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ABSTRACT

The research of effective and reliable detrending methods for Spitzer data is of paramount
importance for the characterization of exoplanetary atmospheres. To date, the totality of exo-
planetary observations in the mid- and far-infrared, at wavelengths >3 µm, have been taken with
Spitzer. In some cases, in the past years, repeated observations and multiple reanalyses of the
same datasets led to discrepant results, raising questions about the accuracy and reproducibility
of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method
based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze IRAC
data, obtaining coherent results when applied to repeated transit observations previously de-
bated in the literature. Here we introduce a variant to pixel-ICA through the use of wavelet
transform, wavelet pixel-ICA, which extends its applicability to low-S/N cases. We describe the
method and discuss the results obtained over twelve eclipses of the exoplanet XO3b observed
during the “Warm Spitzer” era in the 4.5 µm band. The final results are reported, in part, also
in (Ingalls et al. 2016), together with results obtained with other detrending methods, and over
ten synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015”. Our results are
consistent within 1 σ with the ones reported in Wong et al. (2014) and with most of the results
reported in Ingalls et al. (2016), which appeared on the arXiv while this paper was under review.
Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method
performs as well as or better than other state-of-art methods recently developed by other teams
to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the
most reliable, while reaching the photon noise limit, at least for the particular dataset analyzed.
Another strength of the ICA approach is its highest objectivity, as it does not use prior infor-
mation about the instrument systematics, making it a promising method to analyze data from
other observatories. The self-consistency of individual measurements of eclipse depth and phase
curve slope over a span of more than three years proves the stability of Warm Spitzer/IRAC
photometry within the error bars, at the level of 1 part in 104 in stellar flux.

Subject headings: methods: data analysis - techniques: photometric - planets and satellites: atmospheres
- planets and satellites: individual(XO3b)

1. Introduction

Observations of transits and eclipses of exoplan-
ets have been used, in the last decade, to charac-
terize the nature of more than 100 of these alien
worlds with unprecedented detail. Molecular,
atomic and ionic signatures have been detected
in the atmospheres of exoplanets through trans-

mission spectroscopy, i.e. multiwavelength mea-
surements of the transit depth, showing differen-
tial absorption/scatter of the stellar light through
the planetary limb (e.g. Charbonneau et al. 2002;
Tinetti et al. 2010; Deming et al. 2013). For the
brightest targets, emission spectra have been mea-
sured during (planetary) eclipses to constrain
the atmospheric chemistry, pressure-temperature
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profile, albedo, and global circulation patterns
(e.g. Charbonneau et al. 2005; Swain et al. 2009).
Many datasets were obtained using the InfraRed
Array Camera (IRAC, Fazio et al. 2004) onboard
Spitzer Space Telescope. Since depletion of the
telescope’s cryogen in 2009, IRAC continues to op-
erate in the 3.6 and 4.5 µm bands, as the “Spitzer
Warm Mission”.

A precision of 0.01% is required to study the
atmospheres of giant exoplanets through transmis-
sion and/or emission spectroscopy (Brown 2001;
Tessenyi et al. 2013; Waldmann et al. 2015,b).
Detrending instrumental systematics in raw data
is necessary to achieve the target precision. It is
not always obvious how to decorrelate the data us-
ing auxiliary information of the instrument and,
in some cases, different methods lead to signifi-
cantly different results (see e.g. Waldmann 2012;
Morello et al. 2015). The majority of exoplan-
ets’ transit and eclipse multi-band photometric
data adopted in the literature are obtained by
combining data at different wavelengths from sep-
arate epochs years apart. Repeated observations
are necessary to estimate the overall level of vari-
ability, due to astrophysical variations and possi-
ble uncorrected instrument effects. If consistent,
compared to single observations, repeated obser-
vations can provide more accurate parameter val-
ues, leading to higher signal-to-noise atmospheric
spectra for exoplanets, and potentially allowing
the characterization of smaller exoplanets around
fainter stars.

The main instrumental effect affecting Spitzer/IRAC
data at 3.6 and 4.5 µm is due to intra-pixel
gain variations and spacecraft-induced motion, so-
called pixel-phase effect. The measured flux from
the star is correlated with its position on the de-
tector, hence the idea of correcting the data with a
polynomial function of the stellar centroid as pro-
posed in the literature (Charbonneau et al. 2005;
Morales-Caldéron et al. 2006; Stevenson et al.
2010; Beaulieu et al. 2011). Multiple reanalyses
of the same datasets with the polynomial method
show that, in some cases, results can be sensi-
tive to some specific options/variants, such as the
degree of the polynomial adopted, partial data
rejection, including temporal or other decorre-
lations (e.g. Beaulieu et al. 2008; Désert et al.
2009; Stevenson et al. 2010; Beaulieu et al. 2011;
Knutson et al. 2011). Recently, several alterna-

tive methods have been proposed to decorrelate
Spitzer/IRAC data: gain mapping (Ballard et al.
2010; Cowan et al. 2012; Knutson et al. 2012;
Lewis et al. 2013; Zellem et al. 2014), bilinearly
interpolated sub-pixel sensitivity mapping (BLISS,
Stevenson et al. 2012), Independent Component
Analysis using pixel time series (pixel-ICA, Morello et al.
2014, 2015), pixel-level decorrelation (PLD, Deming et al.
2015), and Gaussian Process models (Evans et al.
2015). A comparison between pixel-ICA and PLD
methods is reported in Morello (2015). The
discussion about the detrending methods, their
performances, reliability and potential biases for
Spitzer/IRAC data is a hot topic. In the “IRAC
Data Challenge 2015” different methods have been
tested over synthetic data created by the IRAC
team, which contain ten simulated eclipse observa-
tions of the exoplanet XO3b (Ingalls et al. 2016).
Researchers were also encouraged to reanalyze a
similar set of real observations obtained in the 4.5
µm band.

In this paper, we describe an evolution of
the pixel-ICA method proposed in Morello et al.
(2014, 2015); Morello (2015), and present the re-
sults obtained by applying said method to the
analysis of twelve eclipses of the exoplanet XO3b
taken with Warm Spitzer/IRAC in the 4.5 µm
band. Pixel-ICA method differs from the other
detrending methods proposed in the literature,
as it is an unsupervised machine learning algo-
rithm. The lack of any prior assumptions about
the instrument systematics and astrophysical sig-
nals ensures a high degree of objectivity, and in-
dicates that the same method could be applied
to detrend data taken with different instruments.
Pixel-ICA method gave coherent results when ap-
plied over multiple transit observations of the
exoplanets HD189733b and GJ436b, for which
the previous literature reported discrepant results
(Morello et al. 2014, 2015), and over simulated ob-
servations with a variety of instrumental systemat-
ics (Morello 2015). Similar techniques have been
used in the literature to detrend Spitzer/IRS and
Hubble/NICMOS data, the main difference being
in the choice of the input time series (Waldmann
2012, 2014; Waldmann et al. 2013). The ability of
ICA to decorrelate non-gaussian signals is inher-
ently limited to a low gaussian white noise ampli-
tude relative to the non-gaussian signals. In this
paper, we propose a wavelet pixel-ICA algorithm,
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which outperforms the traditional pixel-ICA al-
gorithm in low-S/N observations, extending ap-
plicability to planetary eclipses taken during the
“Warm Spitzer” era.

XO3b is a hot Jupiter (Mp =11.7 ± 0.5 MJup,
Johns-Krull et al. 2008; Hirano et al. 2011) in an
eccentric orbit (e =0.283 ± 0.003, Knutson et al.
2014) with a period of 3.19 days and orbital semi-
major axis of a = 0.045 AU (Winn et al. 2008).
The host star is F5V with T∗ = 6760 ± 80 K, and
log g =4.24 ± 0.03 (Winn et al. 2008; Torres et al.
2012). A previous analysis of the 12 eclipses re-
ported an average eclipse depth of 1.58+0.03

−0.04× 10−3

relative to the out-of-eclipse flux (star+planet),
and a phase curve slope of 6.0+1.3

−1.6× 10−4 days−1

(Wong et al. 2014). Here we compare our results
with the ones reported in Wong et al. (2014).

2. Data Analysis

2.1. Observations

We analyze twelve eclipse observations of XO3b
taken with Spitzer/IRAC in the 4.5 µm band. Ten
individual eclipses were observed over 6 months
(Nov 11, 2012 - May 24, 2013), including two
sets of three consecutive eclipses, another eclipse is
contained within a full-orbit observation on May
5, 2013 (PID: 90032). Each individual observa-
tion consists of 14,912 frames over 8.4 hr using
IRAC’s sub-array readout mode with 2.0 s inte-
gration time. In sub-array mode 64 frames are
taken consecutively, the reset time is ∼1 s. We
extracted 14,912 frames from the full-orbit obser-
vation to analyze the light-curve of the eclipse over
a time interval similar to other observations. The
last eclipse was extracted out of a 66 hr observa-
tion on April 8, 2010 (PID: 60058). Table 1 reports
the dates in which the eclipses were observed.

2.2. The eclipse model

In our model the stellar flux is constant in time,
and normalized to 1. We adopt the formalism of
Mandel & Agol (2002) for the eclipse model, ac-
counting for the planet being occulted by the star.
We approximate the planet’s phase curve in the
region of the eclipse as a linear function of the
time, the slope is called “phase constant”, adopt-
ing the same terminology of Wong et al. (2014).
The slope is only due to planet’s flux variations.
While the planet is completely occulted by the

Table 1: Eclipse observations dates and orbit num-
bers of XO3b.
Obs. Number UT Date Orbit Number

1 2010 Apr 8 0
2 2012 Nov 11 297
3 2012 Nov 17 299
4 2012 Nov 20 300
5 2012 Nov 23 301
6 2012 Dec 2 304
7 2012 Dec 9 306
8 2013 Apr 22 348
9 2013 May 5 352
10 2013 May 18 356
11 2013 May 21 357
12 2013 May 24 358

star, the flux is constantly 1. The eclipse depth
is defined as the (unseen) planet’s flux at the cen-
ter of eclipse, in units of stellar flux (see Figure
1). When fitting the eclipse models, the orbital
parameters are fixed to the values reported in Ta-
ble 2, taken from Wong et al. (2014), while the
center of eclipse, eclipse depth and phase constant
are free parameters to determine. We also con-
sidered models with zero phase curve’s slope (see
Appendix A.5).
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Fig. 1.— Scheme of the eclipse model adopted:
the stellar flux is constant and normalized to 1
(blue dashed line), the planetary flux is a linear
function of time, and disappears during the eclipse
(red line). The eclipse depth is the extrapolated
planetary flux, in units of stellar flux, at the eclipse
center.

2.3. Wavelet ICA

2.3.1. Continuous Wavelet Transform (CWT)

The wavelet transform (WT) decomposes a
given signal, x(t), into its frequency components.
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Table 2: Values of the parameters fixed while gen-
erating the eclipse models.

orbital period, P (days) 3.19153285
scaled semi-major axis, a/R∗ 7.052

inclination, i (deg) 84.11
eccentrity, e 0.2833

argument of periastron, ω (deg) 346.8

This is done by convolving the time signal with
a basis of highly localized impulses or “wavelets”.
To fix the ideas, we assume that x(t) is a time se-
ries, although this is not necessary, as the DWT
can be applied to different kinds of signals. The in-
dividual wavelet functions are derived from a sin-
gle “mother wavelet”, ψ(t), through translation
and dilation of the mother wavelet. The mathe-
matical definition of the CWT is

cτ,ϕ =

∫

R

x(t)ψτ,ϕ(t) dt (1)

ψτ,ϕ(t) =
1√
2
ψ

(

t− τ

ϕ

)

(2)

where ψτ,ϕ is the mother wavelet for a given scal-
ing ϕ and translation τ , and cτ,ϕ is the wavelet
coefficient with respect to τ and ϕ.
If the wavelet basis is orthogonal, the inverse
wavelet transform can be used to reconstruct the
original time series:

x(t) =
∑

ϕ∈Z

∑

τ∈Z

cτ,ϕψτ,ϕ(t) (3)

The mother wavelet can be chosen among a variety
of wavelet families with different properties. For
more details we refer to the relevant literature, e.g.
Daubechies (1992); Percival & Walden (2000).

2.3.2. Discrete Wavelet Transform (DWT)

Astronomical data are usually in the form of
discrete time series. For the DWT the mother
wavelet is denoted by h(t), and the scaling func-
tion, also called “father wavelet”, is denoted by
g(t). The mother and father wavelets act as high-
pass and low-pass frequency filters, respectively.
They are related by

g(L− 1− t) = (−1)t h(t), (4)

where L is the filter length and corresponds to the
number of points in the time series x(t).
The one-level DWT is defined by

cA1(τ) = (x ∗ g)(t) ↓ 2 =
+∞
∑

t=−∞

x(t) g(2τ − t) (5)

cD1(τ) = (x∗h)(t) ↓ 2 =
+∞
∑

t=−∞

x(t) h(2τ − t) (6)

The cA1 time series approximates the underlying
low-frequency trend of x(t) (average coefficients),
while the cD1 time series represents a higher fre-
quency component (detail coefficients). They are
down-sampled by a factor of 2 (“↓ 2” in Equations
5 and 6) with respect to the original time series,
because of the Nyquist theorem.
It is possible to apply the g and h filters to the
cA1 time series, then obtaining new sets of coeffi-
cients, cA2 and cD2, and iterate the process. The
n-level DWT includes the cAn series of average co-
efficients, down-sampled by a factor of 2n, and n
series cD1-cDn of detail coefficients, representing
bands of higher frequencies. The original data can
be reconstructed by reversing the process:

x(t) = cAn(τ) g(−t+2τ)+

n
∑

i=1

+∞
∑

τ=−∞

(cDi h(−t+2τ))

(7)

2.3.3. Wavelet ICA

In this section we describe the wavelet ICA al-
gorithm, which is used in a variety of contexts,
such as medical sciences (e.g. La Foresta et al.
2006; Inuso et al. 2007; Mammone et al. 2012),
engineering (e.g. Lin & Zhang 2005), acoustic
(e.g. Moussaoui et al. 2006; Zhao et al. 2006), im-
age denoising (e.g. Karande & Talbar 2014), and
astrophysics (e.g. Waldmann 2014).

Be x = (x1, x2, . . . , xm)T the column vector of
observed signals. In this paper, xk are individ-
ual pixel time series, so-called pixel-light-curves,
which are mixtures of different source signals, as-
trophysical or instrumental in nature, and gaus-
sian noise. The formalisms adopted in this sub-
section is valid in a more general context, where
the xk can be any kind of mixed signals. ICA is a
linear transformation of the observed (mixed) sig-
nals which minimizes the mutual information to
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decorrelate the independent components:

x = As, s = Wx (8)

where s = (s1, s2, . . . , sm)T is the column vector
of the original source signals, A is the matrix of
mixing coefficients, and W = A−1. We refer the
reader to Waldmann (2012); Morello et al. (2014,
2015) for additional details.

The ability of ICA to decorrelate non-gaussian
signals is inherently limited to a low gaussian
noise amplitude relative to the non-gaussian sig-
nals. Wavelet ICA algorithms are designed to be
less sensitive to white noise compared to the sim-
ple ICA separation, described above. In wavelet
ICA algorithms, the DWT is applied to the ob-
served signals:

xk(t) → x̂k = (cAk,n, cDk,n, . . . , cDk,1) (9)

x(t) → x̂ = (x̂1(t), x̂2(t), . . . , x̂m(t))T (10)

The ICA separation is performed with the series
of coefficients:

ŝ = Ŵx̂ (11)

The independent components series of coefficients
are:

ŝl = (cAl,n, cDl,n, . . . , cDl,1) (12)

They can be converted into the time domain
through inverse DWT (Equation 7).

The DWT preliminarly separates the high-
frequency components from the low-frequency
trend, enhancing the ability of ICA to disentangle
the low-frequency independent components. This
step is particularly important in cases where the
gaussian noise is dominant. Additional processing
options/variants have been proposed in the liter-
ature to further improve the ICA performances
in specific contexts, e.g. coefficients’ threshold-
ing (Stein 1981; Donoho 1995), suppression of
some frequency ranges (Lin & Zhang 2005), tak-
ing individual levels as input to ICA (Inuso et al.
2007; Mammone et al. 2012). In this paper, we
aim to provide the most objective analysis of the
datasets, with minimal prior assumptions, hence
those variants are not considered. The impact of
those variants and other operations to the data
will be carefully investigated in future studies.

2.4. Detrending method, light-curve fit-

ting and error bars

In this Section we list the main steps of the
wavelet pixel-ICA method, followed by a more ac-
curate description and comments:

1. Selecting an array of pixels. The raw light-
curve is the sum of the individual pixel time
series within the selected array.

2. Removing outliers.

3. Subtracting the background from the raw
light-curve.

4. Computing the wavelet transforms of the
time series from the pixels within the se-
lected array, hereafter called pixel-light-
curves.

5. Performing ICA decomposition of the wavelet-
transformed pixel-light-curves.

6. Computing the inverse wavelet transforms of
the independent components.

7. Simultaneous fitting of the components
(except the eclipse one) and astrophysical
model on the raw light-curve.

8. Estimating parameter error bars.

2.4.1. Selecting the pixel-array

We use squared arrays of pixels as photomet-
ric apertures; in this paper, we tested 5×5 and
7×7 arrays with the stellar centroid at their cen-
ters. By default, all pixel-light-curves within the
selected array are also used to decorrelate the in-
strument systematics through ICA. Our previous
analyses of transit observations indicated the 5×5
and 7×7 arrays to be optimal choices, and, in gen-
eral, results were very little affected by the choice
of different arrays (Morello et al. 2014, 2015).

2.4.2. Outlier rejection

We flag and correct outliers in the flux time se-
ries. First, we calculate the standard deviations
of any set of five consecutive points and take the
median value as the representative standard devi-
ation. We define the expected value in one point
as the median of the four closest points, i.e. two
before and two after. Points differing from their
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expected values by more than five times the stan-
dard deviation are flagged as outliers. They are
then replaced with the mean value of the points
immediately before and after, or, in case of two
consecutive outliers, with a linear interpolation be-
tween the closest points which are not outliers. We
checked that the outliers removed after this pro-
cess are coincident with outliers that would have
been spotted by eye. They are less than 0.35% the
number of points in each observation.

2.4.3. Background subtraction

The background is estimated by taking the
mean flux over four arrays of pixels with the same
size of the selected array (5×5 or 7×7) near the
corners of the sub-array area. In Appendix A.3
we discuss how this preliminary step improves the
results. Here we anticipate that the impact on in-
dividual measurements of the eclipse depth is at
the level of∼10−5, well below the error bars. How-
ever, this difference might become significant when
averaging results from multiple observations, and
the error bars are reduced.

2.4.4. Wavelet transforms

The main novelty of the algorithm proposed
in this paper is that the pixel-light-curves are
wavelet-transformed before performing the ICA
separation. More specifically, we adopt one-
level DWT with mother wavelet Daubechies-4
(Daubechies 1992). We found that different
choices of the mother wavelet, among different
families and numbers, lead to exactly the same re-
sults, and higher-level DWTs are not useful. We
also investigated the effect of binning the time
series (see Appendix A.1).

2.4.5. ICA decomposition

It is performed on the wavelet-transformed
pixel-light-curves (see Equation 11).

2.4.6. Inverse wavelet transforms

The independent components are transformed
in the time domain through inverse DWTs (see
Equation 7).

2.4.7. MCMC fitting

The raw light-curves are linear combinations of
the independent components. One of the compo-
nents is the eclipse signal (with some residual sys-
tematics), other components may be instrumental
systematics and/or other astrophysical signals. In-
stead of fitting an eclipse model to the eclipse com-
ponent, more robust estimates of the eclipse pa-
rameters are obtained by fitting a linear combina-
tion of the eclipse model and the non-eclipse com-
ponents, hereafter full models, to the raw light-
curves. The free parameters of the eclipse model
are fitted together with the scaling coefficients
of the independent components. First estimates
of the parameters and scaling coefficients are ob-
tained through a Nelder-Mead optimization algo-
rithm (Lagarias et al. 1998); they are then used as
optimal starting points for an Adaptive Metropo-
lis algorithm with delayed rejection (Haario et al.
2006), generating chains of 300,000 values. The
output chains are samples of the posterior (gaus-
sian) distributions. We adopt the mean values of
the chains as final best estimates of the param-
eters, and the standard deviations as zero-order
error bars, σpar,0.

2.4.8. Final error bars

The final parameter error bars are:

σpar = σpar,0

√

σ2
0 + σ2

ICA

σ2
0

(13)

σ2
0 is the sampled likelihood variance, approxi-

mately equal to the variance of the residuals for
the best transit model; σ2

ICA is a term accounting
for the potential bias of the components obtained
with ICA.

σ2
ICA =

∑

j

o2jISRj (14)

where ISR is the so-called Interference-to-Signal-
Ratio matrix, and oj are the coefficients of the
non-eclipse components. The term relative to the
goodness of the fit of the components does not
appear in Equation 14, as it is automatically in-
cluded in σ0 when the components’ coefficients
and astrophysical parameters are fitted simulta-
neously.
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Fig. 2.— Left panels: (blue) raw light-curves obtained from 5×5 array of pixels. Right panels: (blue)
detrended eclipse light-curves obtained with wavelet pixel-ICA method, and (red) best eclipse models. All
the light-curves are binned over 32 frames, i.e. ∼64 s.
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Fig. 3.— Top panel: (green circles) individual best eclipse depth measurements obtained in this work , and
(red triangles) results from Wong et al. (2014). Bottom panel: the same for individual measurements of the
phase constant.
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2.5. Results

Figure 2 shows the raw light-curves for the
twelve observations, the correspondent detrended
eclipses and best models, obtained using the 5×5
array and binning over 32 frames, i.e. ∼64 s.
The individual measurements of eclipse depth and
phase constant are reported in Figure 3 and Ta-
ble 3. The results from all epochs are consistent
within the error bars, suggesting the lack of any
detectable astrophysical variability for this sys-
tem, and residual instrument variability. By tak-
ing the weighted means of the individual measure-
ments, we obtain global best estimates of (1.57
± 0.03)×10−3 for the eclipse depth, and (4.4 ±
2.0)×10−4 days−1 for the phase constant.

3. Discussion

3.1. Reduced chi-squared tests

The underlying assumption for the weighted
mean to be a valid parameter estimate is that
individual measurements of that parameter are
normally distributed around the same mean value
with variances σ2

i , and there are no systematic er-
rors. The reduced chi-squared can be used to test,
in part, this hypothesis:

χ2
0 =

1

n− k

n
∑

i=1

(xi − x̄)2

σ2
i

(15)

where xi ± σi are the individual measurements, x̄
is the weighted mean value, n =12 is the num-
ber of measurements, and k =1 is the number of
calculated parameters. Ideally, if the assumption
is valid, we should expect χ2

0 .1. Convention-
ally, the hypotesis is rejected if χ2

0 > Mn,k, where
Mn,k is the critical value corresponding to a prob-
ability of less than 5% for the hypothesis to be
valid. We found χ2

0 =0.42 for the eclipse depth,
and χ2

0 =1.0 for the phase constant, confirming
the non-detection of any inter-epoch variability.
χ2
0 =0.42 may suggest that the error bars for the

eclipse depth are over-estimated, but this is not to-
tally surprising, given that we actively increased
them to account for potential uncorrected system-
atics and biases in the detrending method. Note
that the reduced chi-squared tests whether the ac-
tual dispersion in the measurements is consistent
within their error bars, but it is not sensitive to a
uniform bias for all measurements, e.g. a constant

shift. Hence, it is not sufficient alone to justify
the use of the weighted mean as global estimate
of a parameter. Additional tests, reported in the
Appendices, show that the weighted mean result
is very stable for the eclipse depth. The phase
constant appears to be more dependent on cer-
tain detrending options, in particular background
subtraction. In this case, the adopted weighted
mean error bar of 2.0×10−4 days−1 is a lower limit,
valid under some caveats. In the worst-case sce-
nario, the maximum error bar, calculated without
scaling when combining multiple measurements, is
7×10−4 days−1.

3.2. Comparison with a previous analysis

of the same observations

Our results are consistent within 1 σ with
the ones from a previous analysis reported in
Wong et al. (2014) (see Figures 3 and 4). Our er-
ror bars are generally larger by a factor 0.8-1.5 for
the eclipse depth (smaller in 1 case) and 1.0-2.0
for the phase constant compared to the ones in
the literature. The factors for the weighted mean
eclipse depth and phase constant are 0.9 and 1.4,
respectively. Slightly larger error bars are a worth-
while trade-off for much higher objectivity, which
derives from the lack of assumptions about the ori-
gin of instrument systematics and their functional
forms in our detrending method. We also note
that, despite the larger nominal error bars, the
dispersions in our best parameter estimates are
slightly smaller than the ones calculated from the
results reported in Wong et al. (2014) (see Table
4).

The reduced chi-squared values inferred from
their individual parameter estimates are χ2

0 =0.86
for the eclipse depth, and χ2

0 =4.3 for the phase
constant. While the first χ2

0 value is consistent
with the hypothesis of a constant transit depth
within the quoted error bars, the second χ2

0 value
indicates that the analogous hypothesis for the
phase constant can be rejected (less than 0.1%
probability of being true). This may suggest ei-
ther that they were able to detect some astrophys-
ical variability of the phase curve’s slope, or that
their individual error bars are under-estimated by
a factor ∼2. Given that the astrophysical slope is
degenerate with other instrumental trends, such as
long-term position drift of the telescope and pos-
sible thermal heating, it is possible that their in-
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dividual error bars do not fully accounts for these
degeneracies, as the authors themselves state. If
this is the case, we observe that their final error
bar on the phase constant, derived by a joint fit
of all eclipses, could be equally under-estimated,
because it is not guaranteed that residual system-
atic errors cancel out over multiple observations
as if they were random errors. Note that the joint
fit approach is theoretically valid under the same
assumptions for which the weighted mean is valid,
and the two approaches are expected to lead to
very similar results (we checked that this happens
in this case). In conclusion, our reanalysis con-
firms the results reported in Wong et al. (2014) for
the eclipse depth, and relative inter-epoch variabil-
ity, but not the 4σ detection of a non-flat phase
curve’s slope during the eclipse, as larger error
bars are needed to account for the possible resid-
ual systematics.

4. Conclusions

We have applied a blind signal-source separa-
tion method to analyze twelve photometric obser-
vations of the eclipse of the exoplanet XO3b ob-
tained with Warm Spitzer/IRAC at 4.5 µm. The
method is an evolution of the pixel-ICA method
proposed and successfully used by our team to an-
alyze real and synthetic transit observations. By
adding a wavelet transform of the time series, we
extend the applicability of pixel-ICA to detrend
low-S/N observations with instrumental systemat-
ics stronger than the astrophysical signal. Wavelet
pixel-ICA results are consistent within 1 σ with
results reported in the literature. They also have
smaller dispersions in the eclipse parameters mea-
surements, even including the most recent results
that appeared on the arXiv while this paper was
under review. While the individual error bars are
usually more conservative, as they fully accounts
for the possible uncertainties, the final error bar
on the eclipse depth is equal or smaller than the
ones obtained with other methods discussed in the
literature.

No significant inter-epoch variations are de-
tected over twelve repeated observations in 3 years
interval. This is convincing evidence that, with
appropriate data detrending methods, transit and
eclipse measurements based on Spitzer/IRAC ob-
servations can achieve this level of precision and

reproducibility, and therefore are useful to char-
acterize the atmospheres of exoplanets. Also, the
lack of any detectable astrophysical variability, for
the XO3b system, allows to combine multiple ob-
servations to increase the accuracy in stellar and
planetary parameters.

This work is based on observations made with
the Spitzer Space Telescope, which is operated by
the Jet Propulsion Laboratory, California Insti-
tute of Technology under a contract with NASA.
This research has made use of the NASA/ IPAC
Infrared Science Archive, which is operated by
the Jet Propulsion Laboratory, California Insti-
tute of Technology, under contract with the Na-
tional Aeronautics and Space Administration. G.
Morello acknowledges UCL Perren/Impact schol-
arship (CJ4M/CJ0T) and the Royal Astronomical
Society. I. P. Waldmann is funded by the Euro-
pean Research Council Grant “Exolights”, STFC
and RCUK. G. Tinetti is funded by the Royal So-
ciety.
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Table 3: Individual best parameters results obtained in this work.

Obs. Number Depth (10−3) 1 σ error Phase constant (10−4 days−1) 1σ error
1 1.66 0.11 -6 7
2 1.72 0.11 6 8
3 1.54 0.10 8 5
4 1.56 0.10 9 7
5 1.52 0.10 -9 7
6 1.56 0.13 2 10
7 1.64 0.11 5 10
8 1.57 0.12 0 11
9 1.54 0.11 0 5
10 1.52 0.10 11 8
11 1.50 0.12 16 7
12 1.48 0.12 8 6

This work Wong et al. 2014
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Fig. 4.— Left panel: (green circle) best global eclipse depth estimate obtained in this work, and (red triangle)
in Wong et al. (2014). Right panel: the same for the global phase constant.

Table 4: Weighted mean parameter results, dispersions and reduced chi squared values obtained in this paper
and reported in Wong et al. (2014).

Eclipse depth This work Wong et al. 2014

Best estimate (1.57 ± 0.03)×10−3 1.580+0.033
−0.039×10−3

Dispersion 7.2×10−5 8.4×10−5

χ2
0 0.42 0.86

Phase constant (days−1) This work Wong et al. 2014

Best estimate (4.4 ± 2.0)×10−4 6.0+1.3
−1.6×10−4

Dispersion 7.0×10−4 11.3×10−4

χ2
0 1.0 4.3
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A. Testing the robustness of results

A.1. The effect of binning

Given the large number of frames (14,912) for each observation, binning data is very useful to decrease
the computational time needed to run the MCMCs for the eclipse parameters and scaling coefficients for the
independent components (see Section 2.4.7). Some authors suggest that an optimal choice of the binning
size can be useful to reduce the noise on the timescale of interest (Deming et al. 2015; Kammer et al. 2015),
provided that the theoretical curve is similarly binned as necessary to eliminate bias, and the bin size is not
too long to cause significant loss of astrophysical information (Kipping 2010).

An additional choice for the pixel-ICA algorithm is whether to bin the pixel time series prior the ICA
separation, or to bin the independent components extracted from unbinned pixel time series. We found
that the two options are almost equivalent, as the eclipse signals obtained after removing the systematic
components from the raw light-curve are identical (discrepancies 1-2 order of magnitudes smaller than the
fitting residuals), except in cases for which the unbinned ICA separation fails to retrieve an eclipse component.
It is worth to note that for the unbinned case, the amplitude of the total noise plus systematics is higher
than the the eclipse depth. Thus we decided to bin the individual pixel-light-curves prior ICA retrieval.

We compare the results obtained for all the observations with bin sizes of 32 and 64 frames, i.e. 64 and
128 s, respectively. First, we test the gaussianity of fitting residuals by calculating their root mean square
(rms) as a function of the bin size, b. If fitting residuals are white noise, the rms would scale as 1/

√
b. Figure

5 shows that, in both cases, the rms of fitting residuals slightly deviates from the expected behaviour of
white noise. Those deviations are smaller for the analysis with bin size of 32 frames. The parameter results
obtained with the two binning choices are all consistent within 0.5 σ, and in average within 0.16 σ (see also
Figures 6 and 12). Both the error bars and the overall dispersions are smaller for the cases with bin size of
32 frames by factors of ∼1.4. We consider the results obtained with bin size of 32 frames as our best results.
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Fig. 5.— Top panel: Root mean square of residuals as a function of bin size for (red line) gaussian white
noise, (cyan dots) individual observations analyzed with bin size of 32 frames, and (blue circles) values
averaged over the twelve observations. Bottom panel: the same for individual observations analyzed with
bin size of 64 frames.
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Fig. 6.— Top panel: individual eclipse depth measurements obtained with 5×5 array, background subtrac-
tion, and (dark green, full circles) binning over 32 frames, and (light green, empty circles) binning over 64
frames. Bottom panel: the same for individual measurements of the phase constant.
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A.2. Specific wavelet ICA options

The DWT of a time series is specified by the choice of a mother wavelet and the number of levels (see
Section 2.3.2). We adopted a Daubechies-4 mother wavelet, and one-level decomposition. For a few obser-
vations we tested multiple choices of the mother wavelet, among the Daubechies, Biorthogonal, Symlets and
Coiflets families, and number of decomposition levels. We refer to Daubechies (1992); Percival & Walden
(2000) for details about the wavelet properties. We found that different choices of the mother wavelet are
not significant, e.g. discrepancies in the eclipse signals are 1-2 orders of magnitudes smaller than the fitting
residuals, while level decompositions higher than 1 usually appear to make impossible for ICA to retrieve
the eclipse. The difficulties with higher-level DWTs may arise from sub-sampling the average coefficients,
and the fact that some of the low-frequency non-gaussian components may be smeared over higher levels of
detail coefficients.

A.3. About background subtraction

Uncorrected background may bias the normalized amplitude of the eclipse depth, as well as the phase
curve’s slope, if background is not constant over time. The typical morphology of a background time series
is either a constant function or a slow monotonic drift. The lack of a distinct temporal structure and
non-gaussianity makes it difficult to disentangle with ICA, as well as other statistical methods. For this
reason, we performed ad hoc background subtractions before ICA detrending (see Section 2.4.3). In this
Section, we discuss the impact of this step in the analyses, by comparing results obtained with and without
background subtraction. These are also used to infer the maximum parameter errors that can be caused by
an inappropriate background correction.

Figure 7 shows an example of background time series estimated for one observation. The measured mean
background level slightly varies from one observation to the other, but it is always less than 0.6% of the total
flux from the system, hence potentially affecting the eclipse depth by less than 10−5, well below the error
bars. Background is also not constant during one observation: it has a small ramp for the first ∼20 minutes
(except for the eclipses extracted from longer observations), then continues to slowly increase.
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Fig. 7.— Example of background time series binned over 32 frames.

Figure 8 shows the parameter results obtained with and without background subtraction. The greatest
discrepancies are observed for the phase constant, which is systematically higher by 2-20×10−4 days−1 for
the cases without background subtraction, suggesting the presence of uncorrected systematics. It is quite
remarkable that our individual error bars automatically account for those systematics, but, given their non-
random nature, the weighted mean error bars for the phase constant cannot be compared. It is difficult to
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prove the superiority of the results obtained with background subtraction over the others, as the residuals
between the full models and the relevant raw light-curves (see Section 2.4.7) are very similar for the two
cases, e.g. similar amplitudes and time correlations, leading to similar error bars. Slightly smaller parameter
dispersions are obtained with background subtraction rather than without, in particular 7×10−5 vs 9×10−5

for the eclipse depth, and 7×10−4 vs 8×10−4 days−1 for the phase constant. The higher mean value of
the phase constant obtained without background subtraction, i.e. ∼13×10−4 days−1, appears to be less
likely, as it would require a higher than expected increase in the atmospheric temperature due to stellar
irradiation during the eclipse, and/or strong horizontal disomogeneities either in temperature, chemical
composition and/or clouds (Cowan & Agol 2011; Kataria et al. 2013; Agúndez et al. 2014). If we assume
that systematics are removed with background subtraction, we can take the weigthed mean as best estimate
for the phase constant.

The discrepancies between eclipse depth measurements with and without background subtraction are
in the range 10−5-10−4, and, in average, the eclipse depth is smaller by ∼4×10−5 for the case without
background subtraction. Although this is more than the 10−5 difference expected from the mean background
level relative to the mean stellar flux (see discussion in the previous paragraph), in this case, the two weighted
means are consistent within 0.5 σ. We found that the main effect of background on the eclipse depth is due
to correlations between the measured eclipse depth at the eclipse center and the phase constant, in terms
of Pearson correlation coefficients between the relevant MCMCs. The details of this study are beyond the
scope of this paper.
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Fig. 8.— Top panel: individual eclipse depth measurements obtained with 5×5 array, time series binned over
32 frames (green circles) with background subtraction, and (blue circles) without background subtraction.
Bottom panel: the same for individual measurements of the phase constant.
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A.4. Using different arrays of pixels

In previous studies, we found that, for high-S/N transit observations, pixel-ICA performances are only
slightly dependent on the choice of the array (Morello et al. 2014, 2015). The 3×3 array is too narrow
compared to the Spitzer/IRAC Point Spread Function, and for this reason, it is not photometrically sta-
ble (although it usually leads to consistent results). Larger arrays are more photometrically stable, but
they include more noise. Also, noisier pixel-light-curves, appear to increase the uncertainties in the ICA
decomposition (σICA, see Section 2.4.8), so that the smallest error bars were usually obtained using the 5×5
array.

In this work, we analyzed all datasets with two different choices of the pixel-array, i.e. 5×5 and 7×7. For
the analyses with the 7×7 array, we only adopted the 64 frames bin size, for which the MCMC fitting is
faster. Figure 9 compares the results obtained with the two different arrays and the same bin size. The two
sets of results are consistent well within 1 σ, but error bars obtained with the 7×7 array are 1-1.5 times larger
than the ones obtained with the 5×5 array, despite the residuals in the fits are similar and often smaller for
the 7×7 cases. This confirms the conclusions obtained from previous analyses, in particular:

1. the 5×5 array leads to smaller error bars than other squared arrays of pixels;

2. parameter results from different arrays are consistent well within 1 σ.

In this case, the choice of a less optimal array increases the error bars more significantly than in our previous
analyses, most likely because of the lower S/N of the observations analyzed here.

Figure 10 compares the results obtained with and without background subtraction for the case of 7×7
array. The same considerations discussed in Appendix A.3 for the 5×5 array are valid for the 7×7 array.
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Fig. 9.— Top panel: individual eclipse depth measurements obtained with (green circles) 5×5 array, and
(brown squares) 7×7 array; both are obtained with time series binned over 64 frames, and background
subtraction. Bottom panel: the same for individual measurements of the phase constant.
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Fig. 10.— Top panel: individual eclipse depth measurements obtained with 7×7 array, time series binned
over 64 frames (brown squares) with background subtraction, and (purple squares) without background
subtraction. Bottom panel: the same for individual measurements of the phase constant.
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A.5. Breaking degeneracy with the phase constant

At the end of Appendix A.3 we revealed the existence of a correlation between the eclipse depth and phase
constant parameter, which is stronger for data with a higher slope, such as the cases without background
subtraction. This may affect the eclipse depth estimate in case of residual systematics with a slope, e.g.
uncorrected background. In our analyses, the maximum bias on the eclipse depth due to correlations with
this kind of systematics is ∼4×10−5, provided the systematic slope is not larger than our individual error
bars.

Here we test the consequences of adopting zero phase constant while fitting for the eclipse depth. This
is equivalent to the assumption that the phase curve is flat before and after the eclipse, and the slope is
entirely due to instrumental effects. Compared to the cases with the phase constant as free parameter,
fitting residuals with zero phase constant are not significantly larger. Figure 11 compares results for the
eclipse depth with free and zero phase constant, with and without background subtraction. The weighted
mean results are reported in Figure 12. We note that differences in eclipse depth measurements with and
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Fig. 11.— Individual eclipse depth measurements obtained with 5×5 array, time series binned over 32 frames
(green circles) with fitted phase constant and background subtraction, (blue circles) with fitted phase constant
and without background subtraction, (red ‘x’) with zero phase constant and background subtraction, and
(grey ‘x’) with zero phase constant and without background subtraction.

without background subtraction are smaller for the zero phase constant models, suggesting that eclipse depth
measured with zero phase constant models are less affected by residual systematics with a slope. Free phase
constant models are valid in a more general context, as, differently from the zero phase constant models, they
approximate planet’s flux variability during the observation. The consistency between the results obtained
with the two classes of models indicates that, in this case, planet’s flux variability in the proximity of the
eclipse is smaller than the error bars.

A.6. Robustness of the eclipse depth measurement

Figure 12 reports the weighted mean eclipse depth estimated for all the tests discussed in the Appendices.
Note that they are mutually consistent at the 0.5 σ level, and the range is 6×10−5.
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background subtraction, bin over 32 frames, and zero phase constant.

22



REFERENCES

Agúndez, M., Parmentier, V., Venot, O., Hersant,
F., & Selsis, F. 2014, A&A, 564, A73

Ballard, S., Charbonneau, D., Deming, D., Knut-
son, H. A., Christiansen, J. L., Holman, M. J.,
Fabrycky, D., Seager, S., & A’Hearn, M. F.,
2010, PASP, 122, 1341

Ballerini, P., Micela, G., Lanza, A. F., & Pagano,
I. 2012, A&A, 539, A140

Beaulieu, J. P., Carey, S., Ribas, I., & Tinetti, G.
2008, ApJ, 677, 1343

Beaulieu, J. P., Tinetti, G., Kipping, D. M., Ribas,
I., Barber, R. J., Cho, J. Y. K., Polichtchouk, I.,
Tennyson, J., Yurchenko, S. N., Griffith, C. A.,
Batista, V., Waldmann, I. P., Miller, S., Carey,
S., Mousis, O., Fossey, S. J., & Aylward, A.
2011, ApJ, 731, 16

Berta, Z. K., Charbonneau, D., Bean, J., Irwin,
J., Burke, C. J., Désert, J. M., Nutzman, P., &
Falco, E. E. 2011, ApJ, 736, 12

Brown, T. M. 2001, ApJ, 553, 1006

Charbonneau, D., Brown, T. M., Noyes, R. W., &
Gilliland, R. L. 2002, ApJ, 568, 377

Charbonneau, D., Allen, L. E., Megeath, S.
T., Torres, G., Alonso, R., Brown, T. M.,
Gilliland, R. L., Latham, D. W., Mandushev,
G., O’Donovan, F. T., & Sozzetti, A. 2005,
ApJ, 626, 523

Cowan, N. B., & Agol, E. 2011, ApJ, 726, 82

Cowan, N. B., Machalek, P., Croll, B., Shekhtman,
L. M., Burrows, A., Deming, D., Green, T., &
Hora, J. L. 2012, ApJ, 747, 82

Daubechies, I. 1992, SIAM, Ten Lectures on
wavelets, ISBN: 978-0-898712-74-2

Deming, D., Wilkins, A., McCullough, P., Bur-
rows, A., Fortney, J. J., Agol, E., Dobbs-Dixon,
I., Madhusudhan, N., Crouzet, N., Désert, J.
M., Gilliland, R. L., Haynes, K., Knutson, H.
A., Line, M., Magic, Z., Mandell, A. M., Ran-
jan, S., Charbonneau, D., Clampin, M., Seager,
S., & Showman, A. P. 2013, ApJ, 774, 95

Deming, D., Knutson, H. A., Kammer, J., Fulton,
B. J., Ingalls, J., Carey, S., Burrows, A., Fort-
ney, J. J., Todorov, K., Agol, E., Cowan, N. B.,
Désert, J. M., Fraine, J., Langton, J., Morley,
C., & Showman, A. P. 2015, ApJ, 805, 132

Désert, J. M., Lecavelier des Etangs, A., Hébrard,
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