-to-face 

and virtual interaction: the latter is becoming recognised as important for scaling, 

especially when teachers are widely distributed (e.g., Baker-Doyle, 2011). To 
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check that the ways we supported teacher adaptation and instrumentalisation of 

CM Unit 1 did not undercut the effectiveness of the materials (as established 

earlier), we conducted an evaluation of impact that was designed to ensure that 

student learning gains were preserved.  

3.1 From the SimCalc Intervention in the United States to CM Unit 1 in 

England 

CM Unit 1 started from the U.S.-based unit called Designing Cell Phone Games, 

which has been described in prior research (e.g., Roschelle et al., 2010; Vahey, 

Roy & Fueyo, 2013). In this unit’s constructionist design, users learn through 

interaction with and feedback from digital tools that enable them to explore, build, 

and learn (Papert 1980). Constructionism has been the subject of extensive 

research and development and continues to result in innovative ways of designing 

tools and in work with learners worldwide (e.g., Kynigos et al., 2012, Noss & 

Hoyles, submitted: 2013). At the same time, a complementary strand of research 

emphasizes the importance of ‘instrumental genesis’ for both students and 

teachers, with artefacts transformed into ‘instruments’; that is, systems with which 

the user gains fluency and expressive competence (e.g., Drijvers and Trouche, 

2008; and, in the context of SimCalc research, Roschelle et al., 2008). Digital 

technologies not only add new representations (or link old ones), but research has 

increasingly found that digital representations change the epistemological map of 

what it is intended for teaching and learning (Noss and Hoyles, 1996; Kaput and 

Roschelle, 1998).  

CM Unit 1 highlighted the following mathematical concepts: coordinating 

algebraic, graphical, and tabular representations of linear functions; y=mx+c as a 

model of constant velocity motion; the meaning of m and c in the motion context; 

and velocity as speed with direction. All activities were set in the context of using 

mathematics to design computer games for mobile phones, where functions must 

be used to make game characters move in appropriate ways. At the heart of the 

software environment (SimCalc in this Unit) was a simulation, or a ‘journey’, of 

an object that could be tracked in a graph and a table, as well as captured in 

algebraic or narrative form (see Figure 1). Students therefore receive feedback on 

any journey they have constructed by visually ‘seeing it happen’; the mathematics 

plays out in terms of motion and vice versa. Students can control their object’s 

journey by manipulating the position-time graph or its algebraic representation. 

The constructionist key in CM Unit 1 is that students themselves can intervene in 

the ‘system’ by constructing journeys and exploring them alone and with others. 
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Figure 1: The SimCalc system links algebraic expressions, graphs, tables, and narratives through 

the phenomenon of motion 

A first priority for the design research in England was revisiting the style and 

emphasis of the PD needed, not least because middle-school students in England 

are taught by secondary trained mathematics teachers, in contrast to the U.S. 

teachers who were mainly primary (elementary) trained. Teachers in England, and 

particularly subject leaders, expect a degree of autonomy in approaching given 

mathematical topics.  

As a second priority, teacher support in England required a different character. In 

the U.S. efficacy trial, the researchers wanted to control precisely the PD, and thus 

they and PD experts provided it. However, in England, teacher adaptation and 

instrumentalisation were emphasised. For example, at the request of the teachers, 

more group-work was introduced in the PD and teachers orchestrated this 

themselves as a means to share experience and reflections. In addition, PD was 

extended through orchestrated peer interaction among the CM teachers in an 

online community, which was part of the technical national infrastructure 

provided by the National Centre for Excellence in the Teaching of Mathematics 

(NCETM), a nationwide professional learning community for mathematics 

teachers (www.ncetm.org.uk). Through the CM online community, teachers could 

share their experiences, the prompts and probes they had planned or used 

spontaneously, and the activities they designed themselves.  
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3.2 Sample 

The initial sample for CM research consisted of 10 schools, with 2 teachers 

recruited from each school. One school was unable to complete its participation, 

however, because of a fire in the school buildings, and one teacher took maternity 

leave. The final sample comprised 9 schools, 17 teachers and classes, and 429 

students drawn from Years 7 through 9 (students aged 11-14). We were careful to 

ensure that the schools and the classes exhibited a wide diversity of school 

contexts and prior student achievement. Although we can hardly claim that these 

schools were representative of all schools in England, the sample schools had a 

range of: academic strength (as measured by public examination results), student 

intake in terms of socioeconomic status, technology infrastructure, and teachers’ 

experience of mathematics teaching. The school sample included one “public” 

school (an exclusive private school) with a privileged intake, and one state-run 

school whose students were economically disadvantaged and in which English 

was an ‘additional language’ for a high proportion of students. The teachers, too, 

were diverse in their teaching experience, including one new to the profession, 

most with 3-5 years of experience, and some highly experienced mathematics 

subject leaders in their school. Some of the teachers had excellent mathematics 

qualifications and some less so. The 429 students who engaged with Unit 1 were 

distributed across different year groups (according to teacher choice): Year 7: 179 

(42%), Year 8: 227 (53%), Year 9: 23 (5%). 

The intervention as a whole, consisted of 2 days of PD for all teachers, 0.5 day for 

a reflection/feedback session after implementation, and ongoing discussion 

through the online forum. The unit was taught over 2 to 3 weeks (spread over a 

month for the different schools) with students using computers in most lessons (a 

practice that was unusual in mathematics class). The hardware used varied across 

the sample, ranging from desktops in computer labs, through laptops in 

classrooms, to the extensive use of the interactive whiteboard. 

3.3 Data Sources     

The sources of data on the processes and outcomes of the study were collected by 

the following means:  

a) A proforma that a researcher completed in discussion with each school’s main 

contact, generally before a school visit. The proforma was designed to establish a 

baseline ‘context for teaching’, indicating the reasons why staff in these schools 

had chosen to participate in the study, background information about mathematics 

teaching in the school, expectations for the study, and any challenges anticipated.  

b) Lesson observations in one or two participating classes in each of the 9 schools. 

We observed 16 lessons across 9 schools. During each observation, we took notes 

using a semi-structured protocol around the following main themes: 

 Manageability: in particular how teachers orchestrated the lesson 

content and pace 
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 Engagement/behaviour (attitude, engagement and understanding, 

behaviour and interaction)  

 Teaching style/approach (interactions and interventions).  

c) Post-observation interviews with the teacher(s) of the observed class(es) in 9 

schools. The 16 observed teachers in the 9 schools participated in an interview, 

covering the participation of 17 classes (one teacher talked about his own and a 

colleague’s experience). The interviews served to collect relevant information in 

the following categories: the teachers and students observed; preparation for 

teaching the unit; the implementation of the unit; the use of the technology; and 

the impact of the unit on students in terms of their engagement and learning.  

d) Students’ questionnaire responses completed at or towards the end of the unit 

(eight schools completed and returned the responses). Students in the observed 

classes were asked to complete a questionnaire about their views of mathematics 

lessons generally and about CM Unit 1 in particular. Most teachers administered 

the questionnaire to their classes after the day of the observation, close to the end 

of the unit. 

e) Focus-group discussion with a sample of students from nine schools. Teachers 

selected six-eight students for each focus group and were advised to provide a mix 

of students (e.g., of different ability levels or different language backgrounds).  

f) Pre-test and post-test data   Students completed two identical tests to evaluate 

their learning: a pre-test, before the unit was taught, and a post-test, taken at the 

end of the unit. These tests had been used in the Texas study and incorporated 

both M1 and M2 questions.  

Interview and observation schedules were consistently followed, and the 

interviews and focus-group discussions were audio-transcribed. 

4 Results 

We begin with our quantitative results in which the analyses followed that 

undertaken in the U.S. study. This quantitative analysis did not seek to establish 

the efficacy of the intervention; doing so would have required a much more 

expensive and controlled design, such as that previously conducted in the United 

States. Instead, the research question was: ‘Is the pattern of student learning gains 

in England consistent with the pattern of learning gains observed in the United 

States?’ A consistent pattern would reassure the team that the changes to the 

design for the England scale-up were preserving the effectiveness of the materials 

and approach. 

The following sections look at three qualitative research questions:  

1. What changes supported teacher adaptation?  

2. How did teachers come to greater ownership of the materials?  

3. As the approach started to scale up, were teachers engaged in a community 

around it? 
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Finally, we summarize results from an external evaluator. 

4.1 Quantitative Results: Consistent Pattern of Learning Results  

Although we had no comparison group in England, the underlying unit, 

assessment and assessment method used in the Texas RCT was closely followed 

to allow a quasi-experimental comparison with pupils in that study. Pre- and post-

tests for each student generated gain scores that were used for a quantitative 

analysis of learning gains, which were then compared with the Texas student 

results.  

The pre- and post-tests were scored in London by a group of 12 pre-service 

mathematics teachers recruited from the Institute of Education. Using a web-

based data entry and verification form, scorers entered their marks and comments 

online; this procedure allowed instant access to the data while ensuring rigorous 

methods consistent with prior methods used in the United States. All scorers were 

trained on the scoring key and rubrics, and were permitted to begin scoring actual 

assessments only after they had attained a minimal level of gold-standard marking 

of sample assessments. To measure inter-rater reliability during the scoring 

process, 10% of all assessments were scored by a second scorer. The inter-rater 

reliability was found to exceed 90%, well above the acceptable level. 

Using the pre-test as a proxy for equivalence of prior background knowledge, we 

found that the groups in the two studies were similar. The researchers fitted a 

series of hierarchical linear models (HLM: Raudenbush and Bryk, 2002) to 

examine statistical equivalence at pre-test. These analyses showed no statistically 

significant differences for the CM and U.S. samples for the total score [β = –0.64, 

p = 0.69], M1 subscale [β = –0.50, p = 0.52], or M2 subscale [β = –0.15, p = 

0.86]. The variation among pupil pre-test scores in both groups was also sufficient 

to rule out floor effects as a possible explanation for the apparent equivalence of 

prior knowledge. In a non-significant trend, CM pupils had slightly lower pre-test 

scores, which may be attributable to age differences. The determination that the 

groups were equivalent at pre-test is important because in a quasi-experimental 

comparison such as this, the primary threat to internal validity is the possibility of 

non-equivalence of groups at baseline. 

Figure 2 shows the learning gains for pupils in the Texas Control group (who did 

not use the materials), the Texas Intervention group (who did use the materials), 

and the CM pupils in England. The dark part of the bars shows learning for M1, 

‘simple’ linear functions, and the light part of the bars shows learning for M2, 

‘complex’ linear functions. The learning gains for CM pupils were similar to the 

learning gains for pupils in the Texas Intervention group, and were significantly 

higher than for pupils in the Texas Control group.  

These data show that the CM approach successfully met the goal of increasing 

pupil learning of important mathematics in England. Further analyses indicated 

that the materials were equally effective for students with different levels of prior 
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mathematics achievement: schools with higher prior General Certificate of 

Secondary Education (GCSE) scores performed higher on pre-test, which was to 

be expected; however, learning gains were not correlated with school 

achievement level, indicating that the materials were effective for pupils from a 

variety of school contexts.  

 

Figure 2 Learning gains of pupils in the Texas and England studies showed similar learning for 

both sets of students.  

These analyses provided important evidence about the effectiveness of the 

materials. Although we would not advise drawing any conclusions from cross-

country comparisons (i.e., success in the United States vs. success in England), 

comparison between the magnitude of gains among the U.S. control, U.S. 

treatment, and CM groups provides evidence for feasibility of effectiveness in the 

English context. 

It is noteworthy that although gains were similar in ‘simple’ linear functions for 

all groups (although the gains for the control were slightly lower than those for the 

other groups, that difference was not statistically significant), the difference in 

groups was predominantly for complex concepts.  

Figure 3 shows an example of a complex M2 item, and a sample student response 

in the pre-test. The student had been provided with the questions and gridded 

graph areas, and the student drew the lines on the graphs. We note, in this one 

pupil’s response, several well-known conceptual difficulties, including treating a 

position-time graph as a velocity graph, and representing backwards motion as a 

line that goes back toward zero on the time axis.  
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 Figure 3: Example of a complex linear function item, Question 15, and a student response in pre-

test. 

 

Table 1: Scores on Question 15 showed increased learning for CM Pupils between the 

pre- and post-test. 

As shown in Table 1, the changes in student scores for this question are 

substantial, and compare very well with the (older) control group students. In the 

next section, we track how these changes may have been catalysed by the design 

and structure of the CM unit, and its deployment. 

4.2 Qualitative Results: External Evaluation. 

To assess the validity and reliability of the qualitative research, an external 

evaluation of the implementation of Unit 1 was undertaken (Sturman and Cooper, 

2012). The main findings of this evaluation were, in summary: 

1. The unit was generally manageable to implement and it helped students to 

learn the difficult concepts covered. 
2. Perceptions of the groups that the unit affected most were varied, but test 

results suggest that the unit was appropriate and effective for the whole 

% Correct Q15a pre Q15a post Q15b pre Q15b post Q15c pre Q15c post Q15d pre Q15d post 

CM Year 7  21.2 56.4 11.7 51.4 9.5 46.4 7.3 41.9 

CM Year 8  45.4 77.1 28.2 73.6 20.3 71.8 14.5 63.9 

 Texas Control  40.3 52.8 30.7 44.6 24.8 35 21.1 30.4 
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range of students, with no group conclusively progressing better than 

others. 
3. The unit had a good curriculum fit and covered more than most teachers’ 

own schemes of work. When teachers could make a prediction, they felt 

that students would do well in their next assessment, based on their solid 

understanding and willingness to attempt questions. 
4. Teachers were positive about the unit’s ability to engage students, 

although students themselves expressed some reservations. Despite this, 

students acknowledged that the unit helped them to learn. 
5. The unit was generally seen as useful, with most of its parts more likely to 

be rated ‘helpful’ than ‘unhelpful’. Some technical difficulties were 

encountered, and some changes and additions to resources were suggested.  
6. Teachers were generally positive about the impact of the unit on students’ 

understanding of mathematics in the real world, although they identified 

different ways of how the unit achieved this. Students also perceived real-

life benefits. 
 

These general findings provide a backdrop for the more detailed analyses we 

present below. 

4.3 Qualitative Results: Teacher Adaptation. 

The themes around which the observation, interview, and student focus group data 

were analysed included the extent of teachers’ preparation for teaching the unit; 

the implementation of the unit; technology instrumentation; and the impact on 

students in terms of their engagement and learning. To identify relevant episodes, 

data were provisionally coded, assigned to one of these themes. and sub-divided 

into the appropriate categories .  

In a major adaptation of the CM unit most, (15 out of 18) of the teachers modified 

each lesson to conform to the common ‘3-part lesson’ format (starter, student 

activity, plenary consolidation), a format that the UK government’s “National 

Strategy” for education had effectively mandated during the years 2003-11. 

Although this adaptation was common, the specific adaptations took different 

forms: some teachers devised new starter activities, while others creatively varied 

the kinds of orchestration they adopted (e.g., student groups sharing their work on 

the interactive whiteboard).  

Teachers also adapted the pace of implementation. Teachers had to adapt learning 

activities to a variety of student groups (year, set, level of ‘English as Additional 

Language’) and lesson formats (single or double periods, a PC room, or laptops in 

the classroom), and they broadly managed to do so. We found, however, that 

teachers’ planning of timing was not precise (all teachers were given time for 

planning, and all created an initial plan of around 8-10 hours of lesson time, which 

in practice ranged between 8 and 20 hours). Such inconsistencies may be 

inevitable for novel curriculum activities, given that teachers can learn how to use 

the unit only by teaching it. It is hardly surprising that a disruptive technology 

would lead to unpredictable timing of lessons. But it is surprising that the teachers 
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were so positive about this disruption and the extent to which it encouraged—

perhaps forced—new thinking about pedagogic strategies. They chose to elaborate 

on what the actions on the software meant mathematically (couched in the 

language of the unit), with some adding new activities for groups to work on 

together. We believe these adaptations were crucial to the success of the unit—the 

students were not simply drawing the graphs or changing the slope, but were 

engaging with digital mathematical objects as they thought deeply about the 

mathematical concepts. 

In summary, all teachers adopted the CM activity sequence, with 13 out of the 18 

adapting it by some subset of: 

 Compressing/stretching activities, according to the teacher’s expectations 

of how students would react, with adjustments in the course of the lesson 

 Switching on an ad hoc basis between pair and whole-class work if 

interesting ideas or points of explanation arose 

 Introducing activities to ‘consolidate’ the mathematical ideas (e.g., one 

‘matching’ activity in the activity booklet was represented as a card-sort 

activity for a starter in the next lesson)  

 Adding short activities at the ends of lessons that could be used for 

consolidation in class or as homework.  

Some teachers were more open to adaptation than were others. For some teachers 

with students with English as an Additional Language, or students needing more 

exercise in numeracy/arithmetic, the activities opened up extension opportunities 

to work on developing students’ capacities with mathematical language/argument, 

or numeracy skills, which was not part of the core design. In these ways, the 

extended time spent on the unit was judged as highly valuable.  

4.4 Qualitative Results: Teacher Ownership and Instrumentalisation 

Teachers in England have, over the last decade, been encouraged through 

Government strategy and inspection to adopt a surprising level of uniformity in 

their pedagogic strategies. Doing so has, to a large extent, militated against 

innovation in teaching style, the adoption of different media, and significant 

exploration in terms of pace, lesson style, etc. What became evident in this study 

was the extent to which the technology disrupted this conformity, and in doing so, 

led the teachers to adopt strategies that were new to them, and which they 

recognised as being successful in evolving student learning. We identify some 

examples below. 

One example was in lesson style. Some students reported a change in lesson style, 

which was also evident from the observations and teacher interviews. The 

students, in particular, noted that typical mathematics lessons were usually 

dominated by ‘copying from the board’. Teachers tended to recognise that 

students arrived at a deeper understanding mathematics when using CM, where 

they interacted with technology rather than using their traditional approaches. The 
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curriculum replacement approach thus provided a highly structured and relatively 

short-term (and therefore safe) setting for doing more with technology, 

particularly moving away from whole-class demonstrations (by the teacher, or by 

selected students) via an interactive whiteboard.  

Another example of teacher ownership can be observed in the ways in which 

technology was deployed. All of the teachers managed to use digital technology in 

almost every lesson, which led to significant changes in their initial reservations 

about using technology. Indeed, many of the teachers immediately decided to re-

use parts of the unit as revision material for older pupils. Thus, teachers 

considered the materials useful for meeting their own needs and the needs of their 

pupils beyond the use specified by the study. 

More generally, 15 of the 18 teachers used their professional judgement to 

repackage the material by choosing to teach disparate pieces together, or to 

decompose one idea into many. Although we recognise that these examples of 

teacher ownership fall short of the re-design of tasks themselves to exploit the use 

of the technology to give sense to mathematical concepts (in the manner discussed 

by Laborde, 1995), we nonetheless interpret these changes as expressions of 

epistemological autonomy on the teachers’ part, a finding that subsequently 

informed our own revisions of this unit and the design of future units.  

More broadly, multiple sources of evidence indicate the ways in which the 

teachers instrumentalised the innovation considered as a whole. This finding 

underlines the limitation associated with thinking of an innovation as something 

to ‘implement’ or ‘deploy’. Considerably more than that is required: the presence 

of the technology (and of carefully designed workbook-based activities) 

highlights how teachers implementing the innovation need time and support to 

make the innovation their own, to reshape it, and to use it to create novel 

strategies as well as new epistemologies for themselves and their students.  

A key focus for teacher instrumentalisation was the use of multiple 

representations to reveal and address student misconceptions. In our interviews 

teachers consistently reported that that feedback for actions was a learning driver 

when successful learning occurred. As one teacher put it:  

‘Having the things that move, the real world simulation, glued … [the other 

representations] together in a more meaningful way. Normally, [students] 

would be fine, they would be able to repeat to me that the gradient is the 

steepness of the line and the y intercept is where it crosses, but somehow 

having it linked with the simulation really brought that home in a way that I 

have not seen before.  

Another teacher reflected on her students’ learning as follows: 

The best thing was [that the software] could visually contradict their 

misconceptions … the average speeds in Red Riding Hood [example], when 

the journey was not split into equal parts, it was really noticeable the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 

students still wanted to add the speeds and divide by two. But as soon as 

they put that in as the wolf’s motion, it was so clear that the wolf was not 

arriving where it needed to. 

This quote refers to the notoriously hard concept of average velocity, framed in 

the context of Red Riding Hood (RRH) and the Wolf. The Wolf, which can move 

only at constant velocity, is trying to arrive at Grandma’s house at the same time 

as RRH, whose speed can vary in a piecewise linear way. Students were asked to 

create a trip where RRH travels at two velocities and arrives at Grandma’s house 

at exactly the same time as the Wolf. They could then check the graph and 

animation, and revise if it did not achieve their goal. They were asked to write a 

story describing RRH’s trip. 

As the quote indicates, the teacher used the ‘multiple mathematical 

representational’ approach—written/verbal, graph, simulation—and the 

coordination between the context world and mathematical representations in a 

predict/check/explain cycle that invited students to coordinate their thinking 

across representations. Students were offered ownership of the journey, as they 

could build their own narrative about the story as depicted in its mathematical 

representations. Through observations and interviews we found that teachers were 

quick to accept the responsibility of addressing student misconceptions that were 

revealed by this activity, and readily saw the utility of instrumentalising the 

affordances of the technology to aid them in addressing those misconceptions. 

Quantitative evidence from pre- and post-tests corroborated this claim. Figure 4 

shows a question related to average speed, and a sample student pre-test response. 

Although this item was difficult for students, even at post-test, gains were large 

and significant: at pre-test 2% of pupils got part (a) correct, and 12% got part (b) 

correct; at post-test 28% and 47%, respectively, gave correct answers. Pupils’ 

qualitative understanding of linear function also increased: at pre-test 

approximately 20% of pupils answered item 15 correctly (see Figure 3), whereas 

at post-test 63% answered correctly. Although we are not fully satisfied with the 

results, we are encouraged by the large number of Key Stage 3 students (i.e., 

Years 7 through 9 students) whose understanding of these complex and subtle 

linear function ideas increased, given that many students do not exhibit such 

understanding even at a much older age.  
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Figure 4: Example of an average speed item, and a sample pre-test response. 

4.5 Additional Results: Sustainability and Community 

We have reported here the CM design research for Unit 1. Work is ongoing on 

CM Unit 2, which concerns geometric similarity. Out of the 9 schools and 17 

teachers in our sample, all have continued with CM and implemented the second 

unit of work. As we move to the next phase of the project, 2013-15, all 9 schools 

have requested to continue their participation. Additionally, two schools have 

reported that they have already integrated Unit 1 into their schemes of work. This 

is a major step towards sustainability. In England, the mathematics curriculum is 

institutionalised at the school level through schemes of work planned by the 

mathematics team, led by the subject leader. Subject leaders negotiate the school 

mathematics curriculum with their colleagues and instantiate mathematics 

schemes of work year by year. The schemes must, of course, be aligned with the 

statutory National Curriculum and pupils progress through the scheme, usually 

assessed by the school annually to monitor progress. So when CM is part of the 

scheme, it will have become integrated into the routine of mathematics teaching in 

the school and taught by the whole mathematics department. In the two cases 

mentioned above, where Unit 1 has already been integrated, this was instigated by 

two CM participants who were subject leaders (middle-rank executive school 

leaders).  

However, it proved challenging to spark productive conversations on the online 

community: the research team made repeated attempts throughout the 

implementation of Unit 1 to provoke discussion, but was only partially successful 

in doing so. Only 11 teachers posted; 45 topics were introduced with 104 posts in 

all, but most topics had only a handful of posts, which mainly consisted of 

answers to questions or factual statements, and little discussion took place. It 
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seems that online professional discussion was too removed from teacher practice 

and judged as perhaps tangential to established professional practice.  

In response, in the scaling work we are now undertaking, we are building and 

promoting the online community from the start, setting a norm in the PD sessions 

of using the online community as a place to engage in asynchronous discussions, 

and stressing the need to exploit the support that a vibrant community can 

provide. 

5 Conclusions 

This section elaborates an emergent framework of design affordances for teacher 

adaptation, ownership, and community that will inform and shape the next phase 

of our work. Our aim is to scale our work to 100 schools, with a minimum of 200 

teachers and 5,000 pupils. Although we address these affordances under three 

headings, they are, of course, interrelated.  

First, in the research context, technology was critical in driving the process of 

conceptual and affective change in teachers, particularly as the technology 

revealed some mathematical ideas that may not have been initially evident to all 

of them. In the PD sessions, for example, we noted several instances where the 

mathematics was unclear to certain participants because of its novel 

representation, and where the use of the technology encouraged them to 

reconstruct or enhance their understanding. At the same time, some of the most 

interesting aspects of the discussions and activities were catalysed by often 

unsuspected links between representational forms.  

Ongoing debate in educational circles has addressed the precise characteristics 

that technology might best play in helping teachers to exploit its potential in 

mathematics classrooms. From the qualitative data we derived the role of the 

technology, although not without problems (e.g., software downloads, computer 

room availability) fostered teacher (re-)consideration of how they taught, and in 

some cases what they taught. This finding is hardly surprising: the tendency of 

new technologies to engender re-evaluation of what is possible is well 

documented (e.g., Noss & Hoyles, 1996).  

The leverage of technology reaches beyond such re-evaluations, however, because 

the use of digital technologies is fast becoming mandatory in England: it confers 

high status on head teachers, who want to be seen to participate in the latest 

trends; moreover, policy-makers and inspectors check on whether technology is 

being used in useful ways. For once we are cutting with the grain. 

The second affordance for adaptation is to shift from scripting to steering. We 

charted a path through the students’ activities, a path that we wanted all the 

teachers to follow. Yet, in a show of autonomy at a PD session, one teacher 

decided: ‘OK, I’ve got the idea. I’m going to use [the CM materials] but I’m 

going to do it my way, completely differently’. It is tempting to attribute this to 

the feistiness of one teacher, and that may indeed be part of the explanation. But 
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we can, perhaps, also take some credit. We organised the CM Unit as one in 

which the teacher’s role was not so much scripted as steered. We charted the 

course, showed them the ‘big ideas’, but we were at pains to leave room for 

teachers to ‘get the idea’ and adapt it in their own way. 

In part, the tension between adoption (do as I say) and adaptation (find ways to fit 

what I say into what you think and do) is exacerbated by the constraints of the 

system. In England, close alignment with the statutory National Curriculum is 

imperative. And the centralized control of teachers (through the only recently 

discontinued National Strategies, recommended lesson structure, and inspection, 

which has deeply influenced most educators in England) is delicately balanced 

with teacher professionalism. 

A major challenge for the future is to encourage teachers to move from adoption 

to adaptation. The innovation began to develop momentum at the point when 

teachers started to buy into tool use, to think beyond ‘curriculum fit’, and to adapt 

the innovation for themselves in ways that enhanced the tool’s epistemic value. 

Clearly, no rigid dichotomy exists between routine use and epistemological tool 

use, and we wanted the ‘tools to travel between’ these poles. This endeavour was 

in fact successful not least because of the ways in which the teachers adapted the 

materials. Inevitably, there is a dialectical relationship between what is being 

fitted and what it is being fitted into. We provided scaffolding and guidance so 

that teachers could make the innovation their own and make it fit their setting, 

without undermining the intended epistemic student experience. Because teachers 

clearly valued the mathematical experience, we are optimistic that, in our next 

phase of work, we will be able to build on what we have learned to scale up to a 

much larger number of schools. 

A note of caution: positive responses were not universal among the sample 

teachers. We know that 3 of the 18 teachers simply ‘taught the unit’ and, despite 

our best endeavours, might not have been aware of the powerful ideas informing 

it. They made no adaptions of the materials of any sort. However, these teachers 

have made efforts to continue with the work and teach the CM units with other 

groups of students. This seems to be to consolidate their new practice but again 

maybe for different motives (gleaned from interviews with them) —esteem from 

being part of a project or even as a way of enhancing career opportunities.  

The third affordance is finding the right grain-size for the manipulable elements 

of innovation. Where on the spectrum between closed simulations and completely 

open programmable systems should we design? What is the relationship between 

what we would like students to learn, and the technology tools they have at their 

disposal? How can we design computational interfaces that align with what we are 

trying to teach? The software design field in education has yet to provide 

definitive conclusions for the many questions of this type. In our CM research, we 

have found it useful to generalise these questions beyond software design to the 

design of other elements of the activity system: the tasks, written materials, and 

the formative assessment techniques can all benefit from consideration of the 
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precise objects to which we want students, teachers, and researchers to attend. 

These questions must be resolved before we can be confident of scaling to 100 

schools. Our current work, for example, is seeking to determine whether open 

systems (like SimCalc, Sketchpad, or Cabri) should be replaced by tools that are 

co-designed alongside the ‘curriculum’. Doing so, however, will inevitably limit 

what is possible in order to enhance what is probable.  

This is the strength of the curriculum activity system, but it poses a challenge and 

tension for a constructionist programme. The teachers’ reaction to the innovation 

consistently stressed the importance of the constructive element (making things 

happen and attending to them) and the discursive element (building things to share 

them and create a shared basis for discussion and reflection). However some 

moved to class demonstration on the interactive whiteboard and in the process 

sometimes curtailed the time for students to engage in hands-on activity 

The most favourable examples of school take-up of CM should be considered 

against the background of the   high stakes associated with mathematics 

achievement and with the ‘grading’ of schools; heads (principals) are under 

pressure not to innovate, continuing to use established, conservative pedagogies 

that minimise the risk of failing to attain expected achievements. Yet our PD 

sessions revealed a surprising reluctance to view the ‘replacement’ module as a 

single entity as we have noted. Instead most teachers adapted its use in 

unanticipated ways. 

We surmise that fostering this autonomy can be designed into our next phase of 

work. The key seems to have been the integration of the Unit into existing 

schemes of work. The most notable instances of integration occurred when 

pressure from ‘above’ (i.e., from the research team with the agreement of the 

Head of the school) was combined with active participation from ‘below’ (i.e., 

from the teachers themselves) and with executive leadership from the ‘middle’ 

(e.g., subject leaders’ enthusiastic endorsement). Finding ways to support teachers 

from different schools to share online how they might achieve this integration will 

be a key design challenge in the next phase of the scaling process.  
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Abstract 

We report the results of a design-based research project in England that embeds 

digital technology. The research followed from two phases in the United States: 

(1) a design phase that used dynamic representations to foster conceptual 

understanding of hard-to-teach mathematical ideas, and (2) a research phase that 

measured the efficacy of the resulting technology-based curriculum units as 

implemented in Texas schools. The goal of the third phase in England was 

initially to “scale up” the U.S. approach. We determined, however, that the 

materials had to be re-designed for adaptability by English teachers. We report 

how the features of the innovation—particularly its technological infrastructure—

could be leveraged, not only to achieve positive learning outcomes, but also to lay 

the foundations for change in pedagogy and learning at scale. We identify an 

emergent framework of design affordances for teacher adaptability that are 

particularly salient when technology is a critical element. 

0 Introduction 

The potential for technologies to transform mathematics education is well-

established. However, the process of getting to scale from initial proof-of-concept 

research has been problematic (Hoyles & Noss, 2003; Roschelle, Tatar & Kaput, 

2008). Kaput, (1992) attributes the continuing marginalisation of technology in 

mathematics education to the complex issues that surround its use: 

 Technology requires continually rethinking pedagogical and curricular 

motives and contexts. 

 Classroom-based research is difficult, because exploiting the real power of 

the technology requires such innovative approaches that comparison to a 

traditional class is inappropriate. 

 The practical complications of student access to computers, cost of 

software, and development of curricular materials often prohibit research. 

 Given rapid changes in technology, research is often out-dated by the time 

it is complete.  

Despite substantial developments in theory, and massive changes in technology, 

the core challenge of ‘implementation’ remains: how to ensure that digital 

technology is used at all in mathematics classrooms, and, if it is used, how to 

enhance mathematical thinking rather than simply reiterating current practice or, 

as is sometimes the case, circumventing mathematics altogether. How can 

research inform efforts to embed technology in transformational ways that support 

scalable models of classroom change?  

This paper reports on research undertaken as part of the Cornerstone Mathematics 

(CM) project, a collaboration between researchers in the U.S. and England for a 

moderately large-scale, design-based implementation project in England. U.S. 

researchers completed two phases of work before CM came to England: (1) 

design of the core use of dynamic representations in ‘modules’ that include 
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curriculum workbooks and teacher professional development; and (2) efficacy 

trials that established causality linking the modules to improved student 

conceptual understanding of challenging mathematics. The goal of the project in 

England was eventually to reach 100 or more schools using the US-developed 

materials and approach. However, the team determined that before going directly 

to scale, a further phase focused on designing materials and processes to support 

teacher adaptation and instrumentalisation was needed: we elaborate below.  

As well as presenting results from research focused on these design concerns, we 

also present hypotheses about the key features required for scaling a 

technologically-based innovation in the field of mathematical learning.  

1 Theoretical background 

Sinclair et al.’s (2010) model of the development of digital technologies in 

mathematics education describes a shift in research attention from “Wave 1” with 

an exclusive focus on the relationship between individual learners and 

mathematics, to “Wave 2,” which involves the broader context of learning, the 

teacher, and the curriculum. The authors argue that this trajectory is almost 

inevitable. Any project that seeks to scale must, in addition to assessing individual 

students’ interactions with technology and teacher/peers, address the curriculum 

and the teacher’s role in using and deploying the digital technologies. Hoyles & 

Lagrange (2009) provide an overview of these trends.  

Two challenges for the current research were to identify existing or evolving 

theories that (1) provided an adequate underpinning for such a complex, 

intertwined set of components as technology, teachers and students, curricular 

context, materials, and (2) supported the generalisability of research findings. 

Drijvers, et al., (2010), who provide an overview of the theoretical frames used in 

technology-related research in mathematics education, argue that integrative 

frameworks allow for articulating different theoretical perspectives. This paper 

represents a step towards developing such a framework. It takes as its starting 

point the curricular activity system framework described in Roschelle et al. (2010) 

and Vahey, et al. (2013a). This framework is based on the recognition that an 

instructional activity includes a learning objective, available materials, the 

intended use of tools, and the roles of diverse participants. However, focus on 

such activities is not sufficient. An activity must fit into the structure of 

classrooms that are expected to engage in the activity. The curricular activity 

systems approach integrates learning requirements, teacher professional 

development (PD), curriculum materials, and technology; the approach recognises 

that these elements are situated in an educational context that includes people, 

conventions, and policy considerations.  

We also look to design-based implementation research (Penuel et al., 2011), 

which expands on traditional design of an artefact or intervention by developing 

the capacity for sustained change. Central to our scaling approach is building 
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teachers’ capacity as they both strive to adopt the CM materials, and participate in 

adapting the curriculum materials and instrumentalising the technology. 

Instrumentalisation is part of the process of instrumental genesis, whereby 

artefacts are transformed (by both students and teachers), into ‘instruments’, 

systems with which the user gains fluency (becomes instrumented)  and acquires 

expressive competence, (is instrumentalised) (see Artigue, 2002; Drijvers & 

Trouche, 2008; and, in the context of SimCalc research, Roschelle et al., 2008). 

So by instrumentalisation we mean the process by which students and teachers 

come to use the potential of the technology (or other digital artefact) for their own 

purposes, transforming it as they do so.  

A complementary strand of research concerns constructionist design,  whereby 

users learn through interaction with and feedback from digital tools that enable 

them to explore, build, and learn (Papert 1980). Constructionism has been the 

subject of extensive research and development and continues to result in 

innovative ways of designing tools and in work with learners worldwide (e.g., 

Kynigos et al., 2012, Noss and Hoyles, submitted: 2013). Digital technologies not 

only add new representations (or link old ones), but research has increasingly 

shown that digital representations change the epistemological map of what it is 

intended for teaching and learning (Noss and Hoyles, 1996; Kaput and Roschelle, 

1998).  

By building teachers’ capacity to use materials effectively and still maintain the 

core pedagogical approach, we optimise our chances of scaling up to large 

numbers of teachers, classrooms, and students. Related approaches to scaling 

emphasize the importance of “fit” to broader reforms in a school system 

(Blumenfeld et al., 2000); that scale involves a shift to increased ownership by 

teachers (Coburn, 2003); and that scale involves new kinds of empirical evidence 

(Schneider & McDonald, 2007). (Additional approaching to scaling could include 

working with a publisher or technology company to incorporate research-based 

insights into established products (Roschelle & Jackiw, 2000). 

We first provide a brief outline of the U.S. studies that formed the basis for the 

research in England. 

2 Preliminary Phases in the United States: the 
SimCalc Intervention 

Over the course of about 6 years, the U.S. team developed integrated technology, 

curriculum, and professional designs to address big ideas in the algebra and pre-

calculus strand of mathematics. The technology design emphasized linked 

dynamic representations such as graphs to motions, tables, and equations (Kaput 

et al. 2007; Vahey, et al. 2013a; see Figure 1). Many evaluations show, at best, 

small positive effects for technology (Cheung & Slavin, 2013; Dynarski et al., 

2007). However, dynamic representations have been shown to be powerful in 

developing conceptual understanding (Heid & Blume 2008). These 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 

representations can help students make important connections between intuitive 

and formal ideas, and between graphical and linguistic understandings. The 

curriculum modules design is based on organising key mathematical ideas and 

practices into integrated paper- and technology-based materials that are 

straightforward to use. Within the modules, students solve increasingly 

challenging problems in one content area organised around a high-interest theme 

such as ‘Designing Mobile Games’. Teachers focus on the key mathematical 

ideas, valuing conceptual understanding and guiding development of 

mathematical practices. The professional development design emphasises 

practical ‘mathematical knowledge for teaching’ (Hill et al., 2008)—the 

knowledge teachers need to make sense of and extend their students’ 

mathematical reasoning. 

This integrated design of technology, curriculum, and PD was formalized as an 

instructional package that could be implemented at scale. Subsequently, a 

randomized controlled trial (RCT) in Texas investigated whether a wide variety of 

teachers, when provided with appropriate PD and a replacement unit that 

integrated curriculum and software, (the “SimCalc intervention”), could increase 

student learning of important and complex mathematics. In this RCT, teachers 

were randomly assigned to participate in the treatment or the control group. The 

treatment group received the integrated intervention, which began with a 3-day 

teacher PD workshop in which teachers learned to teach using the technology-

based unit. Treatment teachers were then asked to teach the replacement unit in 

place of their usual unit on linear function. Most teachers completed the unit in 2-

3 weeks. Teachers in the control group received PD on the integration of 

technology into mathematics teaching, but the PD addressed different content. 

Working with five Texas Education Service Centers (the primary support and PD 

providers in Texas), teacher volunteers were recruited whose students reflected 

the regional, ethnic, and socioeconomic diversity of the state. Complete data were 

returned by 56 teachers and 825 students. At intake, the Treatment group (33 

teachers) and the Control group (23 teachers) did not differ in any important way 

(e.g., with respect to teaching experience, ethnicity, gender, mathematical content 

knowledge, or by socioeconomic status as indicated by percent of students eligible 

for free or reduced-price lunch in school). The greater number of teachers in the 

Treatment group was an artefact of teachers’ scheduling conflicts with the 

workshops to which they were assigned. Because teachers were not informed 

about the workshop type until the workshop occurred, the consequences for 

randomisation and thus the validity of the experiment were minimal. The attrition 

rate was comparable to other large experiments with educational technology 

(Dynarsky et al., 2007). 

The primary outcome measure in this study was student learning of core 

mathematical content. The team employed a bespoke assessment instrument. 

Working with a panel of mathematicians and mathematics education experts, the 

assessment encompassed both simple (M1) and more complex (M2) aspects of 
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linear function. The simpler items (M1) were based on those used in existing 

standardised tests in Texas; for example, students were asked to calculate using a 

linear relationship represented in different ways. More complex M2 items 

required comparing multiple rates or finding average rates, and typically the rate 

information was not provided directly; for instance, students had to infer it from 

slopes in graphs. The assessment was administered in a single class period to 

students immediately before and after their linear function unit was taught.  

The analysis of student gain scores from pre-test to post-test showed a large and 

significant main effect, with an effect size of 0.56 (Roschelle et al., 2010). This 

effect was robust across a diverse set of student demographics. Students who used 

the SimCalc materials outperformed students in the control condition regardless of 

gender, ethnicity, teacher-rated prior achievement, and socioeconomic status. This 

finding provides evidence that the use of dynamic representations, when 

embedded in a set of replacement units designed within a curriculum activity 

system framework, can result in substantial learning gains.  

3 The Cornerstone Mathematics Project 

CM seeks, as did its U.S. predecessor, to exploit the dynamic and multi-

representational potential of digital technology to enhance learners’ engagement 

and understanding of mathematical ideas. CM consists of four units, each focused 

on key mathematical topics in middle school (students aged 11-14 years). Each 

unit embeds activities in a quasi-realistic digital context in which students need to 

use mathematical knowledge to achieve their—and our—goals. This is an 

important design decision: students need to be motivated to think mathematically 

and this can be achieved by tapping into their digital lives, making the work 

“realistic” (e.g., Confrey et al., 2009). 

Unit 1, the focus of the research reported here, concerns piecewise-linear 

functions, with the work in England replicating the SimCalc intervention (see 

Roschelle et al., 2010; Roschelle & Shechtman, 2013). However, for success at 

scale in England, two levels of changes were required. For the initial, and simpler, 

level, the mathematical content and language were adjusted to fit the English 

setting. For example, numerous changes in vocabulary had to be made to account 

for differences between U.S. and UK English usage and spelling. Changes were 

also made to conform to local school mathematical conventions (e.g., y=mx+c 

rather than y=mx+b). Third, we sought to align the unit to the English National 

Curriculum, which is statutory and places comparatively greater emphasis on 

‘mathematical processes’.  

This paper focuses on more complex changes. In an RCT, experimenters try to 

hold the ‘inputs’ fixed and attempt to have teachers adopt the materials with high 

fidelity. However, in scaling up, innovators recognise that teachers and schools 

are not identical, and the metaphor of teacher adoption will not suffice. On the 

contrary, it is inevitable that each new classroom, teacher, and school context 
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introduces new features that could knock the innovation off course. A key 

challenge, therefore, was to move beyond adoption and design for robustness 

(Roschelle et al., 2008). We did so by encouraging teachers to appreciate the 

goals of the innovation, and to make the innovation their own through a process of 

adaptation of the materials and instrumentalisation of the technology. Thus the 

more complex change, and the focus of this paper, involved designing the 

materials to better support this intended process.  

We wanted all CM teachers to develop pedagogical and technological confidence 

through PD and supporting their teaching of the unit. We also wanted teachers to 

work together in a mutually supportive community through a blend of face-to-face 

and virtual interaction: the latter becoming increasingly recognised as important 

for scaling, especially when teachers are widely distributed (e.g., Baker-Doyle, 

2011). To check that the ways we supported teacher adaptation and 

instrumentalisation of CM Unit 1 did not undercut the effectiveness of the 

materials (as established earlier), we conducted design research to evaluate the 

impact of the redesigned unit, to assess the extent to which student learning gains 

were preserved.  

3.1 From the SimCalc Intervention in the United States to CM Design 

Research in England 

CM Unit 1 started from the U.S.-based unit called Designing Cell Phone Games 

as described earlier (see Roschelle et al., 2010; Vahey, et al., 2013b). The Unit 

highlighted the following mathematical concepts: coordinating algebraic, 

graphical, and tabular representations of linear functions; y=mx+c as a model of 

constant velocity motion; the meaning of m and c in the motion context; and 

velocity as speed with direction. All activities were set in the context of using 

mathematics to design computer games for mobile phones, where functions must 

be used to make game characters move in appropriate ways. At the heart of the 

software environment is a simulation, or a ‘journey’, of an object that could be 

tracked in a graph and a table, as well as captured in algebraic or narrative form 

(see Figure 1). Students therefore receive feedback on any journey they have 

constructed by visually ‘seeing it happen’; the mathematics plays out in terms of 

motion and vice versa. Students can control their object’s journey by manipulating 

the position-time graph or its algebraic representation. The constructionist key in 

the Unit is that students themselves can intervene in the ‘system’ by constructing 

journeys and exploring them alone and with others. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 

 

Figure 1: The SimCalc system links algebraic expressions, graphs, tables, and narratives through 

the phenomenon of motion 

A first priority for the design research in England was revisiting the style and 

emphasis of the PD needed, not least because middle-school students in England 

are taught by secondary trained mathematics teachers, in contrast to the U.S. 

teachers who were mainly primary (elementary) trained. Teachers in England, and 

particularly subject leaders, expect a degree of autonomy in approaching given 

mathematical topics.  

As a second priority, teacher support in England required a different character. In 

the U.S. efficacy trial, the researchers wanted to control precisely the PD, and thus 

they and PD experts provided it. However, in England, teacher adaptation and 

instrumentalisation were emphasised. For example, at the request of the teachers, 

more group-work was introduced in the PD and teachers orchestrated this 

themselves as a means to share experience and reflections. In addition, PD was 

extended through orchestrated peer interaction among the CM teachers in an 

online community, which was part of the technical national infrastructure 

provided by the National Centre for Excellence in the Teaching of Mathematics, a 

nationwide professional learning community for mathematics teachers 

(www.ncetm.org.uk). Through the CM online community, teachers could share 

their experiences, the prompts and probes they had planned or used 

spontaneously, and the activities they designed themselves.  
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3.2 Research Questions  

Our study did not seek to establish the efficacy of the intervention as compared to 

some other mathematics program. Instead, our initial research question focused on 

investigating if the materials, as revised for England, maintained their 

effectiveness in terms of students learning complex math. Hence, the research 

question was:  

RQ1: Is the pattern of student learning gains in England consistent with the 

pattern of learning gains observed in the United States? 

A consistent pattern would reassure the team that the changes to the design for the 

England scale-up preserved the effectiveness of the materials and approach, 

whereas if we found that there was significantly less learning in England we 

would call into question either the suitability of the materials or the design 

decisions made in our revisions. To determine if the pattern of learning gains was 

similar, the assessment and assessment method used in the Texas RCT was 

closely followed to allow a quasi-experimental comparison with pupils in that 

study. Pre- and post-tests for each student generated gain scores that were used for 

a quantitative analysis of learning gains, which were then compared with the 

Texas student results.  

Even if the learning gains were consistent, our goal of scale-up would only be met 

if teachers in England considered the materials usable and useful. To provide 

insight into teacher perceptions of the materials, an external evaluation was 

undertaken, focusing on the overarching question of: 

RQ2: What were teachers’ perceptions of the materials, and in particular did 

they find that the materials were manageable to implement, addressed 

important mathematical topics, and were effective for a variety of pupils? 

To provide insight into teacher adaptation and ownership of the materials, we 

investigated three qualitative research questions:  

RQ3: What changes supported teacher adaptation?  

RQ4: How did teachers come to greater ownership of the materials and 

technology?  

RQ5: As the approach started to scale up, were teachers engaged in a 

community around the materials and approach? 

3.3 Sample 

The initial sample for CM research consisted of 10 schools, with 2 teachers 

recruited from each school. One school was unable to complete its participation, 

however, because of a fire in the school buildings, and one teacher took maternity 

leave. The final sample comprised 9 schools, 17 teachers and classes, and 429 

students drawn from Years 7 through 9 (students aged 11-14). We were careful to 

ensure that the schools and the classes exhibited a wide diversity of school 
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contexts and prior student achievement. Although we can hardly claim that these 

schools were representative of all schools in England, the sample schools had a 

range of: academic strength (as measured by public examination results), student 

intake in terms of socioeconomic status, technology infrastructure, and teachers’ 

experience of mathematics teaching. The school sample included one private 

school with a privileged intake, and one state-run school whose students were 

economically disadvantaged and in which English was an ‘additional language’ 

for a high proportion of students. The teachers, too, were diverse in their teaching 

experience, including one new to the profession, most with 3-5 years of 

experience, and some highly experienced mathematics subject leaders in their 

school. Some of the teachers had excellent mathematics qualifications and some 

less so. The 429 students who engaged with Unit 1 were distributed across 

different year groups (according to teacher choice): Year 7: 179 (42%), Year 8: 

227 (53%), Year 9: 23 (5%). 

The intervention consisted of 2 days of PD for all teachers, 0.5 day for a 

reflection/feedback session after implementation, and ongoing discussion through 

the online forum. The unit was taught over 2 to 3 weeks (spread over a month for 

the different schools) with students using computers in most lessons (a practice 

that was unusual in mathematics class). Hardware varied across the sample, 

ranging from desktops in computer labs, through laptops in classrooms, to the 

extensive use of the interactive whiteboard. 

3.4 Data Sources     

The sources of data on the processes and outcomes of the study were collected by 

the following means:  

a) A proforma that a researcher completed in discussion with each school’s main 

contact, generally before a school visit. The proforma was designed to establish a 

baseline ‘context for teaching’, indicating the reasons why staff in these schools 

had chosen to participate in the study, background information about mathematics 

teaching in the school, expectations for the study, and any challenges anticipated.  

b) Lesson observations in one or two participating classes in each of the 9 schools. 

We observed 16 lessons across 9 schools. During each observation, we took notes 

using a semi-structured protocol around the following main themes: 

 Manageability: in particular how teachers orchestrated the lesson 

content and pace 

 Engagement/behaviour (attitude, engagement and understanding, 

behaviour and interaction)  

 Teaching style/approach (interactions and interventions).  

c) Post-observation interviews with the teacher(s) of the observed class(es) in 9 

schools. We interviewed 16 teachers in the 9 schools. The interviews served to 

collect relevant information in the following categories: the teachers and students 

observed; preparation for teaching the unit; the implementation of the unit; the use 
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of the technology; and the impact of the unit on students in terms of their 

engagement and learning.  

d) Students’ questionnaire responses completed at or towards the end of the unit 

(eight schools completed and returned the responses). Students in the observed 

classes completed a questionnaire about their views of mathematics lessons 

generally and about CM Unit 1 in particular. 

e) Focus-group discussion with a sample of students from nine schools. Teachers 

selected 68 students for each focus group and were advised to provide a mix of 

students (e.g., of different ability levels or different language backgrounds).  

f) Pre-test and post-test data   Students completed two identical tests to evaluate 

their learning: a pre-test, before the unit was taught, and a post-test, taken at the 

end of the unit. These tests had been used in the Texas study.  

Interview and observation schedules were consistently followed, and the 

interviews and focus-group discussions were audio-transcribed. 

4 Results 

We begin with our quantitative results in which the analyses followed that 

undertaken in the U.S. study. We then summarise results from the external 

evaluator, and next present the results of the qualitative analysis that was guided 

by the research questions listed previously. 

4.1 Quantitative Results: Consistent Pattern of Learning Outcomes  

We replicated the effect found in the earlier Texas results by (a) establishing that 

the English classrooms performed equivalently to the Texas students on the pre-

test and (b) that the English classrooms gained at least as much as the Texas 

treatment classroom did on the post-test. Although conducting a randomized 

controlled trial in England with a control group would have been a stronger test of 

replication, it was simply not feasible to do so. The main threat to validity of this 

one-condition study is the possibility that English classrooms learn difficult 

concepts without new materials, whereas Texas classrooms do not. If this were so, 

the gains documented in England could be unrelated to Cornerstone materials. 

Based on our extensive knowledge of challenges in English mathematics 

education, it seems unlikely, that English students would find it easier to learn 

these concepts, and thus a one condition trial is a reasonable approach to 

replicating and extending the prior result. The pre- and post-tests were scored in 

London by a group of 12 pre-service mathematics teachers recruited from the 

Institute of Education. Using a web-based data entry and verification form, 

scorers entered their marks and comments online; this procedure allowed instant 

access to the data while ensuring rigorous methods consistent with prior methods 

used in the United States. All scorers were trained on the scoring key and rubrics, 

and were permitted to begin scoring actual assessments only after they had 

attained a minimal level of gold-standard marking of sample assessments. To 
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measure inter-rater reliability during the scoring process, 10% of all assessments 

were scored by a second scorer. The inter-rater reliability was found to exceed 

90%, well above the acceptable level. 

Using the pre-test as a proxy for equivalence of prior background knowledge, we 

found that the groups in the two studies were similar. The researchers fitted a 

series of hierarchical linear models (HLM: Raudenbush & Bryk, 2002) to examine 

statistical equivalence at pre-test. These analyses showed no statistically 

significant differences for the CM and US samples for the total score [β = –0.64, p 

= 0.69], M1 subscale [β = –0.50, p = 0.52], or M2 subscale [β = –0.15, p = 0.86]. 

The variation among pupil pre-test scores in both groups was also sufficient to 

rule out floor effects as a possible explanation for the apparent equivalence of 

prior knowledge. In a non-significant trend, CM pupils had slightly lower pre-test 

scores, which may be attributable to age differences. The determination that the 

groups were equivalent at pre-test is important because in a quasi-experimental 

comparison such as this, the primary threat to internal validity is the possibility of 

non-equivalence of groups at baseline. 

Figure 2 shows the learning gains for pupils in the Texas Control group (who did 

not use the materials), the Texas Intervention group (who did use the materials), 

and the CM pupils in England. The dark part of the bars shows learning for M1, 

‘simple’ linear functions, and the light part of the bars shows learning for M2, 

‘complex’ linear functions. The learning gains for CM pupils were similar to the 

learning gains for pupils in the Texas Intervention group, and were significantly 

higher than for pupils in the Texas Control group.  

These data show that the CM approach met the goal of increasing pupil learning 

of important mathematics in England. Further analyses indicated that the materials 

were equally effective for students with different levels of prior mathematics 

achievement: schools with higher prior General Certificate of Secondary 

Education (GCSE) scores performed higher on pre-test, which was to be expected; 

however, learning gains were not correlated with school achievement level, 

indicating that the materials were effective for pupils from a variety of school 

contexts. (GCSE is an academic qualification awarded in a specific subject, 

usually taken in a number of subjects by students aged around 15-16 years).  
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Figure 2. Learning gains of pupils in the Texas and England studies showed similar learning for 

both sets of students.  

These analyses provided important evidence about the effectiveness of the 

materials. Although we would not advise drawing any conclusions from cross-

country comparisons (i.e., success in the U.S. vs. success in England), comparison 

between the magnitude of gains among the U.S. control, U.S. treatment, and CM 

groups provides evidence for feasibility of effectiveness in the English context. 

It is noteworthy that although gains were similar in ‘simple’ linear functions for 

all groups (although the gains for the control were slightly lower than those for the 

other groups, that difference was not statistically significant), the difference in 

groups was predominantly for complex concepts.  

Figure 3 shows an example of a complex M2 item, and a sample student response 

in the pre-test. The student had been provided with the questions and gridded 

graph areas, and the student drew the lines on the graphs. We note, in this one 

pupil’s response, several well-known conceptual difficulties, including treating a 

position-time graph as a velocity graph, and representing backwards motion as a 

line that goes back toward zero on the time axis. 

  

Figure 3: Example of a complex linear function item, Question 15, and a pre-test student response. 

Table 1 shows that the changes in student scores for this question are substantial, 

and compare well with the (older) control group students. In the next section, we 

track how these changes may have been catalysed by the design and structure of 

the CM unit, and its deployment. 
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Table 1: Scores on Question 15 showed increased learning for CM Pupils between the pre- and 

post-test. 

4.2 Qualitative Results: External Evaluation 

To assess the validity and reliability of the qualitative research, an external 

evaluation of the implementation of Unit 1 was undertaken (Sturman & Cooper, 

2012). The main findings of this evaluation were, in summary: 

1. The unit was generally manageable to implement and helped students to 

learn the difficult concepts covered. 
2. The unit had a good curriculum fit and covered more than most teachers’ 

own schemes of work. When teachers could make a prediction, they felt 

that students would do well in their next assessment, based on their solid 

understanding and willingness to attempt questions. 
3. The unit was generally seen as useful, with most of its parts more likely to 

be rated ‘helpful’ than ‘unhelpful’. Some technical difficulties were 

encountered, and some changes and additions to resources were suggested.  
4. Teachers were positive about the unit’s ability to engage students, 

although students themselves expressed some reservations. Despite this, 

students acknowledged that the unit helped them to learn. 
5. Perceptions of the groups that the unit affected most were varied, but test 

results suggest that the unit was appropriate and effective for the whole 

range of students, with no group conclusively progressing better than 

others. 
6. Teachers were generally positive about the impact of the unit on students’ 

understanding of mathematics in the real world, although they identified 

different ways of how the unit achieved this. Students also perceived real-

life benefits. 
These general findings provide a backdrop for the more detailed analyses we 

present below. 

4.3 Qualitative Results: Teacher Adaptation and Instrumentalisation 

The themes around which the observation, interview, and student focus group data 

were analysed included the extent of teachers’ preparation for teaching the unit; 

the implementation of the unit; technology instrumentation; and the impact on 

students in terms of their engagement and learning. To identify relevant episodes, 

% Correct Q15a pre Q15a post Q15b pre Q15b post Q15c pre Q15c post Q15d pre Q15d post 

CM Year 7  21.2 56.4 11.7 51.4 9.5 46.4 7.3 41.9 

CM Year 8  45.4 77.1 28.2 73.6 20.3 71.8 14.5 63.9 

 Texas Control  40.3 52.8 30.7 44.6 24.8 35 21.1 30.4 
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data were provisionally coded, assigned to one of these themes. and sub-divided 

into the appropriate categories .  

In a major adaptation of the CM unit 15 out of 18 of the teachers modified each 

lesson to conform to the common ‘3-part lesson’ format (starter, student activity, 

plenary consolidation), a format that the UK government’s “National Strategy” 

for education had effectively mandated during the years 2003-11. Although this 

adaptation was common, the specific adaptations took different forms: some 

teachers devised new starter activities, while others creatively varied the kinds of 

orchestration they adopted (e.g., student groups sharing their work on the 

interactive whiteboard).  

Teachers also adapted the pace of implementation. Teachers had to adapt learning 

activities to a variety of student groups (year, set, level of ‘English as Additional 

Language’) and lesson formats (single or double periods, a PC room, or laptops in 

the classroom), and they broadly managed to do so. We found, however, that 

teachers’ planning of timing was not precise (all teachers were given time for 

planning, and all created an initial plan of around 8-10 hours of lesson time, which 

in practice ranged between 8 and 20 hours). Such inconsistencies may be 

inevitable for novel curriculum activities, given that teachers can learn how to use 

the unit only by teaching it. It is hardly surprising that a disruptive technology 

would lead to unpredictable timing of lessons. But it is surprising that the teachers 

were so positive about this disruption and the extent to which it encouraged—

perhaps forced—new thinking about pedagogic strategies. As part of the process 

of instrumentalisation, they chose to elaborate on what the actions on the software 

meant mathematically (couched in the language of the unit), with some adding 

new activities for groups to work on together. We believe these adaptations were 

crucial to the success of the unit—the students were not simply drawing the 

graphs or changing the slope, but were engaging with digital mathematical objects 

as they thought deeply about the mathematical concepts. 

In summary, all 17 teachers adopted the CM activity sequence, with 13 changing 

it by some subset of: 

 Compressing/stretching activities, according to the teacher’s expectations 

of how students would react, with adjustments in the course of the lesson 

 Switching on an ad hoc basis between pair and whole-class work if 

interesting ideas or points of explanation arose 

 Introducing activities to ‘consolidate’ the mathematical ideas (e.g., one 

‘matching’ activity in the activity booklet was represented as a card-sort 

activity for a starter in the next lesson)  

 Adding short activities at the ends of lessons that could be used for 

consolidation in class or as homework.  

Some teachers were more open to adaptation than were others. For some teachers 

with students with English as an Additional Language, or students needing more 

exercise in numeracy/arithmetic, the activities opened up extension opportunities 
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to work on developing students’ capacities with mathematical language/argument, 

or numeracy skills, which was not part of the core design. In these ways, the 

extended time spent on the unit was judged as highly valuable.  

4.4 Qualitative Results: Teacher Ownership and Instrumentalisation 

Teachers in England have, over the last decade, been encouraged through 

Government strategy and inspection to adopt a surprising level of uniformity in 

their pedagogic strategies. Doing so has militated against innovation. What 

became evident in this study was the extent to which the technology disrupted this 

conformity, and in doing so, led the teachers to adopt strategies that were new to 

them, and which they recognised as being successful in evolving student learning. 

We identify some examples below. 

One example was in lesson style. Some students reported a change in lesson style, 

which was also evident from the observations and teacher interviews. The 

students, in particular, noted that typical mathematics lessons were usually 

dominated by ‘copying from the board’. Teachers tended to recognise that 

students arrived at a deeper understanding mathematics when they allowed them 

to interact with the technology, and discuss the meanings they developed. The 

curriculum replacement approach provided a structured and relatively short-term 

(and therefore safe) setting for doing more with technology, particularly moving 

away from whole-class demonstrations (by the teacher, or by selected students) 

via an interactive whiteboard.  

Another example of teacher ownership can be observed in the ways in which 

technology was deployed. All of the teachers used digital technology in almost 

every lesson, thus overcoming any initial reservations. Indeed, many of the 

teachers decided to re-use parts of the unit as revision material for older pupils. 

Thus, teachers considered the materials useful for meeting their own needs and 

the needs of their pupils beyond the use specified by the study. 

More generally, 15 of the teachers used their professional judgement to repackage 

the material by choosing to teach disparate pieces together, or to decompose one 

idea into many. Although we recognise that these examples of teacher ownership 

fall short of the re-design of tasks themselves to exploit the use of the technology 

to give sense to mathematical concepts (as discussed by Laborde, 1995), we 

nonetheless interpret these changes as expressions of epistemological autonomy 

on the teachers’ part.  

More broadly, multiple sources of evidence indicate the ways in which the 

teachers instrumentalised the innovation considered as a whole. This finding 

underlines the limitation associated with thinking of an innovation as something 

to ‘implement’ or ‘deploy’. Considerably more than that is required: the presence 

of the technology (and of carefully designed workbook-based activities) 

highlights how teachers implementing the innovation need time and support to 
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make the innovation their own, to reshape it, and to use it to create novel 

strategies as well as new epistemologies for themselves and their students.  

A key focus for teacher instrumentalisation was the use of multiple 

representations to reveal and address student misconceptions. In our interviews 

teachers consistently reported that that feedback for actions was a learning driver 

when successful learning occurred. Crucially, these teachers recognised the power 

of the simulation that drove the software. As one teacher put it:  

‘Having the things that move, the real world simulation, glued … [the other 

representations] together in a more meaningful way. Normally, [students] 

would be fine, they would be able to repeat to me that the gradient is the 

steepness of the line and the y intercept is where it crosses, but somehow 

having it linked with the simulation really brought that home in a way that I 

have not seen before’.  

One activity concerned the notoriously hard concept of average velocity, and was 

framed in the context of Red Riding Hood (RRH) and the Wolf. The Wolf, which 

can move only at constant velocity, is trying to arrive at Grandma’s house at the 

same time as RRH, whose speed can vary in a piecewise linear way. Students 

were asked to create a trip where RRH travels at two velocities and arrives at 

Grandma’s house at exactly the same time as the Wolf. They could then check the 

graph and animation, and revise if it did not achieve their goal. They were asked 

to write a story describing RRH’s trip. 

One teacher reflected on her students’ learning as follows: 

‘The best thing was [that the software] could visually contradict their 

misconceptions … the average speeds in Red Riding Hood [example], when 

the journey was not split into equal parts, it was really noticeable the 

students still wanted to add the speeds and divide by two. But as soon as 

they put that in as the wolf’s motion, it was so clear that the wolf was not 

arriving where it needed to’. 

As the quote indicates, the teacher recognised the power of the digital tool and the 

‘multiple mathematical representational’ approach—written/verbal, graph, 

simulation—along with the coordination between the context world and 

mathematical representations in a predict/check/explain cycle that invited students 

to coordinate their thinking across representations. Students were offered 

ownership of the journey, as they could build their own narrative about the story 

as depicted in its mathematical representations. Through observations and 

interviews we found that teachers were quick to accept the responsibility of 

addressing student misconceptions that were revealed by this activity, and readily 

saw the utility of instrumentalising the affordances of the technology to aid them 

in addressing those misconceptions. 

Quantitative evidence from pre- and post-tests corroborated this claim. Figure 4 

shows a question related to average speed, and a sample student pre-test response. 
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Although this item was difficult for students, even at post-test, gains were large 

and significant: at pre-test 2% of pupils got part (a) correct, and 12% got part (b) 

correct; at post-test 28% and 47%, respectively, gave correct answers. Pupils’ 

qualitative understanding of linear function also increased: at pre-test 

approximately 20% of pupils answered item 15 correctly (see Figure 3), whereas 

at post-test 63% answered correctly. Although we are not fully satisfied with the 

results, we are encouraged by the large number of Key Stage 3 students (i.e., 

Years 7 through 9 students) whose understanding of these complex and subtle 

linear function ideas increased, given that many students do not exhibit such 

understanding even at a much older age.  

 

Figure 4: Example of an average speed item, and a sample pre-test response. 

4.5 Additional Results: Sustainability and Community 

We have reported here the CM design research for Unit 1. Work is ongoing on 

CM Unit 2, which concerns geometric similarity. Out of the 9 schools and 17 

teachers in our sample, all have continued with CM and implemented the second 

unit of work. This provides evidence of considerable commitment, as teaching 

another CM unit was in no sense compulsory. As we move to the next phase of 

the project, 2013-15, again all the schools have requested to continue their 

participation. Additionally, two schools have reported taking one more significant 

step and have integrated Unit 1 into their schemes of work.  Others are in the 

process of doing so. This is a major step towards sustainability as CM moves 

towards its next target of 100 schools. In England, the mathematics curriculum is 

institutionalised at the school level through schemes of work planned by the 

mathematics team, led by the subject leader. Subject leaders negotiate the school 

mathematics curriculum with their colleagues and instantiate mathematics 

schemes of work year by year. The schemes must, of course, be aligned with the 

National Curriculum and pupils progress through the scheme, usually assessed by 
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the school annually, monitors progress. So when CM is part of the scheme, it will 

have become integrated into the routine of mathematics teaching in the school and 

taught by the whole mathematics department. In the two cases mentioned above, 

where Unit 1 has already been integrated, this was instigated by two CM 

participants who were subject leaders. In schools where the subject leaders were 

not CM participants, we expect the integration of CM into the schemes of work to 

take more time. 

However, it proved challenging to spark productive conversations on the online 

community: the research team made repeated attempts throughout the 

implementation of Unit 1 to provoke discussion, but was only partially successful 

in doing so. Only 11 teachers posted; 45 topics were introduced with 104 posts in 

all, but most topics had only a handful of posts, which mainly consisted of 

answers to questions or factual statements, and little discussion took place. It 

seems that online professional discussion was too removed from teacher practice 

and judged as perhaps tangential to established professional practice.  

In response, in the scaling work we are now undertaking, we are building and 

promoting the online community from the start, setting a norm in the PD sessions 

of using the online community as a place to engage in asynchronous discussions, 

and stressing the need to exploit the support that a vibrant community can 

provide. 

5 Next Steps 

This section elaborates a speculative framework of design affordances for teacher 

adaptation, ownership, and community that will inform and shape the next phase 

of our work. Our aim is to scale our work to 100 schools, with a minimum of 200 

teachers and 5,000 pupils. Although we address these affordances under three 

headings, they are, of course, interrelated.  

In this research context, the first affordance is the technology itself, which proved 

critical in driving the process of change in teachers, particularly as interaction 

with the technology revealed mathematical ideas that may not have been initially 

evident to all of them. In the PD sessions, we noted several instances where the 

mathematics was unclear to certain teachers because of its novel representation, 

and where the use of the technology encouraged them to reconstruct or enhance 

their understanding. An example was that several teachers did not themselves 

correctly how backwards motion on distance time graph would be represented. At 

the same time, some of the most interesting aspects of the discussions and 

activities were catalysed by often unsuspected links between representational 

forms.  

Our qualitative data showed the standard problems in introducing technology 

(e.g., software downloads, computer room availability), but in this particular 

instance of a replacement unit, we can defend the idea that it fostered teacher (re-

)consideration of how they taught, and in some cases what they taught. This 
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finding is hardly surprising: the tendency of new technologies to engender re-

evaluation of what is possible is well documented (e.g., Noss and Hoyles, 1996).  

The leverage of technology reaches beyond such re-evaluations, however, because 

the use of digital technologies is fast becoming mandatory in England: it confers 

high status on head teachers, who want to be seen to participate in the latest 

trends; moreover, policy-makers and inspectors check on whether technology is 

being used in useful ways. For once we are cutting with the grain. 

The second affordance for adaptation is to shift from scripting to steering. We 

charted a path through the students’ activities, a path that we wanted all the 

teachers to follow. Yet, in a show of autonomy at a PD session, one teacher 

decided: ‘OK, I’ve got the idea. I’m going to use [the CM materials] but I’m 

going to do it my way, completely differently’. It is tempting to attribute this to 

the feistiness of one teacher, and what she achieved remains unclear at this point, 

but she drafted ideas for her practice that appeared to be aligned with our goals as 

well as pragmatic from  her school’s perspective. We can, perhaps, also take some 

credit. We organised the CM Unit as one in which the teacher’s role was not so 

much scripted as steered. We charted the course, showed them the ‘big ideas’, but 

we were at pains to leave room for teachers to ‘get the idea’ and adapt it in their 

own way. 

In part, the tension between adoption (do as I say) and adaptation (find ways to fit 

what I say into what you think and do) is exacerbated by the constraints of the 

system. In England, close alignment with the statutory National Curriculum is 

imperative. And the centralized control of teachers (through the only recently 

discontinued National Strategies, recommended lesson structure, and inspection, 

which has deeply influenced most educators in England) is delicately balanced 

with teacher professionalism. 

A major challenge for the future is to encourage teachers to move from adoption 

to adaptation, with a greater awareness, perhaps, of the potential of 

instrumentalisation. The innovation began to develop momentum at the point 

when teachers started to buy into tool use, to think beyond ‘curriculum fit’, and to 

adapt the innovation for themselves in ways that enhanced the tool’s epistemic 

value. Clearly, no rigid dichotomy exists between routine use and epistemological 

tool use, and we wanted the ‘tools to travel between’ these poles. This endeavour 

was in fact successful not least because of the ways in which the teachers adapted 

the materials. Inevitably, there is a dialectical relationship between what is being 

fitted and what it is being fitted into. We provided scaffolding and guidance so 

that teachers could make the innovation their own and make it fit their setting, 

without undermining the intended epistemic student experience. Because teachers 

clearly valued the mathematical experience, we are optimistic that, in our next 

phase of work, we will be able to build on what we have learned to scale up to a 

much larger number of schools. 
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A note of caution: positive responses were not universal among the sample 

teachers. We know that 3 of the teachers simply ‘taught the unit’ and, despite our 

best endeavours, might not have been aware of the powerful ideas informing it. 

They made no adaptions of the materials of any sort. However, these teachers 

have made efforts to continue with the work and teach the CM units again with 

other groups of students. This seems to be to consolidate their new practice but 

again maybe for different motives (gleaned from interviews with them) —esteem 

from being part of a project or even as a way of enhancing career opportunities.  

The third affordance is finding the right grain-size for the manipulable elements 

of innovation. Where on the spectrum between closed simulations and open-ended 

toolkits should we design? What is the relationship between what we would like 

students to learn, and the technology tools they have at their disposal? How can 

we design computational interfaces that align with what we are trying to teach? 

The software design field in education has yet to provide definitive conclusions 

for the many questions of this type. In our CM research, we have found it useful 

to generalise these questions beyond software design to the design of other 

elements of the activity system: the tasks, written materials, and the formative 

assessment techniques can all benefit from consideration of the precise objects to 

which we want students, teachers, and researchers to attend. These questions must 

be resolved before we can be confident of scaling to 100 schools. Our current 

work, for example, is seeking to determine whether open systems (like SimCalc, 

Sketchpad, or Cabri) should be replaced by tools that are co-designed alongside 

the ‘curriculum’. Doing so, however, will inevitably limit what is possible in 

order to enhance what is probable.  

This is the strength of the curriculum activity system, but it poses a challenge and 

tension for a constructionist programme. The teachers’ reaction to the innovation 

consistently stressed the importance of the constructive element (making things 

happen and attending to them) and the discursive element (building things to share 

them and create a shared basis for discussion and reflection). However some 

moved to class demonstration on the interactive whiteboard and in the process 

sometimes curtailed the time for students to engage in hands-on activity 

The most favourable examples of school take-up of CM should be considered 

against the background of the   high stakes associated with mathematics 

achievement and with the ‘grading’ of schools; heads (principals) are under 

pressure not to innovate, continuing to use established, conservative pedagogies 

that minimise the risk of failing to attain expected achievements. Yet our PD 

sessions revealed a surprising reluctance to view the ‘replacement’ module as a 

single entity as we have noted. Instead most teachers adapted its use in 

unanticipated ways. 

We surmise that fostering this autonomy can be designed into our next phase of 

work. The key seems to have been the integration of the Unit into existing 

schemes of work. The most notable instances of integration occurred when 

pressure from ‘above’ (i.e., from the research team with the agreement of the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 

Head of the school) was combined with active participation from ‘below’ (i.e., 

from the teachers themselves) and with executive leadership from the ‘middle’ 

(e.g., subject leaders’ enthusiastic endorsement). Finding ways to support teachers 

from different schools to share online how they might achieve this integration will 

be a key design challenge in the next phase of the scaling process.  
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Dear Prof. Hoyles, dear Celia. 

 

 Your revised version of the manuscript has now been reviewed. 

 

 We are highly satisfied with the changes made and only ask for minor 

 changes. Below you will find the reviewers comments, which provide 

you with a few critical remarks, which I kindly ask you to address in 

the next and probably last version of your paper. Especially the more 

fundamental critical remarks by reviewer 2 on the necessity to 

extend and theoretically underpin the conclusion part are highly 

convincing. 

 

Because your paper is already 60,000 characters long, I propose that 

you use additional 3,000 characters including space in order to meet 

the proposal of reviewer 2 for a more critical and theory-based 

conclusion part.  

 

We have added in Section 1 reference to alternative approaches with 

appropriate references. We have clarified the curricula activity 

framework that underpins the US approach and extended the description 

of instrumentalisation (partly this is also a matter of 

differentiating it from adaptation, as requested.  we  have redrafted 

the Conclusions Next Steps that are more speculative  and better 

aligned to the aims of the paper  

 

May I add as minor remarks the following small issues: 

- the introductory sentence is not very challenging, please use 

either "we" or rephrase the sentence;  Done  

- is it helpful to include only one control group in the quantitative 

part, does that really say something as long as there is no British 

control group?  We have redrafted and argued why there is little 

likelihood of weakened validity in having just one control group  

 

- please introduce CM as abbreviation for Cornerstone Mathematics  

Done 

- check inconsistences, e.g. inconsistent usage of dots at the end of 

headings Done 

Your revision is due by 04 Sep 2013. I hope very much that you can 

meet this tight deadline, we are under strong time constraints, 

because the "end of the year" is nearing (at least for publishers). 

 

To submit a revision, go to http://zdmi.edmgr.com/ and log in as an 

Author. You will see a menu item call Submission Needing Revision. 

You  will find your submission record there.If you have any 

questions, please do not hesitate to contact either the 

 issue editors or me. 

 

 Yours sincerely, 

 

 Gabriele Kaiser 

 Editor-in-Chief 

 ZDM - The International Journal on Mathematics Education 

 

 Reviewers' comments: 

 

Reviewer #1: This new version has been clearly improved, and the 

authors 

 have taken into account most of the reviewers' comments. Only some 

 minor changes could be made for the last version: 

 -    some formal details (double space between two words, << et al.  

 sometimes partially in italics, some coma missing, etc.)  Done  
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http://www.editorialmanager.com/zdmi/download.aspx?id=12182&guid=b62cc2c0-932d-441b-9ad5-96080e3c7b3a&scheme=1


 -    about the keywords, perhaps relevant to add << scaling , and << 

 adaptation  (or instrumentalisation) ?  Done 

 -    Cheung and Slaving 2011, evoked in the article, missing in the 

 final list of references  Done 

 -    There are actually two Vahey et al.. 2013 references, to be 

 distinguished with 2013a and 2013b ?  Done 

 -    Some authors missing in two references Dynarski et al. 2007, 

and Rochelle et al. 2010, perhaps because there is too many authors ? 

WE have made this consistent 

 -    P. 21 << conceptual and affective change , the meaning of << 

 affective in this context, is not clear   Deleted both adjectives 

 -    At several places, we find the expression << adaptation and 

 instrumentalisation , perhaps necessary to situate these two 

concepts (synonymous ?)  we have elaborated the meaning of 

instrumentalisation to make the distinction clearer  

 -    Last remark, I think that a reference to the article Drijvers 

and Trouche (about orchestration) should be relevant at the first 

 occurrence of the this notion.  Done 

 

 

 Reviewer #2: This is a much improved paper and I enjoyed reading it 

 very  much. It is still largely a descriptive piece however. The 

article would be stronger if the concluding discussion were changed 

in two ways: 

 

 The concluding discussion is somewhat speculative and comes across 

as a little overly optimistic. The issue of moving from adoption to 

 adaptation is certainly an interesting one, although the examples 

cited are largely of adaptation. I'm somewhat surprised by this. My 

own experience of such 

 initiatives is that many teachers claim to do more than they 

 actually do both in terms of adoption and of adaptation. I think it 

might help if the adoption / adaptation issue could be framed in 

terms of the aspects of Cornerstone that were negotiable / non-

negotiable (as in Dylan Wiliam's "tight but loose" approach.) Here it 

would be useful to return to the theory - and to use this to 

conceptualise and discuss adoption / adaptation. Currently, the 

theory is hardly used at all. It would be useful to consider when a 

modification is adoption and when it is adaptation. 

I would also like some acknowledgement of alternative approaches to 

 scaling up and some discussion of how one might evaluate the 

 Cornerstone approach in relation to alternatives together with what 

might be learnt from such a comparison.es 

 

we have addressed this concern. we have included reference to some 

alternative approaches and theories to scaling and clarified the 

theoretical underpinning instrumentalisation and evidence of it use. 

we are aware of Wiliam’s work and re read it but at this point cannot 

see it helps our analyses - - 

 

  

 Minor issues: 

 

 1. Generally, I felt the article to be somewhat over-referenced. 

Better to focus in depth on a few key references.  WE have deleted 

some references  

 

 p.9, Section 3.2: Tabulation of the sample would be helpful. We have 

tried, but it is difficult to present, so have decided against. 

However we clarified the numbers to make it more straightforward to 

understand the sample 



 

 p. 10, line 6: How many teachers? 16 or 17? Or 18 (p.14, line 37)? 

Done 

 

 p.12, line 1/2: Explain GCSE briefly in a footnote. Done (we have 

made it in a bracket as footnotes proved impossible – messed up the 

template!). 

 

 p.18, line 33: Two out of nine early adopters is not in my view a 

huge cause for optimism. We have clarified why it was worth a degree 

of optimism – putting into scheme of work etc.  

 

 p.19, line59: "OK. I've got the idea. I'm going to use Š but I'm 

 going to do it my way, completely differently". So what exactly did 

the teacher change? A good point, and we have modified to say we will 

monitor the situation. 

 

 p.21, line 3/4: I don't understand the reference to open systems and 

 the contrast with tools designed alongside the curriculum. I assume 

that the latter reference is to very specific "one function" 

software. If so, it is somewhat odd, since there has been no 

discussion of this earlier in the article. Good point. We have fixed 

this by deleting ‘systems’ and replacing with ‘open toolkits’. 

 

 


