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ABSTRACT 15 

 16 

This paper presents collection and analysis of heterogeneous urban traffic data, and 17 

integration of them through a kernel-based approach. The recent development in sensing and 18 

information technology opens up opportunities for researching the use of this vast amount of 19 

new urban traffic data. In this paper, the data fusion algorithm is developed by using a kernel-20 

based interpolation approach. Our objective is to reconstruct the underlying urban traffic 21 

pattern with fine spatial and temporal granularity through processing and integrating data 22 

from different sources. The fusion algorithm can work with data collected in different space-23 

time resolution, with different level of accuracy, and from different kinds of sensors. The 24 

properties and performance of the fusion algorithm is evaluated by using a virtual test-bed 25 

produced by VISSIM microscopic simulation. The methodology is demonstrated through a 26 

real-world application in Central London. This paper contributes to analysis and management 27 

of urban transport facilities.  28 

 29 
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1. Introduction  50 

 51 

A detailed and reliable picture of spatio-temporal variations of traffic is essential for 52 

understanding and managing congestion (Tsapakis et al., 2012; Chow et al., 2014). Much 53 

previous research on traffic data has been focusing on freeways where Kwon and Varaiya 54 

(2005) provide a review on relevant studies. Compared with freeways or motorways, we see 55 

relatively less research work done on urban networks. It is due to the lack of required data 56 

and the complexity of problem. Recently, the increasing availability of urban traffic data 57 

provides new research opportunities.  58 

 59 

Urban traffic data varies greatly in terms of spatio-temporal granularity, latency and accuracy. 60 

Typical sources of traffic flow data in urban environment include:   61 

 62 

• Fixed sensors – such as loop detectors and automatic traffic counters - provide 63 

information of traffic volume, composition of traffic (e.g. proportion of buses, heavy 64 

good vehicles, etc), concentration and speed.  65 

 66 

• Global Positioning System (GPS) devices – such as smart phones, personal navigators, 67 

etc - are attached to vehicles or persons. The GPS devices report location and speed of 68 

the attached objects regularly (typically every second). Various information such as trip 69 

lengths and journey times can also be derived from GPS data.  70 

 71 

• Automatic Vehicle Identification (AVI) – With vehicle (re)-identification techniques, on-72 

road or roadside sensors (e.g. cameras) can provide information including journey times 73 

and trip lengths.  74 

 75 

Integrating heterogeneous traffic data in a consistent way is always a challenging problem, 76 

where Ou (2011) provides a review of different kinds of data fusion approaches. One the 77 

most popular approach for integrating traffic data is through the model-based Kalman Filter 78 

(KF, Kalman, 1960) and its variants such as Extended KF, Unscented KF, and Particle Filter 79 

(PF) (see examples: Wang and Papageorgiou, 2005; Mihaylova et al., 2007; Herrera and 80 

Bayen, 2010; Ngoduy, 2011). Under the KF and PF (and their variants) framework, traffic 81 

flow estimation is produced by comparing and combining the model estimates and actual 82 

measurements. The filtering framework consists of two parts: a state equation to model and 83 

predict the traffic state evolution over time, and an observation equation to relate the 84 

measurements to the underlying traffic state. Both state and observation equations consider 85 

explicitly the associated errors involved. An estimate is then generated through minimizing 86 

the associated expected pooled error in state predictions and observations. Such filtering 87 

framework is used widely in data fusion algorithms due to a number of its desirable 88 

properties. The explicit state and observation models allow data from different kinds of 89 

sensors to be incorporated. Moreover, the well-defined statistical measures of uncertainty 90 

make it possible to quantify the value of each data source. 91 

 92 

Nevertheless, the filtering approach is model based, which mean it has to operate based upon 93 

an assumed traffic model. Typical examples of traffic model for this purpose include Cell 94 

Transmission Model (Daganzo, 1994), METANET (Papageorgiou et al., 1990), and a 95 

recently proposed two-regime traffic model by Balijepalli et al. (2013). As noted in Ou 96 

(2011), a major difficulty for this model-based approach is on the selection and calibration of 97 

the underlying traffic model. Choosing and calibrating a suitable traffic model is not 98 
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straightforward, and inappropriate choice will lead to inconsistency and instability of the 99 

fusion framework.  100 

 101 

This paper presents a kernel-based data fusion algorithm that can integrate heterogeneous 102 

urban traffic data with different characteristics. The objective is to reconstruct the urban 103 

traffic pattern with fine spatial and temporal granularity through processing and integrating 104 

data from different sources. The fusion algorithm does not require assumption of any 105 

underlying model and it can work with data collected in different spatio-temporal granularity, 106 

with different level of accuracy, and from different kinds of sensors. We need to note the 107 

proposed method will be limited to offline application due to the lack of an underlying traffic 108 

model as a state estimator. Nevertheless, the fusion algorithm in this paper will be a valuable 109 

and cost-effective tool for offline transport planning and policy evaluation through 110 

integrating existing sources of data. The performance and properties of the fusion algorithm 111 

is evaluated by using a synthetic scenario generated by VISSIM micro-simulation. The 112 

algorithm will also be used to integrate actual traffic data collected from a road section in 113 

Central London (UK) as an illustration of real-world application. 114 

 115 

This paper starts with Section 2 which discusses the characteristics of different traffic data on 116 

urban road networks. We use Central London in the UK as an illustration. Section 2 will also 117 

highlight the difference between different data in terms of their spatial and temporal 118 

granularity. Section 3 presents the data fusion algorithm that we adopt. Section 4 presents an 119 

application of the fusion algorithm to Central London road network. The fusion algorithm is 120 

also analysed by using a virtual test-bed generated by VISSIM micro-simulation. Finally, 121 

Section 5 gives some concluding remarks.   122 

 123 

 124 

2. Urban traffic data – London, UK 125 

 126 

Journey times are one of the most important performance indicators for urban road networks. 127 

As an illustration, journey times in London are measured by using the Automatic Number 128 

Plate Recognition (ANPR) technique. In London, there are about 500 cameras for enforcing 129 

various policies such as congestion charging and low emission zones. When a vehicle passes 130 

by a camera, its plate number will be recognized and recorded along with the associated time. 131 

The journey time of the vehicle between two camera sites can then be derived by matching 132 

the plate number. The derived journey times are further processed and stored in 5-min 133 

averages in the database. 134 

 135 

It is noted that various errors may arise in matching the license plate numbers due to various 136 

reasons such as misreading of license plates, vehicles stopping en-route, and vehicles taking 137 

unusual long route between the two camera locations, data loss due to road closure, and 138 

failure of hardware system. Consequently, a set of data filtering and processing rules is 139 

adopted to improve the journey time estimation (Robinson and Polak, 2006). Some patching 140 

or imputation algorithms may be used for imputing missing data. The associated ANPR 141 

journey time data is flagged with a code referring to the type of patching mechanism which is 142 

applied. This code is ranging from 0 (best: no patching applied) to 3 (worst: patched by 143 

typical profile).  144 

 145 

Figure 1 shows a 1-km stretch of Waterloo Road (A301) in Central London, and Figure 2 146 

shows the associated speeds (i.e. reciprocals of journey times) measured along the road in 147 
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April 2010. In the figure, the position and width of the bar at each 5-min interval reflects the 148 

average and dispersion of the journey times in the month at that particular interval. 149 

 150 

 151 
Figure 1 Waterloo Road,  London (UK) 152 
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 153 
Figure 2 Variations of traffic speeds in April 2010 along Waterloo Road, London (UK) 154 

 155 

Figure 3 shows the average speed field over time and space produced by the ANPR journey 156 

times. The colour scale on the space-time grid represents the average speed of traffic. As can 157 
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be seen from Figure 3, a major weakness with the ANPR journey times is that they do not 158 

capture much spatial feature of traffic. It is because the distance between a pair of ANPR 159 

camera sites is typically far apart (in the range of kilometres), which implies a lot of spatial 160 

variations are missed along the route. 161 
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 162 
Figure 3 ANPR-Speed field along Waterloo Road, London (UK) 163 

 164 

To extract detailed spatial traffic variations, we use floating car data provided by 165 

Trafficmaster
*
. Some vehicles on the road are equipped with Trafficmaster GPS (Global 166 

Positioning System) devices. The GPS devices on these vehicles report the locations of the 167 

vehicles on a regular basis (~8-10 seconds). Figure 4 shows the corresponding speed field 168 

generated by these Trafficmaster data, which can reveal much more spatial feature compared 169 

with the ANPR data. Nevertheless, there are only very limited samples of Trafficmaster 170 

vehicles on the road (about 1,500 such vehicles in Greater London Area). With such small 171 

sample size, Trafficmaster can only reveal limited temporal characteristics of traffic.  172 

 173 

                                                             
*
 http://www.trafficmaster.co.uk/ 
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 174 
Figure 4 Trafficmaster-Speed contour along Waterloo Road, London (UK) 175 

 176 

 177 

3. Data fusion  178 

 179 

The study presents a kernel-based interpolation method to reconstruct the underlying traffic 180 

pattern with fine spatial and temporal details through integrating data from heterogeneous 181 

sources. It should be emphasized that the algorithm presented herein is generic and it can be 182 

applicable in other scenarios with different data sources from what we present herein. The 183 

data fusion algorithm consists of two steps: smoothing and integration.  184 

 185 

 186 

3.1. Data smoothing  187 

 188 

Different traffic data often come in different spatio-temporal granularity. Before integration, 189 

it is necessary to first process and reconstruct the data on a common space-time grid. Here we 190 

adopt the kernel-based interpolation method which is a popular approach used in data fusion 191 

literature (Lanckriet, et al., 2004; Camps-Valls et al., 2006). This kernel-based interpolation 192 

can also be regarded as a kind of fuzzy regression approach (Tanaka et al., 1982; Choi and 193 

Chung, 2002). Moreover, this kernel-based method is also adopted by Treiber and Helbing 194 

(2002 a, b) for fusing freeway traffic data as will be discussed in the next section.  195 

 196 

Consider a set of traffic measurements iu  from a source taken as location ix  and time it , 197 

where i = 1,2,…, n and n is the total number of measurements. With this set of data, Treiber 198 

and Helbing’s algorithm reconstructs the traffic state on a space-time domain with user-199 

defined spatial interval xδ  and temporal interval tδ .  200 

 201 

We define ),( tx  be the space-time coordinate on this new space-time domain, the associated 202 

traffic state ),( txu  is estimated by  203 

 204 
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where ∑
=
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),(

1

),(),(
txM

i

iii ttxxtx φ  is a normalizing factor. The notation iφ  denotes the value 207 

of a kernel smoothing or shape function at ),( ii ttxx −− , in which )( ixx −  and )( itt −  are 208 

the respectively the spatial and temporal lags between the space-time of interest ),( tx , and 209 

space-time of the data source ),( ii tx . The kernel function is added here to capture the 210 

‘fuzziness’ in the raw data and to smooth out high frequency noise and fluctuations. It is 211 

usual the function iφ  is symmetric or isotropic in (x, t) in which it depends on the quantities 212 








 −−

τσ
)(

,
)( ii ttxx

, where σ and τ  represent respectively the spreads of the spatial and 213 

temporal influence regions. Model (1) converges to an ordinary regression model without 214 

fuzziness as σ and τ  tend to zero, while the model become a simple arithmetic mean of all 215 

data points, regardless of their space-time location, as σ and τ  tend to infinity.  216 

 217 

Treiber and Helbing (2002) and Treiber et al. (2009) adopt the following exponential kernel 218 

function:  219 

 220 





















 −
+

−
−=−−

τσ
φ ii

iii

ttxx
ttxx exp),( ,  221 

 222 

as the shape function in their freeway applications. Moreover, Treiber and Helbing (2002) 223 

suggests that σ and τ  should be taken as halves of the associated spatial and temporal 224 

granularities. For example, if the spacing and sampling interval of detection are 500-m and 5-225 

min respectively, then σ  should be 250-m and τ  should be 2.5 min.  226 

 227 

Furthermore, in expression (1), ),( txM is number of data points that we consider when 228 

calculating ),( txu . In extreme case, we can consider all data points in which ntxM =),( . 229 

The choice of ),( txM  is a trade-off between computational speed and accuracy: the larger 230 

),( txM , the more accurate the estimates while the heavier computational burden.  231 

 232 

 233 

3.1.1. Anisotropic filter  234 

 235 

It is known in traffic flow theory that the propagation speeds of traffic characteristics are 236 

different in free-flow and congested conditions. In free flow, traffic characteristics propagate 237 

along with the direction of traffic with a ‘free-flow’ speed fv ; in congestion, traffic 238 

characteristics travels against the direction of traffic with a speed w . Empirical findings 239 

show the propagation speed w is generally less than speed  fv , which suggests the traffic 240 

influence is anisotropic with respect to direction of influence.  241 

 242 

To capture the anisotropic feature, Treiber and Helbing (2002 a,b) propose different formulae 243 

of the kernel function for free-flow and congested traffic conditions respectively as  244 
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 251 

in which ),( txΦ  is the corresponding normalizing factor for both cases. In the case of urban 252 

streets, we take the forward propagation speed fv  as 25 kmph as revealed from the statistics 253 

shown in Figure 2, while w is -8 kmph. Note that w is negative which represents that it is 254 

travelling against the direction of traffic.  255 

 256 

The smoothed speed at each (x, t) is then determined as  257 

 258 

[ ] ),(),(1),(),(),( txutxtxutxtxu freecong γγ −+= ,  259 

              (3) 260 

 261 

where ),( txγ  is weighting factor which manipulates the superposition of the free-flow and 262 

congested speeds. The weighting factor is expected to be approximately zero in free-flow (or 263 

high speeds), and approximately one at low speeds.  264 

 265 

Treiber and Helbing (2002) and Treiber et al. (2009) adopt the “s-shaped” hyperbolic tangent 266 

function:  267 

 268 

















∆

−
+=γ

u

uu
tx crit *

tanh1
2

1
),( ,  269 

              (4) 270 

 271 

where )],(),,(min[* txutxuu congfree= ; critu  is a speed threshold distinguishing free-flow and 272 

congested traffic; and u∆  is the transition window width adopted in the weighting function. 273 

Following our observations in Figure 2, we set the critu  be 25 kmph and u∆  be 5 kmph for 274 

classifying free-flow and congested data.  275 

 276 

 277 

3.1.2 Processing journey time data  278 

 279 

The data smoother above takes fixed data points, while journey times are measurements over 280 

a section. The journey time data will first have to be converted into equivalent series of point 281 

measurements before they can be used.   282 

 283 

Consider a road section with a length L  and an estimated journey time ω  from a sample of 284 

vehicles within a time window t∆   (say, t∆  is 5 minutes as in the ANPR data). The average 285 

speed of this set of vehicles along the section is calculated as ω/Lv = .  286 

Page 8 of 15Journal of Facilities Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9 

 

 287 

The following two assumptions are made:  288 

 289 

• all sampled vehicles travel steadily (i.e. no change in speed) with this speed within the 290 

time window;   291 

• the sampled vehicles enter the road section uniformly with a common time headway  292 

)1/( −∆ nt , where n  is the number of sampled vehicles in t∆ . 293 

 294 

 295 

We can then construct a set of ‘virtual trajectories’ of the vehicles as shown in Figure 5. The 296 

dotted lines in the figure refer to the ‘true’ trajectories of the sampled vehicles, which are 297 

unknown. The solid lines refer to the ‘virtual’ trajectories constructed. We consider that the 298 

vehicles enter the link at times 
0s , 1s , …, 1−ns , where )1/(1 −∆+= − ntss ii

 for all i  = 1,2,…, 299 

(n-1).  All vehicles travel through the link with a constant speed v , and exits the link at 300 

ω+is , where i  = 0,1,2,…, (n-1). Denote the location ‘0’ and ‘L’ be the starting and ending 301 

points of the link respectively. For a vehicle enters the link at is , data points are sampled 302 

every s∆  (say, 1 min) at the following space-time coordinates: ),0( is , ),( sssv i ∆+∆ , 303 

)2),2(( sssv i ∆+∆ , …, ),( ωL . At each of these time and location, it is regarded that the 304 

sampled point will report a speed  v , and hence we convert the sectional journey time 305 

measurement into a series of point measurements.  306 

 307 

 308 

 309 

x

t

(0, s0) (0, s1)

(v∆s, s0+∆s) (v∆s, s1+∆s)

(2v∆s, s0+2∆s) (2v∆s, s1+2∆s)

(L, ω) (L, ω)

�

 310 
 311 

Figure 5 Converting journey times into point measurements 312 

 313 

 314 

3.2 Data Integration   315 

 316 

After smoothing and reconstructing the traffic data onto a common space-time grid, we can 317 

then integrate the data with the following formulation:   318 
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1

txutxu k

txK

k

k∑
=

= β ,  320 

              (5) 321 

 322 

where ),( txuk  is the smoothed and reconstructed data field from data source k; ),(~ txu  is 323 

eventual the integrated data field; the weighting factor ]1,0[∈kβ  associated with each source 324 

data can be related to various factors such as the accuracy, reliability, number and variance of 325 

measurements of data source k. This combination method is known as voting technique in 326 

data fusion literature (Olkin, 1992; Choi and Chung, 2002), which is essentially a weighted 327 

linear combination of information from different sources.  328 

 329 

 330 

4. Simulation experiment 331 

 332 

Before proceeding to the real world application, it is necessary to conduct analysis on the 333 

sensitivity and accuracy of the fusion algorithm. Due to the lack of ground truth data, we 334 

conduct the analysis on a micro-simulation test-bed. This study chooses VISSIM simulation 335 

package after considering the plausibility of the VISSIM model for replicating complex 336 

traffic dynamics.  337 

 338 

The Waterloo Road section (Figure 1) is coded into VISSIM which is used to generate a 339 

synthetic scenario. The VISSIM simulation time step is set to be one second and the 340 

simulation period is one hour. According to field observations, the demand rates are set to be 341 

900 vph and 100 vph respectively for the mainline (Waterloo Road) and the cross-streets. At 342 

the two signal-controlled vehicle intersections, 15% of the mainline traffic will be turning 343 

into the cross-streets, while 60% of cross-street traffic turning into the mainline. The signal 344 

timings are also set based upon observations from the field. A total of 1,516 vehicles are 345 

generated during the simulation period, from which we derive the corresponding speed field 346 

(Figure 6) with a space-time resolution at 50-m (∆x) and 1-min (∆t) respectively. At each 347 

space-time coordinate (x, t)  in the figure, the associated speed v(x,t) is calculated as the 348 

average speed of all vehicles detected within that (x,t). We regard this speed field v(x,t) as the 349 

‘ground truth’ for comparison.  350 

 351 
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Figure 6 Speed field of VISSIM simulated data  353 

(spatial resolution: 50-m; temporal resolution: 1-min) 354 

 355 

 356 

To simulate the trafficmaster data, we randomly select 100 out of the 1,516 vehicles (i.e. a 357 

penetration rate of 6.6%) and assume that they are equipped with GPS devices that can report 358 

the associated positions every second.  359 

 360 

To simulate the AVI system, we place two virtual ‘cameras’ at the entrance and the exit of 361 

the road stretch. It is found that 283 out of 1,516 vehicles would travel all way through the 362 

stretch and hence their associate journey times will be regarded as the ‘ANPR’ journey time 363 

herein. The journey times of these 283 vehicles are processed into 1-min averages.  364 

 365 

The ‘raw’ trafficmaster and ANPR data are first processed by the ASM specified by formulae 366 

(1) and (3) in Section 3.1 and projected onto a common user-defined space-time grid with 367 

resolutions at 50-m (∆x) and 1-min (∆t). Following expression (5), the smoothed data are then 368 

integrated by using the following linear combination:  369 

 370 

)],()[1()],([),(~ txutxutxu GPSANPR β−+β= ,  371 

              (6) 372 

  373 

for all x and t, where the weighting factor β  lies between 0 and 1. We adopt a ‘data-data 374 

consistency’ concept (Ou, 2011) to estimate the value of this β . We first regard the overall 375 

journey time through the arterial given by ANPR is reliable. The parameter β  is determined 376 

such that the difference between the corresponding journal times given by the fused data and 377 

those given by the ANPR is minimised.  378 

 379 

With the ‘ground truth’ given by the VISSIM simulation, we test this concept and analyse the 380 

corresponding the overall RMSNE (Root-Mean-Square-Percentage-Error) with respect to the 381 

‘ground truth’, where RMSNE is calculated as 382 
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 387 

where ),(ˆ txv  and ),( txv   are respectively the integrated (estimated) and true speed at space-388 

time coordinate (x, t); The value of  β  is determined by least square estimation and β  is 389 

determined to be 0.31 which gives a minimum RMSNE of 7.4%. In addition to the parameter 390 

β , we also compare the data fusion results with and without the anisotropic formulation 391 

proposed by Treiber and Helbing (2002). The isotropic filter can be obtained by assigning a 392 

large value to both wave speeds fv  and w in (2). Interestingly, we do not observe significant 393 

difference between the isotropic and anisotropic smoothers, where the difference in the 394 

RSMPEs produced by the two smoothers is found to be less than 1%. It suggests Treiber and 395 

Helbing’s anisotropic formulation does not help to improve the traffic estimation on urban 396 

streets. An explanation for this is that the spatial and temporal granularity of traffic detection 397 

on urban networks is much finer than that in motorway, hence taking the difference in wave 398 

speeds into consideration does not have a significant effect in state estimation.  399 

 400 

 401 

5. Real world application – Waterloo Road, London  402 

 403 

We now present the application of the data fusion algorithm with the real world data. Given 404 

the ANPR and trafficmaster data, we find  β  to be 0.27 using the method described 405 

previously, and it is found that this β value is not significantly different from the determined 406 

by using simulated data. The corresponding overall RSMPE is found to be 9.6% which is 407 

slightly higher than the one we obtained from the VISSIM simulation test-bed. We suggest 408 

this is due to the complicated nature (e.g. vehicles may stop unexpectedly) in real world 409 

scenario. More sophisticated systems, such as model based fault identification and state 410 

prediction, will be developed to improve the estimation errors.  411 

 412 

Figure 7 shows the resulting fused speed field along Waterloo Road. It shows that the fusion 413 

algorithm is able to retrieve much hidden spatio-temporal feature of traffic with either ANPR 414 

or trafficmaster data alone. Moreover, the result also shows that the fusion algorithm is able 415 

to smooth out the ‘corners’ (compared with Figure 4) observed in the Trafficmaster dataset 416 

through the underlying kernel function.  417 

 418 

We note that there are several areas that require further analysis. In particular, it will be 419 

interesting and important to explore whether the fusion algorithm can restore the queue 420 

formation and dissipation process – which are important characteristics - in urban networks. 421 

Nevertheless, this will require traffic data with finer granularity - say with spatial granularity 422 

down to metres and temporal resolution down to seconds. Moreover, it is desirable to validate 423 

the performance of the fusion algorithm with real world data rather than simulated ones. We 424 

are currently exploring new datasets for further investigation into this. Meanwhile, we are 425 

conducting some research into loop detector data collected under the SCOOT urban traffic 426 

control system (see Heydecker et al., 2012) which collect flow and concentration information 427 

at up to a frequency of 4Hz (i.e. every 0.25 sec). Moreover, we are exploring the possibility 428 
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of obtaining some other higher quality GPS vehicle data including taxi trajectories from 429 

Addison Lee and bus trajectories from London ibus system, which both contain more samples 430 

than the trafficmaster dataset.  431 

 432 
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Figure 7 Speed field along Waterloo Road after fusing the ANPR and Trafficmaster data 435 

 436 

 437 

6. Concluding remarks  438 

 439 

This paper presents an application of kernel based interpolation method to urban traffic data 440 

fusion. The application is illustration through a case study on Central London road network. 441 

Due to the lack of ground truth data, the performance of the fusion algorithm is analysed by 442 

using a virtual test-bed generated by VISSIM micro-simulation. It is interesting to note that 443 

the anisotropic filter formulation proposed by Treiber and Helbing (2002) does not show 444 

significant improvements over the original isotropic one. This is different from the freeway 445 

case where Treiber and Helbing’s formulation shows significant improvement. An 446 

explanation for this is that the spatial and temporal granularity of traffic data required in 447 

urban networks is finer than that in motorway (say, minutes in freeway case versus seconds in 448 

urban cases), hence taking the difference in wave speeds into consideration does not have a 449 

noteworthy effect.  450 

 451 

The kernel-based algorithm presented herein does not require assumption and calibration of 452 

any traffic model. It is easy to implement and parallelize. For example, the fusion computing 453 

task can be parallelized such that each computer can be made be responsible for one specific 454 

data source over a specific space-time domain. Such properties make the fusion algorithm 455 

suitable for practical large-scale applications. The research contributes to the application of 456 

Big-Data analytics to infrastructure management. 457 

 458 

 459 

 460 
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