
IEEE COMMUNICATIONS LETTERS, VOL. 20, NO. 1, JANUARY 2016 181

Robust Power-Splitting SWIPT Beamforming
for Broadcast Channels

Jialing Liao, Muhammad R. A. Khandaker, Member, IEEE, and Kai-Kit Wong, Fellow, IEEE

Abstract—This letter considers the multiple-input single-output
(MISO) broadcast system for simultaneous wireless information
and power transfer (SWIPT) using receiver power splitting and
aims to optimize jointly the beamforming vectors and the power
splitting ratios for minimizing the transmit power of the base
station (BS) subject to the individual signal-to-interference-plus-
noise ratio (SINR) and the energy-harvesting constraints at the
mobile stations (MSs). However, the CSI is assumed imperfect but
has a deterministic uncertainty region. Unlike existing attempts
that resort to iterations guided by semidefinite relaxation (SDR),
we propose a reverse convex nonsmooth optimization algorithm,
which provides the near-optimal rank-one solution.

Index Terms—Energy harvesting, power splitting, optimal
beamforming, broadcast, MISO.

I. INTRODUCTION

T HE CONTINUOUS efforts to tackle the challenge of
battery-limited mobile communications have recently

given rise to the concept of simultaneous wireless informa-
tion and power transfer (SWIPT) and have since opened up
numerous new opportunities. As an example, [1] character-
ized the rate-energy regions for multiple-input multiple-output
(MIMO) broadcast systems for SWIPT with separated and co-
located information and energy receivers. Other recent examples
include the SWIPT work for orthogonal frequency-division mul-
tiplexing (OFDM) systems [2], frequency-selective channels [3]
and multiuser scenarios, such as the interference channel, the
relay channel [4], multicasting, and the broadcast channels [5].

In particular, the broadcast channel is a typical scenario of
great interest, where the base station (BS) communicates with
several mobile stations (MSs). Using SWIPT, each MS can be an
information decoder (ID) as well as energy receiver (ER), either
by time-switching or power splitting technologies.

Recently, the joint optimization problem of power splitting
ratios and beamforming was studied in [5] for multiple-input
single-output (MISO) SWIPT broadcast systems assuming per-
fect channel state information (CSI) at the BS. Later in [6], the
results were extended to cope with the case of imperfect CSI,
via a highly complex suboptimal two-step optimization process,
which relies on alternatively solving semi-definite relaxation
(SDR) problems with a K -dimensional search (where K denotes
the number of users in the broadcast system).

In this letter, we revisit the problem in [6] which aims to
minimize the transmit power of the BS subject to the signal-to-
interference and noise ratio (SINR) and the energy harvesting
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constraints at the MSs, assuming the availability of imperfect
CSI at the BS, for the MISO SWIPT broadcast system.1 The
contributions of our proposed approach over [6] are twofold:
(i) significant complexity reduction and (ii) near-optimality. In
particular, we present a feasible SDR-guided randomization
approach for the joint optimization of transmit beamforming and
receive power splitting factors. On the contrary to [6], the SDR-
based solution is non-iterative but only provides an upper-bound
performance after rescaling. Hence, we propose a reverse con-
vex constraint based penalty function method which guarantees
a rank-one and near-optimal solution.

II. SYSTEM MODEL

Consider a K -user MISO broadcast system as illustrated in
Fig. 1, where the BS, with Ns antennas, communicates with K
single-antenna MSs. Each MS acts simultaneously as an ID and
an ER via power splitting. With transmit beamforming at the BS,
the received signal at the kth MS can be written as

yk = hH
k

K∑
i=1

bi si + nA,k, for k = 1, . . . , K , (1)

where bi and si denote the transmit beamforming vector and the
data symbol for the i th MS, respectively, hk is the channel vector
between the BS and the kth MS, nA,k is the antenna noise at the
kth MS, and (·)H is the Hermitian operation.

With a power splitter at the kth MS, suppose that we have the
power splitting ratio ρk ∈ [0, 1]. Then the signal split to the ID
of the kth receiver is given by

yI,k = √
ρk

(
hH

k

K∑
k=1

bi si + nA,k

)
+ nP,k, (2)

where nP,k denotes the additive noise at the ID of the kth MS.
Meanwhile, the signal split to the energy harvester of the kth MS
can be expressed as

yE,k = √
1 − ρk

(
hH

k

K∑
i=1

bi si + nA,k

)
. (3)

As such, the SINR of the ID at the kth MS is given by

SINRk = ρkhH
k bkbH

k hk

ρkσ
2
A,k + σ 2

P,k + ρkhH
k

(∑K
i=1
i �=k

bi bH
i

)
hk

, (4)

and the power harvested at the kth MS is written as

Ek = ξk(1 − ρk)

(
hH

k

(
K∑

i=1

bi bH
i

)
hk + σ 2

A,k

)
, (5)

1For MIMO SWIPT broadcasting in [1], there is no rank-one issue and this
means that existing results will not be optimal for MISO SWIPT systems.
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Fig. 1. A MISO SWIPT broadcast system with power splitters.

where ξk ∈ (0, 1] is the energy conversion efficiency of the
energy harvester, and E{|si |2} = 1 has been assumed.

III. ROBUST OPTIMIZATION

In this letter, we model the channel by

hk = ĥk + �hk, for k = 1, . . . , K , (6)

where hk is the actual channel vector, but ĥk denotes the CSI
estimate with an error vector �hk , which satisfies

‖�hk‖2 = ‖hk − ĥk‖2 ≤ εk, for εk ≥ 0, (7)

which reflects the quality of the estimates.
We aim to minimize the BS transmit power subject to the

SINR and the energy-harvesting constraints at the MSs as

min
{bk }

{0<ρk<1}

K∑
k=1

bH
k bk s.t. (8a)

min
�hk

|bH
k (hk + �hk) |2

γk
−

K∑
i=1
i �=k

|bH
i (hk + �hk) |2

≥ σ 2
A,k + σ 2

P,k

ρk
, ∀k, (8b)

min
�hk

K∑
i=1

|bH
i (hk + �hk) |2 ≥ ηk

ξk(1 − ρk)
− σ 2

A,k, ∀k, (8c)

where γk > 0 and ηk > 0 are the given SINR and energy har-
vesting thresholds at the kth MS, respectively. Due to imperfect
CSI, however, our problem is not convex and has infinitely many
constraints as opposed to that in [5].

Lemma 1 (S-Procedure): Let fi (x) = xH Ai x + 2bH
i x +

ci , i = 1, 2 where Ai ∈ C
n×n, bi ∈ C

n and ci ∈ R. The impli-
cation f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if there exists
μ ≥ 0 satisfying

μ

[
A1 b1

bH
1 c1

]
−
[

A2 b2

bH
2 c2

]

 0. (9)

Now, we define Wk � bkbH
k and substitute �hH

k �hk ≤ εk
and (8b) into Lemma 1. We will then get a group of positive semi-
definite matrices named {�k} [see (10), shown at the bottom
of the page] associated with parameters {μk}. Similarly, if we
apply S-Procedure to (8b) and �hH

k �hk ≤ εk , then we will have
another group of semi-definite matrices {ϒk} [see (11), shown at
the bottom of the page] associated with parameters {λk}.

Based on the S-Procedure, (8) becomes

min{Wk },{ρk },{μk },{λk }

K∑
k=1

tr (Wk) s.t. (12a)

�k({Wk}, ρk, μk) 
 0, ∀k, (12b)

ϒk({Wk}, ρk, λk) 
 0, ∀k, (12c)

Wk 
 0, 0 < ρk < 1, ∀k, (12d)

μk ≥ 0, λk ≥ 0, ∀k, (12e)

Rank(Wk) = 1, ∀k. (12f)

Ignoring the rank-one constraint, problem (12) will be convex
but cannot be solved by optimization packages CVX [7] due to
the coupling of 1

ρk
and 1

1−ρk
in �k and ϒk . This was why [6]

resorted to iterative suboptimal approaches. Here, we propose to
solve the problem by introducing a group of new variables, qk
and q̃k to get a definitely convex problem after rank relaxation
which can be processed by existing solvers:

min{Wk },{ρk },{qk },{q̃k },{μk },{λk }

K∑
k=1

tr (Wk) s.t. (13a)

�̃k({Wk}, qk, μk) 
 0,∀k, (13b)

ϒ̃k({Wk}, q̃k, λk) 
 0,∀k, (13c)

Wk 
 0, 0 < ρk < 1,∀k, (13d)

qk ≥ 1

ρk
, q̃k ≥ 1

1 − ρk
,∀k, (13e)

μk ≥ 0, λk ≥ 0,∀k. (13f)

Rank(Wk) = 1,∀k. (13g)

where �̃k and ϒ̃k are similar to those of �k and ϒk except that
we change 1

ρk
and 1

1−ρk
to qk and q̃k , respectively.

Proposition 1: Regardless of the new variables qk and q̃k ,
problems (12) and (13) are equivalent. The optimal solution to
either of the two problems should also be optimal for the other
one.

Proof: Please refer to Appendix A. �
However, the rank-one constraint makes both (12) and (13)

non-convex. To tackle this, SDR with randomization is used.

A. SDR Guided Randomization

In particular, the rank constraint is first dropped to obtain a
suboptimal solution. Then the randomization technique is used

�k({Wk}, ρk, μk) =
⎡⎢⎣μkINs + Wk

γk
−∑K

i=1
i �=k

Wi
Wk hk

γk
−∑K

i=1
i �=k

Wi hk

hH
k Wk
γk

−∑K
i=1
i �=k

hH
k Wi

hH
k Wk hk

γk
−∑K

i=1
i �=k

hH
k Wi hk − σ 2

A,k − σ 2
P,k
ρk

− μkεk

⎤⎥⎦ 
 0, (10)

ϒk({Wk}, ρk, λk) =
[
λkINs +∑K

i=1 Wi
∑K

i=1 Wi hk∑K
i=1 hH

k Wi
∑K

i=1 hH
k Wi hk − ηk

ξk (1−ρk)
+ σ 2

A,k − λkεk

]

 0, (11)
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to generate the feasible solutions to (12). Assuming that the
solution of SDR is W∗

k , ∀k, with the eigenvalue decomposition
defined as W∗

k = U�UH , the feasible beamforming vector of
(12) under randomization can then be given by

bk = U�
1
2 v. (14)

Here U is unitary and � is diagonal with eigenvalue arranged in
decreasing order, and v is a vector of complex circularly sym-
metric uncorrelated Gaussian random variables with zero-mean
and unit-variance. However, some of the constraints in (12) may
be violated after randomization, and one needs to rescale the
beamforming vector bk with an appropriate factor αk to meet
the constraints. Thus we have

b̃k = αkbk, ∀k. (15)

Then we reformulate the problem as follows and rely on CVX to
derive the optimal scaling factors:

min{βk }

K∑
k=1

tr(W̃k) s.t. (16a)

�̃k({W̃k}, q∗
k , μ∗

k) 
 0,∀k, (16b)

ϒ̃k({W̃k}, q̃∗
k , λ∗

k) 
 0,∀k, (16c)

W̃k 
 0,∀k, (16d)

where W̃k = βk b̃k b̃H
k , βk = α2

k , and q∗
k , μ∗

k , q̃∗
k , λ∗

k are the corre-
sponding solution by the SDP approach. With the optimal scaling
factors, we can easily generate bk using (14) and (15).

The downside is that randomization always offers an upper
bound solution due to the relaxation involved. As a remedy, in
the following, we solve the problem by expressing the rank-one
constraint (13g) as a single reverse convex constraint which is
then incorporated into the objective function as a penalty func-
tion. The resulting problem belongs to the class of concave
programming with a nonsmooth objective.

B. Penalty Function Method

Since Wk, ∀k is always semi-positive definite, we then have
tr(Wk) ≥ λmax(Wk) where λmax(Wk) is the maximum eigen-
value of Wk . In this case, if tr(Wk) ≤ λmax(Wk) also holds,
it will be easy to prove that tr(Wk) = λmax(Wk). That is to
say, Wk has only one non-zero eigenvalue. Then we will have
Rank(Wk) = 1, ∀k. Thus, the rank-one constraints (13g) can be
expressed by the single reverse convex constraint:

K∑
k=1

(tr(Wk) − λmax(Wk)) ≤ 0. (17)

Note that the function λmax(X) is convex on the set of Hermitian
matrices. When tr(Wk) − λmax(Wk) is small enough, we will
have Wk ≈ λmax(Wk)wk,maxwH

k,max, where wk,max denotes the
unit-norm eigenvector corresponding to the maximum eigen-
value λmax(Wk) (i.e.,

∥∥wk,max
∥∥ = 1). Then the optimal beam-

forming vector can be obtained as

bk = λmax(Wk)
1
2 wk,max, (18)

satisfying the rank-one constraints (13g). Our aim is therefore to
make

∑K
k=1 (tr(Wk) − λmax(Wk)) as small as possible. Thus we

consider the alternative formulation to (13):

min
{Wk },{ρk },{qk },
{q̃k },{μk },{λk }

τ s.t. (19a)

�̃k({Wk}, qk, μk) 
 0,∀k, (19b)

ϒ̃k({Wk}, q̃k, λk) 
 0,∀k, (19c)

Wk 
 0, 0 < ρk < 1,∀k, (19d)

qk ≥ 1

ρk
, q̃k ≥ 1

1 − ρk
,∀k, (19e)

μk ≥ 0, λk ≥ 0, κ > 0,∀k. (19f)

where τ �
∑K

k=1 (tr(Wk) + κ (tr(Wk) − λmax(Wk))) and κ >

0 is a constant. If the weight κ is chosen to be large enough, then
the difference tr(Wk) − λmax(Wk) will be minimized. Clearly,
the objective of (19) is to minimize both

∑K
k=1 tr(Wk) and∑K

k=1 (tr(Wk) − λmax(Wk)).
Lemma 2: Let X and Y be positive semidefinite matri-

ces. Using the fact that a sub-gradient of λmax(Y) is
ymaxyH

max, we always have λmax(X) − λmax(Y) ≥ yH
max(X −

Y)ymax. Meanwhile, λmax(Y) and ymax denote the maximum
eigenvalue and corresponding eigenvector of Y, respectively.

According to Lemma 2, given some feasible W(n)
k of problem

(19), we will have

tr
(

W(n+1)
k

)
+ κ

[
tr
(

W(n+1)
k

)
− λmax

(
W(n)

k

)
−
(

w(n)
k,max

)H (
W(n+1)

k − W(n)
k

)
w(n)

k,max

]
≤ tr

(
W(n)

k

)
+ κ

(
tr
(

W(n)
k

)
− λmax

(
W(n)

k

))
, (20)

where the superscript n denotes the n-th iteration. Accordingly,
the following SDP problem gives an optimal solution W(n+1)

k

that is better than W(n)
k of problem (19):

min{Wk },{ρk },{qk },{q̃k },{μk },{λk }

K∑
k=1

tr
(

W(n+1)
k

)
+ κ

[
tr
(

W(n+1)
k

)
− λmax

(
W(n)

k

)

−
(

w(n)
k,max

)H (
W(n+1)

k −W(n)
k

)
w(n)

k,max

]
(21a)

s.t. (19b)−(19f). (21b)

Now, (21) can be further simplified to

min{Wk },{ρk },{qk },
{q̃k },{μk },{λk }

K∑
k=1

tr (Wk) + κ
[
tr(Wk) − (w(n)

k,max)
H Wk

×w(n)
k,max

]
(22a)

s.t. (19b)−(19f). (22b)

Due to the initial condition tr(W(0)
k ) − λmax(W

(0)
k ) = 0, at some

n, we will have tr(W(n)
k ) − λmax(W

(n)
k ) = 0.

The proposed nonsmooth iterative algorithm to resolve the
rank-one beamforming problem is summarized in Algorithm 1.

IV. SIMULATION RESULTS

In this section, the performance of the proposed methods
is investigated via simulations. We considered γk = γ, ηk = η,
ξk = 0.5, σ 2

A,k = 10−8, and σ 2
P,k = 10−6, εk = 0.001, ∀k. The

channel vector is modeled as

hk = 1√
dmk

k

(√
K R

1 + K R
hLOS

k +
√

1

1 + K R
hNLOS

k

)
, (22)
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Algorithm 1 A nonsmooth iterative algorithm

1. Initialization
Choose a proper value of κ > 0 and a feasible solution
(W(0)

k , ρ
(0)
k ),∀k, of (22). Set n = 0.

2. Repeat
a. Solve problem (22) to obtain W(n+1)

k , and ρ
(n+1)
k ,∀k.

b. if W(n+1)
k = W(n)

k then
set κ = 2κ

end if
c. n = n + 1
Until tr(W(n)

k ) ≈ λmax(W
(n)
k )

3. Reset W(0)
k = W(n)

k , ρ
(0)
k = ρ

(n)
k , n = 0.

4. Repeat
a. Solve problem (22) to obtain W(n+1)

k and ρ
(n+1)
k .

b. n = n + 1
Until tr(W(n)

k ) ≈ λmax(W
(n−1)
k )

5. Calculate bk according to (18).

Fig. 2. The BS transmit power versus the SINR γ .

where hLOS
k = 10−2[1, e jθk , e j2θk , . . . , e j (Ns−1)θk ]T with θk =

−π sin φk , φk ∈ [−π, π] is randomly generated and the Rician
ratio K R = 5dB, dk(= 1.5) and mk(= 2.7) denote the BS to MS
distances and the path loss exponents, respectively, with refer-
ence to [4], and hNLOS

k is an independent zero-mean complex
Gaussian random variable with variance of 10−2.

Fig. 2 shows the performance in terms of the transmit power
versus SINR targets (γ ) and fixed harvested power thresh-
old η = 10dBm with K = 2 and K = 4, respectively. Here we
set Ns = 4. The randomization approach, the penalty function
method (PenFun), the SDP method, and the optimal performance
with perfect CSI [5] are all compared. As can be observed, the
minimum transmit power rises with the increase of the number
of MSs. Also in both cases, the randomization approach shows
an upper-bound performance compared with the other methods
due to randomization. PenFun also performs nearly as the SDP
method and is also quite close to the perfect CSI case which
demonstrates that the proposed PenFun method not only guar-
antees a rank-one solution but also yields the global optimal
solution. Moreover, the gap between PenFun and the randomiza-
tion approach is narrowed when increasing the SINR threshold
while that between the PenFun method and the perfect CSI case
follows a reverse trend.

Next, we compare the performance of the methods mentioned
above versus the energy harvesting threshold η with targeted
SINR fixed at γ = 10 dB, K = 4 and Ns = 4 or 8 in Fig. 3.

Fig. 3. Transmission power versus harvested power η.

Similarly, in this figure the PenFun method outperforms the ran-
domization approach and shows comparable performance to the
SDP method, and the perfect CSI case. Also, increasing the
number of antennas at BS can reduce the minimum demanded
transmit power to some degree.

V. CONCLUSIONS

In this letter, a MISO SWIPT broadcast system was inves-
tigated. The joint-optimal transmit beamforming and power-
splitting ratio with imperfect CSI was obtained using penalty
function method. In particular, we have shown that the penalty
function method yields a more reliable and better solution.

APPENDIX A
PROOF OF PROPOSITION 1

Suppose (W∗
k , ρ

∗
k , μ∗

k , λ
∗
k) be the optimal solution of (12).

Letting q∗
k = 1

ρ∗
k

, and q̃∗
k = 1

1−ρ∗
k

, it is easy to see that

(W∗
k , ρ

∗
k , q∗

k , q̃∗
k , μ∗

k , λ
∗
k) also satisfies the constraints in (13).

Oppositely, if (W∗
k , ρ

∗
k , q∗

k , q̃∗
k , μ∗

k , λ
∗
k) is the optimal solution

for (13), then �k and ϒk will both be positive semi-definite
(PSD) due to the fact that �k − �̃k 
 0,ϒk − ϒ̃k 
 0. Also,
the objective function is not directly related to q∗

k , q̃∗
k such that

we can solve (13) with CVX instead of (12).
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