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A B S T R A C T

Prone-to-supine breast image registration has potential application in the fields

of surgical and radiotherapy planning, and image guided interventions. However,

breast image registration of three-dimensional images acquired in different patient

positions is a challenging problem, due to large deformations induced to the soft

breast tissue caused by the change in gravity loading. Biomechanical modelling is a

promising tool to predict gravity induced deformations, however such simulations

alone are unlikely to produce good alignment due to inter-patient variability and

image acquisition related influences on the breast shape.

This thesis presents a symmetric, biomechanical simulation based registration

framework which aligns images in a central, stress-free configuration. Soft tissue

is modelled as a neo-Hookean material and external forces are considered as the

main source of deformation in the original images. The framework successively

applies image derived forces directly into the unloading simulation in place of a

subsequent image registration step. This results in a biomechanically constrained

deformation. Using a finite difference scheme enables simulations to be performed

directly in the image space. Motion constrained boundary conditions have been

incorporated which can capture tangential motion of membranes and fasciae. The

accuracy of the approach is assessed by measuring the target registration error

(TRE) using nine prone MRI and supine CT image pairs, one prone-supine CT

image pair, and four prone-supine MRI image pairs. The registration reduced the

combined mean TRE for all clinical data sets from initially 69.7 mm to 5.6 mm.

Prone-supine image pairs might not always be available in the clinical breast

cancer workflow, especially prior to surgery. Hence an alternative surface driven

registration methodology was also developed that incorporates biomechanical

simulations, material parameter optimisation, and constrained surface matching.

For three prone MR images and corresponding supine CT-derived surfaces a final

mean TRE of 10.0 mm was measured.
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1
I N T R O D U C T I O N

Breast cancer today is the most common type of cancer in western countries,

including Europe, Australia, New Zealand and North America. According to

Cancer Research UKCancer Research UK (20122012) in 2010 the lifetime risk for a women in the UK being

diagnosed with an invasive breast carcinoma was one in eight. Since 2005 the

overall incidence rate in the UK remained relatively stable after a constant increase

since the 1970s. In 2012 this led to 52399 newly diagnosed breast cancer cases in the

UK, where the total number of breast cancer related deaths for the same year was

11679 (European Cancer ObservatoryEuropean Cancer Observatory, 20122012). For the whole of Europe Ferlay et al.Ferlay et al.

(20132013) report 464.000 new cases in 2012, leading to 131.000 breast cancer related

deaths.

On the individual level the diagnosis breast cancer is for every patient a high

psychological burden. Improved cancer management strategies that help making

the clinical workflow smoother and potentially improve the clinical outcome are

required, without introducing the risk of over-diagnosis.

Breast cancer does not describe one single homogeneous disease, but rather

can be categorised according to aggressiveness (invasive versus in-situ), region

of occurrence (lobular versus ductal), receptor and molecular status (Curtis et al.Curtis et al.,

20122012). Appropriate patient specific therapy strategies have to be chosen accordingly.

These include – but are not limited to – surgery, radiotherapy, hormone therapy,

and chemotherapy. Often a combination of these therapy options is proposed by

the clinical team in order to optimise the outcome.

Imaging of the breast is used to detect, diagnose, and stage breast cancer in order

to inform selection of appropriate therapies. For improved guidances of interven-

tions and surgery, however, accurate spatial correspondence between images – or

between images and the surgical setting – has to be established. Since the breast

undergoes large deformations between imaging positions and the surgical setting,

this renders a very challenging registration task that standard image registration
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methods are unlikely to solve. As a result, biomechanical modelling of breast tissue

becomes more and more important.

Biomechanical modelling of the breast and associated image registration tech-

niques are a promising tool in order to improve several application scenarios of

current breast cancer management. Possible application areas include

• surgical planning and image guided surgery,

• radiotherapy planning, and

• cosmetic outcome prediction of breast conserving surgery.

These are briefly outlined in the following and the link with biomechanical model-

ling is highlighted.

1.1 clinical motivation

surgical planning and image guided surgery Pre-operative image

acquisition of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-

MRI) is usually performed in the prone position with the patient lying on her

front, with the breast mostly freely pendant in a dedicated MR-transmitter coil.

This ensures the best image quality as (i) motion artefacts due to breathing are

minimised (ii) the receiving coil is close to the imaged tissue and (iii) the extended

shape of the breast due to gravity improves spatial differentiability.

The imaging position is ideal for diagnostics and staging but unfortunately not

very useful for the surgeon in the operating theatre, since surgery is performed

in the supine position with the patient lying on her back. The very soft tissue of

the breast deforms significantly due to the change in direction of gravity. Being

able to transform the prone image data into the surgical position could provide

the surgeon with important information about the extent and location of the lesion

and thus could improve the achieved margins.

Improved diagnostics and screening programmes lead to an increase of small

lesions being detected (Dua et al.Dua et al., 20112011). If breast conserving surgery is part of the

therapeutic plan, this leaves the surgical team with the challenge that the main

mode of tumour localisation during surgery – which is palpation – is not available
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for small tumours with diameters below 15 mm. Furthermore, not all tumours are

visible on inter-operative imaging techniques such as ultra sound (US). Wire-guided

localisation is currently used in these cases where the centre of the lesion is marked

with the barbed tip of a guide wire. This procedure imposes severe implications on

the clinical logistics in terms of scheduling and coordination of radiologists and

surgeons, since wire localisation has to be performed on the day of surgery. This

effectively limits the number of cases that can be operated using this technique

(Dua et al.Dua et al., 20112011). Image guidance could help the surgeon in theatre to approach

the lesion in an optimal fashion without the restrictions that are imposed by a wire.

radiotherapy planning In the case where breast conserving surgery is

accompanied with adjuvant radiotherapy in the treatment plan, prone and supine

position again play a significant role as the radiation is commonly applied in

the supine position. The dose delivery plan is established from a supine chest

Computed Tomography (CT) planning scan which allows the position of the

tumour bed to be localised as surgical clips which were put in place by the surgeon.

A fully three-dimensional extent of the tumour bed thus is difficult to estimate in

the post-surgical CT without the tumour location. Biomechanical modelling in this

application could help to project the pre-surgical lesion extent onto the planning

CT. It should be noted here, that this scenario is beyond mechanical simulations

alone as a surgical intervention takes place between the DCE-MRI acquisition and

the CT planning scan.

cosmetic outcome prediction When tissues are removed from the intact

breast during breast conserving therapy, this has an impact on the shape of the

breast. The most obvious change is volume loss, but also healing processes and

radiotherapy have an influence on the shape of the breast. Being able to handle

different gravitational loadings appropriately is a first step towards modelling the

whole procedure including not only the mechanical aspects but also the tissue

remodelling based on mechano-biological processes.
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1.2 contribution

The contributions presented in this thesis are:

• Biomechanical model generation based on prone MR images of the breast.

Since the MR-based biomechanical model represents the breast in a gravity

loaded configuration, different numerical unloading strategies to recover

the zero-gravity state are compared and evaluated using phantom data and

patient specific biomechanical models (Eiben et al.Eiben et al., 20142014).

The biomechanical model generation process forms a minor contribution

and is described in detail in section 3.23.2. It combines existing segmentation

and meshing methodologies into a processing pipeline. The three unload-

ing strategies investigated in chapter 33 are described and evaluated in sec-

tions 3.3.23.3.2 and 3.3.33.3.3 respectively. While all unloading methodologies were

described previously in the literature, the iterative method (c.f. section 3.3.2.33.3.2.3)

proposed by Carter et al.Carter et al. (20082008) was extended by properly considering the

difference between the loaded and the unloaded configuration to calculate

the update of estimated gravity-free configuration. This leads to a faster

convergence of the scheme.

• Development of a registration strategy to align volumetric breast images

that were acquired in different patient positions, i.e. in the prone and supine

configuration. This strategy integrates biomechanical simulations and image

registration components into a single optimisation framework. Gravity and

image derived forces are simultaneously integrated into a biomechanical

simulation, which avoids the need of a subsequent, generic image registration

step, hence the deformations are constrained by the biomechanical material

model. Motion of the breast tissue along the chest is considered, as well as

pre-stressing of the breast tissue due to gravity loading (Eiben et al.Eiben et al. (20132013)

and (Eiben et al.Eiben et al., 2016a2016a)).

The integrated biomechanical image registration methodology (section 4.24.2)

forms a main contribution of this thesis and is a completely new development.

However, it is informed by experiments described in section 4.14.1 which utilised
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existing registration software and the iterative unloading methodology of

section 3.3.2.33.3.2.3.

• Evaluation of the developed intensity based registration framework using a

phantom breast geometry and clinical datasets comprising of MR-MR, MR-CT

and CT-CT image data pairs (Eiben et al.Eiben et al., 2016a2016a).

The evaluation of the integrated registration framework (sections 4.2.64.2.6 to 4.2.94.2.9)

is closely related to the previous point and is a main contribution of this

thesis.

• Development of a biomechancially guided registration methodology to align

prone MR images with a target surface that represents the patient’s skin

outline in a different position, i.e. upright or supine. The methodology op-

timises the material parameters of the biomechanical model that is utilised

to simulate the gross deformation from the prone to the target configura-

tion. Residual misalignment is corrected by using a surface- and thereafter a

volume-warping methodology (work accepted for oral presentation at SPIE

Medical Imaging 2016 (Eiben et al.Eiben et al., 2016b2016b)).

The major contribution of the surface driven registration as described in

chapter 55 is the constrained, non-rigid surface alignment (section 5.1.25.1.2) as

well as the combination of all components (i.e. material parameter optimisa-

tion, surface alignment and volume mesh warping) into a single alignment

framework.

1.3 thesis outline

The remainder of this thesis is structured as follows. In chapter 22 an overview of

the current state of the art in biomechanical modelling is presented. This includes

fundamental concepts in continuum mechanics, aspects more specifically related to

breast deformation modelling and image registration techniques, which incorporate

biomechanical concepts. Chapter 33 describes the biomechanical model generation

in detail and evaluates different strategies that recover the unloaded configuration

from a pre-stressed geometry. Such methods are required when patient position
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changes are simulated since the breast geometry is always imaged with gravity

loading present. In chapter 44 it is shown that currently a tight integration between

biomechanical simulations and intensity based image registration does not exist

thus an integrated simulation based registration framework is developed and

evaluated. Clinical applicability of a biomechanical registration could potentially

be increased, if the image as target information is replaced with a surface, which is

potentially more readily available. A corresponding methodology is developed in

chapter 55. Chapter 66 concludes this thesis.



2
B A C K G R O U N D A N D S TAT E O F T H E A RT

chapter overview This chapter presents the theoretical background and

reviews the relevant literature on topics that are covered in this thesis. First a

brief introduction to continuum solid mechanics is presented. Then biomechanical

modelling and related techniques which are concerned with breast deformation

simulations are reviewed. This includes reviewing existing numerical solution

techniques as well as experimental work on breast tissue biomechanical constitutive

modelling. One major application for breast deformation simulations is the fusion

of information from different imaging modalities. Image alignment is a prerequisite

for this task. Since image alignment is exactly the task of image registration, relevant

literature in this field will be reviewed thereafter. Image registration techniques

which utilise biomechanical concepts are summarised and eventually the focus is

put onto techniques with applications in breast image registration.

2.1 concepts in continuum mechanics

Continuum mechanics aims to describe the motion of materials. The fundamental

assumption is that matter is continuously distributed in space. Hence, relevant

quantities such as mass density, external body forces, stresses and strains can be

described as continuous functions of space. This gives rise to the development

of field theories, where physical terms and processes are described by means of

spatial fields (HauptHaupt, 20022002). This section can only provide a brief overview and the

interested reader is referred to the extensive literature that is available on that topic

(e.g. the textbooks by Bonet and WoodBonet and Wood (20082008), IbrahimbegovicIbrahimbegovic (20092009), HauptHaupt (20022002),

etc.). All biomechanical simulations of breast tissue deformation described in this

thesis are based on the concepts presented below. Moreover, understanding the
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underlying principles is essential to develop the intensity driven, biomechanically

constrained image registration method presented in chapter 44.

2.1.1 Displacement, Deformation, Strain

A deformable body can be described in two main substantially different configura-

tions: The undeformed and the deformed configuration. In continuum mechanics

these configurations must clearly be differentiated. Although the undeformed

configuration is not inherently equivalent to the reference configuration – as the ref-

erence configuration is the configuration to which the stresses and strains are being

measured and in general can be chosen arbitrarily – in the course of this work, the

reference configuration will always be the undeformed configuration. In continuum

mechanic terms the “total Lagrangian perspective” is adopted. (All definitions in

this section are summarised from the works presented by Bonet and WoodBonet and Wood (20082008)

and Kaye et al.Kaye et al. (20092009).)

Let a point in the undeformed configuration be denoted by XX = (X1, X2, X3)T

and in the deformed configuration xx = (x1, x2, x3)T, then the function uu(XX, t) =

(u1, u2, u3)T describes the relative displacement

uu(XX, t) = xx(tt)− XX = ϕϕ(XX, tt)− XX. (2.1)

The displacement is a function of time tt and alternatively the position of a material

point originally at XX can also be described with ϕϕ(XX, tt). Moving on from a single

material point to a continuous material, the neighbourhood of a point has to be

described, too, which leads to the deformation gradient FF, defined as

FF =
∂xx
∂XX

= II +
∂uu
∂XX

, (2.2)

where II is the identity matrix. The deformation gradient is a two-point tensor as it

relates infinitesimal displacements or line elements in the undeformed configuration

with corresponding displacements in the deformed configuration. It captures local

elongations as well as rotations. Using a polar decomposition of the deformation
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gradient FF, the overall deformation can be decomposed into the stretch tensors UU

and VV and a rotation tensor RR.

FF = RRUU

= VVRR
(2.3)

From the deformation gradient the left and right Cauchy-Green deformation

tensors can be derived

BB = FFFFT (2.4)

CC = FFTFF (2.5)

where BB is the left and CC is the right Cauchy-Green deformation tensor. Both tensors

are independent of the rotation and only measure local stretches as can be easily

shown by using the polar decomposition (2.32.3). Any deformation which deposits

energy in a material is independent of any rotation RR. Thus the eigenvalues of UU

and VV are called the principal stretches λi > 0, i = 1, 2, 3 and the eigenvalues of BB

and CC are λ2
i .

From the deformation gradient the Green Strain tensor can be defined as

EE =
1
2

(
FFTFF− II

)
=

1
2
(
UU2 − II

) (2.6)

with II being the identity tensor. When no deformation is present, then the deform-

ation gradient FF = II whereas the strain becomes EE = 0. This deformation measure

is a key quantity in the total Lagrangian formulation which relates all quantities to

the undeformed configuration.

Using (2.22.2) to substitute the deformation gradient with the gradient of the

displacement field FF = II +∇uu the Green Strain Tensor can be rewritten as

EE =
1
2

(
(II +∇uu)T(II +∇uu)− II

)
=

1
2

(
∇uu + (∇uu)T + (∇uu)T∇uu

)
≈ 1

2

(
∇uu + (∇uu)T

)
:= εε

(2.7)

For small deformations the approximate equality of the last equation holds, which

defines the small strain tensor εε. However, care has to be taken when this approx-

imation is used, since even rigid body rotations result in a non-zero response of

this strain measure. A corresponding example is presented in the appendix B.1B.1.
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The scalar valued principal invariants (i.e. no dependence

changeHA8.1on rotations of the coordinate system) of the right Cauchy-Green

deformation tensor CC can be chosen as follows:

ICIC = tr (CC) (2.8)

IICIIC =
1
2
(
tr 2(CC)− tr (C2)

)
(2.9)

IIICIIIC = det CC (2.10)

For the description of an isotropic homogeneous incompressible material the

definition of ICIC and IICIIC are sufficient. For compressible materials IIICIIIC also has to be

taken into consideration. In some cases it is convenient to express the invariants in

terms of the principal stretches λi as

ICIC = λ1λ1
2 + λ2λ2

2 + λ3λ3
2 (2.11)

IICIIC = (λ1λ1λ2λ2)
2 + (λ2λ2λ3λ3)

2 + (λ1λ1λ3λ3)
2 (2.12)

IIICIIIC = (λ1λ1λ2λ2λ3λ3)
2 (2.13)

The deformation of different element types from the undeformed to the deformed

configuration is given as follows:

• Line element:

dxx = FFdXX (2.14)

• Area element (Nanson’s formula):

nndAdA = JJFF−TdA (2.15)

• Volume element:

dv = JJdVV (2.16)

As can be seen from equation (2.162.16), the volume change of a volume element is

completely defined by the scalar factor JJ which is nothing else than the determinant

of the deformation gradient FF

JJ = det(FF) > 0. (2.17)
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The deformation gradient FF captures the whole deformation of a material and

does not allow a direct differentiation between a distortional – also called isochoric

– and a volumetric component. This differentiation however is necessary when

incompressible or nearly incompressible materials are considered. Following the

argumentation of Bonet and WoodBonet and Wood (20082008) the volumetric change captured by the

deformation gradient can be achieved by multiplying FF with a suitable factor

F̂F = JJ−1/3FF (2.18)

so that det(F̂F) = 1 is guaranteed. This allows definition of the distortional – or

deviatoric – right Cauchy-Green deformation tensor ĈC as

Ĉ̂C = F̂FTF̂F (2.19)

with the invariants ÎĈ̂IĈ, ÎIĈÎIĈ, and ÎIIĈÎIIĈ corresponding to the definitions given in

equations (2.82.8) to (2.102.10).

2.1.2 Hyperelastic Materials

Breast tissue is often modelled as a hyperelastic material. Moreover, some image

registration methods regularise the deformation based on the relations introduced

here, which motivates a closer review of this topic in this section.

Deformation of an object in general requires energy. The strain measures intro-

duced in the previous section allow description of the deformation of an object,

but do not contain information about how much energy is required to achieve

any degree of deformation. To facilitate this description this section introduces

the strain energy density function – or stored energy potential – ΨΨ. If furthermore

the stored internal energy of a deformed object is path independent, the material

is said to be hyperelastic (Bonet and WoodBonet and Wood, 20082008). Thus in turn it is sufficient to

describe a hyperelastic material by its strain energy function.

2.1.2.1 Hyperelasticity and Invariants

For isotropic materials the strain energy density ΨΨ only depends on the first three

invariants of the right Cauchy-Green deformation tensor (Bonet and WoodBonet and Wood, 20082008).
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For transversely isotropic and anisotropic materials, further invariants with respect

to one or more predominant directions need to be defined. Anisotropy however is

not considered here.

ΨΨ(CC(XX), XX) = ΨΨ(ICIC, IICIIC, IIICIIIC, XX) (2.20)

The second Piola-Kirchhoff stress can be calculated from

SS = 2
∂ΨΨ

∂CC
=

∂ΨΨ

∂EE
(2.21)

In the cases covered by (2.202.20), SS can be calculated using the chain rule.

SS = 2
(

∂ΨΨ

∂ICIC

∂ICIC

∂CC
+

∂ΨΨ

∂IICIIC

∂IICIIC

∂CC
+

∂ΨΨ

∂IIICIIIC

∂IIICIIIC

∂CC

)
(2.22)

The derivatives of the invariants with respect to CC can be precalculated and are e.g.

given as (IbrahimbegovicIbrahimbegovic, 20092009)

∂ICIC

∂CC
= II

∂IICIIC

∂CC
= tr (CC)II− CC

∂IIICIIIC

∂CC
= JJ2CC−1. (2.23)

Note that there are several definitions of principal invariants possible and used in

the literature which requires the corresponding derivatives to be revised accordingly.

With the invariants introduced above (c.f. equations (2.82.8), (2.92.9), and (2.102.10)) (2.222.22)

refurnishes to

SS = 2
(

∂ΨΨ

∂ICIC
II +

∂ΨΨ

∂IICIIC
(tr (CC)II− CC) + JJ2 ∂ΨΨ

∂IIICIIIC
CC−1

)
. (2.24)

This form allows the second Piola-Kirchhoff strain to be determined if the strain

energy density function is defined in terms of right Cauchy-Green strain invariants.

Equivalent expressions exist for cases when the principal stretches are used to

define the strain energy density ΨΨ. The following sections introduce a few ma-

terial constitutive relations that are linked to regularisation terms used in image

registration.

2.1.2.2 Saint Venant-Kirchhoff Materials

The Saint Venant-Kirchhoff material represents the simplest hyperelastic material

for which the strain energy density function in terms of the Green Strain tensor (2.62.6)

is given as

ΨΨ(EE) =
λλ

2
(tr (EE))2 + µµ tr (EE2) (2.25)
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Conveniently the second Piola-Kirchhoff stress SS can be computed as

SS = λλ tr (EE)II + 2µµEE (2.26)

using the relation (2.212.21).

While this material can handle large displacements due to the use of the finite

strain measure, it should only be used in a small strain regime since it does not

handle volume changes correctly. The interested reader is referred to the example

given by HjelmstadHjelmstad (20042004) (c.f. pages 147f.). This material model is the straight

forward extension of the linear elastic material laws with rotational invariant strain

measures (Belytschko et al.Belytschko et al., 20002000).

The Saint Venant-Kirchhoff model was used as a regulariser for non-linear image

registration by Yanovsky et al.Yanovsky et al. (20082008) and is called a quadratic regulariser SSquad

by Burger et al.Burger et al. (20132013) who also illustrate the relation to linear elastic regularisa-

tion by substituting the Green Strain Tensor EE with the small strain tensor ε (c.f.

equation (2.72.7)).

2.1.2.3 Compressible Neo-Hookean Materials

In contrast to the Saint Venant-Kirchhoff material, the neo-Hookean material is

defined in terms of the first and third invariant of the right Cauchy-Green deform-

ation tensor and is thus better equipped to also deal with large strains.

ΨΨ =
µµ

2
(ICIC − 3)− µµ ln JJ +

λλ

2
(ln JJ)2 (2.27)

with JJ2 = IIICIIIC and the material coefficients µµ and λλ. Note that several equivalent

formulations of this material law exist, especially in terms of the deviatoric part of

the Cauchy-Green deformation tensor.

The corresponding second Piola-Kirchhoff Stress tensor can be derived from (2.242.24)

and is given by

SS = µµ(II− CC−1) + λλ ln(JJ)CC−1. (2.28)
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2.1.2.4 Ogden Materials

The Ogden constitutive law (OgdenOgden, 19721972) defines the strain energy density in

terms of the principal stretches λi which are given by the eigenvalues of the stretch

tensor UU or VV of equation (2.32.3):

ΨΨ(λ1λ1, λ2λ2, λ3λ3) =
N

∑
p=1

µpµp

αpαp

(
λ1λ1

αpαp + λ2λ2
αpαp + λ3λ3

αpαp − 3
)

(2.29)

For incompressible materials the relation det(FF) = 1 is used which relates to the

principal stretches as λ1λ1λ2λ2λ3λ3 = 1. For this (2.292.29) can be reformulated as

ΨΨ(λ1λ1, λ2λ2, λ3λ3) =
N

∑
p=1

µpµp

αpαp

(
λ1λ1

αpαp + λ2λ2
αpαp +

1
(λ1λ1λ2λ2)

αpαp
− 3

)
(2.30)

2.1.3 Conservation Laws

Conservation laws are fundamental to describing the behaviour of physical systems.

Here the presentation of Belytschko et al.Belytschko et al. (20002000) is summarised who elaborate on

(i) conservation of mass, (ii) conservation of linear momentum, (iii) conservation

of angular momentum, and (iv) conservation of energy. Of special interest is the

conservation of linear momentum, which in the total Lagrangian framework reads

∇0 · NN + ρ0ρ0fBfB = ∂ttuu. (2.31)

Here NN is the nominal stress, ρ0ρ0 is the mass density in the unloaded configuration,

fBfB is a force acting on the body, and uu is the displacement vector. In essence

this equation is the continuum version of Newton’s second law of motion, which

relates forces acting on a body to a corresponding acceleration. In chapter 44 this

conservation law will be used as a basis to develop a biomechanically constrained

registration method. The so called strong form above can be used directly by

employing a finite difference discretisation. For the solution with a finite element

method however, this conservation law needs to be transformed into a variational,

or weak formulation. The interested reader is referred to the extensive literature

on finite element methods by Belytschko et al.Belytschko et al. (20002000), Zienkiewicz et al.Zienkiewicz et al. (20132013), or

BatheBathe (20062006) for example.
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2.2 breast anatomy

KopansKopans (20072007) describes the breast anatomy from the imaging perspective as a

modified skin gland. The bulk of breast tissue in the adult female is usually located

anterior on the upper torso between the second and the seventh rib, laterally it can

extend up to the mid-axillary line and medially to the sternum. The breast lies on

chest wall, mainly the pectoralis major muscle.

A ductal system of 20 or more major lactiferous ducts, or lobes, exit the breast

through the skin at the nipple. These hollow, tree-like structures branch into finer

ducts until the actual milk producing glands, the lobules, are reached. Lobules are

arranged in clusters and are surrounded by specialised connective tissue, which in

turn is embedded in the stromal connective tissue that can be found throughout

the breast.

Breast tissue develops surrounded by subcutaneous fat between a deep and a

superficial fascia which are sometimes more or less distinct. The deep layer of the

fascia, the retromammary fascia delineates the breast tissue posteriorly and lies on

the pectoralis fascia. Hence some mobility is possible between the pectoralis muscle

and the breast tissue. Additional retromammary fat is also common anterior to the

fascia.

The ductal system is interspersed with adipose tissue and supported by fibrous

tissue. KopansKopans (20072007) highlights the large variability of the interlacing support

network with varying thickness and distinctiveness in the form of planar sheets,

which are known as Cooper’s ligaments. These ligaments extend to the skin as

retinacula cutis and, due to the limited support posteriorly, the skin acts as the

primary support of the breast.

2.3 biomechanical modelling of breast tissue deformations

Deformation simulations of breast tissue use different numerical solution ap-

proaches to predict the underlying physical behaviour of this organ. These in-

clude mass-spring methods employed for instance by Roose et al.Roose et al. (20052005) and

Patete et al.Patete et al. (20132013), mass tensor methods employed by Roose et al.Roose et al. (20062006) and the
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(a) (b)

Figure 2.1: Patient specific biomechanical model generated from segmented MR image. (a) The

different tissue classes are adipose (brown), fibroglandular tissue (orange), pectoral

muscle (light blue) and chest (dark blue) and are used to define appropriate material

properties to the biomechanical model (b).

widely popular finite element methods (FEM) for which the review article by

Babarenda Gamage et al.Babarenda Gamage et al. (20122012) provides an in depth overview. In order to simu-

late the deformation of a very soft organ such as the breast, a three-dimensional

patient-specific model is required. This is necessary because breast shape, size, and

internal structure varies significantly over the population. Thus a patient-specific

biomechanical model should represent the overall breast shape of a patient as

accurately as possible.

Besides the patient-specific geometry, more detailed mechanical breast models

also consider the internal tissue heterogeneity. Fat, glandular and fibrous tissue

as well as skin are the most commonly considered components of such models;

some include adjacent tissues such as the pectoral muscle. For this reason, three-

dimensional images, which enable these tissue classes to be differentiated are

therefore well suited to the purpose of building biomechanical models.

2.3.1 Tissue Classes and Elasticities

Early work by Samani et al.Samani et al. (20012001) identified adipose and fibroglandular tissue

as well as skin as the main components contributing to heterogeneous mechan-

ical properties of the breast and at the same time being distinguishable in MR
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Author Application Constitutive Law Elasticity Parameters [kPa ]

fat fibroglandular

Rajagopal et al.Rajagopal et al. (2008a2008a) gravity loading neo-Hookean C1 = [0.08, 0.13] C1 = [0.08, 0.13]

Carter et al.Carter et al. (20092009) gravity loading neo-Hookean C1 = [0.3, 0.8] C1 = [0.3, 0.4]

del Palomar et al.del Palomar et al. (20082008) gravity loading neo-Hookean C1 = 3 C1 = 12

Krouskop et al.Krouskop et al. (19981998)1 ex-vivo indentation linear elastic E = 18± 7 E = 28± 14

Wellman et al.Wellman et al. (19991999)2 ex-vivo indentation various strain levels E = 6.6± 7 E = 33± 12

Samani and PlewesSamani and Plewes (20072007) ex-vivo indentation indentation tests E = 1.9± 2.5 E = 1.9± 8.6

Table 2.1: Material parameter intervals reported and used by different authors. E is Young’s modulus

and C1 relates to the shear modulus via C1 = µµ/2, c.f. equation (2.272.27).

images (see Fig. 2.12.1). They pioneered building patient-specific meshes from three-

dimensional breast MR image data. Krouskop et al.Krouskop et al. (19981998) and Pathmanathan et al.Pathmanathan et al.

(20082008) made the observation that, in general, fibrous and glandular tissue must

be separated anatomically to be correctly modelled. However this is not generally

possible using clinical MRI, CT or any other available three-dimensional imaging

modality. Consequently, to date, all studies that incorporate heterogeneous material

characteristics, group these tissue classes together into a single “fibroglandular”

class.

Table 2.12.1 extends the overview of material parameters provided by

Rajagopal et al.Rajagopal et al. (2008a2008a). Clearly there is no general agreement on the elastic moduli

of fat or glandular tissues, even when small strain assumptions are used. For small

strains, a differentiation between tissue classes in healthy subjects is disputed by

Samani et al.Samani et al. (20072007). Such results are in agreement with in vivo Magentic Resonance

Elastography (MRE) measurements published by Sinkus et al.Sinkus et al. (20052005). For larger

strains however, the non-linear material characteristics of these tissue types become

dominant and separate treatments of adipose and fibroglandular tissue must be

considered.

Regarding suitable hyper-elastic constitutive laws, O’Hagan and SamaniO’Hagan and Samani (20092009)

compared the ability of a variety of strain energy function classes to represent

stress-strain measurements from real ex vivo tissue samples using iterative fitting

techniques. The functions tested were polynomial, Yeoh, Arruda-Boyce, Ogden,
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and Veronda-Westmann models. Most accurate results could be achieved with the

Yeoh, polynomial and Ogden models. Unfortunately performance of the simple

and thus widely used neo-Hookean constitutive model was not part of their invest-

igations (see e.g. Rajagopal et al.Rajagopal et al. (2008a2008a,bb); Carter et al.Carter et al. (20082008); del Palomar et al.del Palomar et al.

(20082008); Lee et al.Lee et al. (20102010); Han et al.Han et al. (20112011); Lapuebla-Ferri et al.Lapuebla-Ferri et al. (20112011)). The huge

popularity of the neo-Hookean material model for biomechanical simulations prob-

ably reflects a reasonable compromise between the low number of parameters

required and at the same time describing fully non-linear elastic behaviour.

Due to the lack of routinely performed in-vivo measurements, such as MRE,

optimisation schemes have been proposed for different applications. Plate com-

pression experiments performed on subjects in an MR scanner were reported by

Tanner et al.Tanner et al. (20062006). The volunteer was asked to lie in the prone position and the

breast was compressed up to a for the volunteer acceptable amount using a cus-

tom made MR-compatible device. In the same experimental setting Tanner et al.Tanner et al.

(20112011) observe anisotropic tissue behaviour with less extension of the breast in

the anterior-posterior direction. Carter et al.Carter et al. (20092009) used the deformation vector

field from non-linear, intensity based B-spline image registration as a ground truth,

and optimised the material parameters of the neo-Hookean constitutive relation

to simulate the deformation from prone loading to a neutral buoyancy condition

using finite element techniques. Han et al.Han et al. (20102010) on the other hand incorporated a

material parameter optimisation into a registration algorithm and optimised the

image similarity between a real compressed MR image and the corresponding

simulated compression. In subsequent work Han et al.Han et al. (20112011, 20142014) applied the

material parameter optimisation to the prone-to-supine image registration prob-

lem. The main contribution here was the integration of the material parameter

optimisation into a sequential simulation-registration framework which uses a

patient-specific biomechanical model that allows the breast and pectoral muscle to

slide on the chest wall. However, the prone configuration of the breast was regarded

as stress free and the final free-form deformation step from the registration does

not guarantee a physically plausible deformation.

Rajagopal et al.Rajagopal et al. (2008a2008a) considered the gravitational loading of the breast in

the MR scanner. The authors optimised patient-specific material parameters by
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minimising the surface distance between a neutral buoyancy configuration, which

was acquired in the MR scanner, and an inverted gravity loading simulation of the

prone configuration.

In a study by Unnikrishnan et al.Unnikrishnan et al. (20122012) the elastic properties of breast tissue

were regarded in a multi-scale fashion. At the microscopic level the load bearing

component is primarily collagen which constitutes the extra cellular matrix. The

mechanical properties of the breast tissue are thus directly related to factors like

orientation and volume fraction of collagen fibres. For deformation modelling of

the whole breast however it is not feasible to consider the distribution of collagen

fibres directly. At the macroscopic level constitutive relations are required which

describe the material as a continuum. For this reason Unnikrishnan et al.Unnikrishnan et al. (20122012)

approach this problem by mathematical homogenisation, where the heterogeneous

material is represented by an equivalent continuum. They consider the collagen

volume fraction and fibre orientation distribution to determine the elastic modulus

of the hyperelastic neo-Hookean constitutive relation. Although their work is

mainly motivated by describing the stiffness changes in cancerous tissue, the main

assumptions hold for the entire breast.

Moreover, Samani et al.Samani et al. (20072007) and O’Hagan and SamaniO’Hagan and Samani (20092009) report, amongst

others, significantly stiffer material properties for cancerous tissues when compared

to healthy tissues. A correlation between stiffness and tumour grade, or invasive-

ness, was also reported. In biomechanical simulations of mammographic tissue

compression Wessel et al.Wessel et al. (20122012) investigated the effect of shape and stiffness of the

tumour on the local stress distribution. Such an approach is a step towards consid-

ering the complex tumour environment more precisely. A large body of work was

published with respect to modelling tumours and their complex physical, chemical

and biological interactions within their micro-environment. This field of research is

beyond the scope of this thesis, but the interested reader is referred to the review

articles by Edelman et al.Edelman et al. (20102010), Deisboeck et al.Deisboeck et al. (20112011) and Masoudi-Nejad et al.Masoudi-Nejad et al.

(20152015).
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2.3.2 Boundary Conditions and Loading

The boundary and loading conditions in biomechanical simulations aim to describe

the influence on the breast of image modality specific settings such as plate com-

pression during X-ray mammographic image acquisition or gravitational loading

during MR acquisition. Furthermore they need to approximate the interaction with

the adjacent anatomy.

2.3.2.1 Anatomy Related

Numerical procedures, such as finite element methods, necessitate discretisation

of the region of interest to solve the underlying partial differential equations and

calculate the resultant displacements within this region. This in turn requires

that the transitions to neighbouring anatomical structures be defined as boundary

conditions of the discretised breast domain.

Posteriorly the breast is delimited by the retromammary fascia which separates

the pectoral muscle from the breast tissue (Gefen and DilmoneyGefen and Dilmoney, 20072007). This allows

some sliding motion between these two entities. The amount of sliding, however,

depends on the individual, the allowed motion, pose change or outer forces, and

constraints and is therefore difficult to quantify.

In general three different boundary conditions have been used to model the

interaction between the chest wall and breast tissue. These are

• prescribed zero-displacements, i.e. fixed (see e.g. Samani et al.Samani et al. (20012001),

Williams et al.Williams et al. (20032003), Zyganitidis et al.Zyganitidis et al. (20072007), Whiteley et al.Whiteley et al. (20072007) and

Rajagopal et al.Rajagopal et al. (2008a2008a)),

• prescribed non-zero displacements (see e.g. Carter et al.Carter et al. (20082008)), and

• traction free sliding motion (see e.g. Han et al.Han et al. (20112011, 20142014)).

Tanner et al.Tanner et al. (20062006) explored the influences of several aspects of biomechanical sim-

ulations including the boundary conditions. They concluded that inaccurate bound-

ary conditions have a major impact on simulation accuracy. They derived accurate

displacement boundary conditions from non-linear image registration to establish

a point-to-point correspondence where this condition is to be enforced. Roose et al.Roose et al.
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(20082008) explored alternative strategies to incorporate more flexible boundary condi-

tions. This overcomes the need for a-priori known point-to-point correspondences.

In a temporal intra-patient registration task they allowed for sliding motion between

the target and moving skin surface.

Details of the boundary conditions at the medial, lateral, superior and inferior

model boundaries are often not described in detail. Tanner et al.Tanner et al. (20062006) provide the

most comprehensive evaluation of the boundary conditions in these areas.

2.3.2.2 Imaging Modality Related

Mammographic imaging imposes large but highly constrained deformations on

the breast. During this routinely performed procedure the breast is placed between

two compression plates one of which is lowered to compress the breast to about

50% of its original thickness. This stabilises the breast and improves the visibility of

internal structures by increasing the cross-sectional area of the breast exposed to the

incident X-ray beam. The resulting images are two-dimensional X-ray attenuated

projections of the compressed breast. One application of major interest is image

registration between X-ray mammograms and breast MR images.

To link the 2D X-ray projection image to a 3D MR image, a non-trivial image

registration task has to be solved. The major difficulties are

• the dimensionality change from 2D to 3D,

• the large scale deformation between the freely pendulous breast under gravity

loading in the MR scanner and the breast being compressed during mammo-

graphy, and

• the differing image contrasts between X-ray and MRI associated with the

disparate physical interactions involved in the imaging process.

Ruiter et al.Ruiter et al. (20062006) use a biomechanical model and finite element techniques to

simulate the deformation between the uncompressed model, based on the MR

image data, and the compressed state during mammographic image acquisition.

The compression step is simulated by adding two compression plates to the sim-

ulation scenario and moving them together during the course of the simulation.

From this deformation an X-ray mammogram is simulated. Remaining differences
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between the real X-ray mammogram and the simulated image are compensated

by post-simulation steps. Mertzanidou et al.Mertzanidou et al. (20142014) integrate the simulation of the

deformation into a single optimisation procedure with seven degrees of freedom.

These are two rigid in-plane translations, two rotations of the compression plates –

about the anterior-posterior axis and about the superior-inferior axis – the amount

of compression, the Poisson ratio and the ratio of tissue enhancement coefficient.

The compression plates implement a frictionless contact model.

Gravitational effects are usually ignored when mammographic compressions are

simulated as the relatively small body force has only minor influence compared

to the forces originating from the compression plates. Applications which solely

involve changes in direction of gravity however, present a different type of problem.

A conventional breast MR scan is taken with the patient lying in the scanner on

her front (prone position) with her breasts mainly freely pendulous in a dedicated

breast MR coil. Clearly, gravity acts on the breast and extends the breast in the

(vertical) anterior direction. When the position of the patient is changed, so does

the direction of gravity and the configuration of the breast. This renders the task of

presenting prone diagnostic information, from prone Dynamic Contrast Enhanced-

MRI (DCE-MRI), to a surgeon for pre-operative planning or image guided surgery

in the supine position, particularly challenging (Carter et al.Carter et al., 20052005, see e.g.).

Simulations of gravity inversion are performed using two different approaches.

Rajagopal et al.Rajagopal et al. (20072007) as well as Pathmanathan et al.Pathmanathan et al. (20082008) recover the unloaded

configuration from a loaded one by regarding the unloaded configuration as the

unknown of the solution process. This requires reformulation of the solution

procedure and potentially limits its applicability to non-commercial solvers which

can be modified accordingly. Carter et al.Carter et al. (20092009) suggest a fixed point iteration

scheme to solve the backward problem by iteratively calculating the forward

solution. This approach is very flexible and allows usage of any solver available.

Han et al.Han et al. (20112011, 20142014) regard the prone breast configuration as being stress free

and simply apply gravity in the superior direction. Although this is physically not

correct, results suggest that the error can be compensated by a sophisticated hybrid

simulation and registration approach.
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2.4 image registration and biomechanics

Image registration is the task to find corresponding points in two (or more) images.

In the field of breast image registration usually images of the same patient but

either from different imaging modalities, or different time points are aligned. This

is referred to as multi-modal intra-patient image registration. Here the focus will

be on the prone-supine image registration task.

In order to define a registration algorithm, four main components have to be in

place, namely

• an image similarity measure to quantify the similarity between the images,

• a regularisation to constrain the registration to plausible deformations,

• a transformation model which is capable of describing the expected deforma-

tion between the images and

• an optimisation technique to find the best transformation for the given regu-

larisation and image similarity measure.

Usually the first two items are combined together into the objective function

which drives the optimisation procedure. Image registration can be classified

into parametric and non-parametric registration approaches. Parametric image

registration uses a transformation model, that can be described by a number

of parameters. To this class of algorithms belong rigid and affine, but also the

widely popular non-linear B-spline registration that was originally proposed by

Rueckert et al.Rueckert et al. (19981998).

Non-parametric registration on the other hand uses a variational approach to

formulate a minimisation problem where a dense deformation vector field is

directly optimised (see e.g. ModersitzkiModersitzki (20042004)).

DDRR,TT [uu] + αSS [uu]→
uu

min (2.32)

Here D describes the image similarity between the images RR and TT as a func-

tion of the displacement vector field u and SS the regularisation. The regular-

isation becomes necessary as image registration is in general an ill-posed prob-
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lem and thus solutions to the minimisation problem are required to be suffi-

ciently smooth. To achieve this, different regularisers were proposed that in some

cases borrow heavily from the physics of fluid or solid mechanics. These regu-

larisers resemble diffusive (c.f. ModersitzkiModersitzki (20042004)), linear elastic (c.f. BroitBroit (19811981),

Bajcsy and KovačičBajcsy and Kovačič (19891989), Miller et al.Miller et al. (19931993)) or fluid-like (c.f. Christensen et al.Christensen et al.

(19961996), Bro-Nielsen and GramkowBro-Nielsen and Gramkow (19961996), Crum et al.Crum et al. (20052005)) material behaviour.

Another regularisation that is designed to handle large deformations is the “Large

Deformation Diffeomorphic Metric Mapping” (LDDMM) method (c.f. Dupuis et al.Dupuis et al.

(19981998), TrouveTrouve (19981998), Beg et al.Beg et al. (20052005)). Here the velocity of the deformation vector

field is constrained to change smoothly over time.

Hyperelastic regularisation was proposed e.g. by Burger et al.Burger et al. (20132013) in order to

achieve large and at the same time smooth deformations. They borrow the under-

lying concept from continuum mechanics and especially highlight the necessity

to move from small strain measures – which are used in linear elastic registration

algorithms – to finite deformation strain measures. Using the notation introduced

in (2.72.7) the linear elastic regularisation term can be written as

SS lin.elast. =
∫

ξ(tr (εε))2 + µµ tr (εε2)dx. (2.33)

Simple substitution of the small strain tensor εε with the finite deformation Green-

Strain tensor EE yields what Burger et al.Burger et al. (20132013) name quadratic regularisation:

SSquad =
∫

ξ(tr (EE))2 + µµ tr (EE2)dx. (2.34)

By choosing ξ = λλ/2, it can be clearly seen that the Saint Venant Kirchhoff strain

energy density function is used for regularisation (c.f. (2.252.25)). Strictly speaking this

material constitutive relation already describes a hyperelastic material and thus

the name quadratic regularisation is misleading from the mechanical perspective.

To proceed to hyperelastic regularisation they employ a length, a surface and a

volume term, φL, φS and φV respectively, which – when viewed in combination

with the arguments – find a loose correspondence in the first three invariants of

the right Cauchy-Green deformation tensor.

SShyp.elast. =
∫

α1φL(FF) + α2φS(cof (FF)) + α3φV(det FF)dx (2.35)
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Here, cof denotes the cofactor (as defined in (Burger et al.Burger et al., 20132013)) and the func-

tions φL, φS and φV are chosen to be convex for optimisation reasons but from a

mechanical standpoint can be regarded as an Ogden material.

The work by Burger et al.Burger et al. (20132013) clearly originates from an image registration

background. Veress et al.Veress et al. (20052005) on the other hand approach the registration prob-

lem with a clear modelling focus and name their approach hyperelastic warping.

As the name suggests, they use hyperelastic constitutive laws in combination with

a finite element discretisation to regularise their elastic registration. Their energy

functional which they aim to minimise is given by

E(uu, XX) =
∫

Ω0

ΨΨ(XX, uu)dV −
∫

Ω0

U(RR(XX, uu), TT(XX, uu))dV (2.36)

where the strain energy density function is given by ΨΨ and the image similarity

measure between the images RR and TT is given by U. They show a high flexibility

in terms of material laws. In their applications they use neo-Hookean as well as

transversely isotropic constitutive laws, whereas the only image similarity used

is limited to the mono modal sum of squared differences. Previous to this work

Rabbitt et al.Rabbitt et al. (19951995), Bowden et al.Bowden et al. (19981998), Weiss et al.Weiss et al. (19981998) and Veress et al.Veress et al. (20022002)

used the same formulation with only slight modifications.

Regularisation in image registration aims to constrain the deformation to a phys-

ically realistic transformation. Within an organ, physically realistic deformations

are usually related to smooth variations in the displacement vector field (DVF).

However, between organs, where sliding motion might occur, the smoothness

assumption is violated. For the application of breast image registration, sliding

motion can occur at the interface between retromammary fascia and pectoralis

muscle. However, a larger body of work that introduces sliding motion into image

registration focusses on the lung and liver. If an accurate segmentation of the

organ of interest exists, the registration could be limited to the organ itself, ig-

noring deformations outside the mask (Kabus et al.Kabus et al., 20092009; McClelland et al.McClelland et al., 20112011).

Alternatively, the mask could be utilised to locally inform and adapt the regular-

isation (Schmidt-Richberg et al.Schmidt-Richberg et al., 20092009). Other approaches automatically generate a

segmentation mask (e.g. Vandemeulebroucke et al.Vandemeulebroucke et al. (20122012)) or avoid an explicit gen-

eration of such a mask altogether by allowing discontinuities in the DVF through

the use of edge-preserving, bilateral filtering of the DVF (Papież et al.Papież et al., 20142014).
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2.5 chapter conclusion

Continuum mechanics forms the basis for large deformation simulations of the

breast. Patient specific biomechanical models were proposed in the literature

to account for the large variability of breast shape between individual women.

Beyond the shape, a large range of stiffness values was reported, too. Since patient-

specific measurements of the breast stiffness are usually not performed, in some

registration algorithms corresponding optimisation procedures were proposed.

The simulated deformation furthermore depends on the assumed loading and

boundary conditions that are applied to the model, and need to be selected in

correspondence with the application for instance mammographic compression or

gravity loading.

Prone MR images are most commonly used as a basis to define the geometry

of the breast. One main limitation of this procedure is that the prone MR image

shows the breast in a gravity loaded configuration. This body force extends the

tissue significantly towards anterior. Despite this some authors do not consider the

initial loading (Han et al.Han et al., 20112011, 20142014; Lago et al.Lago et al., 20122012). However, recovering the

unloaded shape from a pre-stressed geometry is technically feasible and will be

further explored in chapter 33.

Prone-to-supine image alignment is presented in the literature usually as a

sequential two-step approach comprising of a simulation and a registration com-

ponent. The combined simulation and registration are disjunct procedures with

no (Lee et al.Lee et al., 20102010) or very limited interaction or feedback (Han et al.Han et al., 20112011, 20142014).

Furthermore physically plausible deformations might no longer be guaranteed, if

the deformation model of the final registration step is not sufficiently constrained.

From the image registration perspective very Burger et al.Burger et al. (20132013) introduced

hyperelastic regularisation in order to account for large deformations. Intensity

based registration procedures are however completely image driven and thus

do not allow to incorporate physical loadings such as gravity. An integrated

alignment approach which combines biomechanical simulation and registration

into a common framework is currently missing from the literature. This will be

developed in chapter 44.
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chapter overview In this chapter, the foundations of continuum mechan-

ics, breast anatomy, and published work on breast biomechanical modelling as

described in chapter 22 are put together into a biomechanical model generation

workflow. This workflow is based on prone MR images that show the breast in

a pre-stressed, gravity loaded state. In order to simulate the breast shape under

different loading conditions from such a pre-stressed configuration, it is essential to

consider and remove the effects of gravity. Hence, numerical unloading strategies

are investigated. One of these strategies, the iterative unloading methodology by

Carter et al.Carter et al. (20082008), is improved – forming a minor contribution of this thesis – to

converge faster towards a solution.

Three-dimensional MR images represent a convenient basis to build biomech-

anical models of the breast. MR images are acquired relatively early during the

clinical workflow and could thus be used for tasks further downstream such as

surgical planning and guidance. Prone DCE-MRI images are part of the standard

clinical procedure for patients (i) where the extent of an invasive cancer shows

an ambiguity between clinical and imaging assessment, (ii) where mammograms

of highly dense breasts do not allow accurate diagnosis, or (iii) where the lesion

extent of lobular invasive cancer needs to be assessed prior to breast conserving

surgery (NICE, National Institute For Health and Care ExcellenceNICE, National Institute For Health and Care Excellence, 20092009). Further

clinical indications for MR imaging, however, may exist on an individual basis.

MR images allow differentiation of the relevant anatomical structures such as

adipose and fibroglandular tissue as well as the location of the chest wall and the

pectoral muscle. Another advantage is that MR images are acquired without the

use of ionising radiation. However, when biomechanical models are derived from

MR images, some problems arise that need to be considered.

• The breast is shown in the gravity loaded prone position only,

61
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• the material parameters and constitutive relation of in vivo breast tissue is

generally unknown, and

• often a considerable deformation of the breast is introduced due to contact

with the MR coil.

This chapter is a precursor to the developments in chapters 44 and 55 and describes

the biomechanical model generation process in detail, that was developed in the

context of the Picture project1 (Sabczynski et al.Sabczynski et al., 20142014). Thereafter, an unloading

strategy is developed and compared against other methods used in the literature

alongside a sensitivity analysis with respect to the material parameters in the widely

used neo-Hookean constitutive relation – and hence touches on the second point

of the list above. In chapters 44 and 55 strategies will be explored, which combine

biomechanical models with intensity and surface target information in registration

methods that – among others objectives – aim to overcome deformations such as

those mentioned above.

Regarding the last point of the list above, figure 3.13.1 visualises the effect that

contact of the breast with the MR scanner can have on the breast shape. The upper

row shows a prone CT image and the row below an MR image of the same patient.

Both volumetric images were manually aligned using features on the chest. The CT

image can be regarded as freely pendulous, since the patient support was visible

in the image and no contact could be identified in the proximity of the breast. In

the MRI patient position configuration, on the other hand, a medial contact pushes

the breast in the lateral direction. Furthermore the superior and inferior extent

appears to be confined by the scanner. While the relative deformation between

the images is apparent in the figure, the usefulness of this case for a quantitative

evaluation is limited since surgery took place between both acquisitions – i.e. MRI

before and CT after surgery. However, the effect of surgery on the overall breast

shape appears to be small, which can be observed in corresponding baseline and

follow-up photographs of that patient that are also shown alongside the CT and

the MR image.

1 www.vph-picture.euwww.vph-picture.eu accessed September 2015.

www.vph-picture.eu
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Prone post-surgical CT (a-c) and pre-surgical MR (e-g) image of the same patient

with corresponding post-surgical (d) and pre-surgical (h) photographs respectively. The

segmentation of the breast tissue in the CT image is contoured by a red outline. In the

MR image a clear medial contact between the breast and coil can be observed medially

resulting in significant deformation. Not all deformation can be attributed to the MR

acquisition position since surgery took place between the MRI and CT acquisition,

however pre-(h) and post-surgical (d) photographs indicate only minor influence on the

shape due to surgery.

3.1 picture : project objectives

An overview of the project Patient Information Combined for the Assessment of Spe-

cific Surgical Outcomes in Breast Cancer, or Picture for short, was presented by

Sabczynski et al.Sabczynski et al. (20142014). Since Picture is an international multi-disciplinary EU-

funded project with a three year duration, only a brief overview is presented in

this section.

Triggered by the increased life expectancy after breast conserving treatment,

the scope of breast cancer care extends into areas beyond primary cancer care.

One aspect that might be overlooked at first is the psychological burden on the

patient as a result of having cancer and living with the consequences of treatment.

Aesthetically negative outcomes of treatment can have a direct impact on the

patients’ well-being and self-esteem with a related effect on psychological recovery.
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It was reported by Hill-Kayser et al.Hill-Kayser et al. (20122012) that up to 30% of breast conserving

treatments result in suboptimal aesthetic appearance.

Picture has the aim of developing a breast surgery demonstrator, that combines

patient and population data into a Digital Breast Surgery Patient. This virtual repres-

entation of the real patient can then be utilised to plan surgery and to simulate the

predicted outcome of a selected procedure. The resulting surgical simulation can

in turn be utilised in a shared decision making process that involves the surgeon,

the clinical multi-disciplinary team, and the patient. Quantitative evaluation of the

aesthetic outcome prediction will also be made available and might inform the

decision about different surgical approaches.

The data that are collected in the project include standard clinical images, such as

prone DCE-MRI and X-Ray mammography. In order to also present any predicted

surgical outcomes in a visually comprehensive way, surface data are acquired which

capture the shape and texture of the torso with the patient standing upright using

3D optical imaging technologies. Magnetic Resonance Elastography (MRE) will be

acquired on a population level, i.e. only for a limited number of volunteer patients.

These data will be made available for cases where MRE was not acquired through

the development of a generic breast model from which the missing information

can be derived.

When the data are prepared for surgical planning the biomechanical simulations

come to play an important role. In order to capture a surgical procedure on a

patient-specific level, surgeons prefer to interact with the digital breast surgery

patient in the supine position which resembles the surgical setting. However, no

patient representation, derived from routine clinical imaging, currently captures

this configuration. To generate a patient-specific supine position, biomechanical

models are utilised. The pure biomechanical simulations will be used to integrate

information between different loading configurations and are based on the prone

MR image data. Beyond the biomechanical simulations, a core aspect of the technical

developments in Picture is the mechano-biological simulation of the outcome of

breast conserving treatment that is based on the individual surgical plan.

In order to facilitate the biomechanical simulations, corresponding finite element

models are required. The generation process is described in the following section.
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Figure 3.2: Overview of the mesh generation steps involved. The procedure begins with the segmen-

ted binary-mask image of a patient-specific breast; then a high-density surface mesh is

generated, which is subsequently processed (i.e. clipped, coarsened and labelled) in order

to finally construct the volume FE grid.

3.2 fe-model generation

The process of generating patient-specific biomechanical models from three-

dimensional clinical MR image data consists of three distinct sequential steps:

image segmentation, mesh generation, and model assembly. These steps are elabor-

ated separately in this section, while an illustration of the separate steps is provided

in figure 3.23.2 .

3.2.1 Image Segmentation

Image segmentation delineates the structure of interest from an image – in this case

the breast is segmented from the MR image. When the organ itself is identified,
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internal structures can be further differentiated into adipose and fibroglandular

structures. The methodology used is briefly outlined below.

The main processing steps in this image segmentation task are:

• Perform an initial bias-field correction to remove unwanted image inhomo-

geneities (Tustison et al.Tustison et al., 20102010);

• segment the patient foreground from the background (via grey-scale “closing”

and automated thresholding);

• identify relevant landmarks (e.g. the mamillae and the mid-sternum);

• eliminate the arms by properly cropping the image;

• segment the pectoral muscle surface using an automated image classification

technique, and

• assign a probability model of voxels inside the breast (belonging to the

adipose or fibroglandular tissue-classes) (Van Leemput et al.Van Leemput et al., 19991999).

The segmented breast image defines the volume of the biomechanical model (see

figure 3.3a3.3a). For prone-to-supine simulations the breast tissue is expected to be

displaced in the lateral and posterior direction. Since boundary conditions need to

be assigned to the boundaries of the simulated domain and might limit the mag-

nitude of the resulting displacements, care was taken to extend the segmentation

as far posterior as possible. The challenge here is that posterior image areas suffer

a loss of signal-to-noise ratio, due to the increased distance of the tissue to the MR

receiver coil. This makes the segmentation in this area potentially less accurate. As

a result of the lateral and posterior extension of the segmentation region, the breast

biomechanical model covers a larger volume than is anatomically defined as breast

tissue.

3.2.2 Mesh Generation

In the mesh generation step, the MR reconstructed breast geometry is discretised

using finite elements. Figure 3.23.2 illustrates the developed sequential procedure to

generate a high-quality tetrahedral mesh for a patient-specific FE model.



3.2 fe-model generation 67

R L

I

S

R L

P

A

A P

I

S

(a) (b)

(c) (d)

Figure 3.3: (a) Orthogonal views of the binary mask image resulting from image segmentation.

(b) High-density surface mesh generated using the marching cubes algorithm and a

windowed-sinc smoothing filter. (c) The rotation of the field of view against the physical

coordinate system is taken into account in the clipping algorithm. Note the angle

between the upper boundary of the breast mesh and the z-axis. (d) Coarsened FE mesh

with properly labelled triangular face elements. Skin surface is shown in green, axial

clipping plane in yellow and lateral clipping plane in blue.
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Starting from the segmented MR image, the transition from the voxel based

image domain to a node-element based representation of the analysed breast geo-

metry domain needs to be made. To accomplish this, surface mesh generation

from a Cartesian (voxel based) grid can be achieved by utilising the well estab-

lished marching cubes algorithm (Lorensen and ClineLorensen and Cline, 19871987). The implementation

of the Visualisation Tool Kit (VTK)2 (Schroeder et al.Schroeder et al., 20062006) is employed with a

subsequent application of a windowed-sinc smoothing filter (Taubin et al.Taubin et al., 19961996).

This combination of algorithms is observed to effectively reduce step-like artefacts

that arise from the marching cubes algorithm and as a result triangular surface

meshes of very good quality can be produced.

However, as shown in figure 3.3b3.3b, the surface mesh at this stage usually shows

smooth boundaries at the transition from the anatomical skin and pectoralis muscle

surface to the transverse, coronal, and sagittal boundaries defined by the image’s

field of view (FoV) or the clipping introduced in the segmentation. To address this,

the triangulated surface mesh is clipped on the superior, inferior, posterior and

lateral face of the image in order to obtain a crisp transition between the surfaces

(see figure 3.3d3.3d). Clipping of the surface mesh shown in figure 3.3b3.3b is achieved by

applying a VTK closed-surface clipping filter.

Since the boundaries of the MR image define the lateral, superior and inferior

extent in the first place, the additional clipping planes are aligned with the FoV of

the image3 rather than with the physical coordinate axes. Even so, careful consid-

eration is required when applying the clipping planes filter, especially when the

FoV of the MR scanner is not aligned with the real-world (or physical) coordinate

system. Incorrect filter application could result in important image information loss.

Figure 3.3c3.3c demonstrates an example of a small rotation between the reconstructed

breast geometry (no clipping filter applied) and the physical coordinate system.

Larger rotations between the image axes and the physical coordinate system were

observed.

2 www.vtk.orgwww.vtk.org accessed 4.5.2015.
3 The extent and orientation of the FoV, which is covered by a medical image, can be selected by the

operator to best suit the breast shape and patient position. This has no effect on the quality of the

scan, however smaller FOVs generally reduce the acquisition time.

www.vtk.org
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After the triangulated surface mesh is clipped, the approximated centroid Voronoi

diagram (ACVD) coarsening algorithm (Valette and ChasseryValette and Chassery, 20042004) is utilised

in order to correct and control the surface mesh discretisation level. Then, the

face elements of the newly created mesh are labelled accordingly to distinguish

the boundary conditions in the FE model, as shown in figure 3.3d3.3d. Labels are

assigned for skin and pectoralis boundaries, as well as for the clipping planes,

i.e. lateral, superior, inferior, and posterior. The labelled triangular surface grid

of the breast boundary is denoted ΓB. Finally, the analysed patient-specific breast

geometry is discretised using three-dimensional volume elements using the open-

source meshing platform Gmsh (Geuzaine and RemacleGeuzaine and Remacle, 20092009). In this thesis volume

meshes of linear tetrahedral elements are constructed using an Advancing Front

algorithm (SchöberlSchöberl, 19971997), which also incorporates Netgen4 mesh optimization

routines.

3.2.3 Model Assembly

In this step, the input for the FE solver is produced. Given the volume mesh gen-

erated in the previous section, it is necessary to assign biomechanical properties

to each element of the discretised domain into the model. Hence, all tetrahedral

elements need to be assigned with a label associated to a tissue-class, i.e. assign

adipose, fibroglandular or skin tissue properties. This is accomplished by incorpor-

ating the image segmentation results of the medical images.

A tetrahedral element, as shown in figure 3.43.4, has the vertices: pp1, pp2, pp3 and pp4.

The tissue-class of the element is sampled from the label image at five positions ss1

to ss5, which are calculated using a linear combination of the original tetrahedral

vertex points, as

ss1 = 1/8 (5pp1 + pp2 + pp3 + pp4) , ss2 = 1/8 (pp1 + 5pp2 + pp3 + pp4) ,

ss3 = 1/8 (pp1 + pp2 + 5pp3 + pp4) , ss4 = 1/8 (pp1 + pp2 + pp3 + 5pp4) ,

ss5 = 1/4 (pp1 + pp2 + pp3 + pp4) .

4 www.hpfem.jku.at/netgenwww.hpfem.jku.at/netgen accessed 5.1.2015.

www.hpfem.jku.at/netgen
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Figure 3.4: Sample points ss1 to ss5 derived from the tetrahedral element to sample the internal tissue

segmentation.

The tissue-class of the element is then determined by the median value of the

samples. Denser sampling might give more accurate estimate of the corresponding

tissue-class for the tetrahedral element than using only the geometric centre ss5 as a

sample point.

Finally, the FE model is properly informed, where all tetrahedral elements in

the grid are labelled as adipose or fibroglandular tissue. Moreover, the surface

triangular elements are also labelled according to their surface properties, as skin,

pectoralis fascia or clipping plane.

To finalise the model description, boundary conditions are selected for each

labelled surface. The skin and lateral clipping planes are modelled as being traction

free whereas the retromammary region and the posterior clipped plane are assigned

with a prescribed zero-displacement condition. Nodes in the superior and inferior

clipping planes are allowed to move within this plane.

3.3 obtaining the unloaded configuration

Typically, breast MRI acquisitions take place with the patient prone, in which the

breasts are mostly freely pendulous being pulled in the anterior direction due to
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(a) Displacement vectors illustrating the result

of the inverse – or unloading – analysis

(b) Overlay of the prone (transparent orange)

and the predicted unloaded breast geometry

(blue surface)

Figure 3.5: Unloaded (or gravity-free) configuration numerical prediction of a patient-specific breast

geometry using an inverse analysis approach as described in Eiben et al.Eiben et al. (20132013, 20142014).

gravity. As a result, the image derived patient-specific breast geometry, and hence

the state of the biomechanical model, is initially situated in a loaded condition

under mechanical stress. This requires the evaluation of the unloaded – or gravity-

free – configuration of the breast geometry. Figure 3.53.5 shows an example of a

recovered unloaded configuration from a prone loaded one using the numerical

scheme described below in section 3.3.2.33.3.2.3.

Several approaches to recover the stress-free – or undeformed configuration – of

an elastic body have been proposed in the literature. In the context of the inverse

finite deformation approach, the initial stress-free (or unloaded) configuration of

an elastic body is determined from a given deformed state and thus, the stress state

within its current (or loaded) configuration is evaluated. Govindjee and MihalicGovindjee and Mihalic

(19961996) proposed a numerical approach that solves the inverse motion i.e. the

deformation that maps the current configuration to the reference (or unloaded) con-

figuration directly from the boundary-value equilibrium problem. They developed

a finite element methodology that involves modifications to standard forward

analysis platforms. The formulation proposed is based on a re-parameterisation of

the equilibrium equations and it has a direct physical connection to the problem at

hand, eliminating boundary condition difficulties. This numerical formulation was

later extended to isotropic near-incompressible materials (Govindjee and MihalicGovindjee and Mihalic,
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19981998) as well as anisotropic hyperelastic solids (Lu et al.Lu et al., 20072007). On the other hand,

Carter et al.Carter et al. (20082008) proposed a fixed point type iterative scheme, later extended by

myself in (Eiben et al.Eiben et al., 20132013), which allows the recovery of the unloaded configura-

tion by using only forward simulations and thus is able to work with any finite

deformation simulation software.

The contents of this section was presented at SPIE Medical Imaging 2014

(Eiben et al.Eiben et al., 20142014) and compares three different numerical approaches to obtain

an unloaded configuration of biological tissues from the loaded geometry and

highlights the pros and cons of each method. The methods being compared are:

(i) the crude approximation where the initial loading of the imaging position is

not considered and only the direction of gravity is inverted, M1M1, (ii) the inverse

finite deformation approach which requires the parametrisation of the governing

equations, M2M2, and (iii) the iterative fixed point type approach, where only forward

simulations are utilised to optimise the node position in the unloaded configuration,

M3M3. Since I extended the latter approach and compared these three methods, the

description of this methodology is given in detail in section 3.3.2.33.3.2.3.

As the prone and supine MR images show the breasts in a gravity loaded

configuration, the true unloaded state remains unknown. Several groups approxim-

ated the unloaded state by creating a neutral buoyancy condition (Rajagopal et al.Rajagopal et al.,

2008b2008b; Carter et al.Carter et al., 20092009) by immersing the subject’s breasts into water while they

were placed in the prone configuration. In these cases the simulation accuracy can

be evaluated by either the use of fiducial markers or image derived correspond-

ences. Due to the lack of such images and to avoid any inaccuracies inherent to

these procedures, here a purely simulation based approach is followed in order to

quantify the accuracy of the recovery of the unloaded configuration. A quantitat-

ive comparison of the unloading methodologies of patient-specific models is first

presented. Thereafter a numerical breast shaped phantom is used to investigate

the sensitivity of all methods to the chosen material parameters. The sensitivity

analysis is performed with respect to the shear modulus of the hyperelastic material

model.



3.3 obtaining the unloaded configuration 73

3.3.1 Image Data, Shape Phantom and Biomechnical Model Generation

The basis for the patient-specific models used in this study are prone and supine

MR image pairs of three patients and of a volunteer which were acquired with a

Philips Intera 1.5T. For the prone acquisitions a dedicated breast coil was used,

whereas for the supine images the Q-body coil of the scanner was used to avoid

any external force on the breast surface. These images were then segmented into

adipose and fibroglandular tissue and the retromammary boundary was identified.

From the label images biomechanical models were generated as described in

sections 3.2.23.2.2 and 3.2.33.2.3, however, breast models were separately generated for

the left and right breast respectively. The simulations in this section utilised a

compressible hyperelastic neo-Hookean constitutive material model (HolzapfelHolzapfel,

20002000), with the strain energy-density function

ΨΨ =
µµ

2
(ICIC − ln IIICIIIC − 3) +

λλ

8
ln2 IIICIIIC. (3.1)

Here µµ and λλ are material parameters and were selected to be in the range defined

by previous research (del Palomar et al.del Palomar et al., 20082008; Han et al.Han et al., 20122012; Eiben et al.Eiben et al., 20132013)

as µµadipose = 300 Pa, µµfibroglandular = 450 Pa and λλadipose = λλfibroglandular = 5 · 104 Pa

for adipose and fibroglandular tissues, respectively. ICIC and IIICIIIC are the first and

third invariants of the right Green-Cauchy deformation tensor. The breast was

assumed to be fixed to the pectoral muscle and the corresponding nodes were

assigned with a zero-displacement boundary condition. Images and corresponding

models were denoted S1 to S4, the patient position is given as P or S for prone and

supine respectively and the left or right breast is indicated with L or R.

For the phantom experiments a numerical breast-shaped phantom was generated

using a two-dimensional Gaussian distribution supported by a cylinder represent-

ing the pectoral muscle surface (see figure 4.114.11 on page 121121 and section 4.2.64.2.6 for

further details about the phantom geometry). A homogeneous hyperelastic neo-

Hookean material distribution was assumed and three loaded configurations were

simulated by applying gravitational body forces in the directions corresponding to

the prone, supine and upright subject positions.
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3.3.2 Unloading Strategies

The three numerical unloading strategies that are compared in this sections are

described below.

3.3.2.1 Inversion of Gravity

The first approach, M1M1, uses a conventional forward simulation and approximates

the unloaded configuration by simple inversion of the direction of gravity. It does

not consider the gravitational loading and resulting initial stresses of the breast

in the imaging position. Hence, the biomechanical model that is built from the

prone or supine MRI is regarded as stress-free and loaded with the gravitational

body force fBfB in the posterior and anterior direction respectively. For this standard

forward problem, solution of the equilibrium equation

∇0 · PP + fBfB = 0 (3.2)

is accomplished via the finite element method (FEM). ∇0 · PP is the divergence of

the first Piola-Kirchhoff stress tensor PP = ∂ΨΨ/∂FF which relates the strain energy

density function ΨΨ and the deformation gradient FF.

3.3.2.2 Inverse Finite Deformation Approach

For the inverse finite deformation approach, M2M2,

the method of Govindjee and MihalicGovindjee and Mihalic (19961996) is implemented into our in-house

C++ code. Re-parametrisation of the equilibrium equation (3.23.2) presented by the

authors results in

∇ ·σσ + fbfb = 0. (3.3)

Since the deformed configuration is known and the undeformed (or reference)

configuration is the primary unknown, an Eulerian framework is advantageous

here and that’s why the strain measure used is the Cauchy stress σσ and the

body force in the deformed configuration is given by fbfb. The inverse deformation

gradient finvfinv and the deformation gradient FF relate via the push forward operation

FF = (finvfinv)−1 ◦ϕϕ, where ϕϕ maps the undeformed to the deformed configuration.
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Figure 3.6: Workflow of the iterative zero-gravity state recovery procedure M3. The original model

zzprone is to be recovered by a forward loading simulation. An initial guess of the zero

gravity state ZZ0 is established by simulating gravity in the direction opposite to the

original loading (1). Subsequently all stresses in the model are set to zero and gravity is

reapplied in the original direction (2). This allows the error between the simulation and

original model the to be measured (3). The update of the reference state (4) is derived

from the difference ddi between the gravity loading simulation in the prone and the

original prone model.

Then the Cauchy stress can be calculated as σσ = det(finvfinv)PP(finvfinv)−1(finvfinv)−T. For

more details of the mathematical and numerical aspects of this approach the reader

is referred to the original work by Govindjee and MihalicGovindjee and Mihalic (19961996).

3.3.2.3 Fixed-Point Iterative Scheme

The third method, M3M3, used to estimate the unloaded configuration, is the approach

originally presented by Carter et al.Carter et al. (20082008) and extended by myself (Eiben et al.Eiben et al.,

20132013) by implementing an improved method to calculate the iterative update.

Figure 3.63.6 shows an overview of this iterative unloading approach. In principle,

this method can be used with any open-source or commercial FEM package.

Here however, the fixed point iterative scheme utilises an updated Lagrangian

FE formulation, where only forward simulations are required. Figure 3.63.6 shows

the prediction-correction workflow of this approach and the separate steps are

numbered accordingly from (1) to (4).
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The term “fixed point iteration” is known from numerical analysis where the

problem f (x) = x is solved by the iterative scheme xn+1 = f (xn), and x called a

fixed point of f if the scheme converges. The unknown unloaded configurations

takes the role of x and the iterative scheme is defined as follows.

The method is initialised with simple gravity inversion (1), as performed in

method M1M1, producing displaced node positions ZZ0 and offers the first prediction

of the unloaded configuration. In order to correct the error when the gravity loading

in the MRI configuration is not considered, all stresses in the current reference

state prediction are set to zero and gravity is reapplied in the opposite direction (2).

This results in the simulated prone loading with the corresponding node positions

zz0 and reveals the difference dd0 in node positions between the originally loaded

configuration as represented by the MRI zzprone and that from the simulation zz0 (3).

ddi = zzprone − zzi (3.4)

If the maximum magnitude of the error vectors is below a predefined accuracy aa,

then the scheme converged and the unloaded configuration is recovered. Otherwise

the difference vectors are used to update the current reference state prediction in a

corresponding correction step. Using the deformation gradient, the update for the

unloaded configuration (4) can be calculated by

DDi = FF−1ddi. (3.5)

Note that lower case and capital symbols for the error dd, DD and the node position

zz, ZZ indicate the loaded and unloaded configurations respectively. For each node,

FF is calculated using a vector median as proposed by Astola et al.Astola et al. (19901990). The zero-

gravity estimate is then updated with ZZi+1 = ZZi + ss DD, where ss is a scaling factor

which reduces the magnitude of the update in such cases when the new reference

state estimate causes subsequent loading simulations to diverge.

The extension to the method originally proposed by Carter et al.Carter et al. (20082008) refines

the way how the reference state estimation is updated. While in the original work

the measured error between the forward simulation and the loaded configuration

was directly applied to update the reference state estimate, here the deformation

gradient is used to transform the error form the loaded back to the unloaded

configuration to obtain the update (see equation (3.53.5)). Figure 3.73.7 shows the errors
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ddi measured in the loaded configuration for the first three unloading iterations

i = {0, 1, 2} of an example case taken from the Picture project. The corresponding

derived nodal updates ssDDi are shown in figure 3.83.8. Note how the application of

the inverse deformation gradient FF−1 transforms the errors ddi to the unloaded con-

figuration. Hence the update follows the breast deformation and eventually leads

to a faster convergence of the numerical method. This is illustrated in figure 3.93.9,

where the mean and maximum magnitudes of the residual nodal errors ‖ddi‖ for

the same case are plotted over the iterations i. In the first case (figure 3.9a3.9a) the

errors were directly applied to update the zero-gravity estimate, whereas in the

second case (figure 3.9b3.9b) the deformation gradient was used as proposed above. The

latter method reduces the number of iterations required to reach the convergence

criterion of max(‖ddi‖) ≤ aa with aa = 0.5 mm from twelve to seven iterations.

Moreover, figure 3.103.10 visualises the initial estimate of the gravity free configura-

tion of method M3M3 shown as a red wireframe overlayed with the final result shown

in grey. Since the initial estimate of M3M3 also coincides with the final result of M1M1, a

visual comparison of the expected error when the latter method is employed can

be made.

The forward simulations of methods M1M1 and M3M3 were carried out with the open

source software FEBio.5

3.3.3 Evaluation

patient specific model unloading Figure 3.113.11 shows an overview of the

strategy followed for the patient-specific unloading evaluation. The zero-gravity

state estimates, in terms of nodal distance between each method combination,

are compared. For this let the final unloaded node positions recovered with the

methods M1M1, M2M2 and M3M3 be ZZM1 , ZZM2 and ZZM3 respectively, then the distances

between the nodes is given as the Euclidean distances ddi,j = ‖ZZMi − ZZMj‖2. The

node distances then can be evaluated by calculating the mean (d̄di,j), maximum

(max
(
ddi,j
)
), and standard deviation (std

(
ddi,j
)
).

5 www.febio.orgwww.febio.org accessed 15.11.2012

www.febio.org
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(a) dd0

(b) dd1

(c) dd2

Figure 3.7: First three iterations of the iterative unloading scheme M3. The figures show the error

vectors ddi in the prone loaded configuration that is measured between the original model

zzprone and the prone forward simulation zzi (c.f. step (3) in figure 3.63.6). Before these error

vectors are used to update the estimate of the unloaded configuration, the vectors are

warped using the deformation gradient FF. The corresponding transformed vectors are

shown in figure 3.83.8.
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(a) ssDD0

(b) ssDD1

(c) ssDD2

Figure 3.8: First three iterations of the iterative unloading scheme M3. The figures show the vectors

ssDDi which are used to update the zero gravity estimate (c.f. step (4) in figure 3.63.6). The

update is derived from the error ddi in the loaded configuration as shown in figure 3.73.7

by applying the inverse deformation gradient FF−1.
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Figure 3.9: Mean and maximum of the error magnitude ‖ddi‖ during the iterations i for unloading

procedure M3M3. Figure (a) visualises the convergence, when the residual error vectors are

directly used to update the zero-gravity estimate as proposed by Carter et al.Carter et al. (20082008). A

faster convergence can be observed in figure (b), when the inverse deformation gradient

is used to project the error vectors to the unloaded configuration before updating the

nodal position of the zero-gravity estimate accordingly (Eiben et al.Eiben et al., 20132013, 20142014).

Figure 3.10: Initial (red) and end result (grey) of unloading method M3M3. The initial estimate is

also equivalent to the final result of method M1M1.
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Figure 3.11: Comparison strategy for the different inverse approaches M1M1, M2M2 and M3M3 for bio-

mechanical finite element models (B) built from segmented MR images (S) in terms of

relative nodal distances d1,2, d1,3 and d2,3.

shape phantom unloading

and material parameter sensitivity In order to overcome the chal-

lenges associated with an unknown unloaded configuration in the case of the

patient-specific models, a phantom geometry was used to which known body force

loadings were applied. The unloaded configurations were then recovered from the

loaded states using the three methods described above. A quantification of the

recovery error is possible by comparing the recovered node positions with those of

the original shape phantom (see figure 3.123.12).

When the loading and unloading steps are performed with the same constitutive

relation and the same associated parameters, a high accuracy for the recovery of the

unloaded configuration is expected, provided the underlying assumptions about

initial stresses are correct, i.e. in the cases of M2M2 and M3M3. However, in real case

scenarios the true material parameters are often not known a priori. Thus, this

experiment was extended to quantify the sensitivity of the unloading methods

with respect to the model stiffness. For the forward simulations a shear modulus

of µµ = 300 Pa was used (which is in the range used by previous researchers for
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Figure 3.12: A generic breast shape phantom (ph) represents the known unloaded configuration.

In a forward simulation step the phantom geometry is loaded with gravity as a body

force into the prone (P), supine (S), and upright (U) positions. From these loaded

configurations the unloaded state (g = 0) is recovered using the three inversion

methods M1M1, M2M2 and M3M3 resulting in the node positions ZZ with the corresponding

subscripts. The error of the recovery can be quantified directly by comparing the node

positions with those of the original shape model. For the sensitivity experiments the

material stiffness of the unloading step was modified to the one used for the loading

simulations.

this application such as Carter et al.Carter et al. (20092009)), and the recovery was performed in

the range of µµ = [250, 260, . . . , 350]Pa (see asterisk in figure 3.123.12).

3.3.4 Results

In this study, ten MRI reconstructed breast geometries from four individuals in the

prone and supine position were used. The mean, maximum and standard deviation

of the relative distances between the node positions of the estimated unloaded

configurations using methods M1M1, M2M2 and M3M3 are given in Table 3.13.1. The last
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M1M1 vs. M2M2 M1M1 vs. M3M3 M2M2 vs. M3M3 M3M3

Subject d̄d1,2 max(dd1,2) std(dd1,2) d̄d1,3 max(dd1,3) std(dd1,3) d̄d2,3 max(dd2,3) std(dd2,3) nM3nM3

S1 PL 0.92 3.10 0.87 0.89 2.89 0.83 0.05 0.24 0.06 5

S1 SL 0.73 2.32 0.66 0.60 2.12 0.59 0.19 0.87 0.20 3

S2 PR 14.25 54.34 16.52 14.32 54.72 16.64 0.13 0.66 0.13 [2,4,5]

S2 SR 0.89 3.38 0.90 0.86 3.05 0.84 0.10 0.60 0.14 6

S3 PL 0.45 1.85 0.48 0.42 1.62 0.42 0.05 0.28 0.06 4

S3 PR 0.48 1.91 0.52 0.44 1.67 0.46 0.06 0.28 0.07 4

S3 SL 0.16 0.70 0.17 0.08 0.39 0.09 0.09 0.31 0.09 2

S3 SR 0.20 0.88 0.22 0.10 0.49 0.12 0.10 0.40 0.11 2

S4 PR 1.09 4.28 1.26 1.03 3.98 1.18 0.08 0.32 0.09 5

S4 SR 0.33 1.34 0.36 0.26 1.13 0.28 0.09 0.45 0.11 3

Table 3.1: Evaluation using patient data: Mean d̄d, maximum max(dd) and standard deviation std(dd)

of node distances in millimetres between the different methods (M1M1, M2M2, M3M3), as well as

the number of iterations required by M3M3 in order to converge, nM3nM3.

column of this table provides the number of iterations required by M3M3 to converge

to the required error tolerance which was set for all experiments to 0.5 mm.

It can be observed that the inverse approach (M2M2) and the iterative approach (M3M3)

produce comparable results, as the maximum node distance is below the voxel

size of these clinical breast MR images. Thus, for image guidance applications, for

example, both approaches can be regarded as producing equivalent results. For

case S2 PR the initial guess for M3M3 produced with the simple gravity inversion was,

presumably due to the volume of the breast, so far off the zero-gravity state that

it did not produce meaningful results. To circumvent this problem, the reference

state was evaluated for increasing gravitational loadings i.e. {fBfB/4; fBfB/2; fBfB}. The

results of each load then initialised the next step.

The disagreement of the simple inversion of gravity, M1M1 and the other two

methods is always bigger for the prone configurations than for the supine ones.

This suggests that the accuracy achieved with M1M1 depends largely on the geometry

of the problem at hand, i.e. in the supine position the breast is compressed against

the chest wall and thus experiences support on the whole retromammary surface,

whereas in the prone case the breast is pulled away from chest wall without any
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M1M1 M2M2 M3M3

d̄d1,R max(dd1,R) std(dd1,R) d̄d2,R max(dd2,R) std(dd2,R) d̄d3,R max(dd3,R) std(dd3,R)

prone 1.93 11.91 2.68 0.018 0.048 0.015 0.062 0.386 0.078

supine 1.01 3.90 0.95 0.027 0.075 0.023 0.088 0.504 0.100

upright 4.28 17.89 4.83 0.013 0.053 0.013 0.088 0.963 0.084

Table 3.2: Evaluation using a breast shape phantom: Accuracy of the three unloading methodologies

in terms of mean, maximum and standard deviation of nodal distance between the

recovered stress-free state and the original unloaded configuration. All measurements are

given in millimetres.

support underneath. For the fixed point iterative type method, M3M3, this results in

more iterations to achieve the specified accuracy in the unloading of the prone

cases.

The results for the phantom experiments are given in Table 3.23.2. The unloading

error of the simple inversion method M1M1 is about an order of magnitude larger

than that of the more sophisticated approaches, M2M2 and M3M3. The accuracy of M2M2

outperforms that of M3M3 but as the recovery accuracy was set to 0.5 mm this is not

surprising. If an application had a smaller tolerance regarding accuracy, this could

be achieved with M3M3 via more iterations.

The similarity between the inversion methods M2M2 and M3M3 is also reflected by the

results of the sensitivity experiments which are shown in figure 3.133.13. The box-plots

show the deviation of the recovered node positions from the known unloaded

configuration in terms of the median, maximum, minimum, as well as lower and

upper quartiles. As can be expected, the recovery accuracy deteriorates the further

the material stiffness varies from the true value (in this case µµ = 300 Pa). The

error introduced by the deviation of the material stiffness from the true value by

only 10 Pa already introduces errors significantly larger than the accuracy gain of

method M2M2 over M3M3.

As noted earlier, the accuracy of the simple inversion of gravity, M1M1, also depends

on the loading geometry, i.e. unloading from the prone, supine or upright position.

For accuracy requirements of around 5 mm the unloading with M1M1 appears to be a

viable option to unload the supine position only (see figure 3.13d3.13d), whereas it is
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Figure 3.13: Simulation results of the sensitivity experiments using the breast shaped phantom. The

horizontal axis for all graphs is material parameter µµ (see equation (3.13.1)) associated

with the shear stiffness of the model and is given in Pascal.
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unlikely to produce accurate results for prone or upright loadings. Moreover, it is

important to note the variability of the results of M1M1 when patient-specific models

are being recovered due to varying breast volumes.

A trend that can be observed for cases where gravity is removed from the prone

configuration can also be seen in figure 3.103.10. The simple inversion of the direction

of gravity results in an estimate of the unloaded configuration, whose position

is too far lateral (red wireframe) when compared to the result of the iterative

unloading M3M3 (grey wireframe).

3.3.5 Discussion

In the context of finite deformation biomechanics of the breast, three different

approaches estimating the unloaded configuration of patient-specific breast geomet-

ries were compared. These methods were the simple inversion of gravity, without

considering pre-stresses in the imaging configuration, M1M1, the inverse finite de-

formation approach M2M2, and the iterative fixed-point – or prediction-correction –

algorithm M3M3.

The simple inversion of gravity can be a good estimate for reasonably small

breasts, especially when the model is built from the supine position. However,

this is difficult in the current clinical context, as the standard imaging position

for MR images is the prone one. Furthermore it was observed that M1M1 could

yield completely different results from more sophisticated inversion techniques,

i.e. M2M2 and M3M3, when biomechanical models of larger breasts are considered. Also

the sensitivity to the choice of material stiffness parameters for method M1M1 is

substantially higher.

The second approach based on the inverse design, which is founded on a re-

parametrisation of the equilibrium equations for hyperelastic solids, M2M2, exhibits

excellent numerical results for various breast geometries. It could also be further

extended to account for near-incompressible and anisotropic materials. However,

as was shown in the sensitivity analysis, the high accuracy should be seen in the

context of the accuracy of the material parameters. If the material parameters are

not accurately known, then the error associated with the sensitivity to the material
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stiffness becomes significantly larger than the numerical accuracy gain of M2M2 over

M3M3. In such a case there is little difference between M2M2 and M3M3.

The iterative fixed-point methodology, M3M3 is highly flexible, as it can be used

with any conventional FEM solver. This allows utilisation of all advantages of the

selected solver such as element types, boundary conditions, material models as

well as numerical optimisations. An integration into existing modelling frame-

works can therefore be easily achieved. Only forward prediction and correction

simulations are performed. Also, the required accuracy of the node position in the

loaded configuration can be specified and adapted according to the application. A

drawback, however, is the number of forward simulations required, which leads to

longer execution times especially when several incremental gravitational loads are

necessary for the method to converge.

Summarising the above, the results of the iterative M2M2 and the inverse M3M3

approaches are sufficiently close that, for the application of prone-supine breast

deformation estimation, no significant numerical differences can be observed and

the decision for or against one method can be solely made on the advantages and

disadvantages outlined above.

3.4 chapter conclusion

Biomechanical models of the breast play a central role in the Picture project,

which is concerned with predicting and quantifying the cosmetic outcome of breast

conserving cancer treatment. Generating such models from segmented MR images

is an involved process and was described in detail in this chapter. Since every

imaging modality captures the breast under gravity loading, every derived model

will represent a pre-stressed breast geometry – the loading conditions however

may change significantly between modalities, in particular in terms of direction of

gravity relative to the patient coordinate system.

Recovering the unloaded – or gravity free – configuration from a pre-stressed

geometry is an important task in biomechanical modelling of the breast, since it

allows simulation of every other loading condition such as those experienced by

the patient in the supine or upright positions. Although the change of the direction
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of gravity is expected to produce the largest changes on the breast shape it is

nonetheless important to note that MR images do not necessarily represent the

breast geometry under gravity loading only. Contact of the breast with the scanner

can distort its shape. This topic will be subject to further investigations in chapter 55.

Three different numerical strategies that aim to recover the unloaded config-

uration were compared. Reversing the direction of gravity and ignoring any pre-

stresses, M1M1 (c.f. section 3.3.2.13.3.2.1), was found to produce zero-gravity predictions

with insufficient and widely varying accuracy. Since the physical conditions of

the biomechanical system are ignored by this approach, this is not surprising.

The inverse finite deformation approach by Govindjee and MihalicGovindjee and Mihalic (19961996), M2M2 (c.f.

section 3.3.2.23.3.2.2), on the other hand produced excellent numerical results that were

validated in phantom experiments with known ground truth deformations. The

availability of this numerical approach cannot be guaranteed for every solver and

might require custom implementation. On the other hand, the iterative fixed-point

prediction-correction method, M3M3 (c.f. section 3.3.2.33.3.2.3), required several iterations to

converge to the predefined accuracy, however, it has the flexibility to be used with

every solver that allows regular forward simulations. Thus it can be incorporated

easily into an existing simulation workflow.

The iterative unloading was used by Morin et al.Morin et al. (20152015) to simulate supine

ultrasound images on the basis of prone MR images in a project unrelated to

Picture . To accomplish this the MR images were first transformed into the

corresponding gravity-free configuration and thereafter into the supine position

using the methodology described in this chapter. Based on the transformed MR

images the ultrasound signal could be simulated.

The prediction of an unloaded configuration requires knowledge of the ma-

terial behaviour, in terms of the constitutive stress-strain relation and associated

parameters. It was shown that variations in the material stiffness have a direct

impact on the zero-gravity estimate. As a result, from the experiments described

here, the registration methods developed in the following chapters should consider

pre-stresses in a physically correct way and provide strategies to handle potentially

unknown material parameters.
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chapter overview The evaluation of the unloading strategies in chapter 33

showed that it is essential to properly consider pre-stresses in the breast in order to

simulate large, gravity induced deformations. This chapter extends the biomechan-

ical simulation of chapter 33 with image registration components. This leads to a

registration methodology that simultaneously

(i) considers pre-stresses in the initial patient position,

(ii) allows constrained motion of the breast tissue along the chest wall,

(iii) uses a biomechanically constrained deformation model throughout,

(iv) optimises the material parameters, and

(v) incorporates image information to correct residual misalignment,

does not currently exist.

In the first part of this chapter a sequential registration scheme is investigated

which was presented at the International Symposium for Biomedical Imaging (ISBI

2013) (Eiben et al.Eiben et al., 20132013). It was used as a tool to establish the registration work-

flow. The main contribution of this work is that the large deformation between

prone and supine patient positioning is approached in an approximately symmetric

way. The biomechanical simulation is symmetric in the sense that it estimates an

unloaded configuration of the prone and supine MR image respectively, whereas

the subsequent image registration step is non-symmetric. Hence the large deform-

ation from prone to supine is split between two separate unloading simulations.

The gravity free configurations are estimated by using the iterative unloading

procedure (section 3.3.2.33.3.2.3) and the final intensity based alignment follows a free

form registration paradigm. While this initial symmetric sequential approach ad-

dresses the pre-stresses in the original imaging position (i) and corrects residual

89
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misalignment by using a free form deformation registration (v), the motion of

the breast relative to the chest wall (ii) is still insufficiently addressed by using

prescribed displacements. Furthermore, only one set of material parameters was

used and thus the optimisation aspect (iv) was not covered. Lastly, by using an

FFD registration the final transformation is not biomechanically constrained (iii).

In the second part of this chapter the sequential approach is developed into

an integrated simulation based registration scheme which is fully symmetric (see

section 4.24.2). The proposed method addresses all of the above issues (i) to (v) by

integrating image registration components, i.e. image derived forces, directly into

patient-specific biomechanical simulations. The symmetric, biomechanical image

registration aligns the images in a central, virtually unloaded configuration and

considers gravity as the main cause of pre-stresses in the breast as represented in the

images. Hence the first step includes an unloading simulation, which only considers

gravity as a body force. Subsequently the alignment is improved by first updating

the global material parameters, and second by adding local image derived forces to

the system. These account for the residual misalignment and in turn update the

unloaded configuration. This results in a biomechanically constrained deformation.

The breast tissue can move along the chest wall by using a tangential motion

constraint in the retromammary area. Moreover, a finite difference numerical

solution scheme (FDM) permits calculations to be carried out directly on the image

grid. The implemented method is used to align prone-supine MR image pairs and

prone MRI with supine CT breast images.

Routine, diagnostic, pre-surgical, Dynamic Contrast Enhanced (DCE) MR images

contain valuable information about the extent and location of cancer in the pen-

dulous, prone orientated breast. The prone positioning of the patient in the MR

scanner is advantageous because it allows good image quality to be achieved due

to the proximity of the transceiver coil to the breast tissue and the reduction of

motion artefacts due to breathing motion. However, surgery and radiotherapy are

performed with the patient in the supine position. In this chapter methodologies

are developed and evaluated for prone-supine image-to-image registration.

A prone-supine image pair is an essential requirement for an intensity based

registration method to work. Such an image pair could be generated, for instance,
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through acquisition of an additional supine MR image, onto which the high quality

prone MR image information could then be mapped. No contrast enhancement

would be required in the supine configuration, which would be unacceptable from

the clinical perspective due to scanner time and potential complications associ-

ated with the administration of the contrast agent. Hence a number of potential

applications for a prone-supine image registration method can be identified:

• surgical planning: assuming an additional structural MR image has been

acquired representing the approximate position of the patient in the operating

room (OR),

• initial pre-incision surgical guidance: assuming the same supine MR image as

above has been acquired and a methodology to transform the supine image

into the physical coordinate system of the OR is also available (alignment

with the OR coordinate system and consideration of surgical incision and

cutting of tissues beyond the scope of this thesis), and

• radiotherapy planning: by relating the pre-operative MR image to a post-

operative planning CT scan. The multi-modal aspect of this registration

problem is covered here, however, modelling of the tumour excision will also

be required and is beyond the scope of this work.

A more detailed discussion with respect to the clinical applications is provided at

the end of this chapter (c.f. section 4.34.3).

Prone-to-supine image registration is to date an active topic of research. An over-

view is presented in table 4.14.1. Rajagopal et al.Rajagopal et al. (2008b2008b) and Babarenda Gamage et al.Babarenda Gamage et al.

(20122012) approached this registration task with a pure biomechanical simulation. Their

method used a patient-specific model, derived from prone MR images, to first

remove the effects of gravity (Rajagopal et al.Rajagopal et al., 20072007) and subsequently reapply

gravity loading into the supine direction. However – as will be discussed in more

depth in chapter 55 – the assumption that only the direction of gravity changes from

the prone imaging position to the supine surgical pose is an oversimplification. For

instance, contact of the breast with the coil during the MR acquisition can introduce

significant deformations which cannot be easily corrected using this method.
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Table 4.1: Overview of modelling based prone-to-supine registration methods. For the final align-

ment, the transformation models are either Free Form Deformation (FFD) or fluid, where

as the similarity metrics are either Normalised Cross Correlation (NCC) or Normalised

Mutual Information (NMI). Lago et al.Lago et al. (20122012) use prescribed surface displacements

to align the biomechanical model with the supine image. Rajagopal et al.Rajagopal et al. (2008a2008a,bb) and

Babarenda Gamage et al.Babarenda Gamage et al. (20122012) follow a "simulation only" approach without subsequent

alignment.

Simulation Registration

Author Material Type Unloading Element Type Chest Motion Deformation Similarity

Rajagopal et al.Rajagopal et al.

(2008a2008a,bb)
neo-Hookean inv. finite deform.

Rajagopal et al.Rajagopal et al. (20072007)
Cubic Hermetian Fixed FEM (sim. only)

Carter et al.Carter et al. (20082008) neo-Hookean Iterative Hexahedra Prescirbed FEM+Fluid NCC

Lee et al.Lee et al. (20102010) neo-Hookean not specified Cubic Hermetian Fixed FEM+ FFD NMI

Babarenda Gamage et al.Babarenda Gamage et al.

(20122012)

neo-Hookean inv. finite deform.

Rajagopal et al.Rajagopal et al. (20072007)
Cubic Hermetian fixed FEM (sim. only)

Lago et al.Lago et al. (20122012) Mooney-Rivlin simple inversion not specified Fixed FEM (surf. disp.)

Eiben et al.Eiben et al. (20132013) neo-Hookean iterative Tetrahedra Prescribed FEM + FFD NMI

Han et al.Han et al. (20142014) neo-Hookean simple inversion Tetrahedra Sliding FEM + FFD NMI

In contrast Carter et al.Carter et al. (2006a2006a), Lee et al.Lee et al. (20102010) and Han et al.Han et al. (20142014) also used

a biomechanical finite element model to estimate the gravity induced deformation,

but corrected for the residual misalignment using a subsequent intensity based

image registration step. This sequential approach clearly separates the biomech-

anical simulation from the intensity based registration step. The key idea in all

approaches is that the gross deformation can be roughly modelled by a biomech-

anical simulation, whereas residual deformations need to be taken into account

by a final intensity based registration step. In the published literature about se-

quential registration only Carter et al.Carter et al. (2006b2006b) and Lee et al.Lee et al. (20102010) considered the

pre-stresses of the prone position due to gravity loading in a physically correct

manner. Other approaches regarded the model derived from the clinical image as

stress free (Han et al.Han et al., 20142014).

Motion of the breast tissue relative to the chest wall is also considered differently.

While some models do not allow motion along the chest wall (Lee et al.Lee et al., 20102010;

Lago et al.Lago et al., 20122012), others use prescribed displacements (Carter et al.Carter et al., 20082008) or fric-
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Figure 4.1: Outline of the workflow used to align prone and supine image data using biomechanical

unloading simulations and intensity based free form deformation registration.

tionless sliding (Han et al.Han et al., 20142014). Defining appropriate prescribed displacements

usually requires manual pre-processing which is undesirable in a clinical context.

Lastly, a large variation in soft tissue elasticities might require an optimisation of the

corresponding material parameters (Han et al.Han et al., 20102010, 20142014). In the following, first a

sequential and thereafter a fully symmetric, integrated registration methodology is

presented.

4.1 sequential registration approach

In this section the zero-gravity state recovery scheme presented in section 3.3.2.33.3.2.3

and intensity based image registration are combined into a nearly symmetric

alignment workflow, where image registration links the two unloaded reference

states. This approach produces clinically useful alignment accuracies with a target

registration error of 5.6 mm in the unloaded configuration. This error is comparable

to published work and the inter-observer landmark selection variability. In addition

this method considers the loading conditions in a physically correct manner.
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Figure 4.14.1 shows the overall alignment strategy as was presented at the In-

ternational Symposium for Biomedical Imaging (ISBI 2013) (Eiben et al.Eiben et al., 20132013). This

section (4.14.1) describes the work in detail. Note, since the biomechanical model

generation procedure was significantly improved since publication of this work, for

completeness the procedure that was used to generate the results is included here.

4.1.1 Image Data

The prone-supine MR image data pair contains T1-weighted fat-suppressed and

T2-weighted structural images with a resolution of 0.75× 0.75× 1 mm for the prone

and 0.96× 0.96× 1 mm for the supine images. MR images were acquired at the

University of Chicago Hospital using a Philips Achieva 1.5 T scanner. A gradient

echo (GR) sequence with a flip angle of 12◦, an echo time of 2.7 ms (2.4 ms) and a

repetition time of 5.5 ms (4.4 ms) was used to acquire the T1-weighted images (MR

imaging parameters for the supine acquisition are given in brackets if different

from the prone acquisition parameters). The prone T1-weighted image was the

pre-contrast image of a dynamic contrast enhanced sequence whereas the supine

image was acquired for the purpose of this study. The structural T2-weighted

images were acquired using a spin echo sequence with an echo time of 327 ms

(218 ms) a repetition time of 2000 ms and a flip angle of 90◦. Consent of the 57 year

old patient was obtained to acquire the additional supine scans and to further

process the data for scientific purposes. For the supine imaging a cardiac surface

coil was carefully placed on the chest of the patient to minimise deformation of the

breast while providing good image quality.

For validation of the developed image registration technique, 14 corresponding

landmarks – including the nipple position and visually distinct glandular structures

– were chosen by three medical image processing experts. The mean inter-observer

error was calculated as 5.7 mm with a standard deviation of 6.3 mm in the supine

image.



4.1 sequential registration approach 95

4.1.2 Biomechanical Model Construction

In order to build patient-specific biomechanical breast models, in a first step

the prone and supine images were segmented into fat, fibro-glandular tissue

and muscle. The T2-weighted and T1-weighted fat-suppressed images were then

combined to obtain a closed skin surface. After noise reduction with a bilateral

filter (Tomasi and ManduchiTomasi and Manduchi, 19981998) a level-set evolution segmented the background

from the body. Automatic segmentation of the internal body structures is difficult

to achieve as algorithms might be designed for the prone image position only

(i.e. not supine) or are not publicly available. Thus the chest wall and the pectoral

muscle were segmented manually from the image. The remaining tissue was

further segmented into adipose and fibroglandular tissue using an expectation

maximisation algorithm with a Markov Random Field regularisation and a bias

field correction (Van Leemput et al.Van Leemput et al., 19991999; Cardoso et al.Cardoso et al., 20112011)1.

From the label image a surface mesh was created using a marching cubes

algorithm. The mesh quality was improved with Meshlab’s2 Laplacian smoothing

and iso-parametrisation resampling. The tetrahedral mesh was then built using

Tetgen3 and material parameters were assigned using the label image from the

segmentation step.

The boundary conditions are selected such that nodes on the inferior and superior

boundary of the model could move in the axial plane. Nodes on the chest wall are

displaced to approximate relative movement of the breast tissue on the pectoral

muscle. Let θθ = ΘΘ(xx) be the mapping of Cartesian coordinates xx = (x, y, z) into

cylindrical coordinates θθ = (rcrc, zczc, φφ) and the angle φφ be defined such that the

superior-inferior body axis is aligned with the cylinder axis. The anterior direction

is assigned with the angle zero. Displacing the nodes on the chest wall from xx to xxr

according to

xxr = ΘΘ−1(rcrc, zczc, kckcφφ) (4.1)

1 http://sourceforge.net/projects/niftyseghttp://sourceforge.net/projects/niftyseg accessed October 2012.
2 http://meshlab.sourceforge.nethttp://meshlab.sourceforge.net accessed 3.12.2013.
3 http://tetgen.orghttp://tetgen.org accessed 16.07.2012.

http://sourceforge.net/projects/niftyseg
http://meshlab.sourceforge.net
http://tetgen.org
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results in circumferentially stretched facets. Here kckc is the stretching factor which

is chosen by comparison of the lateral boundary of the breast in the prone and

the supine configuration. A stretching factor of kckc p = 5/4 for the prone and

kckcs = 4/5 for the supine configuration is selected, so that application of the

circumferential stretching – in the form of a displacement boundary condition –

during the unloading simulation aligns the lateral breast boundaries.

4.1.3 Zero Gravity State Estimation

Simulations were performed using the open-source package Nifty Sim4, a Total

Lagrangian Explicit Dynamic Solver (TLED) which utilises the Graphics Processing

Unit Taylor et al.Taylor et al. (20082008); Johnsen et al.Johnsen et al. (20142014). This algorithm solves the basic equa-

tion of motion

MρMρ ∂ttUNUN + DD ∂tUNUN + KK (UNUN)UNUN = RextRext, (4.2)

where UNUN is the nodal displacement, MρMρ is the diagonalised lumped mass matrix,

DD is the diagonalised damping matrix, KK is the stiffness matrix and RextRext are the

external forces acting on the body. One major advantage of the TLED algorithm

is that the nodal reaction forces are calculated per element. Thus assembly of the

stiffness matrix is not necessary which allows efficient parallelisation.

Using the procedure outlined in section 3.3.2.33.3.2.3 the transformations Tpp0Tpp0 and

Tss0Tss0 for the prone and the supine model which describe the deformation from the

loaded configuration to the corresponding zero-gravity estimates are calculated.

4.1.4 Image Registration

To measure the initial landmark distance, prone and supine images are rigidly

aligned. The transformation is calculated using an orthogonal Procrustes method

from corresponding points on the costal cartilage and anterior rib cage (see e.g.

Hill et al.Hill et al. (20012001) and references therein). This rigid structure adjacent to the breast

tissue allows alignment of the patient’s body between the two positions.

4 http://sourceforge.net/projects/niftysimhttp://sourceforge.net/projects/niftysim accessed 4.10.2012.

http://sourceforge.net/projects/niftysim
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In the estimated zero-gravity state Nifty Reg5 is used for affine and non-linear

registration. Nifty Reg is a fast implementation of the free form deformation

algorithm (Rueckert et al.Rueckert et al., 19991999; Modat et al.Modat et al., 20102010) that uses cubic B-splines as

a transformation model. The objective function is composed of the normalised

mutual information (NMI) and a regularisation term which penalises high bending

and thus unrealistically large deformations.

This intensity based image registration is used to establish point-wise corres-

pondence in the zero-gravity state, Tp0s0Tp0s0 . Thus it is possible to obtain the complete

transformation from prone to supine and vice versa as a composition of the ap-

propriate transformations (see figure 4.14.1). The transformation TpsTps from prone to

supine is given by

TpsTps = (Tss0Tss0)
−1 ◦ Tp0s0Tp0s0 ◦ Tpp0Tpp0 (4.3)

and that from supine to prone is given by

TpsTps = (Tpp0Tpp0)
−1 ◦ (Tp0s0Tp0s0)

−1 ◦ Tss0Tss0 , (4.4)

where ◦ denotes the composition of the transformations.

4.1.5 Results

The results are given in terms of the distances between corresponding, manually

selected landmarks (see section 4.1.14.1.1) in the prone and the supine images before

and after registration. The mean Euclidean distance d between corresponding

landmarks and their standard deviation std(d) were measured. The numerical

results are summarised in table 4.24.2.

An initial landmark distance of 103.6 mm was calculated (see section 4.1.44.1.4), which

is nearly five times as large as the largest nipple displacement in numerical prone-

to-supine simulations carried out by Pathmanathan et al.Pathmanathan et al. (20082008) and highlights the

scale of the deformation which is to be recovered. However, one has to acknowledge

that the magnitude of breast deformations largely depend on the size and volume

of the simulated organ.

5 http://sourceforge.net/projects/niftyreghttp://sourceforge.net/projects/niftyreg accessed 12.6.2013.

http://sourceforge.net/projects/niftyreg
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Table 4.2: Mean landmark distance and standard deviation after initial rigid alignment of pa-

tient’s rib cage, and after affine and non-linear registration in the zero-gravity state. To

evaluate the landmark distance in the supine and prone configuration prone landmarks

were furthermore propagated to the supine position and vice versa using the composed

transformation according to (4.34.3) and (4.44.4) respectively.

Configuration registration type d [mm] std(d) [mm]

Initial rigid 103.6 4.3

Zero-gravity simulation & affine 10.7 6.3

simulation & nonlinear 5.6 4.8

Supine simulation & nonlinear 5.3 4.6

Prone simulation & nonlinear 6.8 6.9

The zero-gravity state estimations were used to transform the original MRI data

and these transformed volumes were then registered affinely and subsequently

non-linearly. The affine registration resulted in a mean landmark distance in the

gravity-free configuration of 10.7 mm with a standard deviation of 6.3 mm.

The non-linear registration was performed on the transformed fat-suppressed MR

images. This resulted in a mean landmark distance of 5.6 mm in the zero-gravity

configuration. Although it was possible to generate slightly better numerical values

than those reported in table 4.24.2 by decreasing the regularisation of the intensity

based B-Spline image registration, the images showed signs of under-constrained

deformation and thus these results were discarded.

To evaluate the complete transformation from prone to supine, the prone land-

marks were propagated to the supine configuration using the composed transform-

ation (4.34.3) and then compared with the selected supine landmarks. This resulted in

a mean landmark distance of 5.3 mm in the supine configuration. In the opposite

direction, the supine landmarks were propagated to the prone position and then

compared with the originally selected landmarks in this configuration. This resulted

in a mean landmark distance of 6.8 mm in the prone configuration.
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(a)

(b)

(c)

(d)

(e)

Figure 4.2: One landmark followed through all different stages of the alignment process. (a) Prone,

(b) prone zero-gravity state, (c) supine zero-gravity state registered to prone reference

state, (d) supine zero-gravity state and (e) supine.

The inter-observer variability was evaluated between three independent users

who picked landmarks in the supine image given those in the prone (see sec-

tion 4.1.14.1.1). This resulted in a mean landmark distance of 5.7 mm and is about the

same magnitude as the evaluated registration error.

Figure 4.24.2 illustrates the position of one single landmark followed through all

different deformation stages of the alignment process.
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4.1.6 Discussion

In this section the feasibility of a symmetric workflow for prone-to-supine image

alignment was presented which achieves, for a single patient, an accuracy of 5.3 mm

in the supine configuration. This is close to the landmark inter-observer variability

of 5.7 mm. Thus it is possible to align images of soft tissues which undergo large

deformations with clinically useful accuracy. Exploiting the zero-gravity state makes

the simulations physically more realistic compared to approaches which consider

loaded configurations as being stress free.

The method described so far in this section presents a stepping stone for the

subsequent development where the major shortcomings of the method were ad-

dressed. These shortcomings are – according to the numbering of the list provided

on page 8989 – (ii) the prescribed circumferential stretching of the retromammary

elements is not flexible and does not necessarily describe anatomically plausible

motion in this region (iv) the material parameters vary significantly across different

patients and are not known a priori but were set here to fixed values taken from the

literature, and (iii) by design the subsequent free form image registration step is

not biomechanically constrained and thus could produce physically non-plausible

deformations.

4.2 integrative registration approach

The nearly symmetric registration algorithm presented in the previous section

performs a simulation and an intensity based registration step sequentially. It forms

the basis for a major contribution of this thesis, which is the tight integration of

image registration and biomechanical simulations into a common framework. To

this end it is advantageous to investigate the differences and commonalities between

elastic registration and biomechanical simulation. This is pursued in section 4.2.14.2.1,

before the actual integration is presented in sections 4.2.24.2.2 to 4.2.94.2.9.
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4.2.1 Comparison: Registration and Simulation

Elastic and hyperelastic regularisation has been proposed for image registration

algorithms. As was elaborated in section 2.42.4, these registration methodologies use

image derived forces to deform a moving image to match a target image. For large

deformation problems, as they occur in prone-to-supine registration, image derived

forces alone might not be sufficient as a driving force, due to the limited overlap of

corresponding image structures.

As was suggested in the literature and the previous section, the key to a successful

alignment in the presence of large deformations is to incorporate prior knowledge

about the cause of the deformation, namely the change of direction of gravity.

Since both, registration and simulation, use iterative procedures in order to deform

objects on the basis of similar mathematical formulations, it should be possible to

merge both into a common framework.

Elastic registration algorithms use the linear elastic potential for regularisation.6

SS lin.elast.(µµ, λλ)[uu] =
∫

ΩΩ
µµ

4

3

∑
i,j=1

(
∂xj ui(xx) + ∂xi uj(xx)

)2
+

λλ

2
(∇ · uu(xx))2 dxx (4.5)

The corresponding Euler-Lagrange equation for this functional is according to

Kabus and LorenzKabus and Lorenz (20102010) given by

−µµ∆uu(xx)− (λλ + µµ)∇ ·∇uu(xx) = 0

LLuu(xx) = 0
(4.6)

and can be interpreted as the internal force of the continuous elastic material with

the Lamé parameters µµ and λλ which is deformed by the deformation u. From this

a minimisation problem can be formulated (2.322.32) as a linear system of equations

which equalises the internal with external forces gg(RR, TT, uu(xx)) which are derived

from a similarity measure calculated between the images RR and TT.

αlαlLLuu(xx) = gg(RR, TT, uu(xx)) (4.7)

6 For an in depth introduction see for example ModersitzkiModersitzki (20042004, 20092009), c.f. section 2.42.4.
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The linear operator LL is applied to uu and calculates the internal forces according to

equation 4.64.6. This force equilibrium can also be interpreted as the static solution to

the well known Navier equation with some velocity dependent damping:

ρ0ρ0
∂2uu
∂tt2 = (λλ + µµ)∇ (∇ · uu) + µµ∇2uu + ρ0ρ0fBfB − rr

∂uu
∂tt

(4.8)

Through comparison of (4.84.8) with (4.74.7) it can be seen, that the image forces of the

registration fulfil the same role as the body forces in the Navier equation. The

scaling αlαl accounts for the fact, that the image forces cannot be directly related to

physical forces. The regularisation above only represents linear elastic materials. To

move on to non-linear hyperelastic materials, the internal stress evaluation needs to

be changed accordingly, arriving at the non-linear equilibrium equation of motion

ρ0ρ0
∂2uu
∂tt2 = ∇0 · NN + ρ0ρ0fBfB − rr

∂uu
∂tt

. (4.9)

Here uu is the displacement vector, ρ0ρ0 the mass density in the undeformed configur-

ation, tt the time, NN the nominal stress second order tensor (or the transpose of the

first Piola-Kirchhoff stress tensor), fBfB the body force and rr the speed-proportional

damping coefficient. Note that the inner product ∇0 · NN reduces the order of tensor

NN by one (c.f. equation (4.164.16)). Furthermore, the subscript 0 of ∇0 indicates that

the Lagrangian frame of reference is used.

Due to the strong connection between between the basic equations of elastic

registration and non-linear simulation, the differential form of the equilibrium

equation (4.94.9) will be utilised in the following sections as a basis to develop a

biomechanically constrained registration method. To achieve this, image derived

forces will be combined with external body forces such as gravity; both forces then

act on the body which is considered as a continuous material. Furthermore, in

order to consider the gravitational forces in the prone-to-supine breast registration

task in a physically correct way, the unloading also needs to be addressed.

numerical experiment In order to estimate the difference between an exist-

ing hyperelastic image registration method (ModersitzkiModersitzki, 20092009) and a mechanical

simulation in terms of the resulting deformations, a finite element model of a

numerical phantom was built. A homogeneous hyperelastic neo-Hookean material

was assumed and gravity was applied in the anterior (upwards) direction (see
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Figure 4.3: Orthogonal slices through a numerical breast phantom without (green) and with gravity

applied (red). The corresponding binary images were used as reference and template

images for the hyperelastic registration experiments.

figure 4.34.3). The geometry of the deformed and undeformed phantom was used

to generate binary input images for the registration algorithm. The working hy-

pothesis is, that a clear difference between the registration and the simulation

should become apparent due to the different load types: The simulation considers

a homogeneous loading of the body with gravity, whereas the image derived forces

only act on the boundary of the object.

To allow a direct comparison between the simulation and the registration deform-

ation vector fields, the reference image for the registration was the image generated

from the unloaded phantom and the moving image was the one generated from

the gravity loaded configuration. Figure 4.44.4 shows a visualisation of the results in

terms of displacement vectors as well as the quantitative angular and magnitude

difference.

It can be observed that at the tip of phantom the displacement vectors are aligned

well. However, a key difference between the deformation vector fields appears

at the sides of the phantom. The simulation produces a deformation vector field

close to tangential to the model boundary in this area, whereas the registration

contracts the object in this area. Note the corresponding differences in the angle

and magnitude. Increasing the weight of the volume preserving term in (2.352.35)

can improve this behaviour slightly but the key difference is not eliminated. As

hypothesised, in the registration scheme the image similarity acts as a driving force
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(b) Angular difference between displacment
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Figure 4.4: Deformation vector fields from image registration (red-yellow arrows) and simulation

(blue arrows) and quantitative difference in terms of angle and length. Significant

differences in the angle of the displacement vectors can be observed at the sides of the

phantom, where the gravity loading causes displacement vectors tangential to the object

boundary, whereas the registration produces a contraction.
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only on the object boundaries, whereas the gravitation acts as a body force on the

whole body. This is reflected by the deformation vector fields.

Summarising the findings of this experiment, the integration of a hyperelastic

regularisation into an image registration scheme alone does not guarantee the

resulting deformation vector field to be similar to the one generated from a bio-

mechanical gravity loading simulation – the acting forces are substantially different.

Hence the appropriate consideration of external loading, i.e. gravity, is required.

Thus in the following a biomechanical simulation based on finite differences is

presented which then is extended to incorporate additional image derived forces.

4.2.2 Overview of the Image Alignment Approach

The computational framework developed here is a symmetric, intensity based,

biomechanically driven image registration method to align prone and supine breast

images. It is a significant extension to the approach presented in the previous

section 4.14.1 and follows the idea that the main source of geometric deformation

of the breast between the prone and the supine image arises from the relative

difference in gravity loading. Thus when the effect of gravity is removed from

the loaded breast configurations, the images being transformed accordingly, the

registration task becomes less challenging. The remaining dissimilarities arise

primarily from modelling inaccuracies such as unknown material parameters,

missing knowledge about the exact patient-specific constitutive relation of in-vivo

breast tissue and insufficient definition of boundary conditions due to contact with

imaging equipment or undefined motion of the breast and muscle tissue on the

chest wall.

Figure 4.54.5 shows an overview of the complete algorithm. The main building

blocks are:

• A biomechanical deformation model (section 4.2.34.2.3),

• the calculation of the patient-specific unloaded configuration (section 4.2.3.14.2.3.1),

• a tangential motion constraint to enforce the motion of the pectoral muscle

along the chest surface (section 4.2.3.24.2.3.2),
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Figure 4.5: Overview of the biomechanically constrained registration procedure. In a first step the

effect of gravity is removed from the prone and supine breast image assuming generic

material parameters. In a second step the material parameters are repeatedly updated

until the image similarity no longer improves. The final step involves activation of

image derived forces which aim to correct modelling inaccuracies and generate the final

aligned images in the unloaded configuration.
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• a material update scheme (section 4.2.44.2.4), and

• image derived forces (section 4.2.54.2.5).

The algorithm is designed to start with a pure biomechanical simulation but in the

course of the alignment image information is incorporated progressively, directly

into the unloading simulation: first on a global and then on a local scale.

4.2.3 3D Finite Difference Simulation

Constitutive relations and corresponding material parameters of breast tissues are

open research topics. Samani et al.Samani et al. (20012001) and Samani and PlewesSamani and Plewes (20072007) carried

out mechanical tests on ex-vivo breast tissue samples. The mechanical properties of

tissues however change significantly after removal from the in-vivo environment.

Eder et al.Eder et al. (20142014) used a biomechanical finite element simulation based on prone

MR images to simulate the breast shape in the upright standing position of a

patient. The simulation was evaluated against surface scans of the same patients in

the same position. They report that the material relations proposed by Tanner et al.Tanner et al.

(20062006) and Rajagopal et al.Rajagopal et al. (2008a2008a) produced the most accurate simulations. Inter-

estingly both cited approaches use a simple neo-Hookean material constitutive

relation. Hence the proposed image registration framework adopts this biomech-

anical description of breast tissue, which requires only two material coefficients

(Lame parameters: λλ and µµ) (Bonet and WoodBonet and Wood, 20082008). This is an advantage if the

knowledge about the exact material properties is limited either due to the lack of

in-vivo measurements or incoherent literature values. Furthermore, in a clinical

application scenario in-vivo measurements are usually not available.

The basis for the non-linear biomechanical deformation model is given by the

principle of conservation of linear momentum as described in section 2.1.32.1.3 and

also shown in equation (4.94.9). To calculate the material response with respect to

deformation, the nominal stress tensor NN = SSFFT is required which, for the neo-

Hookean model according to (2.282.28), is given by

NNNH =
(

µµ
(

II− CC−1
)
+ λλ ln(JJ)CC−1

)
FFT. (4.10)
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Explicit time integration of equation (4.94.9) is obtained via a discrete central

difference with respect to time which can be solved directly for the displacement

at the next time step. The first and second time derivatives of the displacement

vector field uu can be approximated by the following forward, ∂+t , and central, ∂±tt ,

difference operators

∂tuu ≈ ∂+t UUn
i,j,k =

1
hht

(
UUn+1

i,j,k −UUn
i,j,k

)
(4.11)

∂ttuu ≈ ∂±tt UUn
i,j,k =

1
hh2

t

(
UUn+1

i,j,k − 2UUn
i,j,k + UUn−1

i,j,k

)
(4.12)

where UUn
i,j,k is the discrete version of the continuous and time dependent deforma-

tion vector field uu(XX, tt) with spatial indices i, j, k corresponding to the position XX

and temporal index n corresponding to a point in time tt.

Substituting the internal and external forces of (4.94.9) by kk this equation can be

rewritten:

∂ttuu = kk− rr
ρ0ρ0

∂tuu (4.13)

Using the discrete time derivatives (4.114.11) and (4.124.12) and the appropriate discrete

version of kk denoted by KKn
i,j,k, an explicit time integration scheme is formulated by

solving for UUn+1
i,j,k :

UUn+1
i,j,k =

(2ρ0ρ0 + hhtrr)UUn
i,j,k − ρ0ρ0UUn−1

i,j,k + hh2
t ρ0ρ0Kn

i,j,k

ρ0ρ0 + hhtrr
(4.14)

As this scheme is only conditionally stable, the Courant-Friedrichs-Lewy (CFL)

condition (Courant et al.Courant et al., 19281928) has to be obeyed and the time increment has to be

smaller than the critical time step.

Similar to the discrete differential operators (4.114.11) and (4.124.12) which are defined

with respect to time, discrete spatial derivatives can be formulated by substituting

the time step hht with a spatial step hhx, hhy, hhz. The mixed spatial derivatives are

required to solve (4.94.9) and can be approximated by the following differential

operator:

∂xyuu ≈ ∂±xyUUt
i,j,k =

1
4hhxhhy

(
UUn

j+1,k+1,l + UUn
j−1,k−1,l

−UUn
j−1,k+1,l −UUn

j+1,k−1,l

) (4.15)

The spatial derivatives ∂yyuu, ∂zzuu, ∂yzuu and ∂xzuu follow by appropriate permutation

of the discrete indices i, j, k in the equations above. Note that the central difference
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scheme used here offers second order accuracy with respect to the truncation error

but can be extended to higher orders if required (FornbergFornberg, 19881988). A derivation

of the one-dimensional finite difference quotient from the Taylor series with the

corresponding truncation errors is given in appendix B.2B.2.

To complete the initial boundary value problem, an initial displacement of

uut=0 = 0 and a homogeneous Dirichlet boundary condition on the boundary of the

image domain ΩΩ as uu(∂ΩΩ) = 0 is defined.

Revising the quantities required to solve the equilibrium equation (4.94.9) with an

explicit time integration scheme reveals that the internal forces are derived from the

divergence of the nominal stress NN, which depends on the deformation gradient

FF. For both calculations – divergence of the stress and the deformation gradient –

differential operators are required. Thus a straight forward implementation could

first apply a discrete difference operator on the deformation vector field to obtain

FF. From FF the nominal stress can be calculated and second apply the discrete

difference operator once again on the stress field to obtain the divergence. In

some of our numerical experiments this approach has been observed to lead to

instabilities which result in nodes clustering together.

To verify that the consecutive application of the discrete differentiation operators

is the source of the clustering effects, first a two-dimensional version of the iterative

solution was implemented and then the equilibrium equations were expanded such

that the scheme emerging from (4.94.9) could be written completely in terms of the

deformation gradient and its first derivatives.

The divergence of the nominal stress ∇0 · NN is the key quantity that has to be

calculated to obtain the material response to a given deformation. Using the relation

of the nominal stress and the second Piola-Kirchhoff Stress NN = SSFFT, the divergence

of the nominal stress in two dimensions is given by

∇0 · NN =

∂x N11 + ∂yN21

∂x N12 + ∂yN22


=

∂x (S11F11 + S12F12) + ∂y (S12F11 + S22F12)

∂x (S11F21 + S12F22) + ∂y (S12F21 + S22F22)

 .

(4.16)
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In the last equality, the product rule has to be applied appropriately. Hence the

deformation gradient FF and the second Piola-Kirchhoff stress SS, as well as their

spatial derivatives ∂xFF, ∂yFF, ∂xSS, ∂ySS are required.

Let uu = (u, v)T be the deformation at a given position, then the two-dimensional

deformation gradient and its spatial derivatives are given by

FF = II +

∂xu ∂yu

∂xv ∂yv

 ∂xFF =

∂xxu ∂xyu

∂xxv ∂xyv

 ∂yFF =

∂xyu ∂yyu

∂xyv ∂yyv

 . (4.17)

Note that the components of the mixed derivatives appear in ∂xFF and ∂yFF which

can be exploited when it comes to the implementation.

However, if a straight forward expansion of the second Piola-Kirchhoff stress

is used, it will only be computable with an acceptable execution time for two-

dimensions. Using a neo-Hookean material, SS is given by (2.282.28) and the spatial

derivative in the x-direction follows:

∂xSS = ∂x

(
µµ
(

II− CC−1
)
+ λλ ln(JJ)CC−1

)
= ∂x(µµ) II− ∂x(µµ)CC−1 − µµ ∂xCC−1

+ ∂x(λλ) ln(JJ)CC−1 + λλ
∂x JJ

JJ
CC−1 + λλ ln(JJ) ∂xCC−1

= ∂x(µµ) II +
(
−∂x(µµ) + ∂x(λλ) ln(JJ) + λλ

∂x JJ
JJ

)
CC−1 + (−µµ + λλ ln(JJ)) ∂xCC−1

(4.18)

Note that the material parameters are also a function of space. The derivative

of CC−1 however becomes a complex expression when explicitly written in terms

of the deformation gradient. At this stage it becomes essential to find a simpler

expression for ∂xCC−1, otherwise the usefulness of (4.184.18) is questionable for three

dimensions. Therefore let A be a non-singular matrix and the entries are functions

of the variable x. Then the derivative of the inverse matrix is given by

∂xA−1 = −A−1 ·
∂A
∂x

· A−1. (4.19)

Using (4.194.19) to evaluate the spatial derivatives of the inverse right Cauchy Green

deformation tensor, e.g. ∂xCC−1, allows straight forward implementation of (4.184.18) in

three dimensions. For this the following equations are used which are all based
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directly on the deformation gradient, hence the consecutive use of the discrete

differentiation operator can be avoided.

∂x JJ = ∂x(det(FF)) (4.20)

∂xCC = ∂x(FFTFF) = ∂x(FFT)FF + FFT∂x(FF) (4.21)

∂xCC−1 = −CC−1∂x(CC)CC−1 (4.22)

numerical experiment The following experimental setup was used to illus-

trate the clustering effect as well as the proposed solution. A rectangular domain

of size x1 − x0 = y1 − y0 = z1 − z0 = 1 m and Mx, My, Mz = 17 nodes with a

homogeneous compressible neo-Hookean material was used. A body force of

fx = 10 N/kg was applied. The damping coefficient was set to r = 104 kg/m3/s.

Figure 4.64.6 shows the node positions at the end of the simulation (figures 4.6a4.6a

and 4.6b4.6b) as well as the corresponding displacements (figures 4.6c4.6c and 4.6d4.6d). The

result shown in 4.6a4.6a was obtained by two consecutive applications of the discrete

differentiation operator, whereas 4.6b4.6b shows the result obtained with the solution

outlined above. r

The clustering effect is not immediately apparent when observing the nodal

position alone, but looking at the displacement in the x-direction along a central

vertical line reveals the numerical failure of this scheme (see figure 4.6c4.6c).

4.2.3.1 Unloading of Gravity

One of the major assumptions made up to this point is that the geometry in the

unloaded (or stress-free) state is known. Of course the equation of motion still holds

true for pre-stressed objects as long as pre-stressing is considered in subsequent

analysis. However, measuring tissue pre-stressing in the context of in vivo breast

imaging is currently not feasible. Thus the stress-free breast geometry is unknown.

However, the concept of the unloaded configuration permits reduction of the scale

of the deformation problem at hand.

The method presented here translates the iterative prediction-correction scheme

(Carter et al.Carter et al., 2006a2006a; Eiben et al.Eiben et al., 20132013, 20142014) into the FDM framework. It uses the

explicit time integration to recover the unloaded configuration in only one forward

simulation by correcting the prediction during the course of the simulation – as
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Figure 4.6: Simulation results for loading a compressible medium with a homogeneous body force

using the finite difference scheme with (a,c) and without clustering present (b,d). A

central slice through the 3D cube geometry shows the final node positions (a,b). The

consecutive application of the differentiation operator was used to produce figures (a)

and (c) and resulted in clustering artefacts that are characterised by irregular node

distances (see arrows in magnified view). For figures (b) and (d) repeated differentiation

during the computations was avoided by reformulating the problem as described in the

text. This resulted in regular node distances and resolved the clustering problem. The

corresponding node displacements are shown in figures (c) and (d). These displacements

are measured along the blue vertical line shown in (a) and (b), which corresponds to the

horizontal axis of (c) and (d).
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Figure 4.7: Displacement vector field and the relation between the initial loaded (solid white) and

recovered unloaded (orange outline) configuration of a simple box unloading experiment.

compared to application of a correction step to the predicted stress-free state

after each loading simulation (c.f. 3.3.2.33.3.2.3). In the FDM framework the spatial

material distribution of the involved compartments in the loaded configuration,

namely chest, fat, gland, and background are directly related to the segmentation

of the clinical MR or CT images. The unloading aims to find the displacement

vector field (DVF) which points from the unknown unloaded to the known loaded

configuration as represented in the clinical images. Hence the DVF is determined

by the biomechanical simulation and is unique for a given hyperelastic material

configuration.

An overview of the developed unloading procedure using the example of the

prone breast is given in the following paragraphs. Figure 4.74.7 shows a loaded and

recovered unloaded box geometry to visualise the final DVF: starting with the

geometry segmented from the prone loaded MR image, the biomechanical model

is built and the forward loading simulation is initiated by applying gravity in the

anterior direction. This means, that the material parameters µµm(XX) and λλm(XX), the

mass density ρ0ρ0,m(XX) and body force fBfB,m(XX) define the simulation at unloading

step m and are initially for m = 0 identical to the configuration shown in the clinical

image

MMm(XX) := {λλm(XX), µµm(XX), ρ0ρ0,m(XX), fBfB,m(XX)}. (4.23)

The simulation itself describes the forward mapping ϕϕ(XX, n, MMm) = xx of a material

point XX. As a consequence of the application of gravity, the breast extends further

anteriorly. Hence a correction of the basis of the biomechanical model – the interim
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unloaded configuration MMm(XX) – is required: the loaded spatial material configura-

tion as represented in the clinical images is pulled back – or warped – from the

tip to the start of the vectors of the DVF, which means, that the breast virtually

contracts in the posterior direction, moving closer towards the estimated unloaded

configuration.

MMm+1(XX) = MM0(ϕϕ(XX, n, MMm)) = MM0(xx) (4.24)

In the field of image processing this step is known as resampling and is equivalent

to the inverse mapping ϕϕ−1 : xx 7→ XX. With the updated unloaded configuration, the

loading simulation is continued with repeated resampling steps at given time points.

If the update of the material configuration becomes small such that MMm+1 ≈ MMm,

the unloaded configuration has been recovered. This is the case when the dynamic

biomechanical simulation reaches a quasi-static state.

Inverting a deformation vector field to pull-back MM0 into the current estimate of

the unloaded configuration is a costly and usually iterative procedure (Crum et al.Crum et al.,

20072007). However the backward Lagrangian perspective utilised in image transform-

ation can be applied and inherently yields the inverse deformation. Thus the

update procedure with the inverse displacement vector field simplifies to an im-

age transformation or warping task known from image processing and efficient

implementations can be adopted.

Updating the material configuration MM is not required at each temporal simu-

lation step n, since deformation increments are sufficiently small. The number of

iterations between material configuration updates is NinvertNinvert. An evaluation of the

unloading scheme is provided in the following numerical experiment.

numerical experiment To test the newly developed unloading mechanism,

a simple mechanical loading-unloading experiment was conducted. A box geo-

metry of size 15× 15× 15 mm3, with a Young’s modulus of 500 Pa and a Poisson’s

ratio of ν = 0.45 was applied with a body force and the material map resampled

according to the forward simulation. Then, using the same material parameters and

the warped geometry, the unloaded geometry was recovered using our proposed

method. The results are shown in figure 4.84.8, where volume renderings of the ma-

terial maps are presented. The left box depicts the original unloaded configuration,



4.2 integrative registration approach 115

Figure 4.8: Loading and unloading experiment. The left box depicts the original unloaded con-

figuration with dimensions 15× 15× 15 mm3 which was exposed to gravity loading

(central image). From this loaded configuration, the unloaded one was recovered, using

the presented image based unloading mechanism.

the central box the geometry after application of gravity, and the right box depicts

the recovered unloaded configuration based on the central one. One can observe

that the overall geometry was recovered well. Minor resampling artefacts can be

observed. Since the unloading includes image processing steps, these artefacts can

be attributed to the subsequent forward and backward resampling. Such artefacts

however are not likely to be observable in the registration scheme, since repeated

resampling is avoided in the symmetric design of the algorithm. Since the unload-

ing is computed using a forward simulation only, the results can be compared

directly. With a maximum displacement error of 0.6 mm and a 95-th percentile

displacement error of 0.1 mm, the error is as expected of the order of the size of the

image grid spacing, i.e. 0.5 mm.

4.2.3.2 Surface-Based Motion Constraint

The explicit time integration scheme allows direct imposition of motion constraints

or displacement updates on selected (slave) nodes. The technique described below

is used here to constrain nodes on the chest wall to only move tangentially along

the chest surface.

One alternative to constrain the chest nodes to lie on the chest boundary could be

to use a prescribed displacement constraint on these nodes directly. This however

is difficult and possibly error prone as a point-to-point correspondence on the chest

between the prone or supine loaded configuration and the corresponding unloaded
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Figure 4.9: Surface based motion constraint. A discretised approximation of the target surface,

shown as gray shaded voxels, is generated from the chest-pectoral muscle interface

based on the segmented image. From this segmentation a displacement vector field

is pre-calculated which points to the target surface. This is used during the iterative

solution process to displace nodes back to the target which due to the underlying material

response might have moved out of this region.

one is generally unknown. Furthermore due to a limited number of features on the

retromammary region this patient-specific correspondence cannot be established

easily a-priori.

In section 4.14.1 circumferential stretching was employed when simulating the

unloaded configuration from the prone and circumferential compression when

simulating the unloaded configuration from the supine image to approximate the

natural motion of breast tissue between the prone and supine position. However,

this approximation is an oversimplification of the underlying anatomy and the

prescribed displacements can compromise the alignment accuracy in this area

directly. Thus a more flexible approach is followed here, where internal forces of

the biomechanical simulation act as a regulariser for displacements parallel to the

surface whereas normal to the surface, small correction displacements are applied.

Figure 4.94.9 shows the general principle of the approach by depicting the course of a

slave node during the simulation.

From the segmented prone MR and supine CT image, the target surface position

of the chest is established and a corresponding Euclidean distance transformation is

calculated. The gradient of the distance transform results in a correction vector field

cc(XX). This then directs chest nodes, which during the course of the simulation move

outside the target surface region, back towards the closest point on the surface. The

chest-muscle boundary is extracted from the segmentation of the original prone

and supine image and the corresponding nodes are labelled as chest or “slave
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nodes”. During the course of the registration the position of these nodes is updated

via

xx′n = xxn + smsm(vsvs)cc(xxn), (4.25)

if a node does not lie on the target surface. The scaling function smsm(vsvs) controls

the speed of the imposed surface alignment. This function has been chosen such

that the explicit time integration converges. The scaling was made dependent on

the speed of a node towards the target surface vsvs. When a slave node moves above

a certain speed limit in the correction direction, the amount of the correction is

decreased using a logistic function. This function was chosen due to its smooth

sigmoidal shape and adapted, so that it decreases above a specified value. However

it is expected that other functions with similar characteristics work equally well. The

speed limit improves the stability of the dynamic system since repeated correction

displacements accelerate the slave nodes which eventually might cause the system

to diverge. The logistic function takes the form

smsm(vsvs) = p
(

1 + el(vsvs−vmax)
)−1

(4.26)

with l = 10 ln(9)/vmax and the constant correction parameter p. We observed that

through the introduction of the speed dependent correction, the system became

largely insensitive to the choice of p. We set p = 0.005 and vmax = 0.05 m/s for all

experiments.

Additional flexibility regarding the motion constraint can be achieved by varying

the design of the correction vector field cc(XX). As specified in (4.254.25), either a tied

surface boundary condition or a one sided sliding condition can be imposed.

Summarising the computations up to this point, algorithm 4.14.1 shows an overview

of the approach as is described in detail in this and the previous section. It allows the

calculation of the unloaded configuration while considering a surface based motion

constraint using the finite difference computational method. This methodology is

used for each unloading step shown in the overview figure 4.54.5.
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function Inverse FDM-HE(u0, µ0, λ0, f0)
Un+1

i,j,k , Un
i,j,k, Un−1

i,j,k ← u0 . initialise deformation vector fields

Mm(X)← M0(X)← {λ0(X), µ0(X), . . . , ρ0(X), f0(X)} . initialise material configuration

while n ≤ Nmax do

Un+1
i,j,k ←

(2ρ0+htr)Un
i,j,k−ρ0Un−1

i,j,k +h2
t ρ0Kn

i,j,k
ρ0+htr

. explicit time stepping (4.144.14) dependent on Mm

if mod(n, NinvertNinvert) == 0 then . every Ninvert iterations. . .

Mm(X)← M0(ϕi(X)) . . . . transform material configuration

end if

Un+1
i,j,k (Xchest)← Un+1

i,j,k (Xchest) + sm c(xn,chest) . apply motion constraint

Un+1
i,j,k (Xboundary)← 0 . apply boundary condition

n← n + 1 . increment time step

end while

end function

Algorithm 4.1: The base algorithm to calculate the unloaded configuration using a hyperelastic

material, and the motion constraint for nodes on the chest wall.

4.2.4 Material Optimisation

Significantly different breast tissue stiffness values have been reported in the

literature. As a result, strategies to optimise the material parameters of a selected

model have been investigated previously (Han et al.Han et al., 20102010, 20142014; Eder et al.Eder et al., 20142014).

The main objective of the material optimisation is an improved alignment of the

prone and supine image before the image forces are accumulated (see section 4.2.54.2.5).

Alignment quality ideally is measured in terms of the target registration error.

However, measurement of this quantity in a clinical application is not directly

possible, or very difficult to measure. Hence, the image similarity measure SSSSD

(4.274.27) is used as a surrogate measure. To achieve improved alignment, a one-

dimensional line-search is performed. Here the stiffness of the biomechanical

system is changed iteratively, until no further improvement in the image similarity

measure is observed. The generic unloading simulation is initialised with an

extreme material property – either very soft in the case of the numerical phantom

experiments or very stiff for the clinical cases (during the development of the

algorithm we tried both, stiffening and softening directions, and found no difference
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in the final alignment quality with respect to the direction from which the optimum

was approached). At each material update step, noptnopt, a constant factor is multiplied

to the material parameters µµ and λλ. Then the unloaded state is simulatedand the

image similarity is measured. The process is repeated until the minimum value for

SSSSD is evaluated. This approach does not find the best possible parameters – due

to the fixed step size and the stiffening and softening of the system as a whole –

but results in a better starting position for the intensity based alignment. Also see

figure 4.134.13 on page 132132 for an example of the course of the TRE and its surrogate

image similarity measure SSSSD over the material update steps noptnopt for a clinical

prone-supine image pair.

4.2.5 Integration of Image Derived Forces

In image registration an essential building block is a similarity or distance metric.

But where in standard image registration only image forces act to align objects

– usually counter balanced by a regularisation to obtain a smooth deformation

vector field – here the physical forces such as gravity, as well as image forces, are

considered simultaneously. The underlying hyper-elastic material law acts as a

regulariser. Image forces lack physical meaning, but they are essential to drive

the model in the direction required to align the images and thus help overcome

modelling inaccuracies that were described earlier.

For a mono-modal alignment task, the simplest and most widely used distance

metric is the sum-of-squared-differences (SSD) which is defined as

SSSSD :=
1
2

∫
ΩΩ

(PP(XX)− SS(XX))2 dXX. (4.27)

Here PP and SS denote the prone and supine image, warped into the unloaded con-

figuration XX. Since we are interested in aligning the prone to the supine unloaded

image and vice versa symmetrically, the forces need to be evaluated separately

for prone and supine by establishing the Euler-Lagrange equation of (4.274.27), which

gives (ModersitzkiModersitzki, 20042004):

fSSD
P (XX) = − (PP(XX)− SS(XX))∇PP(XX) (4.28)

fSSD
S (XX) = − (SS(XX)− PP(XX))∇SS(XX) (4.29)
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Figure 4.10: Intensity inversion of the prone T2 weighted MR image (a) is used to generate an

image (b) which appears similar to a CT image (c) in terms of tissue contrast such that

a mono modal image similarity measure and corresponding image forces can be used.

To incorporate the image forces into the simulation, these are accumulated incre-

mentally, i.e.

fimgfimg = spsp(tt)FFNfSSD
N +

N−1

∑
j=1

FFjfSSD
j . (4.30)

Note, since the image is resampled from the gravity loaded prone and supine

configuration, the image forces are transformed with the deformation gradient

FF computed from the corresponding prone and supine unloading simulations.

Furthermore the last evaluated image force is added using a polygonal loading

function spsp(t) where spsp(0) = 0 and spsp(T) = 1. In order to keep a consistent track of

the accumulated image forces, these are recorded in the loaded configuration, from

which every quantity is subsequently resampled (see section 4.2.3.14.2.3.1). The image

forces are added as an additional force to the equation of motion (4.94.9) which then

becomes

ρ0ρ0
∂2uu
∂tt2 = ∇0 · NN + ρ0ρ0fBfB + fimgfimg − rr

∂uu
∂tt

. (4.31)

The prone MRI to supine CT image registration task is obviously not of mono-

modal nature (c.f. discussion in section 4.2.104.2.10). In this respect two different

strategies could be followed. Either a multi-modal image similarity measure and

corresponding image forces could be used or one of the images is adapted so that

the tissues appear with the same intensity as in the other modality. Here the latter

approach was chosen since only two tissue classes are present in the region of
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Figure 4.11: A simplified geometric phantom was used to evaluate the performance of the presented

algorithm. A cylinder represents the chest wall (black line in first row) and the skin is

given by the function value of a two-dimensional Gaussian function (grey area over

the cylinder section). A mesh of this geometry is generated and the biomechanical finite

element model is built to simulate the effect of prone and supine gravity loading. The

simulated prone and supine displacements are then used to transform the glandular

structure of an MR image into the prone and supine position.

interest and thus a simple intensity inversion in this region with a linear scaling is

sufficient, outside the segmented breast region the intensity for air was applied.

Namely the MR images are converted into pseudo CT intensities. An example for

this intensity modification is shown in figure 4.104.10.

4.2.6 Numerical Phantom Datasets

To evaluate the performance of the developed algorithm, different types of images

were used. In order to assess the accuracy and the performance of the developed

algorithm in a controlled environment, a numerical phantom dataset was generated.
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It allows the use of known ground-truth deformations which were generated using

the finite element method. However, the simulated deformations are an idealisation

of the deformations expected for the clinical cases.

To approximate the geometry of the breast in the unloaded configuration, the

surfaces of the chest wall and the skin were approximated by simple geometric

forms. The chest wall was defined by a cylinder with its axis resembling the cranio-

caudal patient axis. To define the skin surface, the height of a two-dimensional

Gaussian function was added to the anterior elevation of the cylinder as shown

in the first row of Fig. 4.114.11. The boundaries were defined as axial coronal and

sagittal planes and in the simplest experiments set to fixed boundary condition for

the FE simulations. This geometry was meshed and a biomechanical model with

homogeneous neo-Hookean material properties was generated. Gravity was added

as a body force acting on the unloaded configuration in the anterior and posterior

directions to simulate the prone and supine gravity loaded configurations using

Nifty Sim (Johnsen et al.Johnsen et al., 20142014). The parameters of the geometry were chosen such

that the numerical phantom geometry was comparable to a medium sized breast in

terms of volume, extent and chest diameter. The left-right, anterior-posterior and

superior-inferior extent of the numerical phantom were 160.4 mm, 137.8 mm, and

159.5 mm respectively and the enclosed volume was 1.14 litres.

From the unloaded and simulated geometries corresponding images were gen-

erated by assigning the image texture of an MRI breast dataset to the unloaded

geometry and warping it according to the simulated displacements.

4.2.7 Prone-Supine Registration Results of Numerical Phantom Data

In order to quantify the performance of the registration algorithm in a controlled

setting with known ground-truth, the simulated prone and supine phantom images

were registered using the proposed algorithm. The chest wall was assigned with

a prescribed zero-displacement condition as the motion constraint used in the

registration was not available in the finite element simulations. The registration was

performed with an isotropic simulation grid spacing of ∆xsim = ∆ysim = ∆zsim =

9.07 mm and an image similarity or force resolution of ∆ximg = ∆yimg = ∆zimg =
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Table 4.3: Target registration error of the alignment of the phantom dataset with known ground

truth displacements. The results are based on 500 randomly positioned landmarks within

the simulated breast region.

TRE [mm]

Registration step mean std max

No registration 19.3 16.2 58.7

Unloading, generic material 11.6 5.5 26.6

Material updated 5.4 2.9 20.1

Image forces 0.9 0.8 6.1

2.27 mm. The critical time step of the explicit time integration scheme depends

on the grid spacing and thus a relatively coarse grid was chosen for the purpose

of acceptable computational times. The image forces were calculated two levels

finer than the simulation itself and transferred to the coarser resolution level to

update the simulated unloaded configuration. The material update performed three

stiffening steps with a factor of 1.2 for the parameters µµ and λλ (see equation (4.104.10)),

and is terminated when a decrease in the similarity was detected, while the final

unsuccessful update is discarded.

Figure 4.124.12 shows the intermediate and final results of the numerical phantom re-

gistration experiment. One can observe, that the initial material parameter estimates

were indeed incorrect as the prone and supine images deform beyond the unloaded

state (compare figs. 4.12a4.12a, 4.12b4.12b and 4.12c4.12c with 4.114.11). After the material update step

the alignment was significantly improved, but not ideal. This can be attributed to

the coarse material optimisation steps as well as to the coarse simulation resolution.

This step provides a better starting point to achieve the final alignment however.

To this end image forces were accumulated to update the unloaded configurations

accordingly. The final alignment is visually excellent as can be seen in the difference

image 4.12i4.12i. Furthermore the recovered unloaded configuration coincides with the

initial one.
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The target registration error (TRE) was evaluated for 500 pseudo-landmarks

randomly distributed across the initial numerical phantom domain. The term

pseudo-landmarks was selected in this context, since the points for the numerical

phantom evaluation were not selected according to image features but randomly

distributed across the region of interest. The quantitative results are given in

table 4.34.3. The mean TRE was reduced from 19.3± 16.2 mm to 0.9± 0.8 mm. Note

that the relatively large maximum error of 6.1 mm after registration occurred at

the border of the model, where the boundary conditions of the finite element

simulation and the finite difference framework were not equivalent. In order to

allow more deformation at the image borders, in the registration framework we

apply padding around the image before registration. This differs from the ground-

truth deformation and the absence of image information in this region explains

this behaviour. However, the initial maximum TRE was reduced by an order of

magnitude.

4.2.8 Clinical Datasets

The set of clinical image data consisted of nine prone MR and supine CT image

pairs (P1-P9) which were acquired as part of the standard care for these breast

cancer patients. The MR images were captured pre-operatively for diagnostic

purposes and the CT images were post-operative planning CT scans acquired just

before radiotherapy. To avoid differences in the images caused by surgical tissue

removal, the registration and corresponding evaluation is carried out only on the

healthy, contra-lateral breast. Note, that the estimated time between the MRI and

the CT acquisition is usually about six weeks.

A prone-supine CT image data pair from a tenth patient (P10*) was also added

to the clinical data set. Since both images were acquired post surgery, seven marker

clips were present and well visible in both images. These clips are utilised to locate

the tumour bed for radiotherapy in the clinical workflow. In the context of this

study these clips could be used to generate a ground-truth deformation between

the two loading positions. To this end the seven markers were identified manually

and warped according to the deformation vector field produced by the registration
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: Registration results for the simulated prone and supine images. The first column (a,d,g)

shows the state of the prone image during the course of the registration procedure,

the second column (b,e,h) the corresponding states of the supine image and the third

column (c,f,i) the difference images. The first row represents the warped images after

the unloading procedure with generic material parameters. Obviously the material

parameters were chosen to be too soft and thus were iteratively stiffened to obtain

a better match in the unloaded configuration. The alignment was then improved by

accumulating image forces leading to the results shown in the third row. The difference

images 4.12c4.12c, 4.12f4.12f and 4.12i4.12i are scaled so that the intensity range is equal for all

difference images.
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algorithm. The region of and around the markers was assigned with a registration

mask so that no image forces were calculated here. Hence a bias in the registration

result is avoided. Note however, that the clips are located only in the region of the

original tumour location and thus cannot represent the registration accuracy for

the entire breast. On the other hand, it is precisely this region in and around the

tumour which would be of most interest in clinical practice.

Furthermore, four prone-supine MR image pairs were added to the clinical data

set to allow a comparison of the registration performance between MRI-CT and

MRI-MRI registration (M1-M4).

To access and process the data, approval of the local ethics committee was

obtained and the study was approved by the research and development unit of the

clinical site. The MR images for cases P1-P9 were acquired with a Philips Achieva

1.5 T scanner and have a native resolution of 0.63× 0.63× 3 mm3. A turbo spin echo

(TSE) sequence was used with a flip angle of 90◦, an echo time of 120 ms, and a

repetition time between 4084 ms and 6806 ms. The CT images of cases P1-P10* have

a resolution of 1.1× 1.1× 3 mm3. The prone MR images of the MRI image pairs M1-

M4 have a native resolution of 0.7× 2.2× 0.7 mm3 and the corresponding supine

images one of 0.7× 0.7× 2.5 mm3. The MR image pairs M1-M4 were acquired

with a Philips Gyroscan Intera 1.5 T scanner using a T1 weighted gradient echo

sequence with a flip angle of 25◦, an echo time between 4.1 ms and 4.3 ms, and a

repetition time between 4.1 ms and 4.5 ms. The patient age was available only for

the the MRI-CT cases (P1-P9). For these cases the average age was 47 years ranging

between 29 and 60 years.

Processing of the images involved resampling to an isotropic resolution of

1× 1× 1 mm3, bias-field correction of the MR images and segmentation of both

modalities into background, chest, fibro-glandular and adipose tissue, which first

determines the patient outline and then the pectoralis-breast boundary. This area

is further segmented with an expectation maximisation algorithm into fat and

fibroglandular tissue. As a last step the chest wall of the supine image was manually,

rigidly aligned to the chest of the prone image.
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4.2.9 Prone-Supine Registration Results of Clinical Data

In order to align prone MR images to the corresponding supine CT images (P1-P9),

the intensities of the MR images were modified such that the grey values of fat

and glandular tissue appeared similar in both images. To achieve this the intensity

inversion within the breast segmentation mask was applied as described in section

4.2.54.2.5. Furthermore a region of interest which contained the breast that was not

operated was selected to avoid effects of tissue removal between the images. The

supine CT image was then manually rigidly aligned on the chest wall and sternum

using the costal cartilage and adjacent rigid structures visible in both modalities.

The prone-supine CT image pair (P10*) and the four MR image pairs (M1-M4) were

processed in the same way, except for the modification of the image intensities.

The image registration was performed with three progressively finer image resol-

ution levels with ∆ximg = ∆yimg = ∆zimg = {4, 2, 1}mm following the well estab-

lished methodology of multi-scale registration (ModersitzkiModersitzki, 20042004). The simulation

level was kept at a constant isotropic resolution of ∆xsim = ∆ysim = ∆zsim = 8 mm.

Initial sensitivity experiments with twice the resolution of the simulation grid

resulted in near identical registration results with differences at the scale of the

voxel resolution. The difference in displacement measured 2.2 mm(±0.8 mm). For

computational efficiency therefore we decided not to choose a finer grid for the

registrations. Furthermore, no correlation between registration error and breast size

could be identified.

Measurement of the registration accuracy in the presence of large-deformations

is non-trivial. However, several methods could be considered: (i) overlap measures

such as the Dice coefficient (DiceDice, 19451945), (ii) surrogate measures such as image

similarity measures, (iii) surface distance measures, or (iv) distance measurements

between manually selected correspondences which are in this thesis referred to as

“landmarks”.

(i) Overlap measures, such as the dice coefficient, require an accurate segment-

ation of the internal breast structures and indicate the resulting overlap with a

value between zero and one. The value might be difficult to interpret, but more

importantly, is dependent on the shape of the segmented structures. If for instance
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Table 4.4: Target registration error for clinical prone-supine MRI-CT datasets (P1-P9), CT-CT
dataset (P10*), and MRI-MRI datasets (M1-M4). The upper part, “single observer”,
represents TRE measurements based on the manual selection of corresponding landmarks
in the prone and supine image. The lower part, “two observers”, considers only reliable
landmarks, i.e. those where two observers for a given prone landmark agreed on a
corresponding supine location no further than 10 mm apart. All values given in mm.

single observer

rigid unloading image forces

mean max. std. mean max. std. mean max. std.

P1 63.7 83.3 20.9 15.4 30.7 5.8 6.2 10.8 2.8

P2 58.7 88.5 17.1 16.1 24.4 7.1 8.0 12.8 3.4

P3 90.2 109.3 12.6 13.4 18.3 3.2 4.5 11.5 3.4

P4 93.9 131.3 20.2 19.9 33.9 7.1 9.6 28.6 7.2

P5 38.8 56.4 11.9 12.2 20.5 4.5 7.2 11.5 3.5

P6 50.6 58.4 7.7 6.5 11.9 3.3 4.8 10.5 2.6

P7 54.3 76.8 16.2 12.3 31.2 8.6 8.7 18.2 5.5

P8 91.8 125.7 25.8 24.3 34.4 5.8 5.6 13.9 3.7

P9 62.1 87.6 22.2 16.5 29.4 7.4 7.7 15.0 3.9

P10* 133.1 154.2 18.9 14.6 27.8 8.5 5.4 22.1 5.4

M1 54.7 67.7 7.2 10.3 22.0 5.2 3.1 6.9 1.9

M2 48.2 70.4 11.7 9.5 24.0 5.1 3.8 13.1 2.9

M3 51.8 61.1 6.9 11.9 19.7 4.4 4.5 6.7 1.2

M4 70.6 80.3 7.0 12.6 17.1 3.2 2.9 5.3 1.6

P1-P10* 73.7 15.1 6.8

M1-M4 56.3 11.1 3.6

P1-M4 68.7 14.0 5.9

two observers, combined

rigid unloading image forces

mean max. std. mean max. std. mean max. std.

P1 62.4 80.6 20.5 15.0 30.7 5.6 6.5 12.8 3.1

P2 61.5 88.5 17.9 14.3 24.1 6.6 7.0 12.8 3.3

P3 95.8 110.7 8.6 14.7 22.9 3.1 5.0 16.6 4.2

P4 98.4 134.9 22.7 22.5 35.3 7.1 9.1 20.2 5.3

P5 35.7 51.2 11.6 11.1 20.5 4.6 6.1 13.2 3.4

P6 49.1 58.6 9.9 7.5 12.4 3.0 4.2 9.1 2.0

P7 55.0 76.9 14.7 12.7 31.2 9.9 8.5 18.6 6.6

P8 101.2 125.7 18.2 25.4 35.0 5.9 5.4 12.3 2.9

P9 54.7 87.6 25.0 18.9 30.3 7.4 8.3 15.6 4.3

P10* 134.0 151.3 17.5 13.3 27.1 7.9 4.0 8.2 2.3

M1 59.4 67.7 4.5 9.2 16.7 4.2 3.0 4.3 1.1

M2 47.7 70.4 12.4 9.6 24.0 5.2 4.1 13.1 3.0

M3 49.9 64.4 7.4 11.3 16.6 4.1 4.6 8.5 1.8

M4 70.6 80.3 6.8 12.5 17.3 3.3 2.9 6.0 1.6

P1-P10* 74.8 15.5 6.4

M1-M4 56.8 10.6 3.7

P1-M4 69.7 14.1 5.6
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Table 4.5: Inter observer variability in the supine configuration before and after exclusion of unreli-

able landmarks. NL is the total number of landmarks and NO the number of landmarks

which were above a threshold of 10 mm. Such landmarks were regarded as unreliable and

excluded from the evaluation.

inter observer distance distance after exclusion

mean max. std. mean max. std. NL NO

P1 5.1 15.2 3.9 4.2 10.0 2.5 12 1

P2 5.7 15.1 4.8 3.1 7.3 1.9 8 2

P3 7.3 24.6 8.2 3.0 9.2 2.3 13 3

P4 9.6 29.9 9.2 4.7 7.2 1.6 11 3

P5 6.7 21.6 6.2 3.9 8.5 2.4 9 2

P6 8.3 18.3 4.8 5.4 8.9 2.3 9 3

P7 7.6 15.2 4.7 5.5 9.6 3.5 8 2

P8 7.0 21.7 5.9 4.5 9.7 2.7 10 2

P9 7.6 16.5 6.0 2.8 4.8 1.3 10 4

P10* 8.5 29.8 9.5 3.6 9.2 2.4 13 3

M1 10.9 22.1 7.1 4.0 6.0 1.4 11 6

M2 5.7 28.6 7.0 3.3 8.9 2.1 14 2

M3 7.2 16.4 5.1 3.6 4.7 0.8 11 4

M4 1.8 2.9 0.8 1.8 2.9 0.8 10 0

P1-P10* 7.3 4.1 24.3%

M1-M4 6.4 3.2 26.3%

P1-M4 7.1 3.8 24.8%
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the overlap of the fibroglandular tissue was used for evaluation, the same residual

misalignment could result in different dice coefficients. Dense breasts with compact

regions of fibroglandular tissue could potentially give better dice scores than breasts

with finely structured fibroglandular tissue.

(ii) Image similarity measures are not suitable to measure misalignment of image

registration methods, since these are optimised by the algorithm directly. Further-

more similarity values alone do not allow intuitive estimation of the alignment

error.

(iii) In contrast to the previous two measures, surface distances can be easier

interpreted in a clinical context. However, it is not possible to measure in-plane

misalignment, which inherently results in an underestimation of the registration

error. Furthermore, since the developed algorithm is driven by image forces, it is

expected that especially the skin surface, an area of high image contrast, is aligned

well. This further adds to the effect of error underestimation.

(iv) Manually identified landmarks in prone and supine images can measure the

target registration error directly, given that correspondences can be sufficiently well

identified. Due to the large deformation between the patient configurations, this

process is cumbersome and observer-dependent. Observer dependence however

might be reduced by introducing more observers. While this evaluation method

still has disadvantages, it does not inherently underestimate the error and the

results are easier to interpret. Hence landmarks were used to measure the TRE –

first with a single observer and later on with an additional control observer.

The term “landmarks” usually refers to anatomically characteristic points that

can be identified across subjects (West et al.West et al., 19971997). However, points that can be

identified in the breast across subjects are very sparse. Hence the term landmark is

used in this thesis as an anatomical feature (pair) that was visually identified by an

observer.

First, landmarks manually identified by one observer were used for the evaluation

of the alignment quality in the central configuration. For each case eight to fourteen

landmarks were selected. The landmarks were transformed from the prone and

from the supine configuration according to the transformation types used, i.e.

rigid chest alignment, unloading simulation after material optimisation and final
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alignment using image forces. The distances between corresponding landmarks

were measured for each case and the mean, maximumg and standarad deviation

was computed per patient, resulting in the TRE measurements presented as follows.

The upper part of table 4.44.4 labelled with “single observer” shows the corresponding

target registration errors for all evaluated cases. Since the images were aligned

rigidly, the landmark distance before the registration allows measurement of the

scale of the tissue motion between prone and supine positions to be made. The

mean landmark distance between the unregistered prone and supine positions,

for all cases, ranges between 38.8 mm and 133.1 mm and the maximum landmark

distance between 56.4 mm and 154.2 mm.

A significant reduction in the TRE can be observed by performing the unloading

simulation and material optimisation. An example of the image similarity meas-

ure as well as the mean, maximum and minimum TRE over the course of the

optimisation process is shown in figure 4.134.13. From one iteration to the next the

material stiffness was decreased by 10%. As the minimum of the objective function

is approached, the absolute change of the SSD similarity decreases, indicating a

flat optimum (figures 4.13a4.13a to 4.13f4.13f). The same can be observed for the change in

the evaluated TRE quantities, which also change less as the minimum similarity

is approached (figures 4.13g4.13g to 4.13l4.13l). Hence a more accurate global optimisation

with smaller material updates might not be required. The similar results for SSD

and TRE – the latter not being available for unseen patients – indicate that the

material optimisation can be performed based on the surrogate SSD measurements.

The unloading procedure results in an overall mean TRE of 14.0 mm varying

between 6.5 mm and 24.3 mm and a maximum TRE between 11.9 mm and 34.4 mm.

Subsequently the final alignment was calculated by refining the unloaded con-

figuration by adding image forces to the system. This resulted in a final overall

mean TRE of 5.9 mm varying between 2.9 mm and 9.6 mm and maximum TREs

between 5.3 mm and 28.6 mm. The final mean TRE for the MRI cases (M1-M4) is

with 3.6 mm smaller than the 6.8 mm achieved for the cases P1-P10*.

For a clinically applicable registration quality, a registration error below 10.0 mm

is desirable. This figure was obtained following discussions with clinicians. The

mean TRE evaluated on landmarks selected by a single observer fulfils this criterion,
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Figure 4.13: The material optimisation process by iterative material softening steps noptnopt. The

optimisation steps for patient P5 in terms of SSD image similarity measure (a-f), as

well as registration accuracy in terms of the TRE (g-l). The blue, green, and red curves

in the TRE graphs represent the mean, maximum and minimum registration errors

respectively. During the optimisation the image similarity measure SSSD is observed

and acts as a surrogate for the actual alignment quality in terms of the TRE. Note

how the mean TRE and its surrogate SSSD follow similar curves over the course of the

simulations.
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10mm

(a)

10mm

(b)

Figure 4.14: Orthogonal sections through the prone MRI and supine CT image of case P1 with

corresponding landmarks selected by two observers. The first observer selected corres-

ponding points in the prone and supine images (left and centre), whereas the control

observer was asked to find the supine landmark when presented with the prone one

(right). (a) shows an excellent agreement between the two observers (red and green

crosses in the supine CT) resulting in a landmark distance of 1.1 mm. (b) is an ex-

ample where both observers do not agree, identifying different structures with similar

appearance resulting in a landmark distance of 15.2 mm.
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Figure 4.15: Histogram of all inter-observer distances.

but the maximum TRE of 28.6 mm does not. However, the landmark selection

process is inherently observer dependent and potentially error prone and the high

maximum value might originate from an erroneously identified correspondence.

Hence, in a second step the quality of the landmarks was assessed by a second

control observer with the aim to eliminate unreliable landmarks. A control observer

was presented with the prone landmarks selected by the first observer and then

given the task of identifying the corresponding locations in the supine image. This

means that for each prone landmark two corresponding supine landmarks exist,

one from each observer. The distance measured between corresponding supine

landmarks defines the inter-observer distance, which is the basis to quantify the

inter-observer variability. The results of this inter-observer variability experiment

are given in table 4.54.5. Furthermore, two examples of the 149 landmarks are shown

in figure 4.144.14. The first example (fig. 4.14a4.14a) shows a very good agreement between

the observers, which is reflected by a landmark distance of 1.1 mm. Figure 4.14b4.14b

on the other hand shows poor agreement between the observers, apparently due to

the presence of visually similar but different structures. The landmark distance for

this case is 15.2 mm. Eliminating such landmarks increases the confidence in the

remaining landmarks to better reflect the correct TRE.
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Landmarks for which the distance between the first and the control observer were

larger than 10 mm were eliminated from the evaluation therefore. Visual inspection

of the statistical distribution of all inter-observer distances, as shown in figure 4.154.15,

suggests a mixed distribution, with a cluster of values centred around 3.5 mm and

a distinct drop at 10 mm. Furthermore, with increasing inter-observer distance, the

chance increases that different structures within the breast were identified. For this

reason 10 mm was taken to be a plausible threshold distance, above which two

landmarks can be considered placed on different features (see also 10mm mark in

figure 4.144.14).

The overall mean inter-observer distance was 7.1 mm before and 3.8 mm after

the exclusion of the unreliable landmarks. The inter observer distance for cases

P1-P10* is 7.3 mm and only slightly higher than the distance measured for cases

M1-M4, which is 6.4 mm. For both groups, P1-P10* and M1-M4, about a quarter of

the landmarks were excluded. This suggests, that there is a negligible difference

in the accuracy of the landmark selection between MRI-MRI and MRI-CT cases.

Accordingly, the bottom part of table 4.44.4 labelled as “two observers, combined”

shows the TRE evaluation using the trusted landmarks only, which was computed

as follows. Since for each prone landmark two supine landmarks exist – each

transformed either rigidly, or according to the unloading simulation or accorging

to the simulation with added image forces – two distances are measured per

landmark triplet, i.e. 1) (transformed) prone to (transformed) supine landmark

identified by the first observer and 2) (transformed) prone to (transformed) supine

landmark identified by the control observer. Both distances equally contribute to

the computation of the mean, maximum and standard deviation of the TRE for

each case. It should be noted that the distance measurements are, due to the nature

of the described landmark selection process, not completely independent.

The maximum TRE alignment error of 28.6 mm previously observed for P4 by

using only a single observer was reduced to 20.2 mm by adding the control observer

and the 10 mm exclusion criterion to the evaluation procedure. The overall mean

registration error reduced slightly from 5.9 mm to 5.6 mm.

To investigate a potential correlation of the achieved TRE with respect to breast

size, for each patient the anterior-posterior (AP) extent from pectoralis surface to
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Figure 4.16: Anterior-posterior extent of the breast in the prone position (measured from the anterior

surface of the pectoralis muscle to the nipple) plotted against the TRE. Cases P1 to P9

are marked as blue triangles, case P10* is marked with a blue square and cases M1 to

M4 are marked as yellow circles. The linear regression for cases P1 to P10* is drawn

as a blue line, and the regression line for all cases is drawn as a grey line.

nipple was measured in the prone configuration and plotted against the achieved

registration error (TRE measures were taken from the two-observer experiment).

The result is shown in figure 4.164.16. The AP-extent varies between 59 mm and 128 mm.

Two linear regression lines are also plotted: the blue one shows the trend for cases

P1 to P10*, whereas the grey one shows the trend for all cases, P1 to M4. Adding the

MRI-MRI cases changes the slope of the trend-line from near horizontal (blue line)

to a slight upward trend (grey line). This effect however should be considered with

care, due to the narrow AP and TRE range of the MRI-MRI cases. For the evaluated

cases it appears, that the registration performance does not strongly depend on

the breast size. Furthermore, a slightly better performance can be observed for the

single modality cases M1 to M4 and P10* when compared to the multi-modal cases

P1 to P9. This could potentially be attributed to the approach how multi-modal

cases are prepared for the SSD force evaluation (see section 4.2.54.2.5.)

In addition to the manually selected landmarks as presented in table 4.44.4, im-

planted fiducial markers could be used to evaluate the registration accuracy for

the CT-CT case P10*, without inter-observer variability but only for a small region
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of the breast. In the prone configuration the axis aligned bounding box enclosing

the seven landmarks measured 11.0× 16.6× 10.1 mm3. The rigid alignment of the

images on the chest resulted in a mean (maximum) fiducial registration error (FRE)

of 136.9 mm (139.6 mm). After the unloading and material optimisation the mean

(maximum) FRE was reduced to 18.7 mm (22.4 mm). The final mean (maximum)

FRE with accumulated image forces measured 3.61 mm (5.13 mm).

The initial images, the registered images, and the landmarks for all fourteen

clinical cases are shown in figures 4.174.17–4.444.44 (pages 138138–165165). Figures on even pages

show the prone, supine, and difference images at the beginning and at the end of

the registration procedure. Figures on odd pages show the landmark distance in

the central configuration as projections into the coronal, sagittal and axial planes for

all evaluated clinical cases. The landmarks transformed from the prone position are

depicted as circles whereas those transformed from the supine position are shown

as small squares. Landmarks from the first observer are coloured blue and those

from the control observer are coloured green. The correspondence is visualised as

connecting lines, and the colour indicates the total Euclidean landmark distance.

This allows a visual assessment of the distribution of the selected landmarks and

of the registration accuracy throughout the breast.

By comparing the original prone and supine images (a) and (c) in figures on right

hand pages starting from figure 4.174.17–4.434.43, breast tissue motion along the chest wall

appears to be present in all cases to varying degrees. Case P10* (c.f. figure 4.354.35 on

page 156156) for example shows a very large displacement, whereas for case P1 this

displacement does not seem to be as pronounced (c.f. figure 4.174.17 on page 138138)

4.2.10 Discussion

The proposed algorithm is the first symmetric integrated simulation based regis-

tration approach which accounts for large deformations present in prone-MRI-to-

supine-CT breast image alignment. The algorithm takes into account pre-loading of

the breast geometry with gravity and calculates a virtually unloaded configuration.

After an optimisation of soft tissues material parameters, the unloaded configura-

tion is updated by accumulating image derived forces directly into the unloading
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.17: Result of the intensity driven registration approach for case P1. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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(a) All landmarks of the first and the control observer.
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(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.18: Intensity based registration result for case P1 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.19: Result of the intensity driven registration approach for case P2. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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(a) All landmarks of the first and the control observer.
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(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.20: Intensity based registration result for case P2 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.21: Result of the intensity driven registration approach for case P3. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.22: Intensity based registration result for case P3 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.23: Result of the intensity driven registration approach for case P4. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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(a) All landmarks of the first and the control observer.

0.0

5.0

10.0

15.0

20.0

[m
m

]

(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.24: Intensity based registration result for case P4 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-

(c)

(f) Difference after registration: (b)-(d)

Figure 4.25: Result of the intensity driven registration approach for case P5. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).



4.2 integrative registration approach 147

0.0

2.5

5.0

7.5

10.0

12.5

15.0

[m
m

]
(a) All landmarks of the first and the control observer.
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(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.26: Intensity based registration result for case P5 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.27: Result of the intensity driven registration approach for case P6. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.28: Intensity based registration result for case P6 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.29: Result of the intensity driven registration approach for case P7. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.30: Intensity based registration result for case P7 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.31: Result of the intensity driven registration approach for case P8. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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Figure 4.32: Intensity based registration result for case P8 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.33: Result of the intensity driven registration approach for case P9. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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Figure 4.34: Intensity based registration result for case P9 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.



156 biomechanical registration : intensity driven

(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registra-

tion

(d) Supine image after registration

(e) Difference before registration:

(a)-(c)

(f) Difference after registration: (b)-

(d)

Figure 4.35: Result of the intensity driven registration approach for case P10*. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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Figure 4.36: Intensity based registration result for case P10* in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.37: Result of the intensity driven registration approach for case M1. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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Figure 4.38: Intensity based registration result for case M1 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.39: Result of the intensity driven registration approach for case M2. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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Figure 4.40: Intensity based registration result for case M2 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.41: Result of the intensity driven registration approach for case M3. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).



4.2 integrative registration approach 163

0.0

5.0

10.0

15.0

20.0

[m
m

]
(a) All landmarks of the first and the control observer.

0.0

2.5

5.0

7.5

[m
m

]

(b) Reliable landmarks with an inter-observer distance below

10 mm.

Figure 4.42: Intensity based registration result for case M3 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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(a) Prone image before registration (b) Prone image after registration

(c) Supine image before registration (d) Supine image after registration

(e) Difference before registration: (a)-(c) (f) Difference after registration: (b)-(d)

Figure 4.43: Result of the intensity driven registration approach for case M4. The images before

registration, (a) and (c), show the original prone and supine configuration at the

coarsest resolution level with the corresponding difference image (e). Figures (b) and

(d) show the final registration result as the warped prone (b) and supine image (d) at

the finest resolution level with the corresponding difference image (f).
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Figure 4.44: Intensity based registration result for case M4 in terms of transformed landmark

positions. The circles represent the landmarks that were transformed from the prone

position. The blue and the green squares mark the positions of the first and the control

observer respectively after transformation transformation from the supine position.
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simulation such that the unloaded configurations from prone and supine align.

This results in a biomechanically constrained deformation. The motion on the chest

wall is enforced to be parallel to the boundary between the breast and chest wall.

A novel unloading mechanism takes advantage of the duality between the forward

simulation displacement description and the well established image resampling

procedure which is inverse to the simulation.

The viability of the proposed algorithm was first evaluated using a numerical

phantom geometry with simulated prone-supine deformations. This provided

ground-truth displacements, against which the registration accuracy was evaluated

using 500 pseudo-landmarks. An initial misalignment of 19.3 mm was reduced to

11.6 mm by using the unloading methodology with generic material parameters.

Optimising such parameters reduced the TRE to 5.4 mm and adding image forces

achieved a final registration accuracy of 0.9 mm. While this initial experiment was

promising, it also had its limitations. First the displacement magnitude between the

original prone and supine image was comparatively small. This can be attributed

to the fixed boundary condition on the chest wall, as well as to possibly too stiff

material parameters for the ground-truth simulations. Furthermore, the simulated

prone and supine images were generated without considering image noise. For a

more realistic generation of input images for the registration method, Rician noise

should be considered as was done for instance by Schnabel et al.Schnabel et al. (20032003).

To quantify the alignment accuracy for the clinical datasets, the target registration

error (TRE) in the central position by the means of manually selected landmarks

was measured. Although this is – due to the scale of the deformation at hand – an

inherently difficult task, a mean registration error for all clinical cases of 5.6 mm

was measured.

Including prior knowledge of the gravity loading into the biomechanically based

image registration was shown to be key to successful alignment. The pure biomech-

anical unloading step accounted for the biggest reduction of the overall meam TRE

from 69.7 mm to 14.1 mm and the corresponding deformation recovery. The final

corrections were image driven and smaller. They reduced the overall TRE from

14.1 mm to 5.6 mm.
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Although the scheme proposed was implemented using the finite difference

method, it can also be adapted to integrate the symmetric image derived forces

into conventional finite element platforms.

The motion constraint presented here differs significantly from the frictionless

sliding used for example by Han et al.Han et al. (20142014) and the fixed displacement constraint

widely used elsewhere. Ultimately it allows control of sliding-like motion in a

much more subtle way and could provide an experimental platform to investigate

motion along the chest wall more precisely.

Having a supine target image is – especially in the context of image guided

surgery – typically not standard clinical practice, and imposes a potential limitation

on all intensity based registration methods for prone-to-supine breast image align-

ment. In cases where full three-dimensional images are not available in the supine

position, surface scans could be acquired more easily. In this regard, the presented

method could be extended for such an application by using an additional target

surface on the skin of the model and eliminating the internal image forces.

The use of a mono-modal image force based on the sum of squared differences

imposes a limitation on the framework which can be overcome by implementing

image derived forces based on multi-modal similarity metrics such as normalised

mutual information or other information theory based metrics. Possible implement-

ations can be based on previous work, for instance that presented by Crum et al.Crum et al.

(20032003).

4.3 potential clinical applications

This section reviews a potential clinical field of applications of the developed large

deformation, intensity based breast image registration described in the previous

sections. The availability of three-dimensionally resolved images depends on indi-

vidual patient’s clinical journey and thus applicability varies on a patient-to-patient

basis. Three-dimensionally resolved images as required by intensity driven re-

gistration approaches can be seen as the most complete set of source and target

information. This stringent requirement may also potentially put limitations on its

applicability. Hence it is important to closely look at the patients pathway through
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the clinic and identify points where such image pairs are already part of the clin-

ical routine. Since the surgical planning and guidance application is discussed in

chapter 55 the focus of this section is on radiotherapy.

When a woman is diagnosed with breast cancer, surgery is often part of her

individual therapy plan which can also include additional forms of treatment

such as chemotherapy and radiotherapy. Where possible lumpectomy (often also

referred to as wide local excision) combined with radiotherapy is the preferred

treatment of choice. This involves removing only the cancerous tissue with a margin

of healthy breast tissue, therefore conserving the unaffected parts of the breast. This

has potential benefits over mastectomy, the complete removal of breast tissue, of

being more acceptable to patients, offering good cosmetic results and comparably

low risk of local recurrence as was shown by Hwang et al.Hwang et al. (20132013).

The important role of radiotherapy in order to reduce the risk of local recur-

rence in early breast carcinoma was highlighted for instance in the review art-

icle by Offersen et al.Offersen et al. (20092009) and references therein. As part of radiation therapy,

a supine CT planning scan is acquired. Prone MR images on the other hand

are usually taken much earlier during the diagnostic or staging phase prior

to surgery (NICE, National Institute For Health and Care ExcellenceNICE, National Institute For Health and Care Excellence, 20092009). Hence

prone-supine image pairs for the same patient in the current clinical workflow only

become available at the time of radiotherapy. This motivates discussion of the pos-

sible application of the developed registration technique for radiation therapy: How

could the information contained in the MRI – such as the original extent of the tumour –

be exploited to inform the radiation procedure?

Performing the prone-to-supine registration between pre-surgical MR images and

post-surgical CT scans would allow transfer of, for example, the uptake information

and derived lesion extent of a prone DCE-MRI scan to the supine CT configuration.

When both images are overlaid this could aid the radiotherapy planning process.

Two radiation therapy procedures which apply locally varying radiation doses to

the breast are the breast boost (Romestaing et al.Romestaing et al., 19971997) and Accelerated Partial

Breast Irradiation (APBI) (Baglan et al.Baglan et al., 20032003).

The current standard procedure for external beam radiotherapy is Whole Breast

Irradiation (WBI) and does not necessarily require localised information about the
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original tumour bed when a homogeneously distributed dose is applied to the

whole breast (see e.g. Bartelink et al.Bartelink et al., 20012001; Fisher et al.Fisher et al., 20022002). During treatment

a dose of 50 Gy is delivered in 25 daily fractions over the course of five weeks.

However, local tumour bed information becomes a requirement, when additional

dose, of typically 16 Gy, is delivered to this region. This is called the breast boost.

Bartelink et al.Bartelink et al. (20012001) showed in a randomised trial with 5318 patients that this

boost reduced local recurrence just under twofold with larger effects for younger

patients. To date this procedure is accepted and recommended in clinical practice.

Accelerated Partial Breast Irradiation on the other hand only irradiates the

tumour bed with a margin (Baglan et al.Baglan et al., 20032003). It was proposed as a departure

from the standard WBI procedure which was challenged due to its disadvantages.

First the therapy requires five weeks of daily treatment – sometimes longer. This

poses a logistical challenge on clinical facilities as well as patients. Second, exposing

the whole mammary gland to radiation might not be required, and a focussed

application of radiation could be sufficient to reduce the risk of local recurrence.

By using accelerated treatment, higher doses per fraction can be applied, resulting

in lower numbers of total fractions and thus a faster overall treatment.

Accelerated Partial Breast Irradiation can take several forms to deliver the dose

to the tumour bed locally. Interstitial Brachytherapy for example utilises seeds

filled with a radioactive substance which are then implanted in the target volume

(Baglan et al.Baglan et al., 20012001). Alternatively a technique called MammoSite (Keisch et al.Keisch et al.,

20032003) uses a balloon that is inflated in the surgical cavity with a saline solution.

During therapeutic sessions a seed is inserted via a connected catheter into the

balloon to deliver the dose to the tumour bed. The advantage here is that no radio-

active substances remain in the body between treatments. Both methods however

are invasive with the associated risk of infection as reported in the five-year Mam-

moSite experience report by Benitez et al.Benitez et al. (20072007). Vaidya et al.Vaidya et al. (20142014) proposed a

technique for partial breast irradiation that is currently evaluated in the TARGIT

trial and uses inter-operative radiotherapy. Here, directly after lumpectomy and

before the wound is closed, the tumour bed is irradiated by positioning a radiation

source contained within an applicator in the surgical cavity delivering 20 Gy in
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a single fraction. Baglan et al.Baglan et al. (20032003) on the other hand proposed a non-invasive

APBI technique using 3D conformal radiation therapy (3D-CRT).

Intensity based prone-to-supine image registration could aid breast boost therapy

as well as APBI in the context of personalised non-homogeneous dose planning.

A dose delivery plan is created on the basis of supine CT scans which show the

patient in the treatment position, i.e. whilst lying on her back. In these images the

clinical target volume to which the radiation is delivered is specified. This includes

the surgical cavity, which is currently marked by metallic clips, as well as a safety

margin of usually 10 mm (Weed et al.Weed et al., 20042004).

The metallic clips are positioned in the cavity wall by the surgeon during lumpec-

tomy. This allows the overall location of the tumour bed in the CT image to be

estimated. Ahn et al.Ahn et al. (20092009) report that the presence of wound seroma is crucial to

delineate the surgical cavity in the post-surgical CT scan. They argue, that MRI

provides better soft-tissue contrast and could allow more precise delineation of the

region which is to be irradiated. Kirby et al.Kirby et al. (20092009) also report that delineations of

the tumour bed when based on MR images result in larger target volumes, when

compared to delineations based on CT images. However, the effect on the final

irradiated region was reportedly minor. An increasing interest in making use of the

advantages of MRI was reported in the overview article by Metcalfe et al.Metcalfe et al. (20132013)

and highlights the constant development of this field. Interestingly Schmitz et al.Schmitz et al.

(20102010) promote to use pre-surgical MRI for more precise planning of the excision

and radiotherapy, especially in the context of sub-clinical lesions in the vicinity of

the tumour bed which are believed to be sources of local recurrence. In this regard

pre-surgical DCE-MRI transformed to the supine position could be utilised to fill

in missing information about the original location and extent of the tumour bed

which might result in a more accurate planning of the dose delivery.

Some challenges however still remain. The present registration scheme does

not consider the surgical intervention between the pre-surgical DCE-MRI and the

post-surgical CT scan. Furthermore it is expected that the lumpectomy cavity will

decrease in volume over the course of the treatment and thus an additional degree

of complexity is introduced. From the clinical perspective it remains to be seen if

partial breast irradiation will become widely accepted. A consensus recommenda-
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tion by ASTRO, the American Society for Radiation Oncology (Smith et al.Smith et al., 20092009)

states that APBI will never replace WBI for all or even most patients. Suitable pa-

tients should show a low risk of local recurrence which to date is difficult to predict

reliably. Furthermore suboptimal cosmetic results were reported by Olivotto et al.Olivotto et al.

(20132013) which are attributed to the higher and inhomogeneous dose deliveries and

associated fibrosis. The radiation boost delivery on the other hand is well accepted

in clinical practice and might benefit from added pre-surgical information. Despite

these challenges, the capability to register prone and supine images is a signific-

ant step towards enhanced utility of information in significantly different patient

positions and should open further applications in the future.

4.4 chapter conclusion

The symmetric prone-to-supine intensity driven registration builds on the idea

that splitting the large scale deformation into two parts makes the registration

problem easier to solve. The basic concept was explored in the first section of this

chapter 4.14.1 and acts as a proof of concept for the approach of aligning the images

in the unloaded configuration. It uses the finite element technique as described in

detail in chapter 33. The intensity based registration in the zero-gravity state is then

performed using a free form deformation registration scheme. It was shown that

the biomechanical unloading step from the prone and supine position accounts for

the main reduction of the target registration error (see table 4.24.2 on page 9898). Hence

this unloading is crucial to transform the images such that the residual deformation

lies within the capture range of the intensity based registration.

Although good initial alignment could be achieved between the prone and the

supine images, some challenges remain in the sequential scheme. The recovery of

the unloaded configuration in this approach, for instance, is based on the iterative

prediction-correction scheme. The zero-gravity estimate is updated on the basis

of the error between the prone loading simulation and the actual prone loaded

MRI configuration. This local difference is pulled back to the current zero-gravity

estimate using the deformation gradient. The iterative unloading imposes several

challenges for practical applications, especially when this is to be performed in an
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unsupervised way as, for example, in the Picture project. The number of iterations

for the scheme to converge is not fixed and mainly dependent on the volume of the

patient’s breast. Hence in some cases several gravity increase steps are required.

Furthermore, the unloaded mesh can be of bad quality which can become a problem

when further simulations are based on the unloaded configuration.

The second limitation of the sequential approach is that there is no feedback

from the registration into the biomechanical model. This means that only one

unloading simulation is performed and accepted as the final result. Inter-patient

variability however suggests that this approach will lead to inaccurate results,

since the soft tissue stiffness of adipose and fibroglandular components were

reported in the literature to cover a wide range (see table 2.12.1 on page 5151) and

hence a material optimisation step as proposed for instance by Han et al.Han et al. (20142014)

could further improve the initial alignment. In the same study the motion of the

breast tissue on the chest wall was highlighted and thus a traction free sliding

boundary condition was applied between the chest wall and pectoralis muscle. The

same type of motion was considered in the sequential registration approach by

introducing circumferential stretching of the retromammary facets of the model

using a prescribed displacement boundary condition. This approach however is

inflexible and does not represent patient anatomy.

The nature of the sequential registration is that the biomechanical simulation

and the intensity based image registration step are decoupled. Hence in cases

where the deformation is not restricted by physical constraints such as volume

preservation, physically unrealistic deformations could be introduced. And lastly

the mesh generation for finite element simulations is an involved process and can

be difficult to achieve.

The novel integrated biomechanical simulation based registration approach

presented in section 4.24.2 aims to address all of the aforementioned disadvantages

of the sequential registration. It is based on the finite difference scheme and thus

avoids the explicit mesh generation step. Furthermore the unloading is designed

such that it exploits the inverse relationship between the forward simulation and

the backward image resampling. This makes it possible to recover the unloaded

configuration in just one forward simulation step.
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The feedback of the image alignment into the simulation is twofold. First the

material parameters are optimised globally to improve the alignment before local

correction forces are calculated and applied. These image derived forces do not

have a real physical basis but can overcome modelling inaccuracies such as contact

of the breast with the MR imaging device in the prone position and local stiffness

variations that cannot be captured in the global material optimisation step.

The relatively simple constitutive relation, namely the neo-Hookean material

description allowed good alignment to be achieved. In future work this could be

extended to incorporate more complex, even anisotropic material behaviour if

required.

Allowing the breast tissue to move along the chest wall with the motion constraint

presented in section 4.2.3.24.2.3.2 presents a more flexible approach compared to either

traction free sliding or fixed boundary conditions as was previously presented in

the literature. This is due to the motion being determined by the biomechanical

material behaviour as well as the image derived forces in this region.

The integrated simulation based registration can produce excellent alignment

between prone and supine MR or CT images as well as between prone MR and

supine CT images i.e. both intra- and inter-modality registrations can be performed.

The biggest contribution to the alignment is due to the unloading and thus it

can be concluded that this represents an essential building block for successful

large deformation registration. The unloading step resembles the physically correct

consideration of the effects of gravity and hence it allows incorporation of prior

knowledge about the nature of the deformation. Standard intensity based registra-

tion alone is unlikely to be able to recover such degrees of deformation without

integration of biomechanical prior knowledge.

In terms of clinical applications the intensity based prone-to-supine registration

obviously depends on the availability of three-dimensionally resolved breast images

in these different loading configurations. This represents the most complete set of

information possible. The most accessible application as was discussed in section 4.34.3

is in radiation therapy planning. Location of the original tumour registered from

pre-surgical MR images to post-surgical CT could assist during planning of Partial

Breast Irradiation therapy. Furthermore during standard whole breast radiation
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additional boost delivery could be planned more precisely with an improved

knowledge about the tumour bed location. Surgery between pre- and post operative

images however requires further work and validation before it can be translated

into clinical practice.

In some cases a supine volume is unavailable or inconvenient to acquire. Hence

the following chapter 55 investigates a biomechanically guided surface driven large

deformation registration approach.



5
B I O M E C H A N I C A L R E G I S T R AT I O N : S U R FA C E D R I V E N

chapter overview The building blocks to facilitate patient-specific biomech-

anical finite element simulations based on structural MR images were established in

chapter 33. These include the segmentation of the breast, the discretisation – or mesh-

ing – of the segmented geometry, the assembly of the biomechanical model with

appropriate constitutive relations and boundary conditions, and the forward load-

ing as well as the unloading simulation from a loaded geometry. As a result, those

biomechanical breast models provide a tool to simulate large deformations as they

occur when the patient position is changed. The symmetric, intensity driven regis-

tration approach presented in chapter 44 used, amongst other aspects, a combination

of biomechanical prior-knowledge, material parameter optimisation and intensity

information to drive final alginment. In this chapter a surface driven registration

scheme is developed that does not require a volumetric target image. Instead, the

biomechanically simulated breast shape in a gravity loaded configuration is aligned

with a target surface. Similar to the intensity driven registration method, first a

material parameter optimisation is carried out to improve the gross alignment,

followed by a surface alignment step. The main contribution here is the constrained

surface warping that reduces the residual misalignment between the target surface

and the biomechanical model. The surface displacements are subsequently applied

to the biomechanical model to generate a volumetric displacement vector field.

Carter et al.Carter et al. (20052005) point out that the application of biomechanical models to

provide information for surgical planning or guidance is, despite being an obvious

application, very challenging. To facilitate surgical planning, image information

from the pre-surgical prone DCE-MRI needs to be transformed into the surgical

supine position. For surgical guidance a further transformation of the transformed

image into the coordinate system of the operating room (OR) might be required.

This last transformation is known as image-to-physical space registration. To

175
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perform the transformation from the prone image data to the surgical position

some target information is required, since, as will be shown in this chapter, pure

simulation approaches are likely to fail.

In the literature biomechanical models of breast tissues are used to align volumet-

ric prone-supine image pairs to obtain the transformation into the surgical position.

This is usually done in a sequential way, where first a biomechanical simulation

recovers the gross deformation between the prone and the supine position. In a

subsequent step an intensity based registration accounts for residual misalign-

ment (Lee et al.Lee et al., 20102010; Carter et al.Carter et al., 2006a2006a; Eiben et al.Eiben et al., 20132013; Han et al.Han et al., 20142014). An

alternative, integrative approach to align prone and supine breast images was

presented in chapter 44. In the current clinical workflow, however, 3D prone-supine

image pairs are usually not available at the time of surgery.

As an alternative to the prone imaging position, dynamic supine breast MRI

was proposed previously by Siegler et al.Siegler et al. (20112011). This substantial change in MRI

acquisition practice would make the information about the extent of the lesion

directly accessible in the surgical position. However, to date it has not been adopted

into clinical practice, due to limited diagnostic utility and the extended image

acquisition time required if performed additionally. Furthermore, breathing motion

compensation becomes essential when the supine configuration is adopted during

breast MRI acquisition (Siegler et al.Siegler et al., 20122012), and, since the position of the patients’

breast in the scanner is further away from the iso-centre, geometric distortion might

occur Ahn et al.Ahn et al. (20092009). Recently the potential role of supine MRI for image guided

interventions was addressed by solving the image-to-physical-space registration

task for which the comparably smaller deformation between the image acquisition

and the surgical position was exploited (Alderliesten et al.Alderliesten et al., 20102010; Conley et al.Conley et al.,

20142014, 20152015). However, the disadvantages of the supine MRI acquisition might

be circumvented, if a registration methodology was available, that transformed

the prone MR image information to a target, that is more readily available than

volumetric images.

Optical surface imaging techniques became widely popular in recent years. This

non-invasive and – compared to MRI – relatively low cost and fast imaging modality

could easily be used to image the patient in an upright or supine surgical pose. This
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could provide a valuable adjunct to pre-operative MRI, for surgical planning or

guidance. Lago et al.Lago et al. (20122012) presented a feasibility study by emulating time-of-flight

depth data from volumetric supine scans and used this as target information for

their prone-supine registration. Unfortunately a quantitative evaluation is missing

from their work. Carter et al.Carter et al. (20082008) also present an alignment methodology that

incorporates an optically acquired supine target surface, however their method

requires an intermediate volumetric supine MR image to compute the complete

prone-supine deformation.

In this chapter an image-to-surface registration method which uses a biomech-

anical model, material parameter optimisation, and surface warping to trans-

form prone MR image data to the supine and upright target surface is de-

veloped. The methodology was submitted for presentation at SPIE Medical Imaging

2016 (Eiben et al.Eiben et al., 2016b2016b).

5.1 surface alignment approach

Similar to the integrative intensity based registration approach presented in sec-

tion 4.24.2 the surface driven registration also first establishes global and thereafter

local alignment. The components of this approach comprise

• biomechanical simulations including material parameter optimisation and

global rigid alignment (see section 5.1.15.1.1),

• surface warping using a constrained deformation approach (see section 5.1.25.1.2),

and

• propagation of the surface matching result to the biomechanical model (see

section 5.1.35.1.3).

5.1.1 Material Parameter Optimisation and Global Alignment

One issue with the clinical applicability of patient specific biomechanical models

is that the material parameters are not known and a wide range of elasticity

measures has been reported in the literature (cf. section 2.3.12.3.1). Han et al.Han et al. (20142014),
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Figure 5.1: Overview of the material parameter optimisation workflow that aligns the finite element

biomechanical model with the upright or supine surface scan. The material parameters

of the biomechanical model are optimised so that the rigid alignment of the surface scan

and the simulated corresponding position show an improved match in terms of the

similarity measure used.

for instance, addressed this uncertainty in the context of intensity based prone-to-

supine registration and proposed an optimisation of the material parameters of a

patient specific biomechanical model. This resulted in an improved alignment of the

combined transformation of a finite element simulation, an affine and a non-rigid

B-spline registration. The Normalised Mutual Information (NMI) value achieved

by the final registration was used as the objective measure for the optimisation

process.

Since, for an image guided surgery application, volumetric supine target images

are usually not available, here a surface match based material optimisation scheme

which utilises a gradient free Nelder-Mead algorithm Nelder and MeadNelder and Mead (19651965) is

proposed. Figure 5.15.1 shows an overview of the material optimisation workflow.

Where appropriate, the numbers associated with each processing step (1)-(7) as

shown in the figure are referred to in brackets in the text. The following sections

describe the different elements in more detail. The final outputs are the optimised

material parameters, as well as the homogeneous rigid matrix which is used to

produce a transformed target surface mesh S′rigid.
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5.1.1.1 Optimisation Arguments of the Biomechanical Simulation

The prone MRI is the basis from which a patient specific biomechanical model

is built (1). The resulting FE model is used to simulate the prone-to-upright or

prone-to-supine position change for a particular patient (2). For a description of the

generation process of the biomechanical model, the reader is referred to section 3.23.2.

The neo-Hookean constitutive relation used in the biomechanical model to

simulate the behaviour of adipose and fibroglandular tissue is given by

ΨΨ =
µµ

2
(

ÎĈ̂IĈ − 3
)
+

κκ

2
(JJ − 1)2 , (5.1)

where JJ is the determinant of the deformation gradient, ÎĈ̂IĈ is the first invariant of

the deviatoric right Cauchy-Green tensor Ĉ̂C and κκ and µµ are the bulk and shear

modulus respectively which can be expressed in terms of Young’s modulus EE and

Poison’s ratio νν:

µµ =
EE

2(1 + νν)
, κκ =

EE
3(1− 2νν)

. (5.2)

The Young’s moduli EEa and EE f are optimised for adipose and fibroglandular tissue

separately, whereas the Poisson’s ratios are kept constant during the optimisation.

The skin membrane elements are assigned with the exponential constitutive relation

as proposed by Veronda and WestmannVeronda and Westmann (19701970)

ΨΨskin = αsαs

(
eβsβs( ĨC̃IC−3) − 1

)
+ cscs( ĨICĨIC − 3), (5.3)

where ĨC̃IC and ĨICĨIC denote the first and second invariant of the two-dimensional

Cauchy-Green strain tensor (2.192.19). cs was chosen as the third free parameter in

the optimisation procedure since it is associated with ĨICĨIC, which in turn can be

interpreted as a measure for surface area change.

The biomechanical simulation (2) consists of two steps. In the first the effect of

gravity is removed by estimating an unloaded configuration Vavourakis et al.Vavourakis et al. (20152015).

In the second step gravity loading is simulated according to the configuration of

the target surface, i.e. upright or supine.

5.1.1.2 Surface Alignment and Objective Function

In order to evaluate the similarity between the simulated loaded state and the 3D

target surface, the skin surface of the biomechanical model is extracted (3) and
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aligned to the target. Rigid alignment is established using a standard iterative

closest point (ICP) algorithm (4) as was originally proposed by Besl and McKayBesl and McKay

(19921992). Since changes in the material parameters of the biomechanical model also

cause changes in the shape of the simulated loaded configuration, the ICP alignment

is repeated for each iteration of the optimisation.

The quality of the registration between the reloading simulation and the target

surface of the actual gravity loaded patient position is evaluated with an objective

function (5). For this purpose the mean Euclidean point-to-surface distance is used.

Let ppsim(EEa, EEf, cscs) = {pp1, pp2, . . . , ppN} be the N points of the moving surface mesh,

i.e. the extracted skin points of the biomechanical simulation whose positions

depend on the current material parameters. Furthermore let SscanSscan be the target

surface, for instance the reconstructed surface of the optical scanner, then the

objective function mm is given by the mean minimum distance rri(ppi, SscanSscan) of each

vertex point ppi to the surface SscanSscan

mm =


1
N ∑N

i=1|rri(ppsim, SscanSscan)| if simulation converged

∞ otherwise.

(5.4)

Furthermore information about the convergence of the biomechanical simulation

is passed to the optimiser (6) by returning infinity, in cases where the simulation

diverged and as a result no loading simulation could be obtained.

5.1.1.3 Optimisation

As can be seen from figure 5.15.1, the evaluation of the objective function (5) involves

a series of computations, including two biomechanical simulations, and applic-

ation of an iterative closest point algorithm. These steps in particular make the

process computationally very expensive. Hence the choice of the optimiser (6) that

determines the updated material parameters (7) ideally considers

1. a multi-dimensional parameter space,

2. absence of an analytical gradient of the objective function, while

3. requiring a low number of function evaluations.
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These points are covered by the Nelder-Mead simplex optimisation algorithm

(Nelder and MeadNelder and Mead, 19651965). The Nelder-Mead optimiser belongs to the group of

direct search algorithms (Kolda et al.Kolda et al., 20032003), which generally do not require a

gradient and are thus applicable to noisy data. Discontinuities in the objective

function are also handled. The algorithm uses a geometric simplex, whose shape

adapts locally to the objective function following heuristics specified in the original

publication. This method is widely used because of its simplicity, the low number of

function evaluations per iterations and generally a low number of overall iterations.

However, this method also has disadvantages such as possible convergence to local

minima (Dennis and TorczonDennis and Torczon, 19911991; McKinnonMcKinnon, 19981998).

Alternative direct search methods, particle swarm optimisation techniques

(Kennedy and EberhartKennedy and Eberhart, 19951995), and stochastic methods such as simulated anneal-

ing Kirkpatrick et al.Kirkpatrick et al. (19831983) could be an alternative and will be investigated in

future work. However such techniques usually require a larger number of function

evaluations to converge to the global minimum.

5.1.2 Surface Warping

Optimised material parameters alone do not guarantee a sufficiently good align-

ment between the target surface and the corresponding surface of the gravity

loading simulation. This is to some extent due to the MRI scanning and patient

support equipment. Figure 5.25.2 shows an example of how deformations induced by

the MR coil have an influence on the biomechanical model and simulation. Even

breasts of carefully positioned patients can show severe skin surface indentations

especially in the medial region around the sternum Yeh et al.Yeh et al. (20142014). The physically

correct way to approach this deformation in a biomechanical simulation would be

an additional surface force, which counteracts this indentation. However, the locally

varying magnitude of this force is not known and thus is difficult to introduce into

the simulation.

For practical application a simpler alternative is required. Thus correction of

the residual misalignment of the loading simulation and the target surface is

approached by imposing a displacement constraint on the skin nodes of the bio-
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(a) Orthogonal sections through the MR image.

(b) Simulated upright position. (c) Upright surface scan.

Figure 5.2: MR image (a), biomechanical upright simulation (b) and scanned 3D surface (c) of the

same patient. After the material parameter optimisation procedure the biomechanical

model and the 3D target surface are reasonably well aligned. However, artefacts from the

MR acquisition in the form of indentations into the simulated skin surface can clearly

be observed (red arrows) when compared to the upright surface scan.

mechanical model. As a result the simulated skin surface is forced to coincide with

the skin target surface.

The simplest approach to calculate correction displacements for the biomechan-

ical simulation would be to project the surface nodes from the biomechanical model

onto the 3D target skin surface. This procedure however has several disadvantages

(i) the projection could result in significant surface area changes and in extreme

cases in collapsing elements (ii) the resulting surface elements could be of bad

quality and (iii) the displacements are not necessarily smooth.
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The components of the proposed surface warping technique are described in the

following paragraphs and comprise a displacement calculation D, which drives

the skin surface of the biomechanical model towards the target mesh, a Laplacian

mesh smoothing step, L, which regularises the mesh, an area constraint, A, which

reduces local changes in surface area and finally a self-intersection prevention, I,

which avoids mesh intersections.

d: displacement Let GG be the nodal connectivity matrix of the skin surface

mesh, then a matrix with smoothing characteristics can be computed by calculating

its mD-th power. Furthermore let rr = {rr1(pp
A,n
1 , S′scanS′scan), rr2(ppA,n

2 , S′scanS′scan), . . .} be the

vector with the closest distances pointing from the current nodal positions ppA,n
i at

iteration n to the surface S′scanS′scan, then a smooth version of the displacements can be

calculated according to rr′ = GGmD rr. These smooth displacements are used to update

the nodal positions according to the following iterative scheme:

ppD,n
i = ppA,n−1

i + sDsDrr′i. (5.5)

Due to the smoothing matrix GGmD , displacements smoothly vary between nodes

across the mesh surface and thus a smooth deformation is achieved.

l : laplacian mesh smoothing Mesh regularity often is a desired quality

in biomechanical simulations. To control this during the course of the iterations,

Laplacian Mesh Smoothing is used (see e.g. (FieldField, 19881988) and references therein).

This is particularly useful in cases where the simulated surface normal shows a large

angle to the target surface. In such extreme cases the displacement step D could

cause the moving elements to collapse. Hence let ww(ppD,n
i ) be the set containing

the indices of points connected to a surface mesh point ppD,n
i and |ww| the number

neighbours, then the displaced node ppL
i with mesh smoothing characteristics can

be computed as

ppL,n
i = (1− sLsL) ppD,n

i +
sLsL

|ww| ∑
j∈ww

ppD,n
j (5.6)

This means, that each point aims to move towards the centre of the surrounding

points. The scalar weight sLsL which in all processed cases was selected to be sLsL = 0.1

controls the amount of smoothing.
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vD1 + wD1

Figure 5.3: Calculation of the area constraint.

a : area constraint Both previous mesh warping steps can introduce local

changes to the surface area. In order to reduce the area change, an area correction

vector is calculated for each node as follows. Let DD = {DD1, . . . , DDj} be the triangular

surface elements connected to the current node ppL,n
i as shown in figure 5.35.3. For

each element a deviation from the original surface area A0,DmA0,Dm (i.e. the area of each

triangle before the surface warping is initiated) can be calculated

qqDm =
‖vvDm ×wwDm‖

2A0,DmA0,Dm

− 1. (5.7)

Here the vectors vvDm and wwDm point from the current central node to the opposite

nodes of the triangle DDm. The final correction vector is calculated as

ppA,n
i = ppL,n

i + ∑
d∈DD

qqt
vvt + wwt

‖vvt + wwt‖
. (5.8)

i: intersection prevention Updating the node positions can result in

a self-intersecting mesh. This is most likely the case in the inframammary fold

region when the upright position is used as a target configuration. Hence an

intersection prevention process in incorporated by sensing possible surface contact

in the direction of motion. If a self-intersection is detected, the corresponding node

is kept fixed for the rest of the surface warping.

Figure 5.45.4 shows an example result of the surface warping methodology as

described in this section. Note how the deformations that originate from contact

of the patients’ breast with the MRI coil are effectively reduced. The displacement

vector field shows the largest displacement amplitude in the medial breast region.

Hence, the corrected mesh represents the actual upright surface more precisely

(compare figures 5.2c5.2c 5.4c5.4c).
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(a) Model surface after ma-

terial optimisation

(b) Deformation vectors (c) Surface warping result

Figure 5.4: Surface warping example. (a) Shows the simulated upright surface after the material

optimisation step (see section 5.1.15.1.1). The contact of the MRI breast coil propagates to the

simulation result. To correct for this effect, a displacement vector field is calculated (b)

as described in section 5.1.25.1.2. Application of the displacements to the simulated surface

results in a corrected surface (c).

5.1.3 Volume Mesh Warping

In a final step the surface displacements calculated in section 5.1.25.1.2 are used to

update the volume mesh of the biomechanical model with the optimised ma-

terial parameters obtained in section 5.1.15.1.1. While a similar idea was proposed

by Ferrant et al.Ferrant et al. (20012001) with an application in brain-shift deformation recovery,

here gravity loading and nodal displacement conditions are considered simul-

taneously. To calculate the volumetric displacements, the last loading simulation

from the material parameter optimisation is re-initiated. When the gravity loading

is completed, the displacement boundary condition on the skin surface nodes is

activated. This imposes the previously calculated surface displacements onto the

biomechanical simulation.

The volumetric displacements are now completely defined and can be generated

by composing the deformation vector fields of (i) the unloading, (ii) the reloading,

and (iii) the prescribed displacement simulations. This allows image warping

and landmark transformation from the prone into the loaded configuration to be

performed.
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5.2 clinical image and surface data

The data used for the evaluation of the presented surface registration methodology

was acquired in the context of the Picture project (c.f. section 3.13.1) and consisted of

three pre-surgical prone MR images and corresponding post-surgical supine CT

images. From the prone T2-weighted MR images, which had a native resolution

between 0.52× 0.52× 3.0 mm3 and 0.66× 0.66× 3.0 mm3, biomechanical models

were generated as described in section 3.23.2. From the CT images, which had a

native resolution of 1.07× 1.07× 3 mm3, the patient outline was segmented and a

corresponding surface mesh was generated to provide the target for the surface

registration procedure. For the first patient the method was furthermore evaluated

by using a surface scan of the patient standing in the upright position that was

captured using an optical surface acquisition system (3dMD).

For the evaluation of the alignment accuracy between the MR image and the CT

surface corresponding landmarks were selected by a first and a control observer

in the contralateral breast as described in section 4.2.94.2.9. It is important to note that

the volumetric CT images were used only to allow the registration accuracy to be

evaluated using internal anatomical structures. The registration algorithm however

does neither require nor use volumetric images as target information.

5.3 surface registration results

The first step of the alignment procedure optimises the material parameters with the

objective to find a better global match between the biomechanical simulation and

the target surface. Figure 5.55.5 shows the graphs of the material parameters and the

objective function during the course of the optimisation procedure. For all patients

the Nelder-Mead algorithm reduces the value of the objective function, i.e. the mean

distance between skin surface of the biomechanical model and the target CT surface

(c.f. figures 5.5c5.5c, 5.5f5.5f, and 5.5i5.5i). The Young’s moduli are shown in figures 5.5a5.5a, 5.5d5.5d,

and 5.5g5.5g. Here the blue and the green curves represent the material stiffness

of the adipose and fibroglandular tissue respectively. The skin parameter cs is

shown in figures 5.5b5.5b, 5.5e5.5e, and 5.5h5.5h. While the optimisation is initialised with a
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Figure 5.5: Results of the material parameter optimisation step for patients P1 to P3 over the

iterations i. In the left column the Young’s modulus of the adipose tissue, EEa, is shown

in blue, and the one of figbroglandular tissue, EE f , is shown in green. The central column

shows the skin parameter cscs and the right column the objective function m according to

equation (5.45.4).
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Table 5.1: Inter-observer landmark distance (IOD) in terms of landmark distances. All distance

values are given in mm, the total number of landmarks are in given in the columns N.

IOD all IOD d < 15 mm IOD d < 10 mm

Pat. mean max std Nall mean max std N15 mean max std N10

P1 16.7 41.4 12.8 15 8.2 14.0 5.0 9 3.2 8.1 2.9 4

P2 16.5 37.3 11.2 15 7.9 14.8 4.8 8 5.6 9.1 3.0 6

P3 12.8 52.2 12.8 12 7.5 14.1 3.6 10 5.4 7.7 1.8 7

P1-P3 15.3 7.9 4.7

simulation using homogeneous material properties, all optimisation results end

with a heterogeneous model. For the case P3 the optimisation produces a result

according to stiffness relations reported in the literature, i.e. the adipose tissue is

expected to show softer material behaviour when compared to fibroglandular tissue

(c.f figure 5.5g5.5g). Cases P1 and P2 on the other hand show an inverted relation.

The skin parameter is initialised with the value that was originally proposed

by Veronda and WestmannVeronda and Westmann (19701970), i.e. cs = −203.4Pa. Here, too, the optimisation

does not produce a coherent result for all three cases. For P1 the value is approx-

imately halved to cs = −103.8Pa, the one for P2 is found to produce best results

for cs = −238.0Pa. For P3 the optimised parameter is cs = 24.0Pa, which nearly

eliminates the influence of the second invariant from the strain energy density

function.

The evaluation of the combined registration method between prone MRI and

supine CT surface was carried out using manually selected internal landmarks. The

inter-observer distance (IOD) between a first and a control observer was evaluated

by measuring the landmark distance in the supine position for a common prone

landmark. Table 5.15.1 shows the corresponding results. When all landmarks are

considered, the overall mean IOD is 15.3mm varying between 13.0mm and 16.7mm.

This value reduces to a mean value of 4.7mm varying between 3.2mm and 5.6mm

when only those landmarks are included that are not further apart than 10 mm,

and hence can be considered more reliable. See section 4.2.94.2.9 for a discussion of the

10 mm threshold to eliminate unreliable landmarks.
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Table 5.2: Target registration error before and after surface warping for the evaluated cases in terms

of mean, maximum and standard deviation of the TRE (results given in mm ). The upper

part of the table presents the results before and the lower one those after applying the

surface warping. The first set of columns reports results for all landmarks from the first

and the control observer, whereas the second and third set of columns evaluates only those

which were not more than 15 mm or 10 mm apart respectively.

before surface warping

TRE all TRE IOD < 15mm TRE IOD < 10mm

Pat. mean max. std. mean max. std. mean max. std.

P1 16.7 29.3 5.8 15.3 24.0 3.8 14.8 24.0 4.3

P2 23.1 54.0 9.1 19.1 24.4 4.4 19.1 24.4 4.3

P3 13.6 34.9 7.2 11.7 21.8 4.6 10.7 19.7 4.4

P1-P3 17.8 15.4 14.9

after surface warping

P1 12.2 37.1 9.2 8.8 19.4 5.5 7.9 19.4 5.7

P2 16.0 48.2 8.6 11.9 17.7 3.3 12.0 15.4 2.7

P3 12.9 29.4 7.3 11.2 22.3 5.5 10.0 22.3 5.3

P1-P3 13.7 10.6 10.0

Table 5.25.2 shows the TRE for the sets of landmarks evaluated for inter-observer

variability before and after surface warping. Since the landmarks from both observ-

ers are equally valid, supine landmarks from both observers were used in order to

calculate the TRE against the landmarks transformed from the prone position. This

avoids a bias to one observer. Note however, that due to the triangular geometry

of the target and source landmarks, according to the triangle inequality the final

TRE cannot be below 1/2IOD. The overall mean TRE after the material parameter

optimisation – but before the surface alignment – is for the 10 mm thresholded

set of landmarks 14.9 mm. This value is reduced to 10.1 mm when the surface

alignment is applied to the biomechanical model.
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Figure 5.6: Pure surface driven registration result for all data sets. Breast conserving surgery was

carried out on the left breast (right side on the image above) which causes morphological

changes to the breast tissue between the MRI and the CT acquisition.
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Figure 5.65.6 shows the original supine CT image together with the MR image

that was warped according to the surface registration result. Note that breast

conserving surgery for all three cases was carried out on the left breast (right

hand side in the images). While the skin surfaces match is due to the design of

the algorithm, it is noteworthy that the retro-mammary boundary also aligns well.

Visual comparison suggests also a good alignment of internal structures. However,

the anterior-posterior extent of identically appearing structures in both images

appear to be smaller for the simulated supine images. This is potentially due to the

fixed boundary condition of the biomechanical model used in the retro-mammary

region.

The proposed method was also used to register the MR image of P1 with the

corresponding surface scan which was acquired with the patient standing in

the upright position. Since the common identifiable features in the surface mesh

and the MRI are the nipple position only, the evaluation was carried out on this

landmark. Figure 5.75.7 shows the registration result in terms of a volume rendering

of the MRI combined with the textured 3D surface mesh (figures 5.7a5.7a through

to˜\ref{subfig:UprightMRIAndSurface}). Figure 5.7e5.7e visualises the nipple locations

identified in the transformed MRI as green spheres, whereas the nipple locations

on the skin surface are identified by cross-hairs projected onto the skin surface. The

measured Euclidean distances for the left and right nipple are 10.1 mm and 6.3 mm

respectively. Interestingly the nipple position predicted by the biomechanical model

is for both breasts too far medial when compared to the target position. This could

indicate residual effects of the original medial contact between the breast and the

MR coil.

5.4 clinical applications

The main clinical applications for the surface driven registration methodology

are surgical planning and guidance, as well as visualisation of cosmetic outcome

prediction simulations in a photo-realistic way.
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(a) (b)

(c) (d)

(e) Nipple location comparison

Figure 5.7: Result of the surface driven registration approach that aligns a prone MRI to an upright

optical 3D surface scan of the same patient. A volume rendering of the transformed MR

image and the target surface is shown in figures (a)-(d). Figure (e) shows the nipple

location identified in the warped MRI as green spheres and those in the surface scan as

cross-hairs.
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5.4.1 Surgical Planning and Image Guided Surgery

The alignment of volumetric clinical images with surface data could be used to

visualise the extent and location of a cancerous lesion in a patient position different

to the original imaging acquisition position. This information might be useful

during surgery to achieve cancer free margins, which are a strong predictor for

local recurrence (Park et al.Park et al., 20002000). When a lumpectomy specimen shows positive

margins in histopathological examination re-excision is required. Waljee et al.Waljee et al. (20082008)

report re-excision rates as high as 60%. An image guided breast surgery system

would visualise the lesion so that the surgeon can draw conclusions about the

cancer site, and plan the surgical excision trajectory accordingly, especially in cases,

where the lesions are not palpable. Figure 5.7a5.7a shows the combination of surface

images with deformed volumetric MR image data. Although for this visualisation a

structural fat-suppressed T2 weighted MR sequence was used, it is easy to exchange

this information extracted from contrast enhanced subtraction images. However,

for clinical applicability an appropriate visualisation method would need to be

investigated in future research.

The registration method presented in this chapter differentiates itself from ex-

isting methods that propose image guidance for breast conserving surgery – or

significant steps towards this goal – by using only a standard prone MR image and

an additional surface scan. Carter et al.Carter et al. (20082008) presented a workflow that makes use

of an additional supine MR image, that acts as an intermediate modality to which

the prone image is registered. In a second step the transformed prone image is then

aligned with surface data provided by an optical scanner. Similarly Conley et al.Conley et al.

(20142014, 20152015) also presented an approach that relies on the availability of supine MR

images and additional inter-operative US images. They report an overall registra-

tion accuracy around 5mm. Since the deformation between the supine imaging

position and the supine surgical position is much smaller when compared to the

prone-supine deformation this also results in smaller overall alignment errors. Cur-

rently it appears that a compromise must be made between additional pre-surgical

data acquisition and potential registration accuracy.
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5.4.2 Aesthetic Outcome Prediction of Breast Conserving Surgery

In the Picture project, a mechano-biological simulation framework was established,

that allows patient specific surgical simulations to be carried out. In this regard

a surgical plan is captured for each patient which records the excised volume,

the incision, the mobilisation, and if applicable the direction in which the cavity

was closed. This information is post-processed and used as an input into the post-

surgical simulation. This simulation predicts the tissue response during the healing

process of the wounded breast region by combining mechanical and bio-chemical

processes in a multi-scale model. As a result, volumetric displacements occur; an

effect observed in patients that might – in extreme cases – lead to disfigurements

of the operated breast.

The alignment of the biomechanical model and the surface scan can facilitate

a photo-realistic visualisation of the predicted aesthetic outcome of surgery –

compensating for any artefacts that are present in the MR-based biomechanical

model (c.f. figure 5.25.2). This visualisation requires two steps to be completed (1) the

texturing of the skin surface of the biomechanical model and (2) the projection of

the predicted deformation of the mechano-biological simulation onto the aligned

surface. Both steps are outlined briefly below.

texture transfer and scar prediction In order to visualise texture on

a meshed geometry, different approaches can be followed. The standard method

in computer graphics is the so called uv-texture mapping and is presented in

most standard text books of this topic, e.g. Foley et al.Foley et al. (19901990). With this method

each vertex of a mesh is assigned with a two-dimensional uv-coordinate. This

coordinate defines the corresponding location in a texture image that is then

virtually wrapped around the mesh. This method has the advantage, that a high

resolution texture can be visualised on a low resolution mesh while providing

the illusion of a photo-realistic three-dimensional object. However, in order to

transfer the texture of the optical surface scan to the skin surface of the aligned

biomechanical model, two prerequisites would need to be fulfilled. First, the

texture mapping between both meshes, i.e. surface scan and model, would need
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to be assigned with unambiguous texture coordinates representing corresponding

texture positions. This is the task of so called unwrapping algorithms. In initial

experiments simple plane, cylindrical or spherical unwrapping methods were

not able to generate unambiguous coordinates on the upright skin surface which

resulted in stretching, repetition and discontinuities of the transferred texture.

The second prerequisite is the existence of a texture image. This would need to

be generated from the optically acquired surface mesh, where each vertex holds

an RGB colour value. Such an image could be generated using scattered data

interpolated for instance, but in essence this would require several additional

processing steps.

As a result, a simpler approach is followed here, where the extracted skin surface

of the biomechanical model is first subdivided using the method proposed by LoopLoop

(19871987). Subsequently the RGB colour value of the closest vertex of the optical

surface scan is assigned. Figure 5.8a5.8a shows an example result of this method. The

high-resolution, coloured skin surface is shown here, as well as the surface of the

updated biomechanical model as a black wire-frame.

The surgical plan also contains information about the skin incision in the form of

points of a poly-line. This can be used to visualise the scar location. The different

steps are visualised in figure 5.95.9 and again a pragmatic approach is followed, which

first assigns a local coordinate system to each line element of the poly line (c.f.

figure 5.9a5.9a). These local coordinates are used to apply a differential change to

the hue, saturation, and brightness values of the transferred skin texture. These

changes are pre-calculated from a template scar image as is shown in figure 5.9b5.9b.

Figure 5.9c5.9c and 5.9d5.9d shows the skin texture before and after application of the scar

visualisation respectively. In cases where the incision line consists of more than one

line segment, the process is repeated, until all line segments are processed.

deformation projection As a last step the deformation of the mechano-

biological simulation (Vavourakis et al.Vavourakis et al., 20162016) is projected to the updated and tex-

tured biomechanical model. Figure 5.85.8 shows the combined result of displacement

projection, texture transfer and scar visualisation.
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(a) before surgery

(b) 3 months after surgery

Figure 5.8: Frontal and oblique view of the textured surface mesh before (a) and after surgery

(b). The breast model deformation is calculated by the biomechanical wound healing

simulation (Vavourakis et al.Vavourakis et al., 20162016) and thereafter projected onto the transformed bio-

mechanical model of the patient’s chest in the upright position. The black wireframe

shows the biomechanical model before application of the wound healing displacements

(c.f. 5.4c5.4c). Where the mesh is in front of or lying on the textured surface it is visible, if

behind it is invisible.

The visual representation of the simulation could be used to aid the commu-

nication between surgeon and patient in order to explain the process and poten-

tial outcome of a breast conserving surgery treatment. Furthermore, subjective

aesthetic assessment by an expert or quantitative aesthetic evaluation could be

carried out based on the photo-realistic prediction of breast conserving treat-

ment (Cardoso et al.Cardoso et al., 20072007).
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(a) Local coordinate system defined by the
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Figure 5.9: Steps of the scar visualisation procedure. A local coordinate system is used for each

element of the reported incision poly-line (a) to apply local colour changes to the surface

(b). The skin texture (c) then shows a scar visualisation, that could occur as a result to

the incision (d).

5.5 chapter conclusions

Prone-to-supine registration with a future application in image guided surgery faces

the challenge, that the target information most likely is not a three-dimensionally

resolved image, but an optical surface scan. Hence algorithms are required, which

enable the deformation of prone MR images into the supine position using target

surface information only.

In this chapter a registration scheme was presented which overcomes two main

challenges when biomechanical models are used to simulate the large deformation

from prone to supine or from prone to upright. These challenges are (i) the unknown
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material parameters as well as (ii) additional deformations introduced by the

MRI scanning equipment in the prone position. This is achieved by a material

optimisation procedure followed by a surface warping step which corrects residual

geometric differences between the biomechanical simulation and the target surface.

The material parameter optimisation was able to obtain a closer match between

the target surface and the corresponding skin surface of the biomechanical sim-

ulation. As expected, the distance could not be removed completely and can be

attributed to shortcomings of the biomechanical model, as well as to the contact of

the breast with the scanner coil, which distorts the breast shape on which the prone

model is based. It is certain that the distortion of the breast shape in the prone

position has an effect on the optimisation result, a quantification of that influence

however is difficult to establish.

The simplicity of the Nelder-Mead optimisation algorithm was the main motiv-

ation for its adoption in this study. However, in future work more sophisticated

algorithms could be investigated to incorporate prior knowledge about the ratio

of tissue stiffness parameters in terms of additional constraints. Han et al.Han et al. (20142014)

for example constrained the ratio between the Young’s moduli of fibroglandular

and adipose tissues to be greater or equal to one. As a result, an item “ability to

handle constraints” could be added to the list of characteristics required from an

optimisation procedure that was provided in section 5.1.1.35.1.1.3. However, since the

original shape is compromised by the contact of the breast with the MR scanner,

potentially simpler approaches that, for example, use a fixed stiffness ratio between

adipose and fibroglandular tissue might prove to be sufficient.

The general registration approach, which first optimises the material parameters

and then corrects the distortion of the model is a chicken-and-egg problem. Ideally

the distortions would be corrected first and only thereafter the material parameters

would be optimised. However, it is not possible a-priori to determine which contri-

bution to the misalignment results from incorrect material properties and which is

due to the scanner coil contact.

Since the surface alignment strategy presented in this chapter is modular, each

component can be improved separately in future work. One aspect currently not

covered is for example the initialisation of the global ICP registration step. For
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any clinical application robustness is a strong prerequisite and clearly, if the rigid

alignment fails, this has a knock-on effect on the subsequent processing steps.

Initialisation incorporating information about the nipple position could be a viable

approach. This would require the detection of the nipple position in the surface

data and the volumetric image. Furthermore, if the nipple position was readily

available, it could also be used as an additional constraint in the surface warping

method.

Despite the challenges still to be addressed with the surface driven registration,

the benefits of the approach are twofold. Regarding clinical application, the prone-

supine registration could be utilised for surgical planning and initial guidance,

since the lesion extent and margin visualisation becomes possible in multiple poses,

namely supine, prone and upright. From the biomechanical modelling perspective

the information obtained from the material optimisation and surface warping

could be utilised in a feedback step to improve the biomechanical model geometry

by removing the MRI coil deformation artefacts which then leads to an updated

estimation of the unloaded configuration.
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6
C O N C L U S I O N

Combining images for detecting and diagnosing breast cancer and using images to

better guide interventions, therapies and surgery relies on establishing accurate

spatial correspondence between images and between an image and the surgical

or interventional scene. The breast undergoes significant deformation when the

patient position is changed between imaging procedures and during interventions.

Conventional image registration driven by image metrics have been shown to

be inadequate and so biomechanical modelling of breast tissue deformation is

playing a more and more important role. In the current clinical workflow different

positions and corresponding gravitational loadings are selected, either to optimise

image acquisition (i.e. prone DCE-MRI), improve patient stability and comfort (i.e.

supine radiotherapy treatment), or account for practical circumstances (i.e. supine

surgical position). Biomechanical modelling can be employed for simulation of

large breast deformation, and thus may allow information to be transformed from

one configuration to another. This in turn could have implications for the clinical

breast cancer treatment workflow.

Biomechanical models are able to predict the deformation of the breast between

different gravity loading configurations by using the principles of continuum

mechanics in combination with patient-specific models. However, the accuracy

of the predicted deformation is compromised by several assumptions. While it is

common practice to account for the breast tissue’s heterogeneity in terms of adipose,

fibroglandular and skin tissue, further differentiation of the anatomy – for instance

identification of Cooper’s ligaments or separation into stromal and ductal tissue –

does not appear feasible using current clinical imaging modalities. Furthermore,

since a large variation of tissue stiffness is reported in the literature, the parameters

of a selected constitutive relation are subject to variation. Attachment of the breast

to the chest wall poses another uncertainty. While the anatomy suggests that a

certain degree of mobility of the breast on the chest is possible, an established and
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validated approach on how to translate this into appropriate boundary conditions

for the retromammary area is lacking. Beyond the uncertainties with respect to the

material description and boundary conditions, further image acquisition related

complications may arise. This was especially pronounced in the case of prone

MR imaging, where clear contact of the breast with the scanner coil can result in

significant deformations to the breast. This makes the assumption that the breast is

only subject to gravity invalid.

Considering all these limitations related to biomechanical modelling, accurate

simulations of large breast tissue deformations that are based on standard clinical

images are extremely hard, if not impossible, to achieve. As a result, this thesis

explored strategies on how to make best use of both, modelling and image de-

rived information. By this combined approach it becomes possible to take into

account target information such as image intensities that is not usually considered

by simulation-only approaches and thus improve the alignment quality without

contravening the physical laws of tissue deformation. Two distinct approaches were

followed:

1. A biomechanically constrained, intensity driven image registration, and

2. a combination of a biomechanical simulation and surface driven correction.

A precursor to the development of the registration methods was an evaluation

of biomechanical simulations in chapter 33, which explored the effect of gravity

loading and related unloading strategies. The results of the phantom experiment re-

vealed that not considering the pre-stressed nature of the breast in a gravity loaded

configuration leads to significant errors (c.f. figures 3.123.12 and 3.133.13 on pages 8282

and 8585 respectively). Furthermore the magnitude of the errors is dependent on the

original loading configuration. In this experiment unloading the upright configura-

tion produced the biggest error, when the pre-stresses were ignored and simply

the direction of gravity was reversed. Hence, in the following developments the

physically correct consideration of gravity loading was considered.

The intensity based, symmetric biomechanically constrained registration method-

ology that was presented in chapter 44 aimed to provide a coherent prone-to-supine

registration framework which considers most of the limitations originating from
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the pure biomechanical simulation. It considers gravity loading in the images,

optimises the material parameters, allows the breast tissue to move along the chest

wall, and corrects for residual misalignment by integrating image forces while

constraining the overall deformation utilising a neo-Hookean material description.

Removing the effect of gravity has the largest influence on the target registration

error which is reduced from a mean TRE of 69.7 mm to 14.1 mm, but only the final

intensity driven accumulation of image derived forces can reduce the error further

to 5.6 mm. Furthermore, permitting motion of the breast tissue along the chest wall

appeared to be an important component. This is clearly illustrated by case P10*

that is shown in figures 4.354.35 (a) and (b) on page 156156.

The symmetric registration set-up generates a virtually gravity free configuration

of the breast from which any other loading configuration could be simulated.

The full transformation from prone to supine can be generated by appropriate

composition of the displacement vector fields.

Regarding the clinical applicability, the intensity based registration method is

confined to cases where a prone-supine image pair exists. Assuming that no addi-

tional supine MRI was acquired, in the current clinical workflow a prone-supine

image pair is available where a prone MR image is acquired pre-operatively and a

supine CT post operatively to plan radiotherapy. Localised dose delivery calcula-

tions are required for radiotherapy, if an additional radiation boost to the tumour

bed is given or partial breast irradiation techniques are applied. The registered

pre-surgical images could be used to determine, at the very least approximate, the

location and extent of the original tumour bed.

As a consequence of the limited availability of prone-supine image pairs, an

alternative registration strategy was developed in chapter 55 that only uses surfaces

as target information to align a biomechanical model to. This could potentially

extend the clinical applicability to surgical planning and image guided surgical

procedures, since, as opposed to supine MRI or CT images, optical surfaces can be

acquired fast and with relatively low additional cost.

The surface alignment strategy first performs a global material parameter optim-

isation and rigidly aligns the simulated supine or upright target position to the

corresponding target surface. Thereafter, the model is warped, so that it aligns with
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the target surface. The surface warping is constrained by an area preserving and

smoothness term and the resulting surface displacements are then applied to the

biomechanical model to correct for residual misalignment.

The results for the first three patients are promising with a final mean TRE of

10 mm, using the same evaluation strategy as for the intensity based registration.

This is not as low as the TRE achieved by the intensity based registration presented

in chapter 44, but can be attributed to the aspect that volumetric images used for

the intensity driven registration contain more information and drive the alignment

throughout the breast volume. This does not apply to the surface registration

method.

Summarising the above: Two biomechanically guided registration schemes were

developed in this thesis to align breast shapes of the same patient but in different

positions between which the breast tissue deforms significantly. In addition to

biomechanical prior knowledge to predict soft tissue deformations under different

gravity loading conditions, target information was integrated to correct final mis-

alignment. The first registration scheme utilised internal structures (chapter 44) and

the second used an external surface to drive the alignment (chapter 55). Both meth-

ods were shown to achieve a good final alignment for this challenging registration

problem and thus could find an application in the clinical workflow.

6.1 limitations

Like any other method, the developed registration methods and the underlying

biomechanical models also have their limitations.

The main technical limitations of the intensity driven prone-to-supine registration

methodology as presented in this thesis are as follows. Using a mono-modal image

similarity measure requires the input images either to originate from the same

imaging modality, or, as was done in this thesis for the MRI-CT image pairs, a

modification of the image intensities from one modality so that these appear equal

to those in the other. The computational complexity of the registration method

is also high. This could cause difficulties if registrations are to be performed in a

time-constrained clinical context.
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However, beyond those technical limitations, which are expected to be straight

forward to address, the conceptual limitations are more challenging. One major

application for the intensity based prone-supine registration identified in section 4.34.3

was the use of pre-surgical prone DCE-MR images as an adjunct to post-surgical

radiotherapy planning scans to facilitate more precise tumour bed delineation and

thus more accurate radiation dose delivery. While the prone-supine position change

indeed causes the breast to deform significantly, clearly it is not the only change

of the breast between pre- and post-surgical imaging. Tissue was removed, the

surgical cavity was closed with internal stitches and sutures, wound seroma might

have built up and the biological healing process has started. None of these aspects

are currently considered in the presented registration.

A technical limitation of the surface registration is the consideration of the breast

to be fixed to the chest wall by using a zero-displacement boundary condition

during the biomechanical simulations. This is discordant with previous observa-

tions. Furthermore, the optimisation strategy that was used to optimise the material

parameters does not allow to constrain the ratio of fat and fibroglandular stiffness

parameters to a predefined range. This can lead to unrealistic results. Beyond this,

a robust initialisation of the Iterative Closest Point registration is essential if this

method was to be used in an image guided surgical setting.

A challenging conceptual limitation of the surface registration is inherent to the

sequential approach, which first optimises the material parameters and thereafter

performs the surface and volume warping. Since the breast is deformed by the

MR coil, the optimisation result is influenced by this effect. Depending on the

magnitude of contact induced deformations, the optimisation results could vary

significantly from the real tissue properties and hence might not be suitable to be

used in subsequent simulations. Furthermore, the application of this registration

methodology for image guided surgery is limited to pre-incision guidance towards

the tumour location. Tissue incision and excision is not considered at the current

stage.

Both biomechanically informed registration methods use a simplistic mater-

ial description that does not account for tissue anisotropies. More sophisticated

material models might be required. Beyond the material description, the current
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registration frameworks are limited to cases where the direction of gravity is the

primary cause for deformation. However, in different medical applications large

organ deformations also occur, for instance, due to surface pressure caused by

insufflation during laporascopic abdominal surgery. Hence, a wider applicability of

the methods requires investigation and implementation of appropriate boundary

as well as loading conditions.

6.2 future work

When considering viable paths for future work based on the developments in this

thesis, incremental improvements could be suggested for each component. For the

biomechnanically guide, intensity driven registration this could be

• improvement of the computational efficiency, since parallelisation is due to

the nature of the selected numerical method possible, or

• implementation of multi-modal image forces, since these are utilised in

standard intensity based registration methods, or

• translation of the method into the finite element world, since this method is

known to deal better with complex geometries such as the breast.

The same is true for the biomechanically guided, surface driven alignment strategy,

where improvements could comprise

• change of the material optimisation strategy to a more robust optimiser that

allows constrained optimisation, or

• revising the surface warping strategy to constrain its deformation based on a

physical model, for instance this of an elastic membrane.

These are undoubtedly worthwhile refinements, however, another approach

would be to complement the volumetric and surface methods by feeding informa-

tion from one to the other. For instance in the surface based registration method

the zero-displacement boundary condition fixed the breast to the chest wall which

appeared to be a limiting factor to the registration accuracy. The intensity based
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method on the other hand allowed a controlled motion along the chest wall and

produced reasonable displacements in this area. Hence, if the volumetric registra-

tion was performed for a large number of cases, the displacements along the chest

wall could be used to build a motion model, that, when projected on a reasonably

low-dimensional space, could be optimised along with the material parameters.

6.2.1 Exploring Modelling of Tissue Loss

Technical improvements should furthermore be aligned with and motivated by

clinical applications. To achieve this, the conceptual limitations outlined in sec-

tion 6.16.1 need to be addressed. The most promising application for the intensity

driven prone-supine registration was identified to be in radiotherapy planning.

However, the registration between pre- and post-surgical images of the operated

breast does not only pose the challenge of differing patient positions and corres-

ponding shape changes of the breast. During lumpectomy the cancerous tissue

and a margin of healthy breast tissue is removed. The surgeon aims to excise a

cylindrically shaped lump of tissue which axis is perpendicular to the pectoralis

muscle surface and the cylinder axis extents from the pectoralis muscle to the skin.

To approach the excision target region, tissue potentially needs to be mobilised by

separating breast tissue from the skin and/or from the pectoralis. After excision,

depending on the size of the removed the lump, the cavity might be closed by

stitching tissue flaps together to prevent cosmetic defects during the healing process.

Reconstructive, oncoplastic surgeries involve even more complicated procedures

with respect to how tissues are reconfigured in order to remodel the breast shape.

After surgery, healing of the wounded breast region initiates complex, interre-

lated mechano-biochemical processes. The wounded region inflames, stiffens and

contracts.

Addressing all these changes to the breast morphology from a simulation per-

spective requires consideration of several aspects. First, the surgical intervention

separates, removes, and reconfigures internal and skin tissues. Model geometries

need to be redefined accordingly to account for removed and separated tissue

regions. Second, closing the surgical cavity by stitching could, for instance, be
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simulated by forcing faces of the rebuilt model geometry together at appropriate

locations. This process will require consideration of tissue-tissues contact. Third,

biomechanical simulations of internal stitching will induce pre-stressed in the breast

which in turn will have an effect on the mechanical behaviour of the breast under

different gravity loading conditions. To achieve all this within a reasonable amount

of accuracy, a detailed three dimensional surgical plan is a strict requirement.

It would be interesting to explore how such complex biomechanical simulations

could be introduced into a registration framework, and to which extent complex

simulations could be simplified to approach a system that is robust and easy

enough to be handled in a clinical environment.

6.2.2 Exploring Translation to Clinical Practice

With respect to the presented surface alignment methodology, surgical guidance

would be a prominent clinical application. But in order to introduce such a system

into clinical practice several requirements need to be taken care of which are outline

as follows.

Improving the registration accuracy itself is one of many aspects that needs to

be covered if this method is going to be used in clinical practice. Before consider-

ing a guidance system on real patients, first and foremost more cases need to be

processed in order to test and improve on the robustness of the proposed method.

Biomechanical simulations can sometimes lead to diverging results. For such cases

contingency strategies need to be implemented. At the same time the accuracy of

the predicted tumour location in the surgical position must be evaluated. While the

supine radiotherapy position is similar to the surgical setting, differences still exists

especially in terms of the arm position. Tracked ultrasound imaging might be a vi-

able option to quantify the discrepancy between the simulated and the real tumour

location and extent in the actual surgical position. Differing arm positions induce

shape changes to the pectoralis muscle, which might be necessary to consider

explicitly in the biomechanical model. This would be a departure from the fixed

boundary condition currently used and identified as a limitation of the method.

Once the accuracy of the supine simulation has been validated, another practical,
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but important aspect has to be taken into account: visualisation. How is the inform-

ation about the simulated location and extent of the tumour best presented to the

surgeon? Approaches can range from displaying the lesion together with the breast

surface on a separate monitor to a full augmented reality environment.

All the technical aspects of course have to be in line with legal require-

ments such as Ethics Committee and Research and Development (R&D) ap-

provals. It has to be ensured that the patient’s safety and clinical outcome is

not negatively impacted. The development of a medical device would further-

more have to comply with quality management and assurance system specified

by the International Organization for Standardization (ISO), Geneva, SwitzerlandInternational Organization for Standardization (ISO), Geneva, Switzerland

(20032003) (ISO 13485:2003).

Intuitive visualisation, robust performance, and simple usability are just some

examples a surgeon might require from an assistance system. However, given

the crude methods currently employed to localise lesions prior to excision (i.e.

palpation, wire guidance, or manual measurements performed on the skin surface)

a patient benefit may be possible to demonstrate.

Ultimately, our research should contribute to a benefit for the patient.
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B
A P P E N D I X

b.1 rotation and small strain tensor

In section 2.1.12.1.1 basic strain measures are introduced such as the Green Strain tensor

EE and its linear approximation εε, the small strain tensor (2.72.7). Here a simple example

of a rigid body rotation is used, to demonstrate that this type of transformation

misleadingly results in non-zero strain response of the small strain tensor.

For simplicity this example is given in two dimensions, for which the small strain

tensor εε becomes:

εε =
1
2

(
∇uu + (∇uu)T

)
=

 ∂xux 1/2(∂yux + ∂xuy)

1/2(∂yux + ∂xuy) ∂yuy

 .
(B.1)

Let the deformation be a simple rotation of α about the coordinate centre described

by the rotation tensor RR(α), such that the deformed coordinates are given as

xx = RRXX =

cos(α) − sin(α)

sin(α) cos(α)


X

Y

 . (B.2)

Using (B.1B.1) the small strain tensor for this example becomes

εε(α) =

cos(α)− 1 0

0 cos(α)− 1

 . (B.3)

Hence the small strain tensor can only be regarded approximately zero for small

rotations α ≈ 0 for which the well known approximation cos(α) ≈ 1 holds.

Clearly, a rigid body rotation does not introduce strains to a body and thus the

non-zero response of εε has to be taken into account, if this approximation is made.

The Green Strain tensor on the other hand, does not show this behaviour, and for

any rigid body rotation results in a zero-tensor. Since the E in equation (2.62.6) only
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depends on the stretch tensor UU and not on the rotation RR when the deformation

radient is decomposed according to (2.32.3).

b.2 truncation error and the finite difference method

The forward and backward difference quotient as used in the finite difference

method can be derived from the Taylor series. This approximates a function f

around x0 with:

f (x0 + ih) = f (x0) + f ′(x0)ih + O(h2) (B.4)

Rewriting the above equation results in

f ′(x0) =
f (x0 + ih)− f (x0)

ih
+ O(h), (B.5)

the well known forward difference quotient.

To investigate the truncation accuracy of the central difference scheme, the Taylor

expansion needs to be extended by one additional element:

f (x0 + ih) = f (x0) + f ′(x0)ih +
f (2)(x0)

2!
(ih)2 + O(h3) (B.6)

Reformulating this for the equidistant but opposite position of x0, one simply

obtains

f (x0 − ih) = f (x0)− f ′(x0)ih +
f (2)(x0)

2!
(ih)2 + O(h3) (B.7)

By subtracting equation (B.7B.7) from (B.6B.6) the third element of the sum on the right

hand side of both equations vanishes resulting – due to the division by 2ih – in a

truncation error of order O(h2):

f ′(x0) =
f (x0 + ih)− f (x0 − ih)

2ih
+ O(h2) (B.8)
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