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Abstract 

Introduction 

The childhood onset retinal dystrophies comprise a clinically and molecularly 

heterogeneous group of disorders. To date, sixteen genes have been implicated in the 

pathogenesis of the spectrum of disorders comprising Leber Congenital Amaurosis 

(LCA) and Early Onset Retinal Dystrophy (EORD), accounting for approximately 

70% of cases. Although a wide range of phenotypes have been observed within this 

spectrum, some genotype – phenotype associations are reported. Further detailed 

genotype – phenotype studies will be important for expanding our understanding of 

the effects of mutations in these genes on patients and their families. Our knowledge 

of the phenotypic effects of mutations in other genes implicated in childhood onset 

retinal dystrophies, such as the bestrophinopathies, continues to expand.     

 

Purpose 

To undertake detailed phenotypic studies into subjects with molecularly identified 

childhood onset retinal dystrophies, and to describe novel phenotypes. 

 

Methods 

Affected subjects and their families were recruited from Moorfields Eye Hospital to 

an ongoing Study into childhood onset retinal dystrophies. Subjects were examined 

clinically and those that were historically recruited to the Study were invited back for 

further phenotypic analyses, if their molecular cause was identified. Genetic analysis 
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was performed using a variety of methods including DNA microarray analysis, 

autozygosity mapping, direct sequencing and whole exome sequencing.  

 

Results 

Between August 2008 and August 2011, 201 subjects from 186 families were 

recruited into the Childhood Onset Retinal Dystrophy Study, and categorised into 2 

cohorts: cohort 1 - the generalised retinal dystrophies, comprising 177 subjects (166 

families); and cohort 2 – subjects with a macular phenotype, comprising 24 subjects 

(20 families). The molecular cause was identified in 34.5% of subjects in cohort 1 and 

25% of subjects in cohort 2. RDH12 accounted for 28% of mutations in cohort 1, 18% 

had mutations in CEP290, and 13% had mutations in RPE65. The subjects in cohort 2 

with autosomal recessive bestrophinopathy all had bi-allelic mutations in BEST1. The 

phenotype associated with the different genes identified was expanded, and focused 

on those genes with limited reports of the phenotype, such as SPATA7, LRAT, RGR 

and BEST1. The phenotype associated with a gene not previously identified in human 

EORD, TUB, was studied, and the features associated with a novel macular phenotype 

named Benign Yellow Dot Dystrophy were characterised. 

  

Conclusions 

This study has expanded and refined our understanding of the phenotypes associated 

with mutations in genes that cause childhood onset retinal dystrophies, and has 

identified a novel phenotype. This work will allow accurate prognostic and genetic 

counselling to affected families, and provides phenotypic information that will be 

important in ascertaining disorders that may be suitable for clinical trials of novel 

therapies.  
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1.1 History and epidemiology of Leber 

Congenital Amaurosis and Early 

Onset Retinal Dystrophy 

 

Following the invention of the ophthalmoscope by Helmholtz in 1851, van Trigt in 

1853 reported the first authenticated case of pigmentary degeneration of the retina, 

but it was Donders in 1855 who devised the name Retinitis Pigmentosa [1, 2]. This 

term is rather a misnomer as this is not a predominantly inflammatory condition. Von 

Graefe, who identified the condition to be a pigmentary retinal degeneration with a 

hereditary component, subsequently made the first detailed description of the disease 

[3]. In fact, these inherited retinal dystrophies (historically known as ‘tapeto-retinal 

degenerations’) are a range of conditions characterised by progressive familial night 

blindness (nyctalopia) with severe visual field constriction, eventual diminution of the 

central vision, and attenuation of the electroretinal response [4]. The genetic aspects 

of this range of conditions have excited a great deal of interest and have generated an 

enormous amount of literature that has uncovered a wide underlying genetic 

heterogeneity.  

 

Although the majority of these conditions are inherited in an autosomal recessive 

manner, other inheritance patterns are also present, including autosomal dominant, 

sex-linked and mitochondrial inheritance. Classification of these disorders is 

progressively moving towards one based upon their underlying genetic cause, 
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however the historical ‘umbrella’ terms under which they are known are continuing to 

be used. The research carried out towards this thesis is based upon these inherited 

retinal dystrophies, in particular those with a childhood onset, which are collectively 

known as the ‘Early Onset Retinal Dystrophies’, of which Leber Congenital 

Amaurosis represents the most severe form. 

 

 

1.1.1 Genetics of inherited retinal dystrophies 

Inherited retinal dystrophies affect millions of people worldwide; dozens of different 

types of diseases are included in this set of conditions and more than 190 genes have 

been identified as the cause for one or another form of inherited retinal disease. One 

group of these conditions is retinitis pigmentosa (RP). The heterogeneity associated 

with RP includes genetic heterogeneity (many different genes that may cause the 

same disease phenotype), allelic heterogeneity (many different disease-causing 

mutations in the same gene), phenotypic heterogeneity (different mutations in the 

same gene that may cause different diseases) and clinical heterogeneity (the same 

mutation in different individuals that may cause a different clinical picture) [5]. RP is 

a generic name that covers the retinal dystrophies that comprise of loss of 

photoreceptors and pigmentary retinal deposits, the most common type being 

primarily a rod photoreceptor degeneration that may progress to involve cone 

photoreceptors. These, therefore, present with nyctalopia and visual field constriction. 

The age of onset of RP can be variable. Most RP begins in adolescence or early 

adulthood, but there are later onset forms that may begin at or after mid-life. 

Childhood onset forms fall under the umbrella term ‘early onset retinal dystrophies’ 

(EORD). 
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RP may occur alone, as non-syndromic RP without any other clinical findings, or as 

syndromic or systemic RP with other neurosensory disorders, developmental 

abnormalities or other complex clinical phenotypes. Such syndromes include Usher 

syndrome (RP with congenital or early onset deafness) and Bardet Biedl syndrome 

(RP with renal disease, polydactyly, obesity and developmental delay).  

 

There are autosomal dominant, autosomal recessive and X-linked forms of 

inheritance, as well as rare mitochondrial and digenic forms of RP [6, 7]. 

Traditionally, simplex RP is considered to be predominantly autosomal recessive in 

inheritance with unaffected carrier parents. However some of these cases will 

represent new (de novo) autosomal dominant mutations, or in males, may represent 

X-linked RP, where there is no known family history. It tends to typically begin in the 

first decade, but milder forms exist. There is a higher incidence in consanguineous 

families [8]. Autosomal dominant forms are usually the mildest of all, with some 

cases starting after the age of 50, however there are childhood onset forms that 

display autosomal dominant inheritance, such as those associated with mutations in 

the gene CRX [9]. X-linked forms start early and are often associated with myopia; 

they are usually recessive in inheritance, caused predominantly by mutations in RPGR 

or RP2 [10]. The rare mitochondrial mutations have mostly been found in RP 

associated with other neurological and systemic dysfunction, such as with 

sensorineural deafness, or ataxia and dementia, or in Kearns Sayre syndrome [11-13].    

 

However, the genetics of this group of conditions is much more complicated than this, 

as alluded to above. Many genes can cause more than one form of disease – such as 
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mutations in Rhodopsin, which usually cause autosomal dominant RP, but in which 

rare mutations have been identified to cause recessive RP [7]. In addition, mutations 

in a single gene very commonly cause different phenotypes, such as in those with 

RPE65 mutations [14, 15]. Such complexity in these conditions has led to a huge 

international body of research into the underlying genetic causes and phenotypes of 

the inherited retinal dystrophies. 

 

 

1.1.2 History of Leber Congenital Amaurosis 

Theodore Karl Gustav von Leber (1840 – 1917), an eminent ophthalmologist and 

ocular pathologist, who studied under von Helmholtz, Ludwig and von Graefe, and 

who later became Professor of Ophthalmology in Berlin (1867 – 1870), and then in 

Heidelberg (1890 – 1910), was the first clinician to establish ophthalmological 

thought on the ‘tapeto-retinal degenerations’ [4]. He considered these conditions to be 

primary dystrophies of the retina, which included retinitis pigmentosa with and 

without pigment, retinitis punctata albescens, chorioretinal degenerations and 

scleroses such as gyrate atrophy and central papillary sclerosis, as well as congenital 

night blindness without ophthalmoscopic abnormalities. He thought that the 

underlying pathology in these conditions lay in the pigmentary epithelium, the 

‘tapetum nigram’, or black carpet. In 1869 and 1871, through his role as consultant 

oculist of the Ilvesheim Asylum for the Blind, Leber described a disease which he 

called ‘pigmentary retinopathy with congenital amaurosis’ (now known as Leber 

Congenital Amaurosis) in which, in the majority of cases, there was congenital 

blindness or development of blindness within the first year of life [2, 16, 17]. In his 

later writings, he distinguished two types: the first, a congenital form in which 
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blindness occurred in the first year of life; and the second, a juvenile form which 

manifested itself between the first year and puberty, that did not always entail 

blindness, but in which usually a severe degree of visual failure was observed [2, 4].  

 

Leber’s original description of the condition was of ‘bilateral blindness, with coarse 

nystagmus, some retention of the pupillary reflexes and the eventual appearance of 

pigmentary and degenerative changes in the fundi’ [4]. He recognised that the 

condition was familial (identified in 44.8% of the families he initially described) and 

observed a higher rate of consanguinity within these affected families (24.1% of his 

series), thus inadvertently describing an autosomal recessive inheritance pattern. 

Children usually presented at birth or within the first few months of life with very 

poor or absent vision, a coarse ‘roving’ nystagmus, photophobia, poor pupil 

responses, and a habit of pushing a fist or fingers into the orbit, a sign later described 

as the ‘oculo-digital sign’ of Franceschetti (cited in [2]). Initially the fundi appeared to 

be normal, which could remain the case in the first few months of life, but soon 

various polymorphic lesions were observed, the most typical being small white dots in 

the periphery of the fundus, followed later by pigmentation, which at first could look 

like ‘salt and pepper’ pigmentary change, but which later could become more typical 

of the bone-corpuscular pigmentation seen in the pigmentary retinopathy described by 

Mooren in 1867 (cited in [4]). The optic disc became pale and the retinal vessels 

attenuated, with atrophy of the retinal pigment epithelium. The milder cases were not 

necessarily associated with nyctalopia or severely constricted visual fields, but instead 

may have had severely irregular contraction of the visual fields with some reduced 

vision detectable within parts of the remaining fields [17]. In the infantile, or juvenile 

form, the vision was described by Leber to fail seriously by the 6th or 7th year of life, 
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and blindness to be complete before the age of 30 years; ophthalmoscopic 

examination at first was often normal, but from the age of 8 years, a more typical 

pigmentary degeneration was observed.  

 

Although a few reports were published following Leber’s initial paper, the spectrum 

of conditions were rarely recognised and remained neglected until the advent of 

electroretinography, when it was established that many cases of blindness in infants, 

often previously presumed to be of central origin, were due to a retinal dysplasia [2, 

18]. A number of authors identified these individuals to have an absent electrical 

retinal response, reported in up to 92% of cases, suggesting that this is an imperative 

finding in congenital amaurosis [19, 20]. Subsequent studies further delineated 

characteristics associated with this condition such as keratoglobus, corneal 

opacification, cataract and photophobia [20, 21].  

 

An extensive study by Alström and Olson, of 175 cases in Sweden, which they termed 

heredo-retinopathia congenitalis, monohybrida recessiva autosomalis, described in 

detail the longitudinal clinical and hereditary features of the disease and, in particular, 

hypothesised that this is a ‘uniform condition with a monohybrid, autosomal recessive 

mode of inheritance and complete manifestation’ [21]. They estimated the frequency 

of the condition to be 3 in 100 000, and also noted a higher rate of consanguinity 

among affected families. Waardenburg and Schappert-Kimmijser subsequently 

proposed that the condition may be genetically heterogeneous, following the study of 

a family in which the parents, who met in an asylum for the blind and who were both 

affected with LCA, had unaffected children [22]. Their conclusion was that Lebers 

amaurosis ‘may be the result of homozygositism for different recessive genes’. 
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A variety of terms have been used to describe this condition, including: amaurosis 

congenita, dysgenesis neuro-epithelialis retinae, heredo–retinopathia congenitalis, 

retinal aplasia and tapeto-retinal dysplasia [19-21, 23]. However, the condition has 

subsequently, and more uniformly, become known as Leber Congenital Amaurosis 

(LCA) and is considered to be the most severe form of a spectrum of disorders known 

as the Early Onset Retinal Dystrophies (EORDs).  

 

 

1.1.3 Epidemiology 

LCA is rare, with a population frequency of between 1 in 30 000 and 1 in 81 000, 

accounting for at least 5% of all inherited retinopathies and approximately 20% of all 

children attending schools for the blind [24]. In the UK in 2000, retinal and macular 

dystrophies accounted for 14% of children registered with severe visual impairment 

or blindness (62/439 individuals), with LCA accounting for 15, and rod cone 

dystrophy (retinitis pigmentosa) or cone rod dystrophy accounting for 17 of these 

[25]. It is predominantly inherited in an autosomal recessive manner and consequently 

the condition is more prevalent in consanguineous families and in those families who 

are not known to be consanguineous, but who have a common ancestor [26]. To date, 

16 genes have been implicated in the pathogenesis of LCA and EORD, demonstrating 

the genetic heterogeneity associated with this group of conditions. These will be 

explored further in this study. 
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1.1.4 Spectrum of clinical features 

LCA and EORD are considered to be a ‘purely’ ocular spectrum of conditions, 

characterised by a constellation of four clinical features: early severe visual loss, 

nystagmus, sluggish pupils and an unrecordable ERG [24]. Traditionally, the 

classification of this spectrum of disorders has been based upon clinical 

characteristics. It is universally accepted that Leber Congenital Amaurosis represents 

the most severe end of this spectrum of conditions. However, early onset retinal 

dystrophy (EORD), early onset severe retinal dystrophy (EOSRD), severe early 

childhood onset retinal dystrophy (SECORD) and juvenile retinitis pigmentosa are all 

terms that are found in the literature to describe those progressive childhood retinal 

dystrophies that present at a slightly later age. Essentially these terms are describing 

the same clinical entities, but they have the potential of creating confusion about the 

exact diagnoses in these families. It is likely, in the future, that these terms will be 

superceded, and that the conditions will be named according to their causative gene, 

which should help avoid confusion from such descriptive terms.  

 

Although LCA occurs from birth or the first few months of life, the term EORD (the 

most frequently used term for this spectrum of conditions) is reserved for those rod-

cone dystrophies that have an infantile onset but which may have less nystagmus, 

better vision, normal pupil reactions but a severely attenuated ERG. Some of the 

genes associated with LCA have been identified to also cause the less severe 

phenotype of EORD [27]. In general, phenotypic variability exists for these 

conditions with respect to the retinal appearance, refractive error, symptomatology 

and age of symptom onset (such as photophobia and photophilia) and the oculodigital 

sign. The associated features of keratoconus (postulated to occur due to genetic, 
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traumatic or toxic factors), cataract, microphthalmia, ptosis and enophthalmos may 

also be variable. 

 

The range of retinal appearances include a normal retina, mild retinal vessel 

attenuation, macular ‘coloboma’, macular pigmentation, retinal bone spicule 

pigmentation, nummular pigmentation, ‘salt and pepper’ appearance, white retinal 

spots, preservation of the para-arteriolar retinal pigment epithelium and a Coat’s like 

appearance [24]. There have been some genotype-phenotype associations, and these 

shall be explored in subsequent sections. 

 

An ‘LCA-like ocular phenotype’ occurs in a number of syndromes that may initially 

present without the systemic features, but which may dominate the phenotype later in 

life. These include Alström syndrome, Batten disease, Joubert syndrome, Senior-

Løken syndrome and peroxisomal disorders [28]. Subjects with these conditions were 

excluded from this study. 

 

For the purposes of this study, LCA is defined as a severe early onset retinal 

dystrophy with absent or very poor vision from birth or the first few months of life, 

nystagmus, sluggish or ‘amaurotic’ pupillary responses, a variable retinal appearance 

and an un-recordable electroretinogram. EORD is defined as poor vision with 

infantile or early childhood onset below five years of age, with less nystagmus (if 

present at all), reduced vision, normal pupil reactions and a severely attenuated 

electroretinogram. 
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1.2 Retinal Structure and Function 

 

It is thought that the first anatomical description of the eye was by Democrites (c.460-

370 BC), who described it as two ‘coats’, filled with a homogenous fluid; there was 

no lens and the optic nerve was hollow [29]. Aristotle (384-322 BC) described it as a 

spherical organ with three layers, filled with a homogeneous fluid, connected to the 

brain by three tubes, one of which connected with a similar tube from the other eye. 

This was probably the first description of the optic chiasm. Galenus (130-200 AD), 

the most renowned physician in Roman times, considered the eye to have seven 

layers, and was the first to recognise the retina. He described it as an extension of the 

optic nerve, which nourished the vitreous humour and the lens. After this time there 

was a hiatus in scientific discovery and few new ideas regarding ocular anatomy were 

proposed. Although Vesalius (1514-1564), a Belgian academic considered to be the 

‘Father of Anatomy’, vastly expanded the understanding of the human body, he made 

limited contributions to ocular anatomy. He described the retina as ‘a tunic, which we 

compare to a net which is detached from the substance of the optic nerve’. It was not 

until the 17th century, when Van Leeuwenhoek, the inventor of the microscope, 

discovered the retinal photoreceptors. With newer microscopic techniques, the 

anatomy of the retina was further elucidated. 
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1.2.1 Ultrastructural and microscopic structure of the 

retina 

The retina forms the innermost layer of the wall of the eye, with the choroid and 

sclera forming the middle and outer layers respectively. It lines the entire posterior 

portion of the eye, except at the optic nerve head, and extends anteriorly to end 360o 

circumferentially at the ora serrata. The outer pigmented layer (the retinal pigment 

epithelium) and inner neurosensory layer of the retina are embryologically derived 

from the neuroectoderm. The macula, demarcated by the supra-temporal and infra-

temporal branches of the central retinal artery and vein, forms the anatomical centre 

of the retina and is responsible for central vision. The centre of the macula is the 

fovea centralis (Figure 1).  

 

 

Figure 1 – Gross anatomy of a normal retina, right eye. 
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The neurosensory retina is transparent, which allows the underlying retinal pigment 

epithelium (RPE) to be visible. There is a potential space between these two layers, 

but they remain tightly attached to each other at the optic disc and the ora serrata. The 

retinal blood supply is derived from branches of the ophthalmic artery. In severe 

retinal dysfunction, the retinal arterioles may appear attenuated, the RPE may look 

abnormal and there may be retinal pigmentation of varying patterns. 

 

Based upon light microscopic findings, the retina is comprised of 10 layers which, 

from the inner to the outer surface, are as follows: the internal limiting membrane 

(formed by the Müller cell end plates that separate the retina from the vitreous), the 

nerve fibre layer (predominantly comprised of ganglion cell axons), the ganglion cell 

layer, the inner plexiform layer (comprising the synapses between ganglion cells and 

amacrine cells), the inner nuclear layer (comprised of the nuclei of the amacrine cells, 

bipolar cells and horizontal cells), the outer plexiform layer (comprised of the 

synapses between the horizontal cells and the photoreceptor cells), the outer nuclear 

layer (nuclei of the photoreceptor cells), the external limiting membrane (formed at 

the bases of the photoreceptor inner segments), the photoreceptor layer (inner and 

outer segments of the photoreceptors) and the retinal pigment epithelium (Figure 2). 
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Figure 2 – Schema of the layers of the retina, adapted from [30].  

 

1.2.1.1 Photoreceptor cells 

The photoreceptor (PR) cells are predominantly made up of rods and cones; there are 

approximately 120 million rods and 60 million cones in each human retina. A third 

class of photoreceptor, the photosensitive ganglion cell, is involved in the regulation 

of circadian rhythms and the pupillary response. Rods function best in dim light and 

are responsible for producing images of varying shades of black and white; cones 

function better in bright light and are responsible for colour vision and resolution of 

fine detail. Rods are absent at the fovea, rising in number towards the retinal 

periphery, with their highest density at 20o eccentricity; cones are most dense at the 

fovea, and their numbers decrease at the retinal periphery [31]. Each PR cell is 

comprised of photoreceptor elements and a cell body containing the nucleus, which 

makes contact with the dendrites of the bipolar cells via a synaptic terminal, termed 

the spherule or the pedicle in rods and cones, respectively. 
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The photoreceptor portion of the rods and cones is anatomically divided into an inner 

segment (IS) and outer segment (OS). The IS contains cellular organelles and 

connects with the cell body. Its main function is to provide ATP for sodium-

potassium pumps. The outer segments (OSs) interdigitate with the RPE cells and are 

considered to be modified sensory cilia, which are structures present in many aspects 

of sensation. In rods, the OS contains the photosensitive pigment rhodopsin, within 

membrane-bound lamellae, or discs, stacked tightly along the microtubule-based 

axoneme. These discs are unconnected to the plasma membrane. The axoneme is 

derived from and anchored to the cell via the basal body and enters the OS via the 

transition zone (or the ‘connecting cilium’) (Figure 3) [32]. A separate structure, also 

arising from the basal body, the ciliary rootlet, extends into the inner segments, 

through the cell body and into the synapse. The rootlet serves to anchor the cilium to 

the cell and functions as a channel for proteins destined for the outer segment. The 

outer segment and its cytoskeleton, including the rootlet, basal body and axoneme, are 

collectively called the ‘photoreceptor sensory cilium complex’, and have been 

implicated in the pathogenesis of a number of retinal dystrophies [33].  
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Figure 3 – Rod Photoreceptor. Adapted from [32]. 

 

The cone outer segment is conical, and considerably wider than a rod at its base, 

tapering down to a rounded tip. The membranes of the transversely arranged discs are 

continuous with the outer plasma membrane, which is arranged as a series of 

invaginations. Thus, unlike the rods, the laminae of the discs are continuous with the 

extracellular space, although the photosensitive pigments continue to be incorporated 

into the disc membranes. Cones also possess a connecting cilium, a photoreceptor 

sensory cilium complex and inner segment similar to the rods (Figure 4).  
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Figure 4 – Comparison of cone and rod photoreceptor anatomy. A – mammalian cone 
photoreceptor; B – mammalian rod photoreceptor. Adapted from [34]. 

 

Light absorption within the OSs of both rods and cones is achieved by pigments, 

known as opsins, which are G-protein coupled receptors that require a bound 

chromophore to absorb photons. There are 3 types of cones, each with sensitivity to a 

specific wavelength of light, depending on its iodopsin pigment: L cones (these 

absorb long wavelengths of light), M cones (which absorb medium wavelength light) 
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and S cones (which absorb short wavelength light). PR cells maintain a roughly 

constant length by continually generating new OSs from their base while 

simultaneously releasing mature OSs, that are engulfed and phagocytosed by the RPE 

[35]. 

 

1.2.1.2 Neural cells 

The retinal nerve cells include the bipolar, ganglion, horizontal and amacrine cells. 

The bipolar cells are entirely contained within the retina and are orientated 

perpendicular to the retinal surface. They connect the PRs to the ganglion cells, and 

are post-synaptic to the PRs. There are many different types of bipolar cells, which 

are named according to their synaptic connections. These include rod bipolar cells, 

which connect several rod cells to 1-4 ganglion cells; diffuse bipolar cells, which 

connect many cone cells to many ganglion cells; and midget bipolar cells, which 

connect a single cone cell to a single midget ganglion cell, and thus provide a direct 

pathway from a cone to a single optic nerve fibre.  

 

The ganglion cells are multi-polar and have dendrites that synapse with the bipolar 

cells and amacrine cells. The non-myelinated axons become the nerve fibre layer 

within the retina and converge at the optic disc to become the optic nerve fibres, 

which become myelinated after exiting the globe via the lamina cribrosa. The 

ganglion cells are the second order neurons in the visual pathway, and in most of the 

retina they form a single layer. However, from the periphery of the retina to the 

macula there may be as many as 10 layers; but these then decrease in number towards 

the fovea, where they are absent.  



32 

 

The horizontal cells are the laterally inter-connecting neurons within the outer 

plexiform layer. They are multipolar and have one long and several short processes 

that run parallel to the retinal surface. Those that are associated with cones have short 

processes that synapse with several cone pedicles; those associated with rods have 

short processes synapsing with 10-12 rod spherules. The long processes make contact 

with distant rods and cones, and with bipolar cells. They function in an inhibitory 

manner: following light excitation of the PRs, horizontal cells release an inhibitory 

neurotransmitter, gamma-aminobutyric acid (GABA), that inhibits bipolar cell 

activity some distance away, thus sharpening contrast and increasing spatial 

resolution.  

 

The amacrine cells have long processes that radiate widely horizontally, and synapse 

with one another and with the dendrites of ganglion cells and axons of bipolar cells; 

they comprise the inner plexiform layer. There are many types of amacrine cells that 

each release a specific neurotransmitter – up to 30 different types are reported [36]. 

Their functions are variable but still incompletely resolved, and include: a role in 

generating contextual effects for the responses of the retinal ganglion cells, such as 

‘centre surround’ antagonism and motion detection; vertical signal integration, such 

that they communicate across some, if not all of the inner plexiform layer, carrying 

ON information into OFF layers and vice versa; specific cell types that may be 

stimulated by bipolar cells, and in turn stimulate the ganglion cells; and modulation of 

PR signals. Amacrine cell function is the subject of much current investigation. 
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1.2.1.3 Supporting cells 

The retinal supporting cells, comprised of Müller cells, are similar to other neuroglial 

cells. They fill up most of the neural retina that is not occupied by the neurons. Müller 

cell bodies lie in the inner nuclear layer and project processes in both directions to 

form the inner limiting membrane (at the vitreous surface of the neural retina) and the 

external limiting membrane (between the PRs and the Müller cells).  Müller cells have 

been identified to possess a number of functions including: homeostatic and metabolic 

support of the retinal neurons; control of the composition of the extracellular matrix; 

trophic and anti-oxidative support; regulation of the blood retinal barrier; regulation 

of the synaptic activity within the inner retina; ‘guiding’ of light through the inner 

retina to minimise light scattering; and modulation of neuronal activity [37].  

 

 

1.2.2 The retinal pigment epithelium 

The retinal pigment epithelium (RPE) is a monolayer of cells lying beneath the 

neurosensory retina, whose apical membrane lies adjacent to the PR OSs, and 

basolateral membrane is in contact with Bruch’s membrane [38]. In tangential section, 

the cells are hexagonal. The apical ends of the cell show multiple microvilli that 

project between and surround the PR OSs. The adjacent cell membranes are bound 

together in the basal region by the zonula adherens and in the apical region by the 

zonula occludens. These are formed by tight junctions that maintain the blood retinal 

barrier. The cytoplasm of RPE cells contains numerous melanin granules that extend 

into the microvilli, a well-developed Golgi apparatus and endoplasmic reticulum, and 

multiple lysosomes and phagosomes. The apical microvilli continually erode the PR 

OSs, the RPE cells phagocytose the resultant debris and lysosomes break down the 



34 

contents of the phagosomes to produce lipofuscin granules. The RPE has a wide range 

of functions including phagocytosis of photoreceptor OSs; absorption of light to 

reduce the effects of photo-toxicity; repair of DNA, proteins and lipids; transport of 

nutrients and ions between the retina and the choriocapillaris, including retinoids 

essential to the visual cycle; regeneration of 11-cis retinal during the visual cycle; 

secretion of growth factors and factors necessary for maintenance of the structural 

integrity of the retina and choriocapillaris; and maintenance of the blood retinal 

barrier [35, 38]. Dysfunction of the RPE is implicated in a number of retinal 

dystrophies and in age related retinal degenerations.   

  

 

1.2.3 The phototransduction cascade 

Visual phototransduction is the process by which photons of light are converted to an 

electrical signal within the eye, via G-protein coupled receptors within the PRs called 

opsins that are bound to the chromophore 11-cis retinal. 11-cis retinal is a derivative 

of all-trans retinol (a vitamin A analogue), which is obtained through the diet. The 

chromophore is bound to the opsin by a Schiff base bond, and when exposed to a 

photon of light, undergoes photoisomerisation to all-trans retinal, which changes the 

conformation of the opsin G-protein coupled receptor. This initiates a signal cascade 

that eventually results in hyperpolarisation of the PR cell. 11-cis retinal is 

subsequently regenerated via a process known as the ‘visual cycle’ in rods and cones 

but there is evidence to suggest that an additional, alternative visual cycle for cones 

also exists.  
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PRs are maintained in a depolarised state in the absence of a stimulus. A high density 

of sodium-potassium pumps allows the cell to maintain a steady concentration of Na+ 

and K+. In scotopic conditions, cyclic guanosine monophosphate (cGMP) gated Na+ 

channels remain open, allowing a continuous influx of Na+ into the cell, which keeps 

it depolarised at around -40 mV. This is known as the dark current. Depolarisation of 

the cell leads to the opening of voltage gated Ca2+ channels and the subsequent 

increase in intracellular Ca2+ levels causes release of the neurotransmitter glutamate, 

which hyperpolarises ON-bipolar cells and depolarises OFF-bipolar cells. In photopic 

conditions, PRs hyperpolarise to a potential of -60 mV; this ‘switching off’ of the 

depolarised state leads to a signal cascade that activates the neural pathway, as 

follows. When a photon of light reaches the PR, photoisomerisation of 11-cis retinal 

to all-trans retinal causes a change to the opsin binding site (Figure 5 – B, 

phototransduction cascade). Thus, rhodopsin (in rods) or cone opsin absorbs a photon 

of light and undergoes a conformational change to its active form, metarhodopsin II 

[39, 40]. Metarhodopsin II binds to transducin, a G protein within the membrane of 

the discs, and there is an exchange of guanosine triphosphate (GTP) for guanosine 

diphosphate (GDP). This leads to activation of phosphodiesterase (PDE), which 

hydrolyses cGMP to GMP. The reduction of cGMP leads to closure of Na+ channels, 

which causes hyperpolarisation of the cell due to the on-going potassium current via 

non-gated K+ channels. Hyperpolarisation of the cell leads to closure of voltage gated 

Ca2+ channels, causing a reduction in intracellular Ca2+. Subsequent reduction in 

glutamate release results in depolarisation of ON-bipolar cells and hyperpolarisation 

of OFF-bipolar cells.   
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Deactivation of the phototransduction cascade occurs by activation of guanylate 

cyclase activating protein in response to falling Ca2+ levels. This activates guanylate 

cyclase, which converts GTP to cGMP and reopens Na+ channels. Metarhodopsin II is 

deactivated: recoverin, a Ca2+ bound protein is normally bound to rhodopsin kinase 

when Ca2+ is present; when Ca2+ levels fall during phototransduction, it dissociates 

from recoverin, rhodopsin kinase is released and metarhodopsin II is phosphorylated 

to its inactive state metarhodopsin III, which reduces its affinity for transducin. 

Arrestin binds to metarhodopsin III, completely deactivating it, and the dark current is 

restored. Metarhodopsin III dissociates into opsin and all-trans retinol [41]. All-trans 

retinol subsequently enters the visual cycle (see section 1.2.4), and opsin binds with 

regenerated 11-cis retinal to reform the visual pigment [42]. Proteins involved in 

phototransduction are synthesised in the inner segments of the photoreceptors and are 

then translocated through the connecting cilium to the outer segments. However, there 

is evidence that cones may be able to regenerate cone pigment using the Müller cells 

in the alternative visual cycle (see Section 1.2.4).  

 

 

1.2.4 The visual cycle 

When photoactivated chromophore-bound opsin releases the toxic aldehyde all-trans 

retinal in the photoreceptor OS, it is converted to all-trans retinol by a number of 

retinol dehydrogenases, including RDH8, RDH12 and RETSDR1 (a cone specific 

dehydrogenase) [43, 44] (Figure 5 – A, retinoid, or visual, cycle). All-trans retinol is 

then removed from the OS and transferred to the RPE across the interphotoreceptor 

matrix (IPM), facilitated by interphotoreceptor binding protein (IRBP), where it then 

can be recycled to 11-cis retinal via a series of steps, as follows. All-trans retinol is 
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first esterified by lecithin retinol acyltransferase (LRAT) to form all-trans retinyl 

esters; the retinoid isomohydrolase activity of RPE65 then acts on the retinyl ester 

substrates to form 11-cis retinol; retinol dehydrogenases, predominantly RDH5, but 

also RDH11, facilitated by RLBP1 [43] [45], then oxidise 11-cis retinol to produce 

11-cis retinal, which is transported out of the RPE cell by IRBP into the photoreceptor 

OSs where it combines with opsin to re-form visual pigment [41].  

 

 

Figure 5 – Processes in human rod and RPE cells. Adapted from [46]. A – Retinoid or 
Visual cycle; B – phototransduction cascade; C – ciliary transport.  
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In addition to this ‘classical’ visual cycle, a cone-specific ‘alternative’ visual cycle 

exists to provide cones with an additional privileged source of 11-cis retinol, which 

they can utilise to regenerate cone pigment [40, 41, 47]. The existence of this 

additional pathway was proposed following observations that cones recover their 

sensitivity following bleach much more quickly than rods, and that cones cannot be 

completely saturated even in bright light [48]. This pathway is likely to occur in 

Müller cells as it has been observed that they are able to take up all-trans retinal and 

release 11-cis retinol, which cones are able to gain access to via 11-cis retinol 

dehydrogenase activity, which is not present in rods [49]. The proposed alternative 

pathway is likely to occur as follows. After photolysis, all-trans retinal is reduced to 

all-trans retinol in cone outer segments, which is released and transported across the 

interphotoreceptor matrix (IPM), possibly by IRBP, to the Müller cells [41]. Here, 

bound to cellular retinol binding protein, all-trans retinol is isomerised to 11-cis 

retinol, which is then released into the IPM. It is then transported to cone 

photoreceptor inner segments, possibly utilising IRBP, and moves freely to the OS. 

Here, it is oxidised to 11-cis retinal by an unknown 11-cis retinol dehydrogenase 

and/or utilising a retinal – retinol redox coupling reaction to regenerate pigment [43, 

50].     
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1.3 Techniques for Phenotyping 

 
The phenotyping techniques utilised to assess the effects of specific mutations on 

ocular structure and function in this study include many that are used in routine 

clinical practice such as visual acuity testing, assessment of colour vision deficiencies 

and of refractive error, visual field testing, electrodiagnostic testing and retinal 

imaging modalities such as optical coherence tomography and fundus 

autofluorescence imaging. These are reviewed in this chapter. More specialised tests 

utilised in the investigation of specific genetic subtypes will be described in the 

appropriate chapters. 

 

 

1.3.1 Visual Acuity 

There are references in antiquity suggesting that the ‘sharpness of vision’ could be 

measured by the ability to resolve double stars, and from the 17th century by Daça de 

Valdes, who described a method based on the ability to resolve mustard seeds, but the 

first convincing arguments for the standardisation of vision tests were not made until 

1843 by Kuechler, who developed 3 vision charts to avoid memorisation. 

Unfortunately these did not gain popularity. In 1854 Jaeger published near vision 

reading plates and in 1861 Donders proposed a measurement of the ‘sharpness in 

vision’ while undertaking his studies on refraction and accommodation. A year later 

his co-worker Herman Snellen published his standardised acuity charts that soon 

became adopted worldwide.      
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Visual acuity is a measure of the ability to discriminate two stimuli separated in 

space. It is measured at high levels of illumination and at high contrast, and although 

it reflects only a small part of an individuals’ visual performance, it is traditionally the 

most widely used measure to describe the functional capacity of the eye.  

 

Snellen notation is the most frequently used when measuring acuity. It consists of 

black letters (‘optotypes’) on a white, brightly lit background, each of which subtends 

an angle of 5 minutes of arc and the space between each optotype subtends 1 minute 

of arc. Conventional test charts contain about 10 lines of letters in a progression of 

sizes, each designated by the distance at which the overall height of the letters on that 

line continues to subtend 5 minutes of arc, with the width of each ‘limb’ of the letter 

subtending 1 minute of arc. The acuity is recorded as a ‘fraction’ in which the 

numerator is the recording distance (in meters or feet), and the denominator is the 

distance at which the letter subtends the standard visual angle of 5 minutes of arc. 

Thus, on the 6/6 line (20/20 in feet), the letters subtend an angle of 5 minutes of arc 

when viewed at 6 m, and on the 6/12 line (20/40), the letters subtend an angle of 10 

minutes of arc when viewed at 6 m, or 5 minutes of arc when viewed at 12 m.  

 

Snellen charts, however, posed a number of problems including the observation that 

the optotypes are not related to each other by geometric progressions in size, and that 

there are different numbers of letters per line. Thus, other charts have been developed, 

such as the Bailey-Lovie (or ETDRS) chart [51]. In this chart, LogMAR notation is 

used, which provides a measure of visual acuity known as the Logarithm of the 

Minimal angle of Resolution (LogMAR). The sizes of the letters progress 

systematically in geometric progression, each letter carries a value of 0.02 LogMAR 
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and there are 5 letters per line (Figure 6). Thus, each line represents a change in acuity 

by 0.1 LogMAR and acuity doubles every third line. 0.00 LogMAR is equivalent to 

6/6 Snellen acuity and 1.0 LogMAR is equivalent to 6/60 Snellen acuity. The Snellen 

fraction can also be converted to the minimum angle of resolution, and the base-10 

logarithm of this (LogMAR) determined [52]. This has allowed the standardisation of 

measurements such as counting fingers and hand movements to be denoted as 2.0 

LogMAR and 3.0 LogMAR respectively. Perception of light (PL) and Nil Perception 

of Light (NPL) vision are arbitrarily denoted as 5.0 LogMAR and 6.0 LogMAR 

respectively [53]. Both the Snellen and Bailey-Lovie charts rely on the literacy of the 

subject being tested, and require the detection, resolution and recognition of the 

letters, and then the relaying of this information to the examiner. 

 

 

Figure 6 – ETDRS visual acuity chart. LogMAR acuity scale is on the right and 
equivalent Snellen acuity on the left. 
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1.3.1.1 Visual acuity testing in children 

In young children and infants, the above methods are not possible. Letter matching 

tests in which the child can point to letters on a key card once they recognise the letter 

they are shown, most closely relate to the Bailey-Lovie test. Examples of these 

include the Sheridan Gardiner test, the Sonksen-Silver acuity system and Cambridge 

crowding tests, among others. Some tests are ‘pictorial’, where the child is asked to 

name or match the pictures shown to them, such as the Kay Picture Test, although this 

test tends to underestimate the visual acuity. ‘Preferential looking’ may be used to 

estimate the visual acuity in infants and non-verbal children who cannot complete 

letter/picture matching. It is based on the observation that infants would rather look at 

a pattern than a blank stimulus. Such tests include the Teller and the Keeler acuity 

cards, which consist of a series of large grey cards with a central peephole that have a 

black and white grating of specific frequencies on one side. The cards are shown to 

the child and their preference recorded. However, although these tests attempt to 

provide a measure of visual acuity, they do not equate to Snellen vision. The Cardiff 

Acuity test, another example of a preferential looking test, uses ‘vanishing optotypes’ 

which consist of pictures with increasingly fine outlines that are correspondingly 

difficult to see. In the youngest infants (from age 3 months), the objective is to 

determine whether they have the ability to steadily fixate and follow an object, and at 

the same time assess if they have any nystagmus or a manifest strabismus. Another 

crude method of assessing acuity is to measure the optokinetic response in an infant, 

which should be present before age 3 months. This can be performed using an OKN 

drum or tape. 
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1.3.2 Colour Vision 

There are a number of tests available that test colour vision, most of which have been 

designed to assess inherited, rather than acquired, colour vision defects. Some are 

designed to detect more subtle colour deficiencies and may be more appropriate in the 

research setting. In the clinical setting, the Ishihara pseudoisochromatic test plates and 

Hardy Rand Rittler tests are the most widely available and the easiest to use to screen 

for colour vision deficits. 

 

1.3.2.1 Ishihara Pseudoisochromatic Plates 

The Ishihara Test (Handaya, Tokyo, Hongo Harukicho, 1917) was designed to detect 

protan (red) and deutan (green) colour vision deficiencies and has high sensitivity and 

specificity. There are a number of editions: the full 38-plate edition, an abridged 24-

plate edition and a 14-plate edition for quick screening. In all editions the first plate is 

a ‘test plate’; there are up to 20 numerical plates to screen for red-green colour 

deficiencies; and 4 plates to distinguish between protan and deutan deficiencies 

(Figure 7 – A). Errors on three or more of the numerical plates indicate a red-green 

colour vision deficit, with a small chance of misdiagnosing the deficit (2%); five or 

more errors signify certain red-green deficit [54]. However, specificity of the plates 

designed to distinguish between the colour deficits is reduced in 30%-40%. In 

addition, Ishihara test plates do not detect tritan defects. Nevertheless, it is a useful 

screening test in the clinical setting due to its speed and ease of use.  
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1.3.2.2 Hardy Rand Rittler Pseudoisochromatic Plates 

The Hardy Rand Rittler test not only allows the identification of protan and deutan 

colour defects, but it is also able to test for tritan (blue) defects [54]. It is almost as 

sensitive and specific as the Ishihara test, and has the additional benefit of being able 

to test younger children who do not yet know numbers, but who can identify shapes. 

It can distinguish between the different colour axes, and grade the defects into mild, 

moderate and severe. Aside from the 4 introductory plates, there are 4 red-green 

screening plates that identify a definite red-green colour deficit if errors are made on 3 

or 4 of these; and there are 2 tritan screening plates (Figure 7 – B). Depending on the 

number of subsequent plates that are read incorrectly (of which there are 14), the 

colour vision deficit can be described as mild, moderate or severe.  

 

 

Figure 7 – Tests of Colour Vision. A – Ishihara pseudoisochromatic plates; B – Hardy 
Rand Rittler pseudoisochromatic plates. 
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1.3.2.3 Other tests of colour vision 

The Nagel anomaloscope was introduced in 1907 and incorporates a Maxwellian view 

spectroscope in which the field of view is split into two halves, one that is illuminated 

by monochromatic yellow (589 nm), and the other that is illuminated by a mixture of 

monochromatic red (670 nm) and green (546 nm) wavelengths. The subject first 

makes several exact colour matches by adjusting both the red-green mixture ratio and 

the luminance of the yellow test field. In a second step the examiner sets the red-green 

mixture ratio and the subject ascertains whether an exact match can be made, by 

altering the luminance of the yellow test field. Normal trichomats precisely match the 

colours within a small range of red-green mixture ratios. As protanopes and 

deuteranopes have only one photopigment in the spectral range that is provided by the 

instrument, they are able to match any red-green mixture ratio with yellow by 

adjusting the luminance of the yellow comparison field. Protanomalous trichromats 

obtain matching ranges with an excess of red and deuteranomalous trichromats obtain 

matches with an excess of green in the matching field. A scale is used to record 

readings with a red-green x-axis and yellow y-axis [55, 56]. 

 

The Farnsworth-Munsell 100 hue test is a hue discrimination test in which the subject 

is required to arrange small coloured caps according to hue, lightness and saturation. 

All the colours are presented at the same time and the subject asked to arrange them in 

what they perceive to be a natural order. The results are plotted on a polar diagram 

representing the 85 hues of the test, and a score for each colour cap is plotted on the 

radial line of the polar diagram representing the numbered cap [55]. This test is useful 

for moderate or severe colour vision deficiency. 
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1.3.3 Refractive Error 

The refractive power of the eye is determined by four factors and their interactions: 

corneal steepness, depth of the anterior chamber, power of the lens (determined by its 

thickness and curvature) and axial length of the eye. In situations of refractive error, 

or ametropia, the error may be spherical or there may be astigmatism. In simple 

myopia, an image is formed in front of the retina (in essence the myopic eye has an 

optical system too powerful for its axial length) and in hypermetropia, the image 

forms behind the retina. Thus, spherical corrective lenses must be placed in front of 

the eye in order for the retinal image to fall on to the retina. In simple astigmatism, 

light rays do not fall on to one point on the retina due to variations in the curvature of 

the cornea or lens at 2 different meridians that are perpendicular to each other. Thus, 

correction is required for both meridians. Determination of the refractive error can be 

achieved by objective or subjective techniques; automated techniques are also 

possible, but these tend to be reserved for the screening of refractive errors. In 

children, objective measurement of the refractive error may be achieved under 

cycloplegic or non-cycloplegic conditions using retinoscopy.  

 

Most retinoscopes use a ‘streak’ projection, which allows a straight beam of light to 

be shone through the pupil; the projected streak illuminates an area of the retina that 

reflects back towards the examiner. When this beam of light is moved in a sweeping 

motion, the reflected light will also move in a direction that reflects the refractive 

status of the eye: it can move in the same direction as the sweeping movement (‘with’ 

motion) or in the opposite direction to the sweeping movement (‘against’ motion). 

When the light fills the pupil and does not move, a point of ‘neutrality’ is reached. By 

using corrective lenses placed in front of the subjects’ eye, the ‘with’ or ‘against’ 
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movement can be neutralised (plus lenses are placed if a ‘with’ movement is seen, 

minus lenses are placed if a ‘plus’ movement is seen). This gives a measure of the 

refractive error. The movement is measured in the 2 principle astigmatic meridians, 

which are at 90o to each other; thus when measuring refraction, the power in both axes 

needs to be measured, and the refraction recorded as a spherical optical power in one 

meridian, with a cylinder placed at the meridian 90o to it. The dioptric equivalent of 

the distance at which the examiner is working must be removed from the spherical 

power in order to determine the actual refractive error (usually +1.5 dioptres for a 

working distance of 67 cm). 

 

Ideally, refraction should be measured with accommodation relaxed, which in a co-

operative older subject may be possible by sustained fixation at a distance target 

during testing. However, in children such co-operation is often not possible, and 

accommodation can vastly affect the accuracy of measurement. In this situation, 

cycloplegia is necessary to fully relax accommodation, with the use of cycloplegic 

drops such as guttae cyclopentolate 0.5% (if below 1 year of age) or guttae 

cyclopentolate 1% (older than 1 year).  

 

 

1.3.4 Psychophysical testing - Perimetry 

Testing of the visual field can be achieved using either kinetic stimuli (kinetic 

perimetry), eg with the Goldmann Perimeter, or static stimuli (static perimetry). Both 

of these methods of perimetry rely upon sustained fixation on a central target, which 

can be challenging in children and in subjects with reduced central vision, such as 

those with retinal dystrophies.  
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1.3.4.1 Kinetic Perimetry 

In kinetic perimetry a moving stimulus of known luminance and size is presented at 

various points in the visual field from an area outside the boundary of visual 

perception towards fixation. The patient indicates when the target is first seen, and the 

perimetrist plots this point. When successive points have been plotted they can be 

‘joined’ together, producing a line of equal threshold sensitivity, known as the 

‘isopter’. Successive isopters may be plotted using stimuli that vary according to size 

and light intensity.  

 

The most common type of manual kinetic perimeter is the Goldmann perimeter, 

which consists of a spherical bowl, whose luminescence at 31.5 asb is precisely 

controlled to allow constant retinal light adaptation, and a self-illuminated projection 

arm that allows the presentation of different stimuli. Assessment of maintained 

fixation is achieved by the perimetrist monitoring the subject’s eye through a 

telescope while projecting moving spots of constant size and fixed contrast from the 

periphery into the centre. The size and intensity of the test stimulus is set using four 

levers – one that determines size and three for intensity. Roman numerals denote 

stimulus size (I-V): size I (with no interposed intensity filters) is the standard 

maximum stimulus, equivalent to 1,000 asb in intensity; increasing intensity is 

simulated by switching to larger stimulus sizes so that changing from size I to V is the 

equivalent of a 100-fold increase in intensity. Arabic numbers (1-4) denote the 

stimulus intensity: as the numbers increase, the stimulus intensity increases by 0.5 log 

units; position 4 is unfiltered. A letter is also used to indicate intensity (a-e); each stop 

increases the stimulus intensity by 1 dB from a to e, with e being unfiltered. The third 

stimulus lever has 3 positions; furthest to the right has no filter and it is in this 
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position that this lever is usually kept. The standard stimulus is size I with filters fully 

off, and is represented as I4e. The test requires considerable skill of the perimeter to 

map the visual field, and due to this, and the potential of prolonged testing time, there 

can be significant interobserver variability in the results obtained from Goldmann 

perimetry. Testing of the visual field using the Goldmann perimeter should be 

performed using both dynamic and static methods, and aside from mapping isopters 

as described above, it is important to map any scotomata that may be present within 

the field, for example in subjects with retinal dystrophies. The original Goldmann 

Field Analyser was manufactured by Haag-Streit (Bern), but this is no longer in 

production; automated kinetic perimeters have now superseded the original manual 

versions.  

 

The progression of visual field abnormalities in RP has been investigated using the 

Goldmann perimeter, and visual field defects have been categorised into four different 

patterns: progressive concentric loss of the visual field; field loss beginning in the 

superior visual field and progressing to an arcuate scotoma; a complete or incomplete 

peripheral ‘ring scotoma’ that can break through into the periphery; and ‘end stage’ 

visual field defects in which only a small central visual field is retained, with possible 

additional peripherally preserved islands of vision [57]. The plotting of Goldmann 

visual fields may be quite challenging and requires a skilled and experienced 

perimetrist. In addition, in these subjects an appropriate period of light adaptation is 

required before testing commences, the test-retest variability is high and nystagmus 

can add to the variability of the results [58]. 
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1.3.4.2 Static Perimetry 

In static perimetry stationary stimuli are presented at defined points in the visual field. 

Although static perimetry can be measured using manual techniques including with 

the Goldmann perimeter, most static perimetry is carried out now using automated 

techniques using machines such as the Humphrey Visual Field Analyser (Carl Zeiss 

Meditech, Dublin, CA, USA). The benefit of automated perimetry is that both the 

stimulus presentation and the recording of patient’s results can be standardised, with 

more detailed, reproducible, quantitative results that do not require a skilled 

perimetrist. The presented stimulus at a given point in the visual field changes in 

intensity until the sensitivity of the eye at that point is found. Testing involves the use 

of threshold or suprathreshold algorithms at a choice of degrees of eccentricity of the 

visual field, either monocularly or binocularly. In a full threshold strategy, a 

suprathreshold stimulus is presented at each location based on the threshold values 

determined from prior points. The intensity is decreased at fixed 4 dB increments until 

the stimulus is no longer seen, and then increased at fixed 2 dB increments until it is 

seen again. The threshold value is the intensity of the last stimulus seen at that 

location. This algorithm can take some time, and requires cooperation and 

concentration. The suprathreshold strategies are screening tests and are quick to 

perform, and calculate the threshold adjusted for age by measuring a few 

predetermined points using a 4-6 dB step. 

 

1.3.4.3 Perimetry in children 

Visual field testing in children can be challenging as it relies upon the child’s 

cooperation, which can be hampered by fatigue, a lack of concentration and a lack of 
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comprehension of the test. In older children automated techniques may be 

successfully performed. However, in younger children testing often relies upon 

confrontation techniques using interesting colourful targets presented in the peripheral 

visual field that the child will make a saccadic movement to see. 

 

 

1.3.5 Additional psychophysical tests 

Detailed psychophysical tests may be used to investigate rod and cone function, such 

as dark adapted perimetry, dark adapted spectral sensitivities and cone critical flicker 

fusion tests. These tests are not used routinely and tend to be reserved for the research 

setting. They were used in the LRAT subjects in this study and will be explained 

further in chapter 4.6. 

 

 

1.3.6 Electrophysiology 

The objective measure of visual pathway function is achieved through visual 

electrophysiological testing, and such testing is fundamental to the diagnosis of all 

retinal dystrophies. It allows the assessment of the nature and severity of visual 

dysfunction, which may or may not be evident through clinical ocular examination. It 

is particularly useful in children, in whom subjective measures of visual dysfunction 

may not be accurate or possible. The main test armamentarium includes: the electro-

oculogram (EOG), which measures retinal pigment epithelium (RPE) function, and its 

relationship with the rod photoreceptor; the full-field electro-retinogram (ERG), 

which measures the massed retinal response to light, and is a measure of 
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photoreceptor and inner nuclear layer function; the pattern electro-retinogram 

(PERG), which arises from retinal ganglion cell function and can give a measure of 

the macular function; and the visual evoked potential (VEP), which measures the 

function of the intracranial visual pathways. The International Society for Clinical 

Electrophysiology of Vision (ISCEV) regularly publishes minimum standards (and 

updates) to establish standardised worldwide protocols for electrophysiological 

examinations (http://www.iscev.org/standards/). 

 

1.3.6.1 The ISCEV standard Electro-Oculogram 

In this test, changes in the electrical potential across the RPE are measured during 

successive periods of dark and light adaptation [59]. The difference in electrical 

potential between the cornea and the posterior pole of the eye is known as the 

standing potential. This potential is generated by the RPE and it changes in response 

to the background retinal illumination. When switching to darkness, the potential 

continues to decrease for 8-10 minutes; there is then an initial fall in the standing 

potential over 60-75 seconds when the retina is subsequently illuminated (the fast 

oscillation), and then a slower but larger rise over 7-14 minutes (the light response). 

These changes are generated by changes in permeability of ion channels across the 

RPE basal membrane, which are (in part) encoded by the Bestrophin-1 (BEST1) gene. 

 

When measuring the EOG, the amplitude of the standing potential is measured in the 

dark, and then again at its maximum amplitude in the light, with electrodes placed at 

the medial and lateral canthi. This is done by the patient making fixed 30o lateral eye 

movements during a period of 20 minutes dark adaptation, and then again during a 15 

http://www.iscev.org/standards/
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minute period of light adaptation. Eye movements are made every 1-2 seconds for 10 

seconds every minute. The ratio of the maximum (peak) amplitude in the light to the 

minimum (trough) amplitude in the dark is expressed as the ‘Arden’ ratio (EOG light 

rise or light/dark ratio) and a normal EOG light rise is greater than 175%. This test is 

relatively difficult to perform and may not be possible in children below the age of 10 

years. The principal use for the EOG in clinical practice is in the diagnosis of 

Bestrophin related conditions. It may also be used in inflammatory conditions of the 

choroid and retina. 

 

1.3.6.2 The ISCEV standard Electro-Retinogram 

The full field ERG (ffERG) represents the combined electrical activity of different 

cells of the retina to uniform illumination. This is measured using corneal electrodes 

and an integrating sphere, the Ganzfeld bowl, to deliver stimuli with whole field 

illumination. The ISCEV standard specifies 5 responses: (1) dark adapted 0.01 ERG 

(rod response); (2) dark adapted 3.0 ERG (combined rod-cone response); (3) dark 

adapted 3.0 oscillatory potentials; (4) light adapted 3.0 ERG (cone response); and (5) 

light adapted 3.0 flicker (30Hz flicker) [60]. An additional ‘maximal’ ERG is also 

undertaken in the dark adapted state. Measurements are taken with pupils 

pharmacologically dilated, and dark adapted ERGs are measured after 20 minutes 

dark adaptation, and light adapted ERGs after 10 minutes light adaptation. For the 

‘maximal’ ERG, an 11 cd.s.m-2 flash is presented in the dark adapted state. The 

stimuli presented to attain the other responses range from a dim white flash of 0.01 

cd.s.m-2 (dark adapted 0.01 ERG) to a bright white flash of 3.0 cd.s.m-2 on a dark 

adapted background (dark adapted 3.0 ERG) or 30 cd.s.m-2 background luminance 
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(light adapted 3.0ERG). In the 3.0 flicker ERG the same 3.0 cd.s.m-2 stimulus is 

presented at a rate of 30 stimuli per second (30Hz), on an illuminated background.  

 

The maximal ERG has an (negative) a-wave, the initial 8-10ms of which 

predominantly reflects rod photoreceptor hyperpolarisation. The subsequent (positive) 

b-wave is generated post-receptorally, secondary to depolarisation of the ON-bipolar 

cells. The oscillatory potentials are small oscillations on the ascending limb of the b-

wave and are thought to arise from the amacrine cells. Rod system dysfunction will be 

seen as a reduction in the rod specific ERG b-wave, but this is generated in the inner 

nuclear layer so does not localise disease to the photoreceptors themselves. The 

maximal response a-wave does allow localisation as it is predominantly driven by rod 

photoreceptor function. If the rod response is poor, it could reflect either an ON-

bipolar abnormality or poor rod photoreceptor function, so the bright flash maximal 

response in the dark adapted state needs to be measured. If it is a bipolar problem then 

the a-wave will be normal or near normal (an ‘electronegative’ ERG); if it is a rod 

photoreceptor problem then both the a and b waves will be reduced.  

 

A cone-specific waveform, generated at the inner retinal level, is recorded when the 

30Hz flicker is presented on a rod-suppressing background (in the light adapted state). 

The single flash cone response allows better localisation within the retina, with the 

photopic a-wave reflecting cone photoreceptor and OFF-bipolar cell 

hyperpolarisation, and photopic b-wave reflecting post-phototransduction activity. As 

the ERG is a massed retinal response, disease isolated to one part of the retina, eg the 

macula, will have a normal ERG. 
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1.3.6.3 Other electrodiagnostic tests 

ISCEV have published standards on a number of other electrodiagnostic tests [61-63].  

 

The Pattern ERG (PERG) assesses the retinal response to a contrast-reversing 

stimulus such as a black and white checkerboard, when the eyes are fixated centrally, 

and provides information regarding macular and retinal ganglion cell function [61]. 

The PERG waveform consists of a small initial negative waveform of 35 ms peak 

time (N35), followed at 45-60 ms by a large positive waveform (P50) and then a large 

negative component at 90-100 ms (N95). This is a ‘transient’ response that is 

complete before the next contrast reversal. The amplitudes of the PERG are measured 

from the peaks to the troughs of the waveform. The N95 component arises in relation 

to the retinal ganglion cells; the P50 component reflects macular function. In contrast 

to the ff-ERG, the PERG is a local response to the area that is covered by the stimulus 

image, and thus can sensitively indicate macular dysfunction. It can also be used in 

conjunction with the visual evoked potential in order to differentiate a central retinal 

abnormality from optic pathway dysfunction, when the VEP is abnormal.   

 

The visual evoked potentials (VEP) provide diagnostic information regarding the 

functional integrity of the visual system. They are the visually evoked 

electrophysiological signals obtained from electroencephalographic activity of the 

visual cortex that are recorded from the scalp overlying this area [62]. They are used 

to assess the intracranial visual pathways, in particular the optic nerves and chiasm. 

ISCEV have published a range of stimuli and recording conditions including: pattern 

reversal VEPs and pattern onset/offset VEPs, both elicited by checkerboard stimuli 

with large 1o (60 minutes of arc) and small 0.25o (15 minute) check sizes; and flash 
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VEPs, elicited by a brief luminance increment, a flash, which subtends a visual field 

of at least 20o. Pattern reversal is used for most clinical situations, pattern onset/offset 

is useful to assess for malingering and in patients with nystagmus, and flash VEPs are 

used if there is poor cooperation, very poor vision levels or poor optics that make the 

use of pattern stimuli difficult.         

 

1.3.6.4 Electrodiagnostic testing in children 

Electrodiagnostic testing can be essential in the visual assessment and diagnosis of 

children with visual dysfunction, and can provide an indication of vision levels in 

non- or pre-verbal children. In very young or premature children it may not be 

possible to apply adult protocols, and as such they may require non-standard 

protocols. Most paediatric patients can be tested without anaesthesia or sedation, 

which is the preferred situation as anaesthesia carries a small risk and also may alter 

the VEP measurements. Although corneal electrodes may be applied, most young 

children (particularly between age 3 months to 5 years) will not tolerate them. In these 

situations, infra-orbital skin electrodes, close to the rim of the lower eyelid, may be 

used, but consideration must be taken into the variety of physical and physiological 

factors that can interfere with readings obtained in this manner [64]. Some 

laboratories advocate the recording of both the ERG and VEP concurrently, using 

skin electrodes [65]. In this situation, an estimate of gross retinal function (from the 

ERG) and macular pathway function (from the VEP) in a single recording session 

lasting 30-40 minutes can be achieved. In LCA, 56% show an un-recordable ERG or 

VEP; and in 44% no recordable ERG activity is detected but a small, degraded flash 

VEP is detectable, suggesting some residual retinal and visual pathway function. [66].       
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1.3.7 Optical Coherence Tomography 

Optical coherence tomography (OCT) has become a standard tool in the field of 

ophthalmology and is a non-invasive method of imaging in which reflected light is 

used to produce detailed cross sectional and 3-dimensional images of the retina and 

anterior segment. Initial work relied upon low coherence interferometry to reflect 

light from biological tissues, which gives ‘time of flight’ information that in turn, 

yields spatial information about tissue microstructure [67]. The time of flight ‘delay’ 

from the reflective boundaries and backscattering sites in the tissue being imaged 

allows the longitudinal location of the reflective sites to be determined. Multiple 

longitudinal axial scans are performed to acquire a 2-dimensional map of the sample.  

 

Multiple generations of OCT imaging techniques have since been developed. In the 

early time-domain OCT (TD-OCT), a series of longitudinal cross sections 

perpendicular or in the coronal plane to the retinal surface were acquired over time, 

giving depth information and an image resolution of 10-15 µm, but imaging speed 

was limited by the need for the reference mirrors to move mechanically. TD-OCT 

acquires approximately 400 axial scans (A scans) per second. More recently, 

advances have been made regarding image resolution – particularly by the 

development of high-resolution OCT – and in imaging speed, signal to noise ratio and 

sensitivity, in ultra-high resolution OCT or spectral domain OCT (SD-OCT), which 

can achieve a resolution of 2-3 µm [68, 69].  In SD-OCT, the reference mirror 

remains stationary and the OCT image is obtained either by using a spectrometer as a 

detector or by varying the narrowband wavelength of the light source over time 

(swept source). Different echo time delays of light, which produce different 

frequencies of fringes in the interference spectrum are measured and then a Fourier 
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transform (a mathematical procedure that extracts the frequency spectrum of a signal) 

is applied [70]. This method allows measurement of all echoes of light from different 

delays simultaneously, which dramatically increases speed and sensitivity. Motion 

artefact is diminished by the increased speed of image acquisition, and 3-dimensional 

images can be obtained that can give ‘volume scans’ of the retina. 

 

The SPECTRALIS® OCT HRA + OCT imaging system (Heidelberg Engineering, 

Heidelberg, Germany), can obtain images 100 times faster than time-domain OCT 

(http://www.heidelbergengineering.com/international/products/spectralis/technology/s

pectral-domain-oct/) [71]. 40 000 A scans are acquired per second, and it can combine 

high resolution, high speed SD-OCT images with, among other modalities, fundus 

autofluorescence imaging. Image quality is improved by the use of confocal scanning 

laser ophthalmoscopy (cSLO), which uses laser light to illuminate the retina instead 

of a white light. Figure 8 illustrates a normal eye imaged using the Spectralis OCT. 

 

 

Figure 8 – Normal sd-OCT image. Adapted from [72]. Retinal layers are labelled as 
follows: ILM – Internal Limiting Membrane; NFL – Nerve Fibre Layer; GCL – 
Ganglion Cell Layer; IPL – Inner Plexiform Layer; INL – Inner Nuclear Layer; OPL 
– Outer Plexiform Layer; ONL – Outer Nuclear Layer; ELM – External Limiting 
Membrane; IS/OS – Inner segment / Outer segment junction; RPE – Retinal Pigment 
Epithelium; Choroid. 
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1.3.8 Fundus Autofluorescence Imaging 

The retinal pigment epithelium (RPE), a polygonal monolayer of cells between the 

neurosensory retina and Bruch’s membrane (which separates the RPE from the 

vascular choroid layer), has a number of vital functions, of which the phagocytic role 

is essential to the renewal of photoreceptors. Phagocytosed outer segment tips are 

digested in the extensive phagolysosomal system within the RPE cell, and solubilised 

waste material is transported across the basal in-foldings of the RPE cell into the 

choriocapillaris. With age, there is an accumulation of lipofuscin pigment, a storage 

material that accumulates as a result of cell senescence in post-mitotic cells such as 

neurons, retina and muscles [73]. In the RPE, lipofuscin ‘granules’ accumulate as a 

result of incomplete degradation of photoreceptor outer segment discs, with 

subsequent incomplete release of degraded material [74]. However, lipofuscin also 

accumulates as a result of a number of retinal disease processes such as age related 

macular degeneration and certain inherited retinal dystrophies such as Best disease 

and Stargardt disease [75, 76]. 

 

Lipofuscin possesses the phenomenon of ‘autofluorescence’ – the ability of a 

substance to emit light of a particular wavelength when illuminated by light of a 

different wavelength. There are at least 10 different fluorophores (fluorescent 

compounds) that accumulate within lipofuscin granules in the RPE [77]. One 

prominent fluorophore is the bisretinoid A2E (N-retinyl-N-retinylidene ethanolamine), 

which has toxic properties that may interfere with normal cell function by inhibition 

of lysosymal degradative capacity, loss of membrane integrity and phototoxicity [78].  
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In vivo recording of RPE autofluorescence as an index of lipofuscin accumulation can 

give important clues to the pathogenesis and progress of different retinal diseases. The 

first fundus spectrophotometer that could exhibit retinal autofluorescence in vivo 

demonstrated that fundus fluorescence has a broad emission spectrum between 500nm 

to 750nm, with a peak at 630nm and optimal excitation of 510nm [79]. This 

fluorescence is highest at 7o to 15o from the fovea and decreases towards the 

periphery, and it was confirmed that lipofuscin is the dominant source of 

autofluorescence within the retina. In order to address the issues of limitations due to 

the low intensity of the autofluorescence signal and interference from the crystalline 

lens, a fundus autofluorescence imaging system using a confocal scanning laser 

ophthalmoscope was developed [80]. In this system, a focused low power laser beam 

is swept across the fundus, and the confocal nature of the optics ensures that the 

reflectance and fluorescence are derived from the same optical plane. In order to 

reduce background noise and enhance image contrast, a series of several single fundus 

autofluorescence images are recorded, and a mean image (of 4-16 frames) is obtained 

after correction of eye movement during image acquisition. Consequently in 

situations where there is high eye movement, such as nystagmus, fundus 

autofluorescence image quality may be diminished or not possible. The Heidelberg 

Retinal Angiograph (HRA; Heidelberg Engineering, Germany) is the predominant 

commercially available device for measuring fundus autofluorescence, and at the time 

the work towards this thesis was carried out, the standard images obtained were of a 

30o field, but a wider field was possible with a 55o lens. This technology has been 

combined with SD-OCT imaging, and other retinal imaging modalities [81] in the 

widely used SPECTRALIS® OCT HRA + OCT imaging system (Heidelberg 

Engineering, Heidelberg, Germany).  
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During fundus autofluorescence imaging in normal fundi the optic nerve head and 

retinal vessels appear dark due to the absence of the RPE and absorption by blood 

respectively (Figure 9). In the macula, autofluorescence in the fovea is reduced due to 

absorption by luteal pigments (lutein and zeaxanthin), and increases in the parafovea, 

but this is still of relative decreased intensity compared to the diffuse background 

signal in more peripheral retina [80]. This may be due to increased melanin and 

decreased lipofuscin granules in central RPE cells. Abnormal fundus autofluorescence 

signals may be due to either increased or decreased amounts or compositions of 

fluorophores in the RPE cytoplasm, or due to the presence of autofluorescent or 

absorbing material anterior to the RPE [82]. Autofluorescence is increased with RPE 

dysfunction and decreased when there is loss of photoreceptors. Media opacity within 

the cornea, lens or vitreous may also reduce the quality of the recorded image.  

 

 

Figure 9 – Normal Fundus Autofluorescence image, right eye. 
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1.3.9 Fundus Imaging 

The unique optical properties of the eye allow visualisation of the retina. The earliest 

ophthalmoscope was invented based upon principles put forward by Purkinje in 1823, 

and reinvented by Babbage in 1845 [83]. Von Helmholtz reinvented the direct 

ophthalmoscope again, in 1851, and Gerloff achieved the first useful photographic 

recording of the retinal blood vessels in 1891. Reports regarding the first fundus 

cameras vary: Dimmer in 1905, working with the Zeiss company developed a reflex 

free fundus camera; in 1910 a fundus camera was developed by Gullstrand; and in 

1925 the Zeiss-Nordenson camera became a widely used fundus camera. 

Modifications to the imaging techniques led to the development of stereoscopic 

fundus imaging [84] and now, high-resolution digital fundus photography is the 

routine method by which the retina is photographed. 

 

  



63 

1.4 Techniques for Molecular Analysis 

 

The genetic heterogeneity underlying LCA and EORD makes the process of 

identifying causative mutations in these families challenging. Various techniques have 

been utilised over time to refine genetic loci, determine gene sequences and identify 

mutations in causative genes. The history and principles of the available techniques 

will be described in this chapter. 

  

 

1.4.1 Linkage 

Present understanding of human genetics owes much to the Austrian monk Gregor 

Mendel who, in 1865, presented and published the results of his breeding experiments 

on garden peas [85]. Unfortunately these went largely unnoticed until 1900 when his 

work was rediscovered 16 years following his death, after scientists began to conduct 

experiments that upheld his principles of inheritance: the Law of Uniformity, the Law 

of Segregation and the Law of Independent Assortment. However, they also 

discovered situations that represented deviations from these principles. The Law of 

Independent Assortment refers to the observation that members of different pairs of 

genes segregate to offspring independently of one another. However, studies on pea 

plants by Bateson, Saunders and Punnett in 1905 revealed that not all crosses yielded 

results that reflected the law of independent assortment [86]. Looking at the inherited 

features of flower colour (purple and red) and pollen grain shape (long and round) 

they identified that there was a connection, or coupling, of these traits in successive 

generations when plants were inbred. Subsequent work by Thomas Morgan on ‘eye 



64 

colour, body colour, wing mutations and the sex factor for femaleness in Drosophila’ 

unearthed the concept of genetic linkage, in which he concluded that when two genes 

are closely associated on the same chromosome, they do not assort independently [87, 

88]. He observed that during meiosis ‘homologous chromosomes twist around each 

other, but when the chromosomes separate (split) the split is in a single plane’ and 

thus for short genetic distances ‘original materials will…be more likely to fall on the 

same side of the split, while remoter regions will be as likely to fall on the same side 

as the last, as on the opposite side’. Thus, he concluded that during this crossing over, 

there is exchange of genetic material between homologous chromosomes. The linkage 

of the different traits was felt to be dependent upon the linear chromosomal distance 

between these traits.  

 

Morgan’s student, Alfred Sturtevant, was the first to use this hypothesis to create a 

genetic map, though not based on physical distance on chromosomes, but rather on 

the proportion of ‘crossovers’ (or recombination events) as an index of the distance 

between any two factors [89]. He proposed that the greater the distance between 

linked genes, the greater the chance that non-sister chromatids would cross over in the 

region between the genes. By calculating the number of recombinants, a measurement 

of the distance between genes could be made. This distance, defined as the distance 

between genes for which 1% of the products of meiosis is recombinant, is known as 

the Centimorgan. The relationship between linkage map units and physical length is 

not linear. Some chromosome regions appear to be prone to recombination, so called 

‘hot spots’, and recombination tends to occur more frequently during meiosis in 

women than men. 
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Linkage analysis has proven to be an extremely valuable tool in the mapping of genes. 

The method involves the study of disease segregation with polymorphic ‘markers’ 

from each chromosome. Eventually a marker will be identified that co-segregates with 

the disease more often than would be expected by chance, such that the marker and 

disease loci are linked. The underlying principle involves the use of likelihood ratios, 

the logarithms of which are known as LOD scores (logarithm of the odds): the LOD 

score Z is equal to the logarithm of the odds that the loci are linked divided by the 

logarithm of the odds that they are not linked. This uses the recombination frequency 

(θ), which is the frequency with which a single cross over event will take place 

between two genes during meiosis. In reality, the LOD score is calculated for 

different recombination frequencies providing a maximum likelihood estimate for the 

recombination frequency (θmax) at which the greatest LOD score is observed (Zmax) 

[90]. It is generally agreed that a LOD score of +3 or more is confirmation of linkage, 

as it indicates 1000 to 1 odds that the linkage being observed did not occur by chance, 

and a LOD score less than -2 excludes linkage. It is possible to calculate maximum 

likelihood estimates for multiple loci at a time and therefore to place disease loci on a 

map of ordered genetic marker loci. 

 

 

1.4.2 Genetic Markers 

Historically there have been a number of different types of DNA marker. These DNA 

polymorphisms can serve as a set of markers that are sufficiently numerous and 

adequately spaced across the entire genome to allow a whole-genome search for 

linkage. They have the advantage of being able to be typed by the same technique and 

their chromosomal location can be determined using radiation hybrid mapping or by 
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searching the genome for a match to the polymerase chain reaction (PCR) (see section 

1.4.3) primer used to score the marker. 

 

1.4.2.1 Restriction Fragment Length Polymorphisms 

The first polymorphisms to be discovered were restriction fragment length 

polymorphisms (RFLPs). These usually form as a result of single base pair changes in 

DNA sequences and lead to the removal or, less commonly, the introduction of a 

recognition site for a restriction enzyme. This causes an increase or decrease in the 

length of restriction fragments, which can be detected by the altered mobility of 

different sized fragments on gel electrophoresis (see section 1.4.4). A difference in 

number or size of fragments between individuals tested indicates a polymorphism in 

the restriction site of the enzyme used. Initially RFLPs were typed by preparing 

Southern blots from restriction digests of the test DNA and hybridisation with 

radioactive probes – a procedure that was cumbersome and time consuming, requiring 

a large amount of sample DNA. Unfortunately RFLPs are limited by their low 

informativeness.  

 

1.4.2.2 Microsatellites 

With the advent of the PCR (see section 1.4.3), a novel class of short tandem repeat 

(STR) polymorphisms, or microsatellites, was discovered, which were highly 

informative for linkage analysis. These are dinucleotide, trinucleotide or 

tetranucleotide sequences, such as (CA)n or (GATA)n, that can be repeated between 

10 to 100 times, and that tend to occur in non-coding regions of DNA throughout the 
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genome. They are multi-allelic, which increases the probability that an individual is 

heterozygous for these markers, allowing paternal and maternal alleles to be 

distinguished [90]. On each side of the repeat unit are flanking regions that can be 

used to develop locus-specific primers to amplify the microsatellites by PCR. This 

allows amplification of alleles whose sizes differ by integral repeat units. A 

fluorescent nucleotide precursor can be incorporated into the PCR products, which are 

denatured and then size-fractionated by gel electrophoresis (see section 1.4.4). 

Microsatellites are useful genetic markers because they tend to be highly 

polymorphic. The reason for this is that they are prone to high rates of mutation due to 

‘replication slippage’ during DNA replication – there is incorrect pairing of the 

nucleotide repeats of the two complementary strands during DNA replication. 

Microsatellites have formed an essential tool in genome mapping.  

 

1.4.2.3 Single nucleotide polymorphisms 

The newest generation of markers are single nucleotide polymorphisms (SNPs). A 

SNP is a DNA coding variation occurring commonly in a population in which two 

sequence alternatives (called ‘alleles’) exist, with the frequency of the least abundant 

allele in the population being at least 1%. There is a difference of a single nucleotide 

between members of a biological species or paired chromosomes. Approximately 

two-thirds of SNPs are cytosine (C) to thymine (T) variations. These are bi-allelic and 

occur in coding and non-coding regions. In coding regions, a SNP can be 

synonymous, where the amino acid sequence remains unchanged, or non-

synonymous, where the amino acid sequence is altered. The combinations of SNPs in 

regulatory regions, as well as amino acid coding SNPs, have a substantial influence 
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on inter-individual differences. Within different populations in the human species 

there are different variations such that a SNP allele that is common in one 

geographical or ethnic group may be much more rare in another group. SNPs are the 

genetic marker with the highest abundance in the genome and occur with a frequency 

of around 1 in every 1000 base pairs. Although they are not as polymorphic (and 

therefore individually less powerful as a marker) as microsatellites because they are 

bi-allelic, their high frequency within the genome makes them extremely useful for 

genome wide studies. An international consortium of academic and industrial partners 

has generated a public database of millions of SNPs, known as ‘dbSNP’, available 

through the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/SNP/index.html). There are a number of other SNP 

databases available including the OMIM database and the International HapMap 

Project (http://hapmap.ncbi.nlm.nih.gov/), the SNP Consortium (TSC) [91], the 1000 

genomes databases (http://browser.1000genomes.org/index.html) and the Exome 

Variant Server (http://evs.gs.washington.edu/EVS/). 

 

 

1.4.3 Polymerase Chain Reaction 

Since its advent in the mid-1980s, the polymerase chain reaction (PCR) has 

revolutionised molecular genetics by allowing the rapid cloning and analysis of DNA 

[92, 93]. It has become a robust and extremely sensitive technique, enabling 

amplification of minute amounts of target DNA even from tissues or cells that are 

badly degraded. The wide range of applications of PCR, including DNA cloning for 

sequencing, functional analysis of genes, diagnosis, genetic linkage analysis, 

detection and diagnosis of infectious diseases, and in forensic science, have prompted 

http://www.ncbi.nlm.nih.gov/SNP/index.html
http://hapmap.ncbi.nlm.nih.gov/
http://browser.1000genomes.org/index.html
http://evs.gs.washington.edu/EVS/
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the development of a variety of PCR approaches, many of which have arisen due to 

the need to optimise efficiency and specificity.  

 

PCR may be used to permit selective amplification of a specific target of DNA, of 

known sequence, within a heterogeneous collection of DNA sequences – often the 

starting DNA is total genomic DNA from a particular tissue. Thus the target DNA is 

typically a tiny fraction of the starting DNA. PCR amplification involves the use of 

oligonucleotide primers that flank the DNA segment to be amplified, and subsequent 

repeated cycles of heat denaturation of the DNA, annealing of the primers to their 

complementary sequences, and extension of the annealed primers with a DNA 

polymerase enzyme. The custom designed primers (amplimers), optimally 18-25 

nucleotides in length, are specific for sequences flanking the target sequence. They 

hybridise to opposite strands of the target sequence and are orientated so that 

polymerisation occurs between the amplimers, effectively doubling the amount of that 

DNA segment. Further exponential accumulation of the target DNA sequence occurs, 

as the extension products are capable of further amplification, thus each successive 

cycle theoretically doubles the amount of DNA synthesised in the previous cycle.    

 

PCR is carried out in reaction volumes of 10-200 μl, in small reaction tubes (0.2-0.5 

ml volumes) using a thermal cycler. The components required for the successive 

reactions that take place during PCR amplification include: a DNA template that 

includes the target region to be amplified; two oligonucleotide primers that are 

complementary to the 3’ ends of the sense and anti-sense strands of the DNA target; a 

DNA polymerase such a Taq polymerase which is heat stable and has an optimum 

temperature of approximately 70o C [94]; the four deoxynucleoside triphosphates 
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(dNTPs), nucleotides containing triphosphate groups, dATP, dCTP, dGTP and dTTP; 

a buffer solution; and cations such as magnesium and potassium. Each cycle consists 

of 3 steps: a denaturation step at 94-98oC for 20-30 seconds during which the DNA 

template is melted and single stranded DNA molecules are generated; an annealing 

step for 20-40 seconds at a temperature 3-5o below the Tm of the primers used; and an 

elongation step that is time and temperature specific to the DNA polymerase being 

used, during which dNTPs are added together to complement the DNA template, in a 

5’ to 3’ direction. In total, 20-40 cycles are utilised. There may be an initialisation 

step for 1-9 minutes before the start of the cycles if the DNA polymerase requires heat 

activation; and there is usually a final elongation step at 70-74o for 5-15 minutes after 

the last PCR cycle to ensure that any remaining single stranded DNA is fully 

extended. To determine whether the correct PCR fragments were generated, agarose 

gel electrophoresis is used to separate the DNA fragments, and a molecular marker – 

a DNA ladder – is run alongside the products to determine the size of the fragments.    

 

 

1.4.4 Agarose Gel electrophoresis 

Agarose gel is a 3-dimensional matrix formed by helical agarose molecules in 

supercoiled bundles with channels and pores through which biomolecules can pass. 

Gel electrophoresis allows the separation of a population of DNA by the application 

of an electrical field - the negatively charged phosphate backbone of DNA molecules 

will migrate towards the positively charged anode. The rate of molecular migration 

depends on a number of factors including: the size of the DNA molecules (smaller 

molecules travel faster than larger molecules); the concentration of the gel (typically 

the higher the percentage of gel, the slower the DNA will migrate); the voltage of the 
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current applied (the higher the voltage, the faster the molecules migrate); the ionic 

strength of the buffer used; and the concentration of the intercalating dye such as 

ethidium bromide. A 0.8% gel allows good resolution of large 5-10 kB DNA 

fragments while a 2% gel gives good resolution of smaller 0.2-1 kB fragments. Buffer 

solutions are used during electrophoresis to reduce pH changes due to the electrical 

field, the most common being Tris/Acetate/EDTA (TAE). 

 

The gel is cast in molten form in trays, with combs that, when removed form wells, 

once the gel has set. DNA samples are loaded into each well, with a dye such as 

bromphenol blue, and a DNA ladder is loaded into the first well that allows estimation 

of the molecular weight of the DNA samples. The dye co-migrates with the DNA 

during electrophoresis. When stained with ethidium bromide, and once the gel has 

been run, it is viewed under a UV light and an image of the gel can be taken with a 

camera, which can be printed.  

 

Agarose gel electrophoresis may be used in a number of applications including 

analysis of PCR products, separation of DNA for extraction and purification, 

estimation of DNA molecular size after restriction digestion and separation of 

restricted DNA or RNA during Southern or Northern blotting respectively.  

 

 

1.4.5 DNA sequencing  

DNA sequencing, the process of determining the nucleotide order of a given DNA 

fragment, was pioneered by Frederick Sanger using the dideoxy sequencing, or chain 

termination, method [95]. At the time that the work towards this thesis was being 
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carried out, Sanger sequencing was the most abundantly used method of DNA 

sequencing. Since then, newer techniques involving large-scale automated genome 

analyses, such as Next Generation Sequencing (see section 1.4.9), have come to the 

fore. These will be discussed in subsequent sections. 

 

In the dideoxy direct sequencing method, single-stranded DNA is used as a template 

to create a new complementary DNA strand in vitro using oligonucleotide primers 

(specific to the region of interest), a suitable DNA polymerase, the four dNTPs, and a 

small proportion of one of the four analogous dideoxynucleotides (ddNTPs: ddATP, 

ddCTP, ddGTP, ddTTP). The ddNTPs are closely related to the normal dNTPs 

utilised during PCR, but they differ in that they lack a hydroxyl group at the 3’ and 2’ 

carbon positions. Although a ddNTP can be incorporated into the growing DNA chain 

by forming a phosphodiester bond between its 5’ carbon atom and the 3’ carbon atom 

of the previously incorporated nucleotide, the lack of a hydroxyl group at its 3’ carbon 

atom prevents a further phosphodiester bond to form in this position. This leads to 

termination of DNA chain synthesis at this point. As the incorporation of a ‘chain 

terminating’ nucleotide is a random process, there will be a mixture of DNA 

fragments of different lengths that terminate in their respective ddNTP. 

 

Fragments that differ in size may be size fractionated on a denaturing polyacrylamide 

gel, which contains a denaturing agent that ensures that the DNA strands remain 

single stranded. Although Sanger sequencing originally utilised radioactive labelling 

with manual interpretation of data, this technique was superseded by the use of 

fluorescent labels incorporated into the ddNTPs [96]. As the DNA passes through a 

fixed point in the gel, a laser detects and records a fluorescence signal, which is 
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specific for the particular ddNTP that each DNA fragment terminates in. The 

sequence is read in the form of intensity profiles, known as chromatograms, for each 

of the differently coloured fluorophores. The interpreted sequence can be used to infer 

a polypeptide, and can be stored in a computer database. Automated DNA sequencers 

historically used slab acrylamide gels, but newer generation high throughput 

sequencers use capillary electrophoresis [97], where the DNA samples migrate 

through very thin long glass capillary tubes containing gel, allowing for a higher 

degree of throughput and accuracy. Examples include the ABI and Illumina 

platforms, which can sequence approximately 1 million bases per day.  

 

 

1.4.6 DNA Microarrays 

DNA microarrays can be used to rapidly measure the expression of a large number of 

genes simultaneously or to genotype multiple regions of a genome [98-102]. These 

‘DNA chips’ consist of a number of DNA ‘spots’ attached to a solid surface. In a 

standard microarray, probes are synthesised and attached to a solid surface, such as 

glass or silicone, by a covalent bond to a chemical matrix (Affymetrix chip). Some 

platforms utilise microscopic beads instead of the large solid support (Illumina), and 

other microarrays can be constructed by the direct synthesis of oligonucleotide or 

peptide probes on solid surfaces. The original technology involved the utilisation of 

light directed combinatorial chemical synthesis – semiconductor based 

photolithography – to enable the synthesis of hundreds of thousands of compounds in 

precise locations on a chip, so that a target molecule labelled with a fluorescent dye 

that was incubated with the chip could hybridise to the probes. Using combined laser 

confocal fluorescence scanning the molecular binding events at individual sites on the 
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array were measured [98]. By generating an array consisting of oligonucleotides 

complementary to sub-sequences of a target sequence, the identity of the target 

sequence could be determined, its amount measured and differences detected between 

the target and a reference sequence [100]. The use of microarrays is now widespread 

and there are a diverse range of applications, including sequencing to compare 

hundreds of different genes assayed simultaneously, detection of gene expression of 

many genes in parallel, utilisation of genetic markers to identify pathogenic organisms 

and analysis of sequence specificity of RNA- or protein-DNA interaction.   

 

 

1.4.7 Autozygosity Mapping 

Autozygosity, a form of homozygosity, is the appearance of two copies of a DNA 

segment that are identical by descent, such that they have a common origin (contrary 

to being introduced into the genetic pool of a population independently, which is 

known as identity by state) [103]. In autosomal recessive disease, the probability that 

each parent is a carrier of a mutated recessive allele will depend on the carrier 

frequency in the general population. This tends to be very low due to selective 

pressure against these highly morbid alleles. However, in the consanguineous setting, 

the probability of one parent being a carrier is not independent of the other. For 

example, first cousin parents will share 1/8th of their genome, substantially increasing 

the risk of autozygosity of a disease allele, and therefore the occurrence of a recessive 

disorder, in their offspring. 

 

The concept of disease gene identification using mapping strategies that analyse 

autozygous regions in consanguineous families with recessive diseases was conceived 
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by Lander and Botstein [104]. They suggested that by searching regions that are 

consistently homozygous by descent, a recessive disease gene could be mapped in an 

affected child from a consanguineous marriage. They calculated that the fraction of a 

child’s genome that is homozygous by descent is 1/4, 1/16 and 1/64 for sibling, first 

cousin and second cousin marriages, respectively. Using RFLPs they mapped areas of 

homozygosity in affected offspring, searching for regions in which adjacent RFLPs 

were homozygous. They used the hypothesis that affected individuals of 

consanguineous families would be homozygous for markers residing within the region 

surrounding the disease locus, which are therefore linked to the causative gene, and 

thus that these regions of homozygosity may be searched for the causative gene.  

 

Autozygosity mapping became more practical with the discovery of multiple highly 

polymorphic microsatellite repeat markers spread throughout the genome, allowing 

genome-wide association studies looking for linkage [105]. Subsequently, the 

International Hap Map Project provided a genome wide set of SNPs to tag variation 

throughout the genome (http://hapmap.ncbi.nlm.nih.gov/). While each SNP has far 

less power to detect a homozygous chromosomal segment than a microsatellite 

marker, it is both their high frequency and their ability to detect a heterozygous 

region, and hence exclude linkage, that suggested their potential use in autozygosity 

mapping [106]. Widespread genome-wide SNP studies have been made possible 

through the availability of microarrays incorporating a large set of SNPs.  

 

These ‘SNP-chips’ are now commercially available from a number of companies. Our 

laboratory used the Affymetrix SNP Chip, and earlier generations incorporated up to 

10,000 SNPs, with newer versions incorporating 1,000,000 SNPs. The farther 
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removed the common ancestor is from the parents of the proband, the more 

opportunity for cross over events to have occurred during meiosis to generate their 

gametes, and thus a greater chance that the ancestral haplotype is broken. Therefore, a 

higher density of SNPs is required to capture an autozygous block when the parents 

are more distantly related. The analysis is performed following a single hybridisation 

reaction with one individual’s DNA. Results are produced as a spreadsheet of SNP 

allele calls. The largest detected regions of homozygosity may be sorted according to 

genetic size, chromosome, and genetic location on the chromosome, number of 

homozygous SNPs in a run, number of ‘no calls’ in the run and whether the results 

reach statistical significance. The autosomal recessive gene locus could reside in any 

of the statistically significant homozygous regions detected and a number of tools 

exist to facilitate the subsequent search for candidate genes [103]. 

 

 

1.4.8 APEX Microarray 

Another microarray-based method designed to rapidly screen for known mutations in 

a DNA sample is the Arrayed Primer Extension (APEX) technique [107, 108]. In this 

technique, a detection primer anneals to the target nucleic acid immediately adjacent 

to a variable nucleotide position. A DNA polymerase is used to specifically extend the 

3’ end of the primer with a labelled nucleotide analogue complementary to the 

nucleotide at the variable site. In essence, the APEX reaction is a sequencing reaction 

on a solid support.   

 

An ‘LCA chip’ has been designed that uses APEX technology to enable screening for 

a large number of known LCA variants and SNPs [109]. This DNA microarray 
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incorporates 5’ modified sequence specific oligonucleotides arrayed on a glass slide, 

so that their 3’ ends are immediately adjacent to the variable site. Target nucleic acids 

that have been prepared by PCR and then fragmented, are annealed to the 

oligonucleotides on the slide, followed by sequence specific extension of the 3’ ends 

of the primers with dye labelled ddNTPs using a DNA polymerase. The process is 

rapid, taking 4 hours from sample preparation to analysis. As further LCA variants are 

discovered, the chip can be ‘updated’, making this technology a high volume, cost 

effective screening tool for known variants in this genetically heterogeneous 

condition. Asper Biotech Ltd (Tartu, Estonia) have commercialised this LCA chip (as 

well as many others) and utilise their Genorama� Genotyping Software� to detect 

and analyse variants in both the sense and antisense strand, and thus provide one or 

two variants in the disease gene in informative samples 

(http://www.asperbio.com/asper-ophthalmics/leber-congenital-amaurosis-lca-genetic-

testing). Currently, this chip analyses 780 variants in 15 genes.  

 

The efficiency and efficacy of the LCA chip was analysed by Henderson et al. who 

identified one or two mutations in 46% of LCA and 24% of early onset retinal 

dystrophy patients [110]. The authors identified that overall, the chip is informative in 

around one third of patients, concluding that it is a sensitive technique with a low call 

failure rate, thus providing an excellent first pass screening tool for LCA. However, a 

number of anomalies between the chip and direct sequencing results were identified, 

including false-positive results in AIPL1, a false-negative result in CRB1 and a 

relatively high call failure rate in certain SNPs, although these were on a par with the 

difficulties encountered with direct sequencing techniques.  

 

http://www.asperbio.com/asper-ophthalmics/leber-congenital-amaurosis-lca-genetic-testing
http://www.asperbio.com/asper-ophthalmics/leber-congenital-amaurosis-lca-genetic-testing
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1.4.9 Next generation sequencing 

At the time that the work towards this thesis was being carried out, next-generation 

sequencing (NGS) technologies were in their infancy. They are now in the forefront 

of biological research, reaching unparalleled levels of sequencing capacity. As this 

technology was used by our laboratory and collaborators at the UCL Genetics 

Institute to identify the genetic cause in one patient in this study, the principles of 

NGS will be described here.  

 

A number of different DNA sequencing platforms have now been generated and 

several commercial next-generation DNA sequencing systems are available, such as 

the Roche 454 Genome Analyzers (Roche Diagnostics Corp., West Sussex, UK) 

(http://454.com/products/technology.asp), the Illumina NGS platforms (Illumina Inc., 

California, USA) (http://www.illumina.com/technology/next-generation-

sequencing.html), the Applied Biosystems SOLiD™ Genetic Analyzers 

(http://www.lifetechnologies.com/uk/en/home/life-science/sequencing/next-

generation-sequencing/solid-next-generation-sequencing.html) by Life Technologies 

(Thermo Fisher Scientific Inc., Massachusetts, USA), and the Ion Torrent™ platform, 

also by Life Technologies (http://www.lifetechnologies.com/uk/en/home/brands/ion-

torrent.html). The data obtained from NGS depends heavily on the high quality 

reference sequences produced by the Human Genome Project [111]. The major 

advantage of NGS technologies is the ability to process millions of sequence reads 

simultaneously, a technique known as massively parallel sequencing. This vastly 

reduces the required number of instruments and personnel compared to Sanger-type 

DNA capillary sequencers, and significantly accelerates the rate of data collection for 

DNA sequencing – current machines are capable of sequencing an entire genome 

http://454.com/products/technology.asp
http://www.illumina.com/technology/next-generation-sequencing.html
http://www.illumina.com/technology/next-generation-sequencing.html
http://www.lifetechnologies.com/uk/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing.html
http://www.lifetechnologies.com/uk/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing.html
http://www.lifetechnologies.com/uk/en/home/brands/ion-torrent.html
http://www.lifetechnologies.com/uk/en/home/brands/ion-torrent.html
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within a couple of weeks. This is likely to be accelerated further, with time, such that 

whole genome sequencing could be achieved within hours to days. Another important 

difference is that NGS technologies are derived from fragment libraries rather than 

depending on vector based cloning, which significantly speeds up the sequencing 

process. The read lengths are shorter: 35-250 base pairs (bp) for NGS compared to 

650-800 bp for capillary sequencers. Finally, there is a significant reduction in the 

costs for NGS: in 2013 it cost approximately $5,000 USD to sequence the entire 

genome of one person [112]. With time this will undoubtedly reduce further. 

 

All NGS platforms first require the construction of a ‘library’ of the DNA to be 

sequenced before the sequencing process that follows. The processes involved in the 

construction of this library begin with random shearing of genomic DNA into 200-

500 bp fragments of different sizes by sound waves, and subsequent ligation by DNA 

ligase of customised synthetic DNA linkers known as adapters, that are covalently 

linked to the end of the DNA fragments [112]. These adapters are universal sequences 

that are specific to each platform, which can be used in later steps to polymerase-

amplify the fragments. The libraries are quantitated very precisely before they go on 

to the amplification process in order to obtain the correct amount of sequence data 

after amplification has occurred. Each of these synthetic library fragments is 

amplified by a few PCR cycles on a solid surface (either a bead or a flat silicone 

derived surface, depending on the platform used) that already has covalently bound 

adapters attached to the surface. These are complementary to the adapters that have 

been attached to the fragments. The amplification of the library fragments on the flow 

cell surface leads to the generation of clusters of fragments, all of which have 

originated from a single fragment.  
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In the Illumina® platform (Illumina Inc., California, USA), which was used in this 

study, the amplified fragments generate clusters by a method known as ‘bridge 

amplification’. In this process the denatured fragment on the flow cell surface anneals 

to an adapter bound to the fixed surface during the first annealing cycle, forming a 

‘bridge’, following which the first extension cycle occurs from the bound and 

annealed adapter using the fragment as a template. This generates 2 strands in a 

bridge which are then denatured in the second cycle, followed by second cycle 

annealing and then second cycle extension. This process occurs around 35 times and 

generates clusters of amplified fragments, which are foci for subsequent sequencing.  

 

Once the clusters have been generated, there is chemical ‘release’ of fragment ends 

that carry the same adapter, and denaturation of the fragments to single strands. There 

is subsequent ligation of a complementary synthetic DNA sequencing primer to the 

linear single stranded cluster DNAs, which provides a free 3’-OH group, which can 

be extended in subsequent stepwise sequencing reactions (see below). The sequencing 

occurs in a direction from the free end down to the surface of the chip. The clusters 

can be regenerated by another amplification process, with release of the other end of 

the bridged fragment, followed by ligation of a second primer and then sequencing. In 

this manner, ‘paired end reads’ are used to generate the sequence. These reads are 

paired with one another during the alignment step of the data analysis process, which 

provides an overall higher certainty of placement than would occur with a single end 

read of the same length.  
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The sequencing method utilised by Illumina® is known as massively parallel 

‘sequencing by synthesis’, in that following the incorporation of each base during 

sequencing there is an imaging step to identify the incorporated nucleotide at each 

cluster. This is achieved by using a process known as reversible dye terminator 

sequencing: all four nucleotides, each with a specific fluorescent label, are provided 

by the fluidics of the instrument into the flow cell; the nucleotide is incorporated 

adjacent to the sequencing primer by a polymerase and is detected by the optics of the 

sequencer; the nucleotide has a ‘block’ incorporated into it at the 3’-OH position of 

the ribose sugar such that a second adjacent nucleotide can only be incorporated after 

steps in which the previous nucleotide is ‘unblocked’ and the fluorescent group is 

cleaved off and washed away. This prevents additional nucleotide incorporation 

reactions by the polymerase. Therefore, the overall series of steps occurs in the 

following sequence: a. the nucleotide becomes added by the polymerase; b. 

unincorporated nucleotides are washed away; c. the flow cell is imaged on both 

surfaces to identify each cluster that is reporting a fluorescent signal; d. the 

fluorescent groups are chemically cleaved, and e. the 3’-OH group is chemically 

cleaved [112]. This series of steps is repeated for up to 150 nucleotide additions, after 

which the second read preparations begin (for reading from the opposite end). To read 

from the opposite end of each fragment cluster (paired end read technology) the 

synthesised strands are removed by denaturation, the clusters are regenerated by 

limited bridge amplification, opposite ends of the fragments are released from the 

flow cell surface and the fragments are primed with the reverse primer. Sequencing 

can then proceed in the opposite direction, as above. 
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The technique of whole genome sequencing can be refined by using a method called 

‘hybrid capture’ to specifically capture exome sequences (the ‘coding’ regions of 

DNA) from a whole genome library by generating synthetic probes specifically for all 

of the exons in which one is interested. These probes are ‘biotinylated’ and adhere to 

fragments of interest. The DNA is purified using magnetic beads that allow the 

specific capture of fragments of interest and the remaining fragments are washed 

away. These fragments can then be sequenced. The process is known as ‘whole 

exome sequencing’ (WES). 

  

The interpretation of the vast amounts of data generated by NGS employs complex 

bioinformatics. The raw sequencing reads need to be aligned to the reference genome 

and the data require ‘cleaning up’ in order to remove duplicates, correct local 

misalignments and calculate quality scores. The number of SNP ‘calls’ is very 

important as this evaluates whether there is adequate and accurate coverage of the 

genome, which will subsequently allow investigators to reliably call true variants as 

variants. Not only is the coverage important (ie the percentage of the genome that has 

been sequenced), but so is the read depth (the number of times the genome base has 

been read) eg 10x, 30x.  

 

The advent of NGS has revolutionised biological research, with significant increases 

in data-production capacity and significant lowering of costs. WES technologies are 

being superseded by whole genome sequencing as costs are falling, which have the 

added benefit of enabling identification of copy number variants and variants in non-

coding regions. At present the technology is being utilised in a research setting but as 
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costs become further reduced, this technology will have a tremendously important 

impact in the clinical setting.  
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1.5 Genetics of Leber Congenital 

Amaurosis and Early Onset Retinal 

Dystrophy  

 
 
Since Donders’ and Leber’s earliest descriptions of Leber Congenital Amaurosis 

(LCA) and the Early Onset Retinal Dystrophies (EORDs), it has become apparent that 

these are a highly heterogeneous group of disorders, both in terms of their molecular 

causes and in their phenotypes. In recent years, until the work towards this thesis was 

completed, the global effort at elucidating the genetic causes of these conditions had 

led to the discovery of 16 different genes, and an additional locus, that contribute to 

the pathogenesis of LCA and EORD. All of the genes, bar one (CRX) display an 

autosomal recessive inheritance pattern. The LCA9 locus had been known for some 

time, but the causative gene at this locus was only identified after this study was 

completed. The wide genetic heterogeneity reflects the different roles of these genes, 

which have a number of functions, including: photoreceptor structure and 

development; retinal function such as phototransduction and the visual cycle; 

transport across the photoreceptor cilium; chaperone functions; and some, as yet, 

unknown functions (Figure 10). There is considerable overlap of the genes that lead to 

LCA and EORD. The variability of the ocular phenotype can relate to the underlying 

molecular cause, but it can also vary between and within families affected by the 

same genetic variants. Typical phenotypes are associated with only a handful of 
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genes. Genotype-phenotype association studies are therefore particularly important 

for widening our understanding of these heterogeneous disorders. 

 

This chapter examines each gene or genetic locus that, until the work towards this 

thesis was completed, have been implicated in the pathogenesis of LCA and EORD. 

A description of the published phenotypes associated with variants in these genes is 

also included. The genes are described in the historic order that they or their loci were 

identified.  

 

 

 

 
Figure 10 – Spatial representation of 14 different LCA / EORD genes and their 
putative roles. Adapted from [46]. AIPL1 predominantly locates to the rod outer 
segments; CRB1 is located in the Müller cell membrane; CEP290, TULP1, RPGRIP1 
and Lebercillin are involved in protein transport through the cilia; RDH12 and 
IMPDH1 are located in the photoreceptor outer segments; LRAT and RPE65 are in 
the membranes of the endoplasmic reticulum of the RPE. 

 

 



86 

1.5.1 GUCY2D (LCA1) 

Following both linkage analysis and homozygosity mapping in 5 unrelated families of 

North African origin, the locus for the putative LCA1 gene was identified in 1995 on 

the short arm of chromosome 17 [113]. The causative gene was subsequently 

identified as the retinal guanylate cyclase 2D gene (RetGC, GUCY2D) (MIM 

600179), located at chromosome 17p13.1 [114]. GUCY2D encodes a human 

photoreceptor specific guanylate cyclase located in the photoreceptor (PR) outer 

segments (OSs), which catalyses the conversion of guanosine triphosphate (GTP) to 

cyclic 3’5’-guanosine monophosphate (cGMP), a key process involved in the 

restoration of PRs to their dark adapted state following excitation by light [115]. 

Mutations in this gene may lead to a state of constant hyperpolarisation of rod and 

cone PR plasma membranes due to the constant closed state of cGMP gated cation 

channels [116]. This leads to a situation equivalent to constant light exposure, in 

which PR cGMP levels do not return to the levels present in the dark adapted state. 

 

Mutations in GUCY2D account for about 11% of cases of LCA and EORD but the 

proportion can vary depending on the ethnic origin of the cohorts studied [109, 110, 

115, 117-124]. There is a higher prevalence of GUCY2D mutations in Mediterranean 

populations. A Mediterranean ancestry was present in 70% of all GUCY2D mutations 

in one LCA cohort [115]. The phenotype associated with mutations in GUCY2D is 

one of severe visual loss from birth (light perception or counting fingers vision), 

roving eye movements, pendular nystagmus, severe photophobia, high hypermetropia 

of +7.00 dioptre sphere (DS) or greater, a normal fundus appearance at birth and an 

un-recordable ERG [115, 120, 124]. The normal fundus appearance may progress 
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with age with the development of pigment migration into the retina and macular 

atrophy. Some patients may show little progression until adult life [120, 122]. 

 

Heterozygous GUCY2D mutations have also been associated with an autosomal 

dominant cone-rod dystrophy (CORD6), with affected individuals displaying 

characteristic macular atrophy and marked loss of cone function, with minimal loss of 

rod function on electroretinography [125-127]. The GUCY2D mutations that lead to 

autosomal dominant cone-rod dystrophy target exon 13 and have been identified to 

target codons 837, 838 and 839 specifically [128].  

 

Functional analysis of recessive missense mutations in GUCY2D in LCA subjects 

demonstrates location-specific effects of the mutations [129]. Missense mutations 

affecting the catalytic domain lead to severely impaired cGMP (basal activity), 

GCAP-1 and GCAP-2 (guanyl cyclase activating proteins) activity, and when these 

mutant cyclases are co-expressed with wild type alleles, the activity of the wild type 

allele is severely reduced, suggesting a dominant negative effect of mutations in the 

catalytic domain. However, in missense mutations affecting the extracellular domain 

there is no effect on basal cGMP activity, but GCAP-1 and GCAP-2 activity is 

reduced by 50%, suggesting that mutations in the extracellular domain moderately 

reduce cyclase activity. Therefore, with mutations in the catalytic domain, and not the 

extracellular domain, the dominant negative effect is expected to reduce GUCY2D 

function in heterozygotes with recessive mutations.  
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1.5.2 RPE65 (LCA2)  

In 1993 an evolutionarily conserved RPE-specific retinol binding protein receptor, 

with a molecular weight of 65kD, was identified and its expression was demonstrated 

to occur prior to the appearance of the photoreceptor outer segments during retinal 

development in rats [130]. Cloning and characterization of the protein revealed the 

533 amino acid structure [131]. The chromosomal locus of the relevant gene was 

subsequently mapped to 1p31 using fluorescence in situ hybridisation [132]. The 

human RPE65 (MIM 180069) gene structure was characterised in 1995 and comprises 

14 coding exons, spanning 20kB [133].     

 

Subsequent studies identified RPE65 as the isomerohydrolase, within the RPE, 

involved in the conversion of all-trans retinyl esters to 11-cis retinol during the visual 

cycle [134-136]. The substrate for this hydrolysis-isomerisation process is provided 

by the preceding step of the visual cycle in which lethicin acyl transferase (LRAT) 

converts all-trans retinol to all-trans retinyl ester. Despite RPE65 expression being 

predominantly in the RPE, studies have identified that it is also expressed in 

mammalian cone, but not rod, photoreceptors [137]. The exact role of RPE65 in cones 

is unknown. It is evident from animal models and from investigation of the phenotype 

in humans with RPE65 deficiency that cones have an alternative source of 

chromophore. Cones utilise an additional pathway to recycle retinoids that involves 

Müller cells [41, 43, 138]. In this alternative cycle, all-trans retinol leaves the cone 

outer segments and, instead of being transported to the RPE, is transported to the 

Müller cells, where it is converted to 11-cis-retinol, and subsequently transported to 

the cone OSs, where it is converted to 11-cis-retinal [139]. Rods, on the other hand, 

are entirely dependent on RPE65 in the RPE to recycle chromophore. This may 
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explain why patients with bi-allelic mutations in RPE65 have evidence of residual 

cone function but absent rod function. 

 

Recent studies using zebrafish, which have cone-dominant retinas, have characterized 

the isomerohydrolase likely to be involved in the cone visual cycle [138]. The 

identified protein, named RPE65c, shares 78% sequence homology with zebrafish 

RPE65a, the orthologue of human RPE65, and contains the key residues responsible 

for RPE65 enzyme activity. Immunohistochemistry has identified that RPE65c 

expression occurs in the Müller cells and inner retina, but not RPE, and that the 

chromosomal location of RPE65c is different to RPE65a. Further studies will be 

necessary to identify the human orthologue of RPE65c, it’s role in the visual cycle in 

humans and potential disease involvement.  

 

Several RPE65 animal models have been characterised, including the naturally 

occurring murine Rpe65rd12 [140] and canine Briard dog models [141, 142], and the 

genetically engineered Rpe65-/- knockout mouse model [143]. These animal models 

have been useful in studies of the underlying biochemical, genetic, functional and 

pathological role of RPE65, and in the development of novel therapeutic strategies. 

The retinal degeneration 12 (rd12) mouse has a naturally occurring homozygous 

nonsense mutation in the mouse orthologue of human RPE65, Rpe65, and shows 

small lipid-like droplets in the RPE from 3 weeks of age [140]. Over time these 

droplets grow larger in size and are associated with rod OS shortening and 

degeneration. Electrophysiological evidence of rod degeneration is evident as early as 

3 weeks of age, however histopathological examination suggests a slower retinal 

degeneration. The phenotype in these mice resembles, to some extent, that which is 
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seen in fundus albipunctatus, a condition caused predominantly by mutations in 

RDH5. The Rpe65-/- knockout mouse was described prior to the discovery of the rd12 

mouse [143]. The visual changes observed in these mice are restricted to rod 

dysfunction, as observed by an abolished rod ERG, with relatively spared cone 

function, thus supporting the hypothesis of an alternative cone system visual cycle. A 

slow retinal degeneration is evident as the retinal anatomy is relatively normal from 

birth, but from 7 weeks of age some loss of density of the rod outer segment discs is 

seen. By 15 weeks the outer segments are short, with inclusions present in the RPE. 

The PR nuclear layers also degenerate slowly. Rhodopsin, 11-cis-retinal and 11-cis-

retinyl esters are not present in Rpe65-/- mice, and there is an over-accumulation of 

all-trans-retinyl esters in the RPE, supporting the hypothesis that RPE65 is essential in 

the isomerisation step within the visual cycle.    

 

The naturally occurring Briard dog has a homozygous 4 nucleotide deletion in RPE65 

and has a phenotype similar to humans affected with mutations in this gene [141, 144-

146], with severe nyctalopia, a normal retina to up to 4 years of age and a severe rod-

cone dystrophy on electroretinography, with better preservation of cone function [141, 

142, 144]. Ultrastructural studies in the RPE of these dogs identify large lipid-like 

inclusions in the central and tapetal retina [145]. Smaller lysosomal inclusions in the 

RPE cytoplasm were detected, as well as disorganisation of the rod outer segments. 

The cone OSs and inner retinal structures were better preserved.  

 

The above animal models harbour mutations in RPE65 that render the function of the 

protein ‘null’. However, of the published RPE65 mutations to date, approximately 

50% are missense variants, and bi-allelic null mutations are extremely rare. Some 
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missense mutations may encode proteins that have residual enzymatic activity [147]. 

In ‘hypomorphic’ mutations, a milder phenotype may exist (see below), and studies 

using knock-in animal models for particular mutations, such as for the R91W Rpe65 

mutation, have been conducted to determine the effect of such missense mutations 

when compared to null mutations [147]. 

 

The overall mutation frequency of RPE65 in early onset retinal dystrophy is around 

6% [24]. The first families to be reported with RPE65 mutations were identified using 

single stranded conformation analysis (SSCA) and harboured a variety of mutations 

including missense, splice site and rearrangements [148-150]. The phenotypes in 

these families also varied, with diagnoses including LCA and EORD to different 

degrees of severity. With further reports of RPE65 retinopathy, the phenotypic 

variability associated with mutations in this gene has been highlighted, with affected 

individuals displaying a wide spectrum of severity, age of onset and progression [27, 

151-157]. The diagnoses range from ‘classical’ LCA, with very severe early onset 

visual loss from birth, through to autosomal recessive RP, with a later age of onset 

and a milder clinical picture. A variety of mutational mechanisms have been 

described (missense, nonsense, insertion – deletion mutations and splicing 

abnormalities) in a variety of combinations. 

 

The ‘classical’ phenotype of RPE65 retinopathy is described as severe visual 

impairment of infantile onset, with nystagmus, nyctalopia, photophilia, visual field 

constriction and an absence of photophobia. The fundus is either normal or 

hypopigmented (a ‘blonde fundus’) with visible choroidal vessels and little to no 

intra-retinal pigmentation [152, 154, 155]. Atrophic macular changes may be present 
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and retinal ‘white dots’ have also been described [14, 154, 156]. The ERG is either 

undetectable or shows severe rod dysfunction with possible residual cone function in 

the young [151, 153-155]. Children may have poor but useful vision in early life such 

that they may be able to attend normal school, however there can be significant 

deterioration in VA by the second decade and some retention of peripheral islands of 

vision into the third decade [151]. In some, however, only rudimentary peripheral 

visual fields are maintained [157]. Colour vision is severely affected across all axes, 

but in those in whom colour vision can be tested, the disturbance appears to 

predominantly affect the tritan axis [27, 153, 155]. A range of refractive errors have 

been documented, however in a report of 10 RPE65 patients, 50% had myopia or 

myopic astigmatism [158]. This group demonstrated absent or very low fundus 

autofluorescence in EORD due to RPE65 mutations. OCT studies have demonstrated 

loss of the central PR layer in young patients, and foveal and extrafoveal outer nuclear 

layer (ONL) thinning corresponding to rod photoreceptor loss [159]. The ONL 

thinning is more prominent inferior to the fovea, however the extent of OCT changes 

is variable. In older subjects (as described in a patient age 43 years), severe retinal and 

RPE thinning may be present, corresponding to the areas of RPE atrophy seen on 

ophthalmoscopy [158]. 

 

Although there is no specific genotype – phenotype association, the presence of 

milder phenotypes suggests hypomorphic allelic function. Marlhens first reported a 

correlation between the severity of disease and the type of RPE65 mutation in a 

compound heterozygote with two missense mutations and a mild clinical picture with 

slow progression [160]. In their series of 20 RPE65 individuals identified from 453 

retinal dystrophy patients, Thompson et al. described one individual with ‘nyctalopia 
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at age 3 years, a diagnosis of RP by age 20 and small islands of residual vision at age 

58’ who had a compound heterozygous mutation (Y79H/E95Q) [151]. Lorenz et al. 

described one subject with a homozygous p.P25L missense mutation who had best 

corrected visual acuities of 6/6 at age 5 and 6/9 at age 7 years [161]. He had reduced 

dark adaptation at age 3, an absence of nystagmus, hypopigmented fundi, and a small 

macular reflex. Goldmann kinetic perimetry at age 6 was normal to the V4e and III4e 

targets, but to the I4e target demonstrated slight constriction. Two-colour threshold 

perimetry detected predominantly cone mediated scotopic responses, and in the 

photopic state, cone responses were 1.5 log units below normal. Fundus 

autofluorescence was low but detectable, and OCT by age 7 showed outer retinal 

thinning. The ERG rod responses were severely impaired but cone mediated 

responses were detectable, albeit with 30% reduced amplitudes. These reports provide 

a convincing case for RPE65 hypomorphic variants causing a milder phenotype. 

Recently a knock-in mouse model with the R91W missense mutation was 

characterised which has comprehensively demonstrated the functional differences in 

the production of 11-cis-retinal and rhodopsin compared to Rpe65 null mutations 

[147]. 

 

The phenotypic heterogeneity associated with RPE65 mutations is further 

complicated by a report of a patient with ‘fundus albipunctatus’ harbouring a 

compound heterozygous RPE65 mutation [15]. In addition, there have been reports of 

heterozygote carriers displaying multiple hard drusen at the posterior pole and mid-

peripheral retina, in some patients associated with rod ERG and dark-adapted 

threshold perimetry dysfunction [154, 157]. 
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1.5.3 SPATA7 (LCA3)  

The LCA3 locus was identified through the analysis of a large consanguineous Saudi 

Arabian family with LCA [162]. Using homozygosity mapping the LCA3 locus was 

mapped to chromosome 14q24, but no obvious positional candidate genes were 

apparent in the identified region. In 2009, after further fine mapping of this region in 

this and other linked families, SPATA7 (MIM 609868) was identified as the causative 

gene [163].  

 

First cloned in 2003 from the rat testis, SPATA7 (spermatogenesis associated protein 

7) cDNA was also found to be expressed in the human testis [164]. In humans, 

SPATA7 consists of 12 exons and maps to chromosome 14q31.3. It encodes a 599 

amino acid protein with one transmembrane domain but no known functional domains 

[163]. In the mouse, Spata7 is expressed in multiple retinal layers including the inner 

segments of photoreceptors, inner nuclear layer and ganglion cell layer. The protein 

appears to be important in retinal function rather than development. Of the two known 

isoforms of SPATA7, isoform 1 is predominantly expressed in neuronal tissues 

including the retina, cerebellum and whole brain [165] and isoform 2 in the testis 

[166]. The exact function of SPATA7 remains to be identified.    

 

The incidence of SPATA7 mutations in LCA and EORD is around 2-3% [165, 166]. 

At the time that this study was conducted the limited phenotypic data available 

suggested that mutations in SPATA7 are associated with a severe LCA-like 

phenotype, but that less severe phenotypes also occur. The affected individuals in the 

original Saudi Arabian family, homozygous for a p.R108X mutation, had poor vision 

from birth, nystagmus, hypermetropic astigmatism and a non-recordable ERG [163]. 
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The same mutation was identified in a Dutch male with poor vision and nystagmus 

from birth who, at the age of 6 years, had retinal pigmentation and peripheral 

chorioretinal atrophy. A less severe phenotype was described in a 7 year old 

Portuguese female harbouring a homozygous nonsense mutation, p.R395X, who had 

juvenile onset RP with early onset nyctalopia, 6/6 visual acuity, an absence of 

nystagmus, severely constricted visual fields to the central 5o and undetectable ERGs. 

A diffuse hypopigmented parafoveal annulus was present. Another patient in this 

series, a male of French Canadian ancestry with a homozygous frameshift SPATA7 

mutation, p.Q465fsX505, carried a diagnosis of juvenile onset RP. He had normal 

vision in childhood, but developed nyctalopia and nystagmus. By age 55 years he had 

advanced retinal pigmentation and maculopathy, with a flat ERG. From their panel of 

134 LCA patients, Perrault et al. identified 4 families harbouring SPATA7 mutations, 

three of which were functionally ‘null’ [166]. All were of European ancestry and had 

a typical LCA phenotype. Photophobia was an initial feature, but by age 3 years all 

had nyctalopia. The retinae were normal initially but gradually developed a ‘salt and 

pepper’ appearance with vascular attenuation, retinal atrophy and typical fundus 

features of RP. There was complete absence of autofluorescence by adulthood. This 

group postulated that due to the expression profile of SPATA7, there may be an effect 

on male infertility, however their only male patient was not of child-bearing age. 

Mutations in SPATA7 thus may be associated with LCA or childhood onset rod cone 

dystrophy. 

 

 

 

 



96 

1.5.4 AIPL1 (LCA4)  

In 2000, linkage analysis in a Pakistani LCA family, in whom mutations in the nearby 

GUCY2D gene had been excluded, led to the identification of a separate LCA locus, 

termed LCA4, located on chromosome 17p13 [167]. The AIPL1 (aryl hydrocarbon 

receptor-interacting protein-like 1) gene (MIM 604392) was subsequently identified 

as the causative gene at this locus in the original LCA4 family [168]. 

 

The AIPL1 protein was named due to its similarity (49% identity) to the human aryl 

hydrocarbon receptor (AhR) interacting protein, AIP [168]. It is comprised of 384 

amino acids, and contains a 34-amino acid motif, that contains 3 tetratricopeptide 

repeats, that are present in proteins with nuclear transport or protein chaperone 

activity [169]. In situ hybridisation studies in rats and mice have shown Aipl1 

expression in the pineal gland and mouse photoreceptors [168]. In humans, AIPL1 is 

expressed in the pineal gland, and in the inner segments and outer plexiform layers of 

the rod photoreceptors in the central and peripheral retina [170]. It is not detected in 

cone photoreceptors in the mature retina. It is, however, expressed in both rod and 

cone photoreceptors of the developing retina, with may explain why there is severe 

and early rod and cone dysfunction in LCA patients with AIPL1 mutations [171].  

 

Early functional studies of AIPL1 have sought clues from the AIPL1 homologue AIP 

(aryl hydrocarbon receptor activated protein 9), which shares 49% identity and 69% 

similarity with AIPL1, and which in turn shares identity with the immunophilin co-

chaperones FKBP (FK506-binding protein) 51 and FKBP52 [172]. The results of such 

studies indicate that these molecules are components of cytosolic heterocomplexes 

[170], which play various functional roles. The ligand-induced transcriptional activity 
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of the AhR (aryl hydrocarbon receptor) is enhanced by AIP, which both stabilizes the 

cytosolic levels and modulates the intracellular localisation of the AhR. Thus the role 

of AIP is to regulate the nuclear translocation and transactivation of the AhR.  

 

AIPL1 interacts and aids with the farnesylation of proteins [173, 174]. Farnesylation 

is a 3-step prenylation process in which post-translational modification occurs at the 

c-terminus of a number of proteins. In the first step, a farnesyl group is covalently 

attached to the protein, in the cytosol. These farnesylated proteins are then targeted to 

the endoplasmic reticulum (ER) in step two, where proteases remove the last 3 amino 

acid residues. In step three, carboxymethylation of the proteins occurs in the ER. The 

farnesylated proteins are subsequently transported to their target membranes. AIPL1 

plays a role in at least one of these steps. The farnesylation process enhances protein-

membrane interactions and protein-protein interactions, and is important for the 

maintenance of the retinal and photoreceptor cytoarchitecture.  

 

Knock down mouse models of Aipl1, in which there is hypomorphic AipL1 function, 

have identified AIPL1 as a chaperone for the biosynthesis of phosphodiesterases in 

rod photoreceptors [175]. AIPL1 is probably also required for the normal 

development of cone photoreceptors. This study has refuted the findings of previous 

studies that AIPL1 is involved in protein farnesylation. In these hypomorphic Aipl1 

mutant retinas, the retinal degeneration occurred more slowly, and by 8 months of age 

half of the photoreceptors were lost and the inner and outer segments were shortened. 

In Aipl1-/- knockout mice photoreceptors initially develop normally, but once outer 

segments begin to develop, the rod and cone photoreceptors degenerate rapidly, in a 

light independent state, and in a process that is mediated by the destabilization of the 
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rod phosphodiesterase holoenzyme [176]. The mechanism by which AIPL1 affects 

the stability of the phosphodiesterase heterotrimer is unknown. AIPL1 and the 

molecular chaperones Hsp70 and Hsp90, may interact in regulating the production of 

phosphodiesterase [177].  

 

The role of AIPL1 in cone photoreceptor viability has been recently investigated 

using a transgenic mouse in which human AIPL1, under the control of a rod specific 

promoter, was expressed in an Aipl1-/- knockout mouse model [178]. This group 

hypothesized that the cone degeneration observed in Aipl1-/- mice may be due to an 

indirect ‘bystander effect’ due to rod photoreceptor death, or due to a direct role of 

AIPL1 in cones. Their findings demonstrated that cone photoreceptors degenerate 

more slowly in mice rescued by the transgenic expression of human AIPL1 in rods 

compared to the Aipl1-/- knockout, and that there is rescue of rod function. In addition 

to this, structural defects were seen in the surviving cones including thinner and 

shorter outer segments with disorganisation of the disc membranes. In the absence of 

AIPL1, the lack of cone function is due to the drastic destabilization of the cone PDE6 

subunits, as observed by the highly reduced levels of cone PDE6 in the transgenic 

mice. This study demonstrates that AIPL1 is required for cone function and survival 

but that in the presence of viable rods there is a reduced rate of cone degeneration.  

 

The incidence of AIPL1 mutations in LCA and EORD is 5.3% [24]. The original 

LCA4 family was subsequently identified to harbour the homozygous variant 

p.Trp278X [167, 168]. This has subsequently been identified to be the most common 

mutation associated with AIPL1 disease reported in both the homozygous and 

compound heterozygous states [179, 180]. One compound heterozygous subject 
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harbouring the variants p.Trp278X and p.Gly122Arg has been described with a milder 

phenotype, suggesting that the p.Gly122Arg variant acts as a hypomorphic allele 

[179]. 

 

The phenotype associated with AIPL1 mutations is typical of LCA, with severe visual 

loss from birth or within the first few months of life, nystagmus and nyctalopia [167, 

168, 179-183]. Visual acuity ranges from between 6/120 to no light perception [181, 

183]. There is predominantly a hypermetropic refractive error. Keratoconus and 

cataract are common [167, 179-181]. Characteristic fundus features include a 

maculopathy and pigmentary retinopathy. However, the severity of these features may 

be variable, and in some cases, age related. In the youngest patients, below 3 years of 

age, the retina may appear normal [180, 181]. The mildest maculopathy is described 

as an indistinct foveal reflex while the most severe appear as macular ‘colobomatous’ 

lesions. A pigmentary retinopathy over the age of 3 years is universal. Fundus 

autofluorescence imaging may show a hyperautofluorescent fovea with a 

hypoautofluorescent surrounding annulus or show complete lack of autofluorescence, 

corresponding with severe macular atrophy [179, 180]. 

 

 

1.5.5 Lebercilin (LCA5)  

The LCA5 locus was mapped to chromosome 16q11-16 in 2000, through linkage 

analysis of a consanguineous family belonging to the Old Order River Brethren, a 

religious isolate originating from Switzerland which emigrated to America in the 

1750s [184]. Three retina specific genes were excluded as the disease-causing gene in 

three affected members of this kindred. A second consanguineous family from 
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Pakistan was subsequently described in 2003 that also mapped to this region [185]. 

However, it was not until 2007 that the causative gene, LCA5 or lebercilin (MIM 

611408), was identified through homozygosity mapping of these two, and 4 other, 

families linking to the same region [186].  

 

LCA5 encodes a 697 amino acid ciliary protein containing 4 regions that are predicted 

to form coiled coils, a feature that is shared with some other ciliary proteins [186]. 

Lebercilin is expressed widely in human tissues. Murine in situ hybridisation studies 

have demonstrated that lebercilin expression occurs during embryogenesis and it is 

present in the eye, inner ear, kidney, central and peripheral nervous systems, gut and 

the ciliated epithelium of the nasopharynx, trachea and lungs. In adult mice, 

expression is confined to the retinal photoreceptors. Immunohistochemical studies of 

ciliated cells have localised lebercilin to the ciliary axoneme at the base of primary 

cilia. In the eye it is localized to the connecting cilium and basal bodies of 

photoreceptor cells, in particular to the axonemal microtubules of the connecting 

cilium. Proteins that interact with lebercilin exist as an ‘interactome’ that consists of 

24 proteins, many of which are associated with microtubules and/or have centrosomal 

or ciliary functions. This interactome specifically interacts with the intraflagellar 

transport (IFT) machinery that is involved in protein transport through the 

photoreceptor cilia [187]. A defect in IFT results in the failure of outer segment 

formation, causing photoreceptor degradation. 

 

The phenotype associated with LCA5 mutations is one with severe visual loss from 

birth, nystagmus, nyctalopia and an unrecordable ERG [184-186, 188-191]. Subjects 

are highly hypermetropic, have poor colour vision and pupillary responses. Visual 
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acuity ranges from 0.20 to light perception, and kinetic perimetry may detect only a 

small central area of retained vision. Anterior segments are normal, except in one 

recent report, which identified affected individuals with keratoconus and spoke-like 

cataracts [191]. Macular atrophy is a striking and frequent finding; in its mildest form, 

this may appear as mild perifoveal atrophy, but with age the atrophic macula becomes 

pigmented and takes on the appearance of a macular staphyloma [185]. Funduscopy 

in the youngest subjects shows widespread RPE atrophy and white dots, or a ‘salt and 

pepper’ pigment distribution [185]. With age, RPE atrophy becomes more 

widespread, bone spicule pigmentation or a ‘salt and pepper’ fundus may be seen and 

there is arteriolar attenuation [184, 185, 188, 189, 191]. There is a low 

autofluorescence signal corresponding to the macular atrophy [190]. OCT shows 

disorganized and abnormal retinal lamination eccentric to the fovea, that takes on a 

‘bilaminar’ appearance, with loss of the photoreceptor and outer nuclear layers, 

suggestive of retinal remodeling [190]. At the fovea the photoreceptor layer may be 

retained, although the IS/OS junction may be ill defined, and the foveal ONL 

thickness reduced, suggestive of loss of cones. Although lebercilin is expressed in a 

number of tissues, there have been no reports of extraocular abnormalities in LCA5 

mutations. One subject with LCA5 retinopathy died from asphyxia and the authors 

propose that there may be a connection between the cause of death and the presence 

of lebercilin in the ciliated epithelial cells of the bronchi [189].    

 

 

1.5.6 RPGRIP1 (LCA6) 

LCA6 was identified through studies investigating the molecular pathogenesis of the 

retinitis pigmentosa GTPase regulator (RPGR) gene, mutations in which account for 
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up to 60% of X-linked RP, and which are also implicated in X-linked cone, and X-

linked cone-rod dystrophy [192-196]. Yeast two-hybrid experiments, which allow the 

identification of the interacting partners of a particular gene by investigating the 

modular nature of transcription factors, were performed for RPGR by 3 independent 

groups in 2000 [197-199].  

 

At that time, as the only identified mutations within RPGR were located within its 

RCC1-homolgous domain (RHD), Roepman et al utilized RPGR and RHD in two-

yeast hybrid studies to identify several novel and retina-specific gene products that 

were alternatively spliced from the same gene that was localized to chromosome 

14q11 [199]. They named them RP GTPase regulator-interacting protein 1 (RPGIP1) 

isoforms and identified that they each contain an RPGR interacting domain at the C 

terminal and have stretches of coiled coil domains that share homology with proteins 

involved in vesicular transport. In human and bovine rod photoreceptor outer 

segments these proteins co-localise with RPGR. Mutations in RPGR lead to impaired 

interaction between these two proteins, suggesting that they could be candidate genes 

for RP. They suggested that RPGRIP1 might belong to a family of proteins that play a 

role in vesicular-transport and have neurone-specific function. 

 

Concurrently, Boylan et al identified the RPGR interacting protein RPGRIP1 [197]. 

They identified two human RPGRIP1 orthologues, which are expressed in the retina 

and testis. They also mapped the RPGRIP1 gene to 14q11.  Studies of murine retinal 

cDNA also identified an RPGR interacting protein that, in contrast to the views of 

Roepman et al., was exclusively localised to the photoreceptor connecting cilium 
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[198]. The authors concluded that RPGRIP1 is involved in regulating protein 

transport to or from the OS, through the connecting cilium. 

 

RPGRIP1 (MIM 605446) was first identified as a cause of LCA in 2001 [200]. 

Subsequent studies have determined the prevalence of RPGRIP1 mutations in LCA to 

be 4.2% [24]. The phenotype associated with null mutations in RPGRIP1 is typical of 

LCA and consists of severe visual loss and nystagmus from early childhood [200]. 

Nyctalopia and photoaversion are uncommon [182, 201]. Visual acuity is poor and 

ranges between 20/100 to no light perception [183, 200, 201], and hypermetropic 

refractive errors predominate [182, 183]. The retinal appearance is variable; being 

described as normal, unassociated with pigment, having circumferential bone spicule 

pigment or having drusen-like deposits [182, 200]. Vascular attenuation is widespread 

and macular atrophy, if present, may be seen by the third decade [200, 201]. There 

has been one report of 4 families diagnosed with cone rod dystrophy and mutations in 

RPGRIP1, in which the affected individuals had poor vision, colour blindness and 

severe photophobia from childhood, with variable fundus changes consisting of 

‘granularity’ in the retina, macular degeneration and a bull’s eye maculopathy [202].  

 

 

1.5.7 CRX (LCA7)  

The cone-rod homeobox (CRX) gene (MIM 602225) was the third gene to be 

identified in the pathogenesis of LCA [9]. It is a member of the highly conserved 

orthodenticle-related (otx) family of homeobox genes, encoding a 299 amino acid 

protein with a molecular mass of 32kDa [203]. This gene was first identified in the 

mouse retina and was found to be expressed in developing and mature photoreceptor 
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cells. It is required for the differentiation of photoreceptor outer segments and is 

essential for photoreceptor cell survival [204].  

 

CRX acts synergistically with neural retinal leucine zipper (NRL) in transactivating 

Rhodopsin [205]. It also regulates the expression of several other photoreceptor 

specific proteins including rhodopsin, the cone opsins, interphotoreceptor retinoid-

binding protein, E-phosphodiesterase, and arrestin. Both NRL and CRX can 

independently induce rhodopsin promoter activity but the leucine zipper of NRL 

interacts with CRX and this leads to the establishment and maintenance of 

photoreceptor function [206]. 

 

In 2002 the human and murine gene structure of CRX was characterised [207]. Human 

CRX has a molecular mass of 25Kb and is comprised of 6 exons, while murine crx is 

15Kb and comprises 4 exons. Both share an evolutionarily conserved promoter 

containing OTX/CRX and SP1/AP1 binding sites that lead to two different transcripts 

that are conserved in both species. The human gene has an additional human specific 

promoter that leads to 5 further transcripts.  

 

The otx family of homeobox genes includes PAX6, OTX1 and OTX2, which are also 

essential to ocular development [208]. The homeodomain of human CRX has 88%, 

86% and 88% identity to mouse OTX1, OTX2 and drosophila otd homeodomains 

respectively, and 60% identity to the homeodomain of other OTX-related proteins 

such as Ptx1/Potx [203]. The conserved sequences lie in the OTX tail at the carboxyl 

terminus and in other regions of these proteins. Animal studies have demonstrated 

that crx-/- mice fail to develop photoreceptor outer segments and have a thin outer 
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nuclear layer, while crx+/- mice develop short outer segments early in development, 

which eventually grow to the same length as those in wild type mice [209].  

 

Pathogenic mutations in CRX were first identified in autosomal dominant cone rod 

dystrophy [204, 210]. Subsequently, a patient with LCA was identified with a 

heterozygous CRX mutation in whom the second mutation was not found [9]. Until 

that time, it had been considered that LCA was exclusively inherited in an autosomal 

recessive manner. However, in the report by Freund et al. the identification of only 

one heterozygous variant left open the possibility that these changes represented de 

novo mutations in autosomal recessive disease, in which a second mutation was not 

found, or that this was a de novo mutation in autosomal dominant disease. The parents 

of the affected patient did not carry the mutations and had normal phenotypes, 

suggesting the latter scenario. Subsequent studies have expanded the phenotype of 

LCA associated with mutations in CRX, and suggest that the condition is 

predominantly inherited in an autosomal dominant manner [211-219].  

 

Phenotypic variability has been described within the cohorts of patients screened and 

identified with CRX mutations, who have diagnoses of autosomal dominant cone rod 

dystrophy and LCA [211, 212]. CRX mutation frequency in LCA is reported to be 1% 

[24]. The phenotype is typical of LCA, with poor vision from birth or early infancy, 

roving nystagmus, nyctalopia, constricted visual fields and undetectable ERGs. Visual 

acuity loss is usually very severe, ranging from between counting fingers to no light 

perception vision, although there have been some reports of better vision [217, 218]. 

At a younger age the retina may be normal or have a granular appearance, with RPE 

atrophy and white spots [211, 212, 215]. At this age the macula can appear irregular, 
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granular or atrophic, with RPE atrophy [211, 213-216, 219]. At an older age there 

may be varying degrees of pigment clumping that may be confined to the retinal 

periphery, with widespread RPE atrophy [211, 212, 217, 218]. In addition, there is 

severe macular atrophy, which can appear colobomatous [212, 213, 216].  

 

In keeping with the autosomal dominant nature of inheritance, almost all of the LCA-

associated CRX mutations identified to date have been in the heterozygous state. 

Unaffected parents have been reported to not carry the mutation, indicating that de 

novo mutations occur relatively frequently in CRX associated LCA [9, 212, 214-216, 

220]. It has been proposed, however, that the heterozygous mutations identified in 

these subjects may be explained by the presence of an unidentified mutation on the 

other CRX allele, in autosomal recessive disease, or that there may be a mutation on 

another gene that would suggest digenic inheritance [221]. To date, all but one 

mutation has been identified in the final exon of CRX. Missense mutations 

predominantly affect the homeodomain (a region of the protein comprising 20% of all 

amino acid residues) and frame shift mutations generate premature stop codons and 

predominantly affect the OTX domain (encoded by the final exon). Only one family 

has been described with a null mutation affecting the first exon of CRX [220]. In this 

family the p.Pro9(1-bpins) mutation was heterozygous in both the proband, who had 

LCA and other systemic abnormalities, and in the unaffected father. In this family, a 

number of possibilities arise: if the condition is inherited in an autosomal dominant 

manner, it is likely to be incompletely penetrant; the father may display mosaicism 

and hence not display the retinal phenotype; the condition could be inherited in an 

autosomal recessive manner in which the second CRX allele was not identified; or that 

CRX is not the causative gene in this family [221]. 
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There is only one report of a homozygous CRX mutation in a family with LCA that 

could suggest autosomal recessive inheritance [222]. Although the proband, who was 

from a non consanguineous family, had features consistent with LCA and carried the 

homozygous mutation p.W90R, the parents carried the mutation in the heterozygous 

state and they subsequently developed visual symptoms later in life and had signs of 

photoreceptor degeneration. It has therefore been proposed that in this family, a ‘semi 

dominant’ mode of inheritance exists in which the phenotype is severe in the 

homozygous state and milder in the heterozygous state [221].  

 

 

1.5.8 CRB1 (LCA8)  

The 1q31-q32.1 locus was identified by linkage analysis in a large Dutch family with 

autosomal recessive retinitis pigmentosa (ARRP) and preserved para-arteriolar retinal 

pigment epithelium (PPRPE) in 1994 (RP12) [223]. The causative gene was 

subsequently identified as the crumbs homologue 1 gene (CRB1) (MIM 604210), so 

called due to homology to the Drosophila Crumbs (CRB) protein [224]. The CRB 

proteins are highly conserved throughout evolution and were first characterised in 

Drosophila melanogaster [225]. CRB is required to maintain epithelial cell polarity, 

and is located in the zonula adherens, a cell-cell adherens junction located at the 

apical surface of cells of epithelial origin, including photoreceptor cells in Drosophila 

and vertebrates, and vertebrate Müller glial cells [226, 227]. CRB is also required for 

the morphogenesis and maintenance of the vertebrate and invertebrate retina [228]. In 

the adult mouse retina, Crb1 is present in the apical region of all retinal epithelial 

cells, the rod and cone photoreceptors and Müller glial cells.  
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The CRB1 gene consists of 4,361 base pairs, comprising 11 exons, and encodes a 

1,376 amino acid protein [224]. RT-PCR analysis identified CRB1 expression in 

human neural retina and brain, but not in the RPE or any other extra-ocular structures. 

The predicted protein sequence consists of a signal peptide, 19 EGF-like domains, 3 

laminin A G-like domains and a C-type lectin domain.  

 

The phenotype associated with mutations in CRB1 is variable. First described in 1982, 

autosomal recessive RP with relative preservation of the RPE adjacent to and under 

retinal arterioles (RP12) has now been reported in a number of families [229]. This 

condition is characterised by early onset progressive visual field constriction, 

hypermetropia, nystagmus, optic nerve head drusen, vascular sheathing and RP with 

preserved para-arteriolar RPE (PPRPE) (MIM 600105). CRB1 mutations are also 

associated with LCA and EORD, with a prevalence of 7-13% in this group of 

disorders [53, 124, 230, 231]. In addition, CRB1 mutations have been detected in 

subjects with RP without PPRPE [232], in asymptomatic subjects with pigmented 

paravenous chorioretinopathy [233] and in RP subjects who developed a Coats-like 

exudative vasculopathy, characterised by peripheral retinal telangeictasia and 

extravascular yellow sub-retinal lipid exudation, that may progress to an exudative 

retinal detachment [53, 230]. 

 

The phenotype in subjects with LCA or EORD that harbour mutations in CRB1 is 

particularly distinctive. In a large series, CRB1 mutations were identified in 12% of 

subjects with LCA, EORD and ARRP [53]. The condition is clinically progressive, 

with visual acuity at counting fingers or worse by the fourth decade. Hypermetropia is 
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common. Widespread sub-retinal white dots and macular atrophy occur from infancy, 

with characteristic deep nummular pigmentation at the level of the RPE developing by 

later childhood. This may become more extensive with age, and PPRPE, particularly 

associated with peripheral retinal telangeictasia, is highly suggestive of CRB1-related 

disease. OCT imaging characteristically identifies retinal thickening around the foveal 

pit and disorganised retinal lamination with coarse outer and inner zones, resembling 

the normal immature retina [234]. Preservation of the retinal layers has been 

identified in younger patients, but at an older age there may be coarse retinal 

lamination and loss of the outer limiting membrane or atrophy of the macula with loss 

of the central macular volume, suggesting that the retinal changes may not represent a 

developmental abnormality but that there is loss of the normal architecture over time 

[53]. Intra-retinal cysts have additionally been described as a common feature in LCA 

and EORD associated with mutations in CRB1. 

 

 

1.5.9 LCA9 locus  

The LCA9 locus was identified in a study of a large consanguineous Pakistani family 

with LCA in 2003 [235]. The affected family members displayed typical features of 

LCA, with widespread pigmentation in the retina, retinal white spots, optic disc pallor 

and macular staphyloma. Linkage analysis in this family identified a 10 cM region of 

autozygosity between the markers D1S1612 and D1S228 on chromosome 1p36. This 

region contains at least 5.7 Mb of DNA and, at the time of identification of this locus, 

contained around 50 genes. For many years the causative gene at this locus remained 

unidentified, and a number of techniques were utilised, including candidate gene 

screening in an attempt to identify the gene. At the time that the work presented in 
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this thesis was being carried out, the causative gene at the LCA9 locus had not been 

identified.  

 

However, in 2012, the gene nicotinamide nucleotide adenylyltransferase (NMNAT1) 

was identified simultaneously by 4 different groups, using exome sequencing, as the 

causative gene at the LCA9 locus [236-239]. NMNAT1 (MIM 608700) encodes a 279 

residue protein that plays an important role in NAD+ biosynthesis, in that it catalyses 

the formation of NAD+ from nicotinamide mononucleotide (NMN) and ATP [239]. It 

is a well-conserved protein with embryonic lethality in knockout mice and death in 

null mutations in Drosophila melanogaster.  NMNAT1 is also necessary for cell 

signaling and DNA metabolism [236]. Subjects with NMNAT1 mutations have a 

severe LCA phenotype but have normal general health [237]. The retinal appearance 

is characterised by severe macular atrophy and pigmentation, with scattered 

peripheral retinal pigmentation [236, 237]. Vision is severely reduced to between 

counting fingers and nil light perception.  

 

 

1.5.10 CEP290 (LCA10)  

In 2006, linkage analysis in a consanguineous French Canadian LCA family with four 

affected siblings identified a region on chromosome 12q21-q22 containing fifteen 

genes including CEP290 (MIM 610142) [240]. This gene had recently been identified 

to cause Joubert syndrome-related disorders [241]. Sequencing of all 53 exons and 

splice junctions in this family identified only one synonymous sequence variant in 

exon 21 that was predicted to have an effect on exon splicing [240]. However, RT-

PCR analysis in one of the affected siblings did not identify aberrant splicing of exon 
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21. Subsequent RT-PCR analysis of the entire CEP290 mRNA identified an aberrant 

splice product, and sequencing identified that a 128bp cryptic exon had been inserted 

between exons 26 and 27, that had introduced a stop codon immediately downstream 

of exon 26. Further sequencing of the genomic DNA identified a mutation in the 

intronic sequence (c.2991+1655A>G) that created a strong splice donor site and 

which had inserted the cryptic exon into the CEP290 mRNA. In a subsequent screen 

of 76 unrelated LCA families, this intronic mutation was identified in 4 patients in the 

homozygous state and in 12 patients in the heterozygous state. In the 12 heterozygous 

patients, the second mutation was identified in CEP290, confirming the autosomal 

recessive inheritance pattern with this gene. 

 

Further CEP290 mutations in families with Joubert syndrome-related disorders and 

Senior Loken syndrome were identified and the protein was characterised [242]. 

CEP290 encodes centrosomal protein 290 (also known as nephrocystin 6, NPHP6), 

spans 55 exons, and 93.2kb on human chromosome 12q21.32. This is a multi-domain 

protein found in the centrosomes and nuclei of renal epithelial cells and in the cilia of 

retinal photoreceptors. The rd16 mouse, which has early onset retinal dystrophy and 

absent olfactograms, suggesting anosmia, was found to harbour an 897bp in-frame 

deletion in Cep290 which led to the formation of truncated CEP290 [243, 244]. 

Murine CEP290 is similar to human CEP290 and localises to the centrosomes of 

dividing cells and the connecting cilium of photoreceptors. It is present in complex 

with other centrosomal and microtubule based transport proteins including RPGR, 

RPGRIP, dynactin subunits, kinesin subunit KIF3A, J-tubulin, centrin and ATF [242, 

243], and has a role in the regulation of intracellular protein trafficking. In this mouse 

model, the misrouting and redistribution of phototransduction proteins leads to 
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photoreceptor degeneration; the connecting cilia themselves do not show any obvious 

structural abnormalities.  

 

A detailed study of the single cell green alga with 2 flagella, chlamydomonas 

reinhardtii, in which most of CEP290 is deleted, identified that CEP290 forms part of 

a complex linking the flagellar membrane to microtubules in the transition zone, and 

regulates the entry of proteins into the cilium [245]. The transition zone is a short 

region of the cilium between the basal body and the axonemal microtubules where the 

triplet microtubules of the basal body transition into the axonemal doublets [246].  

 

The phenotype associated with mutations in CEP290 varies from isolated blindness 

(LCA) to the lethal Meckel-Gruber syndrome (MKS) [247, 248]. Other partially 

overlapping, yet distinct, disorders caused by CEP290 mutations include Joubert 

syndrome-related disorders and Senior Løken syndrome [241, 249, 250]. The 

phenotype in the original French Canadian family was typical of LCA, with blindness 

or severe visual impairment from birth, roving nystagmus from 6 weeks, high 

hyperopia, the oculodigital sign, keratoconus and cataract [240]. The retinal 

appearance ranges from looking normal in infancy, to one with vascular attenuation, a 

mottled RPE, intra-retinal white dots, a salt and pepper appearance, and subsequent 

specular pigmentary retinal degeneration with or without nummular pigmentation in 

adulthood [240, 251, 252]. The macular appearance is also variable and may be 

normal, show a blunt foveal reflex, have a bull’s eye appearance or late geographic 

atrophy [251, 253]. A milder phenotype, in which the vision was 20/40 at best, was 

reported in a family with a CEP290 mutation that induces exon skipping [254]. OCT 

imaging studies have described preservation of the outer nuclear layer at the central 
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macula in the first few decades of life, with an age related centrifugal thinning of this 

layer when extending into the perifoveal area [253, 255]. The PR inner segment / 

outer segment junction is poorly defined in the central macula and is invisible in the 

periphery. The demonstration that in cone rich areas (ie the fovea) there is normal 

photoreceptor lamination without thinning and a detectable RPE, leads this group to 

suggest that CEP290 patients may be amenable to cone photoreceptor targeted 

therapeutic strategies. AF imaging has revealed a hyperautofluorescent ring around 

the macula [252].  

 

Cilia are essential for many different cell types and are highly conserved organelles. 

The extensive presence of cilia throughout the body may account for the wide range 

of phenotypes associated with mutations in genes that encode ciliary proteins. The 

olfactory system contains sensory neurons that terminate in dendritic knobs 

containing basal bodies, from which numerous sensory cilia that compartmentalise the 

signaling molecules required for odour detection, project towards the nasal mucosa 

[244]. Olfactory investigation in CEP290 mutation has identified severe dysfunction 

in one family with LCA, and reduced electro-olfactogram responses in rd16 mice, 

demonstrating anosmia. The mechanism of this olfactory dysfunction is due to the 

altered ciliary localisation of olfactory G proteins in the olfactory sensory neurons. In 

addition to this, abnormal respiratory cilia in the nasal epithelial cells of CEP290 

LCA patients, which are short, rarefied and possess abnormalities of several axonemal 

components, has been described [256]. These findings suggest an additional role of 

CEP290 in the development of respiratory cilia in addition to photoreceptor cilia. 
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Mutations in CEP290 are reported to represent the most common cause of LCA in 

European cohorts, comprising up to 30% of cases [24, 119, 240, 251, 252, 257]. 

However, the incidence of CEP290 mutations in other cohorts worldwide is almost 

zero [258-260].  The majority of mutations described in CEP290 are protein 

truncating, caused by nonsense or frame-shift mutations [247]. The most frequent 

variant, a probable founder mutation, is the intronic variant c.2991+1655A>G 

described in the original French Canadian family, which accounts for up to 89% of 

CEP290 mutations in Northern European cohorts [24, 251, 252]. It was hypothesised 

that in CEP290 related LCA, there is a small amount of functioning residual wild type 

protein, resulting in a dosage-dependent mechanism with sufficient residual CEP290 

activity for normal cerebellar and renal function but not for photoreceptor function; 

and that loss of function from both alleles leads to Joubert syndrome [240]. However, 

this hypothesis has since been debated as families with truncating mutations on both 

alleles have been identified with LCA [251]. The c.2991+1655A>G mutation had 

been considered to lead solely to LCA, but there have now been reports of LCA 

families who carry this mutation who have additional renal dysfunction [252].  

 

CEP290 disease remains a highly heterogenous condition and there is no clear-cut 

correlation between genotype and clinical expression. In general, mutations leading to 

Joubert syndrome-related disorders tend to cluster in the second half of the gene, 

while there is a more homogeneous distribution to the mutations segregating with 

LCA, Senior Løken syndrome and MKS [247]. This clinical variability may be due to 

second-site modifier alleles that encode proteins that also comprise the ciliary 

proteome. Variants in genes such as AHI1 (associated with Joubert syndrome-related 

disorders), TMEM67 (associated with a number of clinical phenotypes) and NPHP4 



115 

(associated with nephronophthisis and Senior Løken Syndrome) may affect the 

interaction and function of CEP290. Conversely, variants in CEP290 may affect the 

phenotype caused by mutations in other ciliary genes.   

 

 

1.5.11 IMPDH1 (LCA11)  

Mutations in the IMPDH1 gene (MIM 146690) were initially identified in autosomal 

dominant retinitis pigmentosa [261, 262]. In a subsequent screen of different retinal 

phenotypes, 2 subjects with pathogenic heterozygous variants in IMPDH1, one with 

LCA and the other with EORD, were identified [263]. One child was diagnosed with 

LCA at 8 months of age as he did not fix or follow and had roving nystagmus. He had 

hypotonia and developmental delay. His retina showed diffuse RPE mottling, no 

pigment and an identifiable macular reflex. The second child had nyctalopia and 

reduced peripheral visual fields, and was diagnosed with an early onset retinal 

dystrophy phenotype at age 33 months. Her vision was 20/40 and she had moderate 

hypermetropia. Her fundus was de-pigmented, with vascular attenuation and optic 

nerve pallor. Both mutations were considered de novo, and may lead to an inheritance 

pattern consistent with autosomal dominant inheritance. IMPDH1 associated LCA is 

extremely rare, and has not been identified in other studies worldwide of LCA 

screening [118, 119, 124, 201, 252, 258-260]. 

 

IMPDH1, found on chromosome 7q32.1, encodes inosine monophosphate 

dehydrogenase type 1 (IMPDH1), a highly conserved, widely expressed, 

housekeeping gene [263, 264]. It catalyses the rate limiting step of de novo guanine 

synthesis by oxidizing inosine monophosphate to xanthosine-5’-monophosphate with 
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reduction of nicotinamide adenine dinucleotide (NAD). Humans have 2 IMPDH 

genes: 1 and 2. Although IMPDH1 is found in many tissues, its expression is highest 

in the retina, particularly the inner segments [264]. These retina specific isoforms may 

explain why mutations in IMPDH1 restrict the phenotype to the retina.  

 

 

1.5.12 RD3 (LCA12)  

Following the identification of Rd3 gene in the RD3 mouse, which has early onset 

retinal degeneration, the first family with RD3 associated LCA was discovered [265]. 

Mutations in RD3 (MIM 180040) are an extremely rare cause of LCA and by the time 

that work towards this thesis had been completed, this was the only family to be 

reported with an RD3 mutation.  

 

Human RD3 is located on chromosome 1q32.1, and encodes a 22 KDa protein with 2 

putative coiled coil domains that are presumed to be protein interaction sites. In the 

mouse, Rd3 is preferentially expressed in the retina, with increased expression in 

early post-natal development. The exact function of RD3 is not completely 

understood. It is known to co-localise and interact with guanylate cyclases 1 and 2 

(GC1 and GC2) in the rod and cone photoreceptors of normal mice, and one study 

proposed that it mediates the export of GC1 (encoded by GUCY2D) from the 

endoplasmic reticulum to endosomal vesicles, playing a crucial role in the stable 

expression and in the photoreceptor membrane trafficking of GC1 and GC2 [266]. 

Subsequent studies have proposed that RD3 inhibits GUCY2D activity and may play 

a role in retinal maturation [267]. 
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The phenotype described in the original RD3 family, a consanguineous family of 

Indian origin, is typical of LCA, with poor vision from birth, nystagmus, macular 

atrophy, RPE mottling and both macular and peripheral pigmentation [265].  

 

Since the work towards this thesis was carried out, further families with RD3 

mutations have been identified [268, 269]. A multiply consanguineous Kurdish family 

with 6 affected individuals was studied in detail, and found to have a typical LCA 

phenotype with poor vision from birth (never better than 1.12 logMAR) that 

deteriorated with age to light perception, severe nystagmus, photosensitivity, sluggish 

pupils, and a low hypermetropic refractive error that progressed to myopia [268]. The 

fundus appearance below 2 years was normal, but progressed to one with attenuated 

vessels, a reduced macular reflex that eventually became atrophic and a mottled 

peripheral retina by the third decade with bone spicule pigmentation. The OCT 

showed severely disorganised photoreceptor and RPE layers and a very poor 

autofluorescence signal was attained. The GVF was severely reduced to less than 20 

degrees and the ERG was un-recordable.  

 

A subsequent worldwide collaborative study has identified 7 further families, from 

574 LCA families, giving a prevalence of 1.21% [269]. Photoaversion and low, if any, 

hypermetropia were common findings, with visual acuity reaching counting fingers, at 

best. In addition to the most frequent features of LCA, these patients had macular 

abnormalities ranging from ‘rearrangement’ to atrophy, little to no retinal 

pigmentation, and RPE atrophy with a salt and pepper fundus.  

 



118 

All human RD3 mutations to date cluster in exon 2, and six of 9 families described are 

of Mediterranean origin, suggesting mutations ‘hotspots’ or an ancient founder 

mutation in this region. The phenotype bears strong resemblance to that associated 

with mutations in GUCY2D, also more common in Mediterranean populations, and it 

has been recommended that LCA patients with a cone rod phenotype who have 

moderate to no hypermetropia, and are of Mediterranean origin, should have RD3 

screening prior to the screening of other cone related LCA genes such as GUCY2D, 

CEP290 or RPGRIP1 when searching for the causative gene [269].  

 

 

1.5.13 RDH12 (LCA13)  

The first human RDH12 (MIM 608830) mutation was identified in 3 consanguineous 

Austrian families with early onset retinal dystrophy, following microarray analysis 

that identified a region that overlapped with the region containing the putative LCA3 

gene [270]. This region contained 29 genes and RDH12 was selected as a candidate 

gene due to its location in the retina and role as a retinol dehydrogenase that was 

proposed to function in the visual cycle. All three families harboured the same 

c.677A>G variation, suggesting a founder mutation for retinal dystrophy in Western 

Austria. Concurrently, screening of a panel of unrelated LCA subjects in France 

identified a significant subset (4.1%) of patients with a range of mutations in RDH12 

[271]. The mutation spectrum in this gene was further expanded through a screening 

of 1011 autosomal recessive retinal dystrophy patients, at a prevalence of 2.2%, and 

haplotype analysis in the original LCA3 family excluded RDH12 as the causative gene 

in this locus [272]. 
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RDH12, located on chromosome 14q23.3, encodes a 35KDa protein, retinol 

dehydrogenase 12, which is a member of the short chain alcohol dehydrogenase / 

reductase superfamily that catalyse the transformation of retinol to retinal [273]. This 

family of enzymes has been the subject of much study and the specific role of RDH12 

in the visual cycle remains to be elucidated. RDH12 is localised to the inner segments 

of both rod and cone photoreceptors and has dual substrate specificity in that it can 

utilise both cis- and trans- retinoids as substrates [273], and it is also active against 

medium chain aldehydes [274]. The RDH12-/- knock out mouse has a milder 

phenotype than in human RDH12 mutations, suggesting that the role of murine 

RDH12 is different to humans [275]. In this knock out mouse however, dark 

adaptation is slower and all-trans-retinal accumulation occurs after excessive 

bleaching, albeit less than in the RDH8-/- mouse, suggesting that RDH12 contributes 

less to all-trans-retinal reduction than RDH8. However, RDH12-/- mice are more 

susceptible to light induced apoptosis, suggesting that RDH12 has an important role 

in photoreceptor protection from all-trans-retinal accumulation during excessive 

illumination.   

 

There are separate visual cycles in rods and cones. In the rod visual cycle, RDH12 

appears to function with, but contributes less than, RDH8 in the reduction of all-trans-

retinal in the photoreceptor [276].  In cones, some all-trans-retinal is transported out 

to Müller cells, isomerised to 11-cis-retinol, and then transported to cones for 

oxidation to 11-cis-retinal [48, 277].  Whether RDH12 plays a role in this process 

remains to be elucidated. Since the work towards this thesis was carried out, an 

additional role for RDH12 in rods has been hypothesised to be in the protection of 
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inner segment organelles against aldehyde toxicity caused by intracellular leakage of 

all-trans-retinal and other aldehydes, originating from the outer segments [44].   

 

The phenotype associated with human RDH12 mutations is of an early onset retinal 

dystrophy with symptoms beginning in the first few years of life, progressing to legal 

blindness by the second to third decade [270-272]. This is a severe progressive rod 

cone dystrophy, with widespread RPE atrophy, pronounced intra-retinal pigmentary 

deposition, attenuation of blood vessels and severe macular atrophy, with extinction 

of the ERG as early as 5 years old. The phenotype has been further described in a 

number of studies, and RDH12 mutations represent a significant cause of LCA and 

EORD worldwide [278-284].  

 

 

1.5.14 LRAT (LCA14)  

Mutations in the Lecithin Retinol Acyl Transferase (LRAT) gene (MIM 604863) were 

first identified in individuals with early onset retinal dystrophy [285]. Located on 

chromosome 4q31.2, and comprising of 3 exons, LRAT encodes a 230 amino acid, 

25KDa protein, which is expressed in a number of foetal and adult tissues including 

the RPE and liver [286, 287]. Its function in the RPE, and other tissues, is to transfer 

an acyl group from lecithin to all-trans-retinol (vitamin A), derived from the 

photoreceptors or the circulation, to generate all-trans-retinyl esters, a crucial step of 

the visual cycle.  

 

The Lrat-/- mouse develops normally but shows slow degeneration of the retina [288]. 

At 6-8 weeks of age its rod outer segments are 35% shorter than wild type mice but 
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the other neuronal layers are normal. The RPE is devoid of all-trans-retinol and all-

trans-retinyl esters, the photoreceptors have no functional rhodopsin and the photopic 

and scotopic ERGs demonstrate severely attenuated rod and cone function at an early 

age. Similar to the Rpe65-/- mouse, the Lrat-/- mouse does not produce 11-cis-retinal 

[289]. Both of these models show slow degeneration of rods and failure of cone 

opsins to traffik appropriately to the outer segments, leading to rapid cone 

degeneration.  

 

The human phenotype of LRAT mutations is that of a severe early onset retinal 

dystrophy, with onset of nyctalopia and reduced vision in the first few years of life 

[26, 285, 290, 291]. Only 8 patients have been reported to date. Of the limited 

phenotypic information available, the retina can vary from looking normal to one with 

vascular attenuation, peripheral retinal mottling and bone spicule pigmentation. 

Moderate to marked hypermetropia and visual field constriction to between 10-30 

degrees is reported, and the ERG demonstrates a severe rod cone dystrophy. 

 

Since the work toward this thesis was completed, a further family with EORD and a 

homozygous mutation in LRAT has been described [292], as well as two families of 

Dutch descent with a homozygous frame shift mutation in LRAT who have a 

phenotype consistent with retinitis punctata albescens, usually caused by mutations in 

RLBP1 [45]. These subjects had relatively good vision (6/9.5 or better), nyctalopia 

and normal visual fields. The fundus showed few to numerous white dots in the mid-

periphery. The ERG demonstrated reduced or non-recordable scotopic responses after 

standard and prolonged dark adaptation, and normal or slightly reduced photopic 
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responses, in keeping with retinitis punctata albescens. This finding, therefore, further 

expands the phenotype associated with mutations in LRAT.  

 

 

1.5.15 TULP1 (RP14)  

Following identification of a recessive mutation in tub in the tubby mouse, which 

causes progressive retinal and cochlear degeneration and maturity onset obesity with 

insulin resistance and impaired glucose tolerance [293-295], mutations in genes 

encoding other members of the Tubby-like protein (TULP) family were sought. 

TULP1 (Tubby-like protein 1) is a member of this family, in which to date, 5 

members have been identified: TUB, TULP1, TULP2, TULP3 and TUSP (TULP4) 

[296-298]. TULP1 (MIM 602280) mutations in humans were first identified following 

mapping to the RP14 locus on chromosome 6q21 in two large Dominican kindreds 

with a severe retinal phenotype consistent with early onset retinal degeneration [299]. 

Concurrently, screening of TULP1 in large panels of autosomal recessive RP families 

identified further pathogenic variants [300, 301].  

 

TUB maps to chromosome 11p15.4 and TULP1 to 6p21.3, which maps to the RP14 

locus identified in autosomal recessive RP [296]. Both TUB and TULP1 have a 90% 

shared amino acid identity, and the members of the TULP family of proteins share a 

highly conserved c-terminal ‘tubby’ domain that is capable of highly selective binding 

to specific phosphoinositides [302, 303]. The tubby-like proteins are present in a wide 

range of species and show distinct expression in a number of tissues. Murine studies 

using in situ hybridisation and immunohistochemistry have identified the cell specific 

expression of these proteins within the retina: TUB is expressed throughout the retina, 
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with its highest expression in the ganglion cell layer and photoreceptors; TULP1 is 

expressed exclusively in the photoreceptors, localising predominantly to the inner 

segments, connecting cilium perikarya and terminals; TULP2 shows no retinal 

expression; and there is moderate expression of TULP3 in the inner nuclear and 

ganglion cell layers [304, 305]. 

 

It is suggested that the primary site of action of the tubby family of genes is in 

neuronal cells, including hypothalamic, sensory and differentiating neurones [306], 

and that TULP1 plays a role in intracelluclar trafficking in the inner segments and at 

the photoreceptor synapse [307]. In Tulp1-/- mice, the photoreceptor cells degenerate, 

rod and cone opsins mislocalise and vesicles containing rhodopsin accumulate, 

suggesting that Tulp1 plays a role in protein transport through the connecting cilium 

between the inner and outer segments. Further studies have identified that absence of 

Tulp1 leads to photoreceptor synapse malformation that precedes photoreceptor 

degeneration, and therefore that Tulp1 is essential for photoreceptor synapse 

development and in photoreceptor function and survival [308].  

 

The phenotype associated with human mutations in TULP1 has been well documented 

and appears to be solely ocular. One of the original multiply consanguineous 

Dominican kindreds, with 16 affected members, was closely phenotyped, and the 

pedigree traced back to 2 founders born in the 1800s [309]. Disease onset was in early 

childhood with nyctalopia (as young as 10 months), poor vision (no better than 1.00 

LogMAR), reduced colour vision, nystagmus and myopia. Kinetic visual field testing 

in the young demonstrated preservation of the peripheral field, but older subjects had 

only preserved ‘islands’ of vision. Psychophysical testing with dark-adapted 
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perimetry demonstrated no rod function and markedly reduced cone function, which 

subsequently deteriorated. The ERG was undetectable. In the first decade, the retina 

displayed vascular attenuation and minimal pigmentation. By the 2nd and 3rd decades, 

yellow deposits were seen in the macula with bone spicule pigmentation from the 

arcades to the periphery. By the 5th decade, subjects developed a ‘bull’s eye’ 

maculopathy and peripheral retinal pigmentation. The optic discs showed a ‘waxy 

pallor’. These individuals were otherwise in good health, were not obese and had 

normal hearing and balance. A similar phenotype has been described by a number of 

other authors [258, 310-314]. Fundus autofluorescence imaging has identified an 

annulus of increased perifoveal autofluorescence, and OCT imaging has shown 

abnormal lamination, with complete loss of the outer nuclear layer and inner segment 

outer segment junction [311]. Only in one study did patients predominantly have a 

hypermetropic refractive error [258]. Mutations in TULP1 appear to be more common 

in families from the Middle East and in South East Asia. At the time the research 

towards this study began, no reports of human TUB mutations were published. We 

have since identified the first mutations in the human TUB gene causing retinal 

dystrophy (see chapter 4.4). 

 

 

1.5.16 RGR (RP44)  

The retinal pigment epithelium G protein-coupled receptor (RGR) is an intracellular 

membrane bound protein located in RPE cells and Müller cells, and plays a role in the 

visual cycle [315]. It had been proposed that RGR functions in an ‘alternative’ visual 

cycle that is dependent upon light, in which it regenerates 11-cis-retinal from all-

trans-retinal during periods of light exposure [316]. However, experiments have 
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shown that RGR accelerates rhodopsin regeneration by inducing isomerohydrolase 

activity and accelerating the conversion of retinyl esters to 11-cis-retinal in a process 

that is independent of light levels [317]. The exact role of RGR in the regulation of 

the visual cycle continues to be investigated. Radu et al. recently identified that RPE 

cells respond to light by mobilising all-trans retinyl esters, and that RGR mediates this 

mobilisation [318]. In addition, in the dark, in vitro studies show that RGR inhibits 

LRAT and all-trans-retinyl ester hydrolase, and that this inhibition is reversed in the 

light.    

 

RGR  (MIM 600342), located on chromosome 10q23, comprises 7 exons [315]. 

Although extremely rare, mutations in RGR have been identified as a cause of retinitis 

pigmentosa [319]. A missense mutation, c. 196A>C, p.Ser66Arg, was identified in the 

homozygous state in 5 affected siblings of one RP family, suggesting a recessive 

inheritance pattern. The age of onset of symptoms was not reported, however vision 

in the 4th and 5th decades was severely reduced (to less than 1.00 LogMAR), with 

severe visual field constriction and severe rod cone dysfunction demonstrated by the 

ERG. The retina displayed diffuse depigmentation of the RPE, including the macula, 

with vascular attenuation and peripheral pigmentation. A second family with a 

heterozygous RGR mutation comprising a 1 base pair insertion, p.Gly275, in 2 

affected siblings, suggested a dominant inheritance pattern. Vision in the 7th decade 

was reduced but better than in the recessive family, and the ERG was severely 

attenuated. One further family with the p.Ser66Arg mutation was recently reported 

with a severe childhood onset phenotype progressing to perception of light vision, 

macular RPE changes, peripheral retinal degeneration, RPE atrophy and bone spicule 

pigmentation by the 4th decade [292]. Further screening of RGR in a range of inherited 
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retinal dystrophies has failed to find any other pathogenic variants, confirming that 

RGR mutations are a rare cause of early onset retinal dystrophy [320, 321].         

 

 

1.5.17 IQCB1 / NPHP5  

In 2011, mutations in NPHP5 (IQCB1) (MIM 609237) were first reported in a number 

of non-syndromic LCA families [250, 322]. This gene was previously identified to be 

the predominant causative gene in individuals with Senior Løken syndrome, an oculo-

renal syndrome characterised by nephronophthisis and LCA [323]. Located on 

chromosome 3q13.33, and comprising 15 exons, it encodes the ciliary protein 

nephrocystin-5, which localises to the connecting cilium of photoreceptors and the 

primary cilia of renal epithelial cells. NPHP5 has been shown to interact with NPHP6 

(also known as CEP290), and mutations in the genes encoding these proteins are 

associated with LCA [324]. Knockdown of both of these genes in zebrafish leads to 

similar phenotypes with both ocular and systemic manifestations. 

 

Screening of IQCB1 in a panel of 225 LCA patients identified 11 with pathogenic 

mutations, 7 of whom were subsequently diagnosed with Senior Løken syndrome, and 

4 of whom had ‘isolated’ LCA, giving a prevalence of 2% of isolated LCA in this 

cohort [322]. Concurrently, the screening of NPHP5 in an enriched panel of 276 LCA 

probands identified 9 pathogenic mutations, 2 of which developed nephronophthisis 

in the second decade, giving a prevalence of 2.5% of ‘isolated’ LCA in this cohort 

[250]. The authors report that there is a highly variable age of onset of renal failure in 

IQCB1 mutations, so all these patients will require lifelong screening for renal 

dysfunction.  
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The ocular phenotype in these subjects is typical of LCA, and there is little disparity 

between those with ‘isolated’ LCA and Senior Løken syndrome. There is significant 

and progressive loss of vision from birth, with pendular nystagmus, high hyperopia 

and an undetectable ERG [250, 322, 325]. The retina shows prominent diffuse RPE 

atrophy and vascular attenuation. OCT imaging demonstrates preservation of the 

outer nuclear layer only at the fovea and a disorganised inner segment outer segment 

line. Overall the phenotype is suggested to be similar to other ciliopathies such as that 

caused by mutations in CEP290. The preservation of cone photoreceptor nuclei in 

both NHPH5 and NHPH6 mutations, albeit with abnormal inner and outer segments, 

has lead to the proposal that these subjects may be good candidates for cone-directed 

gene augmentation therapy [326]. 
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1.6 Aims and Objectives 

 
1.6.1 Aims 

 
1. To recruit probands with childhood onset retinal dystrophies, and family 

members, into 2 cohorts of the Childhood Onset Retinal Dystrophy Study: 

a. Subjects with Leber Congenital Amaurosis (LCA), Early Onset Retinal 

Dystrophy (EORD) and early onset rod-cone or cone-rod dystrophies 

b. Subjects with Childhood Onset macular phenotypes;  

 

2. To use information gathered from phenotypic studies to understand the natural 

history and heterogeneity of the condition(s) in order to help provide prognostic 

and genetic counselling to affected families;  

 

3. To identify novel phenotypes of childhood onset retinal dystrophies.  

 

 

1.6.2 Objectives 

 

1. To undertake detailed phenotypic studies of affected subjects with mutations in 

specific genes in order to explore, expand and refine our understanding of the 

phenotypes associated with variants in these genes;  

 

2. To obtain blood samples for DNA extraction for molecular analysis of probands 

and family members in order to identify causative mutation(s);  
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3. To work with colleagues to identify mutations in known and newly identified 

genes in the two cohorts, using a variety of molecular techniques. 
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2.0 Materials and Methods  
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2.1 Ethics / Patient selection 

 

2.1.1 Ethical Approval  

Ethical approval for this study, entitled ‘A Clinical Trial and Genetic Investigation of 

Childhood Retinal Dystrophies’ was previously granted by the Moorfields Local 

Research Ethics Committee (REC) in December 2004, REC reference number 

MOOA1005. This study is also known as the ‘Childhood Onset Retinal Dystrophy 

Study’, and will be referred to as such from this point on. A number of amendments 

had been made and approved by the REC prior to this author’s involvement in the 

study, and the ethical approval was extended to 2012. Following this date, new ethical 

approval was sought and this study was incorporated into a larger study held at 

Moorfields Eye Hospital (MEH) and University College London (UCL) entitled ‘A 

Genetic Study of Inherited Retinal Eye Disease’. Ethical approval for this study was 

granted by the National Research Ethics Committee Camden and Islington REC 

Office, REC reference number 12/LO/0141, on 30th January 2012.  

 

 

2.1.2 Patient Selection 

There were two separate cohorts of patients that were recruited to this study. A few 

different approaches to patient ascertainment were utilised, as described below.   

 

The first, and largest cohort, were those patients and families where the proband had a 

generalised retinal dystrophy, which predominantly included subjects who carried a 

diagnosis of Leber congenital amaurosis (LCA), early onset retinal dystrophy 
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(EORD), childhood onset rod-cone dystrophy, childhood onset cone-rod dystrophy 

and childhood onset cone dystrophy. Any patients with symptoms or signs suggesting 

syndromic involvement were excluded.  

 

The second cohort of patients had childhood onset signs that predominantly involved 

the macular region of the retina, and in particular included patients with a phenotype 

similar to Best disease and a newly recognised phenotype with drusen – like yellow 

deposits at the macula. 

 

Patients and their families were predominantly recruited into the Childhood Onset 

Retinal Dystrophy Study from the paediatric and adult retina clinics at Moorfields Eye 

Hospital NHS Foundation Trust, London, UK and Great Ormond Street Hospital for 

Children NHS Foundation Trust, London, UK. Some patients were referred by 

Ophthalmologists or Geneticists from other hospitals, both nationally and 

internationally, who were aware of the study. Some of these families were then 

invited to take part in the study by a postal invitation if they were not able to attend 

MEH.  

 

There is a large database of families with inherited retinal diseases at MEH that spans 

over a 40-year period. The Inherited Eye Disease (IED) Database, keeps a log of these 

patients and their families, along with their genetic mutations, where known. This 

database includes all families with inherited retinal diseases, regardless of diagnosis, 

age of disease onset or inheritance pattern. DNA of patients held in this database is 

stored at the Institute of Ophthalmology, UCL. Mr Robert Henderson and Mr Phillip 

Moradi, who were the research fellows involved in the Childhood Onset Retinal 
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Dystrophy study between 2004-2006 and 2006-2008 respectively, had previously 

recruited some of these families and had logged them into the IED database. A record 

of these ‘historic’ subjects was kept in a Microsoft Access (Microsoft, Washington, 

USA) database, to which this author had access while conducting the study.  

 

Other researchers within the Genetics Unit were investigating patients who carried a 

diagnosis of autosomal recessive retinitis pigmentosa (ARRP). Several panels of 

DNA were screened for mutations in EORD genes by them, which included patients 

with ARRP but whose symptom onset, when later probed, was identified to have 

begun in childhood, before the age of 5 years. These subjects and their families were 

subsequently recruited into the Childhood Onset Retinal Dystrophy study and invited 

to attend for further phenotyping. These subjects will be clearly identified in this 

thesis.   

 

 

2.1.3 Consent 

Patients and their families were consented to enter this study using approved consent 

forms for adults and children (Appendix 7.1.2, 7.1.3, 7.1.4). Patient information 

sheets had been previously prepared, and included information about the study 

(Appendix 7.1.1). For those patients or families that were not seen and consented at 

MEH, a letter was sent out by post, inviting them into the study. Along with the letter, 

Patient Information sheets, consent forms, letters to their GP / local hospital and blood 

collecting tubes were also provided, so that they could have their blood samples taken 

locally and subsequently returned by post.  
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2.2 Phenotyping 

 

All phenotyping in this study was performed at Moorfields Eye Hospital (MEH), 

London, UK or at the Institute of Ophthalmology, University College London (UCL), 

London, UK. 

 

 

2.2.3 Clinical History 

All subjects recruited into the study underwent detailed questioning from them or 

their parents regarding age of onset and course of symptoms, functional level of 

vision, presence and age of onset of nystagmus, nyctalopia, photophobia, 

photoattraction, visual field deficits, colour vision deficits and history of eye poking 

or rubbing. Information regarding the past ocular history including any glasses wear, 

presence of strabismus and previous ocular surgery or amblyopia therapy was sought. 

An enquiry regarding the past medical history was made, in particular any systemic 

illnesses or previous or on going investigations such as those looking into renal, 

neurological or endocrine dysfunction. These may have included radiological imaging 

and haematological or biochemical investigations, and was undertaken to ensure that 

no patients with syndromic associations were included. Birth and developmental 

histories were taken, including any maternal problems encountered during pregnancy, 

and ages that developmental milestones were met. Any current or historical use of 

medications was recorded. A full pedigree, including ethnicity and family history of 

consanguinity, was also taken.   
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2.2.4 Clinical Examination 

2.2.4.1 Visual Acuity 

Where possible, best corrected LogMAR visual acuity (VA) was obtained using the 

ETDRS vision chart at 4 metres. If this was not possible, the best corrected Snellen 

VA was measured and converted to a LogMAR scale. The Snellen VA was initially 

measured at 6 metres, but if subjects were unable to view the chart at this distance, it 

was brought closer to 2 metre or 1 metre viewing distances. If at this distance the 

chart was not detectable, VA was recorded in the following step-wise denominations: 

detection of counting fingers (CF), the LogMAR equivalent of which was recorded as 

2.0; detection of hand movements (HM), the LogMAR equivalent of which was 

recorded as 3.0; perception of light (PL), the LogMAR equivalent of which was 

recorded as 5.0; or no perception of light (NPL), the LogMAR equivalent of which 

was recorded as 6.0 [52, 53]. Best-corrected VA (BCVA) was measured monocularly 

in the right eye (RE) and left eye (LE) respectively, and with both eyes open (BEO). 

 

In infants and younger children VA was measured by orthoptic colleagues using age 

appropriate methods and recorded or converted into LogMAR equivalent as above. If 

the baby or infant was not able to undergo this assessment, its ability to fixate and / or 

follow a light target was recorded, and documentation made as to whether this 

fixation was central, steady and maintained.  
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2.2.4.2  Colour vision 

Colour vision testing was performed on subjects with VA of CF or better. Where 

possible, this was done using the Hardy Rand Rittler (HRR) pseudoisochromatic 

plates (Richmond Products Inc., New Mexico, USA) or the Ishihara 

pseudoisochromatic plates (Kanehara and Co. Ltd., Tokyo, Japan) in standard room 

lighting. Subjects were tested with both eyes open for each of these tests. The plates 

were held 60 cm away from the patient at a perpendicular angle to the line of sight. 

The plates are intended to be presented for 4 seconds at a time, but in this study they 

were presented for longer if necessary, to account for poor vision and nystagmus, 

which could influence the speed at which the subjects could respond. The subject was 

required to identify the shape and position of the symbol (for the HRR test), or the 

number (Ishihara test), on the plate presented to them; an immediate response was 

required. A point was given for each correctly identified plate. 

 

The HRR test began with the presentation of the first four demonstration plates: if 

these were identified correctly, testing was continued; if not, testing was abandoned. 

The 6 screening plates (plate numbers 5-10) were then presented; if all were identified 

correctly the subject was recorded as having normal colour vision and the test was 

complete. If the first two screening plates (plate numbers 5 and 6) were incorrect, the 

subject was identified to have a defect in the tritan axis (a blue-yellow defect), and 

was subsequently shown the tritan axis grading plates (plate numbers 21-24). If plates 

21 and 22 were failed, a moderate tritan defect was recorded; if plates 23 and 24 were 

failed a severe tritan defect was recorded. If the last four screening plates (plate 

numbers 7-10) were incorrect, the subject was identified to have a defect in the 

protan-deutan axis (red-green defect), and was subsequently shown the plates to grade 
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deficiencies on these axes (plate numbers 11-20). Failure to identify only plates 11-15 

indicated a mild protan and deutan deficiency; failure to identify plates 16-18 

indicated a moderate protan and deutan deficiency; failure to identify plates 19-20 

indicated a severe protan and deutan deficiency. Subjects’ responses were recorded on 

the HRR scoring sheet that was supplied with the test. 

 

Ishihara colour plate testing began with presentation of the first plate (the ‘test plate’). 

If this was correctly identified, the subsequent plates with numbers were presented 

and the number of correct plates that were identified was recorded. If none of these 

subsequent plates were correctly identified, the subject was shown the ‘hidden digits’ 

plates. This test is designed to assess protan and deutan defects; it is not designed to 

identify tritan defects, and it is not able to quantify the red-green defect. 

 

In a subset of subjects, more detailed colour vision assessment was performed using 

additional tests; these will be described in the appropriate chapters.  

 
 

2.2.4.3 General Ocular Examination 

The ocular examination involved assessment of nystagmus, in which the character, 

direction, velocity and amplitude were recorded. Any ocular motility abnormalities 

and manifest strabismus measured by the cover – uncover test were recorded. 

Pupillary examination was performed in scotopic conditions using a bright white light 

source and reactions recorded as being normal or abnormal; abnormal pupils were 

recorded as being sluggish, non-reactive and with or without the presence of a relative 

afferent pupil defect.  
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Slit lamp biomicroscopy (Haag-Streit, Switzerland) was used to examine the anterior 

segments for corneal changes and lenticular opacities in those old enough to tolerate 

the examination. Funduscopy was performed after the instillation of guttae 

tropicamide 1% and guttae phenylephrine 2.5% or of guttae cyclopentolate 0.5% (if 

less than 1 year old) or 1% (older than 1 year) and guttae phenylephrine 2.5% into 

each eye. Indirect (non contact) methods using slit lamp biomicroscopy and a Volk® 

Super Field NC® lens (Volk Optical Inc., Ohio, USA) were used if the subject could 

cooperate. Otherwise, indirect ophthalmoscopy using a Keeler Vantage Indirect 

Ophthalmoscope (Keeler Ltd., Windsor, UK), and a 20 dioptre Nikon lens (Nikon, 

Japan) or a 28 dioptre Volk® Double Aspheric lens (Volk Optical Inc., Ohio, USA) 

was performed. Recordings were made regarding retinal appearance including the 

vasculature, macular appearance and optic disc appearance. 

 

An assessment of the patients’ refractive status was made if the refraction was not 

previously available. In infants and small children this was performed by cycloplegic 

refraction using neutralising lenses, by Professor Anthony Moore (ATM), Miss Dev 

Borman (ADB) or optometric colleagues 

 

Data from the clinical examination were recorded using a phenotyping form that had 

been prepared by Mr Robert Henderson, a previous research fellow who lead the 

Childhood Onset Retinal Dystrophy Study between 2004-2006, and entered into an 

Excel spreadsheet. 
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2.2.5 Fundus Autofluorescence Imaging 

Fundus autofluorescence imaging (FAF) was performed using the Heidelberg 

Spectralis® HRA + OCT (Heidelberg Engineering GmbH, Heidelberg, Germany) 

machine, with viewing module version 5.1.2.0, in those patients old enough to 

cooperate with the test. This was performed at a viewing angle of 30o, centred on the 

fovea, using blue laser autofluorescence imaging, in each eye. An excitation 

wavelength of 488 nm was used and emitted light was detected above 500 nm. 

Several frames were taken and the signal averaged using in-built software. Due to 

nystagmus and photophobia, the quality of the FAF images obtained was frequently 

poor. 

 

 

2.2.6 Optical Coherence Tomography 

Optical Coherence Tomography (OCT) was performed using the Heidelberg 

Spectralis® HRA + OCT machine (Heidelberg Engineering GmbH, Heidelberg, 

Germany), with viewing module version 5.1.2.0, in those subjects old enough to 

cooperate with the test. The scanning protocol included a horizontal linear scan 

centred on the fovea and a ‘volume’ scan (19 B-scans, 20o x 15o) also centred on the 

fovea, for each eye. Sd-OCT data were analysed qualitatively. HEYEX software 

interface (version 1.6.2.0, Heidelberg Engineering GmbH, Heidelberg, Germany) was 

used for any measurements taken. Due to nystagmus and fixation difficulties, the 

images obtained were frequently not ideal. 
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2.2.7 Psychophysical testing: Goldmann visual fields 

Goldmann visual field (GVF) testing was performed on subjects who were old enough 

to understand the test and if their VA was CF or better. This was a difficult test to 

perform for many subjects, as it required sustained central fixation that was often 

quite difficult to achieve due to poor central vision and nystagmus. It was performed 

more frequently in subjects without nystagmus and in those who had better levels of 

concentration and central fixation.  

 

The perimeter was calibrated according to the manufacturer’s instructions. The testing 

conditions were prepared prior to the subject being positioned for testing: the 

appropriate lens for central 30o field assessment was selected by calculating the 

spherical equivalent if the cylinder was 1.00 dioptre or less, with an age appropriate 

addition incorporated; the perimeter paper was locked into place within the machine; 

the patients’ ability to press the buzzer was assessed, and if not possible, an 

alternative method of response was used such as tapping on the table or a verbal 

response; the subjects’ chin rest was moved into place and their ability to maintain 

central fixation with the testing eye and with the fellow eye covered was ascertained; 

testing was performed with the room lights turned off. 

 

Perimetry was performed beginning with the V4e isopter; if this was easily visible 

testing was repeated with the III4e and I4e targets. Subjects were asked to fixate on 

the central dark fixation target; eyes were tested monocularly. Testing of the 

peripheral field was performed without correction; for the central 30o a lens was used. 

Peripheral visual field testing was performed before central visual field testing. Static 

targets were first presented for 1 second in a variety of positions in the visual field in 
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order to assess areas of visual field loss and to familiarise the subject with the test. 

Kinetic targets were then presented by using the pantograph handle to move the 

stimulus from a non-seeing area into a seeing area at 3-5o per second, in all meridians. 

The subject was instructed to indicate when they first saw the target and a mark was 

made on the perimeter paper; once all the meridians had been tested, the points were 

‘joined up’ to map the isopter. The central 30o was plotted by repeating the test with 

the appropriate lens. If any scotomata were found, they were mapped by moving the 

target from the centre of the scotoma out and the subject was instructed to indicate 

when they could see it. An attempt was made to map the physiological blind spot by 

this method as well, using the appropriate lens. Throughout testing the subjects’ 

fixation was monitored using the telescope. Both eyes were examined in this manner. 

 

 

2.2.8 Colour fundus photography 

Fundus photography was performed using a Topcon TRC 501A retinal camera 

(Topcon Corporation, Tokyo, Japan). Composite images were created using i2k 

Retina™ technology (DualAlign™ LLC, New York, USA). 
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3.3 Genetic Methods 

 

3.3.1 Extraction of DNA 

Blood samples were collected from the proband and other affected family members, 

unaffected siblings and parents, where available. For those family members that were 

not available for sampling on the day of visit, blood sampling tubes, a letter and 

consent form were sent by post for the samples to be taken locally and then returned 

back to the Genetics Unit at Moorfields Eye Hospital, London. 

 

Two 9 ml EDTA (Vacutainer) tubes of peripheral venous blood were obtained per 

person. In young children a topical anaesthetic cream, EMLA 5% (AstraZeneca, 

Macclesfield, UK), which contains lidocaine 2.5% and prilocaine 2.5%, was applied 

to the skin for 1 hour prior to venepuncture. Once the samples were obtained they 

were labelled, stored at 4oC, and logged on to the Moorfields Inherited Eye Diseases 

(IED) database. 

 

DNA was extracted by the department core facility at the Department of Genetics, 

Institute of Ophthalmology, UCL, using the Nucleon BACC-2 genomic DNA kit (GE 

Healthcare Life Sciences, Buckinghamshire, UK), or the Puregene DNA extraction kit 

(Invitrogen, Paisley, UK), as per manufacturers’ instructions. Extracted DNA was 

stored at 4oC if intended for immediate use, or at -20oC for longer-term storage.   
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3.3.2 Genotype identification strategies 

The identification of the genetic variants in individuals affected with LCA or EORD 

was achieved using different techniques. As a first pass screen, APEX analysis was 

used; based on the phenotype, some probands underwent candidate gene screening 

using the polymerase chain reaction (PCR) and direct Sanger sequencing; this 

technique was also used to screen genes in enriched ‘panels’ of patients in whom the 

causative gene had not been found to date; autozygosity mapping was utilised for 

some families in which there was a history of consanguinity; and next generation 

sequencing was utilised in a family in whom all the above techniques had failed to 

identify the causative mutation. In our laboratory a number of researchers were 

investigating different inherited retinal diseases, with different phenotypic 

characteristics. The Inherited Eye Disease (IED) database provided subjects that were 

included in a variety of ‘panels’, which were investigated by a number of different 

researchers. As such, in a collaborative manner, different members of the group 

performed some of the genotyping for the subjects described in this study. This will 

be indicated in the relevant chapters.   

 

3.3.2.1 DNA microarray using the Asper LCA chip  

APEX analysis using the Asper LCA chip (Asper Biotech Ltd., Tartu, Estonia) was 

used to analyse DNA of subjects with LCA or EORD as a first pass screen for 

mutations known to cause LCA. In total, 104 subjects from this cohort were analysed 

using this method. 3.5 μg of concentrated DNA was sent to Asper Ophthalmics for 

analysis using this DNA chip. The technology and methods have previously been 

described [109].  
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3.3.2.2 Polymerase chain reaction and candidate gene sequencing 

Oligonucleotide primers were designed for amplification and subsequent Sanger 

sequencing of the following genes: CEP290, TULP1, RGR, and BEST1. The Ensembl 

genome database (http://www.ensembl.org/index.html) was used to obtain the 

reference sequence, and primers were designed by hand or by utilising the Primer 3 

Software (http://biotools.umassmed.edu/bioapps/primer3_www.cgi.). Primer 

sequences are provided within the Appendix (Chapter 7.2). Oligonucleotide primers 

were ordered and manufactured by Sigma Life Science (Sigma – Aldrich Co. Ltd., 

Dorset, UK) or by Eurofins Genomics (Ebersberg, Germany). The primers were re-

suspended, and concentrated stock solutions were prepared as per the manufacturer’s 

instructions (http://www.sigmaaldrich.com/technical-

documents/articles/biology/handling-guidelines-for-dna-and-rna-

oligonucleotides.html). All polymerase chain reactions (PCRs) were performed in a 

total volume of 30 μl and performed on a PTC200DNA engine thermal cycler (Bio-

Rad Laboratories Inc., Hemel Hempstead, UK) equipped with a heated lid, which 

negated the need for the overlay of mineral oil in the PCR tube to prevent 

evaporation.  

 
 
Table 1 outlines the components that a typical 30 μl PCR reaction consisted of. 

 
PCR Reagents Volume (μl) Final Concentration 

Buffer * 
Enhancer (100%) 
dNTPs (25mM) 

Forward Primer (100pmol) 
Reverse Primer (100pmol) 

Moltaq: Taq polymerase (5U/μl) 
Template DNA (100ng/μl) 

Sterile H20 

3.00 
0.30 
0.24 
0.20 
0.20 
0.20 
1.00 

24.86 

1X 
10% 

200 μM 
20 pmol 
20 pmol 

0.5-2.5 unit 
100 ng 

 
Total PCR Volume 30  

 
Table 1 - PCR reagents for each 30 μl PCR reaction.  

http://www.ensembl.org/index.html
http://biotools.umassmed.edu/bioapps/primer3_www.cgi
http://www.sigmaaldrich.com/technical-documents/articles/biology/handling-guidelines-for-dna-and-rna-oligonucleotides.html
http://www.sigmaaldrich.com/technical-documents/articles/biology/handling-guidelines-for-dna-and-rna-oligonucleotides.html
http://www.sigmaaldrich.com/technical-documents/articles/biology/handling-guidelines-for-dna-and-rna-oligonucleotides.html
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Buffer, dNTPs and Moltaq were all supplied by VH Bio (VH Bio Ltd., Gateshead, 

UK). The buffer contained a final concentration of 1.5mM of MgCl2, however in 

order to optimise the specificity of primer annealing, extra MgCl2 was occasionally 

used. A negative control with no DNA was always included in each experiment. The 

standard PCR cycling programme was carried out under the following general 

conditions: 

 

1.   Initial denaturation:  94oC  2 minutes 

2. a.  Denaturation   94oC  30 seconds 

2. b. Annealing   50-70oC 30 seconds             35 cycles 

2. c. Extension   72oC  45 seconds 

3.  Final extension  72oC  7 minutes 

4.  Hold     10oC 

 

PCR conditions were varied slightly according to: (i) the primer annealing 

temperature, which was generally taken to be approximately 2oC lower than the 

lowest Tm of the two primers, and (ii) the expected length of the amplified product. A 

gradient PCR was used when the primer annealing temperatures had not yet been 

optimised. This was performed at a range of temperatures based upon the Tm of the 

two primers. 

 

Visualisation of the PCR products was generally performed on a 1% agarose gel, 

although this concentration was dependent upon the size of the expected PCR 

product. A 2% agarose gel was prepared by adding 2 grams of agarose (Bioline, 
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London, UK) to 100 ml of 1x Tris Acetate EDTA (Eppendorf, Germany) and heated 

in a microwave oven for 2 minutes. Before the gel was set, and once it had cooled to 

less than 60oC, 5 μl of Ethidium Bromide (at 10 mg/ml) was added. The gels were 

poured into pre-prepared gel trays that contained combs to create wells and allowed to 

cool. Once set, they were placed into a gel buffer tank containing TAE buffer. A size 

marker was loaded into the first well of each row – usually 5 μl of HyperLadder IV 

(Bioline, London, UK), and then 5 μl of the PCR product plus 2 μl of loading dye 

(containing bromphenol blue and glycerol) was loaded into each successive well. Gels 

were run for 30 minutes at 100 mV and then checked under a UV light.  

 

The correct sized PCR products were purified in order to remove excess buffer, 

dNTPs and primers, using Montage PCR cleanup (purple) plates, as per standard 

protocols (Millipore, Watford, UK). PCR products were sequenced directly by using 

the ABI Big Dye terminator kit version 3.1 (Life Technologies, California, USA) in a 

total volume of 10 μl. Table 2 outlines the components that a typical 10 μl Big Dye 

sequencing PCR consisted of. 

  

Sequencing PCR Reagents Volume (μl) 
Sequencing buffer (5x) 

Forward or Reverse Primer (10pmol) 
PCR product 

BigDye Terminator 
Sterile H20 

2.50 
1.00 
1.00 
0.50 
5.00 

Total PCR volume 10 
 
Table 2 – Reagents and volumes for each 10 μl sequencing reaction using Big Dye 
Terminator. 
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The sequencing reaction performed was as follows:  

1.     96oC  2 minutes 

2. a.    96oC  10 seconds 

2. b.   50oC  5 seconds                           24 cycles 

3.    60oC  4 minutes 

4.  Hold   4oC   

 

Following the sequencing reaction the mixture was purified using Montage 

sequencing cleanup (blue) plates, as per standard protocols (Millipore, Watford, UK), 

and run on the Applied Biosystems 3730 DNA sequencer. Analysis of the 

electropherograms was performed by hand using the Lasergene software package 

(Version 8.1) (DNASTAR, Wisconsin USA). Any mutations that were identified were 

confirmed bi-directionally and family members were checked for segregation of the 

mutation. Any novel missense mutations were checked in at least 100 control DNA 

chromosomes via ethnically matched DNA samples and the European Collection of 

Cell Cultures (ECACC) (https://www.phe-

culturecollections.org.uk/collections/ecacc.aspx). Missense mutations were analysed 

using a number of mutation prediction software programmes, namely: ‘Sorting 

Intolerance from Tolerance’ (SIFT) (http://sift.jcvi.org/) and the PolyPhen-2 

algorithm (http://genetics.bwh.harvard.edu/pph2/index.shtml). SIFT results are 

reported to be tolerant if the tolerant index is at least 0.05, or intolerant if the tolerant 

index is less than 0.05. PolyPhen-2 appraises mutations as benign, possibly damaging, 

or probably damaging based on the false positive rate of the model. Novel splice site 

https://www.phe-culturecollections.org.uk/collections/ecacc.aspx
https://www.phe-culturecollections.org.uk/collections/ecacc.aspx
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/index.shtml
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mutations were analysed using an in silico analysis programme available at 

www.fruitfly.org.  

 

3.3.2.3 Autozygosity Mapping  

Autozygosity mapping was performed in a number of consanguineous families in 

order to identify regions of autozygosity that would be predicted to contain the 

putative causative gene defect in that family. Families were selected to undergo 

autozygosity mapping if previous molecular analysis did not identify the causative 

mutation, if they had a high level of consanguinity (second cousin parent families 

were considered to be more informative), and if there was sufficient high quality 

DNA available for this technique. Samples were sent from our laboratory by Dr 

Mackay (DSM), Dr Sergouniotis (PIS) or Dr Davidson (AED) to the University of 

Manchester where they were analysed using the Affymetrix GeneChip® SNP array 

6.0 (Affymetrix, California, USA). The Affymetrix SNP array 6.0 contains 1.8 

million markers of genetic variation, with more than 906 000 SNPs and more than 

946 000 probes for copy number variant detection [327]. Detailed methodology for 

genotyping using the GeneChip® array has been described previously [328]. 

 

The GeneChip® DNA Analysis Software (GDAS version 3; Affymetrix, California, 

USA),AutoSNPa software [329] and an alternative method of analysis [327] was used 

by Dr Mackay, Dr Davidson or Dr Sergouniotis to call SNPs for genome-wide 

autozygosity scans. The Microsoft Excel (Microsoft, Washington, USA) programme 

was used to detect regions with a shared haplotype. These regions were assorted 

according to size (up to the 10 largest homozygous regions were determined) and 

http://www.fruitfly.org/
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candidate genes known to be associated with retinal diseases were selected within 

these regions. Subsequent positional gene sequencing and mutation analysis was 

performed for probands in candidate genes based upon the above methods.  

 

3.3.2.4 Next Generation Sequencing 

Exome capture and high-throughput sequencing was undertaken in one patient from a 

consanguineous family, by Dr Mackay and Dr Davidson, in collaboration with 

colleagues at the UCL Genetics Institute. The method has been previously described 

[327]. Whole exome sequencing was undertaken using the Agilent SureSelect38 Mb 

Human All Exon Kit and the HiSeq2000 Sequencer (Illumina Inc., California, USA). 

Average sequencing depth on target was 43, with 78.4% of the targeted region being 

covered by a read depth of 10x [330]. Calls with minor allele frequencies greater than 

0.5% in the 1000 genomes dataset (http://www.1000genomes.org/) were filtered, 

based upon the prior belief that RP-related mutations are rare. Homozygous, 

presumed loss-of-function mutations were prioritised in this family.  

 

 

3.3.3 Bioinformatics 

A Microsoft Access (Microsoft, Washington, USA) database had been set up prior to 

the onset of this study in which recruited patients were stored, with some clinical data 

recorded within it. In addition, Microsoft Excel (Microsoft, Washington, USA) was 

used to record the patients recruited into the study. Pedigrees were drawn using 

Cyrillic 2.1 (FamilyGenetix Ltd., Oxford, UK). Composite images of fundus 

photographs were generated using i2k Retina™ technology (DualAlign™ LLC, New 

http://www.1000genomes.org/
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York, USA). DNA sequencing analysis was performed using the Lasergene software 

package  (version 8.1) (DNA Star Inc., Wisconsin USA). 
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4.0 Results   
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4.1 Overview of study 

 

4.1.1 Study period and Patient recruitment  

Subjects and their families were recruited to the Childhood Onset Retinal Dystrophy 

Study between August 2008 and August 2011. An electronic database in Microsoft 

Excel (Microsoft, Washington, USA) was kept of all families recruited during this 

period and categorised into the two separate cohorts of patients. Subjects were 

predominantly recruited from the paediatric and adult retina clinics at Moorfields Eye 

Hospital, London, UK and Great Ormond Street Hospital for Children, London, UK. 

A cohort of subjects were referred to the study by other Ophthalmologists or 

Geneticists who were aware of the study; in a sub-group of these subjects the 

genotype had been identified prior to their recruitment into the study. Access was 

available to the database that had been created and maintained by previous researchers 

involved in the Childhood Onset Retinal Dystrophy Study, so that subjects who had 

been recruited prior to August 2008 could be invited to attend for further phenotyping, 

when necessary. The data presented in this chapter represent the results obtained from 

these two cohorts of subjects recruited between August 2008 and August 2011. Any 

results identified in these subjects after this study period was complete are not 

included. Some of the subjects investigated according to genotype that are presented 

in subsequent chapters may have been recruited prior to this study period but were 

recalled for phenotyping. These subjects will be indicated in the relevant chapters.  
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4.1.2 Demographics and Diagnoses  

Between August 2008 and August 2011, 201 subjects from 186 families were 

recruited into the Childhood Onset Retinal Dystrophy Study. The cohort comprising 

the generalised retinal dystrophies consisted of 177 subjects from 166 families 

(Cohort 1). The cohort comprising subjects with a macular phenotype consisted of 24 

subjects from 20 families (Cohort 2). The results from these two cohorts will be 

presented separately.  

 

4.1.2.1 Cohort 1 

Of the 177 subjects in Cohort 1, 102 were male and 75 were female. The diagnoses in 

these subjects were made based upon their clinical histories, clinical examination and 

electrophysiological data, where available. Subjects diagnosed with LCA had absent 

or very poor vision from birth or within the first few months of life, nystagmus, 

sluggish pupillary responses and an undetectable ERG. Those diagnosed with EORD 

had a later onset of visual symptoms, in infancy or early childhood (less than 5 years 

of age), less nystagmus (if present at all), variably reduced vision, normal pupil 

reactions and a severely attenuated ERG. A diagnosis of rod-cone dystrophy 

(synonymous with retinitis pigmentosa) or cone-rod dystrophy was made in children 

with age of onset of 5 years or older, if there was ERG evidence of the class of 

photoreceptor that was predominantly involved, or if there was clinical evidence to 

suggest first rod (rod-cone) or cone (cone-rod) involvement. Those with only cone 

involvement, on ERG or clinical examination, were diagnosed with a cone dystrophy.  

EORD comprised the largest number of subjects at 96 (90 families), followed by LCA 

at 67 subjects (63 families), rod-cone dystrophy at 8 subjects (8 families), cone-rod 
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dystrophy at 3 subjects (3 families) and cone dystrophy at 3 subjects (3 families) 

(Table 3). In one family with two affected individuals harbouring the same mutation, 

symptom onset differed between these individuals, resulting in one carrying a 

diagnosis of EORD and one of rod-cone dystrophy (Family 40). All subjects with 

cone dystrophy had symptom onset below 5 years of age, and ERG confirmation of 

cone dysfunction but relatively normal rod function.   

 

Diagnosis Number of Subjects Number of families 
Early Onset Retinal Dystrophy 96 90 
Leber Congenital Amaurosis 67 63 

Rod-Cone Dystrophy 8 8 
Cone-Rod Dystrophy 3 3 

Cone Dystrophy 3 3 
Total 177 167 

 
Table 3 - Diagnoses of subjects recruited into Cohort 1 of the Childhood Onset 
Retinal Dystrophy Study, Aug 2009 – Aug 2011. One family is counted twice as there 
were two diagnoses within this family.  

 

4.1.2.2 Cohort 2 

Of the 24 subjects in cohort 2, 9 were male and 15 were female. Their diagnoses were 

made based upon their clinical examination and electrophysiological tests, where 

available. Two diagnoses comprised this cohort of subjects: 6 subjects (6 families) 

with autosomal recessive bestrophinopathy (ARB) and 18 subjects (14 families) with 

a newly recognised phenotype termed ‘yellow dot dystrophy’ (Table 4). 

 

Diagnosis Number of Subjects Number of Families 
Autosomal Recessive Bestrophinopathy 

(ARB) 6 6 

Yellow Dot Dystrophy 18 14 
Total 24 20 

 
Table 4 - Diagnoses of Subjects recruited into Cohort 2 of the Childhood Onset 
Retinal Dystrophy Study, Aug 2009 – Aug 2011. 
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4.2 Overview of Study: overall 

molecular findings 

 

In this chapter the results from the molecular analyses undertaken in this Study, 

using a variety of techniques, will be presented. These techniques included APEX 

Array using the Asper Chip, direct sequencing of candidate genes, autozygosity 

mapping with subsequent positional candidate gene screening and exome 

sequencing for subjects in Cohorts 1 and 2.   

 
 
 
4.2.1 LCA Chip results for Cohort 1  

Of the 177 subjects in Cohort 1, the DNA of 104 subjects (from 102 families) was 

sent from UCL to be analysed across the LCA Chip (Asper Ophthalmics, Tartu, 

Estonia). The diagnoses in these subjects were as follows: LCA 47 subjects (45 

families); EORD 51 subjects (51 families); rod-cone dystrophy 3 subjects (3 

families); cone dystrophy 2 subjects (2 families); cone-rod dystrophy 1 subject (1 

family). Not all subjects with LCA or EORD were sent for LCA chip analysis as they 

may have belonged to a sibling group, their phenotype may have suggested a 

particular gene and so they were pre-selected for candidate gene screening, the 

proband may not have provided a blood sample, or there was an insufficient amount 

of good quality DNA available for chip analysis. The reasons that subjects with rod-

cone, cone-rod and cone dystrophies were screened using this technique were that 

later on in the study additional funding became available to screen more families 
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across the chip, so 2 subjects suggestive of a very early onset condition were 

screened; in addition, in 4 subjects their original diagnosis of EORD was revised to 

rod-cone dystrophy after further interrogation of symptoms and signs; and in 2 

subjects the fundus appearance was similar to that seen in subjects with known LCA / 

EORD genes.  

 

Screening for known disease associated variants in families from UCL, using the 

LCA chip, identified 29 subjects (from 29 families) with either 2 variants 

(homozygous or compound heterozygous) or with 1 variant only. This resulted in an 

overall variant identification rate by the LCA chip for the subjects sent from UCL of 

27.9%. The results of 3 subjects are outstanding.  

 

Of these 29 subjects identified by the LCA chip to harbour variants, 11 (37.9%) had 

two variants identified, of which 5 (17.2% of those identified with variants) were 

homozygous and 6 (20.7% of those identified with variants) were compound 

heterozygous variants. The LCA chip identified 18 subjects (62.1% of those identified 

with variants) to harbour one only variant. LCA was the most frequent diagnosis for 

those subjects who were identified by the chip to harbour any variants. Of the 47 LCA 

subjects sent for chip analysis, 12 (25.5%) were identified to harbour one variant and 

5 (10.6%) to harbour two variants using this method only. Of the 51 EORD subjects 

screened with the chip, 6 (11.8%) were identified to harbour one variant and 6 

(11.8%) were identified to harbour two variants (Table 5).  
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Gene No identified by 
LCA chip 

LCA patients sent for chip 
analysis (n=47) 

EORD patients sent for chip 
analysis (n=51) 

  1 variant 2 variants 1 variant 2 variants 
AIPL1 1 0 0 1 0 

CEP290 9 5 2 0 2 
CRB1 4 1 0 1 2 

GUCY2D 5 4 1 0 0 
LCA5 1 1 0 0 0 

MERTK 1 0 0 0 1 
RDH12 2 0 0 2 0 
RPE65 2 0 1 1 0 

RPGRIP1 2 1 0 1 0 
SPATA7 1 0 1 0 0 
TULP1 1 0 0 0 1 
Total 29 12 (25.5%) 5 (10.6%) 6 (11.8%) 6 (11.8%) 

 
Table 5 - Breakdown of LCA chip results for samples sent from UCL by gene, 
diagnosis and number of variants identified. 

 

The most frequent gene identified by the LCA chip for subjects sent from UCL was 

CEP290, which accounted for 31.0% of the genes identified by this method, but this 

was only in 8.7% of all subjects sent for analysis with the chip (Figure 11). The most 

frequent mutation identified was the common CEP290 intronic variant 

c.2991+1655A>G, p.Cys998X, occurring in 6 of 40 (15.0%) alleles identified by the 

LCA chip for the UCL cohort of subjects. 
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Figure 11 - Results of Cohort 1 subjects sent for LCA Chip analysis. Outstanding 
results are included in ‘unknown’ group. 

 

 

For those subjects in whom only one variant was found using the chip (12 LCA and 6 

EORD subjects), the second variant was investigated using direct sequencing where 

funding was available. Of these, in 6 LCA and 4 EORD subjects who underwent a 

screen in search of the second allele (in AIPL1, CEP290, GUCY2D, LCA5, RDH12 

and RPE65), direct sequencing identified the second variant in 3 LCA subjects (in 

CEP290 and LCA5) and in 4 EORD subjects (in AIPL1, RDH12 and RPE65). This 

search failed to identify the second allele in one subject with a CEP290 mutation 

found by the chip, and 2 with a GUCY2D mutation found by the chip. No subjects 

with rod-cone dystrophy, cone-rod dystrophy or cone dystrophy who were screened 

across the LCA chip were identified to harbour pathogenic variants by chip analysis.  
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In 5 additional subjects, the LCA chip was used by the referring hospital to identify 

the disease causing mutations; these subjects were recruited into the study and stored 

on the IED database. Two of these five subjects were invited to attend Moorfields Eye 

Hospital for phenotypic investigations and they will be described further in 

subsequent chapters (Table 6).  

 

Subject Gene Variant 1 
(identified by 
Asper Chip) 

Variant 2 (identified 
by Asper Chip) 

Location of 
referring 
hospital 

Invited for 
further 

phenotyping? 
4 CEP290 c.2991+1655A>G, 

p.Cys998X 
[240] 

Not found Poland No 

12 CEP290 c.4723A>T, 
p.Lys1575X [251] 

c. 4966G>T, 
p.Glu1656X [240] 

Cape Town, 
South Africa 

No 

19 CRB1 c.2555T>C 
p.Ile852Thr [124] 

c.3427delT 
p.Cys1143AlafsX67 
[331] 

Firenze, Italy No 

28 LRAT c.525T>A, 
p.Ser175Arg [285] 

c.525T>A, 
p.Ser175Arg [285] 

Manchester, 
UK 

Yes 

47 RGR c.196A>C, 
p.Ser66Arg [319] 

c.196A>C, 
p.Ser66Arg [319] 

Rovereto, 
Italy 

Yes 

 
Table 6 – Subjects identified with variants using the LCA chip by referring hospital.  

 

 

4.2.2 Molecular diagnoses identified in this Study 

Of the subjects recruited into this study between August 2008 and August 2011, the 

causative gene was identified in 67 subjects (63 families) using a number of 

strategies. The proportions by gene and diagnoses are described below. 

 

4.2.2.1 Molecular Diagnoses for Cohort 1 

For the subjects in Cohort 1, a molecular diagnosis was obtained in 61 subjects (57 

families) (34.5%) in total, using the following strategies: LCA APEX analysis (29 
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subjects from UCL, 5 subjects from elsewhere); direct sequencing of candidate genes 

to identify one or two variants by different researchers (AIPL1 – 2 subjects, CEP290 – 

2 subjects, LCA5 – 2 subjects, LRAT – 1 subject, RDH12 – 17 subjects, RPE65 – 7 

subjects, SPATA7 – 1 subject, TULP1 – 1 subject); autozygosity mapping using the 

SNP6 chip followed by positional candidate gene screening (2 subjects: 1 LCA5, 1 

RDH12) and exome sequencing (1 subject, CRB1). No molecular diagnosis was 

obtained for 116 subjects (65.5%) (109 families), which includes those families in 

whom the chip results are outstanding (Figure 12). 

 

 

Figure 12 - Genotypes of all subjects identified with variants in Cohort 1.  

 

 

Of the 61 subjects in cohort 1 in whom the causative gene was identified, 12 subjects 

(19.7%) (12 families) had only one variant identified and 49 subjects (80.3%) (45 

families) had both variants identified. The most frequent gene identified in cohort 1 
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was RDH12, comprising 28% of all genes identified. In the subjects who only 

underwent direct sequencing or exome sequencing, and not Asper chip analysis (27 of 

61 subjects identified with a molecular cause), molecular analysis identified both 

variants in all (AIPL1 – 1 subject, CRB1 – 1 subject [exome sequencing], LCA5 – 1 

subject, LRAT – 1 subject, RDH12 – 15 subjects, RPE65 – 6 subjects, SPATA7 – 1 

subject, TULP1 – 1 subject). Of these, 19 (70.4%) were homozygous and 8 (29.6%) 

were compound heterozygous mutations. These compound heterozygous mutations 

were only identified in CRB1, RDH12 and RPE65; the attributed diagnoses are 

indicated in Table 7. The most frequent gene to affect subjects with LCA was 

CEP290 and for subjects with EORD was RDH12. No mutations were identified for 

any of the subjects who carried a diagnosis of cone-rod dystrophy or cone dystrophy 

(Table 7). 

 

Gene Total No 
Patients 

EORD 
(n=96) 

LCA 
(n=67) 

Rod-Cone 
Dystrophy 

(n=8) 

Cone-Rod 
Dystrophy 

(n=3) 

Cone 
Dystrophy 

(n=3) 
AIPL1 2 1 1 0 0 0 

CEP290 11 2 9 0 0 0 
CRB1 6 4 1 1 0 0 

GUCY2D 5 0 5 0 0 0 
LCA5 2 0 2 0 0 0 
LRAT 2 2 0 0 0 0 

MERTK 1 1 0 0 0 0 
RDH12 17 14 0 3 0 0 

RGR 1 1 0 0 0 0 
RPE65 8 5 3 0 0 0 

RPGRIP1 2 1 1 0 0 0 
SPATA7 2 0 2 0 0 0 
TULP1 2 2 0 0 0 0 
Total 61 33 24 4 0 0 

 
Table 7 - Genotype for Cohort 1 with breakdown according to diagnosis. 
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The complete list of variants identified, with method of identification and researcher who identified them, are listed in Table 8. 

 

Subject 
No. 

Family 
No. 

Diagnosis Gene Mutation 
Type 

Allele 1 
Nucleotide change 

Allele 1 
Protein change 

MethodPerson identifying Allele 2 
Nucleotide change 

Allele 2 
Protein change 

MethodPerson identifying 

1  1 LCA AIPL1 Hom c.487C>T p.Gln163X Direct seq – novela c.487C>T p.Gln163X Direct seq – novela 
2  2 EORD AIPL1 Comp het c.834G>A p.Trp278X Asper c.190G>A p.Gly64Arg Direct seq - noveld 
3  3 LCA CEP290 Comp het c.3175_3176insA p.Ile1059fs Asper not found not found  
4  4 LCA CEP290 Comp het c.2991+1655A>G p.Cys998X Asper (Poland) not found not found  
5  5 LCA CEP290 Comp het c.2991+1655A>G p.Cys998X Asper not found not found  
6  6 EORD CEP290 Comp het c.2991+1655A>G p.Cys998X Asper c.4723A>T p.Lys1575X Asper 
7  7 LCA CEP290 Comp het c.4723A>T p.Lys1575X Asper c.712G>T p.Glu238X Direct seq - novelg 
8  8 LCA CEP290 Hom c.5668G>T p.Gly1890X Asper c.5668G>T p.Gly1890X Asper 
9  9 LCA CEP290 Comp het c.4723A>T p.Lys1575X Asper c.6079delG p.Glu2027LysfsX5 Direct seqf 
10  10 EORD CEP290 Comp het c.2991+1655A>G p.Cys998X Asper c.5668G>T p.Gly1890X Asper 
11  11 LCA CEP290 Comp het c.2991+1655A>G p.Cys998X Asper c.1066-1G>A splice site Asper 
12  12 LCA CEP290 Comp het c.4723A>T p.Lys1575X Asper (SA) c. 4966G>T p.Glu1656X Asper (SA) 
13  13 LCA CEP290 Comp het c.2991+1655A>G p.Cys998X Asper not found not found  
14  14 LCA CRB1 Comp het c.2401A>T p.Lys801X Asper not found not found  
15  15 EORD CRB1 Comp het c.2843G>A p.Cys948Tyr Asper not found not found  
16  16 Rod-cone CRB1 Comp het c.3655C>T p.Gln1219X Exome c.1312T>C p.Cys438Arg Exome 
17  17 EORD CRB1 Comp het c.2555T>C p.Ile852Thr Asper c. 3307G>A p.Gly1103Arg Asper 
18  18 EORD CRB1 Comp het c.2555T>C p.Ile852Thr Asper c.2843G>A p.Cys948Tyr Asper 
19  19 EORD CRB1 Comp het c.2555T>C p.Ile852Thr Asper (Italy) c3427delT p.Cys1143AlafsX67 Asper (Italy) 
20  20 LCA GUCY2D Het c.2302C>T p.Arg768Trp Asper not found not found  
21  21 LCA GUCY2D Comp het c.2302C>T p.Arg768Trp Asper c.307G>A p.Glu103Lys Asper 
22  22 LCA GUCY2D Het c.121C>T p.Leu41Phe Asper not found not found  
23  23 LCA GUCY2D Het c.2943delG p.Ser981SerfsX39 Asper not found not found  
24  24 LCA GUCY2D Het c.2849C>T p.Ala950Val Asper not found not found  
25  25 LCA LCA5 Hom c.439_449dup p.Glu151X Direct seq - novelb; SNP6 c.439_449dup p.Glu151X Direct seq - novelb; SNP6 
26  26 LCA LCA5 Comp het c.835C>T p.Gln279X Asper c.3G>A p.Met1Ile Direct seq - noveld 
27  27 EORD LRAT Hom c.316G>A p.Ala106Thr Direct seq - novelc c.316G>A p.Ala106Thr Direct seq - novelc 
28  28 EORD LRAT Hom c.525T>A p.Ser175Arg Asper (Manchester) c.525T>A p.Ser175Arg Asper (Manchester) 
29  29 EORD MERTK Hom c.2214delT p.Cys738TrpfsX31 Asper c.2214delT p.Cys738TrpfsX31 Asper 
30  30 EORD RDH12 Hom c.609C>A p.Ser203Arg Direct seq - noveld c.609C>A p.Ser203Arg Direct seq - noveld 
31  31 EORD RDH12 Hom c.609C>A p.Ser203Arg Direct seq - noveld c.609C>A p.Ser203Arg Direct seq - noveld 
32  31 EORD RDH12 Hom c.609C>A p.Ser203Arg Direct seq - noveld c.609C>A p.Ser203Arg Direct seq - noveld 
33  32 EORD RDH12 Hom c.146C>A p.Thr49Lys Direct seqd c.146C>A p.Thr49Lys Direct seq - noveld 
34  33 EORD RDH12 Hom c.601T>C p.Cys201Arg Direct seqd c.601T>C p.Cys201Arg Direct seqd 
35  34 Rod-cone RDH12 Comp het c.481C>T p.Arg161Trp Direct seq - noveld c.714insC p.Val238fsX34 Direct seq - noveld 
36  35 EORD RDH12 Comp het c.57_60del p.Pro20delfs Asper c.506G>A p.Arg169Gln Direct seq - noveld 
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37  36 EORD RDH12 Hom c.379G>T p.Gly127X Direct seqd c.379G>T p.Gly127X Direct seqd 
38  37 EORD RDH12 Comp het c.481C>T p.Arg161Trp Direct seq - noveld c.806_810del5bp p.Ala269fsX5 Direct seqd 
39  38 EORD RDH12 Comp het c.806_810del5bp p.Ala269fsX5 Asper c.209G>A p.Cys70Tyr Direct seq - noveld 
40  39 EORD RDH12 Hom c.146C>T p.Thr49Met Direct seqd c.146C>T p.Thr49Met Direct seqd 
41  40 EORD RDH12 Hom c.619A>G p.Asn207Asp Direct seq - noveld c.619A>G p.Asn207Asp Direct seq - noveld 
42  40 Rod-cone RDH12 Hom c.619A>G p.Asn207Asp Direct seq - noveld c.619A>G p.Asn207Asp Direct seq - noveld 
43  41 EORD RDH12 Hom c.601T>C p.Cys201Arg Direct seqd c.601T>C p.Cys201Arg Direct seqd 
44  42 EORD RDH12 Hom c.454T>A p.Phe152Ile Direct seq - noveld; SNP6 c.454T>A p.Phe152Ile Direct seq - noveld; SNP6 
45  43 Rod-cone RDH12 Hom c.601T>C p.Cys201Arg Direct seqd c.601T>C p.Cys201Arg Direct seqd 
46  44 EORD RDH12 Comp het c.448+1G>A splice site Direct seq - noveld c.698insGT p.Val233ValfsX45 Direct seq - noveld 
47  45 EORD RGR Hom c.196A>C p.Ser66Arg Asper (Italy) c.196A>C p.Ser66Arg Asper (Italy) 
48  46 LCA RPE65 Hom c.1451G>A p.Gly484Asp Asper c.1451G>A p.G484D Asper 
49  46 LCA RPE65 Hom c.1451G>A p.Gly484Asp Direct seqe c.1451G>A p.Gly484Asp Direct seqe 
50  47 EORD RPE65 Comp het c. 131G>A p.Arg44Gln Asper c. 1024T>C p.Tyr342His Direct seq - novele 
51  48 LCA RPE65 Comp het c.257C>A p.Thr86Asn Direct seq - novele c.760G>A p.Glu254Lys Direct seq - novele 
52  49 EORD RPE65 Comp het c.1543C>T p.Arg515Trp Direct seqe c.1067dupA p.Asn356Lysfs*8 Direct seq - novele 
53  50 EORD RPE65 Hom c.353G>A p.Arg118Lys Direct seq - novele c.353G>A p.Arg118Lys Direct seq - novele 
54  51 EORD RPE65 Comp het c.11+5G>A cryptic splice site Direct seqe c.245G>A p.Arg82Lys Direct seq - novele 
55  52 EORD RPE65 Comp het c.1087C>A p.Pro363Thr Direct seqe c.1418T>A p.Val473Asp Direct seqe 
56  53 EORD RPGRIP1 Comp het c.1447C>T p.Gln483X Asper not found not found  
57  54 LCA RPGRIP1 Comp het c.1447C>T p.Gln483X Asper not found not found  
58  55 LCA SPATA7 Hom c.253C>T p.Arg85X Direct seqd c.253C>T p.Arg85X Direct seqd 
59  56 LCA SPATA7 Hom c.961dupA p.Pro321ThrfsX5 Asper c.961dupA p.Pro321ThrfsX5 Asper 
60  57 EORD TULP1 Hom c.1511_1521del p.Leu504fsX140 Asper c.1511_1521del p.Leu504fsX140 Asper 
61  57 EORD TULP1 Hom c.1511_1521del p.Leu504fsX140 Direct seqf c.1511_1521del p.Leu504fsX140 Direct seqf 

 
Table 8 - Genetic variants identified in cohort 1 including method and researcher identifying the variant.  

a. Dr Tan, b. Dr Davidson, c. Dr Ocaka, d. Dr Mackay, e. NGRL, f. Miss Dev Borman, g. Centre for Nephrology and metabolic disorders; 
Abbreviations: No. – Number, LCA – Leber Congenital Amaurosis, EORD – Early Onset Retinal Dystrophy, Hom – Homozygous, Comp het – 
Compound Heterozygous, Seq – sequencing, SA – South Africa, SNP6 – autozygosity mapping. 
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4.2.2.2 Cohort 2 

Molecular analysis was performed for the ARB subjects of cohort 2 in the Bestrophin-

1 (BEST1) gene and genotype identified for all six subjects. Dr Davidson, University 

of Manchester, identified the variants in subjects 1-4 of this cohort and Miss Dev 

Borman (ADB) identified the variants in subjects 5 and 6 of this cohort. The 

phenotype and genetic variants will be discussed in the ARB chapter (Chapter 4.7). 

No molecular investigations have been carried out in the Yellow Dot Dystrophy group 

of subjects to date. 

 

 

4.2.3 Diagnosis by Gene – Cohort 1 

4.2.3.1 AIPL1 

Mutations in AIPL1 were identified in 2 subjects in this cohort (Subjects 1 and 2); 1 

by the LCA chip (only one variant was identified), and 1 by direct sequencing by Dr 

Tan, UCL. In the subject in whom the Asper chip identified one variant, Dr Mackay, 

UCL, identified the second variant by direct sequencing. One subject carried a 

diagnosis of LCA and one of EORD. The phenotype associated with AIPL1 mutations 

in this cohort will be discussed in chapter 4.3. 

 

4.2.3.2 CEP290 

CEP290 was the most frequent gene identified in subjects with LCA (affecting 13.4% 

of subjects with LCA) and in the subjects who were screened across the LCA chip 
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(identified in 31.0% of subjects sent for LCA chip analysis from UCL). The most 

frequent mutation identified was the common intronic variant, c.2991+1655A>G, 

p.Cys998X, occurring in 6 of 40 (15.0%) alleles identified by the LCA chip. This 

variant is reported to be the most common LCA variant, identified in up to 26% of 

LCA cases in North Western European populations, but it has a much lower incidence 

in other populations [247]. All but one of the subjects identified with variants in 

CEP290 in this cohort (Subjects 3 – 13) were of European origin; the one subject who 

was not was from South Africa although he is presumed to be of British and Dutch 

descent. The genotype-phenotype associations for CEP290 will be discussed briefly 

in chapter 4.3. 

 

4.2.3.3 CRB1 

Mutations in CRB1 comprised 9.8% of those identified with mutations in this cohort 

(Subjects 14 - 19) and the strategies used to identify them included screening using 

the LCA chip (5 subjects) and exome sequencing (1 subject). This patient (Subject 16) 

had been screened across the LCA chip prior to exome sequencing, but no variants 

were identified. The compound heterozygous mutations in CRB1 identified in this 

subject (c.3655C>T, p.Q1219X and c.1312T>C, p.C438R) were excluded from the 

1000 genomes project and exome variant server, and were considered to be novel.  

The phenotype associated with CRB1 mutations in this cohort will be discussed 

briefly in chapter 4.3. 
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4.2.3.4 GUCY2D 

GUCY2D mutations were identified in 5 subjects in cohort 1, all via the LCA chip 

(Subjects 20 – 24). All 5 subjects carried a diagnosis of LCA. The chip identified two 

variants in only one subject, but one variant in 4 subjects. Direct sequencing of 

GUCY2D was performed by Dr Ocaka, UCL, in 2 of these four subjects, which did 

not identify a second variant. These two subjects had no other affected family 

members and no family history of consanguinity. GUCY2D has been identified to 

segregate both in an autosomal dominant and a recessive manner [114, 126-128]; it 

may be postulated that in this cohort the identification of only one variant in GUCY2D 

could suggest an autosomal dominant inheritance pattern with a possible de novo 

mutation in these individuals. However, this is unlikely to be the case as all dominant 

mutations in GUCY2D have been identified, to date, to cluster in 3 particular codons, 

837, 838 and 839 [128]. These were not implicated in any of the GUCY2D subjects 

identified in this study. The genotype-phenotype associations of GUCY2D will be 

discussed in chapter 4.3. 

 

4.2.3.5 LCA5 

2 subjects were identified with LCA5 mutations. One subject (Subject 25) had 

undergone autozygosity mapping due to her consanguineous ancestry, which 

identified a region of homozygosity in which LCA5 resided. Positional gene screening 

was carried out, which identified the c.439_449dup, p.Glu151X variant in the 

homozygous state. The molecular analysis in this family was performed by Dr 

Davidson, UCL. The other subject (Subject 26), identified with compound 

heterozygous mutations in LCA5, had one variant identified by the Asper chip and the 
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other variant by direct sequencing by Dr Mackay, UCL. The phenotypes in these 

individuals will be briefly discussed in chapter 4.3. 

 

4.2.3.6 MERTK 

A homozygous mutation in MERTK was identified in one subject by the Asper chip 

(Subject 29). This subject carried a diagnosis of EORD. The phenotype associated 

with this MERTK variant will be discussed in chapter 4.3.  

 

4.2.3.7 RDH12 

RDH12 was the most frequently identified gene, comprising 27.8% of the genes 

identified in cohort 1 (Subjects 30 – 46). All 17 subjects identified with RDH12 

mutations underwent direct sequencing by Dr Mackay, which identified both alleles in 

15 of 17 (88.2%) subjects, and one allele in 2 subjects, both of whom had one allele 

identified by the LCA chip. The reason for the high proportion of subjects with 

RDH12 mutations in this series is that the distinctive phenotype associated with 

RDH12 mutations had recently been described [278], and the majority of these 

subjects were selected for RDH12 screening based upon their phenotype. A number of 

novel mutations were identified. These subjects were combined with those with 

RDH12 mutations that were identified and phenotyped by the previous research 

registrar, Mr Phillip Moradi, and published [284]. The genotype-phenotype 

associations for RDH12 identified in this study will be discussed in chapter 4.3.  
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4.2.3.8 RPE65 

Mutations in RPE65 were identified in 13.1% of the subjects in whom a molecular 

diagnosis was identified (Subjects 48 – 55). The Asper chip identified variants in 2 

subjects, but the majority of the RPE65 variants were identified by direct screening at 

the National Genetics Reference Laboratory (NGRL) in Manchester, part of the 

Central Manchester University Hospitals NHS Foundation Trust, UK, who at the time 

of conducting this study, provided a clinical service in which molecular analysis of 

RPE65 was performed using direct screening. The subjects were selected for RPE65 

screening based upon their history and clinical features, and referred directly to the 

NGRL, who identified variants in 7 of the 8 subjects with mutations in RPE65 

ascertained in this study. 6 of these variants were novel. The phenotype associated 

with mutations in RPE65 will be discussed in chapter 4.3.  

 

There was one RPE65 subject who displayed hypomorphic features (Subject 52), and 

he was a compound heterozygote, as were 5 of the 7 families identified with RPE65 

mutations. However, he was the only subject to harbour a duplication on one allele, 

c.1067dupA, p.Asn356Lysfs*8, which occurs beyond halfway in the transcript. His 

other variant, c.1543C>T, p.Arg525Trp occurs late in the transcript, and in silico 

analysis suggests that it is damaging (SIFT) or probably damaging (PolyPhen2). It is 

presumed that his mutation leads to some functional protein product. However, 

comparison of the location of these variants to the other milder cases reported in the 

literature, which have occurred much earlier in the transcript, do not identify any true 

correlation between mutation location and phenotypic severity [151, 161]. 
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4.2.3.9 RPGRIP1 

2 subjects (Subjects 56 and 57) were identified by the Asper chip to harbour only one 

variant each in RPGRIP1. This was the same variant in both subjects, c.1447C>T, 

p.Gln483X. No further molecular screening was carried out in these subjects, and so 

the second variants were not identified. The phenotypes in these individuals will be 

briefly discussed in chapter 4.3.  

 

4.2.3.10 SPATA7, TULP1, LRAT, RGR  

The variants identified in these genes and the associated phenotypes observed will be 

discussed in the appropriate chapters (4.4 – 4.7). 

 

 

4.2.4 Diagnosis by Gene – Cohort 2 

The subjects in cohort 2 who underwent molecular screening all carried a diagnosis of 

autosomal recessive bestrophinopathy. In collaboration with Dr Davidson, University 

of Manchester, the disease-causing variants were identified in BEST1. These subjects 

underwent phenotypic studies at Moorfields Eye Hospital by Miss Dev Borman. The 

findings and associated phenotypes in these subjects will be presented in chapter 4.8. 

 

 

4.2.5 Summary of overview of study 

In total, 201 subjects were recruited into this study, with 177 carrying a diagnosis of a 

generalised retinal dystrophy (cohort 1) and 24 with a macular phenotype (cohort 2). 
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In cohort 1, the LCA chip was used as a ‘first pass screen’ in 104 subjects, which 

identified 1 or 2 variants in known LCA and EORD genes in 29 subjects. The chip 

was more informative for subjects with LCA than EORD. In total, the disease causing 

mutation was identified in 34.5% of subjects in cohort 1, using a variety of techniques 

including APEX analysis, direct sequencing, autozygosity mapping with positional 

candidate screening and exome sequencing. 35.8% of LCA subjects and 34.4% of 

EORD subjects had their genotype identified using these different methods. The 

molecular analysis and detailed phenotyping results will be further considered in the 

subsequent chapters.  

 

In cohort 2, molecular analysis into BEST1 was only carried out for the subjects with 

presumed autosomal recessive bestrophinopathy. Subjects with a macular phenotype 

similar to drusen at the macula did not undergo molecular analysis. The phenotypes of 

the subjects in cohort 2 will be discussed in subsequent chapters. 

 

The molecular techniques utilised in this study were in widespread use at the time that 

the study was conducted. However, with the advent of next generation sequencing 

many of these techniques have been surpassed. The rapid detection of genes using 

whole genome sequencing and exome sequencing is likely to lead to the successful 

identification of the molecular cause in the majority of patients with LCA and EORD, 

in whom, in the past, the molecular diagnosis frequently remained unidentified. This 

is a very exciting time in the field of genetics and will hopefully produce translatable 

results that may help develop novel therapeutic techniques in the future. 
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4.3 Genotype - Phenotype Associations 

 

Of the subjects recruited into Cohort 1 of the study a number of causative genes were 

identified using APEX microarray and direct sequencing. These genes have 

previously been identified to cause Leber Congenital Amaurosis (LCA) and Early 

Onset Retinal Dystrophies (EORD). A number of reports have been published 

describing the phenotype associated with these genes. The clinical features associated 

with the following genes in the subjects in cohort 1 will be briefly described here: 

AIPL1, CEP290, CRB1, GUCY2D, LCA5, MERTK, RDH12, RPE65 and RPGRIP1. 

 

 

4.3.1 AIPL1 Genotype - Phenotype association  

Two subjects (Subject 1 and Subject 2) from 2 families in Cohort 1 were identified to 

harbour mutations in AIPL1. The phenotype in both of these subjects was quite 

different, with subject 2 displaying a much milder phenotype. Subject 1 was from a 

consanguineous family from the UAE and was noted to have poor vision and 

nystagmus from 2 months of age, with photophilia. When examined at age 24 months 

he had perception of light vision in both eyes, amaurotic pupils, nystagmus and 

hypermetropia (+6.50 DS in each eye). His fundi at this age were normal. His features 

were consistent with a diagnosis of LCA. Subject 2, from a non-consanguineous 

British Caucasian family, had a much milder phenotype. She only had nystagmus, 

associated with head nodding, from 2 months of age. There were no visual concerns 

otherwise, although she did display photophilia despite her ERG findings. At 26 

months of age her visual acuity was 0.50 LogMAR with both eyes open, she had 
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normal pupils and a myopic refraction (-8.50 DS in each eye). Aside from mild 

mottling at both maculae, her fundi at this age were otherwise normal (Figure 13 - A 

and B). OCT imaging showed disruption of the photoreceptor layer at the fovea 

(Figure 13 - C and D). An ERG performed at 8 months of age identified marked cone 

dysfunction but normal rod function. Her diagnosis was consistent with EORD, with 

hypomorphic features compared to the usual phenotype associated with mutations in 

AIPL1, which is typically more severe [179-181, 332, 333]. However, the residual 

ERG function demonstrated in subject 2 bears similarities to the very young AIPL1 

subjects with residual rod ERGs that were recently reported, and who may be human 

candidates for gene replacement therapy, which has been identified in animal models 

of AIPL1 disease to show effective photoreceptor rescue [334, 335].      

 

 

Figure 13 - Subject 2, AIPL1, Hypomorphic EORD. A – right eye fundus; B – left eye 
fundus, yellow arrow indicating subtle mottling at fovea; C – OCT right eye; D - OCT 
left eye, yellow arrows indicating disruption of photoreceptor layer. Images taken at 
age 3 years. 
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4.3.2 CEP290 Genotype - Phenotype association  

Eleven subjects from 11 unrelated families in cohort 1 were identified with mutations 

in CEP290 (Subjects 3 -13). Eight subjects were British Caucasian, 2 were half 

British Caucasian and 1 was Polish. None of the CEP290 families had 

consanguineous ancestries. All subjects had poor vision from birth or within the first 2 

months of life, with severe nyctalopia, visual field loss and nystagmus. General health 

was normal in 8 of 11 CEP290 subjects. One subject had Asperger syndrome and no 

renal abnormalities (Subject 3), one had a renal transplant by 12 years of age (Subject 

8) and one had renal cysts by 2.75 years of age (Subject 12).  

 

Visual acuity ranged from between 0.78 LogMAR to nil perception of light (age range 

3 months to 29 years 10 months) (Figure 14). Six of 11 subjects had perception of 

light or nil perception of light vision. In general, the visual acuities observed in 

CEP290 associated retinopathy were poor and appeared to be worse in infancy than in 

the third decade (Figure 14). This change in acuity might be perceived as the vision 

improving over time, however, it is more likely that this apparent improvement 

actually reflects the methods available to measure vision at an early age rather than a 

true improvement in vision. Due to the small number of subjects identified with 

CEP290 mutations in this study, and to the lack of longitudinal data, it is not possible 

to reliably conclude that the vision in subjects with mutations in this gene improve 

with age. 

 

Roving eye movements were present in all subjects and two displayed the oculodigital 

sign. Hypermetropic refractive errors were present in 9 subjects for whom refractive 

data were available, with a spherical equivalent ranging between +5.50 D and +7.25 
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D. Anterior segments and mediae were clear in all but one subject who had 

keratoconus and posterior subcapsular lens opacification in both eyes (Subject 3).  

The fundi were normal at a young age (7 subjects, age range 3 months to 33 months). 

In the third decade the fundi displayed widespread RPE atrophy, bone spicule and 

nummular pigmentary retinopathy and vascular attenuation (4 subjects, age range 20 

years to 29 years 10 months) (Figure 15 - A and B, Subject 10). ERGs, performed in 9 

of 11 subjects, were unrecordable (age range 3 months to 29 years). All but 2 subjects 

carried a diagnosis of LCA; Subjects 6 and 10 had diagnoses of EORD as their onset 

of visual symptoms were in infancy and visual acuities were 1.48 LogMAR (right 

eye) and 1.78 LogMAR (left eye) (Subject 6, age 29 years 10 months) and 0.78 

logMAR in either eye (Subject 10, age 27 years).  

 

The phenotypic findings associated with the CEP290 subjects in this cohort are 

consistent with published reports [252, 255, 336]. Although there is no clear cut 

genotype - phenotype correlation associated with CEP290 mutations, in LCA caused 

by mutations in this gene there is severe rod cone dysfunction with counting fingers or 

worse visual acuity and fundus changes that progress from being normal or having 

minimal peripheral white dots early in life to mid-peripheral nummular and specular 

pigmentation later in life [240, 247]. The identification of cone rich regions with 

corresponding normal OCTs, particularly at the fovea, has led to the suggestion that 

gene therapy may be possible for the restoration of central vision in these subjects 

[255, 337]. 
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Subject, 
Family, 

(Gender) 

Ethnicity Consanguinity Diagnosis Age at 
Onset 

(Weeks) 

Age at 
Exam 

LogMAR 
VA 

RE, LE 

Spherical 
Equivalent 
(Dioptres) 

RE, LE 

General 
Health 

Retina 

3, 3, (M) British Caucasian Nil LCA Birth 21 yr 8 
mth 

1.78, 1.55 Moderate 
hypermetropia 

Asperger Peripheral RPE atrophy 

4, 4, (M) Polish Nil LCA Birth 23 mth NPL, NPL +6.50, +6.25 Normal Normal 
5, 5, (M) British Caucasian Nil LCA 8 18 mth NPL, NPL +6.50, +5.50 Normal Normal 
6, 6, (M) British Caucasian Nil EORD Infancy 29 yr 

10 mth 
1.48, 1.78 Not available Normal Widespread RPE atrophy, 

nummular & BS pigment, 
attenuated vessels  

7, 7, (M) 1/2 British Caucasian,  
1/2 Brazilian 

Nil LCA 6 3 mth NPL, NPL +6.50, +6.50 Normal Normal 

8, 8, (M) British Caucasian Nil LCA 6 20 yr 1.00, 1.00 Not available Renal 
transplant  

Widespread RPE atrophy, 
nummular & BS pigment, 
attenuated vessels 

9, 9, (F) British Caucasian Nil LCA 6 9 mth PL, PL Hypermetropic 
astigmatism 

Normal Normal 

10, 10, (M) British Caucasian Nil EORD Infancy 27 yr 0.78, 0.78 Moderate 
hypermetropia 

Normal ‘typical RP'  

11, 11, (M) British Caucasian Nil LCA 8 13 mth NPL, NPL +6.00, +6.00 Normal Normal 
12, 12, (M) 1/2 British Caucasian,  

1/2 SA Caucasian 
Nil LCA Birth 33 mth FF, FF +7.25, +7.25 Renal cysts Normal 

13, 13, (F) British Caucasian Nil LCA 4 19 mth PL, PL +7.00, +6.50 Normal Normal 
 

Table 9 - Clinical Features of CEP290 subjects in cohort 1.  

F – Female; M – Male; SA – South African; LCA – Leber Congenital Amaurosis; EORD – Early Onset Retinal Dystrophy; yr – years; mth – 
months; VA – Visual Acuity; RE – Right Eye; LE – Left eye; NPL – Nil Perception of Light; PL – Perception of Light; FF – Fixing and 
Following; BS – Bone Spicule; RP – Retinitis Pigmentosa.
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Figure 14 - Graphical representation of age versus visual acuity in CEP290 
retinopathy. In the first decade visual acuity appears to be worse than in the third 
decade. Visual acuities of 5 LogMAR and 6 LogMAR represent perception of light 
and nil perception of light vision, respectively [53]. 

 

 

 

Figure 15 - Subject 10, CEP290, EORD. A – right eye fundus; B – left eye fundus. 
Both fundi show widespread RPE atrophy, vascular attenuation, and peripheral bone 
spicule and nummular pigmentation. Images taken at age 27 years. 
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4.3.3 CRB1 Genotype - Phenotype association  

Six subjects (6 families) in cohort 1 had mutations in CRB1. One subject carried a 

diagnosis of LCA (Subject 14), 4 had EORD (Subjects 15, 17, 18, 19) and 1 had rod 

cone dystrophy (Subject 16). Four of six subjects were British Caucasian, 1 was 

Indian and 1 was Italian. The only subject from a consanguineous family was subject 

16 and he had compound heterozygous mutations in CRB1. All subjects’ general 

health was normal.  

 

The subject with LCA had poor vision from 6 weeks of age with nyctalopia and 

nystagmus. When examined at 4 months he was able to fix and follow, and he had 

bilateral macular atrophy with surrounding pigment. The subjects with EORD had 

poor vision from between 2 years and just below 5 years of age. Two of these subjects 

had nyctalopia and only one had nystagmus, from 10 years of age (Subject 19). Visual 

acuity in the subjects with EORD ranged from between 0.10 LogMAR to nil 

perception of light (age range 11 years 4 months to 53 years). All 4 subjects had 

widespread retinal pigmentation and maculopathy to varying degrees (Figure 16 – A 

and B, Subject 19). Subject 15 had milder retinal pigmentation at age 11 years (Figure 

17 - A and B). Fundus autofluorescence (FAF) in one EORD subject identified a 

dense hyperautofluorescent ring at the macula at age 11 years 4 months (Subject 15) 

(Figure 17 - C and D). Three of 4 subjects had OCT imaging which demonstrated 

thickening of the retina; in 2 subjects there were intra-retinal cysts (Subjects 15 and 

17) (Figure 17 – E and F, subject 15). Subject 16, diagnosed with rod cone dystrophy, 

had poor vision from 6 years and nyctalopia from 10 years of age. His visual acuity 

was 0.78 LogMAR (right eye) and 1.00 LogMAR (left eye) at 23 years of age. His 

fundi also displayed typical features associated with CRB1 mutations, with 
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widespread RPE atrophy, coarse retinal pigmentation and macular thickening (Figure 

18 - A and B). FAF demonstrated hypoautofluorescence at the macula and OCT 

imaging did not identify macular oedema (Figure 18 – C to F). ERGs performed in 4 

of 6 CRB1 subjects identified severe photoreceptor dysfunction with more severe rod 

than cone involvement (Subjects 14 – 17, age range 4 months to 23 years). In 3 

subjects there was a hypermetropic refractive error with the spherical equivalent 

ranging between +1.88 D and +8.00 D.   

 

These phenotypic observations correlate with the published phenotype associated with 

mutations in CRB1, which in infants is characterised by retinal white dots and macular 

atrophy but in later childhood is associated with deep nummular pigmentation, 

preservation of the para-arteriolar RPE, peripheral telangiectasia, increased retinal 

thickness and macular atrophy [53, 230, 233, 331]. Additionally there may be an 

exudative retinal detachment, secclusio pupillae and secondary glaucoma. OCT 

imaging in CRB1 mutations typically displays retinal thickening, disorganised and 

coarse retinal lamination, loss of the outer limiting membrane with age and intra-

retinal cysts [53, 234].  
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Figure 16 - Subject 19, CRB1. Diagnosis EORD. A – right eye fundus; B – left eye 
fundus. Fundi display dense macular atrophy and peripheral nummular pigmentation. 
Images taken at age 12 years. 
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Figure 17 - Subject 15, CRB1, EORD. A – right eye fundus; B – left eye fundus. 
Fundi demonstrate mild disease with peripheral nummular retinal pigmentation 
(yellow arrows); C – right eye FAF; D – left eye FAF. FAF imaging shows dense 
hyperautofluorescence at the foveas; E – right eye OCT displaying macular 
thickening and intra-retinal fluid, central retinal thickness 496 microns; F – left eye 
OCT displaying macular thickening and intra-retinal fluid, central retinal thickness 
243 microns. Images taken at age 11 years. 
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Figure 18 - Subject 16, CRB1. Diagnosis rod-cone dystrophy. A – right eye fundus; B 
– left eye fundus. Fundi display dense macular atrophy and pigmentation; C – right 
eye autofluorescence; D – left eye autofluorescence. Dense hypoautofluorescence 
corresponding with the macular atrophy; E – right eye OCT, demonstrating severe 
disruption of the photoreceptor layer (yellow arrow) and disrupted retinal lamination. 
Images taken at age 21 years. 
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4.3.4 GUCY2D Genotype - Phenotype association  

In five subjects (5 families) in Cohort 1, GUCY2D was identified as the causative 

gene (Subjects 20 – 24). Three of 5 subjects were British Caucasian, 1 was Turkish 

and one was Khazakstani. All 5 had been diagnosed with LCA, with poor vision 

beginning between birth and 2 months of age. All had roving nystagmus and 2 had 

photoaversion. Visual acuity in the two oldest subjects was better than in the three 

younger subjects: perception of light to nil perception of light in subjects 21, 22 and 

24 (age range 10 months to 42 months) and 0.8 LogMAR to 1.76 LogMAR in 

Subjects 20 and 23 (ages 16 years 4 months and 10 years 5 months respectively). 

Three subjects were hypermetropic with a spherical equivalent between +1.00 D and 

+8.00 D. However, Subject 22 was myopic with a spherical equivalent of -13.0 D. 

This is not in keeping with the published phenotype associated with GUCY2D 

mutations [114, 115, 338].  

 

The fundi were normal in 4 subjects, who were examined between 10 months and 16 

years of age (Subjects 20, 21, 23 and 24) (Figure 19 - A and B, Subject 20). However, 

in Subject 22 there was a diffuse pigmentary retinopathy, which was not in keeping 

with the published GUCY2D phenotype. The ERG was unrecordable in 4 of 5 

GUCY2D subjects; in Subject 20 there was severe cone rod dysfunction at age 17 

years.  

  

The phenotype in Subject 22 was not typical of GUCY2D mutations. This subject’s 

mother and maternal aunt had mild RP, thus it is possible that the inheritance pattern 

in this family is autosomal dominant. The mutation identified in this family has been 

reported in the heterozygous state in another family with LCA from Tunisia, but the 
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fundus appearance in this family was not clearly described to allow a detailed 

comparison with the subject in the present study [115]. In addition, Perrault et al. 

described hyperopia, while Subject 22 had myopia. It remains possible therefore, that 

another gene may contribute to the disease in this family, which has, as yet, not been 

identified.  

 

 

Figure 19 - Subject 20, GUCY2D. A – right eye fundus; B – left eye fundus. Both 
fundi appear normal. Images taken at age 16 years. 

  

 

4.3.5 LCA5 Genotype - Phenotype association  

Two subjects in cohort 1 were identified with LCA5 mutations (Subjects 25 and 26). 

One was British Caucasian from a consanguineous family (Subject 25) and the second 

subject was from a non-consanguineous family of unknown ethnicity (Subject 26).  

Both were diagnosed with LCA, with poor vision and nystagmus from birth or early 

infancy. General health was normal. Visual acuity was measured at perception of light 

(Subject 25, age 18 years and 6 months) and 1.1 LogMAR (Subject 26, age 8 years 

and 6 months).  
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The fundus appearances were different between the two subjects. Subject 25 had 

atrophy at the macula, which Subject 26 did not (Figure 20 – A to D). Although both 

had peripheral RPE atrophy, Subject 26 had additional white dots in the periphery, 

which Subject 25 did not. ERGs had not been performed in these subjects. As the 

number of LCA5 families ascertained in this study were small, it is not possible to 

make a general conclusion about the LCA5 phenotype. However, these two subjects 

were included in a publication with a number of LCA5 families ascertained 

worldwide, in which the clinical diagnoses were heterogeneous and the fundi 

frequently displayed white dots in the periphery, widespread RPE atrophy and some 

preserved peripheral islands of normal RPE that may indicate a potential for therapy 

at a very young age [339].  
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Figure 20 - Subject 25, LCA5: A – right eye; B – left eye. Dense macular atrophy and 
peripheral RPE atrophy. Images taken at age 18.5 years. Subject 26: C – right eye 
with white dots in the periphery; D – left eye. Images taken at age 8.5 years. 

 
 
 
4.3.6 MERTK Genotype - Phenotype association  

Only one subject was identified in cohort 1 with mutations in MERTK and a diagnosis 

of EORD (Subject 29). This subject was from a multiply consanguineous family from 

the UAE, which had 5 affected members in 2 successive generations. Subject 29 had 

poor vision and nyctalopia from 4 years of age, and no nystagmus. Visual acuity at 5 

years and 4 months was 0.18 LogMAR in either eye, with a myopic refractive error of 

-4.63 D and -7.13 D spherical equivalent in the right and left eyes, respectively. Her 

retina appeared normal at this age (Figure 21 - A and B). FAF demonstrated a ring of 

hyperautofluorescence at the fovea, which corresponded to the retained photoreceptor 
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layer at the fovea seen on OCT imaging (Figure 21 - C and D). An ERG at age 4 years 

and 3 months demonstrated rod more than cone dysfunction, with sparing of the 

maculae. There were no other affected family members available for examination. 

MERTK subjects have been identified with macular atrophy and RPE depigmentation 

in a ‘bulls eye’ configuration with corresponding hyperautofluorescence, which was 

seen on autofluorescence imaging in the subject in this study [340, 341]. These 

subjects may be amenable to treatment and a clinical trial is currently underway into 

gene therapy for patients with retinal disease due to MERTK mutations 

(https://clinicaltrials.gov/ct2/show/NCT01482195). 

 

 

Figure 21 - Subject 29, MERTK, EORD. A – right eye fundus; B – left eye fundus. 
The fundi appeared normal at age 5 years 4 months; C – right eye fundus 
autofluorescence image demonstrating a ring of herperautofluorescence at the fovea; 
D – left eye OCT image demonstrating retention of the photoreceptor layer at the 
fovea, limits marked by yellow arrows. 
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4.3.7 RDH12 Genotype - Phenotype association  

In total, 17 subjects from 15 families were identified with causative mutations in 

RDH12 (Table 10). All subjects had a diagnosis of either EORD (14 subjects) or rod 

cone dystrophy (3 subjects). Interestingly, the age of symptom onset varied between 

the two affected members of family 40, leading to subject 41 carrying a diagnosis of 

EORD and subject 42 carrying a diagnosis of rod cone dystrophy. Ethnicities were 

diverse, and included British Caucasian, Saudi Arabian, Indian, Pakistani, Kurdish, 

Latvian, and western European families. Symptom onset ranged from infancy to 11 

years of age. Symptoms included poor vision, nyctalopia and visual field constriction. 

4 subjects reported a noticeable deterioration in vision in the third and fourth decades. 

General health was normal in all subjects. Subjects were examined between 6 years of 

age and 52 years of age.  

 

Visual acuity was best preserved at a young age – subject 39 had 0.6 LogMAR vision 

at 6 years of age (Figure 22). However, in general, visual acuity was poor. Only 3 

subjects had 1.0 LogMAR acuity or better. In 11 subjects the acuity ranged between 

hand movements and perception of light. The worst visual acuity was in the oldest age 

at 52 years, however two subjects also had perception of light vision in their fourth 

decade. Due to the small numbers of subjects identified with RDH12 associated 

disease and to the lack of longitudinal data it is not possible to determine how rapidly 

vision deteriorates with time.  

 

Mild hypermetropia was recorded in 3 subjects. Keratoconus was present in 1 subject 

(Subject 31); otherwise anterior segments were normal. Posterior subcapsular lens 

opacification was common, affecting 10 subjects, one of whom had surgery for lens 
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extraction (Subject 41). The fundus appearance was easily recognisable as a severe 

pigmentary retinopathy with yellow macular atrophy, macular pigmentation and 

arteriolar attenuation (Figure 23 - A to D, Table 10). In 3 subjects the severe pigment 

clumping spared the para-arteriolar region. In 3 subjects in whom OCT imaging was 

performed, there was severe thinning of the fovea with debris visible in the 

photoreceptor layer (Figure 24 – C, Subject 35 and Figure 25 – B, Subject 43). In 4 

subjects FAF imaging identified little to no autofluorescence at the macula, in keeping 

with the observed macular atrophy (Figure 24 - B, subject 35). ERGs performed in 4 

subjects were unrecordable.  

 

The phenotypic appearances of the RDH12 subjects in this study were in keeping with 

the published phenotypes which have identified severe retinal pigmentation and 

macular atrophy with very poor vision from early childhood [270, 271, 278, 279, 

282]. These subjects, and those previously recruited into the Childhood Onset Retinal 

Dystrophy Study, were published [284]. 
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Subject, 
Family, 

(Gender) 

Ethnicity Consanguinity Diagnosis Age at 
Onset 

(Years) 

Age at 
Exam 

(Years) 

LogMAR 
VA 

RE, LE 

Retina 

30, 30, (F) Unknown Consanguineous EORD 4 35 HM, HM Pigment clumping, yellow macular atrophy, arteriolar attenuation 
31, 31, (M) Saudi Arabian Consanguineous EORD 2 29 HM, HM Pigment clumping, yellow macular atrophy, arteriolar attenuation 
32, 31, (M) Saudi Arabian Consanguineous EORD <5 23 HM, CF Pigment clumping with para-arteriolar sparing, yellow macular 

atrophy, arteriolar attenuation 
33, 32, (M) British Caucasian Nil EORD 2 34 HM, HM Pigment clumping, macular atrophy and ‘coloboma’, arteriolar 

attenuation 
34, 33, (F) Indian Nil EORD Infancy 33 1.0, 0.78 Pigment clumping with para-arteriolar sparing, yellow macular 

atrophy, arteriolar attenuation 
35, 34, (M) Latvian Nil Rod-cone 10 40 1.78, 1.48 Pigment clumping, yellow macular atrophy, arteriolar attenuation 
36, 35, (F) European Caucasian Nil EORD 1.5 32 PL, PL Pigment clumping, yellow macular atrophy, arteriolar attenuation 
37, 36, (M) Kurdish Nil EORD Infancy 21 2.3, 2.3 Pigment clumping, large bilateral macular atrophic lesions, 

arteriolar attenuation 
38, 37, (M) British Caucasian Nil EORD <5 33 1.3, 1.0 Pigment clumping, yellow macular atrophy, arteriolar attenuation 
39, 38, (M) British Caucasian Nil EORD 4 6 0.6, 0.6 Pigment clumping, macular atrophy, arteriolar attenuation 
40, 39, (F) Indian Nil EORD 1 52 PL, PL Pigment clumping, yellow macular atrophy, arteriolar attenuation 
41, 40, (M) Pakistani Consanguineous EORD 4 27 HM, HM Pigment clumping, macular atrophy, arteriolar attenuation 
42, 40, (F) Pakistani Consanguineous Rod-cone 8 25 HM, HM Pigment clumping, macular atrophy, arteriolar attenuation 
43, 41, (F) Indian Nil EORD 2 20 1.0, 0.78 Pigment clumping with para-arteriolar sparing, yellow macular 

atrophy, arteriolar attenuation 
44, 42, (M) Irish Caucasian Consanguineous EORD 2.5 29 CF, CF Pigment clumping, macular atrophy and ‘coloboma’, arteriolar 

attenuation 
45, 43, (F) Indian Nil Rod-cone 11 30 PL, PL Pigment clumping, large bilateral macular atrophic lesions, 

arteriolar attenuation 
46, 44, (M) ½ British Caucasian, 

½ Portuguese 
Nil EORD 2 8 1.0, 1.3 Moderate pigment clumping, RPE atrophy, atrophic pigmented 

macula arteriolar attenuation 
 
Table 10 – Clinical Features of RDH12 subjects in cohort 1.  

F – Female; M – Male; EORD – Early Onset Retinal Dystrophy; VA – Visual Acuity; RE – Right Eye; LE – Left eye; HM – Hand Movements; 
CF – Counting Fingers; PL – Perception of Light. 
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Figure 22 - Graphical representation of age versus visual acuity in RDH12 
retinopathy. In the first decade visual acuity is markedly better than in the sixth 
decade, however, a variety of acuities are observed in the intervening decades. 
Diagnoses included EORD and rod-cone dystrophy. Visual acuities of 2 LogMAR, 3 
LogMAR, 5 LogMAR and 6 LogMAR represent counting fingers, hand movements, 
perception of light and nil perception of light vision, respectively [52, 53]. 
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Figure 23 - RDH12 subjects with EORD. A – Right eye fundus, Subject 39 age 6 
years; B – Right eye fundus, Subject 38 age 33 years; C – Left eye fundus, Subject 31 
age 29 years; D – Left eye fundus, Subject 40 age 52 years. All subjects display a 
severe pigmentary retinopathy and yellow macular atrophy with pigmentation that 
worsens with age.  
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Figure 24 - Subject 35, RDH12, Rod-cone dystrophy. A – Right eye fundus, age 40 
years displaying severe pigmentary retinopathy and yellow pigmented macular 
atrophy; B – corresponding right eye fundus autofluorescence image displaying only a 
faint autofluorescent signal at the macula; C – OCT image of the right eye displaying 
foveal shallowing (double ended arrow), severe photoreceptor disruption (single 
ended arrow) and an intra-retinal cyst. 
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Figure 25 - Subject 43, RDH12 EORD. A – Left eye fundus, age 20 years displaying 
severe pigmentary retinopathy and yellow pigmented macular atrophy; B – 
corresponding OCT image of left eye displaying foveal shallowing (double ended 
arrow) and severe photoreceptor disruption (single ended arrow).  

 

 

4.3.8 RPE65 Genotype - Phenotype association  

RPE65 mutations were identified in 8 subjects from 7 families in cohort 1. Two 

subjects were British Caucasian, 2 were Syrian, 1 was Indian, 1 Sri Lankan and 1 

from New Zealand with European ancestry; the ethnicity of one subject was unknown 

(Table 11). Three subjects had LCA and 5 had EORD. Those with LCA had poor 
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vision from birth or the first few months of life; those with EORD had symptom onset 

from infancy to 3.5 years of age. Photophilia, in which subjects would stare at lights, 

was universal. Refractive errors ranged from low hypermetropia (+2.00 D spherical 

equivalent) to severe myopia (-12.88 D spherical equivalent), with half of the subjects 

being myopic. Nystagmus was present in 3 subjects and strabismus in 2.  

 

Reduction in visual acuity was variable (Figure 26). In the LCA subjects, visual 

acuity ranged from 0.7 LogMAR at age 4 years and 6 months (Subject 49), to 

perception of light at 33 years (Subject 51). In the EORD subjects, visual acuity 

ranged from 0.00 LogMAR (Subject 52, age 18 years) to 1.3 LogMAR (Subject 50, 

age 2 years and 3 months). Subject 52 was the most mildly affected subject with 

normal visual acuity and full visual fields to confrontation. His only symptom was of 

nyctalopia beginning at 3 years and 6 months of age. He has been diagnosed with 

EORD but shows hypomorphic features. In general, the visual acuity in subjects with 

mutations in RPE65 was better than in other genes associated with retinal dystrophy. 

Although there are limited numbers of subjects with RPE65 retinopathy in this study, 

these data demonstrate that the visual acuity remains stable over the first two decades 

of life, but may deteriorate by the fourth decade, suggesting a therapeutic window of 

opportunity at an early age (Figure 26). 

 

The retina was normal in 3 subjects (Subjects 50, 53 and 55) (Table 11). In the 

remaining 5 subjects there was peripheral RPE atrophy with minimal pigmentation 

(Figure 27 – A and B, Subject 48 and Figure 28 – A, Subject 54). The only subject to 

have any pigment was the oldest subject, Subject 51, in whom the pigmentation was 

nummular and scattered in the peripheral retina at age 33 years, with focal white dots 
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at the macula (Figure 29 - A, arrow). Subject 52, who had hypomorphic disease, had 

only minimal RPE change in the retinal periphery (Figure 30 - A). FAF appearances 

were variable, demonstrating: retained autofluorescence at the fovea (Figure 29 – B, 

Subject 51); a very poor autofluorescence signal at the macula (Figure 28 – B, Subject 

54); and an annulus of hyperautofluorescence at the macula in the hypomorphic 

patient (Figure 30 – C and D, Subject 52). OCT imaging in Subject 54 demonstrated 

retention of the photoreceptor layer at the fovea (Figure 28 – C) and in subject 51 

demonstrated focal loss of the photoreceptor layer (Figure 29 - C). ERGs in 4 subjects 

were unrecordable (age range 1 year to 10 years) and in 3 subjects demonstrated 

severe rod and cone dysfunction (age range 4 years to 18 years), with residual cone 

function detected in 2 subjects (Subjects 52 and 55). 

 

In general, the phenotype displayed in the RPE65 subjects in this cohort are in 

keeping with the published phenotypes associated with RPE65 mutations, which 

describe poor vision from early childhood, localised regions of RPE atrophy, vascular 

attenuation and bone spicule pigmentation [14, 116, 148, 149, 151, 153, 342]. 

Although Subject 52 has EORD, he displays hypomorphic features, which has also 

been identified in RPE65 retinopathy [151, 160, 161]. In these subjects the clinical 

picture is milder, with onset of nyctalopia in the first or second decade, but with 

slower progression of disease, residual islands of vision or full visual fields, and 

residual ERG cone function.  
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Subject, 
Family, 

(Gender) 

Ethnicity Consanguinity Diagnosis Age at 
Onset 

(Years) 

Age at 
Exam 

(Years) 

LogMAR 
VA 

RE, LE 

Spherical 
Equivalent 
(Dioptres) 

RE, LE 

Retina 

48, 46, (M) Syrian Nil LCA Birth 10 0.9, 1.2 -1.63, -1.63 Widespread RPE atrophy 
49, 46, (M) Syrian Nil LCA Birth 4.5 0.8, 0.7 -1.13, -0.88 Peripheral RPE atrophy 
50, 47, (F) British Caucasian Nil EORD 1 2.25 1.3, 1.3 +2.00, +2.00  Normal 
51, 48, (F) New Zealand, 

European Caucasian 
Nil LCA <3 months 33 PL, PL Not available Widespread RPE atrophy, 

scattered nummular pigment, focal 
white macular lesions, PPA 

52, 49, (M) Unknown Nil EORD 3.5 18 0.00, 0.00 0.00, 0.00 Peripheral RPE irregularity 
53, 50, (F) Sri Lankan Nil EORD 2 5.67 0.60, 0.70 Not available Normal 
54, 51, (M) British Caucasian Nil EORD Infancy 11.75 0.8, 0.62 Myopic Peripheral RPE atrophy 
55, 52, (M) Indian Nil EORD 3 months 4 0.78, 0.78  -11.25, -12.88 Normal myopic fundus 

 
Table 11 - Clinical Features of RPE65 subjects in cohort 1.  

F – Female; M – Male; LCA – Leber Congenital Amaurosis; EORD – Early Onset Retinal Dystrophy; VA – Visual Acuity; RE – Right Eye; LE 
– Left eye; PL – Perception of Light.
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Figure 26 - Graphical representation of age versus visual acuity in RPE65 retinopathy. 
Vision remains good in the first two decades and can deteriorate by the fourth decade. 
Visual acuity of 5 LogMAR denotes perception of light vision [53]. 

 

 

 

Figure 27 - Subject 48, RPE65, LCA. A –right eye fundus; B – left eye fundus images 
demonstrating widespread RPE atrophy and no retinal pigmentation. Images taken at 
age 10 years. 
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Figure 28 - Subject 54, RPE65, EORD. A – right eye fundus. Normal fundus at 
posterior pole with typical features of myopia, but peripheral retina showed RPE 
atrophy (not shown); B – right eye fundus autofluorescence imaging demonstrating 
little / no autofluorescence at the macula; C – right eye OCT image demonstrating 
retention of the photoreceptor layer at the fovea, demarcated by arrows. Images taken 
at age 11 years 9 months. 
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Figure 29 - Subject 51, RPE65, LCA. A – left eye fundus with focal white dots at the 
fovea (arrow) and peripheral RPE atrophy with minimal pigment in the periphery; B – 
left eye fundus autofluorescence image demonstrating minimal retained 
autofluorescence at the macula; C – left eye OCT image demonstrating focal loss of 
the photoreceptor layer at the fovea, delineated by arrows. Images taken at age 33 
years. 
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Figure 30 - Subject 52, RPE65, hypomorphic EORD. A – Right eye fundus; B  - left 
eye fundus. Both fundi are essentially normal with minimal focal RPE change in the 
periphery (yellow arrows); C – right eye fundus autofluorescence image; D – left eye 
fundus autofluorescence image. Autofluorescence images indicate annuli of 
hyperautofluorescence at the maculae. Images taken at age 18 years. 

 
 
 
4.3.9 RPGRIP1 Genotype - Phenotype association  

Two subjects from 2 families in cohort 1 were identified with mutations in RPGRIP1. 

The older subject was diagnosed with EORD as his age of symptom onset was 

described to be in childhood (Subject 56). He was British Caucasian. The younger 

subject had onset of poor vision and nystagmus from 3 months and was diagnosed 

with LCA (Subject 57). She was of Greek origin. Both subjects had very poor vision, 

nyctalopia and nystagmus. Subject 57 had photophilia. General health was normal. 



201 

Visual acuity was nil perception of light (right eye) and hand movements (left eye) in 

Subject 56, and perception of light in Subject 57. Both subjects were hypermetropic.  

 

In the younger subject, at 2 years of age, the retinal appearances were normal aside 

from minimal pigmentation in the periphery. In the older subject, at 46 years of age, 

there was widespread RPE atrophy and bone spicule pigmentation typical of retinitis 

pigmentosa; the maculae appeared spared (Figure 31 - A and B). An ERG at 2 years 

of age in Subject 57 was unrecordable. The phenotypes observed in these two subjects 

correlate with the published severe phenotype associated with RPGRIP1 mutations, 

which can also display a variable fundus appearance but which have been associated 

with vascular attenuation, a granular appearance to the retina, macular atrophy and 

drusen–like retinal deposits [167, 182, 183, 200, 201]. 

 

 

Figure 31 - Subject 56, RPGRIP1 EORD. A – right eye fundus; B – left eye fundus. 
Widespread RPE atrophy and bone spicule pigmentation with macular sparing. 
Images taken at age 46 years.  
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4.4 SPATA7 Phenotype 

 

SPATA7 was recently identified as the causative gene at the LCA3 locus, and when 

this research was carried out, few studies had been published reporting the phenotype 

associated with this gene [163] [166]. In this study, six families were identified to 

harbour mutations in SPATA7, and their phenotypes were examined in detail. The 

probands of families 1-4 had been recruited into the Childhood Retinal Dystrophy 

Study by Mr Henderson, a previous research fellow, and the probands of families 5 

and 6 were recruited by ADB during the period between Aug 2008 and Aug 2011. In 

total 11 subjects were identified with mutations in SPATA7, age range 4.5 years to 43 

years when examined. The strategies used to identify the SPATA7 variants in these 

families differed and will be described in this chapter. The phenotype of these 

subjects was explored in detail as there had been few descriptions to date regarding 

the SPATA7 phenotype. The results of these phenotypic studies will be presented in 

this chapter, and were published [165]. 

 

 

4.4.1 Clinical History 

All subjects affected by mutations in SPATA7 carried a diagnosis of LCA. Onset of 

poor vision and nystagmus was at birth in 6 of 11 subjects (54.5%), and by 12 weeks 

of age in the remaining subjects. One subject had a milder phenotype (Subject 2). 

Although he had developed nystagmus by 8 weeks of age, he was able to fix and 

follow well at this age, and only developed nyctalopia and visual field constriction 

when older. His symptoms deteriorated from 14 years of age. In 5 of 11 subjects 
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photoaversion was a feature early on in the disease, and in 1 subject (Subject 2) there 

was photophilia. The oculodigital reflex was present from the outset in 7 subjects. 

General health was good in all subjects except the oldest subject, Subject 3 (family 2), 

who had type II diabetes mellitus, auditory dysfunction and reduced fertility due to a 

reduced spermatozoa count, and the two youngest members of family 3 who had renal 

dysfunction (Subject 6) and severe autistic spectrum disorder with auditory 

dysfunction (Subject 7). No other SPATA7 subjects were identified with auditory or 

fertility dysfunction. In particular, Subject 1 had two children and there were no 

problems encountered regarding his fertility prior to having children. 

 

Family 1, with 2 affected subjects, was a non-consanguineous British Caucasian 

family. Families 2-6 were of South East Asian origin; families 2-5 were 

consanguineous and family 6 denied consanguinity (Table 12). There were multiple 

affected individuals in families 1-4 (Family 1: 2 affecteds, Subjects 1 and 2; Family 2: 

4 affecteds, Subject 3 only available; Family 3: 9 affecteds, Subjects 4 – 8 available; 

Family 4: 2 affecteds, Subject 9 only available) and the probands of families 5 

(Subject 10) and 6 (Subject 11) were simplex cases. None of these families were 

knowingly related to each other. 

 

 

4.4.2 Clinical Examination 

Nine of eleven SPATA7 subjects were male. Visual acuity was hand movements or 

worse in all but two subjects (Table 12). Subject 2 had a best corrected visual acuity 

of 0.22 logMAR in the right eye and 0.1 logMAR in the left eye at age 19 years. 

Subject 10 had an unaided visual acuity of 1.08 logMAR in the right eye and 1.48 
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logMAR in the left eye at age 17 years. Colour vision testing was only reliable in 

subject 2, who had a mild blue-yellow defect on HRR testing. In those subjects for 

whom refractive data were available, there tended to be a myopic astigmatism.  

 

Slit lamp examination revealed keratoconus in subject 3 and mild cataract in subjects 

1-3. In all but one patient the fundi had severe, widespread RPE atrophy with minimal 

intra-retinal pigmentation, relative parafoveal preservation, severe vascular 

attenuation and optic disc pallor (Figure 32, Figure 33, Figure 34 and Figure 35 – 

Images A, subjects 1, 2, 5 and 10). In subject 11 the posterior poles appeared to be 

normal and nummular pigmentation was visible in the peripheral retina superiorly. 

Subject 2 additionally had bilateral optic disc drusen.  

 

 

4.4.3 Fundus Autofluorescence Imaging 

Severe nystagmus and photoaversion precluded the acquisition of fundus 

autofluorescence imaging in most subjects however, in 3 subjects a parafoveal 

annulus of hyperautofluorescence was present (subjects 1, 2 and 4) (Figure 32, Figure 

33, Figure 34 and Figure 35 - B). 

 

 

4.4.4 OCT Imaging 

sd-OCT imaging was only possible in subjects 2 and 10 as image acquisition was 

limited due to nystagmus. OCT imaging in these two subjects demonstrated retinal 

thinning and possible preservation of the inner segment outer segment layer at the 

fovea (Figure 33 and Figure 35 – C, indicated by arrows). In subject 2 this 
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corresponded with the centrally preserved visual field on Goldmann perimetry. 

Elsewhere, in both of these subjects, there was loss of the photoreceptor layer, and 

some loss of retinal lamination.  

 

 

 

Figure 32 - Subject 1, Family 1 SPATA7. A – right eye fundus demonstrating 
widespread RPE atrophy, minimal retinal pigmentation, vascular attenuation and 
sparing of the fovea; B – right eye fundus autofluorescence image demonstrating an 
annulus of hyperautofluorescence at the fovea. Images taken at age 21 years. 
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Figure 33 - Subject 2, Family 1 SPATA7. A – right eye fundus demonstrating 
widespread RPE atrophy, minimal retinal pigmentation, vascular attenuation and optic 
disc drusen; B – right eye fundus autofluorescence image demonstrating an annulus of 
hyperautofluorescence at the fovea and optic disc drusen; C – right eye OCT image 
demonstrating loss of retinal lamination but preservation of photoreceptors at the 
fovea, limits delineated by arrows. Images taken at age 19 years. 

 
 

 
 

Figure 34 - Subject 5, Family 3 SPATA7. A – right eye fundus demonstrating 
widespread RPE atrophy, peripheral retinal pigmentation, vascular attenuation and 
sparing of the macula; B – right eye fundus autofluorescence image demonstrating an 
annulus of hyperautofluorescence at the fovea. Images taken at age 29 years. 
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Figure 35 - Subject 10, Family 5, SPATA7. A – right eye fundus demonstrating 
widespread RPE atrophy, minimal retinal pigmentation, vascular attenuation and 
foveal sparing; B – right eye fundus autofluorescence image demonstrating a very 
faint annulus of hyperautofluorescence at the fovea; C – right eye OCT image 
demonstrating loss of retinal lamination but possible preservation of photoreceptors at 
the fovea, limits delineated by arrows. Images taken at age 17 years. 

 
 
 
4.4.5 Psychophysical testing: Goldmann Visual Fields  

Goldmann visual field testing was only reliably performed in Subject 2 and showed 

preservation of less than 10o of the central vision to the V4e target and less than 5o to 

the I4e target (Figure 36). 
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Figure 36 – Goldmann Visual Field, Subject 2, SPATA7. A – Left eye; B – Right eye; 
V4e – blue line; I4e – red line. 

 

 

4.4.6 Electrophysiological Testing 

ISCEV standard ERG testing was performed in Subject 9 at 18 years of age and there 

was no detectable full field or pattern ERG, in keeping with severe bilateral 

photoreceptor dysfunction. In Subjects 1 and 2, ERGs were performed at different 

ages in the first decade using a modified paediatric ERG protocol and skin and DTL 

electrodes; the methods have been described previously [64, 343]. Subject 1 was 

tested first at age 4 years at which time the photopic ERGs were undetectable but rod 

driven ERGs were detected at subnormal amplitudes. By 5 years of age the rod-ERG 

was also undetectable. In contrast, his younger brother, Subject 2, had normal rod 

driven ERG b-wave amplitudes at age 2 years, but undetectable photopic ERGs; by 4 

years of age his rod driven b-wave amplitudes were subnormal; and by 9 years of age 

they were undetectable. This suggests that in these two subjects the condition started 

with predominantly cone dysfunction, progressing to cone – rod dysfunction. In 

Subject 11 ERGs were performed by the hospital that diagnosed his condition in 

India, but the results are not available.  
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Table 12 - Clinical features of SPATA7 subjects. M – Male; F – Female; VA – Visual Acuity; RE – Right eye; LE – left eye; CF – Counting 
fingers. HM – Hand movements; PL – Perception of light; NPL – Nil perception of light. 

Subject 
(Gender) 

Family Ethnicity Consanguinity Age at Onset 
(weeks) 

Age at 
Examination 

(years) 

LogMAR VA 
RE, LE 

General Health 

1 (M) 1 British Caucasian Non-consanguineous 6 21 1.06, CF Good 
2 (M) 1 British Caucasian Non-consanguineous 8 19 0.42, 0.66 Good 
3 (M) 2 Pakistani Consanguineous Birth 43 HM, PL Type II diabetes mellitus 

Auditory dysfunction 
Fertility dysfunction 

4 (M) 3 Pakistani Consanguineous Birth 27 HM, HM Good 
5 (M) 3 Pakistani Consanguineous Birth 29 HM, HM Good 
6 (M) 3 Pakistani Consanguineous Birth 5 PL, PL Mild renal dysfunction 
7 (M) 3 Pakistani Consanguineous 12 4.5 NPL, NPL Autistic spectrum disorder 

Auditory dysfunction 
8 (F) 3 Pakistani Consanguineous Birth 12 NPL, NPL Good 
9 (M) 4 Bangladeshi Consanguineous 8 15 CF, CF Good 
10 (F) 5 Pakistani Consanguineous Birth 17 1.08, 1.48 Good 
11 (M) 6 Indian Non-consanguineous 12 5.5 PL, PL Good 
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4.4.7 Molecular analysis 

The molecular techniques used to identify the families with SPATA7 mutations varied. 

Dr Ocaka and Dr Mackay at UCL carried out the molecular analysis on these families. 

Families 1-3 were identified following the screening of SPATA7 in an enriched panel 

of 141 probands with LCA and EORD that had previously been screened using the 

LCA chip, with no variants identified; Family 4 was identified based upon the 

phenotype; Family 5 was identified through positional gene screening after 

autozygosity mapping; and family 6 was identified via analysis using the LCA chip.  

 

The two affected brothers in Family 1 (Subjects 1 and 2) were identified by direct 

sequencing to harbour novel compound heterozygous variants in SPATA7 as follows: 

Exon 5 c.265_268delCTCA, p.L89KfsX3 and Exon 8 c1227_1229delCAC, 

p.H410del. Segregation analysis in the parents identified the c.265_268delCTCA, 

p.L89KfsX3 variant in the unaffected mother in the heterozygous state, and the 

c1227_1229delCAC, p.H410del variant in the unaffected father in the heterozygous 

state, confirming that the variants segregate with the disease in this family. Subject 3 

(the proband of family 2) was identified to harbour the novel variant c.253C>T, 

p.Arg85X in the homozygous state; no other family members were available for 

molecular analysis. The proband of family 3, Subject 4, was identified by direct 

screening to harbour the previously reported variant c.961dupA, p.P321TfsX5 in the 

homozygous state [163]. Screening of this variant in other affected family members 

(Subjects 5-8) also identified it in the homozygous state in these individuals. 

Screening of unaffected family members (parents of the affected subjects) confirmed 

that the mutation segregates with the disease in this family as these family members 

were identified to be heterozygous carriers of this variant.  
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Based upon the consanguineous ancestry in family 4, the proband (Subject 9) was 

selected for autozygosity mapping using the Affymetrix SNP 6.0 microarray 

(Affymetrix Inc., California, USA). This identified 11 regions of homozygosity that 

were greater than 10 Mb in length, the smallest of which was present on chromosome 

14 (Table 13). Candidate retinal disease associated genes included ABCA4, C2orf71, 

CNNM4, CNGA3, MERTK, RBP3, CEP290 and SPATA7. Subsequent positional 

screening of SPATA7 identified the novel variant c.253C>T, p.Arg85X in the 

homozygous state. This subject had an affected brother but his DNA was not 

available; segregation analysis in the parents confirmed the variant to segregate with 

the disease in this family, as they were both identified to be heterozygous carriers of 

this mutation. This subject had previously been screened using the LCA chip, with no 

variants identified. 

 

Chromosome From To Size (Mb) Retinal disease associated 
genes 

1 83875590 99936880 16.06 ABCA4 
2 10075000 37675050 36.67 C2orf71 
2 67464630 130110400 62.6 CNNM4, CNGA3, MERTK 
4 84196690 110076800 25.88  
4 162527200 180125700 17.5  

10 35104210 70084230 34.98 RBP3 
11 91493940 103385700 11.8  
12 68292940 92857940 24.56 CEP290 
13 21218200 38110360 16.9  
14 81267210 92342000 11 SPATA7 
16 62435740 81326560 18.9  

 
Table 13 - Augozygosity data, family 4. SPATA7 resides in the eleventh largest region 
of homozygosity. 

 

Based upon the phenotype of Subject 10 (family 5), direct screening of SPATA7 was 

undertaken, which identified the same novel variant that had been identified in 

subjects 3 and 9, c.253C>T, p.Arg85X in the homozygous state. The mother of 

Subject 10 was screened for this mutation, which was identified in the heterozygous 
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state, confirming segregation of the disease in this family. The DNA of the father was 

not available.  

 

The DNA of Subject 11 (family 6) was screened using the LCA chip in 2011, which 

identified the previously described SPATA7 variant c.961dupA, p.P321TfsX5, in the 

homozygous state. Segregation analysis was not performed for this variant as the 

study period had closed shortly after the variant was identified. Of note, the DNA of 

this subject had been screened across the LCA chip in the past, in 2007, by another 

research laboratory in the USA, and no variants had been identified.   

 

The mutations identified in SPATA7 in this study are summarised (Table 14). 

 

Subject Family Mutation 1 Mutation 2 Reference 
1 1 c.265_268delCTCA, 

p.L89KfsX3 
c1227_1229delCAC, 
p.H410del 

Novel to this 
study 

2 1 c.265_268delCTCA, 
p.L89KfsX3 

c1227_1229delCAC, 
p.H410del 

Novel to this 
study 

3 2 c.253C>T, p.Arg85X c.253C>T, p.Arg85X Novel to this 
study 

4 3 c.961dupA, p.P321TfsX5 c.961dupA, p.P321TfsX5 [163] 
5 3 c.961dupA, p.P321TfsX5 c.961dupA, p.P321TfsX5 [163] 
6 3 c.961dupA, p.P321TfsX5 c.961dupA, p.P321TfsX5 [163] 
7 3 c.961dupA, p.P321TfsX5 c.961dupA, p.P321TfsX5 [163] 
8 3 c.961dupA, p.P321TfsX5 c.961dupA, p.P321TfsX5 [163] 
9 4 c.253C>T, p.Arg85X c.253C>T, p.Arg85X Novel to this 

study 
10 5 c.253C>T, p.Arg85X c.253C>T, p.Arg85X Novel to this 

study 
11 6 c.961dupA, p.P321TfsX5 c.961dupA, p.P321TfsX5 [163] 

 
Table 14 - Mutations identified in SPATA7 in this study. 
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4.4.8 Discussion 

The LCA3 locus was identified in 1998 [162] but the causative gene, SPATA7, was 

not determined until 11 years later [163]. Mutations in SPATA7 are associated with a 

severe LCA phenotype. In this study 6 families were identified with pathogenic 

mutations in SPATA7, which were identified using a variety of methods. All affected 

subjects carried a diagnosis of LCA. Visual symptoms began at birth or within the 

first few months of life, with associated nystagmus and initial photoaversion. Visual 

field constriction was severe (less than 10o of the central vision preserved in the 

subject with the mildest disease). The retina displayed widespread RPE atrophy in the 

majority of subjects, with minimal peripheral intra-retinal pigment migration, optic 

disc pallor, arteriolar attenuation and foveal sparing. The fundus autofluorescence 

imaging demonstrated a parafoveal annulus of hyperautofluorescence, which has 

previously been described in RP [344]. OCT imaging suggested preservation of the 

photoreceptor layer at the fovea. However, although the ERG eventually showed 

severe photoreceptor dysfunction, there was a suggestion that this condition may 

present with a cone dysfunction picture, which progresses to cone – rod dysfunction.  

 

The SPATA7 phenotype described in this study correlates with the few published 

reports of families with SPATA7 mutations, and in particular highlights the clinical 

heterogeneity associated with this gene, for which both severe and mild phenotypes 

have been reported [163, 166, 345-347]. Of note, the proband of one of the original 

families identified with SPATA7 mutations had 0.00 LogMAR vision at age 7 years 

and retained only 5o of their central visual field, but had developed nyctalopia at age 2 

years and had an unrecordable ERG [163]. Shortly after the results of the present 

study were published, a consanguineous family was reported with 2 affected 
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individuals and the same mutation identified in the present study, c.253C>T, 

p.Arg85X, in the homozygous state [345]. Interestingly these siblings had much later 

onset of visual symptoms (in one sibling nyctalopia developed at age 25 years, the 

other sibling was asymptomatic at age 26 years), severely reduced scotopic and 

photopic ERG responses in the symptomatic sibling with much milder changes in 

latency and amplitude in the asymptomatic sibling. It is possible that modifier alleles 

are responsible for the clinical heterogeneity associated with this mutation. Wang et 

al. suggested the possibility of a digenic triallelic inheritance pattern causing 

phenotypic heterogeneity, in which the presence of a mutation in a second gene 

contributes to the severity of the phenotype in an individual with two mutations in one 

gene, although this was not demonstrated by their study [163]. There has been a 

report, however, of a family with multiple affected individuals and bi-allelic 

mutations in CRB1 with one sibling harbouring an additional heterozygous missense 

mutation in SPATA7 that was presumed to be damaging by in silico analysis [348]. It 

is possible, though, that this variant is a rare SNP. In this family, the clinical picture 

was the same in all affected individuals leading to the conclusion that there was no 

contribution of the mutant SPATA7 allele to the phenotype seen in this subject.   

 

It has been hypothesised that the differential severity of mutations at a single locus 

may be the cause of the difference in phenotypes [163]. Mutations that occur earlier in 

the SPATA7 coding region might lead to more severe protein truncation with loss of 

function due to nonsense mediated decay, and thus cause a more severe phenotype 

consistent with LCA. Conversely, mutations that occur later in the coding region, 

such as in the last 2 exons, may lead to less severe protein truncation and a less severe 

phenotype that is described as ‘juvenile RP’. Similar observations were made by 
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another group, who identified all six mutations in their study to cause protein 

truncation, and all affected subjects to display a severe phenotype consistent with 

LCA [166]. Of the four mutations identified in SPATA7 in the present study, 3 are 

predicted to lead to premature termination of the protein (p.Arg85X, p.L89KfsX3 and 

p.P321TfsX5), and to be degenerated by nonsense mediated decay. The subjects with 

homozygosity with any of these alleles did indeed have a more severe phenotype. The 

compound heterozygous mutations in family 1, which has a milder phenotype in one 

affected sibling, involves mutations in exon 5 and exon 12, which may lead to some 

residual protein function. However the severity of the phenotype between the siblings 

who harbour the same compound heterozygous mutations is different. The reason for 

this is unclear but it may again be due to the influence of modifier alleles.  

 

At the time that this study was conducted the function of SPATA7 was unknown. 

Spata7 was first cloned in the rat testis and the corresponding human cDNA was 

identified in the human testis [164]. The human protein had been identified to be 

expressed as two transcripts: one that is predominantly expressed in the retina, 

cerebellum and whole brain, and another that is predominantly expressed in the testis 

[166]. Murine Spata7 was observed to be expressed in the mature mouse retina at day 

P21 (postnatal) in multiple layers including the ganglion cell layer, inner nuclear layer 

and inner segments of photoreceptors, and not in the mouse embryo at day E16.5 

[163]. This suggested that Spata7 is required for photoreceptor function rather than in 

photoreceptor development.  

 

Recently the function of Spata7 was further delineated [349]. It has been identified as 

a ciliary protein, which localises to the connecting cilium of photoreceptors. In vitro 
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and in vivo studies identified that a key role of SPATA7 is in its interaction with 

RPGRIP1 and that it binds to the N terminal coiled coil domain of RPGRIP1. In the 

Spata7-/- mouse there is very little RPGRIP1 present at the connecting cilium, 

indicating that Spata7 is necessary for the localisation and assembly of the RPGRIP1 

protein complex, which itself is required for protein trafficking from the IS to the OS. 

Similarly to mutations in other ciliary genes such as Tulp1, Cep290, Rpgrip1 and Rp1 

[243, 305, 350, 351], rhodopsin is seen to accumulate at the ISs and nuclei of 

photoreceptors in the Spata7-/- mouse, leading to photoreceptor apoptosis. The retinal 

defects in Spata7-/- mice are evident shortly after birth with initial thinning of the 

ONL and subsequent shortening and disorganisation of the OSs. Rods die by 6 

months but the cones are better preserved at this age (84% of cones are still present at 

6 months). Subsequent cone loss is presumed to be secondary to rod photoreceptor 

loss. Interestingly, in the present study, ERG testing identified initial loss of cone 

function with eventual rod involvement. In addition, a number of subjects in this and 

other studies reported transient photoaversion initially, suggesting first cone 

photoreceptor dysfunction [166]. 

 

Mutations in SPATA7 have added to the spectrum of conditions known as 

‘ciliopathies’. Photoreceptor dysfunction is due to degeneration rather than 

developmental defects. Further studies will be required to ascertain whether there are 

systemic associations of mutations in SPATA7 such as infertility or hearing loss, 

which was observed in some of the patients in this study. The presence of less severe 

phenotypes and retention of photoreceptor architecture very early in the disease may 

provide a small window of opportunity for therapeutic options as and when they arise.   
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4.5 Tubby and Tubby-Like protein 

Genotype - Phenotype Associations 

 

The tubby-like proteins (TUB, TULP1, TULP2 and TULP3) are a unique family of 

proteins that share a highly conserved C-terminal domain (the ‘tubby domain’) that is 

comprised of around 260 amino acids, and is located at the carboxyl terminus of all of 

the members of the tubby-like protein (TULP) family [352]. TUB is the founding 

member of the TULPs, first identified in the tubby mouse as Tub, which presented 

with a syndrome characterised by late-onset obesity and neurosensory deficits. The 

causative mutation was found in the Tub gene [294, 295, 353]. Although human 

autosomal recessive mutations in TULP1 (MIM 602280) have been identified in 

EORD and ARRP [299-301], no human mutations in TUB (MIM 601197) had been 

identified prior to this study. Through exome sequencing, one family in the Childhood 

Onset Retinal Dystrophy study was identified with a homozygous mutation in TUB. 

The subsequent phenotypic studies, and the results of collaborative studies on this 

family, are reported in this chapter. In addition, the phenotypes of families identified 

with TULP1 mutations are described in a separate section within this chapter.  

 

 

4.5.1 TUB Genotype - Phenotype Association 

The proband of a consanguineous UK Caucasian family had previously been recruited 

to the Childhood Onset Retinal Dystrophy Study. His DNA had been screened across 

the LCA chip by previous researchers in 2008 and no mutations were identified. Due 
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to his consanguineous ancestry, his DNA had been analysed using autozygosity 

mapping by Dr Mackay, UCL, and was subsequently screened using next generation 

sequencing. This identified a homozygous frame-shift mutation in TUB, 

c.1194_1195delAG, p.Arg398Serfs∗9. The proband and his family were invited back 

to MEH for phenotypic studies subsequent to this mutation being identified. 

Collaborators at the University of Cambridge, UK, and the University of Mainz, 

Germany, performed functional studies and immunohistochemistry studies on this 

family, and the work was published in a collaborative paper [330]. Brief descriptions 

of the molecular and functional studies will be presented here, but the main body of 

work into this family to be detailed are the phenotypic studies.  

 

4.5.1.1 Clinical History 

The male proband had reduced vision and nyctalopia from age 9 years. He was 

diagnosed with a unilateral retinal detachment and a retinal dystrophy at 11 years of 

age. Subsequent electrodiagnostic testing demonstrated undetectable full field rod and 

cone responses and severely reduced macular function. He was 18 years old when he 

attended with his parents and 2 siblings for further phenotypic studies.  

 

General health in the proband was good, although he was noted to be overweight in 

his early teenage years and he had mild learning difficulties. In particular, he denied 

any hearing, renal or metabolic abnormalities. He had 4 siblings and there were 

multiple levels of consanguinity within the family (Figure 37). His older brother 

denied any visual symptoms and younger sister, who was obese, had been prescribed 

glasses at 5 years of age and had undergone intermittent occlusion therapy for 
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amblyopia, but had no other visual symptoms. They also denied any other systemic 

abnormalities. There was a family history of unilateral micro-ophthalmos, colobomata 

and extra digits in a male maternal cousin. The parents were asymptomatic.     

 

 

Figure 37 - Pedigree of TUB family. Black symbol = affected with retinal dystrophy; 
red symbol = affected with microophthalmos, colobomatata and extra digits. 

 

4.5.1.2 Clinical Examination 

At 18 years of age BCVA in the proband (VI.11) was 0.2 LogMAR in the right eye 

and NPL in the left eye, with a myopic astigmatic refractive error of -1.25/-4.25, 16o 

in the right eye and -1.00/-4.00, 170o in the left eye. HRR colour vision testing of the 

right eye demonstrated a mild red - green colour deficiency and a strong blue – yellow 

colour deficiency. There was a left relative afferent pupillary defect and left exotropia. 

The anterior segments were normal and cortical lens opacities were present in the left 
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eye. The right fundus had widespread RPE atrophy, generalised retinal pallor, 

arteriolar attenuation, fine peripheral pigmentary mottling and white dots throughout, 

with macular sparing (Figure 38 - A). The optic nerve was normal, with peri-papillary 

atrophy, in keeping with myopia. The left fundus had a total retinal detachment with 

proliferative vitreoretinopathy. He had no syndactyly or polydactyly, although his 

fingers appeared to taper at the distal ends. At age 18 his BMI was 29.5kg/m2, which 

placed him in the ‘overweight’ category. Biochemical investigations into glucose, 

triglycerides and cholesterol were normal. 

 

Unaided visual acuity in the proband’s 21 year old brother (VI.10) was 0.48 LogMAR 

in either eye, with no improvement with pinhole. His myopic astigmatic refractive 

error was -1.00/-2.00, 180o and -0.75/-1.75, 180o in the right and left eyes 

respectively. HRR colour plate testing revealed mild red-green and medium blue-

yellow colour deficiencies. His fundus appearance, which was bilaterally 

symmetrical, was similar to, but less severe, than the proband (Figure 39 - A). His 

BMI at age 21 years was 22.9kg/ m2, which is categorised as being ‘normal’. 

 

The 9-year old sister (VI.12) had a BCVA of 0.18 LogMAR right eye and 0.3 

LogMAR left eye, improving to 0.18 LogMAR with pinhole. Her myopic astigmatic 

refractive error was +0.75/-3.50, 180o in the right eye and +0.25/-3.00, 180o in the left 

eye. HRR colour vision testing was normal. The fundus showed bilateral symmetrical 

mild peripheral RPE atrophy, generalised retinal pallor, inferior retinal pigmentary 

mottling with macular sparing and no retinal pigmentation (Figure 40 - A). Peri-

papillary atrophy was in keeping with her myopia. Her BMI at age 9 years classified 

her as being ‘obese’, falling in the 98th centile for age and gender. 
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Ocular examination in the parents and oldest sister was normal. Unfortunately the 

family did not consent to any further phenotypic studies such as smell acuity, auditory 

testing and metabolic studies. 

 

4.5.1.3 Fundus Autofluorescence Imaging 

In the proband FAF imaging demonstrated an annulus of hyperautofluorescence 

centred on the fovea in the right eye (Figure 38 - B). A normal autofluorescence 

signal was obtained at the fovea in the brother, although there was 

hypoautofluorescent mottling in the posterior pole along the vascular arcades (Figure 

39 - B). FAF imaging in the sister was normal (Figure 40 - B). 

 

4.5.1.4 OCT Imaging 

sd-OCT imaging in the proband demonstrated a preserved photoreceptor inner 

segment outer segment (IS/OS) junction at the fovea, with loss of this layer in the 

parafoveal region, corresponding to the fundus autofluorescence image (Figure 38  - 

C). The inner retinal layers remained intact. In the affected brother (VI.10) the IS/OS 

junction was preserved at the fovea, outer retinal debris was visible at the level of the 

RPE in the parafoveal region, and the inner retinal layers remained intact (Figure 39 - 

C). In the sister (VI.12) OCT imaging was normal (Figure 40 - C). 
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Figure 38 - TUB Family: proband (VI.11): A – right eye fundus; B – right eye fundus 
autofluorescence image; C – right eye sd-OCT. Yellow arrows on image B indicate 
nasal and temporal limits of photoreceptor inner segment outer segment layer at the 
fovea; beyond these arrows this layer is not visible. 

 

 

Figure 39 – TUB Family: brother (VI.10): A – right eye fundus; B – right eye fundus 
autofluorescence image; C – right eye sd-OCT.  
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Figure 40 - TUB Family: sister (VI.12): A – right eye fundus; B – right eye fundus 
autofluorescence image; C – right eye sd-OCT. 

 
 

4.5.1.5 Psychophysical testing: Goldmann Visual Fields 

Goldmann visual field analysis was performed only for the right eye of the proband, 

which revealed responses in only the central 15o to the V4e target, the central 10o to 

the III4e target and the central 7.5o to the I4e target (Figure 41). 
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Figure 41 – Goldmann Visual Field, Subject VI.11, TUB. Right eye. V4e – blue line; 
III4e – red line; I4e – green line. 

 
 

4.5.1.6 Electrophysiological Testing 

In the proband, full-field ERGs from both eyes at age 13 years were undetectable. 

There was a residual 30Hz flicker response of 10μV in the right eye suggesting 

residual cone function in this eye. No further electrophysiological studies were 

performed in any subject as the family did not attend for any further studies. 

 

4.5.1.7 Molecular analysis 

Molecular analysis was performed by Dr Mackay and Dr Davidson at UCL, and the 

results briefly described here. More detailed information regarding the molecular 

analysis is available in the paper published on this family [330].  

 

On the basis of the consanguineous ancestry in the proband, his DNA was analysed 

using homozygosity mapping. This identified five chromosomal segments over 5 Mb. 

No genes that had previously been associated with RP were found to be present within 

the identified regions of homozygosity. Four retinal disease associated genes that 
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were identified in the second largest region of homozygosity on chromosome 11 

(CTSD, TPP1, TEAD1, USH1C) were screened in this subject and no disease causing 

variants were identified. In addition, no homozygous pathogenic copy number 

variants were identified. 

 

His DNA subsequently underwent exome capture and high throughput sequencing 

using solution phase Agilent SureSelect 38-Mb exome capture. The average 

sequencing depth on target was 43 with 78.4% of the targeted region covered with a 

minimum read depth of 10. A homozygous frame-shift variant in TUB, 

c.1194_1195delAG, p.Arg398Serfs∗9 was identified (numbered according to 

Ensembl transcript ENST00000299506). This variant was located in the second 

largest region of homozygosity and was identified in the homozygous state in his 

older brother and younger sister. The parents were identified as heterozygous carriers 

of this variant. No additional potentially pathogenic variants in TUB were identified 

on Sanger sequencing in 96 probands with childhood onset ARRP. In collaboration 

with the University of Cambridge Metabolic Research Laboratories, TUB was 

sequenced in 55 subjects with severe obesity and a variety of ocular phenotypes, who 

were part of the Genetics Of Obesity Study, and no potentially pathogenic variants 

were found. The TUB c.1194_1195delAG, p.Arg398Serfs∗9 variant was not 

identified in over 6000 publically available exomes (NHBLI exome variant server).  
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4.5.1.8 Collaborative studies 

In collaboration with the University of Cambridge Metabolic Research Laboratories, 

(Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, 

Cambridge) functional studies of the p.Arg398Serfs∗9 variant identified its 

expression in transfected HEK293 cells and its localisation predominantly to the 

nucleus, in contrast to wild type TUB which was detected in the cytoplasm and 

plasma membrane [330]. The Department of Cell and Matrix Biology, Institute of 

Zoology, Johannes Gutenberg, (University of Mainz, Mainz, Germany), performed 

immunohistochemistry studies on retinal cryosections from eyes of a human donor, 

and identified strong TUB expression in the nuclei of the ganglion cell layer and in 

the inner segment of photoreceptor cells. TUB was identified at the base of the 

photoreceptor cilium and ciliary rootlet, which projects through the inner segment of 

the photoreceptor [330]. 

 

4.5.1.9 Summary of TUB phenotype identified in this study 

The results from this study have identified that the phenotype associated with 

mutations in TUB is of a childhood onset rod cone dystrophy characterised by reduced 

vision, nyctalopia and visual field constriction beginning late in the first decade. 

There is associated myopic astigmatism, a mild red - green and a stronger blue – 

yellow colour deficiency, severe visual field constriction and an undetectable full field 

ERG. There may be residual cone function demonstrable by the ERG. The fundus 

displays widespread RPE atrophy, fine peripheral pigmentary mottling, and peripheral 

white dots. The OCT demonstrates preservation of the photoreceptors in the fovea but 
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loss of this layer in the parafoveal region. Autofluorescence imaging correlates with 

the OCT imaging. Systemically there may be obesity in childhood, but no other 

metabolic, auditory or olfactory abnormalities that are found in the tubby mouse can 

be confirmed. Further families will need to be ascertained to determine these features.  

 

 

4.5.2 TULP1 Genotype - Phenotype Association 

Four individuals from 3 families were identified to harbour mutations in TULP1. One 

family with 2 affected siblings (family 1) was recruited in Cohort 1 of this study; one 

family with one affected member had been recruited to the study by a previous 

research registrar (family 2); and the final family with multiple affected individuals 

(family 3) was originally part of a panel of patients with ARRP that underwent 

autozygosity mapping and positional screening of TULP1. The strategies used to 

identify the TULP1 variants in these families varied and will be described in this 

chapter, along with the results of phenotypic studies.  

 

4.5.2.1 Clinical History 

The age of onset of visual symptoms varied in the group of patients identified with 

TULP1 mutations. Two siblings (family 1) were diagnosed with EORD, with onset of 

poor vision and nystagmus within the first year of life; the female proband (IV.4) was 

1 year old when nyctalopia and visual field constriction were first noted but her 

younger brother (IV.5) was 8 months old when nystagmus developed. The probands 

of families 2 (V.5) and 3 (III.3) were 6 years and 12 years old respectively when they 

developed nyctalopia, and carried a diagnosis of rod-cone dystrophy. Current 
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symptoms in all subjects are of reduced vision, nyctalopia and visual field 

constriction. General health was good in all subjects. The children of family 1 were 

classified as being overweight (IV.4) and obese (IV.5) for their age and gender; 

subject V.5 family 2 had a normal body mass index. All 3 families are from the Asian 

subcontinent and are consanguineous (Figure 42 and Table 15).     

 

 

 

Figure 42 - Pedigrees of TULP1 families. A. Family 1; B. Family 2; C. Family 3. 
Black symbols = affected individuals. 

 

4.5.2.2 Clinical Examination 

Visual acuity ranged from 0.6 LogMAR in the youngest subject at 6.5 years of age to 

1.48 LogMAR in the oldest subject at 36.5 years of age. The refraction, where 

recorded, tended towards a myopic astigmatism (Table 15) and visual fields to 

confrontation in the two oldest subjects were constricted to the central 60o in the third 
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decade and central 10o in the fourth decade. Anterior segments were normal in all 

subjects, and lens opacities were present in the oldest subject.  

 

Funduscopy in the youngest subjects (aged 6.5 years [IV.5 family 1] and 9 years 

[IV.4] family 1) showed mild RPE atrophy in the retinal periphery, vascular 

attenuation, macular preservation and no retinal pigmentation (Figure 43 - A). In the 

older subjects there was a similar picture but with more widespread RPE atrophy (V.5 

family 2, age 24 years) (Figure 44 - A), which progressed to having peripheral bone 

spicule pigmentation and pigment clumping with a pale disc in the oldest subject 

(III.3 family 3, age 36.5 years) (Figure 45 - A). BMI was calculated for families 1 

and 2. The children in family 1 were overweight (IV.4) and obese (IV.5) for their age 

and gender; the proband of family 2 had a normal BMI (Table 15). 

 

Subject 
(Gender) 

Family Ethnicity VA RE, 
LE 

(age, 
years) 

Refraction Visual 
fields 

BMI (kg/m2) 

IV.4 
(F) 

1 Indian 0.6, 0.6  
(9) 

RE -0.75/-1.5, 180 
LE 0/-2.0, 180 

Not 
tested 

24.1 
94th centile 
(over-weight) 

IV.5 
(M) 

1 Indian 0.8, 0.6 
(6.5) 

RE plano 
LE plano 

Not 
tested 

21.1 
98th centile 
(obese) 

V.5 
(F) 

2 Pakistani 0.78, 0.6 
(24) 

RE -5.75/-3.50, 4 
LE -5.50/-4.00, 180 

Central 
65o   

24.2  
(normal) 

III.3 
(M) 

3 Pakistani 1.3, 1.48 
(36.5) 

Not available Central 
10o   

Not available 

 
Table 15 - Clinical features of TULP1 subjects. VA – visual acuity; RE – right eye; 
LE – left eye; M = male; F = female. 
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4.5.2.3 Fundus Autofluorescence Imaging 

FAF imaging at age 9 years (IV.4 family 1) demonstrated an annulus of 

hyperautofluorescence in the macula with a hypoautofluorescent signal at the fovea 

(Figure 43 - B). In the third decade the hyperautofluorescent annulus was more 

diffuse and extended to the fovea (Figure 44 - B). By the fourth decade a 

hyperautofluorescent signal was seen at the fovea with hypoautofluoresence 

corresponding to atrophy and pigmentation throughout the macula and retina (Figure 

45 – B). 

  

4.5.2.4 OCT Imaging 

In all subjects old enough to be tested, sd-OCT imaging showed preservation of the 

photoreceptor IS/OS layer at the fovea with loss of the layer in the parafoveal area 

(Figure 43, Figure 44 and Figure 45 - C). The inner retinal layers remained intact. 

Debris was visible in the outer retina in the oldest subject.  
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Figure 43 - TULP1 Family 1: subject IV.4: A – right eye fundus; B – right eye fundus 
autofluorescence image; C – right eye sd-OCT. Yellow arrows indicate nasal and 
temporal limits of photoreceptor inner segment outer segment layer at the fovea; 
beyond these arrows this layer is not visible. Images taken at age 9 years. 

 

Figure 44 - TULP1 Family 2: subject V.5: A – right eye fundus; B – right eye fundus 
autofluorescence image; C – right eye sd-OCT. Yellow arrows indicate nasal and 
temporal limits of photoreceptor inner segment outer segment layer at the fovea; 
beyond these arrows this layer is not visible. Images taken at age 24 years. 
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Figure 45 - TULP1 Family 3: Subject III.3. A – right eye fundus; b – right eye fundus 
autofluorescence image; c – right eye sd-OCT. Yellow arrows indicate nasal and 
temporal limits of photoreceptor inner segment outer segment layer at the fovea; 
beyond these arrows this layer is not visible. Images taken at age 36.5 years.  

 

4.5.2.5 Psychophysical Testing: Goldmann Visual Fields 

Goldmann visual fields were performed in the proband of family 2, which showed 

global constriction of the visual fields in each eye. To the V4e target this was reduced 

in the right eye to 40-45o nasally, superiorly and inferiorly, and 60o temporally, and in 

the left eye to 40o nasally and superiorly, 55o inferiorly and 70o temporally (Figure 

46). 
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Figure 46 - TULP1 Family 2: Subject V.5, Goldmann Visual Fields. A – Right eye; B 
– Left eye. V4e – blue line; III4e – red line. 

 

 

4.5.2.6 Electrophysiological Testing 

Full field and pattern ERGs were markedly reduced in subject IV.5 family 1, the 

youngest subject, and undetectable in 2 others (IV.4 family 1 and V.5 family 2). The 

oldest subject did not undergo electrophysiological testing (III.3 family 3).   

 

4.5.2.7 Molecular analysis 

The DNA of the proband (IV.4) of family 1 was analysed using the LCA chip, which 

identified the exon 15 variant c.1511_1521delTGCAGTTCGGC, p.Leu504fsX140 in 

the homozygous state. This variant had previously been described by den Hollander in 

a Surinamese family with ARRP [312]. This mutation was confirmed by ADB, and 

segregation checked within the family. The affected younger brother (IV.5) was also 

identified to harbour this variant in the homozygous state, and the parents were 
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identified to be heterozygous carriers of the variant, which confirms the segregation 

of this variant with the disease in this family (Figure 47). TULP1 primer sequences 

and PCR conditions are described in the appendix (Appendix 7.2.1). This 11-bp 

deletion causes a frame shift and replaces the 39 C-terminal amino acids with 140 

aberrant amino acid residues.  

 

 

Figure 47 - TULP1 Family 1 Electropherograms. 

 

 

Due to the ancestry of families 2 and 3, autozygosity mapping was performed (family 

2 by Dr Mackay, family 3 by Dr Sergouniotis). In family 2, this revealed 6 

chromosomal segments over 10 Mb (Table 16), in which 4 known retinal disease 

associated genes resided. Based upon the phenotype in the proband of family 2, 

TULP1 was selected as a positional candidate gene, and screened by ADB within a 

panel of 10 patients by direct sequencing. This identified the novel homozygous 

variant c.1035C>G, p.Ser345Arg in exon 10 in the proband. Segregation analysis 

identified that this variant segregates with the disease in this family as her unaffected 
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brother (III.2, family 2) and parents were all heterozygous for this variant (Figure 48). 

This variant was analysed using different in silico analysis programmes. SIFT gave a 

score of 0, indicating that this mutation is damaging (median 2.71); pMUT gave a 

neural network value of 0.70 and reliability value of 4 (predicting the mutation to be 

pathologic); and PolyPhen 2 appraised the mutation to be ‘probably damaging’ with a 

score of 0.992 (sensitivity 0.7, specificity 0.97). This variant was not identified in the 

1000 genomes project or in the exome variant server. 

 

Chromosome From To Size (Mb) Retinal disease 
associated genes 

6 15062945 37547262 22.48 TULP1 
6 130071088 155001410 24.93 AHI1, PEX7 
7 5411296 20831800 15.42  
7 110274772 141816117 31.54  
9 2615553 17987408 15.37 MPDZ 

 
Table 16 - Augozygosity data, TULP1 Family 2. TULP1 resides in the third largest 
region of homozygosity. 

 

 

Figure 48 - TULP1 Family 2 Electropherograms. 

 

The autozygosity mapping data for family 3 are not available, but did identify an area 

of homozygosity on chromosome 6p, in which TULP1 resides. Positional screening 
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(by ADB) of TULP1 in the proband (III.3) of this family identified a novel 

homozygous variant in the intronic sequence as IVS3+1g>a. There were no other 

family members available to check the segregation of this variant, but it was 

confirmed in both the forward and reverse sequence (Figure 49). Splice site in silico 

analysis programmes identified that this mutation abolishes the splice acceptor site at 

this location (www.fruitfly.org). The mutation was not identified in the 1000 genomes 

project or on the exome variant server. 

 

 

Figure 49 - TULP1 family 3 Electropherograms. 

 

A summary of all the TULP1 mutations identified in this study are listed (Table 17). 
 

Subject Family Mutation 1 Mutation 2 Reference 
IV.4 1 c.1511_1521del 

p.Leu504fsX140 
c.1511_1521del  
p.Leu504fsX140 

[312] 

IV.5 1 c.1511_1521del 
p.Leu504fsX140 

c.1511_1521del 
p.Leu504fsX140 

[312] 

V.5 2 c.1035C>G  
p.Ser345Arg 

c.1035C>G  
p.Ser345Arg 

Novel to this study 

III.3 3 IVS3+1g>a IVS3+1g>a  Novel to this study 
 
Table 17 - Mutations identified in TULP1 in this study. 

http://www.fruitfly.org/
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4.5.2.8 Summary of TULP1 phenotype identified in this study 

Onset of visual symptoms in subjects with autosomal recessive mutations in TULP1 

can occur in early childhood, giving a clinical picture of an EORD, or later in the first 

decade, giving a clinical picture of a rod-cone dystrophy. Subjects present with poor 

vision, nystagmus, nyctalopia and visual field constriction. The refraction tends 

towards a myopic astigmatism and colour vision is severely reduced. In the early 

stages the retina displays RPE atrophy, vascular attenuation and preservation of the 

macula with no pigmentation; with age, the RPE atrophy becomes more widespread, 

and peripheral retinal pigment clumping and optic disc pallor develop. The OCT 

shows loss of the photoreceptor layer in all areas except at the fovea and fundus 

autofluorescence imaging demonstrates a wide band of hyperautofluorescence around 

the fovea, unlike the autofluorescence imaging seen in other causes of EORD. Visual 

fields are constricted but may remain relatively preserved into the third decade and 

electroretinography shows widespread photoreceptor dysfunction including the 

macula. There may be obesity in childhood as observed in the affected children of 

TULP1 family 1.  

 

 

4.5.3 Discussion 

The TULPs (including TUB) are involved in G-protein coupled receptor trafficking 

pathways in the cilia of neurones, and thus mutations in this family of genes add to 

the growing number of conditions known as ‘ciliopathies’ [354, 355]. Disease 

associated mutations involving the TUB family of proteins have only been identified 

in Tub (in mice) and TULP1 (in humans) to date [294, 295, 353] [299-301]. The first 

human mutation in TUB was identified through this study, in one family, and the 
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phenotype published [330]. Human mutations in TULP1 have been reported to cause 

both EORD and ARRP. The phenotypes associated with mutations in TULP1 

identified in this study are also described. As these genes belong to the same family of 

proteins, the results of the phenotypic and molecular analyses performed in this study 

are being considered together in this chapter.   

 

Humans with loss of function mutations in TUB display a rod-cone dystrophy 

phenotype beginning late in the first decade of life, characterised by nyctalopia and 

visual field constriction. Colour vision is reduced and there is typically a myopic 

astigmatic refractive error. The retinal degeneration is associated with widespread 

atrophy of the RPE, minimal retinal pigmentation and vascular attenuation, with 

preservation of the photoreceptor layer at the fovea. There is associated early onset 

obesity. However, the effects on hearing and further effects on metabolism in humans 

were not determined through this study.  

  

The tubby mouse carries an autosomal recessive loss of function mutation in Tub and 

its phenotype is characterised by neurosensory deficits and metabolic disturbances. 

The neurosensory deficits comprise of retinal and cochlear degeneration. The retinal 

degeneration is secondary to apoptotic death of photoreceptors [293]; the cochlear 

degeneration in the tubby mouse appears to be related to the presence of 

polymorphisms in the microtubule associated protein gene Map1a, but the 

biochemical sequelae of this genetic interaction is unclear [356]. The metabolic 

disturbances consist of obesity and insulin resistance, and are secondary to the effects 

on feeding behaviour and energy homeostasis controlled via the hypothalamus [357], 
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and to the mediating effects of tub on insulin and leptin signalling in the 

hypothalamus [358].   

 

The childhood onset retinal dystrophy and obesity phenotype observed in the TUB 

family in this study is similar to the phenotype seen in the tubby mouse, although the 

obesity in this family was less severe than other genetic forms of obesity. As 

mentioned above, the TULPs (including TUB) are involved in G-protein coupled 

receptor trafficking pathways in neuronal cilia [354, 355]. The method of 

photoreceptor degeneration is likely due to the ineffective transport of rhodopsin to 

the outer segments across the connecting cilium, as observed in mice with loss of 

Tulp1 function, which have an ectopic distribution of rhodopsin prior to photoreceptor 

degeneration [305]. This mechanism has been postulated to occur with the other 

TULPs [355]. The extracellular rhodopsin laden vesicles that are seen to accumulate 

in the interphotoreceptor space in Tub-/- and Tulp1-/-mice occur at a time that 

rhodopsin is usually rapidly synthesised to build up the outer segments, and it was 

hypothesised that the accumulation of these vesicles might be a hallmark of the defect 

of rhodopsin transport to the outer segments, a process in which the TULPs have a 

role [305, 307]. Mice that are doubly mutant for tub and tulp1 display a more severe 

retinal phenotype than either mutant alone, which results in complete failure of 

rhodopsin trafficking and outer segment formation with rapid cell death [307]. 

 

The phenotypes associated with mutations in TULP1 that were observed in this study 

were similar to other reports of TULP1 mutations, which have described widespread 

loss of rod function from a young age, with only residual cone function existing at the 

fovea [258, 309, 311-313, 359]. Onset of visual symptoms can be very early, within 
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the first year of life, and thus the condition is classified as an early onset retinal 

dystrophy, or may begin later in childhood and so be classified as a rod-cone 

dystrophy. Similar to the TUB family, there tends to be a myopic astigmatism. RPE 

atrophy, vascular attenuation and preservation of the macula without pigmentation is 

seen in the early stages but with age, the RPE atrophy becomes more widespread, and 

peripheral retinal pigment clumping and optic disc pallor develop. A recent study has 

identified small islands of preserved RPE that is associated with better visual function 

at these points; these were not identified in the present cohort [359]. Fundus 

autofluorescence imaging in this study identified a wider band of 

hyperautofluorescence than that which is seen in other forms of RP. This has been 

observed in other studies [311]. OCT imaging in the present TULP1 cohort 

demonstrates preservation of the photoreceptors only at the fovea, which may 

represent a small central island of residual foveal cones, but the extracentral loss of 

laminar architecture that has been reported in the literature was not observed [359]. 

Unlike Tub, mutations in TULP1 appear not to be associated with obesity, hearing 

impairment or endocrine dysfunction [311]. Although the children in family 1 in this 

study were classified as being obese for their age and gender, this feature may not be 

related to their TULP1 variant. From the expression profile of TULP1 and the 

phenotype of the Tulp1-/- knockout mouse, systemic features of obesity and endocrine 

dysfunction would not be predicted to occur, and have not been reported in human 

TULP1 mutations [357].  

 

A large number of studies have identified TULP1 mutations in families of Middle 

Eastern or South East Asian descent [201, 258, 311, 313, 314, 360, 361]. Den 

Hollander et al. reported a multiply affected family from Surinam, which has a large 
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South East Asian population, but the ancestry in this family was not defined [312]. A 

small panel of 49 Spanish ARRP families had an incidence of 2% of families affected 

with TULP1 mutations, although the ancestry of these families was also not defined 

[310]. All three families identified in this study were originally from South East Asia 

and were consanguineous, harbouring homozygous mutations in TULP1. This 

suggests the presence of a number of founder mutations in TULP1 in families from 

these regions.  

 

The c.1511_1521delTGCAGTTCGGC, p.Leu504fsX140 variant identified in family 

1 in the homozygous state was first reported in a Surinamese family in the 

heterozygous state by Den Hollander, and causes a frame shift, affecting the TULP1 

C-terminal domain [312]. The novel missense mutation, c.1035C>G, p.Ser345Arg, 

identified in the homozygous state in family 2 is predicted to be pathological and also 

lies within the TULP1 C-terminal domain. It is interesting to note that all missense 

mutations identified in TULP1 and TUB to date affect the highly conserved C-

terminal domain (tubby terminal) of this family of proteins [330, 360]. In the TULP 

family of proteins (including TUB) this domain contains a DNA binding region and a 

phosphatidylinositol-binding region, which anchors the TULPs to the cell membrane 

before they are released by phospholipase Cβ-mediated cleavage of 

phosphatidylinositol bisphosphate [302]. The crystal structure of the C-terminal 

domain in Tub was identified to comprise of a closed β barrel consisting of 12 anti-

parallel strands, surrounded by a central hydrophobic α helix. An important function 

of this domain is in the interaction with phosphatidylinositol bisphosphate, which is 

disrupted in TUB mutations, with subsequent inability of the protein to localise to the 

plasma membrane, and instead remain within the nucleus [303].  
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It remains to be determined whether human mutations in TUB result in other systemic 

abnormalities that resemble the tubby mouse but it is known that TULP1 families 

display a similar phenotype to the loss of function Tulp1 mouse. The conditions 

associated with both of these genes further add to the range of conditions that are now 

classified as ‘ciliopathies’.    
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4.6 LRAT Phenotype 

 

Limited reports of the phenotype associated with mutations in LRAT had been 

published by the time this study was conducted. Rather more extensive phenotypic 

studies of another visual cycle gene, RPE65, had been published, and the first human 

gene therapy studies undertaken into retinal dystrophies were based upon this gene 

[362-364]. In order to understand the phenotype associated with LRAT mutations, 

investigations into 4 families identified with variants in LRAT in this study were 

undertaken. 2 of the 4 families had been recruited to the childhood onset retinal 

dystrophy study by previous researchers, and two by ADB – one who was under 

MEH (Subject 27, cohort 1) and one who was recruited following mutation 

identification by the referring hospital (Subject 28, cohort 1). 3 probands were invited 

back to MEH and the IOO for detailed phenotypic studies. The results of the 

phenotypic studies and the molecular techniques utilised to ascertain the mutations in 

LRAT are described in this chapter. The results of these studies were also published 

[365]. In this chapter, Subject 1 refers to Subject 28 of cohort 1, Subjects 2 and 3 were 

recruited by previous researchers and so are not from cohort 1, and Subject 4 refers to 

Subject 27 of cohort 1. 

 

 

4.6.1 Clinical History 

The onset of visual symptoms in the four probands identified with mutations in LRAT 

was between 1 and 3 years of age (Table 18). All subjects had severe nyctalopia and 

visual field constriction from early childhood. A similar finding to subjects with 



244 

mutations in RPE65 was of photophilia, which was present in 3 of the 4 LRAT 

subjects (Subjects 1, 3 and 4). Nystagmus was not reported in any subject, indicating 

that some visual function was preserved in infancy. Strabismus was present in 2 

subjects (Subject 3 and Subject 4), with amblyopia affecting the left eye of Subject 3. 

The visual symptoms in all LRAT subjects were progressive, with deterioration of 

visual acuity, visual fields, nyctalopia and colour vision with age. Interestingly, 3 

individuals (Subjects 1 to 3) subjectively reported deterioration of dark adaptation, 

specifically the time required to adapt from photopic to mesopic lighting conditions 

with age. General health was normal in all subjects except Subject 2 who had 

unilateral acquired conductive auditory dysfunction secondary to otosclerosis.  

 

All affected subjects were simplex cases, with no other affected family members. 

Subject 1 (Family 1) was from a multiply consanguineous South East Asian family; 

his parents were first cousins. Subject 2 (Family 2) was British Caucasian whose 

parents were first cousins. Subject 3 (Family 3) was Scandinavian from a non-

consanguineous family. Subject 4 (Family 4) was from the Caribbean, from a non-

consanguineous family.   

 

 

4.6.2 Clinical Examination 

Two of four LRAT subjects were male. They were all examined in adulthood (Subject 

1 – age 27 years; Subject 2 – age 54 years; Subject 3 – age 41 years; Subject 4 – age 

31 years). Best corrected monocular visual acuity ranged from 0.22 LogMAR to hand 

movements (Table 18). Subject 3 had hand movements vision in the left eye, which 

was an amblyopic eye. There was no particular trend to the refractive errors: in the 
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right eye the spherical equivalent ranged from -1.00 DS to +3.63 DS and in the left 

eye it ranged from -1.00 DS to +3.33 DS. Colour vision was severely reduced in all 

subjects: none were able to identify any correct plates on Ishihara testing; low colour 

discrimination was recorded on the Farnsworth-Munsell 100 hue test in Subjects 1, 2 

and 3; and Nagel anomaloscope matches suggested poor red – green colour 

discrimination in Subjects 1, 2 and 3.  

 

Ocular motility examination identified torsional nystagmus in Subject 1; no other 

subjects had nystagmus. Subjects 3 and 4 had a left and right esotropia respectively. 

Anterior segments were normal in all subjects and mild nuclear sclerotic cataracts 

were evident in Subject 2 (unilateral, left eye) and Subject 4 (bilateral). All subjects 

had bilateral widespread RPE atrophy involving the macula, arteriolar attenuation and 

minimal retinal pigmentation, which was confined to the mid-peripheral retina (Figure 

50, Figure 51, Figure 52 and Figure 53 - A). Subject 1 also displayed an annulus of 

retinal pallor extending to the vascular arcades within the macula (Figure 50). In 

Subject 3 the macula appeared relatively spared with hypopigmentation superior to 

the foveae. In Subject 4 there were bilateral epiretinal membranes. Asteroid hyalosis 

was evident in Subject 2 (bilateral) and Subject 3 (unilateral, right eye). A core 

vitrectomy had been performed in the left eye of Subject 2 with the aim of visual 

improvement from symptomatic asteroid hyalosis but there was no subsequent 

subjective or objective improvement in vision following this procedure. 
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4.6.3 Fundus Autofluorescence Imaging 

Fundus autofluorescence imaging revealed a reduced autofluorescence signal in all 

subjects. It had been necessary to utilise a number of frames to obtain a mean image 

at the highest sensitivity of signal detection, which resulted in the optic nerve head 

and large retinal vessels appearing artefactually brighter than normal subjects. In 

those subjects in whom an autofluorescence signal was detected, there was a very 

small hypoautofluorescent signal at the foveolae (Figure 50 - B), poor 

autofluorescence at the macula (Figure 51, Figure 52 and Figure 53 – images B) and a 

diffuse annulus of hyperautofluorescence at the macula (Figure 52 - B). 

 

 

4.6.4 OCT Imaging 

sd-OCT imaging was performed in Subjects 1-3. The quality of the images acquired 

was affected by poor vision, which limited the subjects’ ability to maintain central and 

steady fixation. The inner retinal layers appeared intact in these three subjects and the 

foveal thickness was relatively well preserved, although in the oldest subjects there 

was shallowing and broadening of the foveal depression (Figure 51 and Figure 52 – 

image C). The inner segment outer segment junction appeared to be preserved 

throughout the macula in the youngest subject, Subject 1, with preservation of the 

external limiting membrane and intact retinal lamination (Figure 50 - C). The outer 

retina was disrupted at the fovea in the two oldest subjects, Subjects 2 and 3, and there 

was no clear photoreceptor layer visible (Figure 51 and Figure 52 – images C). In 

these two subjects the outer nuclear layer was absent centrally but was preserved in 

the parafoveal region (Figure 50, Figure 51 and Figure 52 - images C, yellow arrows 

indicate the beginning of the ONL in left eyes). A faint line, presumed to represent the 
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external limiting membrane, was visible in these two subjects. In subjects 1-3 the 

nerve fibre layer was irregular but there was no evidence of vitreo-retinal traction. 

Subject 4 had undergone time-domain OCT imaging, which showed loss of the foveal 

inner segment outer segment junction, preserved retinal thickness and bilateral extra-

foveal epi-retinal membranes with no loss of the foveal contour (Figure 53 - C). 
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Subject 
(Gender) 

Family Ethnicity Consanguinity Age at 
Onset 
(years) 

Age at examination (years) LogMAR VA 
RE, LE 

Refraction 

1 (M) 1 Indian Consanguineous 3 27 0.22, 0.90 RE Plano 
LE Plano 

2 (F) 2 British Caucasian Consanguineous 1 54 0.66, HM RE +0.75/+2.63, 162 
LE +2.75/+1.13, 34 

3 (M) 3 Swedish Non-consanguineous 1 41 HM, 1.80 RE +4.25/-1.25, 22 
LE +4.0/-1.75,159 

4 (F) 4 Caribbean Non-consanguineous 2 31 0.80, 0.50 RE plano/-2.00, 20 
LE -0.75/-0.50, 25 

 
Table 18 - Demographic and clinical data of LRAT subjects. M – Male; F – Female; RE – right eye; LE – left eye; HM – hand movements vision.
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Figure 50 - Subject 1, LRAT. A – Left eye fundus image displaying widespread RPE 
atrophy involving the macula but sparing the fovea, arteriolar attenuation and minimal 
retinal pigmentation. There is an annulus of retinal pallor extending to the temporal 
vascular arcade; B – left eye fundus autofluorescence image demonstrating a very 
weak hyperautofluorescent signal at the fovea; C – OCT image of the left macula 
demonstrating intact lamination and retention of a disrupted photoreceptor layer at the 
macula, and of the external limiting membrane. Arrows indicate the outer nuclear 
layer which appears preserved but severely diminished at the fovea. Images taken at 
age 27 years. 
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Figure 51 - Subject 2, LRAT. A – Left eye fundus image displaying widespread RPE 
atrophy involving the macula, arteriolar attenuation and peripheral retinal 
pigmentation. A core vitrectomy has been performed and the vitreous base is visible 
in the inferior retinal periphery; B – left eye fundus autofluorescence image 
demonstrating a very weak autofluorescence signal at the fovea; C – OCT image of 
the left macula demonstrating preservation of the retinal lamination and external 
limiting membrane but severe disruption and loss of the photoreceptor layer. Arrows 
indicate the outer nuclear layer, which is lost at the fovea. The foveal contour is broad 
and shallow. Images taken at age 54 years. 
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Figure 52 - Subject 3, LRAT. A – Left eye fundus image displaying widespread RPE 
atrophy involving the macula but sparing the fovea, arteriolar attenuation and minimal 
retinal pigmentation; B – left eye fundus autofluorescence image demonstrating a 
diffuse hyperautofluorescent signal at the macula; C – OCT image of the left macula 
demonstrating preservation of the retinal lamination and external limiting membrane, 
but severe disruption and loss of the photoreceptor layer. Arrows indicate the outer 
nuclear layer, which is lost at the fovea. The foveal contour is broad and shallow. 
Images taken at age 41 years. 
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Figure 53 - Subject 4, LRAT. A – Left eye fundus image displaying widespread RPE 
atrophy sparing the macula, arteriolar attenuation and peripheral retinal pigmentation; 
B – left eye fundus autofluorescence image demonstrating a very weak 
autofluorescence signal at the fovea; C – OCT image of the left macula demonstrating 
preservation of the retinal lamination and photoreceptor layer at the fovea, and epi-
retinal membranes. Images taken at age 31 years. 

 
 
 

4.6.5 Electrophysiological Testing 

ISCEV standard electrophysiological studies were performed in subjects 1-3. The 

youngest subject, Subject 1, had residual PERGs detectable bilaterally, suggesting 

minimal residual macular function. PERGs were not detectable in Subjects 2 and 3. In 

all 3 subjects, the rod-mediated full field ERGs were undetectable following the 

standard period of 25 minutes of dark adaptation. Following overnight dark adaptation 

of the left eye in Subject 3, no discernable inter-ocular asymmetry was demonstrated 

in the full field ERG responses, indicating no recovery of rod function after prolonged 
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dark adaptation.  Light adapted cone-mediated ERGs were not detectable in Subject 1, 

however in Subjects 2 and 3 they were present but delayed and small.  

 

 

4.6.6 Psychophysical Testing 

4.6.6.1 Goldmann Visual Fields 

Goldmann perimetry was performed in subjects 1-3 but the only reliable responses 

were to the V4e target (Figure 54). Perimetry was difficult and time consuming due to 

variable abilities to maintain central and steady fixation. Circumferentially constricted 

visual fields were present in 2 subjects to between 15o and 40o of central fixation 

(Subjects 1 and 2). Subject 3 had inconsistent responses within the visual field. As has 

been previously described in individuals with RP, in addition to circumferential 

constriction of the visual field, there may be residual ‘islands’ of retained vision 

within apparent ‘non seeing’ areas that can be difficult to plot consistently [57]. All 

three subjects demonstrated this. In Subject 1 the central 30o was retained with 

additional far peripheral crescents of vision in the infero-temporal quadrants 

measuring 10o (Figure 54 – A and B). Subject 2 had retention of the central 15o and 

40o in the left and right eyes respectively, with additional 20o crescents in the inferior 

and temporal quadrants (Figure 54 – C and D). The visual field was difficult to plot in 

Subject 3 and appeared to demonstrate retained fields to 50-55o nasally and 80-90o 

temporally. Although he had small additional islands of visual loss within this area, 

these were not consistently recordable and so are not included in the plots (Figure 54 

– E and F). 
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Figure 54 – Goldmann Visual Field plots, LRAT subjects. A – Left eye, Subject 1 and 
B – Right eye Subject 1, demonstrating retention of the central 15o with additional 
peripheral crescents in the visual fields of both eyes to the V4e target; C – Left eye, 
Subject 2 and D – Right eye, Subject 3, demonstrating retention of the central 15o in 
the visual field of the left eye and central 40o in the visual field of the right eye to the 
V4e target; E – Left eye, Subject 3 and F – Right eye, Subject 3, demonstrating 
retained visual fields across the central 120o to the V4e target, although islands of 
visual loss within these fields are not plotted as they were inconsistent. V4e target – 
blue line; I4e target - red line; hashed areas correspond to islands of reduced vision. 
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4.6.6.2 Dark Adapted Perimetry 

Photopic and dark adapted static threshold perimetry was performed by Professor 

Fitzke’s laboratory at UCL in Subjects 1-3 using a modified Humphrey visual field 

analyser (Allergan Humphrey, Hertford, UK). Dark adapted perimetry was performed 

following pupillary dilatation using guttae tropicamide 1% and guttae phenylephrine 

2.5% in each eye and following 45 minutes of dark adaptation. The Humphrey visual 

field analyser had been modified for dark adapted conditions as previously described 

[366, 367] and controlled by a customised computer programme (PS/2 model 50; 

International Business Machines, Armonk, New York, USA) [368]. Testing was 

performed in the light adapted state with a white light stimulus and, after dark 

adaptation, with red (608 nm) and blue stimuli (506 nm). The blue stimulus reflects 

rod function and red stimulus reflects cone function. 

 

In subjects 1-3 photopic static threshold perimetry demonstrated severely elevated 

thresholds of 10 to 30 decibels (dB) across the central 30o (Figure 55 - A shows an 

example in Subject 3). There was severe loss of sensitivity of 30 dB to 40 dB in all 

subjects with dark adapted perimetry. In subject 1 there were no recordable responses 

to scotopic red and blue stimuli in the dark adapted state, indicating absent rod 

function. Subjects 2 and 3 showed measurable responses in only a few locations in the 

central 9o of fixation, to scotopic red and blue stimuli, indicating severe loss of rod 

function (Figure 55 – B and C show an example in Subject 3). It is likely that the 

sensitivities in these locations are mediated by dark adapted cones, which themselves 

have reduced sensitivity. This is consistent with the findings of abnormal cone 

function from the critical flicker fusion measurements performed in Professor 

Stockman’s laboratory (see section 4.5.6.4). 
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Figure 55 - Full static threshold central 30o photopic and dark adapted perimetry, 
LRAT Subject 3.  A – photopic static threshold perimetry; B – dark adapted static 
threshold perimetry, blue stimulus; C – dark adapted static threshold perimetry, red 
stimulus. Severe threshold elevations are evident throughout with generally some 
central function, but elevated by 20–30 dB even at the most sensitive locations. 

 

4.6.6.3 Dark adapted spectral sensitivities 

The dark adapted spectral sensitivities were measured in Subjects 1-3 by Dr 

Ripamonti in the laboratory of Professor Stockman at UCL. The methods have 

previously been described [369]. Subjects were dark adapted for 40 minutes prior to 

measurements being taken. The target stimulus was 3.5o in visual diameter, presented 

at 10o in the superior retina and sinusoidally flickered at 1 Hz. Target wavelengths of 

400, 500, 550, 600 and 650 nm were used to make the measurements. The observer 

adjusted the radiance of the target at each wavelength, until the flicker at 1 Hz was 

just at threshold.  

 

Evidence of rod function was present in Subjects 2 (green diamonds) and 3 (yellow 

circles), as demonstrated by the dark adapted spectral sensitivity data, which followed 
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the shape of rod, or scotopic, luminosity function (black lines) (Figure 56). However 

in both subjects the rod sensitivity was reduced compared to normal subjects (red 

squares). The data for Subject 1 (blue circles) were more consistent in shape with 

cone, or photopic, luminosity function (dashed red line). They were also reduced in 

sensitivity, which suggested that this Subject had little or no rod function. Compared 

to normal subjects, there was a reduction of cone sensitivity by approximately 3 log 

units, which was consistent with the cone critical flicker fusion loss in this subject. 

 

 

Figure 56 - Dark adapted spectral sensitivities, LRAT subjects. Blue circles - Subject 
1; Green diamonds – Subject 2; Yellow triangles – Subject 3; Red squares – 
normative data. The curves are standard spectral sensitivity functions vertically 
shifted to least squares fit each data set. The continuous black lines are shifted 
versions of the rod or scotopic V0(k) luminosity function, and the red dashed line is a 
shifted version of the cone or photopic V(k) luminosity function adopted by the 
Commission Internationale de l’eclairage (CIE) [370]. Agreement with V0(k) 
indicates rod function in Subjects 2 and 3, but agreement with V(k) suggests mainly 
cone function and no rod function in Subject 1.  
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4.6.6.4 Critical Flicker Fusion 

Defects in light adaptation caused by variants in visual cycle or phototransduction 

genes can be characterised by measuring the changes in temporal sensitivity that 

accompany changes in light levels. This can be undertaken by measuring changes in 

temporal acuity or resolution (also known as the critical flicker frequency, c.f.f.) as a 

function of light level [371]. These tests were performed in Subjects 1-3 by Professor 

Stockman’s laboratory at UCL.  

 

A Maxwellian-view optical system with a 2-mm entrance pupil illuminated by a 900 

W xenon arc lamp was used for the c.f.f. measurements. Wavelengths were selected 

with interference filters with full-width at half-maximum bandwidths of between 7 

nm and 11 nm (Ealing or Oriel). Other details were the same as the spectral sensitivity 

measurements. Fixation was central. A flickering target of 4o in diameter and 650 nm 

in wavelength was presented in the centre of a 9o diameter background field of 481 

nm in order to measure L-cone c.f.f. This background served to suppress the rods, but 

also selectively desensitised the M-cones at lower target radiances. The 650 nm target 

was chosen to favour flicker detection mainly by L-cones over most of the intensity 

range. It was varied in intensity from 6.5 to 11.0 log10 quanta s-1 deg-1 (-0.63 – 3.87 

log10 photopic trolands). At higher target intensities M-cones are also likely to 

contribute to flicker detection. At each target intensity the subject adjusted the flicker 

frequency to identify the frequency at which the flicker just disappeared (the c.f.f.). S-

cone c.f.f. measurements were made by presenting a flickering target of 4o diameter 

and 440 nm wavelength in the centre of a 9o diameter field of background 620 nm, 

which selectively desensitises the M- and L-cones with comparatively little effect on 

the S-cones. In normal subjects a 620 nm field of 11.51 log10 quanta s-1 deg-1 isolates 
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the S-cone response up to a target radiance of approximately 10.5 log10 quanta s-1 deg-

1 [372]. 

 

All 3 subjects had substantially reduced L-cone c.f.f. measurements compared to 

normal subjects (red squares) (Figure 57). Subject 2 (green diamonds) showed the 

best temporal resolution, which suggested reduced but moderately good L-cone 

function. Subjects 1 (blue circles) and 3 (yellow triangles) had devastating loss of 

temporal resolution compared with normal subjects. For these two subjects, flicker is 

seen clearly first at target radiances above 9.0 log10 quanta s-1 deg-1, which is 

approximately 250 times higher than normal subjects. However, resolution reached to 

less than 20 Hz even at the highest radiances, suggesting severely reduced L-cone 

function. No measureable S-cone function was detected in any of these three subjects 

by S-cone cf.f. measurements.  

 

 

Figure 57 - Critical flicker fusion frequencies in LRAT subjects. Blue circles - Subject 
1; Green diamonds – Subject 2; Yellow triangles – Subject 3; Red squares – mean 
data for 12 normal observers. Subjects 1 and 3 show a substantial loss of cone 
temporal sensitivity, while Subject 2 shows more moderate loss. 
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4.6.7 Molecular analysis 

The molecular techniques used to identify LRAT mutations in these 4 subjects varied. 

All direct sequencing was performed by Dr Ocaka, UCL. 

 

Subject 1 (Subject 28, cohort 1), referred by colleagues at the University of 

Manchester, had undergone screening using the LCA chip, which identified the 

previously reported LRAT missense variant c.525T>A, p.Ser175Arg, in exon 2, in the 

homozygous state [285]. The variant was confirmed by direct sequencing and was 

identified to segregate with the disease in the family, as his unaffected parents were 

both heterozygous for this variant.  

 

The mutations in subjects 2-4 were identified by direct sequencing of LRAT in a panel 

of LCA and EORD patients that had previously been screened using the LCA chip, 

without any variants being identified (Table 19). Subject 2 was identified to harbour 

the novel 2- base pair deletion/insertion, c.40-41delGAinsTT, p.Glu14Leu. Both 

unaffected parents were heterozygous for this variant, confirming segregation of the 

disease in this family. Subject 3 harboured the novel variant c.181T>A, p.Tyr61Asp, 

in the homozygous state. His unaffected father was heterozygous for this variant; his 

mother was not available for testing. Subject 4 had previously undergone screening of 

RPE65 as she had some phenotypic similarities to individuals with mutations in this 

gene; this screening did not identify any pathogenic variants. She was subsequently 

identified to harbour the novel LRAT variant c.316G>A, p.Ala106Thr, in the 

homozygous state. No family members were available to check segregation of this 

mutation. 
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Subject Family Mutation 1 Mutation 2 Reference 
1 1 c.525T>A,  

p.Ser175Arg 
c.525T>A,  
p.Ser175Arg 

[285] 

2 2 c.40-41delGAinsTT, 
p.Glu14Leu 

c.40-41delGAinsTT, 
p.Glu14Leu 

Novel to this 
study 

3 3 c.181T>A,  
p.Tyr61Asp 

c.181T>A,  
p.Tyr61Asp 

Novel to this 
study 

4 4 c.316G>A,  
p.Ala106Thr 

c.316G>A,  
p.Ala106Thr 

Novel to this 
study 

 
Table 19 – Mutations identified in LRAT in this study. All are homozygous. 

 

All four variants were not identified in 96 ECACC control DNAs or any other 

probands in the panel of 148 LCA and EORD patients. All four mutations were 

analysed using the in silico analysis programmes SIFT and PolyPhen2. SIFT 

predicted all four mutations to be damaging, with a probability score of 0 for each 

mutation (probability scores less than 0.05 are predicted to be deleterious) and a 

median range between 2.51 and 3.00 (this is used to measure the diversity of the 

sequences used for prediction; this value ranges between 0 and 4.32 and should 

ideally be between 2.75 and 3.5). PolyPhen2 predicted all four mutations to be 

probably damaging (c.525T>A, c.40-41delGAinsTT and c.316G>A in subjects 1, 2 

and 4 respectively) or possibly damaging (c.181T>A in subject 3), with scores 

ranging between 0.95 and 1.00.   

 

 

4.6.8 Discussion 

Mutations in LRAT lead to a severe EORD phenotype that consists of poor vision, 

nyctalopia and visual field constriction from early childhood; photophilia is a 

consistently described feature. With time, visual acuity, contrast sensitivity and colour 

discrimination deteriorate. Electrophysiological data support the clinical findings and 
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are in keeping with severe generalised photoreceptor dysfunction affecting rods more 

severely than cones. At the time that this study was conducted there had only been a 

handful of reports describing the phenotype associated with mutations in LRAT, in 

which in the majority of subjects, poor vision, nyctalopia and nystagmus commenced 

in childhood, the retinal dystrophy was severe with an undetectable ERG, and the 

diagnoses carried were of LCA or juvenile RP [26, 285, 290, 291]. Photophobia had 

been reported in a number of cases [26, 290]. In these studies, visual acuity ranged 

from 0.6 LogMAR (age 6 years) to hand motion vision (age 23 years), with a 

predominantly hypermetropic refractive error. The retinal appearances have been 

reported to be normal in infancy [291], and in adult life to consist of peripheral RPE 

atrophy, optic disc pallor and ‘perimacular retinal surface wrinkling’. In the present 

study, and in agreement with these other studies, RPE atrophy was widespread but 

there was little retinal pigmentation until later age, suggesting that photoreceptor cell 

death occurs late in LRAT mutations [373]. Epi-retinal membranes were present in 

25% of eyes in this study, which is more common than the 1.2% reported prevalence 

of epi-retinal membranes in RP [374]. In addition, asteroid hyalosis was more 

common in LRAT retinopathy, with 37.5% of eyes in this study affected, compared to 

only 3.1% in RP in general [375]. 

 

Detailed retinal imaging in humans with LRAT mutations had not been previously 

reported. Although the ability to acquire clear sd-OCT images in the subjects in this 

study was affected by instability of fixation, reasonable images were obtained. In the 

youngest subject (age 27 years) there was retention of the external limiting 

membrane, the outer nuclear layer was visible throughout the macula but markedly 

diminished in the very centre of the fovea and photoreceptor inner segment outer 
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segment layer was present at the fovea. In the oldest subjects (age 41 and 54 years) 

there was disruption of the outer retina and loss of the outer nuclear layer at the fovea, 

with possible retention of this layer in the extra-foveal region. There was no 

photoreceptor layer discernable in these two subjects, but there was a faint line 

corresponding to the external limiting membrane. An irregular nerve fibre layer, with 

no overlying vitreo-macular traction, was observed in all three subjects, which may 

correspond to early retinal fibrosis. This has not been reported in OCT imaging of 

Lrat-/- mice, however loss of the external limiting membrane and diminution of the 

outer nuclear layer has been observed in these and in Rpe65-/- mice who were treated 

with control compounds (‘vehicle’ and all-trans-retinyl acetate) in a study evaluating 

the effects of prodrugs that generate 9-cis-retinal in vivo [376]. A reduced 

autofluorescence signal was obtained in all LRAT subjects, in keeping with the 

reduced autofluorescence signal seen in mutations in genes encoding other visual 

cycle enzymes [158, 377, 378]. Lrat-/- and Rpe65-/- mice have also been identified by 

scanning laser ophthalmoscopy to have little to no autofluorescence, and reduced 

retinal fluorophore production has also been identified in humans with RPE65 

mutations, however autofluorescence in humans with LRAT mutations has not been 

reported [158, 379, 380]. 

 

The LRAT subjects in this study displayed severe photopic kinetic visual field 

constriction with preserved islands of vision in the mid- and far retinal periphery, and 

elevated thresholds measured by static perimetry, but they were able to maintain 

useful navigational vision that was subjectively reported to be better in daylight or 

ambient lighting conditions. Dark-adapted spectral sensitivity measurements 

demonstrated reduced to undetectable rod function, and perimetric and critical flicker 
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fusion measurements demonstrated severely reduced, but persistent, cone function in 

LRAT mutations. Similar psychophysical analysis using full field stimulus testing of 

subjects with RPE65 related LCA has been undertaken [381]. This identified more 

than half of the subjects tested to have rod mediation of a blue stimulus, indicating 

that there is severely reduced but detectable residual rod function in these subjects. 

The remaining subjects had only residual cone mediated vision. The authors 

suggested that psychophysical methods are able to detect both rod and cone mediated 

vision in these patients. In the present study we were able to identify areas of retina 

with residual but abnormal rod function. In other areas cones were mediating 

responses at threshold. 

 

Phenotypic variability has been reported in disease associated with mutations in visual 

cycle genes, in particular RPE65 [14, 15, 161]. Recently two families have been 

reported with the same homozygous frame-shifting mutation in LRAT, c.12delC, p. 

M5CfsX53, with a phenotype suggestive of retinitis punctata albescens, a slowly 

progressive retinal dystrophy characterised by nyctalopia, tiny yellow-white dots 

throughout the retina, and mutations in RLBP1 [45]. As with the mutations identified 

in the present study, this frame shifting mutation occurs in exon 2, but why it leads to 

a very different phenotype remains unknown. It may be that these white dots are 

present transiently in the disease process and may be replaced by photoreceptor 

degeneration and loss, and thus not be detected if the patient is not examined in time 

[382]. All but one LRAT mutation identified to date reside in exon 2 [26, 45, 285, 290, 

291, 365], suggesting that this exon may be targeted in the screening of this gene in 

LCA and EORD.  
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The N1pC/P60 proteins, of which LRAT is one, are cell-wall peptidases, with 3 

conserved residues: a cysteine, a histidine and a polar residue [383]. As it had not 

been possible to extract and purify full length LRAT, a recombinant truncated form of 

LRAT, t-LRAT, has been expressed in bacteria and purified fully, and has been 

demonstrated to be catalytically active despite it not containing the N- and C- terminal 

hydrophobic segments [384]. The triad of the LRAT-family specific conserved 

residues, cysteine-161, tyrosine-154 and histidine-60, have been identified in this 

truncated protein, and the tyrosine-154 residue has been identified to be essential for 

catalytic activity [385]. It is possible that the novel p.Tyr61Asp mutation identified in 

the present study interferes with the conserved histidine-60 residue and affects the 

catalytic activity of this enzyme. The p.Ser175Arg mutation was originally identified 

by Thompson et al., and it was postulated to cause disease by the loss of an essential 

nucleophillic residue at the catalytically active site of the enzyme [285]. However, the 

effect of this mutation on the function of t-LRAT was recently studied, and although 

no enzymatic activity was found with this mutant, the global tertiary structure of t-

LRAT and its membrane binding properties remained unchanged with this mutation 

[386]. It was suggested instead that as the serine-175 residue lies close to the 

catalytically active site of LRAT, this mutation, resulting in the insertion of an 

arginine residue, could obstruct the entrance of the substrate at this site, leading to 

loss of catalytic activity.  

 

The retinal dysfunction in Lrat-/- and Rpe65-/- murine models is similar, with slow rod 

degeneration, rapid cone degeneration and mislocalisation of cone opsins [288, 289, 

380, 387, 388]. Hypomorphic allele function has been hypothesised to be the reason 

for the continued isomerisation activity in some Rpe65 mutant models and in the 
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milder phenotypes that have been observed in humans [147, 161]. The alternative 

visual pathway involving Müller cells and cone regeneration may be another reason 

for the less severe phenotypes in visual cycle related mutations [139]. 

 

Lrat-/- murine models have led to the identification of two therapeutic interventions 

that restore retinal function: oral pharmacologic treatments with novel retinoid 

compounds such as 9-cis-retinyl acetate and 9-cis-retinyl succinate, and intraocular 

gene therapy [389]. Both of these treatments have resulted in improvements in 

electrophysiological and pupillary responses, and to the levels of visual pigment 

observed in these mice.  

 

The pharmacologic agent QLT091001, manufactured by QLT, Inc. (Vancouver, 

Canada), contains 9-cis-retinyl acetate, a prodrug that generates 9-cis-retinal in vivo 

[390], which has been shown to be safe in mice [376] and humans [391]. In Lrat-/- and 

Rpe65-/- mice administered with prolonged high dose oral QLT091001, retinal 

thickness and morphology were well maintained, no significant increases in 

autofluorescence suggestive of toxic retinoid by-products were seen, and scotopic 

ERG responses were improved compared to wild-type mice who were also treated 

with QLT091001 [376]. Results of the first human oral retinoid trial in patients with 

RPE65 and LRAT mutations were published very recently [392]. In this trial, patients 

received an oral dose of QLT091001 once daily for 7 days. They were examined at 

baseline and followed up over a period of at least 2 months. 10 of 14 patients (71%) 

were reported to have at least 20% improvement in visual field areas, 6 of 14 patients 

(43%) had an improvement in visual acuity of at least 5 letters. No improvements in 

ERG or colour vision were reported and the majority of patients returned to baseline 
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by 2 years. Side effects included headache and photophobia. However, the inter-test 

variability, test-retest variability, wide range of visual field results at baseline due to 

young participant age (64% of patients were under 16 years old) and lack of ERG 

evidence to support the reported large increases in visual field areas in response to 

treatment, mean that the reported improvements following this treatment should be 

taken with caution [58]. Although these results are promising, further more robust 

studies are required.  

 

Advances have been made in the field of retinal gene therapy, with the first human 

trials of RPE65 gene replacement therapy and CHM gene therapy for choroideraemia 

being reported recently [362, 363, 393, 394]. Studies into differentiated RPE cells 

obtained from human induced pluripotent stem cells have identified the expression of 

functional visual cycle enzymes, and transplantation of mouse primary RPE cells into 

Lrat-/- and Rpe65-/- mice has resulted in recovery of the visual function, including 

improvement of visual acuity, improvements in the ERG and endogenous 11-cis-

retinal production [395]. These results are promising and human trials into RPE stem 

cell therapy for Stargardt disease and age related macular degeneration have begun, 

with the results of safety studies recently published [396, 397].  

 

This detailed phenotypic study into families with mutations in LRAT has 

demonstrated residual photoreceptor function in adulthood despite there being 

significant visual dysfunction from early childhood. This suggests that there may be a 

window of opportunity for a variety of therapeutic interventions that can extend into 

late childhood. 
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4.7 RGR Phenotype 

 

The proband of one family was referred for enrolment into the Childhood Onset 

Retinal Dystrophy Study. He had been diagnosed with EORD in Italy and his DNA 

had been sent for screening using the LCA chip by his referring team. He was 

identified to harbour a homozygous mutation in RGR, as follows: c.196A>C, 

p.Ser66Arg [319]. As there had been little description of the phenotype associated 

with mutations in RGR, the family was invited to participate in the Study and the 

proband was extensively phenotyped, along with other family members, at Moorfields 

Eye Hospital (MEH) and at the Institute of Ophthalmology (IOO). 

 

 

4.7.1 Clinical History 

The male proband (Subject 47, Family 45 of Cohort 1) was aged 16 years and 7 

months when he attended for phenotypic studies. He had been diagnosed with an 

EORD at age 13 years following electrophysiological testing in Italy. The family is 

originally from Albania and moved to Italy when the proband was 8 years old. He had 

been noted by his parents to have reduced vision from birth, with nystagmus and a 

convergent squint from 5 months of age. As a toddler he was noted to be clumsy and 

to frequently bump into objects. At age 2 years he was prescribed glasses and 

commenced amblyopia therapy in Albania. A visiting ophthalmologist from Russia 

diagnosed strabismus and ‘a retinal abnormality’ and subsequently performed 

unilateral strabismus surgery in Russia when the proband was 5 years old. This 

improved his ocular alignment and nystagmus, but his symptoms of poor vision and 
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nyctalopia persisted. At age 11 years he noticed significant constriction of his visual 

fields and had difficulty seeing moving objects. He had mild photophobia but no 

photophilia.  

 

His general health was good aside from having renal calculi removed at age 2 years. 

He was born at full term and there had been no problems in pregnancy. There were no 

other affected family members and his younger male sibling and parents denied any 

ocular abnormalities. There is no history of consanguinity in his family.  

 

 

4.7.2 Clinical Examination 

Best corrected visual acuity at age 16 years was 0.48 LogMAR in the right eye, with 

no improvement with pinhole, and 0.30 LogMAR in the left eye, improving to 0.18 

LogMAR with pinhole. Refractive error was right eye +1.00/+2.25, 90o (spherical 

equivalent +2.75D) and left eye +0.75/+1.75, 100o (spherical equivalent +1.3D). The 

right eye is likely to be amblyopic. He failed the screening tests on HRR colour vision 

testing. Pupil examination was normal. He had a mild roving nystagmus and right 

esotropia. 

 

Slit lamp biomicroscopy identified normal anterior segments and clear lenses. 

Funduscopy demonstrated bilateral symmetrical widespread RPE atrophy with 

peripheral retinal white dots, bilateral macular atrophic changes, vascular attenuation 

and minimal retinal pigmentation (Figure 58 - A and B).  
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Visual acuity in his brother and parents was normal (-0.10 LogMAR in each eye), as 

were their retinal examinations. Blood samples were obtained from the proband, his 

brother and parents for molecular analysis. 

 

 

4.7.3 Fundus Autofluorescence Imaging 

Fundus autofluorescence imaging in both eyes demonstrated a ring of diffuse 

hyperautofluorescence in the macula centred on the fovea, which itself had a normal 

autofluorescent signal (Figure 58 - C and D).  

 

 

4.7.4 OCT Imaging 

sd-OCT imaging identified relative preservation of the inner retinal layers and the 

foveal contour. There was loss of the inner segment outer segment layer throughout 

the macula except for a small area at the fovea, which may represent preserved 

photoreceptors in this region. (Figure 58 - E and F, arrows demarcate the preserved 

photoreceptor inner segment outer segment layer at the fovea in right and left eye). 
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Figure 58 - Retinal imaging of Subject 47, RGR with EORD. A - Right eye fundus; B 
- Left eye fundus, both retinas have widespread RPE atrophy, peripheral retinal white 
dots (arrows), minimal retinal pigmentation, bilateral macular atrophy and arteriolar 
attenuation; C - Right eye sd-OCT image; D. Left eye sd-OCT image; OCT images 
demonstrate intact retinal lamination, the arrows demarcate the preserved 
photoreceptor inner segment outer segment layer at the fovea; E - Right eye fundus 
autofluorescence image; F - Left eye fundus autofluorescence image. 
Autofluorescence images demonstrate a diffuse area of hyperautofluorescence at the 
macula in each eye. 

 

 

4.7.5 Psychophysical Testing – Goldmann Visual Fields 

Goldmann visual fields, performed in the proband, were only reliably performed to 

the V4e and III4e targets in each eye. To the III4e target his visual fields were 

constricted to the central 20o although there were additional nasal and peripheral 
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islands of vision present. To the V4e target there was constriction of the superior 

visual field to between 35o to 10o, but the nasal and temporal fields were maintained 

to 60o and 80o respectively. However, there was a mid-peripheral ring scotoma 

bilaterally between 10o to 30o from fixation in the right eye and between 10o to 20o 

from fixation in the left eye to the V4e target (Figure 59).  

 

 

Figure 59 - Goldmann visual fields, Subject 47, RGR. A. Right eye; B. Left eye; V4e 
blue line, III4e stimulus – red line.  

 

 

4.7.6 Electrophysiological Testing 

ISCEV standard electrophysiological studies in the proband carried out at MEH 

demonstrated undetectable full field ERGs, in keeping with severe loss of generalised 

rod and cone function at the level of the photoreceptor. PERGs were poor and 

demonstrated residual function in both eyes, in keeping with bilateral macular 

dysfunction. 

 

 

 



273 

4.7.7 Molecular analysis 

DNA was obtained for molecular analysis from blood samples provided by the 

proband, his unaffected brother and unaffected parents. All subjects underwent direct 

Sanger sequencing of exon 2 of RGR (by ADB). The primer sequences and PCR 

conditions are listed in the Appendix (Appendix 7.2.2). The pathogenic variant that 

had been identified by the LCA Chip analysis was confirmed in the proband in the 

homozygous state as: c.196A>C, p.Ser66Arg. This variant has been previously 

reported in a family with RP [319]. Sequencing of the DNA in family members 

identified that this variant was present in the heterozygous state in each parent and 

that the unaffected brother was a wild type homozygote, confirming segregation of 

this variant with the disease in this family (Figure 60).  In silico analysis using SIFT 

predicts this mutation to be damaging (SIFT Score 0.04) and using PolyPhen2 to be 

probably damaging (Score 0.984, Sensitivity 0.74, Specificity 0.96). The variant was 

not identified in the exon variant server or in the 1000 genomes project.  

 

 

Figure 60 - RGR sequencing in Family 45. Proband: c.196A>C, p.Ser66Arg 
homozygous; unaffected parents are heterozygous (Het) carriers of the change and 
unaffected brother has the wild type alleles (WT). 
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4.7.8 Discussion 

Mutations in RGR are rare. Only two families have previously been reported with 

bialleic mutations in RGR and both had homozygous c.196A>C, p.Ser66Arg variants 

[292, 319]. Screening of RGR in panels of 331 and 91 RP subjects, respectively, 

identified no other pathogenic variants [320, 321]. The retinal phenotype in the 

original RGR family was of diffuse depigmentation of the RPE involving the macula, 

pigmentation in the retinal periphery and vascular attenuation. The subjects were 

examined in their 4th and 5th decades and had a visual acuity of 1.00 LogMAR or 

worse, severely constricted visual fields and widespread loss of photoreceptor 

function on electrophysiological testing. The individual described by Collin et al. had 

ARRP, diagnosed at age 6 years. He was Serbian in origin and in the 4th decade had 

perception of light vision, RPE atrophy involving the macula, peripheral retinal 

paving stone-like retinal changes, vascular attenuation and pale optic discs. In 

comparison to these two families, the subject described in the present study, who had 

symptom onset from the first few months of age, was examined in his second decade 

and had better preservation of his central vision, although he had severe constriction 

of his visual fields and severe generalised photoreceptor dysfunction on 

electrophysiological testing. The retina had widespread RPE atrophy with white dots 

in the periphery, atrophy at the macula involving the fovea and vascular attenuation. 

There was minimal peripheral pigmentation visible in one eye. His OCT demonstrated 

preservation of the photoreceptor layer at the fovea, but loss of this layer from the 

parafovea and remaining macula, and this could be correlated with the FAF images 

which showed an annulus of hypoautofluorescence corresponding to the loss of 

photoreceptors on OCT, as seen in subjects with RP [344].  

 



275 

RGR, retinal G protein-coupled receptor, is an intracellular membrane bound protein 

located in the RPE and Müller cells, that plays a role in the visual cycle [315]. 

However, the specific role of RGR in the visual cycle is not clear. It was initially 

proposed to function in an ‘alternative’ visual cycle, in which is there is regeneration 

of 11-cis-retinal from all-trans-retinal under photopic conditions [316]. This would 

ensure availability of 11-cis retinal under conditions of prolonged light exposure. 

Further studies have suggested that RGR also plays a role in the classical visual cycle 

and that its effects may be independent of light. [317]. It has also been identified that 

RGR mediates the mobilisation of all-trans retinyl esters in RPE cells in response to 

light, and in vitro studies have shown that in the dark, RGR inhibits LRAT and all-

trans-retinyl ester hydrolase, but in the light this inhibition is reversed [318]. Work is 

ongoing but the specific role for RGR remains to be elucidated. 

 

Although the p.Ser66Arg RGR mutation in this and other families has segregated in 

an autosomal recessive manner, an RGR mutation in an autosomal dominant RP 

family has been described, with a phenotype similar to choroidal sclerosis [319]. This 

mutation, a 1-bp insertion at codon Gly275, at the 3’ end of the coding region, creates 

a protein that is 21% longer than that encoded by wild type RGR. The homologous 

region in rhodopsin is a frequent target of mutations in ADRP. It is unclear why 

dominant and recessive mutations in RGR lead to disease, which have different 

phenotypes. However there are also other genes, for example NR2E3, BEST-1, and 

Rhodopsin where both recessive and dominant mutations cause variable retinal 

phenotypes [398-403]. This may be seen to be more common as next generation 

sequencing becomes more available in molecular diagnostic investigation. 
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4.8 Childhood Onset Autosomal 

Recessive Bestrophinopathy  

 

The clinical heterogeneity associated with mutations in the Bestrophin-1 (BEST1) 

gene has recently been expanded and these conditions are now considered under the 

umbrella term: ‘bestrophinopathies’. Autosomal dominant inheritance classically 

leads to the condition ‘Best disease’ (Best’s vitelliform macular dystrophy, BVMD) 

(OMIM 153700) [400], but other rare dominantly inherited conditions also occur, 

including Autosomal Dominant Vitreochorioretinopathy (ADVIRC) (OMIM 193220) 

[404] and retinitis pigmentosa (OMIM 613194) [405]. Recently, autosomal recessive 

inheritance, with bi-allelic mutations in BEST1 was reported in adults, a condition 

termed Autosomal Recessive Bestrophinopathy (ARB) (OMIM 611809) [401].  

 

Subjects recruited into this study presented in childhood with clinical features 

suggestive of a bestrophinopathy, and subsequent molecular analysis of BEST1 was 

performed. A paper has been published with some of the results of this cohort of 

subjects, and since then, further families have been identified [406]. This chapter 

describes the phenotype associated with childhood onset autosomal recessive 

bestrophinopathy (ARB) for those subjects that were phenotyped at MEH, and 

describes the results of the molecular analyses performed in these families.    
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4.8.1 Clinical History 

Six probands of six families were included in this sub-category of the ‘macular 

phenotype’ cohort of subjects in this study. Three of six (50%) probands presented 

with strabismus (Subjects 1, 3 and 5), 2 with reduced vision (Subjects 2 and 6) and 1 

with leucocoria that had been identified on a photograph (Subject 4) (Table 20). Age 

at presentation ranged between 2 years and 6 years. No subjects reported nyctalopia, 

photophobia or ocular pain, and nystagmus was not a feature. Subject 1 was reported 

to be amblyopic in the right eye but she also had macular scarring; Subject 5 

underwent strabismus surgery at age 13 years. General health was unremarkable in all 

subjects.  

 

Of the 11 parents that were available for clinical testing, all were asymptomatic. The 

male cousin of Subject 3 (Family 3) carried a diagnosis of Best disease. There was no 

other family history of ocular disease in the other families. All probands except 

Subject 5 were from non-consanguineous families. The parents of Subject 5 were 

second cousins. Families 1-5 were British Caucasian, and family 6 was Greek.       

 

 

4.8.2 Clinical Examination 

Four of six subjects were male. They were examined at different ages: Subject 1 at 7.7 

years; Subject 2 at 19.0 years; Subject 3 at 12.5 years; Subject 4 at 5.5 years; Subject 

5 at 17.8 years; and Subject 6 at 6.5 years (Table 20). The two subjects that were 

examined in early adulthood (Subjects 2 and 5) had been previously examined in 

childhood. Visual acuity at presentation was generally good, and ranged between 0.00 

LogMAR and 1.10 LogMAR. Subject 1 had amblyopia and macular scarring due to 
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sub-retinal neovascular membrane in the right eye; visual acuity in this eye was 1.10 

LogMAR. If this measurement is excluded, the worst visual acuity at presentation was 

in the left eye of Subject 2, at 0.48 LogMAR. No subjects showed deterioration of 

vision over time unless there was choroidal neovascularisation (Subject 1). As with 

adults with ARB, hypermetropia predominated; the spherical equivalent ranged 

between +1.50 dioptres and +8.00 dioptres. Anterior segments were normal in all 

subjects. 

 

The affected subjects all had bilateral symmetrical macular changes with 

characteristic sub-retinal yellow deposits that either had the appearance of ‘classical’ 

Best disease (Subject 1), or a variable multi-focal pattern (Subjects 2-6), or a 

combination of the two (Subject 6, left eye). In subject 1 the macular lesions extended 

to the inferior vascular arcades and contained, bilaterally, a para-foveal cicatricial 

component (Figure 61 - A and B). This subject developed a right sub-retinal 

neovascular membrane by age 7.5 years. The multi-focal yellow deposits were more 

subtle in subject 2, and appeared on a background of macular oedema and confluent 

yellow sub-retinal change located along and beyond the temporal vascular arcades 

(Figure 62 - A and B). In subjects 3 to 6 the multi-focal round yellow deposits were 

more prominent, surrounding an area of neurosensory detachment, with similar 

additional areas superior to the optic discs (Figure 63, Figure 64, Figure 65 and Figure 

66 - A and B). Subject 3 had a similar area inferior to the discs of approximately 1 

disc diameter. Subject 5, at age 17.8 years additionally had bilateral macular scarring 

which spared the foveae, and very fine yellow dots in the peripheral retina at the 

equators. In Subject 6 there was a foveal yellow lesion that resembled the vitelliform 
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lesion classically seen in Best disease – this was more prominent in the left macula 

than in the right.  All parents examined (11 of 12) had normal fundi. 

 

 

4.8.3 Fundus Autofluorescence Imaging 

Fundus autofluorescence imaging displayed marked hyperautofluorescence 

corresponding to the round yellow lesions seen on funduscopy (Figure 61, Figure 62, 

Figure 63, Figure 64, Figure 65 – images C and D, and Figure 66 - C). In Subject 1 

the hyperautofluorescence corresponded to the focal macular lesions, which extended 

to the inferior vascular arcades. In subject 2 the hyperautofluorescence was more 

diffuse but there were additional foci of hyperautofluorescence corresponding to the 

yellow lesions.  

 

 

4.8.4 OCT Imaging 

sd-OCT imaging demonstrated sub-retinal hyporeflective areas in the maculae of all 

subjects (Figure 61, Figure 62, Figure 63, Figure 64, Figure 65 – images E and Figure 

66 - D). Discrete hyperreflective dome-shaped sub-retinal elevations were present in 

all subjects except Subject 2. A prominent photoreceptor outer segment layer 

bordering the sub-retinal hyporeflectivity was seen in Subjects 1, 3, 4 and 6, but in the 

two oldest subjects this layer appeared to be disrupted and more irregular (Subjects 2 

and 5). The inner retinal layers were intact with normal laminar architecture in 

Subjects 1, 3, 4 and 5. Multiple intra-retinal hyporeflective areas were present in 

Subject 2; in Subject 6 there was one focal intra-retinal hyporeflective spot.  
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Table 20 - Clinical Features of Paediatric ARB subjects. F – Female; M – Male; VA – Visual Acuity; RE – Right Eye; LE – Left Eye; yr – year; 
DS – Dioptre Sphere; EOG – Electro-Oculogram; PERG – Pattern Electroretinogram; ffERG – full field Electroretinogram.   

a. ERGs performed using paediatric protocol and peri-orbital skin electrodes with non-Ganzfeld stimulation. 
 
 

Subject, 
Family 

(Gender) 

Presenting 
symptoms 

Presenting VA, 
LogMAR 
(RE; LE) 
(Age, yr) 

Latest VA, 
LogMAR 
(RE; LE) 
(Age, yr) 

Refraction 
(RE; 
LE) 

EOG light rise 
(RE; 
LE) 

PERG 
(RE; 
LE) 

(Age, yr) 

ffERG 
(RE; 
LE) 

(Age, yr) 
1, 1 (F) Strabismus 1.10; 0.10 (4.8) 1.18; 0.18 (7.7) +8.00 DS; 

+7.00/-1.00, 20 
Undetectable; 
Undetectable 

Normal; 
Subnormal (7.5) 

Normal; Normal  
(7.5) 

2, 2 (F) Reduced vision 0.18; 0.48 (6) 0.00; 0.30 (19) +2.50/-0.75, 170; 
+2.50/-0.75, 170 

Undetectable; 
Undetectable 

Normal (9.5), 
Subnormal (17.5);  
Normal (9.5), 
Subnormal (17.5) 

Normal (9.5), 
Subnormal (17.5);  
Normal (9.5), 
Subnormal (17.5) 

3, 3 (M) Strabismus 0.40; 0.00 (2) 0.4; 0.00 (12.5) +7.00/-0.25, 90; 
+5.00/-0.50, 90 

Undetectable; 
Undetectable 

Normal; Normal  
(12.5) 

Normal; Normal  
(12.5) 

4, 4 (M) Leucocoria  
(on photograph) 

0.12; 0.12 (2) 0.12; 0.08 (5.5) +5.25/-0.75, 10; 
+4.25/-0.75, 170 

Not tested; 
Not tested 

Normal; Normal  
(3.5)a 

Normal; Normal  
(3.5)a 

5, 5 (M) Strabismus 0.3; 0.2 (12) 0.2; 0.2 (17.8) +3.50/-3.00, 180; 
+2.50/-2.00, 15 

Undetectable; 
Undetectable 

Not tested;  
Not tested 

Normal; 
Normal 
(13) 

6, 6 (M) Reduced vision 0.1; 0.1 (6.5) 0.1; 0.1 (6.5) +3.00/+3.00, 100; 
+3.25/+2.50, 80 

Undetectable; 
Undetectable 

Normal;  
Normal  
(6.5) 

Normal; 
Normal  
(6.5) 
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Figure 61 - Subject 1 ARB. A – Right eye fundus; B – Left eye fundus; C – Right eye 
fundus autofluorescence image; D – Left eye fundus autofluorescence image; E – 
Right eye OCT image. 

 
 
 

 
 
Figure 62 - Subject 2 ARB. A – Right eye fundus; B – Left eye fundus; C – Right eye 
fundus autofluorescence image; D – Left eye fundus autofluorescence image; E – 
Right eye OCT image. 
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Figure 63 - Subject 3 ARB. A – Right eye fundus; B – Left eye fundus; C – Right eye 
fundus autofluorescence image; D – Left eye fundus autofluorescence image; E – 
Right eye OCT image. 

 
 
 

 
 
Figure 64 - Subject 4 ARB. A – Right eye fundus; B – Left eye fundus; C – Right eye 
fundus autofluorescence image; D – Left eye fundus autofluorescence image; E – 
Right eye OCT image. 
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Figure 65 - Subject 5 ARB. A – Right eye fundus; B – Left eye fundus; C – Right eye 
fundus autofluorescence image; D – Left eye fundus autofluorescence image; E – 
Right eye OCT image. 

 
 
 

 
 
Figure 66 - Subject 6 ARB. A – Right eye fundus; B – Left eye fundus; C – Left eye 
fundus autofluorescence image; D - Left eye OCT image. 
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4.8.5 Electrophysiological Studies 

Electrophysiological testing was undertaken in all subjects using ISCEV standards or 

using a modified paediatric protocol with peri-orbital skin recording electrodes. Flash 

or full-field ERGs (ffERGs), pattern ERGs (PERGs) and electro-oculograms (EOGs) 

were performed where possible. All available parents underwent EOG testing. 

 

There was no light rise in either eye on EOG in all subjects who underwent testing 

(Subjects 1-3, 5 and 6). Subject 4 was too young to perform the test reliably. These 

findings are in keeping with severe generalised RPE dysfunction. Both of the parents 

of Subjects 1, 2, 4 and 5 had normal EOG light rises. Only the mother of Subject 3 

was available and she also had a normal EOG light rise. The mother of Subject 6 had 

a normal EOG light rise but his father had a mildly subnormal light rise at 155% in 

both eyes (a light rise less than 150% is considered abnormally low and above 200% 

is considered to be normal; between 150% and 200% is considered to be borderline). 

The EOG result in the father of Subject 6 was considered not to be typical of a carrier 

of autosomal dominant Best disease, as in asymptomatic gene carriers there is 

minimal light rise, if any.  

 

Except for Subject 2, the ffERGs were normal in all probands (age 7.5 years, Subject 

1; 12.5 years, Subject 3; 4.0 years, Subject 4; 13.0 years, Subject 5; 6.5 years, Subject 

6). Longitudinal ffERG data were available for Subject 2. At age 9.5 years she had 

normal flash ERGs but at age 17.5 years full field ERG abnormalities were evident, 

consistent with mild generalised rod and cone dysfunction. 
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The pattern ERG (PERG), a measure of macular function, was mildly subnormal in 

the eye with a subretinal neovascular membrane, but normal in the fellow eye, of 

Subject 1. In subject 2, at age 9.5 years, the PERG was normal but at 17.5 years the 

P50 component of the PERG was reduced, consistent with macular involvement. In 

Subjects 3, 4 and 6 the PERGs were normal. PERGs were not performed in Subject 5.  

 

In summary, the electrophysiology findings in subjects 1-3 and 5-6 are of severe 

generalised dysfunction at the level of the RPE / photoreceptor interface. There is 

additional generalised photoreceptor dysfunction with macular involvement in the 

oldest subject, in whom serial electrophysiology demonstrates progression over an 8-

year period. An important finding is that all but one parent of the affected children 

had normal EOGs. 

 

 

4.8.6 Molecular Analysis 

Molecular analysis of BEST1 was performed by Dr Davidson, University of 

Manchester, in Families 1-4 and by ADB in Families 5 and 6. All ten coding exons 

and flanking intronic boundaries were analysed by direct sequencing from PCR 

amplicons for subjects 1,2,3,5 and 6. DNA was only available for the parents of 

Subject 4 and was screened for mutations in BEST1. Otherwise, only the relevant 

exons containing sequence alterations were sequenced in the parents (Table 21). PCR 

conditions and primer sequences are listed in the Appendix (Appendix 7.2.3). 

 

Subject 1 harboured one previously reported heterozygous missense mutation 

c.422G>A p.Arg141His [401, 407] [408] and one novel heterozygous nonsense 
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mutation, c.475C>T p.Gln159X, in BEST1. Her father carried the c.422G>A 

p.Arg141His variant in the heterozygous state and mother carried the c.475C>T 

p.Gln159X variant in the heterozygous state.  

 

Subject 2 harboured a novel missense mutation, c.533A>C p.His178Pro, and a novel 

duplication mutation, c.1038dupC p.Tyr347LeufsX54, in BEST1. Her father carried 

the c.533A>C p.His178Pro variant in the heterozygous state and mother carried the 

c.1038dupC p.Tyr347LeufsX54 variant in the heterozygous state. 

 

Subject 3 had one novel heterozygous missense mutation and one novel heterozygous 

nonsense mutation in BEST1: c.550C>T p.Pro184Ser and c.1066C>T p.Arg356X. His 

mother carried the c.550C>T p.Pro184Ser variant in the heterozygous state. His father 

was not available for testing. 

 

DNA was unavailable from subject 4. However, both of the unaffected parents of this 

subject carried the following previously reported heterozygous missense mutations in 

BEST1: c.584C>T, p.Ala195Val [409, 410] (mother) and c.974T>C, p.Met325Thr 

[401] (father). 

 

Subject 5 harboured the novel intronic homozygous mutation c.1740-3t>g, 

p.Asp581SerfsX85 in BEST1 (mutation identified by direct sequencing by ADB, 

protein change identified by RT-PCR by Dr Davidson). This was the only 

consanguineous family in this cohort. His unaffected parents and unaffected sister 

were each identified to carry this mutation in the heterozygous state (Figure 67). This 

mutation occurs 3 nucleotides before the first base of exon 11. In silico prediction 
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software (www.fruitfly.org) predicts that this mutation abolishes the acceptor splice 

site. It is likely that the transcript does not undergo nonsense mediated decay, but that 

it produces a non functional isoform of bestrophin-1 that may affect the function of 

the calcium channel (direct communication from Dr Davidson, UCL).  

 

 

 
Figure 67 – Electropherograms ARB Family 5. BEST1 c.1740-3t>g, 
p.Asp581SerfsX85.  

 

 

Subject 6 harboured the novel duplication c.171-172dupAC, p.Glu58GlufsX4  and the 

previously reported missense mutation c.653G>A, p.Arg218His [410-412] in BEST1 

(Figure 68). His mother harboured the c.171-172dupAC, p.Glu58GlufsX4 variant in 

the heterozygous state and father harboured the c.653G>A, p.Arg218His variant in 

the heterozygous state. The frame shifting mutation is likely to be a null variant as it 

occurs early in the protein. 
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Figure 68 - Electropherograms ARB Family 6. BEST1 c.171-172dupAC, 
p.Glu58GlufsX4  and c.653G>A, p.Arg218His. 

  
 
 
Screening of DNA from the unaffected parents of subjects 1, 2, 3, 5 and 6 

demonstrated that, in each instance, the BEST1 mutations identified in the children 

were present in trans, one being inherited from each parent on separate alleles (Table 

21). The absence of the putative novel pathogenic sequence alterations that had been 

found in families 1-4 in 210 control chromosomes was confirmed by either single 

stranded conformation polymorphism analysis or by direct sequencing (Dr Davidson). 

Five of 7 novel mutations identified in this study (c.475C>T p.Gln159X, c.533A>C 

p.His178Pro, c.550C>T p.Pro184Ser, c.1038dupC p.Tyr347LeufsX54 and c.1066C>T 

p.Arg356X) were absent from 210 ethnically matched control chromosomes. The 

novel variants c.1740-3t>g, p.Asp581SerfsX85 and c.171-172dupAC, 

p.Glu58GlufsX4, identified in subjects 5 and 6 respectively, were not identified on 

different variant databases including dbSNP (http://www.ncbi.nlm.nih.gov/), the 

exome variant server (http://evs.gs.washington.edu/EVS/), the 1000 genomes variant 

database (http://browser.1000genomes.org/index.html) or the Leiden Open Variation 

Database (http://www-huge.uni-regensburg.de/BEST1_database/).  

http://www.ncbi.nlm.nih.gov/
http://evs.gs.washington.edu/EVS/
http://browser.1000genomes.org/index.html
http://www-huge.uni-regensburg.de/BEST1_database/
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Table 21 - BEST1 molecular analysis in affected Subjects and unaffected parents in ARB families. WT – Wild Type; NA – Not Available. 
Compound heterozygous and homozygous mutations identified in the probands are indicated in bold. 

Family Subject BEST1 Allele 1 BEST1 Allele 2 
Nucleotide Amino Acid Type Ref. Nucleotide Amino Acid Type Ref. 

1 1 
Mother 
Father 

c.422G>A 
WT 
c.422G>A  

p.Arg141His 
WT 
p.Arg141His 

Missense [401, 
407, 
408, 
410] 

c.475C>T 
c.475C>T 
WT  

p.Gln159X 
p.Gln159X 
WT 

Nonsense Novel to 
this study 

2 2 
Mother 
Father 

c.533A>C 
WT  
c.533A>C 

p.His178Pro 
WT 
p.His178Pro 

Missense Novel 
to this 
study 

c.1038dupC 
c.1038dupC 
WT  

p.Tyr347LeufsX54 
p.Tyr347LeufsX54 
WT 

Duplication, 
Frame shift, 
Null 

Novel to 
this study 

3 3 
Mother 
Father 

c.550C>T 
c.550C>T 
NA  

p.Pro184Ser 
p.Pro184Ser 
NA 

Missense Novel 
to this 
study 

c.1066C>T  
WT 
NA 

p.Arg356X 
NA 
WT 

Nonsense Novel to 
this study 

4 4 
Mother 
Father 

NA 
c.584C>T 
WT 

NA 
p.Ala195Val 
WT 

Missense [408, 
410] 

NA 
WT 
c.974T>C 

NA 
WT 
p.Met325Thr 

Missense [401] 

5 5 
Mother 
Father 

c.1740-3t>g 
c.1740-3t>g 
WT  

p.Asp581SerfsX85 
p.Asp581SerfsX85 
WT 

Frame shift,  
Null 

Novel 
to this 
study 

c.1740-3t>g 
WT 
c.1740-3t>g 

p.Asp581SerfsX85 
WT 
p.Asp581SerfsX85 

Frame  
shift,  
Null 

Novel to 
this study 

6 6 
Mother 
Father 

c.171-172dupAC 
c.171-172dupAC 
WT 

p.Glu58GlufsX4 
p.Glu58GlufsX4 
WT 

Duplication, 
Frame shift, 
Null 

Novel 
to this 
study 

c.653G>A 
WT 
c.653G>A  

p.Arg218His 
WT 
p.Arg218His 

Missense [410-412] 
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4.8.7 Discussion 

At the time that this study was conducted, ARB had been a recently described 

disorder caused by bi-allelic, or compound heterozygous, mutations in BEST1 [401, 

405, 413]. Most of the reports were of individuals who were diagnosed in adulthood, 

and only 12 molecularly confirmed individuals from 7 families had been reported. An 

additional family reported with ‘atypical’ Best disease with compound heterozygous 

mutations was also likely to have ARB [407]. The phenotype associated with ARB 

had predominantly been described in adults who had central visual loss, 

hypermetropia, irregularity of the RPE and deep scattered hyperautofluorescent sub-

retinal deposits [401]. The BEST1 gene was initially mapped to chromosome 11q13 in 

1992 [414, 415] and was later characterised in 1998 [400]. BEST1 encodes a 585 

amino acid protein product, bestrophin-1, which is thought to function as a calcium 

activated chloride channel in the basolateral plasma membrane of RPE cells [405, 

416]. An additional role of bestrophin-1 as a regulator of voltage dependent calcium 

channels has been suggested [417]. The reduced/absent EOG light rise in conditions 

caused by mutations in BEST1, which are grouped under the umbrella term 

‘bestrophinopathies’, is believed to be generated by a reduced influx of chloride ions 

into the RPE [417-420]. 

 

In this study the paediatric phenotype of ARB was sought in order to expand 

understanding of this condition in a young age group. In all affected subjects 

compound heterozygous mutations in BEST1 were identified, with symptoms or signs 

being present by 6 years of age. Hypermetropia was frequent, in keeping with other 

disorders associated with mutations in BEST1 [401, 404]. Overall, visual loss was 

mild and there was little change in the visual acuity unless choroidal 
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neovascularisation developed. Sub-retinal yellow deposits with sub-retinal fluid were 

evident in the posterior pole of all subjects. Similar changes were reported in adults 

with ARB [401, 407, 413], but the fundus appearances were more variable in the 

present paediatric cohort, ranging from subtle multi-focal deposits to a more 

‘classical’ Best disease appearance. In addition to the macular deposits, similar 

lesions could be seen to extend beyond the vascular arcades or to localise to the peri-

papillary regions, predominantly superior to the optic discs. The deposits were highly 

autofluorescent and appeared as discrete hyper-reflective dome-shaped sub-retinal 

elevations. It is unclear whether these elevations lie above, below or within the RPE. 

Similar appearances were described in a previous report and were thought to localise 

to within the RPE [413]. In multi-focal vitelliform macular dystrophy [421] and Best 

disease [76], similar lesions have been proposed to lie at the level of the 

RPE/photoreceptor complex.    

 

Sd-OCT imaging in the younger subjects (5 subjects, age range 5.5 – 17.8 years) 

suggested that the inner retinal layers remain intact, but with age, intra-retinal 

hyporeflective areas, presumed to be intra-retinal cysts, may develop (demonstrated 

by Subject 2, age 19 years). Comparison of the OCT imaging in this older subject 

with time domain OCT images obtained in other adult series’ suggests that in ARB, 

intra-retinal cystic changes develop with age [401, 407]. The neurosensory retina was 

detached in all affected subjects, with sub-retinal hyporeflective areas that are 

presumed to represent sub-retinal fluid. The photoreceptor layer appeared more 

prominent than normal, giving the appearance of extensions into the sub-retinal space. 

These extensions may represent an unmasking of the normal tight inter-digitations 

that exist between the photoreceptor outer segments and the RPE apical microvilli 
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[422]. They may also represent prolongations of the photoreceptor outer segments that 

do not become phagocytosed by the RPE due to the neurosensory detachment. 

Thickening and elongation of the photoreceptor outer segments with small filament-

like bridges connecting the outer segment layer and the RPE, proposed to represent 

unshedded outer segment discs that in turn may lead to outer segment elongation, 

have been reported in ARB [413]. Such bridges were not identified in the present 

study. 

 

Electrophysiological investigation is paramount to the diagnosis of ARB. The absent 

EOG light rise suggests that the defect localises to the RPE. However, EOG testing is 

difficult to perform in young children and may not be possible. In dominant BEST1 

disease the EOG is abnormal in heterozygotes. Thus, investigation of other family 

members may help distinguish dominant from recessive disease, allowing clinicians 

to provide appropriate genetic counselling to the family. If both parents have a normal 

EOG light rise, the disease is almost certainly recessive in inheritance.  

 

In the present study the EOG light rise was undetectable in all subjects that were old 

enough to comply with the test. In the younger subjects, PERGs were normal in all 

but one eye of one child (subject 1, age 7.5 years), who clinically had a sub-retinal 

neovascular membrane and strabismus that could account for the subnormal PERG. In 

the oldest subject the PERG became subnormal at an older age (subject 2, at age 17.5 

years), having been normal at a younger age, suggesting progressive macular 

dysfunction. All subjects tested in childhood had normal flash or full-field ERGs (age 

3.5 to 13 years).  
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Of the previously described cases in the literature, all adults were identified to have 

abnormal full-field ERGs with mild to severely reduced PERGs, in keeping with 

generalised retinal dysfunction with macular involvement [401]. Of the data published 

in children, full-field ERGs were reported to show reduced rod and cone b-waves, and 

multi-focal ERG responses were reduced and delayed within the central 10o [401] 

[413]. The limited longitudinal data available suggest that there is deterioration of the 

full-field ERG with time [401].  

 

Molecular analysis of the 6 ARB families in this study, performed by Dr Davidson 

and ADB, identified 5 families to harbour compound heterozygous mutations and 1 

consanguineous family to harbour a homozygous mutation in BEST1. Of the seven 

novel mutations identified, 2 were missense mutations (c.553A>C p.His178Pro and 

c.550C>T p.Pro184Ser), 2 were nonsense mutations (c.475C>T p.Gln159X and 

c.1066C>T p.Arg356X), 2 were duplications that lead to frameshifts and premature 

stop codons that are presumed to produce transcripts that are degraded by nonsense 

mediated decay (c.1038dupC p.Tyr347LeufsX54 and c.171-172dupAC, 

p.Glu58GlufsX4), and one was an intronic variant occurring 3 bases before the start 

of exon 11, causing a frame shift that produces a non-functioning isoform of 

bestrophin-1 (c.1740-3t>g, p.Asp581SerfsX85). The novel missense mutations 

identified lie in highly conserved regions of the protein product, suggesting that these 

regions have an important functional role. 

 

The original paper describing ARB proposed that the phenotype results from null 

BEST1 mutations, with affected individuals having either null or missense mutations 

that are non-functional [401]. Three subjects in the present cohort had compound 
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heterozygous null mutations (Subjects 2, 5 and 6), 2 had a combination of nonsense 

and missense mutations (Subjects 1 and 3) and 1 had two missense mutations (Subject 

4). Three variants were present that have been described in both autosomal dominant 

Best disease and ARB (p.Arg141His, p.Ala195Val and p.Arg218His) [407, 408, 410, 

412]. However, an affected subject reported with the p.Arg141His mutation had a 

further nonsense mutation in trans and it is likely that they have ARB [407]. 

Moreover, a p.Arg141His / wild type heterozygous parent of a subject with ARB 

reported by Burgess et al. had a normal examination and electrophysiology [401] and 

the p.Arg141His heterozygote reported by Schatz et al. also had a normal EOG light 

rise (although the ERG was reported to be reduced at age 59 years) [407], suggesting 

that the variants in these two reports are more likely to be recessive mutations. There 

have been further reports of the bestrophin-1 codon 141 being affected in ARB 

indicating that the p.Arg141His mutation is predominantly an ARB mutation and that 

it is likely to be the most frequently identified mutation associated with ARB to date 

[401, 406, 407, 423-427]. The probands with p.Ala195Val reported by Lotery et al. 

and Kramer et al. have no family or clinical data described in either study, leaving 

open the possibility that these, too, had ARB, in which a second allele was 

undiscovered [408, 410].  

 

Interestingly, family 6 in the present cohort harboured compound heterozygous 

mutations, one of which has been reported in a number of families with [autosomal 

dominant] Best disease (c.653G>A, p.Arg218His) [411] [410, 412, 428]. In fact, 

codon 218 has been implicated in a number of unrelated families with Best disease, 

and the Arginine that normally resides in this position has been mutated to Histidine 

and Cysteine in different families [410, 412]. This residue is highly conserved and 
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codon 218 is a key residue in the bestrophin-1 protein that may represent a mutational 

‘hotspot’ in Best disease. In a number of French studies this codon was the target of 

various missense mutations in unrelated families, leading the authors to conclude that 

this may correspond to a founder effect in French and other western European 

families [411, 412]. The clinical data in reports of mutations affecting the 218 codon 

are variable, and the cases included are both isolated and familial [410, 412]. In one 

family with a p.Arg218His mutation, the phenotype was described to be highly 

heterogeneous within the family, with the proband being severely affected and her 

father having very mild disease [412]. Although this may represent variable 

expressivity within this family, it is possible that this family had recessive disease in 

which the second allele was not found in the proband and that the father was an 

unaffected heterozygous carrier [411].  

 

Alternatively, the mutations identified in family 6 in the present study may indicate 

both dominant and recessive inheritance within the same family. Aside from in the 

proband, there is no clinical history of BEST1 related disease in this family. However, 

his father, who carried the p.Arg218His mutation in the heterozygous state had 

normal fundi and very mild reduction in the EOG. It can be postulated that either he 

has a mild phenotype of dominant disease (detectable only on EOG testing), or that he 

is phenotypically normal, and that the variant he carries is truly recessive. If this 

mutation behaves in a dominant manner, then when inherited along with the variant 

inherited from the mother, the combination may lead to a mixed inheritance pattern. If 

this mutation behaves in a recessive manner then the affected child has truly recessive 

disease and the clinical picture in the child is due to bi-allelic mutations. The correct 
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inheritance pattern is important to distinguish in this family, as it will help towards 

genetic counselling if other offspring are planned. 

 

Around the time that some of the data from this study were published, a number of 

other reports of ARB families were also published, with descriptions made of the 

phenotype in both adults and children [406, 423, 424, 426, 429-435]. There is general 

agreement with the present study regarding the clinical features and 

electrophysiological findings in ARB. The phenotype is milder in children unless sub-

retinal neovascularisation develops, and the full field ERG remains normal until late 

childhood / early adulthood, when the flicker (cone) ERG and PERG (macular) first 

become reduced and delayed, with eventual full field rod and cone dysfunction 

developing in adulthood [423, 426, 429, 430, 433, 434]. In agreement with the 

findings of the present study, the deterioration in the ERG appears to occur when 

intra-retinal cysts or neovascularisation develop [401, 413, 426, 430, 433]. More 

recently, further families have been described and the phenotype widely recognised to 

be associated with choroidal neovascularisation and angle closure glaucoma, that may 

be resistant to conventional treatment with laser iridotomy due to a plateau iris 

configuration and peripheral anterior synechiae [425, 427, 428, 436-441]. 

 

There is currently no treatment available for the bestrophinopathies, although 

complications such as choroidal neovascularisation and angle closure glaucoma do 

benefit from therapeutic intervention. As with all conditions affecting young children, 

management of amblyopia is important. There have been recent reports of success 

with anti-vascular endothelial growth factor (anti-VEGF) treatment for individuals 

with choroidal neovascularisation in ARB, with improvement of the visual acuity 
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(especially if combined with amblyopia therapy) [426, 427, 437]. Other options for 

management of intra-retinal fluid include carbonic anhydrase inhibitors, although 

there has been a recent report of reduction of the dose of this treatment leading to sub-

acute angle closure [425, 439]. The management of angle closure in ARB may be 

difficult due to the configuration of the iris; the options include laser peripheral 

iridotomy and lens extraction. 

 

A naturally occurring dog model of ARB exists (a disorder termed canine multi-focal 

retinopathy, cmr) [442]. Multi-focal areas of retinal elevation containing sub-retinal 

serous or pink-tan fluid occur, which are more clearly visible superiorly in the canine 

retina. In the more densely pigmented inferior canine retina the lesions are fewer and 

appear white, lying adjacent to the inferior retinal vessels. Histopathologic 

examination of cmr revealed autofluorescent cytoplasmic granules within 

hypertrophic RPE cells. As there are phenotypic similarities with humans, the study of 

cmr may help improve understanding of the disease mechanism and serve as a useful 

model for the future testing of novel therapies, including gene replacement therapy. 

Most recently, advances have been made in the recombinant adeno-associated virus 

based gene augmentation therapy of BEST1 in dogs, which may pave the way for 

future human therapies for bestrophinopathies [443]. 

 

To conclude, the childhood phenotype of ARB has been determined in this study, 

demonstrating that the clinical features, results of electrophysiological studies and 

retinal imaging distinguish ARB from Best disease. The normal ERG in childhood 

suggests that there may be a window of opportunity for gene replacement therapy or 

other therapeutic intervention at an early age. 
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4.9 Benign Yellow Dot Dystrophy 

 

A subset of individuals in Cohort 2 had been identified with an unusual phenotype 

that affected the macula, which was associated with good visual function. This subset 

was comprised of 18 individuals (Subjects 7 – 24 from Cohort 2) from 14 families 

(Families 7 – 20 from Cohort 2). Their phenotypes were ascertained and the results 

reported in this chapter. Molecular analysis is outstanding on this group of patients. 

The condition has been termed ‘Benign Yellow Dot Dystrophy’. 

 

 

4.9.1 Clinical History 

Of the 18 subjects identified with this phenotype, 16 were asymptomatic (88.9% of 

subjects with yellow dot dystrophy; 66.7% of subjects of cohort 2). Subjects were 

either referred from a community optometrist (13/18), from another ophthalmologist 

(1/18) or following screening due to a positive family history (4/18). Reduced vision 

was the presenting complaint in the two symptomatic subjects (Subjects 7 and 14). No 

cause was found for the reduced vision in Subject 7, who presented at age 16 years, 

and in whom multiple electrophysiological studies over a number of years were 

normal. A diagnosis of ‘functional’ visual loss was subsequently made. In Subject 14, 

who presented to another ophthalmologist at age 4 years but whose macular yellow 

dots were not apparent until age 6 years, the reduced vision was attributed to bilateral 

ametropic amblyopia due to hypermetropic astigmatism; there was also a partially 

accommodative esotropia. His vision eventually improved with spectacle wear and 

occlusion therapy. 
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Refractive error (identified in 5 subjects) was the predominant feature in the 7 

subjects who had any past ocular history (Table 22). One of these 7 subjects had been 

treated for strabismus and 3 of 7 had been treated for amblyopia. One subject was 

diagnosed with functional visual loss (Subject 7). One subject had bilateral optic 

neuropathy of unknown cause 4½ years after presentation with the maculopathy; the 

optic neuropathy resolved spontaneously (Subject 16). General health was good in all, 

except for subject 24, who was taking antidepressants. 

 

Of the 14 families identified in this sub-group, 2 families had multiple affected 

members (Family 7 and Family 8) and 12 families had only one affected member. 

Family 7 had 4 affected members in 2 successive generations. Family 8 had 2 affected 

members in 2 successive generations. The ethnic distribution was as follows: 12 

families were British Caucasian; 1 was West African (Subject 21, Family 17); and 1 

was South East Asian (Subject 24, Family 20). There was no history of consanguinity 

in any family.  

 

 

4.9.2 Clinical Examination 

Five subjects in the yellow dot dystrophy sub-group of cohort 2 were male, 13 were 

female. The age at presentation ranged between 5 years and 45 years, median 14.5 

years.  Visual acuity at presentation was 0.00 LogMAR or better in both eyes in 13 of 

18 subjects (72.2% of yellow dot dystrophy subjects) (Table 22). Subject 7, with 

functional visual loss, had a presenting visual acuity of 0.78 LogMAR in either eye at 

age 15 years. Pattern appearance VEPs were consistent with normal visual acuity. 

Amblyopia affected subjects 14 (bilateral), 18 (unilateral right eye) and 19 (unilateral 
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left eye), whose acuities are listed (Table 22). Colour vision was normal in 12 of 13 

subjects examined using Ishihara or HRR colour plates. Only in subject 7 was the 

colour vision abnormal - she failed the HRR screening plates II and III at age 16 

years. Anterior segments and ocular mediae were normal in all patients.  

 

Characteristic bilateral macular changes consisting of yellow dots at the level of the 

retinal pigment epithelium, concentrated around the fovea, were present in all subjects 

(Table 23). These were symmetrical between each eye and resembled drusen-like 

deposits. In the majority of subjects these were fine discrete lesions (Figure 69, Figure 

70 and Figure 71), however, in 7 subjects some of the dots were confluent (subjects 7, 

9, 10, 12, 13, 19, 22) (Figure 69 and Figure 72). In 11 subjects the yellow dots were 

distributed evenly around the fovea (Figure 70); in 7 subjects they were concentrated 

in the nasal parafoveal region (Figure 71). In subjects 13 and 15 dots were visible 

outside the temporal vascular arcades in the right eye. These were minimal in number. 

In all but 1 subject (subject 14) for whom detailed images were available, a yellow 

crescent was visible to varying degrees around the optic disc, which was otherwise 

normal in all (Table 23). In some cases this took on the appearance of a ‘yellow halo’ 

around the disc; in others the change was more consistent with peri-papillary atrophy. 

The retinal periphery and vasculature were otherwise normal in all subjects. In all 

parents of the sporadic cases that were examined, funduscopy was normal. 
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Subject 
(Gender) 

Family Ethnicity Relation to 
Proband 

Age at 
presentation 

(years) 

Presenting 
symptoms 

Family 
history 

Visual Acuity 
(LogMAR) 

RE, LE 
(Age, years) 

Past Ocular History 

7 (F) 7 British Caucasian Proband 15 Reduced vision Dominant 0.78, 0.78 (15) Functional visual loss 
8 (F) 7 British Caucasian Sister 18 Asymptomatic1 Dominant 0.00, 0.00 (18) Nil 
9 (F) 7 British Caucasian Mother 45 Asymptomatic1 Dominant 0.18, 0.18 (45) Nil 

10 (M) 7 British Caucasian Maternal first cousin 10 Asymptomatic1 Dominant -0.08, -0.08 (10) Nil 
11 (F) 8 British Caucasian Proband 22 Asymptomatic2 Dominant -0.08, -0.08 (22) Myopic astigmatism 
12 (F) 8 British Caucasian Mother Unknown Asymptomatic1 Dominant 0.00, 0.00 Nil 
13 (F) 9 British Caucasian Proband 8 Asymptomatic2 Sporadic 0.00, 0.00 (8) Nil 
14 (M) 10 British Caucasian Proband 6 Reduced vision, 

strabismus 
Sporadic 0.18, 0.26 (14) Hypermetropic astigmatism, 

Partially accommodative ET, 
bilateral amblyopia 

15 (F) 11 British Caucasian Proband 10 Asymptomatic2 Sporadic 0.00, 0.00 (10) Nil 
16 (F) 12 British Caucasian Proband 5 Asymptomatic2 Sporadic 0.00, 0.00 (10) Bilateral optic neuropathy 
17 (F) 13 British Caucasian Proband 10 Asymptomatic2 Sporadic 0.00, 0.00 (10) Nil 
18 (F) 14 British Caucasian Proband 12 Asymptomatic2 Sporadic 0.40, 0.00 (14) Hypermetropia, RE amblyopia 
19 (M) 15 British Caucasian Proband 14 Asymptomatic2 Sporadic 0.08, 0.14 (14) Hypermetropia, LE amblyopia 
20 (F) 16 British Caucasian Proband 15 Asymptomatic2 Sporadic 0.00, 0.00 (15) Hypermetropia 
21 (M) 17 West African Proband 15 Asymptomatic2 Sporadic 0.00, 0.00 (15) Nil 
22 (M) 18 British Caucasian Proband 28 Asymptomatic2 Sporadic 0.00, 0.00 (29) Nil 
23 (F) 19 British Caucasian Proband 28 Asymptomatic2 Sporadic -0.08, -0.08 (29) Nil 
24 (F) 20 South East Asian Proband 29 Asymptomatic2 Sporadic 0.00, 0.00 (29) Nil 

 
Table 22 - Clinical features of subjects with Benign Yellow Dot Dystrophy. M – Male; F – Female, RE – right eye; LE – left eye; ET – 
Esotropia. 1Family history; 2Referred from the Community.  

 
 
 
 



302 

 
 
 

 
Subject 

 

 
Family 

 
Appearance of yellow dots at the macula 

 
Autofluorescence 

7 7 Discrete, drusen-like, some confluent Even distribution HyperAF dots Crescent not visible 
8 7 Discrete, fine, drusen-like Even distribution HyperAF dots HypoAF crescent 
9 7 Discrete, drusen-like, large Even distribution HyperAF dots Crescent not visible 
10 7 Discrete, drusen-like, some confluent Even distribution HyperAF dots HyperAF crescent 
11 8 Discrete, fine, drusen-like Nasal parafovea N/A N/A 
12 8 Discrete, drusen-like, some confluent Nasal parafovea N/A N/A 
13 9 Discrete, drusen-like, some confluent Even, some outside macula HyperAF dots Crescent not visible 
14 10 Discrete, fine, drusen-like Even distribution HyperAF dots Crescent not visible 
15 11 Discrete, fine, drusen-like Even, some outside macula HyperAF dots HypoAF crescent 
16 12 Discrete, fine, drusen-like Even distribution N/A N/A 
17 13 Discrete, fine, drusen-like Nasal parafovea HyperAF dots HyperAF crescent 
18 14 Discrete, fine, drusen-like Nasal parafovea HyperAF dots HyperAF crescent 
19 15 Discrete, drusen-like, many confluent Nasal parafovea HyperAF dots HyperAF crescent 
20 16 Discrete, fine, drusen-like Even distribution HyperAF dots Crescent not visible 
21 17 Discrete, fine, drusen-like Nasal parafovea HyperAF dots HypoAF crescent 
22 18 Discrete, drusen-like, some confluent Nasal parafovea HyperAF dots HyperAF crescent 
23 19 Discrete, fine, drusen-like Even distribution N/A N/A 
24 20 Discrete, fine, drusen-like Even distribution N/A N/A 

 
Table 23 - Features of yellow dots at the fundus in Benign Yellow Dot Dystrophy Subjects. 

HyperAF – hyperautofluorescent; HypoAF – hypoautofluorescent; N/A – not available.
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Figure 69 - Subject 10, Family benign yellow dot dystrophy. A – right eye fundus; B 
– left eye fundus. Discrete, fine drusen-like yellow dots are distributed evenly at each 
fovea. Some are confluent. Arrows indicate the location of the dots. A faint yellow 
crescent is seen around the optic discs in both eyes. 
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Figure 70 - Subject 15, Sporadic benign yellow dot dystrophy. A – right eye fundus; 
B – left eye fundus. Discrete, fine drusen-like yellow dots are distributed evenly at 
each fovea. Arrows indicate the location of the dots. Some dots are evident outside the 
macula area in the right eye. A faint yellow crescent is seen around the optic discs in 
both eyes. 
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Figure 71 - Subject 17, Sporadic benign yellow dot dystrophy. A – right eye fundus; 
B – left eye fundus. Discrete fine drusen-like yellow dots are concentrated in the nasal 
parafoveal regions of both eyes. Arrows indicate the location of the dots. A faint 
yellow crescent is seen around the optic discs temporally in both eyes. 
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Figure 72 - Subject 19, Sporadic benign yellow dot dystrophy. A – right eye fundus; 
B – left eye fundus. The discrete drusen-like yellow dots are more confluent and are 
concentrated in the nasal parafoveal region in both eyes. Arrows indicate the location 
of the dots. A faint yellow crescent is seen around the optic discs resembling peri-
papillary atrophy in both eyes. 
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4.9.3 Fundus Autofluorescence Imaging 

Fundus autofluorescence imaging, available for 13 of 18 subjects, revealed foci of 

hyperautofluorescence corresponding to the yellow dots, on an otherwise normal 

background autofluorescence signal in all (Figure 73). In 5 of these there was a 

hyperautofluorescent signal corresponding with the crescent seen around the optic 

disc (Subjects 10, 17, 18, 19 and 22). In 3 subjects this crescent displayed a 

hypoautofluorescent signal (Subjects 8, 15 and 22). In no subjects did the fundus 

autofluorescence imaging identify further yellow dots than were visible on 

funduscopy. 

 

 
4.9.4 OCT Imaging 

Sd-OCT imaging performed in 7 of 18 subjects identified no subretinal hyper- or 

hypo-reflectivity, and the inner retinal layers remained intact. OCT imaging in 3 

subjects was normal (Subjects 13, 15 and 18). In 3 subjects a slight irregularity of the 

inner segment / outer segment junction was seen (Subjects 10, 14 and 17), which 

corresponded with the locations of the yellow dots, as observed on the infra-red 

reflectance image taken during OCT image acquisition (Figure 74). In 1 subject 

(Subject 19) only a slight irregularity of the RPE layer was seen (Figure 74).  
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Figure 73 - Fundus autofluorescence images of benign yellow dot dystrophy Subjects. 
A – subject 10; B – Subject 15; C – Subject 17; D – Subject 19. In all subjects the 
yellow dots are hyperautofluorescent. In subjects 10, 17 and 19 there is 
hyperautofluorescence corresponding to the yellow crescent at the optic disc (A, C 
and D) and in subject 15 there is hypoautofluorescence corresponding to the yellow 
crescent (B). 
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Figure 74 - OCT of Subjects with benign yellow dot dystrophy. A – Subject 15, 
normal OCT; B – subject 17 – slight irregularity of the inner segment outer segment 
line, indicated by the arrow; C – subject 19 – slight irregularity of the RPE layer, 
indicated by the arrow. 
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4.9.5 Electrophysiological Studies 

Electroretinography was performed in 13 subjects. In 12, the PERG and full field 

ERGs were normal (age range 6-45 years). In subject 19 the PERG and cone ERGs 

were slightly delayed and of reduced amplitude. This was attributed to his 

hypermetropic refractive error. Of the 2 subjects with subjectively reduced vision 

(subjects 7 and 14), the PERGs and ffERGs, were normal. In subject 14 the pattern 

reversal VEP was slightly reduced in the left eye, consistent with strabismus. EOGs 

performed in 4 of 5 subjects demonstrated a normal light rise. In subject 19 the EOG 

was mildly subnormal in both eyes, at age 18 years. 

 

 

4.9.6 Discussion 

The subjects in this group were identified to have a previously unreported macular 

phenotype that is associated with excellent visual function. The condition is 

commonly sporadic, although it may also segregate in an autosomal dominant 

manner. In the majority of subjects, identification is an incidental finding or 

discovered after examination of family members of affected individuals. 

 

Macular dystrophies may occur in isolation or in association with a variety of 

systemic abnormalities. Considerable clinical and genetic heterogeneity exists for this 

group of disorders and all of the Mendelian inheritance patterns have been described, 

as well as mitochondrial inheritance [444, 445]. A rare sub-group of disorders 

presenting in infancy have also been described, termed ‘developmental macular 

dystrophies’, which may be further sub-classified to include a condition known as 

North Carolina Macular dystrophy (NCMD) [446]. 
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There are a number of conditions with systemic associations that have been identified 

with drusen-like deposits at the macula. These include: membranoproliferative 

glomerulonephritis type 2, in which there are electron dense deposits in glomerular 

basement membranes and in Bruch’s membrane, with associated renal failure [447]; 

Alport’s syndrome, a predominantly X-linked condition associated with renal failure, 

deafness, anterior lenticonus and macular flecks [448]; Sjögren-Larsson syndrome, 

associated with a ‘crystalline’ maculopathy, spastic diplegia / tetraplegia and 

congenital icthyosis [449]; and hereditary oxalosis due to multi-system calcium 

oxalate crystal deposition including the retina [450]. However, none of the subjects in 

this study had any such systemic associations. Purely ocular conditions with drusen-

like deposits include: autosomal dominant drusen [451]; Bietti’s crystalline 

maculopathy, characterised by crystalline deposits at the macula with areas of 

geographic atrophy; and Sorsby dystrophy which has autosomal dominant inheritance 

and marked loss of vision with extensive macular drusen and choroidal 

neovascularisation [452]. However the macular appearances described in this study 

appear quite different to these.    

 

The phenotype associated with benign yellow dot dystrophy shares some similarities 

with the mildest cases of NCMD. This autosomal dominant condition, with variable 

expressivity, was first described by Lefler et al, who reported a single family that 

settled in North Carolina in the early 19th century, with amino aciduria and a macular 

dystrophy [453]. A number of families with NCMD without systemic associations 

have subsequently been reported and the phenotype extensively documented [454-

462]. The macular appearances associated with NCMD demonstrate both inter- and 
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intra-familial variability, and have been categorised into 3 grades: Grade 1 - 

bilaterally symmetrical central macular yellow ‘specks’ less than 50 microns in 

diameter, associated with good visual acuity of 0.00 to 0.18 logMAR; Grade 2 – 

bilaterally symmetrical confluent yellow specks at the central macula with vision of 

0.10 to 0.48 logMAR; Grade 3 – bilaterally symmetrical large colobomatous central 

macular lesions with visual acuity of 0.30 to 1.00 logMAR [67, 454, 463]. Grade 1 

NCMD patients bear the most resemblance to the benign yellow dot dystrophy 

subjects reported in this study. However, the majority of the subjects in this study 

were sporadic. Those that were familial displayed none of the other clinical 

characteristics associated with NCMD.  

 

The phenotype described here is mild and associated with excellent visual function.  

Fine hyperautofluorescent yellow dots, similar to drusen, are visible at the macula, 

which rarely extend beyond this area, unlike in NCMD [462]. The dots are distributed 

in the parafoveal areas, and may concentrate in the nasal parafovea. The underlying 

RPE and vasculature appear normal. In all subjects the optic disc appearance was 

within normal limits. However, in 96% of patients a yellow ‘halo’ surrounding the 

optic disc was observed, which in some resembled peripapillary atrophy, and which 

was associated with both hyper- and hypoautofluorescence on fundus 

autofluorescence imaging. Although myopia is associated with peripapillary atrophy, 

it was not a feature identified in these subjects. OCT imaging showed a subtle 

irregularity of the IS/OS junction. The inner retinal layers were normal, no drusen 

were seen and no serous detachments between the RPE and Bruch’s membrane were 

visible. Electrophysiologial studies of macular and full field retinal function were 

normal. 
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Through linkage analysis two loci have been identified that segregate with NCMD. 

Chromosome 6q was the first region identified to harbour the MCDR1 locus, the first 

area to be mapped to NCMD families [144, 464, 465]. Further refinement has 

identified a 1.86 million bp region between D6S1716 to D6S1671 [459] and a second 

locus, MCDR3, has been identified on chromosome 5p in subjects with a phenotype 

typical of NCMD [378, 466]. Despite a vast amount of work performed into this 

condition, the causative gene(s) remains to be identified.  

 

It is possible that benign yellow dot dystrophy represents a variation of the phenotypic 

spectrum that has been described in NCMD. However, due to the sporadic nature of 

the majority of patients that have been identified and the fact that in the familial cases 

there are no cases with an atrophic macular phenotype, it is considered to be a 

separate clinical entity. Although two families identified in this study suggested an 

autosomal dominant mode of inheritance to their ocular condition, their phenotypes 

are not typical of NCMD. The precise aetiology for the condition described in this 

study remains to be determined. However, subjects can be reassured of the excellent 

visual function that is associated with this phenotype. 
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5.0 Discussion and Conclusions 
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5.1 The Childhood Onset Retinal 

Dystrophy Study 

 

The aims and objectives of this study were to recruit subjects with childhood onset 

retinal dystrophies to an on going investigation into the molecular genetic basis and 

phenotypic characteristics of inherited retinal disease in childhood. This study 

specifically aimed to characterise the phenotypes associated with variants in specific 

genes identified in these cohorts and of those previously recruited into the study, and 

to characterise any novel phenotypes among the subjects included in these cohorts. 

The overall aim was to undertake genotype – phenotype studies in order to enable 

more accurate information for prognostic and genetic counselling, that may, in turn, 

identify potential candidates who may be amenable to future therapeutic options.  

 

Over a 3-year period, I recruited 201 subjects from 186 families into the Study. 

Subjects were categorised into two cohorts: (i) Cohort 1 - generalised retinal 

dystrophies that encompassed Leber congenital amaurosis (LCA), Early Onset Retinal 

Dystrophy (EORD), rod-cone dystrophies, cone-rod dystrophies and cone 

dystrophies, and (ii) Cohort 2 - childhood onset macular phenotypes that included 

Autosomal Recessive Bestrophinopathy (ARB) and benign Yellow Dot Dystrophy. 

177 subjects from 166 families were recruited into cohort 1 and 24 subjects from 20 

families into cohort 2. Access was also available to a database of patients that had 

been previously recruited into the study in order to re-investigate them if their 

molecular cause was identified. A number of subjects were recalled for phenotypic 
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studies based upon their molecular diagnosis, and this project succeeded in its aim of 

exploring, expanding and refining our understanding of the phenotypes associated 

with variants in specific genes. 

 

The genetic heterogeneity that is associated with LCA and EORD was evident from 

the phenotypic and molecular studies undertaken in this project. The predominant 

molecular strategies utilised in this study were apex microarray using the Asper 

Biotech LCA chip and direct sequencing of candidate genes. These techniques were 

in widespread use at the time that this study was conducted, although they have now 

been surpassed by the next generation sequencing technologies. Apex microarray via 

the LCA chip was a used as a ‘first pass’ screen in 107 subjects in cohort 1, which 

identified the causative gene in 29.9% of subjects that were sent from UCL to be 

screened with this technique. Of all the subjects in cohort 1 whose causative gene was 

identified using a variety of techniques, the LCA chip was responsible for 52.5%. It 

was a useful strategy to ascertain previously reported variants in genes that have been 

identified to cause LCA and EORD. New mutations in these genes would be missed 

using this technique. The efficacy of this technique has previously been investigated, 

with mutation identification in approximately 30% – 35% of patients analysed, and a 

higher rate of identification in LCA than EORD [109, 110, 122]. Despite a newer 

generation of this chip being used in this study, the overall success rate of gene 

identification was slightly less than these reports, and this is likely to reflect the 

higher percentage of EORD subjects analysed with this technology than LCA (47 

LCA and 51 EORD subjects from UCL). However, in agreement with Henderson et 

al., the chip was more informative for those carrying a diagnosis of LCA than EORD.  
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Molecular analysis using a variety of techniques identified the causative gene in 

34.5% of all subjects in cohort 1. These genes were all previously known to be 

associated with LCA and EORD. However, using next generation sequencing, a 

family that had been previously recruited to the study was found to harbour a 

pathogenic mutation in a gene previously unreported in humans to cause early onset 

retinal dystrophy: TUB. The phenotype associated with this gene was investigated in 

detail in this study and adds to the clinical heterogeneity observed in LCA and EORD. 

To date it remains the only family in the literature with mutations in this gene [330]. 

The gene had long been thought to be a strong candidate for human retinal disease as 

there is a well characterised mouse model that has a severe retinal dystrophy [293, 

295]. This thesis also reports the results of detailed phenotypic studies in a number of 

other genes including LRAT, SPATA7, RGR and BEST1; some of which only had 

limited descriptions prior to this study. In addition, this study revealed some new 

insights into the phenotype associated with other causative genes such as LCA5 and 

RDH12. This will help inform affected individuals of their prognoses, aid clinicians in 

reaching diagnoses and provide information to aid in genetic counselling. 

 

A large proportion of the families identified with mutations in this study were from 

consanguineous pedigrees. From some of the earliest studies into inherited diseases, 

the increased incidence of autosomal recessive disease in consanguineous families has 

been recognised [8, 467]. Molecular techniques have evolved to analyse regions of 

autozygosity that are presumed to harbour causative genes [104] and inbred 

populations are recognised to be very informative for gene identification in recessive 

diseases [468]. Four families reported in this study underwent autozygosity mapping 

that subsequently led to successful candidate gene screening in LCA5, TULP1 and 
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SPATA7. The incidence of consanguinity was high in this study, with 10 families in 

cohort 1 whose mutations were identified and 7 other families who were recalled for 

phenotyping being consanguineous. In one consanguineous family (Subject 16, family 

16), compound heterozygous mutations in CRB1 were identified, highlighting the 

importance of avoiding the presumption that individuals will be homozygous if they 

have a consanguineous ancestry [469]. This individual underwent autozygosity 

mapping which failed to identify the causative gene. This was eventually identified to 

be CRB1, in the compound heterozygous state, by exome sequencing. On revisiting 

the phenotype in this individual, the clinical characteristics were typical of a rod-cone 

dystrophy due to mutations in CRB1. The incidence of consanguinity in the 

molecularly identified families was higher in those from South East Asia (11 families) 

and Middle Eastern countries (2 families), which reflects the high proportion of first 

and second cousin marriages that are traditional in these communities [103]. 

Consanguinity was also observed in European families, with 3 British Caucasian and 

1 Irish consanguineous family among the molecularly identified families in this study. 

 

 

 

5.2 Phenotypic heterogeneity in 

childhood onset retinal dystrophies 

 

Phenotypic heterogeneity was identified in 5 genes that were identified in this study: 

RDH12, RPE65, LCA5, AIPL1 and BEST1. The largest sub-group of subjects 
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identified had RDH12 mutations (17 subjects, 15 families in cohort 1). This may be 

due to the easily recognisable fundus features, which allowed direct selection for 

RDH12 screening. The phenotype varied with respect to the age of symptom onset, 

and therefore diagnosis, with 14 affected with EORD (symptom onset less than 5 

years of age) and 3 with a rod cone dystrophy (symptom onset of at least 5 years of 

age). This heterogeneity was evident within families, with one family carrying two 

diagnoses based on the age of symptom onset. Although the retinal features were 

similar amongst those with RDH12 retinopathy, with severe pigment clumping, dense 

macular atrophy and yellowing of the macula, some variability was present, such as 

para-arteriolar sparing of the pigmentation and a ‘colobomatous’ appearance to the 

macular atrophy. No genotype phenotype correlation was identified for the retinal 

features or age of symptom onset in RDH12.  

 

RPE65 was also well represented in cohort 1. Again, this is likely to be due to the 

recognisable clinical signs, such as photophilia and minimal retinal changes, and the 

subsequent selective screening of RPE65. However, a spectrum of retinal features was 

noted in RPE65, including some with normal fundi, some with RPE atrophy and only 

one (the oldest subject) with retinal pigmentation and white dots at the macula. One 

subject displayed hypomorphic features with nyctalopia, normal vision, full visual 

fields and essentially normal retinas aside from peripheral RPE disturbance. He was a 

compound heterozygote, as were 5 of the 7 families identified with RPE65 mutations, 

but the only subject to harbour a duplication on one allele. His c.1543C>T, 

p.Arg525Trp variant occurs late in the transcript, and his duplication, c.1067dupA, 

p.Asn356Lysfs*8 occurs beyond halfway in the transcript. Presumably this compound 

heterozygous mutation leads to some functional protein product. However, 
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comparison of the location of these variants to the other milder cases reported in the 

literature, which have occurred much earlier in the transcript, do not identify any true 

correlation between the location of the mutations and the severity of the phenotype 

[151, 161].  

 

The small numbers of cases identified with mutations in both AIPL1 and LCA5 mean 

that no generalisations should be made from this study regarding the phenotypes 

associated with mutations in these genes. However, both of the subjects affected with 

mutations in each of these genes displayed quite different phenotypes to each other. In 

the two LCA5 subjects this difference in retinal appearance may have been due to the 

different ages at which the subjects were examined – one was 8 years and the other 18 

years old. Although LCA5 mutations are frequently associated with widespread RPE 

atrophy, white dots in the retinal periphery and macular atrophy, other cases reported 

in the literature have also suggested that there is some degree of variability to the 

phenotype, with a similar disparity between young and older individuals to those 

individuals in this study [185, 339]. The fundi of both of the AIPL1 subjects identified 

in this study were essentially normal, but their clinical features were quite different – 

one had typical LCA, the other was much more mildly affected with an EORD with 

cone rod dysfunction, again reflecting the clinical heterogeneity associated with 

EORDs. 

 

The studies of subjects with mutations in LRAT, RGR and SPATA7 have made a 

significant contribution to our knowledge of the phenotypes associated with these 

genes. Prior to this there were few detailed descriptions of these phenotypes. 

Mutations in the visual cycle gene LRAT are associated with a severe EORD with 
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poor vision, visual field constriction and nyctalopia from early childhood. Similarly to 

RPE65, there is photophilia in childhood. With age, there is deterioration in visual 

acuity, colour vision and contrast sensitivity. The retina is characterised by 

widespread RPE atrophy but little pigment migration, suggesting that photoreceptor 

cell death is a late feature [373]. Epi-retinal membrane formation and asteroid 

hyalosis are also more common. There is a severely reduced autofluorescence signal, 

which is a feature of retinal dystrophies due to visual cycle genes [158, 377, 378]. At 

a young age the OCT can identify a preserved photoreceptor layer and outer nuclear 

layer at the fovea, but these are lost with age. The nerve fibre layer is frequently 

irregular without any overlying vitreo-retinal traction. Kinetic perimetry identifies 

severe visual field constriction with preserved islands of vision. Dark-adapted 

psychophysical testing demonstrates reduced to undetectable rod function, with 

reduced but better preserved, cone function. The results of such detailed 

investigations had not been reported in LRAT retinopathy prior to this study. This 

study has demonstrated that the phenotype associated with mutations in LRAT is 

similar to that associated with mutations in RPE65, with an extended window for 

therapeutic intervention. LRAT and RPE65 are both key proteins in the visual cycle 

that are both expressed in the RPE. Successful gene replacement therapies have been 

carried out in RPE65 disease, which suggests that LRAT retinopathy is also a good 

candidate for gene replacement therapy [362, 363, 392, 393].  

 

The phenotype in a family with mutations in another visual cycle gene, RGR, was 

investigated in this study. Mutations in this gene are very rare and there are only 2 

reported families in the literature to date with mutations in this gene [292, 319]. This 

study has identified that RGR mutations are characterised by an EORD with 
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nyctalopia and visual field constriction, but with preservation of the central vision 

until the second decade. The retina displays widespread RPE atrophy with white dots 

in the periphery, minimal retinal pigmentation and macular atrophy involving the 

fovea. The OCT demonstrates preservation of the photoreceptor layer only at the 

fovea, and this correlates with the autofluorescence images, which show an annulus of 

hyperautofluorescence typical of RP [344].  

 

This study identified that mutations in SPATA7, a cilial gene, usually display a severe 

LCA phenotype, although milder features can occur [165, 166]. This heterogeneity 

was evident in this study within the same family, in which 2 brothers were affected to 

different degrees, with one displaying better preservation of his central vision, albeit 

with severe visual field constriction. The vision is generally extremely poor from 

infancy and progressively deteriorates. The retina displays widespread RPE atrophy, 

minimal retinal pigmentation and foveal sparing. The OCT can identify preserved 

photoreceptors at the fovea and autofluorescence imaging reflects this by 

demonstrating a hyperautofluorescent annulus. SPATA7 represents another LCA / 

EORD gene that is associated with phenotypic variability as differences between 

individuals within a family harbouring the same mutation were observed. Although 

the cause for this was not clearly identified, it may be due to the influence of modifier 

alleles.   

 

A number of genes identified in this study are important in the structure or function of 

cilia, and thus mutations in them contribute to the spectrum of conditions known as 

‘ciliopathies’. Of the subjects that were phenotyped more closely, these included 

TUB, TULP1 and SPATA7. The TUB family had systemic features of childhood 
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obesity, but no other systemic effects that have been identified in the Tubby mouse 

were identified in the affected family members. Unfortunately no other studies were 

possible in this family to ascertain smell acuity, hearing and other metabolic 

abnormalities. Further families will need to be identified and studied for this to be 

ascertained. The TULP1 individuals in this study, in agreement with other studies, did 

not display any systemic features. This is to be expected, as the TULP1 expression 

profile is purely retinal. The individuals with SPATA7 mutations might have been 

expected to have infertility as the human protein has been identified as two transcripts 

– one predominantly expressed in the retina, cerebellum and whole brain, and another 

that is predominantly expressed in the testis. Although there were 3 affected males in 

the SPATA7 group who had planned to have children, two did not have any 

difficulties conceiving, and only one had infertility due to a low spermatozoa count. It 

is possible that this may be due to a wider ‘ciliopathy’ secondary to his SPATA7 

mutations. Further studies would be required to ascertain this. The association of the 

ocular phenotype with fertility in these individuals is important to ascertain as this 

may influence choices to plan for families in the future. Clearly the association with 

systemic abnormalities in different ciliopathies, such as renal and neurological 

function in CEP290 mutations, is important to recognise, manage and counsel patients 

about, once their causative mutation has been identified.  

 

The ARB phenotypes in children identified in this study were interesting. Although 

there was some variability in the retinal features in that some displayed characteristic 

multifocal yellow sub-retinal deposits on a background of confluent sub-retinal 

change, and some had a more ‘classical’ Best disease appearance, the phenotype was 

clearly identifiable and differed from adults reported with the condition. The 
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electrodiagnostic findings observed in ARB children and their parents are 

fundamental to their diagnosis and allow distinction between the different BEST1 

related conditions, which will provide information both for prognosis and for accurate 

genetic counselling to these families.    

 

One novel phenotype associated with fine drusen-like deposits at the macula was 

identified in this study, and the condition termed ‘benign yellow dot dystrophy’. As 

the name suggests, this condition appears to have a benign course and ocular function 

remains normal. Although it is predominantly a sporadic condition, some families 

have been identified, in whom the condition appears to segregate in an autosomal 

dominant manner. Although the condition bears some resemblance to mild North 

Carolina Macular Dystrophy, there are a number of differences that suggest that the 

phenotype described in this study is a novel entity. The causative gene is yet to be 

determined in these families. 

 

 

 

5.3 Therapeutic options for childhood 

onset retinal dystrophies 

 

One aim of this study was to identify subjects that may be amenable to new therapies 

for retinal dystrophies. These diseases, until recently, have been considered to be 

incurable. During the past few years exciting progress has been made into new 
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therapeutic techniques, predominantly into gene augmentation therapies, but also into 

oral pharmacologic therapies. As discussed in chapter 4.6, the first human phase 1b 

trials of an oral retinoid replacement therapy have been undertaken and promising 

initial results of improvements in visual fields and visual acuity were reported by the 

trial authors [392]. Two of the four LRAT subjects identified in the present study took 

part in this trial and their results are due to be published in a subsequent report. It will 

be interesting to see whether these compounds have an effect and are sustainable in 

these subjects, in whom the retinal degeneration is well established with significant, 

potentially irreversible, retinal damage. 

 

Gene augmentation therapies in humans have become possible due to animal models 

of recessive retinal disease, through which proof-of-concept, safety and efficacy 

studies have been performed. In this regard, rodents provide a useful model as the 

effects of therapy can be ascertained fairly rapidly. The primary disadvantages of 

mouse models compared to humans are that they lack a well-defined cone dominated 

central retinal region, and due to the small size of the murine eye, different surgical 

approaches are required for gene delivery. Large animal models such as dogs and 

cats, many of which have naturally occurring mutations in retinal dystrophy genes, 

such as the Briard dog with an RPE65 mutation and the Abyssinian cat with a 

CEP290 splice defect, serve as useful models as they are anatomically more similar to 

humans than rodents [46]. Gene augmentation therapies utilise vectors to deliver 

DNA to target tissues, and a number of viral and non-viral vectors have been used in 

retinal gene therapy proof-of-concept studies [470]. Viral vectors include recombinant 

adeno-associated viruses (rAAVs) and lentiviruses. rAAVs generally target 

photoreceptors more efficiently than other vectors and induce a relatively benign 



326 

immune response; they are non-integrating and the transgene expression persists only 

for a few months. Lentiviruses are integrating vectors and mediate stable transgene 

expression, but there is a risk of insertional mutagenesis [46].  

 

The first human gene augmentation therapies were carried out in subjects with LCA 

and RPE65 mutations [362-364, 393, 471]. Subjects demonstrated both objective and 

subjective improvements in vision, and the extent of recovery was age dependent, 

with children having the greatest improvement. Further trials into RPE65 gene 

therapy are on going, and human gene therapy trials into MERTK have begun 

(ClinicalTrials.gov Identifier: NCT01482195) [472]. However, one challenge is in 

ascertaining the stage of the disease process that intervention is most likely to be 

beneficial. In this regard, detailed phenotyping of the different genes that underlie 

retinal dystrophies is important as it can identify the extent of the degeneration and 

the age at which this degeneration occurs – if the gene is involved in photoreceptor 

differentiation then therapy may be required in infancy to maximise the chance of 

restoring and preserving vision [46]. In fact, treatment might be optimal in children 

below 3 years of age as the plasticity of the retinal and neurological pathways 

deteriorates beyond this age. It is predicted that the less severe the retinal phenotype 

in terms of structural damage, the more chance that gene therapy would be successful. 

However, promisingly, studies into gene therapy for other causes of retinal dystrophy, 

for example into AIPL1, have suggested that there may be rescue of photoreceptor 

degeneration in a more severe phenotype [335]. 

 

Another approach to gene augmentation therapy is in stem cell therapy for retinal 

degenerative disease, and a number of trials are currently recruiting subjects [473]. In 
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pre-clinical studies, both embryonic stem cells and induced pluripotent stem cells 

have been used to guide differentiation into cells that display many similarities to 

RPE cells, that can be transplanted to replace this monolayer which is frequently 

damaged in retinal diseases such as RP, Stargardt disease and age related macular 

degeneration. Childhood onset retinal dystrophies caused by genes that reside in the 

RPE, such as RPE65, LRAT, RGR and BEST1 may be amenable to treatment with 

stem cell derived RPE in the future. The results from the first human clinical trials 

into RPE stem cell transplantation, including those using autologous human induced 

pluripotent stem cells, and the subsequent applications, are keenly anticipated.     

 

 

 

5.4 Advances since this study was 

conducted 

The most significant advances since this study was conducted have been in molecular 

analysis. Next generation sequencing technology has surpassed the molecular 

techniques that were routinely utilised to identify the molecular cause of disease in 

individuals with childhood onset retinal dystrophies. This has led the genetic cause 

being ‘solved’ in a number of families, and has identified novel genes.  

 

The causative gene at the LCA9 locus remained undiscovered for many years, but was 

eventually identified in 2012, simultaneously by different groups using whole exome 

sequencing, to be NMNAT1 [236-239]. NMNAT1 encodes a rate-limiting enzyme that 
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generates NAD+ both in a biosynthetic pathway from nicotinic acid mononucleotide, 

and in a salvage pathway from nicotinamide mononucleotide [236]. It is involved in 

the nuclear NAD+ homeostasis that is necessary for both DNA metabolism and cell 

signalling. The phenotype is of severe LCA, with vision in the majority of patients of 

between hand movements and nil perception of light. There is dense pigmented 

macular atrophy, widespread RPE atrophy and peripheral pigment migration. Nine 

subjects from the childhood onset retinal dystrophy study from UCL were 

subsequently identified with mutations in NMNAT1, of which 4 were from cohort 1 in 

this study, and they contributed to one of the original NMNAT1 LCA publications 

[236].  

 

A second gene, KCNJ13, was also recently identified using a combination of 

homozygosity mapping and exome sequencing, to cause LCA in two families [327]. 

The proband of one of these families was in cohort 1 of the present study. KCNJ13 

encodes an inwardly rectifying potassium channel subunit, Kir7.1, which localises to 

the plasma membrane of a number of ion-transporting epithelia [327]. In the retina it 

primarily localises to the apical membrane of the RPE. Mutations in this gene have 

also been reported to cause another retinal dystrophy known as ‘snowflake vitreo-

retinal degeneration’, but the phenotype associated with this and that associated with 

KCNJ13 related LCA are quite different, once again highlighting the clinical 

heterogeneity associated with genes causing childhood onset retinal dystrophies.  

 

The next generation sequencing technologies have vastly improved the ability and 

speed of identification of the molecular causes of genetic disease. As the costs of 

these technologies are rapidly falling they will lead to the discovery of a number of 
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novel genes and will quickly ‘solve’ many undetermined cases. Despite these 

predicted advances, accurate phenotyping of affected families still remains very 

important in these conditions. 

 

The other major advance has been in therapeutics for retinal dystrophies. Some of the 

advances in gene augmentation therapy have been discussed in the previous section. 

However it is important not to ‘oversell’ the potential of gene therapy to patients who 

may wish to participate in future studies of gene therapy for retinal degeneration [46]. 

The successes of the RPE65 trials were influenced by the mild retinal changes, 

presence of some useful vision early in life in some of these individuals and the 

location of the defective gene; in the future, gene augmentation therapy may not be as 

successful if the defect leads to severe functional and/or structural retinal changes or 

if it primarily affects the photoreceptors. In this situation, there is a fine balance 

between effective ‘dosage’ and toxicity, and the target therapy needs to involve as 

many photoreceptors as possible, which may prove to be technically challenging.  

 

As the landscape of molecular technologies continues to evolve, next generation 

sequencing will provide many answers and lead to many more families having their 

molecular cause identified. In addition, advances in gene augmentation therapy are 

entering an exciting era in which effective treatments will become available for these, 

previously ‘incurable’ blinding conditions. 

 

 

 

 



330 

5.5 Conclusions and further work 

Since Donders’ and Leber’s first descriptions of childhood onset retinal dystrophies, a 

vast body of work has been conducted to elucidate the molecular causes, clinical 

features and possible therapies for this heterogeneous group of conditions. Although 

the specific conditions that comprise this spectrum of diseases have been, and 

continue to be, characterised, confusion can lie in the specific clinical diagnoses, as 

there is often significant overlap between them. It is likely that, as the molecular 

causes are being identified, the classification of these conditions will progress to 

reflect the genetic cause, such as that which has occurred for the bestrophinopathies. 

Phenotypic studies have become invaluable at characterising these conditions, and 

allow accurate prognostic and genetic counselling to affected individuals and their 

families. Careful phenotyping is also very important in ascertaining disorders that 

may be suitable for clinical trials of novel therapies, and in identifying the optimal 

point in the disease process for which intervention is likely to have the greatest 

success.  

 

Future research and clinical diagnostic work on the childhood onset retinal 

dystrophies will undoubtedly involve next generation sequencing technologies. These 

technologies, including whole exome sequencing, will identify novel mutations in 

known genes, novel genes for isolated retinal dystrophies and for retinal dystrophies 

with systemic associations. Although expected to be higher, it has been predicted that 

whole exome sequencing will lead to the molecular diagnosis in 55% of non-

syndromic retinal dystrophies and 80% of syndromic retinal dystrophies [474]. Whole 

genome sequencing is likely to be adopted as the gold standard as costs come down. 
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This technique has better read depths of exomes and allows the identification of 

intronic variants that affect gene transcription. Phenotypic studies will become 

necessary once these genes have been identified. Detailed phenotyping, or ‘deep 

phenotyping’, involving conventional phenotypic techniques utilised in the present 

study, along with additional psychophysical testing such as microperimetry and 

adaptive optics, will be useful for selecting subjects for therapeutic trials and in 

identifying treatment effects. Such future molecular and phenotypic investigations are 

likely to benefit from large-scale collaborations, such as those that are currently 

underway into rare genetic diseases.   
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7.1 Patient Documents 

 
7.1.1 Patient Information Leaflet 

 
A clinical and molecular genetic investigation of childhood retinal 

dystrophies 
 

INFORMATION LEAFLET 
 

PLEASE CONTACT US IF YOU WOULD LIKE THIS LEAFLET IN LARGER 
TYPE OR THE INFORMATION PROVIDED ON AUDIO CASSETTE TAPE 

 
You are invited to take part in this research study. Before you decide it is important 
for you to understand why the research is being done and what’s involved. Please take 
time to read the following information carefully and discuss it with your family, 
friends, hospital specialist or GP if you wish. If you need more information please 
contact the research team whose telephone number is at the end of this leaflet. 
 
Why the study is being done? 
Inherited retinal disorders are an important cause of childhood visual impairment and 
this research study aims to discover the causes of the retinal problem and to 
understand the reasons why the retina fails to function normally. Vision is dependent 
upon the functioning of the cone and rod cells of the retina, a thin membrane at the 
back of the eye. There are two groups of cells in the retina that detect light. The cones 
cells are used when light levels are high, and the rods are used when light levels are 
low. From the way in which night vision, colour vision, central vision and the 
electrical responses from the retina are changed we can learn how a condition has 
affected the cells in the retina. We are able to use this information together with 
knowledge of the genetic faults causing an eye disorder to build up a picture of what 
is causing the retinal dysfunction and which approach would be best used in the future 
to slow down disease progression.  
 
Research has shown that genetic factors have an effect on the risk of someone 
developing this group of disorders. In other words, some people are at higher risk than 
others because of their genetic make-up.  
 

This research study is being carried out for two important reasons: 

1. We want to find out more about the genetic factors in childhood retinal dystrophies 

2. We want to find the genes that affect the risk of developing childhood retinal dystrophies 

 
If we can find which genes affect the risk of childhood retinal dystrophies it would 
help us understand why the disease occurs and could in the longer term lead to better 
treatment. 
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How will the study be carried out? 
To find out more about genetic factors in childhood retinal dystrophies we need the 
help of patients with childhood retinal dystrophies and their relatives. By comparing 
the genetic make-up of those with childhood retinal dystrophies we can see what 
genes they have in common and start to work out which genes affect the risk of 
developing childhood retinal dystrophies. We can also obtain additional information if 
we have the opportunity of studying unaffected relatives as well. 
 
Why you are being invited to take part 
You are being invited to take part because you or your relative has a childhood retinal 
dystrophies. To give us a good chance of success, we need to study a large number of 
cases. We hope to recruit at least 60 patients with the disorder and their close 
relatives. 
 
Do I have to take part? 
It is up to you to decide whether or not to take part.  If you do decide to take part you 
will be given this information sheet to keep and be asked to sign a consent form. If 
you decide to take part you are still free to withdraw at any time and without giving a 
reason. A decision to withdraw at any time, or a decision not to take part, will not 
affect the standard of care you receive. 
 
What will happen to me if I take part? 
If you decide to take part and have signed a consent form you will be asked to give a 
30 ml blood sample (that’s about 6 teaspoon-fulls) which will be used to extract DNA 
(the chemical containing your genetic information) which will be used to try and 
identify genes causing eye disorders.  The results of these tests will be kept strictly 
confidential. You will also be asked to undergo a routine eye examination and have 
some images taken of the back of your eye using several imaging techniques. The 
imaging techniques are similar to having a photograph taken of the back of your eyes. 
You may also have the length of your eye measured with ultrasound (a small probe 
will touch your eye after a local anaesthetic drop has been instilled).  For the imaging 
we will need to dilate your pupils. This procedure is conducted routinely in eye 
clinics.  The use of these drops causes some temporary blurring of vision especially 
for near and as they increase the size of the pupil, they may be associated with 
increase sensitivity to light.  It is advisable that you bring along sunglasses to wear on 
your journey home.   For most people, it takes around 8 hours for the pupil of the eye 
to return to its normal size following dilation although vision recovers sooner.  It is 
advisable not to drive for 5-6 hours after the drops have been instilled. We will pay 
your travel expenses to and from London.  The tests are quite simple and last 
approximately 90 minutes although the length of the examination varies from person 
to person.   
 
In some cases we will ask you to return for additional tests.  These tests will involve 
either the examination of your ability to see targets in your peripheral vision , or 
measurement  of your vision at low light levels (these tests last approximately 2 
hours) 
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What will happen to the blood sample?  
The laboratory will extract the genetic material DNA from the cells in the blood 
sample so that this can be used to study the genes that we think may have an effect on 
the risk of developing childhood retinal dystrophy. 
 
 
 
What will happen to the results of the research study? 
All the information from the study will be published in medical journals and 
presented to relevant health professionals at meetings and conferences. We would also 
be pleased to provide information about the results of the study to anyone who has 
taken part. Individual patients will not be identified in any reports or publications 
arising from the study. 
 
Will information from the study be kept confidential? 
All information collected for the study will be kept strictly confidential. The research 
team will not pass on your personal details to anyone else. The samples will be coded 
and scientists working in the laboratory will be provided with relevant medical 
information relating to the samples but will not be given the names of the people from 
whom the samples were obtained.  
 
Working with other research groups to speed things up 
Finding the genes that are important in childhood retinal dystrophy is a major 
challenge and may take many years. To speed up the research, we may join forces 
with other research teams in this country or abroad, in which case we may want to 
provide them with some of the sample stored from yourself and others for them to 
work on. In order to make this possible, on the consent form you are asked to agree to 
donate your sample to the research team as a gift. This means that you give up all 
rights to the sample and cannot at a later date ask for the sample to be destroyed or 
returned to you. It also means that at the discretion of the research team your sample 
can be used by others for research on the causes of childhood retinal dystrophy.  
 
 
What are the possible benefits of taking part? 
It is unlikely that you will benefit personally from helping with this research project, 
but the results of the research should be of benefit to patients affected by childhood 
retinal dystrophy in the future.  
 
 
Will you be told the results of the eye examination or genetic testing? 
The purpose of the eye examination is to obtain information we need for the research 
study. This sort of technical information is unlikely to have any implications for 
yourself. It is possible but unlikely that in the course of examining your eyes we may 
discover a problem with your eyes that you were not aware of. Please let us know if 
you would prefer not to be told if this situation arises. Otherwise we will assume that 
you would like us to bring it your attention, and with your permission, pass on 
information to your general practitioner. If you are a car driver, one reason you may 
choose not to be told about unexpected findings might be the implications this could 
have for holding a driving licence. 
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The genetic testing that we will be carrying out will have the aim of identifying the 
changes in a specific gene which is causing your eye disorder.  It may take months or 
even years before the specific change causing your eye disease is identified.  We will 
inform you if we identify the change in your case.  Please let us know if you do not 
wish to know the result.  We will not inform your GP of the result unless you 
specifically ask us to. 
 
 
What are the possible disadvantages of taking part? 
Your eyes will be photographed, which requires having drops put in your eyes to 
dilate the pupils. This may cause brief discomfort and some temporary blurring of 
your near vision so you will not be able to drive a car for the rest of the day. Dilating 
the pupils is a routine procedure in hospital eye clinics which doesn’t usually cause 
any problem, but you should be aware that a painful rise in the pressure in the eye 
(acute glaucoma) is a rare but treatable complication. You will be asked to provide a 
blood sample for the study. This will be done with care by qualified staff but may 
cause some discomfort and occasionally bruising.  
 
 
Who is organising and funding the research? 
The Special Trustees on Moorfields Eye Hospital using funding donated by the 
Eranda foundation 
 
 
What if something goes wrong? 
If you are harmed by taking part in this research project, there are no special 
compensation arrangements.  If you are harmed due to someone’s negligence, then 
you may have grounds for a legal action but you may have to pay for it.  Regardless 
of this, if you wish to complain or have any concerns about any aspect of the way you 
have been approached or treated during the course of this study, the normal National 
Health Service complaints mechanisms would be available to you. 
 
 
Contact for Further Information: 
Professor AT Moore Moorfields Eye Hospital, City Road, London EC1V  2PD 
Tel 0207 566 2260 
Dr Arundhati Dev Borman, Research Fellow, Genetics Office, Professorial Unit, 
Moorfields Eye Hospital NHS Trust, 162 City Road, London EC1V 2PD 
Tel:  0207 566 2265  Email:  a.dev-borman@ucl.ac.uk 
 
 
 
 
Thank you for reading this information leaflet and for considering taking part in 
this study 
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7.1.2 Consent form – Adult 

Title of Project: A clinical and molecular genetic investigation of childhood 
retinal dystrophies 
 
Name of Researcher: Professor A T Moore 
           
 
1. I confirm that I have read and understand the information sheet dated January 

2004 for the above study and have had the opportunity to ask questions. 
 
2. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights being 
affected  

 
3. I understand that sections of any of my medical notes may be looked at by the 

research team or individuals from regulatory authorities where it is relevant to my 
taking part in research.  I give permission for these individuals to have access to 
my records. 

 
4. I understand that the results of any new genes or novel alterations in these 

genes that are discovered to be responsible for inherited eye disorders will be 
published in scientific and medical journals. This information and any results 
obtained from the analysis of a blood sample will not be used by 
pharmaceutical companies in the future.  In addition, I understand that I will 
not benefit financially if the results of this research lead to the development of 
new treatments, tests, or patents. 

 
5. I give permission for clinical images and information gained from this study 

to be published in the scientific literature as long as all personal identifying 
information is removed. 

 
 
6. I agree to take part in the above study.  
  
  
Name of Patient Date Signature 
 
 
 
Name of Person taking consent Date Signature 
(if different from researcher) 
 
 
 
Researcher  Date Signature 
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7.1.3 Consent form – Child 

Title of Project: A clinical and molecular genetic investigation of 
childhood retinal dystrophies 
 
Name of Researcher: Professor A T Moore 
 
1. I confirm that I have read and understand the information sheet dated January 

2004 for the above study and have had the opportunity to ask questions. 
 
2. I understand that the participation of my child is voluntary and that I may 

withdraw my child at any time, without giving any reason, without his/her care or 
legal rights being affected. 
 

3. I understand that sections of any of my child’s medical notes may be looked at by 
the research team or individuals from regulatory authorities where it is relevant to 
his/her taking part in research.  I give permission for these individuals to have 
access to my child’s records. 

 
4. I understand that the results of any new genes or novel alterations in these genes 

that are discovered to be responsible for inherited eye disorders will be published 
in scientific and medical journals. This information and any results obtained from 
the analysis of a blood sample will not be used by pharmaceutical companies in 
the future.  In addition, I understand that neither I, nor my child, will benefit 
financially if the results of this research lead to the development of new 
treatments, tests, or patents. 

 
5. I give permission for clinical images and information gained from this study to be 

published in the scientific literature as long as all personal identifying information 
is removed. 

 
6. I agree that my child may take part in the above study.  
 
 
Name of Patient 
 
Name of Parent/Guardian giving consent       Date Signature 
 
 
Relationship to child  
 
Name of Person taking consent                   Date Signature 
(if different from researcher) 
 
Researcher                    Date Signature 
 
[1 for patient;  1 for researcher;  1 to be kept with hospital notes] 
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7.1.4 Data Protection Consent Form 

Data Protection Consent Form 
 
 

1. I agree to my/my child’s personal identifying details (name, address, telephone 
number) being kept on a secure electronic database. 

 
2. I agree to information regarding my family pedigree (who is related to who) 

being kept in a secure electronic database 
 

3. I agree to clinical and genetic information about my condition being kept on 
this database. 

 
4. I understand that this information will be held on a database located at the 

Institute of Ophthalmology (& Moorfields Eye Hospital). The personal 
information gathered will only be accessed by the principal researcher and 
team. Any results published from this information will not contain any 
personal identifying data. 

 
 
 
Name of Patient: …………………………………………………  
Date…………………. 
 
Signature of patient: …………………………………………….. 
 
 
Name of Parent (if child)…………………………………………. 
Date………………… 
 
Signature of Parent………………………………………………. 
 
Relationship to child…………………………………………...... 
 
 
Name of researcher……………………………………………..   
Date…………………. 
 
Signature of researcher…………………………………………. 
 
 
1 copy in notes  
1 copy to patient/parent 
1 copy to researcher 
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7.2 Primer Sequences 

 

7.2.1 TULP1 Primers 

 
Exon Primer Tm 

(oC) 
PCR 

annealing 
temperature 

(oC) 

Size of 
fragment 

(bp) 

Exon 1F TCGTGGGCTGTAGCACCTCCC 72.6 63 381 
Exon 2R CTACCCTGCGTGGGTTTACGC 69.4 
Exon 3F TAATCTGCGGTTATTTCTGGCGG 69.3 63 257 
Exon 3R TCAAGCCCCTCCCTTCCGCAGC   77.8 
Exon 4F TGGGAGAAGTGTTGAAAGTGG 64.0 58 457 
Exon 4R TACCTGGCTCAAAGATAAGGCC 65.1 
Exon 5F TGGTGCCCATGCACCACTTCC 74.6 60 348 
Exon 5R TGAGGCCTCAATCGCTGTGTC 69.9 
Exon 6F TGTCAAGCTTTCAGCCTCCCTG 69.7 58 514 
Exon 7R TCTGGCAAACTCCTTACCTAGC 63.3 
Exon 8F TCCAAGTGAGACATGGGTGTTGG 70.2 61 289 
Exon 8R TAACCTCAAGTGGCTCCAAGCC 68.3 

Exon 9FA TAAATCACAGAGCTCCCCAGAG   
 

 
 Exon 11RA TATGTACATCAAAGCGAGAGGC  

Exon 9F (old) TGTCTCAGCACTGGGACCTGC   70.2 63 593 
Exon 10R (old) TCTACCAGGCACAGCAGGACAG 68.8 
Exon 12F (old 11F) TGAATTGCTCAGTCCTAACTCACC 65.3 58 514 
Exon 13R (old 12R) TGGATGTGCTCAGGGAGTTGG 69.6 
Exon 14F (old 13F) TACCCTAATGGATGAAGATGTCC 62.7 58 424 
Exon 14R (old 13R) TCCCAGCTCTCGGGATAAAGGC 71.2 
Exon 15F (old 14F) TGTTGAGTAACTGAGATGGTG 57.7 53 736 
Exon 15R (old 14R) TACCGCTCCGCTTGGCCAAGG 75.8 
 
Table 24 - Primers and PCR conditions for TULP1. 
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7.2.2 RGR Primers 

 
Exon Primer Tm 

(oC) 
PCR annealing 

temperature 
(oC) 

Size of 
fragment 

(bp) 
Exon 1F ATAACCTGCATGTGCCTCCA 65.4 64 246 
Exon 1R GTGGCCTGGGTCCTCAGA 66.6 
Exon 2F CCCCACACACACTGTTCTGA 64.9 60 329 
Exon 2R TGTAAGTAGTAAAAATGCCCTTGG 61.8 
Exon 3F CAAGCTGTACTTGGCAGGTG 63.4 61 298 
Exon 3R TGGGAAACACGGAGCAGTAG 65.1 
Exon 4F TCTTCGATCAGGAAGTCCA 63.8 61 299 
Exon 4R GGAGTTCAAAGCCAAGATTCC 63.7 
Exon 5F CCACAACCGATCATCTAGGC 64.2 62 288 
Exon 5R ATTCTTTGTTCGGGACACCA 64.2 
Exon 6F CTTGGCCACATAGGCTGT 65.0 61 248 
Exon 6R TGAGATGAGATGAGACAGAGA 62.9 

Exon 7.1R CAGAGAGAGGATCAGTGGCTTT 63.7 62 398 
Exon 7.1R CTTGAGTGTAGGGGGCTGTG 64.6 
Exon 7.2F TGGATAGATTGCCTAGTGGTG 61.5 60 444 
Exon 7.2 R TCAAAAAGAAACCTGCACTTG 61.7 
 
Table 25 - Primers and PCR conditions for RGR. 

 
 
 
7.2.3 BEST1 Primers 

 
Exon Primer PCR annealing 

temperature 
(oC) 

Exon 2F CACCTGCTGCAGCCCACTGCC 61 
Exon 2R CTTGTAGTGAACTGGTACACTGGCC 
Exon 3F GGACAGTCTCAGCCATCTCCTCG 59 
Exon 3R GCAGCTCCTCGTGATCCTCCCCTGG 
Exon 4F CTAGGCCCGCTCGCAGCAGAAAGC 60 
Exon 4R CTTCCATTCCTGCCGCGCCCATCTC 

Exon 5/6F CATCCCTTCTGCGGTTCTC 59 
Exon 5/6R CTTGGTCCTTCTAGCCTCAGTTTC 
Exon 7F CTGGAGCATCCTGATTTCAGGGTTC 59 
Exon 7R CTCTGGCCATGCCTCCAGC 

Exon 8/9F GCTGGCTTTGAGGAGTTCTGCCTG 59 
Exon 8/9R GTGCTATTCTAAGTTCCTAGGCAG 
Exon 10F GTAAGGGAGAAGTAAGGCCAGGTG 59 
Exon 10R GTAGGTCCAGTGTGCTCTGGCAG 
Exon 11F GAAGGGACCTTCCATACTTATG 59 
Exon 11R CATTAAAGGCTGAAGTAGTCTGGG 

 
Table 26 - Primers and PCR conditions for BEST1. 
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