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Early design decisions made by architects have been shown to significantly impact the energy perfor-
mance of buildings. However, designers often lack the resources or knowledge to take informed decisions
that might improve building performance. The refurbishment of existing buildings is considered to
significantly contribute to the reduction of the life cycle environmental impact of buildings. Building
refurbishment is also seen as the most cost-effective way of achieving this goal. In assessing the life cycle
impacts of constructing and usage processes of buildings, LCA (life cycle analysis) is often used.

In order to simplify the decision-making process in early design, this study uses MOGA (multi objective
genetic algorithms) to find optimal designs for a refurbishment of a residential complex case study, in
terms of LCCF (life cycle carbon footprint) and LCC (life cycle cost) over an assumed life span of 60 years.

Results show that utilizing MOGA has the potential to reduce the refurbishment LCCF and LCC. Findings
emphasize the life-cycle impacts of insulating thermal bridges and the importance of using different
heating systems and fuels. Finally, in comparing LCA with more commonly used performance-based de-
cision-making design procedures, the study highlights that employing these distinctive methods can lead
to different design solutions.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Energy consumption in the built environment accounts for
approximately 40% of the total energy consumption in the UK. The
global construction industry is also responsible for 40% of global
raw aggregates and 25% of wood consumption [1e4]. In the UK, the
government has committed to reducing at least 80% of its CO2
emissions (compared to 1990 baseline figures) by the year 2050 [1].

Energy efficient Refurbishment is considered to be a potential
means by which to significantly contribute to the reduction of the
environmental impact of buildings and is also widely regarded to
be the most cost-effective way of achieving this goal [5,6].
Improving the energy performance of existing buildings, while
keeping additional CO2 emissions and cost to a minimum, has
therefore become a key concern and challenge in reducing the life
cycle impact of buildings.
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Sustainable design metrics and tools are often used for the
quantification of sustainability and profitability of a development.
LCA (life cycle assessment) is a method that offers a holistic
approach for assessing the potential environmental impacts of
products and process throughout their life cycle in what is referred
to as a 'cradle to grave' approach [7e9]. The outputs of LCA studies
are a combination of a range of environmental impacts, however in
buildings these impacts are often converted to CO2e (CO2 Equiva-
lent) to evaluate the building's GWP (global warming potential).
This single value describes the LCCF (life cycle carbon footprint) of
the building, which enables the direct evaluation of environmental
impacts of alternative solutions. LCC (life cycle cost) examines the
whole life economic expenses of using a product or a service. Its
main goal is to define a method by which to quantify and measure
the level of profitability of a development. As the cost of building
materials and the construction process accounts for only a small
part of the total expenses throughout the life of a building, LCC
takes into account not only expenses for owning and constructing a
building, but also those accrued as a result of its operation, main-
tenance and demolition [10]. Carrying out an LCC can help in the
determination of a building's lowest life cycle cost [10].
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In the building sector, energy is used at different stages during a
building's life span; during the material extraction process, in the
manufacturing of building components and during building con-
struction, usage and demolition [11]. This means that life cycle
energy use depends on both decisions taken by the designer (ge-
ometry and orientation, choice of materials, window to wall ratios
etc.) as well as the fuel sources used for running the building.

Early design decisions have a significant impact on the energy
performance of buildings [12]. Ideally, thermal performance anal-
ysis should be carried out iteratively throughout the design pro-
cess; a design should be tested, evaluated, compared with other
design solutions and modified accordingly, until an optimal design
is found. In practice, however, architects usually lack the necessary
resources and technical knowledge to carry out full-performance
optimisation studies. Despite the significance of early design de-
cisions on buildings energy performance, easy-to-use decision-
making design tools directed towards architects are lacking.

This study therefore examines the applicability of computational
efficient search techniques that automatically undertake compari-
sons between different design alternatives (Multi Objective Genetic
Algorithms e MOGA), to allow architects having more informed
decisions in early design stages. This will be implemented through
the examination of the refurbishment of a residential complex case
study with the aim of optimising its refurbishment measures, to
minimise its LCCF and LCC. In particular, the study was undertaken
with the aim of addressing the following research questions:

� How can computational optimisation methods be utilized in an
early design stage to identify the optimal envelope refurbish-
ment measures that minimise LCCF and LCC of a case study?

� What is the impact of using LCCF and LCC to support the design
decision-making process as compared to other more commonly
used performance-based methods?

To achieve these aims, the following objectives were set:

� Using MOGA, what are the optimal building LCCF and LCC, and
what is the balance between the embodied and operational CO2
emissions throughout the optimal building life cycle?

� How does the life cycle performance of the optimal building
compare with that of the original building and with that of the
actual refurbishment?
2. Literature review

2.1. Implementing whole life cycle studies in the built environment

MacLeamy [12] showed that a designer ability to easily change a
design is most evident at an early design stages and decreases over
time. Key design decisions that may impact building energy per-
formance are made at this stage and can include such aspects as
building size, orientation, height andmateriality whichmay impact
CO2 emissions due to production of building materials and con-
sumption of energy throughout the building's life.

Energy use in buildings has been extensively researched in
recent years, however, building performance analysis often focuses
on annual energy consumed in the operation of buildings (kWh/
m2/year), rather than taking into account other life stages such as
construction, maintenance or demolition. Life cycle studies in the
built environment is a growing research field [13] that gives awider
view of energy consumption in buildings.

LCCF is derived from the analysis of Life Cycle Energy use (LCE).
Dixit et. Al (2012) describe the two main sources of LCE con-
sumption in buildings [2]:
� The Embodied Component: EE (embodied energy) is the sum of
energy required for the manufacturing of a product or a service.
In buildings, this includes the energy used in the extraction of
raw materials, transportation to and from factories and energy
required for construction, maintenance, periodic refurbishments
and the replacement of various building components once they
are worn out [14]. Embodied CO2 and Embodied Costs are asso-
ciated parameters, typically calculated by multiplying material
ECF (embodied carbon factors) or Embodied Costs by the amount
of material used [15]. ECFs can be found in Energy and Carbon
Inventories e pre-calculated databases that specify the amount
of energy and CO2 emissions, associated with the production of
various building materials. Embodied Costs are calculated by
using widely-recognized building component cost guides.

� The Operational Component: OE (operational energy) is the
energy used for maintaining the thermal and environmental
conditions within the building e heating, cooling, domestic hot
water and lighting [14]. OE is usually calculated by using building
performance simulation tools e software that allows the evalu-
ation of building performance. OERC (operational energy-related
carbon) and Operational Costs are calculated by multiplying
predicted energy consumption values by the CO2 emissions of
the fuel that is used for energy production, and by their costs,
respectively. Studies by Gustavsson et al. and Eriksson et al. show
that the fuel type used for OE generation has a significant impact
on LCA results, as some energy generation technologies are more
environmentally-friendly than others [16,17].

Meta-analysis studies show that EE (Embodied Energy) ac-
counts for between 2 and 38% of the life cycle energy use in con-
ventional buildings, and 9e46% in low-energy buildings (as the
later consume less energy during their operational phase, and their
construction is usually more carbon-intensive) [9,10,18e21].

2.2. Building performance and optimisation

Life Cycle studies are iterative comparative processes e the
performance of one design solution should be compared with that
of other designs and the better option should then be selected. This
type of parametric simulation is often used for improving the
performance of buildings [22], however, this procedure is consid-
ered to be time and resource consuming [23], especially when a
large number of alternatives are examined. To address this,
advanced computational search methods are used to help find
optimal design solutions more efficiently. Optimisation, in this
case, refers to the task of finding the best out of all feasible solu-
tions in a given system [24].

Various studies have used optimisationmethods for such aspects
as load distribution, building systems, construction materials and
building form to improve building performance [25e28]. While
some studies focused on optimising designs to improve modelled
energy performance in buildings [29,30], others employed optimi-
sation methods for reducing LCC [31e33]. Notably, relatively few
examined building performance optimisation in terms of LCA or
LCCF [18,34].

While Wang et al. (2005) [35] used an optimisation algorithms
to minimize both LCA and LCC, the study focused on the design of
new buildings. Ostermeyer et al. [36] used multi-criteria optimi-
sation for finding optimal refurbishment designs, in terms of cost
and environmental impacts. Their study, however, used PHPP
(PassivHaus Planning Package e a static thermal simulation tool)
for operational energy calculation instead of a dynamic simulation
tool which enable more flexibility in evaluating energy consump-
tion [37]. Furthermore, instead of using the most widely used CO2
Equivalent measurement for LCA environmental impact, the study



Fig. 1. Pareto front. Source: Poli et al., 2008 [40], (adapted from Langdon, 1998).

Table 1
CO2 emissions and energy cost per kWh. Data based on [51e53,55].

Energy type CO2 emissions (kgCO2/kWh) Cost (£/kWh)

Electricity 0.529 0.160
Waste combustion district heating 0.057 0.045
Natural gas 0.210 0.045
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used ‘ReCiPe Ecological Indicator’ e a closed credit system that
translates a number of ecological impacts into a weightless credits.
Chantrelle et al. [29] used GA for finding optimal refurbishment
measures of a school building, however, it is not clear from the
published study whether all steps in the life cycle of the building
were taken into account. Aspects such as transportation, con-
struction, maintenance and demolition are not mentioned in the
study, furthermore neither the heating system nor the fuel used in
the study is indicated. Nguyen et al. [23] show that GA (genetic
algorithms) is the most widely used optimisation method in
building performance analysis.

3. Methodology

To identify a set of design solutions with the minimal LCCF and
LCC, this study aims to apply efficient computational search tech-
niques that automatically perform comparisons between different
design alternatives for the refurbishment of a case study and find
the optimal ones. To achieve this, production processes are defined
and optimised, and the balance between embodied and operational
CO2 emissions and costs is found.

3.1. Overview of analysis approach

Since this study involves more than one objective for optimi-
sation (both LCCF and LCC), a MOGA (multi objective genetic al-
gorithms) was used. Zhang [38] shows that Non-dominated
Sorting Genetic Algorithm (NSGA2) is the most widely used
MOGA in research of the built environment. It is also claimed that
NSGA2 is less prone to local optimums than other optimisation
algorithms [39].

NSGA2 is based on the principle of Pareto Dominancy; this de-
notes that when a set of objectives is given, one solution (often
referred to as ‘individual’) Pareto dominates another when it has as
good solutions as the second one for all objectives, and at least one
solution where it is better [40]. Fig. 1 shows a two-dimensional
Pareto optimal front, where individual ‘B’ is better than ‘A’ along
the x axis and individual ‘A’ is better than ‘B’ along the y axis. They
Fig. 2. NSGA2 steps.
dominate each other on different objectives. Individual ‘2’, how-
ever, is better than ‘B’ in both axes. No other individual dominates
‘2’ in both axes. NSGA2 finds a set of solutions which are not
dominated by any others [40].

The description of the NSGA2 code is shown in Fig. 2. NSGA2
starts with a random population of solutions and plots them on a
graph (1). It then identifies the Pareto non-dominated solutions (2),
breeds, mutates and crosses-over some of their genes and produces
a new set (generation) of solutions. Statistically, this new set of
solutions should perform better than the previous generation (3).
The code finally goes back to the second step, where it identifies the
new Pareto non-dominated individuals. This process is repeated
until a maximum number of generations is reached.

3.2. The case study building

The case study building examined in this paper is a recently
refurbished “Grade II listed building1” council housing complex.
While a listed building in general presents specific restrictions (ex-
tensions are not allowed and changes in general are more limited),
findings of this work are also applicable to non-listed buildings.

The complex was built in the late 1950s in Sheffield, England. In
its early years of occupation the complex gained success, however,
during the 1980s it slowly deteriorated until all tenants left. Due to
its unique design, the complex was designated as a “Grade II listed
building” in the late 1990s, and a design competition for its refur-
bishment was launched shortly thereafter. The first phase of
refurbishment was recently completed, and the design of the
refurbishment of the second phase was ongoing at the time of
writing. Waste Combustion District Heating (WCDH) e a very
efficient and low emissions heating technique e was used for the
complex's space and water heating. As noted in Table 1, the system
emits 0.057 kgCO2/kWh compared to 0.21 kgCO2/kWh in the case of
natural gas).

This study focuses on a specific section of the complex
comprised of two similar blocks with different orientations (Fig. 3)
-a north building (A) and a south building (B) As different orien-
tations can lead to differences in OE (operational energy) con-
sumption, the study set out to examine the performance of the
refurbishment of both buildings separately, and to determine how
orientation impacts building LCCF.

The original building envelope was considered to have a poor
thermal performance due to an exposed access passage to the flats
every third floor (illustrated in Fig. 4), this large surface area in-
creases the potential for heat losses. Moreover, as exposed concrete
frames were one of the main architectural features of the original
design, a high priority for the refurbishment was to retain them.
These were therefore kept exposed (and un-insulated). The refur-
bishment hence included the complete disassembly of the building
envelope, retaining the original exposed concrete structure and re-
cladding the building with a higher performance facade. While this
approach maintained the original appearance of the building, it can
1 Listed Building e in the UK, a building with a special Architectural or Historical
interest. Listed buildings should be preserved. They should not be demolished or
extended without a permission by the local authority [62].



Fig. 3. Site plan.
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also lead to an increased risk of thermal bridges, which has been
shown to be associated with high energy consumption and the
formation of mold on interior surfaces [41,42].

Since the main architectural intervention was the new envelope
design e this study explored the life cycle properties of the
different envelope components and focused on optimising their
build-ups, window-to-wall ratio and thermal bridge insulation.

3.3. Implementation

This study is based on a small-scale pilot study [43], which was
conducted for the testing, refining and developing of the method-
ological approach before using it in a larger scale analysis. This
initial analysis was limited in scope and only examined limited
design variations. Based on this, the implementation of the
research design for this study involved the utilization of four main
tools (Fig. 5, Table 2):

a . Building geometry was first modelled in Sketchup and then
exported to an EnergyPlus.idf (Input Data File) using the Legacy
Open Studio plug-in for Sketchup.

b . Model thermal properties (weather file data, HVAC system,
occupancy rates etc.) were defined in EnergyPlus.

c . Genes to be optimised were defined in jEPlus [44]e An Ener-
gyPlus parametric simulationmanager that allows the control of
a batch simulation. jEPlus was responsible on the generation of
new individuals (new models, based on a combination of
different design parameters as seen in Table 3) and for sending
them for simulation.

d . GA objectives, mutation, number of generations and crossover
rates were set in jEPlus þ EA e a platform that allows the
performance of GA optimisation studies. Once a maximum
number of generations had been reachede the optimisation
was stopped.
Fig. 4. Building “B” (left) and the eleme
The building components that the NSGA2 code could manipu-
late are highlighted in Fig. 4. Table 3 shows the GA genes and their
possible values. Overall, a total of 55,296 possible models could
potentially be generated.

The CIBSE “UKeManchester.TRY” [45] weather-file was used for
the thermal simulations as this is the closest and more reliable
available weather data. 10 optimisation scenarios were imple-
mented, as described in Table 4, all were simulated on a cloud
simulation service.

3.4. LCA analysis

Based on earlier methods, the ISO (International Organization
Standardization) published its latest sets of LCA standards in 2006,
known as ISO 14040:2006 (Environmental ManagementeLife
Cycle Assessment -Principles and Framework), and include ISO
14040 to ISO 14045. The LCA methodology used for this study, is
based on the ISO1 4040 methodology, which involves the
following steps:

3.4.1. -Goal and scope
As described in Section 1, the main goal of this study was to

identify the optimal measures for the refurbishment of the case
study building, in terms of LCCF and LCC. The study took into ac-
count all stages from “cradle to grave” and calculated LCCF and LCC
by using a mixture of calculated and assumed coefficients based
on a number of studies [13,16,46e48], as shown in Table 5. As the
building is situated in the UK, this study followed the BRE
(building research establishment) guidelines indicates that 60
years should be considered as the expected building life span for
reporting purposes [49]. The functional unit for each building was
1 m2

floor area. As the focus of this study is the performance of the
building fabric e it is assumed that the efficiency of the HVAC
systems is constant.

3.4.2. -LCI (life cycle inventory)
Based on the architectural drawings and specifications, an in-

ventory of the building materials under use and their environ-
mental impacts and costs was established. These were based on
various assumptions:

Embodied component e The total quantity of each material used
in each simulation was multiplied by the relevant ECF (embodied
carbon factors) and costs, using Bath ICE (inventory of carbon and
energy) [11] and Spon's Guide for Architects [50], as shown in
Tables 5 and 6.

Operational component e OE consumption was calculated in
EnergyPlus. Outputs were multiplied by NCM (National Calculation
Methodology) CO2 conversion factors to get OERC [51] and by UK
nts for the GA optimisation (right).
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Table 2
Tools used in the study.

Tool Description

Google Sketchup 8.0 A Popular 3D modelling tool. Widely used in architecture and design studios.
EnergyPlus A Platform that allows whole building thermal simulation. EnergyPlus was developed by the U.S Department of energy and is widely used

by the research community worldwide due to its flexibility.
jEPlus A java-based parametric simulation manager, developed at De Montfort university, Leicester, and designed for EnergyPlus users. jEPlus allows

the control of a batch simulation.
jEPlus þ EA A Platform that allows an easy manipulation of a batch simulation and the performance of GA optimisation studies by using the NSGA2 algorithm.
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government Energy Price Statistics e energy costs [52] to get life
cycle OE expenses.

Heating supply system eWCDH has a significantly lower envi-
ronmental impact when compared to more common fuel types (as
seen in Table 1). As WCDH is not very common in the UK this study
conducted LCA optimisations both for the original heating system
and for a gas fuelled condensing boiler e a more common heating
system in use in the UK. While the two systems vary in OERC
(operational energy-related carbon) emissions, the cost of energy
both system use is the same [53].

3.4.3. -LCIA (life cycle impact assessment)
In order to minimise their LCCF and LCC, the MOGA code was

required to calculate both values for each and every model gener-
ated. The calculations were split into two parts, where the first
summed up the EC (embodied carbon) and cost and the second
calculated the OERC and cost.

LCCF was calculated using the following Eq. (1):

LCCf ¼
Xni

i¼0

0
@Ki � Ti � Di � ð1þMiÞ �

0
@Xmj

j

Ai; j

1
A
1
A

þ YðððSþWÞ � EHÞ þ ðE � EEÞÞ
(1)
Where:

i ¼ Number of material.
Ki ¼ Material's embodied CO2 (kgCO2/kg).
Ti ¼ Material's thickness (m).
Di ¼ Material's density (kg/m3).
Mi¼Material's waste, transport, construction, maintenance and

demolition CO2 coefficient.
Ai ¼ Material's area (m2).
j ¼ Number of surfaces of the i'th material.
Y¼Number of years.
S¼ Space heating energy (kWh).
W¼Water heating energy (kWh).
EH ¼ CO2 emissions due to heating fuel (kgCO2/kWh).
E ¼ Electricity energy (kWh).
EE ¼ CO2 emissions due to electricity fuel (kgCO2/kWh).

Similarly, LCC was calculated using the following Eq. (2):

LCC ¼
Xni

i¼0

0
@Ci � ð1þ LiÞ �

0
@Xmj

j

Ai; j

1
A
1
A

þ YðððSþWÞ � CHÞ þ ðE � CEÞÞ
(2)



Y. Schwartz et al. / Energy 97 (2016) 58e68 63
Where:
i ¼ Number of material.

Ci ¼ Material's cost (£/m2).
Li ¼ Material's waste and transport and maintenance cost

coefficient.
Ai ¼ Material's area (m2).
j ¼ Number of surfaces of the i'th material.
Y¼Number of years.
S¼ Space heating energy (kWh).
W¼Water heating energy (kWh).
CH ¼ Cost of heating energy (£/kWh).
E ¼ Electricity energy (kWh).
CE ¼ Cost of electricity (£/kWh).
Table 4
Scenarios examined in this study.

Scenario
number

Objective Heating system Buildings

1-2 Embodied CO2/Operational CO2 WCDH A, B
3-4 LCCF/LCC WCDH A,B
5-6 Embodied CO2/Operational CO2 Natural Gas A, B
7-8 LCCF/LCC Natural Gas A, B
9 LCCF/LCC Natural Gas Ba

10 Annual energy consumption/annual
energy spending

Natural gas Ba

a B ¼ Scenarios 9 and 10 examined the optimisation result difference of a fully
south oriented building B, when the optimisation objectives varied (LCCF/LCC versus
Annual energy consumption/annual cost).

Table 5
LCI summary. Data based on [13,16,46,47,48].

Boundary factors LCCF LCC Data source

Building Materials Including waste √ √ Sketchup model, Architectural
drawings and Bath ICE

Transport √ √ 3%a

Construction (labour) √ e 7%a

Energy in use √ √ EnergyPlus
Demolition √ e 2%a

Maintenance √ √ See Table 6

a Percentages refer to the total building EC- regarded as 100% of “Building Ma-
terials including Waste”.

Table 6
Material waste rates and maintenance e life expectancy [51,54].

Material Waste rate (%) Life span (years)

Insulation 15.0 Lifetime
Aluminium cladding 5.0 30
Fibre cement 3.0 Lifetime
Timber 15.0 30
Plaster 22.5 Lifetime
Windows 5.0 30
Paint 0.0 10
Steel 15.0 Lifetime
Brick 15.0 Lifetime

Table 3
Genes and possible values.

Gene number Name Possible values

1 Panel insulation, Street insulation 50, 100, 150 [mm]
2 Exterior insulation 50, 100, 150 [mm]
3 Bricks 0, 100 [mm]
4 Thermal bridges insulation 0,50,100 [mm]
5 Window (Top floor, West) 25, 50, 75, 100 [%]
6 Window (Mid floor, West) 25, 50, 75, 100 [%]
7 Window (Bottom floor, West) 25, 50, 75, 100 [%]
8 Window (Top floor, East) 25, 50, 75, 100 [%]
9 Window (Bottom floor,East) 25, 50, 75, 100 [%]
Total Number of combinations 55,296
4. Results and discussion

The first part of this section discusses the MOGA results for
the case study buildings for both scenarios (WCDH and Gas as
primary fuel types). Later, a comparison between the original
(un-refurbished) building, the original refurbishment and the
optimal refurbishment is carried out. A CO2 payback time
calculation is then undertaken and the impact of building
orientation on LCCF and LCC is examined. Lastly, a comparison
between the results of LCCF and annual thermal performance is
conducted.

Ten optimisation projects were simulated using the JESS
(jEPlus simulation server) e DMU (De Montfort University) cloud
simulation service. Each project took around 6 h to simulate,
compared with 10 h on an i7 Intel processor with 6.0 GB installed
memory.

4.1. Optimisation results

4.1.1. LCCF/LCC
Fig. 6 shows the LCCF and LCC analysis that MOGA generated

and tested. Fig. 6a and b examined theWCDH scenario while Fig. 6c
and d examine that of the gas boiler. MOGA successfully found a
single optimal model for the former, and several optimal models for
the later.

Four groups of individuals are clearly seen on the graphs e in-
dividuals with and without additional brick layer and individuals
with and without thermal-bridge insulation. The importance of
using insulation is clearly shown by the results. All optimal in-
dividuals had the thickest available insulation, and insulating the
thermal bridge brought to a reduction of between 10 and 20% in the
LCCF and LCC. Results also show that individuals with a brick layer
have lower operational energy consumption than individuals
without it; however, it seems that this layer embodies more CO2
than it saves throughout the buildings life.

Fig. 6 shows that Building B emits less CO2 and costs less to build
and run per m2 throughout its life. This is assumed to be due to its
favourable orientation and spatial arrangement which increases its
exposure to solar gains and set better conditions for passive heating
than that of building A. Interestingly, the optimal individuals in
both buildings in the WCDH scenario had small south-facing win-
dows. This means that even a fully glazed south-facing façade e i.e.
a facade that allows maximum passive solar radiation heat gains
(which might potentially lead to a decrease in energy use and CO2
emissions for heating) e embodies more CO2 than it saves due to
solar gains.

Fig. 6a and b illustrate different relationships between their
LCCF and LCC results, compared to Fig. 6c and d. This can be
attributed to the different fuel types used in the operational phase
in each scenario: The case study's LCC was substantially affected by
the building's Embodied Cost. As the WCDH scenario has a prom-
inent Embodied component (since WCDH Operational CO2 emis-
sions are relatively low, compared to that of the gas boiler), the
relation between its LCCF and LCC is stronger.

4.1.2. Embodied CO2/operational CO2

Fig. 7 examines the embodied and operational CO2 emissions
results for both buildings. Fig. 7a and b show the case of the
WCDH, and Fig. 7c and d show the case of using gas as the fuel for
space and water heating. Each dot on the graphs represents a
model with a specific set of properties (genes), where the red dots
are the “Pareto Front”.

Results show that for all cases, the embodied energy of the
refurbishment was between 210 and 310 kgCO2/m2. In the case of a
very efficient heating energy source (WCDH) e the EC is between



Fig. 6. Natural gas heating system, embodied/operational CO2 (a, b) LCCF/LCC (c, d).
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20 and 30% of the overall LCCF, while in the case of gas boiler it only
accounts for around 10%. These results echo previous studies
[46,56].

Also, the graphs indicate that insulating the thermal bridge and
external walls can achieve a reduction of around 15% OERC values,
as a great majority of optimal individuals selected the thickest
available insulation for both. None of the optimal individuals used
any brick, which suggests that its embodied CO2 and relatively little
contribution to the performance of the buildings did not make it
beneficial from a life cycle point of view. As expected, all optimal
individuals combined the thickest available insulation with the
smallest north-facing windows.

4.2. Original, refurbished and optimal performance

4.2.1. Lifetime use of OERC emissions
The OERC emissions over a period of 60 years of the original

non-refurbished building, were compared to the emissions of the
original refurbishment and that of the optimal design (Fig. 8). In
this section, only the original WCDH was considered as the space
and water heating energy source.

The ‘Optimal Refurbishment’ bar in Fig. 8 shows the mean
operational-energy related CO2 emissions of all optimal designs
(and not the range of their spread) for clarity reasons: the other
2 bars (‘Non-Refurbished' and 'Original Refurbishment’) do not
have any sample as they are singular models.
Results show that the original refurbishment achieves a 13%
reduction in operational energy consumption throughout its life
compared to the non-refurbished building, while the optimal
refurbishment option achieves a reduction of around 29%.
4.2.2. LCCF
Fig. 9 shows the LCCF of the non-refurbished, the original

refurbishment and the optimal refurbishment for both buildings.
Results show that the original refurbishments emit 20% (or
around 200 kgCO2/m2) more CO2 than the non-refurbished
building. As previous LCCF studies show that EC values of new
buildings are between 300 and 700 kgCO2/m2 [16,57,58], this
suggests that the act of refurbishing the building did save a sig-
nificant amount of CO2, compared to the option of re-building the
blocks. The refurbishment managed to significantly improve the
living conditions for occupants, while having minimal CO2

investments.
Still, the optimal alternative shows that the building could have

been refurbished with even lower LCCF e similar values to that of
the un-refurbished building.
4.2.3. LCCF breakdown
A breakdown of the LCCF to its different components is shown in

Fig.10. It was assumed that lighting andwater heating demands are
similar in all cases. Results illustrate that the optimal design for



Fig. 7. Waste combustion district heating, embodied/operational CO2 (a, b) LCCF/LCC (c,d).
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both buildings achieves maximum OERC savings with the least
additional EC.

Also, results show that energy consumption for space heating in
Building A is 16% higher than that of building B. This is due to the
fact that Building B is more exposed to solar gains than Building A,
which enables solar radiation to passively heat its spaces. As the
two buildings have a different mix of spaces facing south (bed-
rooms/living rooms/corridors etc.), and while the Building A south
façade is the windowless “street” floor (every third story), the
entire Building B south façade has habitable spaces with windows
(bedrooms or living rooms only). This means that spaces behind it
gain more solar energy and therefore consume less energy for
heating.

4.2.4. CO2 payback times
CO2 Payback times have been calculated for the original re-

furbishments and for the optimized individuals, for both Buildings
Fig. 8. Comparison of non-refurbished, refurbished and optimal building options: 60-
year operational-energy related CO2 emissions.
A and B, under both primary energy source scenarios. Table 7 shows
that the payback times for the optimised solutions are much
shorter than those of the original refurbishment e around half the
time. This verifies that using computational optimisation methods
can result withmore efficient buildings and significantly reduce the
overall environmental impact and costs of buildings.

Additionally, Table 7 implies that the refurbishment of buildings
that use WCDH might not be worth the investment, in terms of
LCCF, as the payback time in this scenario is very long.
4.3. Examining the impact of orientation on LCCF þ LCC

Since results from previous sections have shown that Building B
(the onewithmore south-facingwindows and a better potential for
passive heating) had lower OERC emissions, a further study was
performed to examine the performance of a fully south-facing
building.

As south-facing windows allow more solar radiation, it was
expected that the LCCF/LCC optimisation would choose individuals
Fig. 9. Non-refurbished, refurbished and optimal buildings e 60 years LCCF.



Fig. 10. Non-refurbished, refurbished and optimal buildings e 60 years LCCF
breakdown.
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with big south-facing windows which will allow solar radiation to
get into the building and reduce heating demands, in opposed to
that of the previous, non-fully south-facing model. The simulation
used natural gas as its primary energy source.

Although a full southern orientation did result in some reduc-
tion of both LCCF and LCC compared with the original building's
orientation (as shown in Fig. 11a), the optimal individuals still had
the smallest available windows (or, minimal EC). This means that
the windows EC is still greater than the OERC they can save by
letting solar radiation penetrate the building.Windows in buildings
are used not only for enabling passive heating in buildings but also
for answering other occupants comfort criteria and needs. For
example e window can allow occupants a view outside or supply
natural daylight to the different spaces in the building, which is
considered to contribute to occupant's visual performance and
psychological needs [59]. Operable windows can also contribute to
occupant's thermal satisfaction and sense of control, as they en-
ables occupants to actively change their environment e allow
breeze to cool the building or prevent heat from escaping out [60].
While these are important aspects in façade and window design,
Table 7
Original and Optimised solutions CO2 payback times.

Optimal solutions Original
refurbishment

Building
A

Building
B

Building
A

Building
B

Annual energy savings (kWh/m2/y) 70 67 33 32
Waste combustion

district heating
Operational related
CO2 savings
(kgCO2/m2/y)

4.1 3.7 1.93 1.9

payback time (years) 56 58 163 161
Natural gas-based

heating system
Operational related
CO2 savings
(kgCO2/m2/y)

14.5 13.6 6.6 6.5

payback time (years) 15.5 16.0 47 45
this study focused on the potential impact of window-to-wall-ratio
on the LCCF and LCC of the examined case study buildings.

4.4. Comparing annual energy consumption with LCCF

As annual energy consumption (kWh/m2/year) is considered to
be the primary goal of current legislation PART L [61], rather than a
more comprehensive analysis, such as LCA, a comparison between
the optimal design solutions according to the two objectives was
carried. For this, a fully southern oriented building (using gas boiler
for heating) was simulated, once to minimise LCCF/LCC and once to
minimise annual energy consumption and costs (kWh/m2/y and
£/m2/y).

As expected when using operational energy and running costs
as the fitness criteriaMOGA selected the individual with the biggest
south-facing windows (as passive solar radiation resulted with
reduce operational energy and costs), while the LCCF/LCC optimi-
sation selected individuals with the smallest windows for all fa-
cades (Fig. 11, Table 8). Also, the optimal building in the case of
annual energy consumption used a brick layer, while the LCCF/LCC
optimal buildings did not.

These results indicate that one of the most common tests con-
ducted in the industry e annual energy consumption e might
actually result in higher life cycle CO2 emissions.

5. Conclusions

As early design decisions are important in terms of life cycle
building performance, this study examined the use of optimisation
methods to allow Architects taking more informed decisions in
early design. This was done by using NSGA II to optimise the
refurbishment measures of a case study building in Sheffield, UK.
The study focused on optimising envelope properties in order to
reduce the building's whole life environmental impact and cost, as
this was the primary design intervention. In analysing the results
from the work carried out the following conclusions can be made:

Applicability of using the methodology as a decision making tool in
early design stages e Though the study successfully resulted with
the optimal design solutions, the integration between the different
tools was not at all simple. The fact that four different tools had to
be used in the process makes a lot of room for mistakes for an
inexperienced user. It is therefore concluded that in order for the
methodology to be used in practice, a single tool should be devel-
oped with a simple user friendly interface.

Furthermore, although running an optimisation scenario took a
reasonable length of time in this study, to avoid extremely long
simulation times and save valuable computer resources, some basic
understanding of thermal simulation, GA and logic behind it is
required.

Original refurbishment e The study showed that the original
refurbishment OERC resulted in a significant reduction compared
to the non-refurbished building, while its total LCCF has increased.
In considering that the complex was deserted prior to its refur-
bishment, the added emissions are still lower than that of the
alternative of demolishing and re-building a new complex.

Optimisation results e The study has shown that MOGA suc-
cessfully found optimal solutions for the different examined sce-
narios ethe optimal models resulted with the lowest LCCF and LCC
values and their CO2 payback times were significantly better than
those of the original refurbishment scheme.

The results under all examined scenarios point to the fact that
the optimal models include envelope elements that save more
OERC or operational cost then they embody. For example, optimal
models had the smallest available windows and did not use brick as
an insulating layer, as these elements embody more CO2 and cost



Fig. 11. Fully south-facing building. (a): LCCF/LCC: natural gas heating. (b): Annual heating energy consumption/annual spending.

Table 8
Minimal LCCF and LCC (left) and minimal annual energy consumption (right) optimal buildings.

Building component LCCF/LCC Annual heating energy consumption (kWh/m2/y/£/m2/y)

Optimal model A Optimal model B Optimal model

Panel þ street insulation (cm) 15 15 15
External wall insulation (cm) 15 10 15
Bricks (cm) 0 0 10
Thermal bridges insulation (cm) 10 10 10
North windows (%) 25 25 25
South windows (%) 25 25 100
South façade

North façade
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more than the OERC or cost they save. The study also examined the
impact that primary fuel sources have on LCA, and showed the
importance of insulating thermal bridges.

LCCF and Orientatione The study also showed the potential of
using the methodology in examining other design aspects. Based on
the assumption that a south-facing buildingwith bigger south-facing
windows will lead to an increase in the building EC and decrease in
its OERC (due to the potential solar gains), the study searched for the
optimal design solution of a fully south-facing building.

Results showed, however, that even in the cases of a fully south-
facing building with a maximum sun exposure potential, the
optimised design had small south-facing windows. This implies
that the windows still embody more CO2 than that they save.

Annual energy consumption vs LCCF Optimisation e The study
finally compared the LCA/LCCF optimisation results with other
performance-based methods. Results have shown that LCCF
analysis led to different design solutions than that of one of the
most widely used tests in the industry e that of annual energy
consumption: This shows that different analysis methods can lead
to different conclusions and effectively have a different impact on
the way buildings are designed.
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