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Age-associated changes in  
rich-club organisation in autistic 
and neurotypical human brains
Takamitsu Watanabe1 & Geraint Rees1,2

Macroscopic structural networks in the human brain have a rich-club architecture comprising both 
highly inter-connected central regions and sparsely connected peripheral regions. Recent studies 
show that disruption of this functionally efficient organisation is associated with several psychiatric 
disorders. However, despite increasing attention to this network property, whether age-associated 
changes in rich-club organisation occur during human adolescence remains unclear. Here, analysing 
a publicly shared diffusion tensor imaging dataset, we found that, during adolescence, brains of 
typically developing (TD) individuals showed increases in rich-club organisation and inferred network 
functionality, whereas individuals with autism spectrum disorders (ASD) did not. These differences 
between TD and ASD groups were statistically significant for both structural and functional 
properties. Moreover, this typical age-related changes in rich-club organisation were characterised 
by progressive involvement of the right anterior insula. In contrast, in ASD individuals, did not show 
typical increases in grey matter volume, and this relative anatomical immaturity was correlated with 
the severity of ASD social symptoms. These results provide evidence that rich-club architecture is 
one of the bases of functionally efficient brain networks underpinning complex cognitive functions in 
adult human brains. Furthermore, our findings suggest that immature rich-club organisation might 
be associated with some neurodevelopmental disorders.

Large-scale structural networks in the human brain have so-called rich-club organisation, with densely 
inter-connected central regions but sparsely connected peripheral regions1–4. This architecture, which 
depends on long-distance connections, is anatomically costly4,5, but enables remote brain regions to 
communicate in an efficient and fast fashion, and thus is suitable for facilitation and integration of a 
wide range of complex information4,6–8. Recent work has suggested that this topological property could 
be altered in individuals with schizophrenia9,10, pre-adolescent children with neurodevelopmental disor-
ders11, adults with experiences of maltreatment during childhood12, and individuals with Huntington’s 
disease13. A recent study has reported significant differences in the rich-club property of binary ana-
tomical brain networks between teenagers and adults14, and there are similar differences in resting-state 
functional networks between pre-adolescent children and adults3.

Despite its potential importance for normal brain function, the age-associated trajectory of rich-club 
organisation during adolescence remains unclear. During the period, whole brain white matter volume 
increases while grey matter volume in several brain areas gradually decreases15–17. Alongside such mat-
uration of white matter, both structural properties and functional performance of brain networks also 
change in the late teens14,18–20. However, the effect of such anatomical changes during adolescence on the 
rich-club structure is not fully understood.

Here, reflecting the functional efficiency of rich-club topology4,6, we hypothesised that brain networks 
in typically developing humans increase their rich-club properties during adolescence, and consequently 
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develop efficient information processing. In addition, based on several theories describing autism as 
impairment of central processing of complex information21–23, we also hypothesised that rich-club struc-
ture might not be enhanced in such a way in autistic brain networks. We tested these hypotheses by 
assessing age-related changes in rich-club structure in typically developing (TD) adolescent brains and 
comparing the changes with those seen in brain networks of individuals with autism spectrum disorder 
(ASD). We also examined whether such age-associated alteration in rich-club architecture affected hypo-
thetical measures of network functionality such as global efficiency10,19,20,24 and synchronisation cost25 in 
the two groups. Furthermore, to assess the anatomical importance of the network architecture in typical 
brain changes during the adolescence, we also compared age-related alternations in grey matter volumes 
(GMV) of rich-club regions between ASD and TD individuals. These analyses were performed based on 
publicly shared datasets of whole-brain structural connections20,26 and anatomical MRI images27 of ASD 
and age-/sex-/IQ-matched TD individuals.

Results
Younger v older individuals. Using datasets of undirected weighted anatomical connectivity matri-
ces20,26 between 264 regions of interest (ROIs)28, we first calculated normalised weighted rich-club coef-
ficients, Φ ( )knorm

w , for each individual (Fig. 1a), and compared them between younger (9–13 yo) and older 
individuals (13–18 yo) (Fig. 1b,c, Supplementary Fig. 1, see Methods). In TD group, the rich-club coef-
ficients at high degrees (k =  43, 47, 48) were significantly larger in the older individuals than in the 
younger individuals (t34 >  2.5, PFDR <  0.05 in two-sample t tests). In contrast, such differences were not 
observed in the age-/sex-/IQ-matched ASD group at any degree (t43 <  1.2, P >  0.23).

This significant difference observed in TD group was robust against iteration of the age threshold 
dividing the group into younger and older individuals (PFDR <  0.05 for iteration from 12 yo to 16 yo; 
12 yo, t34 >  2.2 at k =  42, 43; 14 yo, t34 >  2.6 at k =  41–43, 46–48; 15 yo, t34 >  2.8 at k =  38–49; 16 yo, 
t34 >  3.7 at k =  42–49). Such difference was not seen in the ASD group for any of these age thresholds. 
There were no significant differences in Φ ( )knorm

w  in the younger participants between TD and ASD 
groups at any degree (P >  0.6 in two-sample t-tests).

Correlation between age and rich-club topology. We then examined age-related changes in the 
rich-club property, which was quantified by averaging rich-club coefficients among the 30 largest degrees, 

Figure 1. (a) Normalised rich-club coefficients for all individuals were sorted by age. TD, typically 
developing individuals; ASD, individuals with autism spectrum disorders. (b) In TD and ASD groups, the 
normalised rich-club coefficients were consistently > 1 when the number of connections (degree, k) was 
large enough, suggesting rich-club organisation. In TD group, the older (13–18yo) had more apparent rich-
club topology than the younger (9–13yo). In ASD group, no such difference was observed. Error bars, std. 
*PFDR <  0.05 in k =  43, 47, 48. (c) Red circles represent rich-club regions, whereas blue circles show non-
rich-club regions. The rich-club regions were defined as regions with top 30 degrees (i.e., the number of 
connections). For presentation purpose, the maps contain 3% most weighted connections (green lines). Ant, 
anterior; Rt, right.
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Φnorm
w

top30
 (see Methods). In the TD group, Φnorm

w
top30

 showed a significantly positive correlation with 
age (r =  0.49, P =  0.0025), whereas there was no such correlation in ASD group (r =  –0.17, P =  0.24; 
Fig. 2a). The correlation observed in the TD group was significantly larger than that in the ASD group 
(z =  3.0, P =  0.002).

These correlations between age and rich-club topology were also evaluated using degree-controlled 
rich-club coefficient, Φ / knorm

w
top30

, and weight-controlled rich-club coefficient, Φ / Wnorm
w

top30
, 

because age-related changes in white matter volumes were repeatedly reported14,29–32 (see also Methods 
and Supplementary Results). Consequently, we confirmed that the correlation patterns were qualitatively 
preserved in both types of rich-club coefficients (Fig. 2b,c).

In addition, this observation was robust even when we iterated the number of the top degrees from 
20 to 40 (Fig. 2d). Moreover, this correlation pattern was essentially replicated when the rich-club prop-
erty was quantified after excluding relatively noisy Φ ( )knorm

w  estimations seen at larger degrees 
(Supplementary Fig. 2). These results suggest that, in older TD individuals, high-degree rich-club regions 
tend to be more densely inter-connected, whilst brain networks of ASD groups are relatively stable in 
this point.

Anatomical cost and network functionality. We then tested whether this age-associated enhance-
ment of rich-club property brought an increase in anatomical cost and an improvement in functionality 
of brain networks.

Figure 2. (a–c) In TD group (red circles), the average normalised rich-club coefficient among top 30 
degrees was significantly correlated with age, whereas no such correlation was found in ASD group (blue 
crosses). There was a significant difference in the correlation between the two groups (P =  0.002) (panel 
a) This dissociable relationship with age was consistently observed when the rich-club coefficients were 
corrected by the average weights across region-pair (panel b) or the average number of connections (panel 
c) **P <  0.01. (d) The relationship between age and rich-club coefficient was consistently seen even when the 
number of top degrees was varied from 20 to 40 by one. Throughout the iteration, we observed significant 
difference in all types of the correlation coefficient between TD (red) and ASD (blue) groups (P <  0.05). 
Thick lines, correlations between age and average normalized rich-club coefficient; thin lines, correlations 
between age and weight-corrected rich-club coefficient; dashed lines, correlations between age and degree-
corrected rich-club coefficient.
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The anatomical cost was quantified as the average of unweighted anatomical distance between con-
nected ROIs and the average of weighed distance between them (see Methods). In both indices, there 
was no significant difference in the age-related changes between TD and ASD groups (Fig. 3a). However, 
both types of the anatomical cost were significantly correlated with age in TD group (average unweighted 
distance: r =  0.41, P =  0.011, average weighted distance: r =  0.40, P =  0.014).

Two indices for the network functionality showed more dissociable patterns between TD and ASD 
groups: the global efficiency9,10,19,20,24 was positively correlated with age in TD groups but not in ASD 
groups (TD, r =  0.43, P =  0.009; ASD, r =  0.005, P =  0.97; TD v ASD, z =  2.0, P =  0.045; Fig.  3b); the 
synchronisation cost25 was negatively correlated with age only in TD (TD, r =  –0.53, P =  0.007; ASD, 
r =  0.09, P =  0.51; TD v ASD: z =  2.9, P =  0.003; Fig. 3c).

Furthermore, these observations seen in the weighted networks were qualitatively replicated in anal-
yses of binary unweighted networks (Supplementary Fig. 3, Supplementary Methods).

As a whole, these results suggest that in TD individuals, progressive enhancement of rich-club prop-
erty is accompanied by changes of their brain networks into an anatomically costly but functionally 
efficient form, whereas such a transformation was not apparent in ASD individuals.

Locational distribution of rich-club regions. Next, we compared locational distributions of the 
rich-club regions with top 30 degrees between TD and ASD groups. The two groups shared the 10 
regions that most frequently appeared in the rich club (Fig. 4a). Most of the 10 regions were found in 
the basal ganglia, and only insula was one of the cortical areas with a top 30 degree.

However, the temporal patterns of such ROIs appearing in the rich club were not the same between 
the two groups. Older TD individuals seemed to have more anterior regions in their rich clubs (Fig. 4b), 
whereas older ASD individuals appeared to have more posterior rich-club regions (Fig.  4c). This 

Figure 3. (a) In both simple anatomical distance (left panel) and weighted distance (right panel) between 
connected regions, correlations between age and the anatomical costs were significant in TD, whereas those 
were not in ASD individuals. (b) In TD group, global efficiency of the network was positively correlated with 
age, whereas no correlation was found in ASD group. There was a significant difference in the correlation 
between the two groups (P =  0.04). (c) Synchronisation cost was negatively correlated with age only in TD 
group. There was a significant difference in the correlation between TD and ASD groups (P =  0.005).
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Figure 4. (a) Brain regions forming rich club. The matrices show patterns of brain regions’ appearing 
in rich club. Each column represents each individual: a white cell indicates that the region was included 
in rich-club regions with top 30 degrees; a grey cell indicates the opposite. The displayed regions are the 
10 regions that most frequently appeared in rich club for each group. TD and ASD groups shared the 10 
representative regions, though their appearance timing of these regions was different. Rt, right; Lt, left; 
Ant, anterior; Post, posterior; Mid, middle. (b,c) Distribution of rich-club regions. The red circles show 
the locations of rich-club regions with top 30 degrees of three age groups (Younger: 9 ≤  age <  12; Middle: 
12 ≤  age <  15; Older: 15 ≤  age ≤  18). The size of the circle represents the degree of each region. (d,e) 
Relationship between age and the rich-club centre and radius. In TD group, Y coordinate of the centre of 
rich club was positively correlated with age. The correlation was significantly different from that observed in 
ASD group (P =  0.0006). Such age-associated relationship was not found in X or Z coordinate (panel d), or 
the radius of rich club (panel e). (f,g) Robustness against the definition of rich-club regions. The correlations 
between age and locational distribution of rich club were robust against iterating the number of top degrees, 
which resulted in varying of the number of rich-club regions. Especially, the correlation between age and Y 
coordinate of the rich club centre was consistently observed in TD group, and its difference between TD and 
ASD groups were also coherently significant (P <  0.05; thick lines in panel f).
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observation was supported by correlations between age and the locational information of the rich club 
(Fig.  4d,e): among X, Y, Z coordinates of the centre and the radius of rich club, only Y coordinate in 
TD groups was positively correlated with age, whereas that in ASD group showed a moderately negative 
correlation with age (TD, r =  0.50. P =  0.0018; ASD, r =  –0.24, P =  0.10; TD v ASD: z =  3.4, P =  0.0006). 
These correlation patterns were consistently observed even when we iterated the number of top degrees 
and varied the range of rich-club regions (Fig. 4f,g).

Moreover, this differential antero-posterior change was confirmed by evaluating the association 
between Y coordinates of the rich-club regions and the average ages of individuals whose rich-club 
structure (i.e., ROIs with top 30 degrees) contained the given brain regions. In TD groups, more ante-
rior brain regions tended to appear in rich club when individuals were older (r =  0.35, P =  0.04; Fig. 5a), 
whereas more posterior regions were likely to appear in rich club when ASD individuals were older 
(r =  –0.43, P =  0.001; Fig. 5b). In particular, the right anterior insula (AI) seemed to largely contribute 
to this postero-anterior locational change of rich club in TD individuals.

Anatomical examination of the specificity of right AI. This specific association of right AI with 
typical brain changes during adolescence was examined through evaluation of grey matter volume (GMV) 
of rich-club regions. This GMV analysis used a different anatomical MRI dataset27 because the original 
dataset for rich-club analysis did not contain the corresponding MRI data20,26 (see also Methods).

For this purpose, we calculated correlation coefficients between age and GMVs of the ten representative 
rich-club regions that were most frequently observed as ROIs with top 30 degrees in TD and ASD groups 
(i.e., the ten ROIs shown in Fig. 4a). Of the ten regions, only right AI showed a significant correlation 
with age in the TD group (r =  0.40, Puncorrected =  0.00, PFDR <  0.05; Fig. 6a), whereas no ROI showed such 
a significant association in ASD group (PFDR >  0.05; Table 1). In addition, this age-GMV correlation in 
right AI in TD group was significantly larger than that seen in ASD group (z =  2.1, P =  0.03), which was 
also confirmed in a voxel-wise whole-brain GMV analysis (peak: [36, 26, –4], z =  3.0, Puncorrected <  0.001; 
Fig. 6b). These results suggest that, compared with the other rich-club regions, the anatomical maturation 
of right AI plays a certain specific role in typical brain changes during adolescence.

Anatomical evaluation of roles of right AI. Finally, we examined functional roles of the right AI 
by calculating associations between its GMV and severity of three main symptoms of ASD (impaired 
social interaction, communicational deficit, and repetitive and restricted behaviours), which were quan-
tified by the Autism Diagnostic Observation Schedule (ADOS)33. We found that the GMV of right AI in 
ASD individuals was specifically correlated with the severity of autistic social deficits (i.e., social score 
in ADOS; r =  –0.37, Puncorrected =  0.016, PFDR <  0.05; the other scores, P >  0.18; Fig. 6c). This relationship 
was preserved even after the correlation was calculated under the control of age effects (age-controlled 
partial correlation between GMV and ADOS social score: rho =  –0.37, P =  0.019). These observations 
support the importance of anatomical maturation of right AI in typical brain changes, and suggest that 
its relative immaturity (as measured in terms of local GMV) might underlie deficits of social interactions 
in ASD individuals.

Discussion
Here we found that, in typically developing adolescents, structural brain networks show progressively 
enhanced rich-club properties and thus may attain an anatomically costly but more functionally efficient 
form. In contrast, in ASD, such progressive enhancement of structural network rich-club properties is 

Figure 5. Rich-club regions were plotted based on their Y coordinates and the average age of appearance in 
rich club. If a given region appeared in the rich club irrelevantly to age, the average appearance age should 
be the same as the mean age of all individuals (13.3 yo in TD, 13.2 yo in ASD; a dashed line). In TD group 
(panel a), older individuals’ brains tend to include right anterior insula in their rich club; in ASD group 
(panel b), more posterior regions were likely to be included. The size of circle represents the appearance 
frequency in the rich club. Rt, right; Lt, left; ACC, anterior cingulate cortex.
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not seen. Moreover, the age-related changes in rich-club organisation in typically developing individuals 
necessitated involvement of right AI, and anatomical immaturity of this brain region was correlated with 
the severity of autistic social symptoms. These findings add evidence for rich-club properties being an 
important index for evaluating the age-associated changes in human brain networks and for delineating 
neurodevelopmental disorders.

The current findings on the relationships between age and rich-club organisation were based on the 
network datasets in which no fibres were excluded. Such an approach to exploit all the available data 
was adopted in previous studies2,10,19, but may leave some room for spurious fibres to still be included. 

Figure 6. (a) GMV of right AI in TD individuals showed a significant positive correlation with age, whereas 
that in ASD individuals did not. *P <  0.05. (b) The difference in the GMV-age correlation between TD 
and ASD individuals was confirmed in a whole-brain analysis. (c) GMV of right AI in ASD individuals 
was correlated with severity of their deficits of reciprocal social interactions (left panel). The other major 
symptom scores did not have such correlations (middle and right panels). RRB: repetitive and restricted 
behaviours.

Rich-club regions

TD

P value

ASD

P value

TD v ASD

Correlation coefficient with age Correlation coefficient with age P value

Rt Ant Insula 0.4 0.00* –0.05 0.75 0.03

Rt Post Insula –0.06 0.69 0.28 0.07 0.12

Lt Post Insula –0.1 0.5 0.3 0.05 0.065

Lt Hippocampus 0.22 0.14 0.09 0.57 0.55

Rt Ant Putamen –0.03 0.84 0.14 0.37 0.44

Rt Mid Putamen –0.19 0.2 0.001 0.99 0.39

Rt Post Putamen –0.24 0.1 0.13 0.41 0.09

Lt Post Putamen –0.21 0.16 0.03 0.85 0.27

Rt Thalamus 0.25 0.09 0.05 0.75 0.35

Brain Stem 0.21 0.16 0.14 0.37 0.75

Table 1.  Correlations between age and GMV of rich-club ROIs. *PFDR <  0.05; Rt, right; Lt, left; Ant, 
anterior; Post, posterior.
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In reality, all the main correlation patterns were qualitatively reproduced even after we excluded thin 
connections with fewer than five fibres (Supplementary Fig. 4). In particular, the difference between 
the younger and older participants in the TD group was qualitatively replicated in calculations based 
on group-averaged network matrices that more strictly excluded spurious fibres (Supplementary Fig. 5,  
Supplementary Methods)1. Furthermore, the correlation between age and the average rich-club coef-
ficients was robust against the correction by the weight and degree (TD, r >  0.36, P <  0.03; ASD, 
–0.09 <  r <  –0.07, P >  0.64; TD v ASD, z =  2.0, P =  0.045). Given this robustness against exclusion of 
thin fibres, the typical age-related network changes in the brains might be attributed not to the absolute 
number of axon per se, but to the relative weight values assigned to white matter pathways that are sup-
posed to depend on their microstructural properties such as myelination34.

The current observations about the age-related changes in rich-club coefficients are consistent with 
a recent report focusing on unweighted rich-club coefficients14. In contrast, another study reported no 
significant differences in rich-club properties of structural brain networks between TD children and 
neurotypical adults3. Methodologically, differences in scanning protocols might be relevant to this incon-
sistent observation: whereas the current main datasets are based on diffusion tensor imaging (DTI) data 
with 32 directions of angular resolution26, the previous study employed datasets with higher resolution 
(72 directions)3. Other factors underlying this inconsistency may be differences in the ROI definitions 
and in the number and characteristics of the participants. ROIs in the previous study3 consisted of 
219 cortical regions that were determined by an algorithm called Connectome Mapper34, whereas the 
current 264 ROIs were based on a different previous study28 and additionally included 20 subcortical 
regions. Regarding the participants, the previous work studied a mixture of 29 healthy males and females, 
whereas the current findings about neurotypical individuals were based on data from 36 TD males. 
Although the current main findings were essentially replicated in modified brain networks excluding 
subcortical regions (Supplementary Fig. 6), these differences in ROI definition and sample property 
might result in the inconsistency between the previous and current studies.

Such methodological variations in determining brain networks may also underlie difference in loca-
tional distribution of rich-club regions between different studies. In fact, the current study found the 
ten regions in Table 1 as constituents of rich club, but not all the ten regions were reported as rich-club 
regions in previous studies that adopted different manners to construct brain networks from the cur-
rent one. A previous study whose brain networks had a less number of ROIs (N =  82) than the current 
study found that, differently from the current result, rich-club regions included precuneus, superior 
frontal cortex, and superior parietal cortex1. Another study using a different neuroimaging protocol (high 
angular resolution imaging, HARDI), which is supposed to enable better estimation of anisotropy and 
detection of more fibres than conventional DTI35, reported that anterior/posterior cingulate cortex and 
inferior temporal cortex constituted rich club11. Given these discrepancies across studies, it appears to 
be necessary to attend the possibility that methods to build brain networks may affect determination of 
rich-club regions in anatomical brain networks.

The current findings about the network functionality in TD groups are consistent with previous 
reports19,20. Although it was based on binarised networks, the original study analysing the current data-
set found that only in TD groups, characteristic path length, which is inversely associated with global 
efficiency, was negatively correlated with age20. Another study also reported a strong correlation between 
age and global efficiency that was measured in weighted brain networks of neurotypical individuals19. 
In addition, the current observations about the difference in the network functionality between TD 
and ASD groups provide further evidence for the importance of the index for characterisation of brain 
networks in psychiatric disorders: recent studies have reported significant dissociation in the global effi-
ciency between healthy participants and individuals with several prevalent psychiatric disorders includ-
ing schizophrenia9 and ASD21,22. These results imply that such age-associated changes in functional 
efficiency might be impaired in various types of psychiatric disorders.

The current observations provide a new context to interpret the age-associated changes found in brains 
of ASD individuals. As well as resting-state functional connectivity measured by functional MRI20,36–39, 
anatomical connections in ASD brains show several characteristic modulation patterns during adoles-
cence20,38,40: in early childhood, white matter volume of ASD individuals tends to be larger than that 
of TD individuals, but subsequently it does not increase so much as in TD individuals31. White matter 
density in ASD individuals also shows a similar pattern and does not increase progressively during their 
teens31,32. A recent study has implied that some pathological disorganisation in cortical laminar archi-
tectures might underlie such atypical growth of ASD brains41. Moreover, another recent work has shown 
atypical large rich-club coefficients in pre-adolescent ASD children11. Considering these previous studies, 
the current findings might suggest that in early teens, rich-club coefficients for autistic structural brain 
networks are slightly larger in ASD groups than in TD groups, whereas structural network properties in 
ASD individuals are not particularly enhanced during early teenage years due to insufficient increase in 
white matter volume in ASD individuals.

The findings concerning right AI reported here also add evidence for the notion that dysfunction of 
this region underlies the social core symptoms of ASD42. This brain area is associated with particular 
types of social cognition such as empathy processing43, emotional judgements44, and reciprocal behav-
iours45 in TD individuals, and its hypo-activity during socio-communicational tasks has been repeatedly 
reported in previous neuroimaging researches studying ASD individuals46,47. In addition, recent work has 
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shown atypical decreases in functional connectivity between right AI and other ASD-related focal brain 
regions including precuneus and superior temporal sulcus36,42. The current observation about the rela-
tively smaller grey matter volume of right AI and its correlation with autistic social deficits is consistent 
with these previous findings, and implies the importance of the region for ASD.

Age-associated GMV changes in other rich-club regions are also compatible with a line of previous 
studies on anatomical characteristics of autism. First, the variety of the age-GMV relationships across 
regions is consistent with a previous observation that such age-related GMV changes are highly depend-
ent on each region48. In addition, the current study found moderately larger increases in GMVs of thal-
amus and brain stem in TD group than ASD group (Table 1), which is in harmony with previous studies 
that GMVs of these areas in controls were larger than in those in individuals with high-functioning 
autism49,50. Moreover, the relatively small increase in hippocampal GMV in autism seen in the current 
study is also consistent with a previous meta-analysis that reported an ASD-specific decrease in GMV 
of the region51.

A limitation of this study is that we restricted our analysis to males and whether similar findings 
would hold in females is not clear: in fact, the original main data for rich-club analysis had only seven 
TD females and five ASD females in a narrow window of age. Moreover, the present findings are based 
on cross-sectional comparison across different individuals, rather than longitudinal within-participant 
comparisons52. Longitudinal studies are necessary for direct examination of the relationship between 
rich-club properties and the development of the human brain. Finally, we should also note that we did 
not include potential effects of individual differences in pubertal developments. Specifically, because 
the publicly shared datasets that we used did not hold information about whether each participant was 
pre- or post- puberty at the scanning time point, we could not precisely compare the difference in brain 
network structure between pre- and post- pubertal stages. Future studies might need to consider this 
potentially influential factor in investigating development of young brains53.

In conclusion, the current study found that rich-club topology of human brain networks was progres-
sively enhanced during adolescence to have a more efficient form for information processing, whereas 
such enhancement of rich-club properties was not seen in the brains of individuals with autism spec-
trum disorder. Moreover, this typical age-associated changes in brain networks appeared to be largely 
dependent on progressive involvement of right AI, and the anatomical immatureness of this region was 
predictive of autistic social symptoms. These findings add further evidence for importance of rich-club 
organisation for typical age-related alternations of the human brain, and suggest that an immature 
rich-club topology might underlie some neurodevelopmental disorders.

Methods
Study design and ethics. The current study consisted of a graph theoretical analysis about rich-club 
organisation and a subsequent GMV analysis, both of which were performed on the basis of public-
ly-shared datasets20,26,27. As for the rich-club analysis, the data collection and sharing were approved by 
the UCLA Institutional Review Board and were conducted in accordance with the local institutional 
guidelines20, and those for the GMV analysis were approved by the corresponding local Institutional 
Review Boards (here, the New York University and the NYU School of Medicine Institutional Review 
Boards), and were performed in accordance with the corresponding institutional regulations27. In both 
datasets, the data were fully anonymised before being publicly shared, and written informed consents 
about the data collection and sharing were obtained from all the participants20,26,27.

Data for analysis of rich-club topology. For analysis of rich-club organisation, we analysed 
structural connectivity matrices that had been used in a previous study employing high-functioning 
ASD individuals and matched TD participants19 and were shared in UCLA Multimodal Connectivity 
Database26. These connectivity matrices were built from DTI recorded by 3T MRI (Siemens Trio) in 
8-min scans (32 directions b =  1000; 6 scans b =  50; 3 scans b =  0; 2 ×  2 ×  2 mm3 voxels). The DTI images 
underwent preprocessing consisting of brain extraction, eddy current correction by FMRIB’s Diffusion 
Toolbox (FMRIB’s Software Library, FSL)54, and motion correction by MCFLIRT55. Based on this pre-
processing, participants showing excessive head motion were excluded (two TD and seven ASD males), 
and the resultant mean relative head motion was limited to 0.41 ±  0.13 mm for TD participants and 
0.42 ±  0.11 mm for ASD individuals (mean ±  SD).

The original study20 then mapped 264 ROIs including 20 subcortical ROIs, whose centre coor-
dinates were determined by a previous study28, onto the individual brain surfaces using FSL (12 
degree-of-freedom, affine, and correlation ratio cost function) through registration to the high-resolution 
images (12 degree-of-freedom, affine, and mutual information cost function). Consequently, each ROI 
was defined as a set of voxels whose distance from each centre coordinate was ≤ 10 mm on the continu-
ous brain surface. The distance threshold was selected to ensure that the ROIs included enough nearby 
white matter fibres; in fact, ~60.1% of the voxels in the ROIs were averagely classified to white matter. 
This selection of spatially remote ROIs supposedly reduced the possibility of detecting false fibres.

Based on this surface-based ROI mapping, deterministic tractography between the 264 ROIs was per-
formed using Fibre Assignment by Continuous Tracking (FACT) algorithm56 in Diffusion Toolkit20. First, 
a diffusion tenor model was fitted to the images, and fractional anisotropy (FA) values were calculated 
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for each voxel by DTIFIT in FSL. Second, fibres were determined by propagating fibres from each voxel 
with a maximum turn angle set at 50°, which supposedly increases the detectability of long connections 
between spatially remote ROIs57. The detected fibres were then smoothed with a spline filter, and fibres 
shorter than 5 mm were removed. Then, the number of the fibres connecting two different ROIs was 
counted for all the possible combinations of the 264 ROIs. Finally, using the fibre counts as weights, 
264 ×  264 weighted structural connectivity matrices were built for all the participants. The following 
analysis used these weighted, undirected networks.

To minimise effects of sex differences on results, we focused on males, and used DTI data from 36 TD 
males (9–18 yo) and 45 autistic males (9–18 yo). The diagnosis of high-functioning ASD was based on 
DSM-IV, and confirmed with ADOS33 and/or Autism Diagnostic Interview (ADI-R)58 (ADOS commu-
nication +  social, 10.8 ±  3.6; ADIR, 47.4 ±  11.6; mean ±  SD). TD and ASD individuals showed normal 
intelligence (IQ ≥  79), and did not have significant difference in their ages (P >  0.8).

Estimation of rich-club coefficients. Using the structural connectivity matrices, we calculated nor-
malised rich-club coefficients of these networks in the same manner as in previous studies1–3,59. Firstly, 
un-normalised weighted rich-club coefficient, Φ w(k), was calculated for each degree (i.e., the number of 
connections, k) as /∑> =

>W Wk i
E k

i1
ranked, where W>k is the sum of the weights of E>k edges among N>k 

regions with ≥ k degrees, and Wi
ranked denotes the i th largest weight value among all weights. As a base-

line, we also calculated the average Φ ( )krand
w  across 5000 random networks with equal degree and weight 

distribution1. Finally, the normalised weighted rich-club coefficient, Φ ( )knorm
w , was estimated as the ratio 

of Φ w(k) to the average Φ ( )krand
w  of random networks.

Comparison of the rich-club organisation. We first compared Φ ( )knorm
w  between the younger 

(age <  13) and older groups (13 ≤  age) for TD and ASD individuals. We set the threshold of age at 13 to 
balance sample size between the two age groups (TD: younger/older group, N =  18/18; ASD, younger/
older group, N =  22/23). We then performed two-sample t-tests of Φ ( )knorm

w  between the two age groups 
for each degree. These multiple comparisons across degrees were corrected by calculating false discovery 
rate (FDR).

Secondly, we examined associations between age and rich-club property. The rich-club architecture 
was quantified by averaging Φ ( )knorm

w  whose k was ranked in top 30 degrees, which is denoted by 
Φnorm
w

top30
. We also defined brain regions with these top 30 highest degrees as rich-club regions. Note 

that the number of the rich-club regions was not always equal to 30 because some regions might tie for, 
for example, the 30th-highest-degree position (rich-club regions in TD: 31.9 ±  2.4 regions; in ASD: 
31.7 ±  1.6 regions; mean ±  SD).

The degree threshold and definition of rich-club regions is comparable to that adopted in a previous 
study11, in which the threshold was determined as a degree from which Φ ( )knorm

w  was continuously > 1 
and increased. If this approach is applied to the current estimation, the threshold will be approximately 
35 (Fig. 1b), which is close to the current top30-based threshold (i.e., the 30th highest degree =  36.8 ±  2.7 
in TD group and 37.6 ±  2.4 in ASD group, mean ±  SD). Moreover, the proportion of the current rich-club 
regions (~10%) was similar to that in another previous study1. These similarities could justify the current 
degree threshold.

We next examined correlations between age and Φnorm
w

top30
 for each group. This correlation was also 

evaluated using degree-controlled rich-club coefficient, Φ / knorm
w

top30
, and weight-controlled rich-club 

coefficient, Φ / Wnorm
w

top30
, because age-related changes in white matter volumes have been reported 

in previous studies14,29–31 (see also Supplementary Results).
In addition, we also examined the robustness of these correlations against iterating the number of 

the top degrees from 20 to 40 by one, which consequently varied the fraction of rich-club region from 
ca. 8% to 15%.

Although a previous study suggests effects of an ASD-related gene on FA values in posterior regions31, 
we did not correct the rich-club coefficients by the fibre number within the posterior brain, because no 
significant correlations were found between age and the fibre number in the posterior area in TD or ASD 
group (|r| <  0.24, P >  0.11; posterior area: Y coordinate of ROI ≤  –15).

Anatomical cost and network functionality. We then examined age-related changes in anatomical 
costs and functionality of the networks, because rich-club organisation is supposed to be anatomically 
costly due to its long-distance connections4,5 but to provide efficient interactions among brain regions4. 
To reduce the effects of age-related white matter changes14,29–31, we normalised the weights by dividing 
them by the average weight value in each individual.

The anatomical costs were quantified by averaging the Euclidian distances among connected brain 
regions4. We also evaluated another type of anatomical cost by calculating the average of the products of 
the distance and weights across connections (i.e., weighted distance).
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Network functionality was measured by calculating global efficiency9,10,19,20,24 and synchronisation 
cost25. The global efficiency was estimated based on a previous study24, in which a weight value for each 
edge is regarded as a factor to enhance communications between the connected nodes. Technically, the 
distance between connected regions i and j was defined as 1/Wij, where Wij is the connection weight 
between the two regions. We then estimated the shortest path length between all region pairs24, and 
calculated the global efficiency as (∑i≠j1/lij)/N(N− 1), where N represents the number of the regions and 
lij denotes the shortest path length between region i and j.

The synchronisation cost was calculated in essentially the same fashion as in a previous study25, in 
which the cost is supposed to represent a functional cost to keep synchronisation between coupled 
multiple oscillators. Technically, this synchronisation cost is defined in a complex network consisting 
of Kuramoto-type phase oscillators with different natural frequencies, which was determined by the 
following equation:

∑
θ

ω θ θ= − ( − )
d
dt

W sini
i ij

j
i j

where θi and ωi indicate the phase and natural frequency of the oscillator i, respectively. Note that θi is 
dependent on time t, whereas ωi is a temporally constant. In such a classical Kuramoto model, even when 
the entire network reaches a frequency-synchronisation state at t→ ∞, the individual oscillators can have 
their own different phases θ →∞i

t . Because this phase difference can be regarded as a type of burden for 
each edge, the synchronisation cost, Sij, for an edge between nodes i and j was defined as 

θ θ= ( − )→∞ →∞Sij i
t

j
t 2. We then calculated the average synchronisation costs across edges for each indi-

vidual. In this calculation, the connection weights behave as a factor to enhance communications between 
connected regions, which keeps consistency with the above-mentioned estimation of global efficiency.

Locational difference in rich-club regions. We then compared the locational distribution of 
rich-club regions between ASD and TD groups. First, in each group, we counted how many times each 
brain region appeared in the rich-club regions with top 30 degrees, and searched for the 10 most fre-
quently appeared regions.

Second, we investigated age-related changes in the location of the rich club by calculating its centre 
and radius in each individual: the centre was defined as the average of the coordinates of the rich-club 
regions; the radius was calculated by averaging the distance between the centre and each rich-club 
region. We then assessed correlations between age and this rich-club locational information. The robust-
ness of these correlations was confirmed by performing the same analysis with different definitions of 
the rich-club regions That is, we tested the findings by iterating the number of top degrees from 20 to 
40 by one.

Finally, we quantified at what age each region was likely to appear in the “rich club” by averaging the 
ages of individuals whose rich clubs included the given region. To focus on brain regions that mainly 
contributed to rich-club organisation, this calculation was performed only for regions that appeared in 
rich clubs in > 30% of individuals. We then plotted these regions based on their coordinates and the 
average of appearance ages, and attempted to find critical regions that are mainly responsible for the 
typical age-associated changes in rich-club organisation.

Data for additional GMV analysis. Additionally, we examined the anatomical importance of the 
critical regions selected in the analysis above (here, anterior insula) by investigating associations between 
the GMV and age/symptoms. This additional analysis used a different dataset shared in Autism Brain 
Imaging Data Exchange (ABIDE)27, because the dataset for the main analysis does not include corre-
sponding anatomical MRI images.

The T1-weighted MRI images consisted of 41 ASD and 46 age-/IQ-matched TD individuals that were 
recorded a 3T MRI (TR =  2.53s, TE =  3.25 ms, 1.3 ×  1.0 ×  1.3 mm, 128 slices) in NYU Langone Medical 
Centre in ABIDE. The diagnosis of ASD was performed based on DSM-IV-TR and was confirmed by 
ADOS. Their IQ was measured with WASI (ASD, IQ >  78; TD, IQ >  80). Here, to keep consistency with 
the rich-club analysis, we selected 9–18 year-old male participants from this dataset. Note that this sec-
ond dataset could not be used for the analysis of rich-club coefficient because it did not include DTI data.

Additional GMV analysis. We preprocessed the anatomical images in SPM860: for each participant, 
the image was segmented into grey matter, white matter, and cerebrospinal fluids in the native space 
with the New Segment Toolbox61. The segmented grey matter images underwent alignment, warp to a 
template space, resampling down to 1.5 mm isotropic voxels, and registration to a participant-specific 
template using the DARTEL Toolbox62. The individual grey matter image was then normalized to MNI 
spaces and smoothed with a Gaussian kernel (FWHM =  8 mm). Finally, each image was normalized by 
the whole-brain GMV value.

Using these preprocessed data, we conducted a ROI analysis about the ten representative rich-club 
regions (i.e., the ten ROIs in Fig. 4a). For each group, we extracted GMVs of these ROIs (a 4-mm sphere), 
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and then calculated their associations with age. The statistical significance of the obtained correlation 
coefficients was evaluated after they were corrected for multiple comparison by calculating FDR. Based 
on the obtained results, we then focused on right AI, and examined relationships between its GMV and 
ADOS scores.

To confirm locational specificity of this selection of right AI, we also performed voxel-based morpho-
metry and compared the GMV-age associations between TD and ASD groups. Using the pre-processed 
whole-brain images, we performed regression analyses with age as an independent variable, and calcu-
lated a regression coefficient between GMV and age for each voxel, and then estimated difference in the 
regression coefficients between TD and ASD groups.
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