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Key Messages

� The efficiency of transduction of both myenteric and submucosal neurons in the mouse intestine after neonatal

systemic delivery of vectors AAV8 and AAV9 was investigated.

� AAV8 and AAV9 are equally capable of transducing the ENS, although the transduction efficiency in the

submucosal plexus is region-dependent.

� Manipulation of the ENS through gene delivery offers great potential in preclinical research and gene therapy.

Abstract

Background Despite the success of viral vector tech-

nology in the transduction of the central nervous

system in both preclinical research and gene therapy,

its potential in neurogastroenterological research

remains largely unexploited. This study asked

whether and to what extent myenteric and submu-

cosal neurons in the ileum and distal colon of the

mouse were transduced after neonatal systemic deliv-

ery of recombinant adeno-associated viral vectors

(AAVs). Methods Mice were intravenously injected

at postnatal day one with AAV pseudotypes AAV8 or

AAV9 carrying a cassette encoding enhanced green

fluorescent protein (eGFP) as a reporter under the

control of a cytomegalovirus promoter. At postnatal

day 35, transduction of the myenteric and submucosal

plexuses of the ileum and distal colon was evaluated

in whole-mount preparations, using immunohisto-

chemistry to neurochemically identify transduced

enteric neurons. Key Results The pseudotypes AAV8

and AAV9 showed equal potential in transducing the

enteric nervous system (ENS), with 25–30% of the
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neurons expressing eGFP. However, the percentage of

eGFP-expressing colonic submucosal neurons was

significantly lower. Neurochemical analysis showed

that all enteric neuron subtypes, but not glia,

expressed the reporter protein. Intrinsic sensory neu-

rons were most efficiently transduced as nearly 80% of

calcitonin gene-related peptide-positive neurons

expressed the transgene. Conclusions & Inferences

The pseudotypes AAV8 and AAV9 can be employed

for gene delivery to both the myenteric and the

submucosal plexus, although the transduction effi-

ciency in the latter is region-dependent. These findings

open perspectives for novel preclinical applications

aimed at manipulating and imaging the ENS in the

short term, and in gene therapy in the longer term.

Keywords AAV, enteric nervous system, myenteric

plexus, submucosal plexus, viral transfection.

INTRODUCTION

Viral vector technology in gene delivery to the enteric

nervous system (ENS) is poorly exploited, despite

important merits of viral vectors in the transduction

of the central nervous system in both preclinical

research and gene therapy.1–3 Recombinant adeno-

associated viruses vectors (AAVs) belong to the most

promising candidate vector systems in gene therapy

and preclinical research1,3, but hitherto little is known

about the transduction efficiency of the ENS by AAV.

Rahim et al.4 and Schuster et al.5 have preliminarily

indicated transduction of the myenteric plexus of the

mouse with AAV9, and a more recent paper by

Gombash et al.6 has detailed myenteric plexus trans-

duction by self-complementary AAV9 in neonate and

juvenile mice with green fluorescent protein (GFP)

being expressed under a chicken-b-actin/cytomegalo-

virus (CB) hybrid promoter. However, data on submu-

cosal plexus transduction are currently lacking, as is

quantification of the neuronal subtypes transduced by

AAV. Here, we further explored the transduction of the

ENS in the ileum and colon of the mouse by single

stranded AAV8 and AAV9 encoding GFP driven by the

immediately early human cytomegalovirus (CMV)

promoter after neonatal i.v. injection.

MATERIALS AND METHODS

Recombinant AAV vector preparation

Vector production and purification were performed at the Leuven
Viral Vector Core as previously described.7 Adeno-associated viral
vectors encoding enhanced GFP (eGFP) reporter protein driven by
the CMV promoter were packaged in an AAV8- or AAV9-capsid.
Briefly, following triple transient transfection (pAdvDeltaF6 [ade-
noviral helper plasmid], pAAV2/8 or pAAV2/9 [AAV serotypes],
pAAV-TF CMV-eGFP-T2A-fLuc [AAV transfer plasmid encoding
eGFP and fLuc reporters driven by a CMV promoter7] in a 1 : 1 : 1

Marker

AAV8 AAV9

Ileum Distal colon Ileum Distal colon

Marker+ GFP+ Marker+ GFP+ Marker+ GFP+ Marker+ GFP+

HuC/D (MP) 2950 804 2533 761 2923 704 1839 394

HuC/D (SMP) 752 226 588 65 395 96 234 11

CGRP (MP) 349 867 208 378 312 762 175 660

CB (MP) 152 563 120 300 93 472 111 599

CRT (MP) 285 351 384 441 239 234 317 319

CRT (SMP) 386 96 nd nd 414 127 nd nd

nNOS (MP) 332 358 739 416 472 537 898 636

VIP (SMP) 245 159 nd nd 182 88 nd nd

Numbers are the total of counted cells from three (neurochemical coding) or four (HuC/D stains)

animals. For statistical analysis an animal was considered the experimental unit and the

countings were averaged per animal. MP, myenteric plexus; SMP, submucosal plexus; AAV,

adeno-associated viral vectors; GFP, green fluorescent protein; CGRP, calcitonin gene-related

peptide; CRT, calretinin; VIP, vasoactive intestinal peptide.

Table 1 Total number of counted neurons

in the quantification experiments

Figure 1 Transduction of myenteric and submucosal neurons of ileum and colon. (A and B) Expression of the GFP transgene was limited to enteric

ganglia (arrows) and neuronal fibers (arrowheads) (C) Transduction allows some axons to be traced along internodal strands, as exemplified by this

stacked confocal image (z = 19 lm) with an axon extending into the longitudinal muscle layer (arrowhead). (D–F) Transduction of myenteric ganglia

of the colon (D) and ileum (E and F). Note the lamellar dendrites on the perikaryum in (F), indicative of a Dogiel type I neuron (arrowhead). (G) GFP-

expressing submucosal neurons were rare in the colon, but GFP-positive fibers could readily be observed. (H) Submucosal ganglia of the ileum showed

numerous transduced neurons. (I and J) Quantification of the number of transduced neurons showed transduction efficiency to be independent of

AAV serotype, but the colonic submucosal neurons were significantly less transduced than ileal submucosal neurons. Scale bars 35 lm; MP,

myenteric plexus; SMP, submucosal plexus; AAV, adeno-associated virus.
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ratio) into HEK293T cells using 25 kDa linear polyethylenimine,
viral vector particles were collected from the supernatant and
concentrated using tangential flow filtration and iodixanol gradi-
ent purification. Gradient fractions of concentrated AAV particles
were stored at �80 °C. Titers for AAV stocks were controlled by
qPCR analysis to determine AAV genome copies (GC/mL) and
silver-stained sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis.

Injection procedure

Following hypothermic anesthesia, the respective AAV vectors
were administered to C57BL/6 mouse pups on postnatal day one
by injection into the superficial temporal vein using a 33G needle
(Hamilton, Reno, NV, USA). 20 lL of AAV vector with
1.09 9 1012 GC/mL AAV8 or 1.19 9 1012 GC/mL AAV9 was
administered. Eight animals from two different litters were
injected for each vector. At 35 days of age the injected mice were
sacrificed. All animal experiments were approved by the Ethical
Committee for Animals of the University of Antwerp and were in
line with EU directive 2010/63/EU.

Immunohistochemistry

The ileum and distal colon were fixed in 4% paraformaldehyde.
Whole-mounts and cryosections were prepared as described
before.8,9 Tissue samples were preincubated in 0.1 M phosphate-
buffered saline (PBS; pH 7.4) with 0.05% thimerosal, 10% normal
horse serum, and 1% triton X-100. In case of anti-HuC/D staining
this was supplemented with Mouse-On-Mouse blocking reagent
(Vector Labs, Burlingame, CA, USA). Tissue was incubated over-
night with one of the following primary antibodies; mouse anti-
HuC/D (1 : 500; Thermo Fisher Scientific, Waltham, MA, USA;
clone 16A11), goat anti-neuronal nitric oxide synthase (nNOS;
1 : 1000; Abcam, Cambridge, MA, USA; ab1376), goat anti-cal-
bindin (CALB; 1 : 200; SantaCruzBiotechnology,Dallas, TX,USA;
sc-7691), goat anti-calretinin (CRT; 1 : 10 000; Swant, Marly,
Switzerland; CG1), sheep anti-tyrosine hydroxylase (TH; 1 : 500;
Novus Biologicals, Littleton, CO, USA; NB300-110), goat anti-va-
soactive intestinal peptide (VIP; 1 : 100; Santa Cruz Biotechnology
sc-7841), rabbit anti-S100B (1 : 5000; Dako, Glostrup, Denmark;
Z0311), goat anti-calcitonin gene-related peptide (CGRP; 1 : 5000;
Abcam ab36001), rabbit anti-glial fibrillary acidic protein (GFAP;
1 : 500; Dako Z0334), or rabbit anti-GFP (1 : 500; Abcam ab290).
After rinsing with PBS, tissues were incubated with corresponding
Cy3-conjugated secondary IgG antibodies raised in donkey (1 : 800;
Jackson Immunoresearch, West Grove, PA, USA). Antibodies were
validated by appropriate negative control experiments as detailed
previously.10,11 In case of VIP and CGRP immunostaining for
quantification, axonal transport was blocked with colchicine in
organotypic culture enhancing the perikaryal localization of these
neuropeptides. The culture medium was composed of 10% FCS,
100 U/mL penicillin–streptomycin, 50 lg/mL gentamycin, 2.5 lg/
mL amphotericin B, 1 lM nifedipine, 0.1 mg/mL colchicine in
DMEM:F12 (LifeTechnologies). Imageswere acquired using aZeiss
(Oberkochen, Germany) Axiophot fluorescence microscope
equipped with an Olympus (Tokyo, Japan) DP70 digital camera
(cryosections) or a Zeiss LSM510 confocal microscope (whole-
mounts).

Quantification & statistical analysis

Whole-mounts from at least three animals were counted (exact n is
indicated in the results section). Randomly chosen fields of view

amounted to an imaged area of 1.5 mm2 per whole-mount. The
number of counted neurons is listed in Table 1. Images were
manually countedusing ImageJ anddatawere further analyzedwith
Graphpad (La Jolla, CA, USA) Prism 6. Data are represented as
mean � SEM.The influence of the factors ‘intestinal region’ (ileum
or colon) and ‘AAV serotype’ (AAV8 or AAV9) on the number of
transduced (GFP-positive) enteric neurons (HuC/D-positive) was
statistically evaluated with two-way ANOVA at a p = 0.05 signifi-
cance level.

RESULTS

Transduction of the myenteric and submucosal
plexuses by AAV8 and AAV9

Green fluorescent protein fluorescence was limited to

enteric ganglia and interganglionic connecting nerve

strands, with an identical GFP pattern for AAV8 or

AAV9 (Fig. 1A and B). Endogenous GFP fluorescence

coincided with anti-GFP immunoreactivity in the

whole-mounts, indicating that endogenous GFP fluo-

rescence had not suffered from fixation or staining

procedures (data not shown). Adeno-associated viral

vector-transduced GFP fluorescence allowed morpho-

logical classification into Dogiel subtypes and tracing

of individual axons along internodal strands in whole-

mount preparations (Fig. 1C). The pseudotypes, AAV8

and AAV9, were equally potent in transducing the ileal

and colonic enteric plexuses (Table 2).

The myenteric plexus of both regions was trans-

duced to the same extent, with 25–30% of the HuC/D

immunoreactive myenteric neurons coexpressing GFP

(Fig. 1D–F, Table 2). However, a significantly lower

number of submucosal neurons showed GFP fluores-

cence in the colon (p = 0.0012, two-way ANOVA),

although GFP-fluorescent nerve fibers could be readily

observed (Fig. 1G and H, Table 2).

Transduction of the neurochemical classes of
enteric neurons by AAV8 and AAV9

All neuronal subtypes were susceptible to AAV trans-

duction, as revealed by neurochemical marker staining

(Fig. 2, Table 3). Given the low transduction of the

colonic submucosal plexus, subtypes were not quanti-

fied for this specific region. The highest transduction

efficiency was observed in the CGRP- or CALB-

immunoreactive myenteric neurons, with 50 to almost

80% of these neurons expressing GFP. In the other

subpopulations the transduced proportion remained

closer to the 20–30% range. About 50 ganglia from two

animals per AAV serotype were evaluated for the glial

cell markers GFAP or S100. None of them yielded any

GFP signal in enteric glial cells (Fig. 2I and J).
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DISCUSSION

We demonstrate that AAV8 and AAV9, carrying GFP

under control of a CMV promoter, efficiently transduce

myenteric and submucosal neurons of the mouse small

and large intestine when injected i.v. in P1 neonates.

This is in line with Gombash et al., who recently

employedAAVvectors containinga self-complementary

Table 2 Transduction of enteric neurons by AAV8 or AAV9

GFP+/HuC-D+, mean % � SEM

(n = 4 animals)

AAV8 AAV9

Ileum Colon Ileum Colon

Myenteric plexus 26 � 3 29 � 4 24 � 3 22 � 3

Submucosal plexus 28 � 5 12 � 5 23 � 3 5 � 2

See Table 1 for abbreviations.

A A2

C1

E

G H I J

C2

F1 F2 F3

D1 D2

A3 B

Figure 2 Neurochemical classification of transduced myenteric and submucosal neurons. Neurons immunostained for (A) calcitonin gene-related

peptide, (B) calbindin, (C and D) calretinin, (E) neuronal nitric oxide synthase, (D) vasoactive intestinal peptide, or (F and G) tyrosine hydroxylase all

were susceptible to transduction with AAV8 and AAV9. (H and I) S100 (H) or glial fibrillary acidic protein (I) immunoreactive glial cells did not

express the transgene. Scale bars 35 lm; MP, myenteric plexus; SMP, submucosal plexus; AAV, adeno-associated virus.
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genome encoding GFP under a CB promoter for the

transduction of the myenteric plexus.6 Hence, the rate-

limiting second-strand synthesis required in the case of

single stranded AAV, does not affect the construct’s

expression in enteric neurons. The advantage of using

single stranded AAV vectors lies in the longer construct

length (4.7 kb) they can hold compared to self-comple-

mentary AAV (about 2.4 kb). Both vectors were equally

potent, in contrast to the lower transduction efficiency

of AAV8 compared to AAV9 observed in the adult rat

colon after intramural injection of AAV-GFP under the

CB promoter.12 It should be noted that the systemic

distribution of intravenously injected AAV is not

limited to the ENS.4,5,13 In the light of gene therapy,

future efforts should evaluate specificity-enhancing

strategies such as ENS-specific promotors, AAV with

modified glycan binding ability or micro-RNAs.14,15

Enteric glia lacked transgene expression, but these cells

could be targeted with other AAV serotypes or GFAP

promotor-driven constructs, as these strategies have

been proven successful in earlier work.6,12

To our knowledge, the paper by Gombash et al. is

the only other work that neurochemically identifies

AAV-transduced myenteric neurons of the mouse.6

Our results further revealed significantly lower trans-

duction efficiency in the submucosal plexus of the

distal colon, compared to the ileum. The reason for this

difference is not clear: transduction efficiency can be

affected due to anatomical constraints such as villous

fenestrated capillaries in the ileum facilitating viral

vector access, or pertain to more complex physiological

differences such as regional differences in immune

response.16 Alternatively, even though the CMV pro-

moter can be considered as an ubiquitous promoter,

lower CMV-driven expression in the submucosal

plexus of the distal colon may also account for this

difference.

Gombash et al. did not quantify transduction in

neurochemically coded neurons, but did report that

GFP expression was absent in VIP- or nNOS-positive

myenteric neurons after AAV9 transduction, which

contrasts with our observations showing nearly

20% of inhibitory (nitrergic) motor neurons express-

ing GFP.6 The proportion of transduced intrinsic

sensory neurons (CGRP- or CALB-immunoreactive)

was substantially larger compared to inhibitory motor

neurons, but transduction of the latter was not

absent. Moreover, submucosal VIPergic neurons were

readily transduced in our study. These discrepant

observations might pertain to differences in the

promoter (CB vs CMV), although the genetic back-

ground of the mice (FVB vs C57BL/6) may also play a

role.

This study strengthens the validity of AAV vectors

in transducing the myenteric plexus of the mouse and

expands AAV application to the submucosal plexus.

This application has important preclinical merits on

the short term: Cre-inducible transgene-cassettes com-

bined with Cre-expressing mouse lines enables selec-

tive manipulation of enteric neurons in vivo. For

example, transduction of genetically encoded calcium

sensors or channel rhodopsins allows selective imaging

and manipulation in live cell experiments. The fact

that transduction can be executed in the neonatal time

window is important for studying postnatal ENS

development during the weaning period. In the longer

term, genetic therapies targeting the ENS in clinical

applications can be evaluated.
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Table 3 Transduction in neurochemically stained enteric neurons

Mean % � SEM

(n = 3)

AAV8 AAV9

Ileum Distal colon Ileum Distal colon

GFP+/
marker+

Marker+/
GFP+

GFP+/
marker+

Marker+/
GFP+

GFP+/
marker+

Marker+/
GFP+

GFP+/
marker+

Marker+/
GFP+

CGRP (MP) 78 � 1 31 � 2 60 � 2 31 � 1 77 � 5 32 � 4 57 � 11 18 � 4

CB (MP) 54 � 6 16 � 2 49 � 6 19 � 0 61 � 5 11 � 2 70 � 2 10 � 1

CRT (MP) 33 � 5 27 � 3 37 � 2 31 � 3 27 � 1 26 � 3 40 � 18 30 � 6

CRT (SMP) 14 � 4 50 � 12 nd nd 18 � 1 54 � 1 nd nd

nNOS (MP) 17 � 2 16 � 1 15 � 2 31 � 5 21 � 7 17 � 2 16 � 4 22 � 3

VIP (SMP) 32 � 5 45 � 7 nd nd 52 � 5 73 � 3 nd nd

In the myenteric plexus CGRP is expressed in intrinsic primary afferent neurons (IPANs); CB marks a subpopulation of IPANs; nNOS is mainly found

in inhibitory motor neurons; CRT marks IPANs, excitatory motor neurons, and a subpopulation of interneurons. In the submucosal plexus CRT and

VIP stain vasodilator and secretomotor neurons. A detailed description of the different neurochemical classes in the mouse enteric nervous system

can be found in references (17–19). See Table 1 for abbreviations.
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