
 
 

 

 

 

 

 

 

 

 

Numerical investigation of homogeneous 

expansion and lateral solid mixing in  

gas-fluidized beds  

 

 

Oyebanjo Stephen Oke 

Department of Chemical Engineering 

University College London  

 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy of University College London 

March 2016  

 



ii 
 

 

I, Oyebanjo Oke, confirm that the work presented in this thesis is my own. Where information 

has been derived from other sources, I confirm that this has been indicated in the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

 

 

 

 

 

 

 

 

To Ifedolapo



 

iv 
 

 

 

 

But there is a spirit in man, and the breath of the Almighty gives him understanding. 

                 (Job 32:8) 

 

 

 

 

 

 

 

 

 

 



                  Abstract 

v 
 

Abstract  

This research project is concerned with the numerical investigation of the behaviour of 

homogeneous and bubbling gas-fluidized beds. We started by investigating the homogeneous 

expansion of gas-fluidized beds using the Richardson & Zaki (1954) equation. We modelled the 

stable expansion of gas-fluidized beds of different diameter, accounting for enduring contacts 

among particles and wall effects. We solved the model numerically to obtain the bed expansion 

profiles, back-calculating from them the values of the expansion parameter n. To validate our 

model, we carried out fluidization and defluidization experiments, analyzing the results by 

means of the Richardson & Zaki equation. We obtained a reasonable agreement between 

numerical and experimental findings; this suggests that enduring contacts among particles, 

which are manifestations of cohesiveness, affect homogeneous bed expansion. The results 

showed that homogeneous gas-fluidized beds do not consist of particles floating freely; rather 

they are made up of particles in sustained frictional contacts. 

We then investigated the process of lateral solid mixing in bubbling fluidized beds, adopting the 

Eulerian-Eulerian modeling approach. To quantify the rate at which solids mix laterally, we 

used a lateral dispersion coefficient (   ). The values of      obtained numerically are larger 

than the experimental ones, within the same order of magnitude. The overestimation has a 

twofold explanation. On one side, it reflects the different dimensionality of simulations (2D) as 

compared with real fluidized beds (3D), which affects the degrees of freedom of particle lateral 

motion. On the other, it relates to the way frictional solid stress was modelled. To investigate 

how sensitive the numerical results are on the constitutive model adopted for the frictional 

stress, we ran the simulations again using different frictional models and changing the solid 

volume fraction at which the bed is assumed to enter the frictional flow regime (     . We 

observed that     is quite sensitive to the latter. The results show that accurate prediction of 

lateral solid dispersion depends on adequate understanding of the frictional flow regime, and 

accurate modelling of the frictional stress which characterizes it. 

We further examined the influence of simulation dimensionality in numerical results. We ran 

3D CFD simulations using the same powder, the same operational conditions and the same 

computational setup as in the previous 2D simulations. The 3D simulations predicted     more 

accurately than the 2D simulations, the simulation dimensionality appearing to be an important 

factor. To analyse further the role of frictional stress models, we ran 3D DEM simulations. The 

simulation results agreed reasonably well with the empirical data, but their accuracy depended 

on the values used for the collision parameters; also, the 3D CFD simulations matched the 

empirical data more closely. Altogether, we thus concluded that the simulation dimensionality 

plays a dominant role in predicting     accurately. 
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Notation 
 

Units are expressed using the SI system. Some symbols used infrequently are not listed, but are 

defined where they first appear in the text.  

 

   positive constant       - 

    linear acceleration of particle                                                                    m/s
2
 

   positive constant       - 

    granular bond number       - 

   positive constant       - 

   void-free solid concentration             kg/m
3
 

    experimental void-free solid concentration           kg/m
3 

  
   drag coefficient          - 

    drag coefficient          - 

   vessel diameter                     m 

    particle diameter        m 

    bubble diameter        m 

    averaged rate of deformation tensor of the fluid    1/s 

    averaged rate of deformation tensor of the   th particle phase                     1/s 

     axial dispersion coefficient                m
2
/s

 

     lateral dispersion coefficient                m
2
/s 

    elastic modulus of particle                N/m
2 

    elastic modulus of the wall               N/m
2 

   interaction force per unit particle                   N 

  
 
                      averaged buoyancy force        N 
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  averaged drag force                                             N 

      total contact force         N 

        total external force         N 

      sum of other particle-particle forces       N 

     contact force exerted by particle    on particle        N 

      gravitational force on particle          N 

      drag force on particle           N 

      pressure forces on particle          N 

    Froude number          - 

   gravitational acceleration                m
2
/s 

    shear modulus of particle                N/m
2
 

     bed height at minimum fluidization      m 

    initiak bed height        m 

   bed height         m 

    moment of inertia of particle                                                                   kg.m
2 
 

    moment of inertia of particle                                                                   kg.m
2
 

   janssen coefficient         - 

   impulse                    N.s 

   ratio of aggregate size to particle size       - 

    particle cohesion coefficient               N/m
2 

    tangential spring constant                 N/m
3/2

 

    normal spring constant                   N/m
3/2 

   total mass of particle        kg 

   Richardson & Zaki exponent       - 

    experimental Richardson & Zaki exponent     - 

     normal unit vector                    - 

   number of particles per aggregates      -  



 Notation   

ix 
 

    number of particles per unit volume                m
-3 

    total solid pressure               N/m
2 

    averaged pressure of particle phase               N/m
2 

  
   frictional pressure of the   th particle phase                                             N/m

2
                         

   
   pressure of the   th particle phase in the viscous regime           N/m

2
                         

    averaged fluid pressure               N/m
2
 

       minimum fluidization flow rate                m
3
/s 

       minimum bubbling flow rate                m
3
/s 

    position vector of particle         - 

    position vector of particle         - 

     terminal Reynolds’s number       - 

     particle Reynold’s number       - 

    averaged fluid stress tensor              N/m
2
 

    averaged particle stress tensor              N/m
2 

    averaged stress tensor of particle phase               N/m
2
 

   time           s 

                         tangential unit vector        - 

    torque on particle                              N.m                                                                         

   superficial fluid velocity                             m/s     

    averaged velocity of particle                               m/s 

    averaged fluid velocity                  m/s 

     averaged particle velocity                             m/s 

      minimum fluidization velocity                  m/s 

       minimum bubbling velocity                 m/s 

    kinematic wave velocity                     m/s 

    dynamic wave velocity                  m/s 

    particle terminal velocity                 m/s 



 Notation   

x 
 

  
   experimental terminal velocity                 m/s 

    terminal settling velocity of aggregates                m/s 

    linear velocity of particle   before collision                                                m/s 

  
   linear velocity of particle   after collision               m/s 

     linear velocity of   relative to    before collision               m/s 

    volume of vertical layer       m
3 

 

Greek Symbols 

 

    angular acceleration of particle                rad/s
2
 

   coefficient of tangential friction       - 

   bubble fraction         - 

   fluid volume fraction        - 

     bed voidage at minimum fluidization      - 

     bed voidage at minimum bubbling                 - 

                         tangential damping coefficient             N.s/m 

    normal damping coefficient                        N.s/m 

       granular temperature of the   th particle phase                                        m
2
/s

2
 

    dilatational fluid viscosity          kg/(m.s) 

    dilatational viscosity of   th particle phase                                          kg/(m.s) 

   friction coefficient                    - 

    fluid viscosity           kg/(m.s) 

    viscosity of particle phase           kg/(m.s) 

     solid viscosity             kg/(m.s) 

  
   viscosity of the   th particle phase in the viscous regime      kg/(m.s) 

  
   frictional viscosity of the   th particle phase                             kg/(m.s) 

    fluid density               kg/m
3
 

    particle density               kg/m
3
  



 Notation   

xi 
 

      bulk density obtained under loose packing                  kg/m
3
 

     bulk density obtained under prolonged packing            kg/m
3 

    poisson ratio of particle        - 

   solid volume fraction       - 

    volume fraction of aggregates      - 

      solid volume fraction at which enduring contacts vanish   - 

      maximum value of solid volume fraction                 - 

 ̅  average solid volume fraction       - 

                        angular velocity of particle    before collision                                          rad/s     

    angular velocity of particle    before collision                                          rad/s 
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Chapter 1 

General Introduction 

 

In this chapter, we provide a general overview on the process of fluidization, its applications 

and different fluidization regimes. We summarize the main goals of this research work, and 

finally we provide an outline of the thesis.  

1.1 An introduction to fluidization 

 

Fluidization is an operation in which a bed of granular material is made to behave like a fluid by 

contact with gas or liquid. This is usually achieved by feeding the fluid through the granular 

material at a rate that is sufficient to exert a force on the particles that at least counter-balances 

its weight, making the bed acquire fluid-like properties such as: ability to flow freely under 

gravity, ability to deform or to be pumped using fluid-type technologies. The bed of granular 

material is then said to be fluidized. In the fluidized state there is extremely high surface contact 

between the fluid and the solid per unit volume of the bed, high level of mixing of the 

particulate phase(s) which promotes heat and mass transfer and high relative velocity between 

the fluid and the dispersed solid phase. These properties allow fluidized beds to find 

applications in many industrial operations. 
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The first application of fluidized beds was in Germany, where they were used in the Winkler 

process for coal gasification to produce synthesis fuel. Following this, fluidized beds were 

employed in the fluid catalytic cracking (FCC) of heavy oils to convert them to light products 

such as gasoline, kerosene, diesel and light olefins. This process is by far the largest application 

of fluidized bed technology. Similar to FCC applications, the Fischer-Tropsch (F-T) process is 

another catalytic gas-phase process that relies on fluidized bed technology. The F-T process is 

used to synthesize carbon monoxide      and hydrogen     , which are used to produce long 

chain hydrocarbons. This process draws on the advantage of excellent heat transfer rate in the 

fluidized beds which ensures uniform temperature is achieved in the process, thus improving the 

efficiency of the process. Other catalytic gas-phase processes where fluidized beds are 

employed are production of phthalic anhydride, acrylonitrile, aniline, ethylene dichloride, 

polyethylene and polypropylene. 

In recent times, fluidized beds have been used in the incineration of solid wastes. This 

application is the most widely used of all the waste-to-energy technologies. Incineration is 

particularly useful for getting rid of harmful materials and for the utilization of heat produced 

for electricity generation. Consequently, fluidized beds have been employed extensively in the 

incineration of municipal and industrial wastes, offering distinct advantages such as ability to 

handle different feed materials, homogeneous combustion and lack of moving part in the 

combustion zone. 

The world-wide campaign for environmental sustainability and green technology has caused a 

great shift of attention to the use of renewable sources for energy generation, with biomass as 

one of the preferred energy resources. Gasification of biomass offers an efficient way of 

controlling emissions, offering a simpler way of removing pollutant gases such as sulphur 

dioxide, nitrogen oxides and carbon dioxide. It also produces synthesis gas which is used to 

produce different environmentally friendly gaseous and liquid fuels. The conversion of biomass 

to these fuels relies on fluidized bed technology, making the latter a contributor to sustainable 

development. 
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Table 1.1: Applications of fluidized bed technology 

Polymeric materials  Synthesis of polyethylene, polypropylene 

 Production of silicon for semi-conductor applications 

Pharmaceutical & 

Biochemical applications 

 Cultivation of microorganisms for food and 

pharmaceutical applications e.g. fluidized bed 

bioreactors 

 Continuous and batch processing to produce 

antibiotics, enzymes, fermentation products, proteins, 

vitamins. 

Chemical synthesis  Synthesis of varieties of products such as phthalic 

anhydride, Fischer-Tropsch synthesis of 

hydrocarbons, acrylonitrile, maleic anhydride, 

activated carbon 

Petroleum processing  Fluid catalytic cracking for production of gasoline 

from oil 

 Fluid coking 

Combustion & Gasification  Coal combustion 

 Solid waste incineration 

 Biomass gasification 

 Chemical looping combustion 

Other applications  Coating of particulate material 

 Drying of solids 

 Granulation 

 Adsorption of solvents 

 Metallurgical applications 

 

Another area of fluidized beds application that is worth mentioning is in the mineral and 

metallurgical processes. The use of fluidized beds for these processes commenced in the late 

1940s in Ontario, Canada, where these systems were used for the roasting of arsenopyrite 

(Kunii & Levenspiel, 1991). Fluidized beds are suitable for this application because of the 

excellent heat and mass transfer rates which they promote. Subsequently, fluidized beds have 
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been employed in a wide range of mineral and metallurgical processes such as roasting of 

pyrites, pyrrhotite, zinc sulfide, copper and cobalt concentrates. 

The application of fluidized beds is not limited to processes where chemical reactions take 

place, such as those described above. They are also employed in many physical operations. We 

mention for instance, their use in drying operations. This has been used in many industries such 

as food and agriculture industry, pharmaceutical industry and chemical process industries. Other 

physical processes in which fluidized beds are employed include coating, granulation, solid 

mixing, food freezing, solvent adsorption and heat treatment. Table 1 summarizes some 

applications of fluidized bed technology. 

1.2 The phenomenon of fluidization 

 

When a fluid is passed upwards through a bed of particles as shown in Figure 1.1, at low flow 

rate, the fluid just moves through the spaces between the particles while the particles remain 

stationary in their positions. This is referred to as fixed bed or packed bed. As the flow rate of 

the fluid is increased, the particles move apart and a few of them vibrate and move in restricted 

regions. As the flow rate is further increased, a point is reached where all particles are just 

suspended by the upward flowing fluid. At this point, the drag force on the particles 

counterbalances their effective weight (real weight minus buoyant force). When this happens, 

the bed is considered to be just fluidized and is referred to as incipiently fluidized bed or bed at 

minimum fluidization. For a bed fluidized by liquid, a further increase in flow rate above the 

minimum fluidization flow rate       will result in a smooth, progressive expansion of the bed 

and the bed remains in a homogeneous state. The superficial gas velocity corresponding to   

   , obtained by dividing the latter by the cross sectional area   of the vessel, is a property of 

the fluid-particle system, referred to as minimum fluidization velocity,       A bed such as this is 

called a particulately fluidized bed or homogeneously fluidized bed. This behaviour is observed 

in gas-fluidized beds only when small, light particles are fluidized. 
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Figure 1.1: Fluidization regimes (Kunii & Levenspiel, 1989). 

Typically, in gas-fluidized beds, when the flow rate is increased beyond that which is needed for 

minimum fluidization, bubbles begin to form and movement of particles become more vigorous. 

Unlike the situation obtained for liquid-solid systems, the bed does not expand much beyond its 

volume at minimum fluidization. This type of bed is called an aggregative fluidized bed or a 

bubbling fluidized bed. This type of bed rarely occurs in liquid-solid systems, except with very 

dense solids fluidized by low density liquids. The velocity       at which the first bubble forms 

is also a property of the fluid-particle system, and it is called the minimum bubbling velocity. 

With further increase in gas flow rate, bubbles coalesce as they rise through the bed, and in a 

bed that is deep and of small diameter, they may eventually become large enough to spread 

across the vessel. This is called slugging fluidization. At sufficiently high gas flow rate, the 
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terminal velocity of the solid is exceeded, making the upper surface of the bed disappear, and 

instead of bubbles, one observes a turbulent motion of solid clusters and voids of gas of various 

sizes and shapes. This is called a turbulent fluidized bed. A further increase in gas velocity 

drives the bed into the pneumatic transport regime, where the particles are carried out of the 

bed. We summarize the different regimes of fluidization in Figure 1.1. In this work, we focus on 

two regimes: the homogeneous and bubbling regimes. The former is our main focus in Chapters 

2 and 3, while the latter is addressed in Chapters 4 through 6. 

The fluidization behavior described above provides a generalization of how particles behave 

when subjected to an increasing upward flow of gas. However, the behavior of gas-fluidized 

beds depends largely on the physical properties of the particles and the operating conditions. In 

trying to describe this dependence, Geldart (1973) characterized the behavior of particles 

fluidized by gas into four distinct groups. Figure 1.2 reports the classification of powders 

fluidized by air at ambient temperature.  

Group A powders have small sizes (30 - 100    ) and/or low density (typically less than 

1.4      ). A notable example is FCC catalyst. When they are fluidized by gas they expand 

homogeneously at superficial gas velocities between      and      The physical mechanism 

responsible for this homogeneous expansion has been a subject of controversy among 

researchers (Foscolo & Gibilaro, 1984; Mutsers & Reitema, 1977; Tsinontides & Jackson, 1993; 

Fortes et al., 1998); some argue that the homogeneous expansion (or the stability) is due to the 

existence of interparticle forces in the bed, while others sought for a purely fluid dynamic 

explanation. In Chapter 2, we provide an extensive review of this lingering controversy, while 

in Chapter 3 we address the subject, providing further insight using theoretical and experimental 

methods.  

Group B contains powders in the mean size range of           , and density range     

       . An example is sand. When these particles are fluidized, bubbles start to appear at 

minimum fluidization velocity or at a velocity slightly higher than the latter. Group D consists 
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of large and/or dense particles whose minimum fluidization velocity coincides with the 

minimum bubbling velocity; thus powders belonging to this group begin to bubble as soon as 

they are fluidized.  

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Fluid-particle system classification for air at ambient temperature (Geldart, 1973) 

Group C consists of cohesive powders characterized by very small particles of size range 

        . Fluidization of this group of powder is difficult because of the strong interparticle 

forces among the particles which dominate the fluid dynamic forces. Their fluidization usually 

leads to undesirable processes such as plugging, channeling and formation of stable cakes 

(Chaouki et al., 1985; Molerus, 1982; Özcan & Tüzün, 2006). To fluidize this group of powder, 

researchers have developed various methods including sound assisted fluidization (Morse, 

1955), vibro-fluidization (Mori et al., 1990), magnetically assisted fluidization (Lu & Li, 2000), 

electro-fluidization (Kashyap et al., 2006), addition of foreign particles (Brereton, 1987) and the 

use of tapered fluidized beds (Venkatesh et al., 1996).  As we shall later see in this work, 
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successful fluidization of Group C powders makes them behave in a similar way to Group A 

powders, having in particular a stable interval of homogeneous expansion before transiting to 

the bubbling regime. 

1.3 Computational modelling of fluidized suspensions 

Despite the extensive applications of fluidized beds, their design is quite challenging. The usual 

way is to construct them on a laboratory scale, construct a bigger pilot plant, and then scale-up 

the pilot plant to a commercial size. This approach has some problems associated with it - many 

of the essential operating parameters are scale-dependent, a change in one parameter affects 

several other parameters, making the scaled fluidized bed have a significantly different 

hydrodynamics. In addition to this, fluidized beds operate in different regimes (bubbling, 

turbulent, spouting etc.); therefore, it is difficult to come up with a general rule on fluidized bed 

scale-up. While describing the complexity of fluidized bed scale-up, Matsen (1996) stated that 

“scale-up is not an exact science, but is rather that mix of physics, mathematics, witchcraft, 

history and common sense that we call engineering”. Matsen’s statement clearly revealed the 

difficulties inherent in the design of fluidized beds using the scale-up method.  

 

As interest in understanding the mechanisms responsible for complex fluid dynamic interactions 

in fluidized systems grew, a more fundamental approach based on equations of motion for 

interacting fluid and particles was developed. These equations nevertheless were seen as a 

means of understanding the mechanisms responsible for complex behaviour of fluidized 

systems rather than as a basis for engineering design. However, in the 1980s, researchers began 

to attempt using differential equations of continuity and momentum as a basis for quantitative 

design calculations. This effort was greatly complemented by rapid improvements in the speed 

and memory capacity of digital computers, coupled with the development of better numerical 

methods for solving equations of motion. Consequently, researchers began to attempt predicting 

bubble formation in dense fluidized beds by direct integration of these equations (Pritchett et al., 

1978; Gidaspow & Ettehadieh, 1983; Gidaspow et al., 1986).  
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Nowadays, computer simulations have proven to be a useful tool in the design and scale-up of 

fluidized bed processes, allowing researchers to obtain fundamental insights into the complex 

behaviour of dense fluidized suspensions. Computer simulations are also employed as a design 

tool, where numerical models are used to predict the behaviour of dense gas-particle flows 

encountered in engineering-scale equipment. The use of computational methods in the design of 

fluid bed processes has led to reduction in cost of product and process development, reduced the 

need for physical experiment, improved design reliability, increased conversions and yield and 

facilitated the resolution of environmental, health and right-to-operate issues (Davidson, 2002).  

Although empirical correlations are still employed in many practical engineering designs, 

attention is gradually shifting towards the use of computational methods. This is because the 

latter are able to provide answers to questions that cannot be addressed using empirical 

correlations. For example, empirical correlations are unable to tell us the effect of introducing 

internals or changing the designs of distributor plates on fluid dynamics and performance, 

whereas computational codes are able to solve the governing equations to answer these 

questions.  

The equations used for investigating the behaviour of fluidized systems can be formulated at 

different levels of detail. At the most fundamental level, the particles are treated individually 

and their motion is determined by Newtonian equation of motion for translational and rotational 

motion, thus retaining the discrete nature of the particles. The interstitial fluid, on the other 

hand, is modelled as a continuum whose dynamics is described by Navier-Stokes and continuity 

equations, satisfied at every point of the fluid itself. Each set of equations is coupled by no-slip 

boundary condition between solid and fluid on each particle boundary, the fluid also satisfying 

no-slip condition on the remaining boundaries of the computational domain. The main 

advantage of this modelling approach lies in the simplicity of the equations; the latter do not 

contain indeterminate terms that need closure – except the fluid stress tensor, for which the 

classical Newtonian equation holds, and particle-particle collisions. Despite the simplicity of 

this approach, it is seldom used. This is because of its enormous computational demand. Indeed, 
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simulations at this level of detail have only been carried out for very dilute systems (Pan et al., 

2002). Quite recently, Kriebitzsch et al. (2013) carried out simulations of gas-fluidized beds 

using this approach, but in the simulations they considered only 2000 particles, owing to the 

significant computational effort required.  

Another modelling approach, which provides a lower level of detail, can be obtained by 

averaging the fluid velocity over a spatial domain large enough to contain many particles but 

still small compared to the whole computational domain. The Newtonian equations of motion 

are solved for each particle, and the force exerted on each particle is related to the particle’s 

velocity relative to the locally averaged fluid velocity. This modelling approach, referred to as 

discrete element modelling (DEM), is less computationally demanding compared to that 

reported in the preceding paragraph, and has been widely employed to investigate the behaviour 

of fluidized suspensions (Tsuji et al., 1993; Hoomans et al., 1996; Ouyang & Li, 1999; Kafui et 

al., 2002; Lu et al., 2005; Sun, et al., 2007; Liang – wan & Zhan, 2010; Zhu et al., 2011). The 

approach provides enormous information on the fluid bed dynamics, and is an approach of 

choice for researchers who are interested in gaining deeper insight into the dynamics of granular 

media. Nonetheless, discrete particle modelling has its own drawbacks – it requires enormous 

computational effort and can rarely be employed to investigate the dynamics of large-scale 

fluidized systems. We provide further detail on this modelling approach in Chapter 6. 

At an even lower level of detail, both the fluid velocity and particle velocity are averaged over 

the local spatial domain; thus the resulting equations resemble those that one would write for   

imaginary fluids capable of interpenetrating each other while occupying the same volume 

simultaneously. The model, referred to as Eulerian-Eulerian, therefore takes the form of coupled 

differential equations subject to boundary conditions at the boundaries of the whole system. The 

numerical solution of the Eulerian averaged equations of motion is known as computational 

fluid dynamics (CFD). This modelling approach, when compared to those described previously, 

is computationally less demanding, and is often used by researchers who are interested in 

investigating the behaviour of large-scale systems. The approach has been successful in 
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investigating the behaviour of full-scale systems, thus offering a more reliable way of designing 

and investigating industrial size fluidized beds. 

Although the Eulerian-Eulerian modelling approach is very attractive to researchers and 

engineers who are interested in investigating the behaviour of industrial scale fluidized systems, 

it has a major drawback: the equations are mathematically unclosed; therefore closures must be 

formulated for indeterminate terms resulting from the averaging process. To close these 

equations, we must formulate models for the fluid-particle interaction force and the effective 

fluid dynamic stress of the fluid and solid phases. To express the former, we employ empirical 

correlations together with results of classical fluid dynamics, while the Newtonian equation is 

used to express the effective fluid dynamic stress of the fluid phase. Modelling interaction 

forces between particles of different phases and effective fluid dynamic stress of solid phase is 

very challenging. Many researchers resort to the kinetic theory of granular flow (Haff, 1983; 

Jenkins & Savage, 1983; Lun et al., 1984; Jenkins, 1987; Lun, 1991; Gidaspow, 1994; 

Goldshtein & Shapiro, 1995; Mazzei et al., 2010; Oke, et al., 2014). However this approach is 

inadequate to describe correctly the behaviour of dense fluidized systems where particle interact 

through enduring frictional contacts; hence several approaches originating from the field of soil 

mechanics have been adopted (Savage, 1982; Johnson & Jackson, 1987; Makkawi & Ocone, 

2006). In Chapter 5 we discuss this modelling approach in greater detail, reporting its governing 

equations and demonstrating its capability to investigate the process of mixing in fluidized beds. 

1.4 Computational fluid dynamic codes 

The numerical solution of averaged equations of motion consists of three basic steps – pre-

processing, solving and post-processing. These steps are briefly described below.  

1. Pre-processing: 

In this step we set up the physical problem. This involves creating the geometry, generating the 

mesh, specifying the number of Eulerian phases and their physical and/or chemical properties, 

time-step, initial and boundary conditions.  

2. Solving: 
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Most commercial CFD codes use the finite volume method. The code integrates the differential 

transport equations over each computational cell, generating a set of integral equations on a 

control volume basis. Then, the code converts these equations into algebraic form using 

discretization techniques. Finally, the code solves the set of algebraic equations and finds the 

cell-centre values of the flow variables. 

3. Post-processing: 

The raw outputs from the solver consist of huge data sets that have to be analysed in order to 

obtain useful information. The modeller therefore uses analysis tools to extract and manipulate 

the data and generate diagrams and snapshots. 

1.5 Research questions 

This research project is concerned with the investigation of the fluid dynamic behaviour of 

homogeneous and bubbling regimes of gas-fluidized beds. Knowing how fluidized beds behave 

will greatly allow us to model and design them more accurately. The research aims to answer 

some fundamental questions relating to the dynamics of fluidized bed suspensions. These 

involved answering, among others, questions such as how do particles interact in homogeneous 

gas-fluidized beds? Do homogeneous fluidized beds consist of free-floating particles having no 

form of particle-particle interactions? How applicable are the existing fluid dynamic 

correlations, often used to analyse bed expansion, to the solid-like regime of fluidized beds? 

What roles do interparticle forces play in the homogeneous expansion of gas-fluidized beds. 

These questions have lingered for quite a while in the fluidization community. Answering these 

questions will provide deep insight into the complex fluid dynamic relationships in fluidized 

beds and will enhance our ability to better model their behaviour. The investigations in this 

work also cover the bubbling regime of fluidized beds. In this regime, the process of lateral 

solid mixing is examined. Lateral solid mixing is crucial for assessing the performance of large-

scale fluidized beds. The influence of operational and design conditions on lateral solid mixing 

is investigated. In this part of the research, we aim to investigate how well the two widely used 
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modelling approaches, the Eulerian-Eulerian and the Eulerian-Lagrangian, can estimate lateral 

solid dispersion coefficients. 

 

1.6 Research objectives 

The main goals of this research are:  

1. Presenting clearly the process of homogeneous fluidization in gas-fluidized beds; 

investigating the distinctive features of solid-like and fluid-like regimes of 

homogeneous fluidization. 

2. Elucidating the fluid dynamic behaviour of homogeneous gas-fluidized beds; providing 

deeper insight into the mechanisms responsible for the stability observed in gas-

fluidized beds. 

3. Modelling the stable expansion in gas-fluidized beds, accounting for enduring particle 

contacts and wall friction; examining the roles played by enduring particle contacts and 

wall friction on the homogeneous expansion of gas-fluidized beds. 

4. Conducting fluidization and defluidization experiments to investigate the expansion 

process in gas-fluidized beds; carrying out experiments to determine yield stresses in 

gas-fluidized suspensions; analysing the expansion profiles of gas-fluidized beds using 

the Richardson & Zaki (1954) equation, and examining the applicability of the latter in 

describing the expansion profiles in gas-fluidized beds. 

5. Modelling lateral solid mixing in gas-fluidized beds using the Eulerian-Eulerian 

approach; quantifying lateral solid mixing using a lateral dispersion coefficient and 

validating numerical results with empirical data. 

6. Investigating the effects of operational and design factors on the lateral solid mixing in 

gas-fluidized beds; in particular the influence of superficial gas velocity, bed diameter 

and bed height. 

7. Examining the influence of frictional models and dimensionality on the numerical 

simulations of lateral solid mixing; comparing the numerical results obtained from 2D 



Chapter 1                                               Introduction                                                            2016 

14 
 

and 3D simulations of lateral solid mixing; analysing the effects of frictional packing 

limit, frictional pressure and frictional viscosity models on lateral solid mixing. 

8. Investigating the capability of Eulerian-Lagrangian modelling approach in estimating 

lateral solid dispersion coefficients; comparing the predictive ability of this modelling 

approach with that of Eulerian-Eulerian methods. 

1.7 Thesis outline 

 

Chapter 2 reports on the stability of gas-fluidized beds, discussing on the lingering controversy 

among researchers about its origin. We then report on the homogenous expansion of gas-

fluidized beds, revealing the distinct peculiarities of the solid-like and fluid-like regimes. In 

Chapter 3, we investigate the mechanics of homogeneous expansion in gas-fluidized beds using 

theoretical and experimental methods. In Chapter 4, we report on the process of mixing in 

bubbling fluidized beds and how it is quantified. We highlight the importance of axial and 

lateral solid mixing and report on the dominant mechanisms by which these processes occur. In 

Chapter 5, we model lateral solid mixing using the Eulerian-Eulerian approach. We solve the 

2D governing equations numerically to determine the lateral dispersion coefficients. We finally 

investigate the influence of design and operating conditions on the latter. We then examine the 

influence of frictional stress models on our numerical results. In Chapter 6, we investigate the 

effect of simulation dimensionality on the numerical results obtained in Chapter 5. We run 3D 

CFD simulations comparing the results with those obtained in the latter. We later review the 

Eulerian-Lagrangian approach and we use it to investigate lateral solid mixing in gas-fluidized 

beds. We compare our numerical results with those obtained from the Eulerian-Eulerian 

modelling approach.  
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Chapter 2 

The stability of gas-fluidized beds 

 

This chapter reviews various mechanisms proposed for the stability of gas-fluidized beds. 

1. We present a brief account on the lingering controversy on the mechanism responsible 

for the stability of gas-fluidized beds. 

2. We report on the experimental and theoretical works supporting the fluid dynamic 

stability of gas-fluidized beds. 

3. We review the experimental evidence put forward to support the idea that stability in 

gas-fluidized beds is due to interparticle forces. 

4. We present the fluid-like and solid-like behaviour of gas-fluidized beds. 

Parts of this chapter have been published: 

Oke, O., Lettieri, P., Mazzei, L. (2015). An investigation on the mechanics of homogeneous 

expansion in gas-fluidized beds. Chemical Engineering Science, 127, 95-105.  

2.1 Introduction 

 

Generally liquid-fluidized beds display a smooth appearance and expand progressively as the 

fluid flow rate is increased, while gas-fluidized beds display heterogeneous appearance, 
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containing rising pockets of gas, referred to as bubbles. The former behaviour is referred to as 

homogeneous (particulate) fluidization, while the latter is termed bubbling (aggregative) 

fluidization. Although gas-fluidized beds generally exhibit bubbling fluidization, small particles 

with low density (Geldart A powders) fluidized by gas displays an interval of smooth expansion 

when the gas flow is increased above the minimum fluidization rate (Tsinontides & Jackson, 

1993). The origin of the stable behaviour of Group A powders has been a subject of controversy 

in the fluidization community. On one side of the argument are those ascribing the stability to 

the existence of interparticle forces in the bed and on the other side are those seeking for a 

purely fluid dynamic explanation.    

Over 60 years ago, Wilhelm & Kwauk (1948) proposed an empirical fluid dynamic criterion for 

stability in fluidized beds. They based their criterion on the Froude number   : 

                                                               
     

 

   
                                                                                       

where    is the particle diameter,   is the gravitational acceleration and     is the minimum 

fluidization velocity. They observed that a bed is fluidized homogeneously if     , while it 

bubbles otherwise. 

Jackson (1963) sought to derive a theoretical justification for the criterion proposed by Wilhelm 

& Kwauk (1948) using a linear stability analysis. This was based on the continuity and linear 

momentum balance equations for the fluid and particle phase. Unfortunately, the analysis 

yielded a physically unacceptable behaviour: it predicts that all fluidized suspensions should be 

unstable and that the rate of growth of instability should increase monotonically as their 

wavelengths tend to zero. However, the analysis predicted correctly that the rate of growth of 

instability in gas-fluidized beds is generally greater than in beds of comparable particles 

fluidized by liquids.  

The physically unacceptable behaviour predicted by the linear stability analysis is because the 

particle-phase momentum balance equation adopted by Jackson did not include terms 
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representing viscous dissipation (Anderson & Jackson, 1967). The latter accounts for the 

physical mechanisms responsible for momentum transport associated with fluctuations in 

particle velocity. When such terms are added to the particle-phase momentum balance equation 

(Pigford & Baron, 1965; Anderson & Jackson, 1967) there is a bounded value of the wavelength 

for which the disturbances grow. 

The foregoing attempts simply attribute the difference between liquid and gas-fluidized beds to 

the greater growth of disturbance, but could not establish a sharp dividing line between 

homogeneous and bubbling fluidization, neither did they say anything about the ultimate fate of 

the disturbance nor provide a justification on why disturbances in liquid fluidized beds do not 

grow into bubbles. The failure of linear stability analysis to establish a clear distinction between 

homogeneous and bubbling fluidization has led researchers to take into account non-linearities 

in the equations of motion (Liu, 1982; Needham & Merkin, 1983; Ganser & Drew, 1990). 

Nevertheless these attempts, based only on fluid dynamic considerations, have neither revealed 

any qualitative distinction between the predicted behaviour of gas and liquid fluidized beds, nor 

provided convincing evidence for stability due to fluid dynamic forces.  

Verloop & Heertjes (1970) investigated the transition from homogeneous to bubbling fluidized 

beds, considering only the fluid dynamic forces in the bed. Following Wallis (1962), they 

viewed bubbles as shock waves propagating in the bed. They reported that shock waves 

originate in the latter when the velocity of kinematic wave is greater than that of dynamic wave. 

Kinematic waves propagate between two regions of different voidage where equilibrium of fluid 

dynamic forces exists and there is no inertia effect (Cherntongchai & Brandani, 2013). Lighthill 

& Whitman (1955) describes kinematic waves using a road-traffic flow analogy. They reported 

that kinematic wave is comparable to a ‘traffic concentration wave’ which arises when an 

interruption of traffic flow occurs at some distance ahead. This traffic concentration wave 

propagates backwards at a constant speed from the point of obstruction. Drivers who are far 

away from the point of obstruction are forced to slow down and move closer as the wave passes 

over them. We should note that the kinematic description just described does not take into 
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account the inertial effects due to breaking and acceleration.  A dynamic wave, on the other 

hand, arises as a result of a force considered to be a component of the drag, which accelerates 

the particles as a result of the concentration gradient. This wave is likened to the inertial effects 

of breaking and deceleration. Verloop & Heertjes (1970) described the condition for transition 

from homogeneous to bubbling fluidization as: 

                                                                                           (2.2) 

where    is the kinematic wave velocity and    is the dynamic wave velocity. Accordingly, a 

bed manifests homogeneous behaviour when      , and bubbling behaviour when      . 

It is important to note that the considerations by Verloop & Heertjes assumed that the fluid is 

incompressible; hence, these considerations are valid for liquid-fluidized beds. For beds 

fluidized by gas, their propositions are invalid. 

Similar to Verloop & Heertjes (1970), Fanucci et al. (1979) described bubbles as shock waves 

which propagate in the bed when the velocity of kinematic wave is greater than the velocity of 

dynamic wave. By solving the mass and linear momentum balance equations for the fluid and 

particle phase, they demonstrated that shock waves can indeed form in the bed. They 

investigated the effects of several parameters on the formation of shock waves. Their results 

showed that decreasing particle size, increasing bed density, increasing fluid viscosity and 

decreasing particle density delay the formation of shock waves. These results are consistent with 

experimental data on bubble formation in fluidized beds.     

In the same vein, Foscolo & Gibilaro (1984) derived a stability criterion based on fluid dynamic 

arguments, resorting to the stability theory of Wallis (1969) to show that stability depends on 

the relative magnitude of the kinematic and dynamic waves that propagate in the bed. They 

argue that the drag force should include an addition term proportional to the gradient of void 

fraction. This led to a criterion for instability of the form: 

                               
        

  
(
     

  
)
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where   is the acceleration of gravity,    is the terminal velocity of a particle,    is the particle 

density,    is the fluid density,   is the Richardson & Zaki (1954) exponent and   is the void 

fraction. Although the authors claimed that Eq. 2.3 is valid for investigating the stability of a 

wide range of gas-fluidized beds, experimental observations revealed that the criterion failed 

when applied to certain liquid-fluidized systems. Researchers (Anderson & Jackson, 1969; El-

Kaissy & Homsy, 1976; Ham et al., 1990) reported that certain water-fluidized beds of glass 

beads predicted to be stable by Eq. 2.3 are actually unstable, though the instabilities never grow 

into bubbles.  

Another approach, based on fluid dynamic considerations, was adopted by Batchelor (1998). He 

showed that stability could arise due to random fluctuations in particle velocity and related this 

to diffusion of particles in the suspension. He proposed the following criterion for instability: 

                            
        

  
(

  

       
)
   

                                                                            

where    and    are parameters related to the virtual mass effects and the particle phase 

pressure. Batchelor reported that the value of (1+   ) lies between 1 and 2, and    is of order 

unity.    

The foregoing works, based on fluid dynamic considerations, assume that particles are free 

floating in the fluid during fluidization, without any form of particle-particle interaction. On the 

other side of the argument are those attributing the stability to the existence of interparticle 

forces. They argue that the stability of gas-fluidized beds arises due to interparticle forces 

holding the particles together and delaying their bubbling over a range of superficial gas 

velocity. Those upholding this view report that interparticle forces keep the particles together in 

permanent contacts, conferring to the expanded bed a solid-like structure. Indeed, most 

experimental results, as we shall later report in this chapter, suggest that Group A powders 

behave like a weak solid rather than a fluid in the homogeneous fluidized state, due to enduring 

interparticle contacts. The weight of the fluidized particles are therefore not fully supported by 
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the upward flow of gas, but also supported in part by interparticle forces among the particles. 

Before reporting on this solid-like behaviour, we will review the nature of interparticle forces 

that are often at play in gas-fluidized beds. 

2.2 Interparticle forces in fluidized beds 

 

Interparticle cohesion in fluidized beds may arise from the interplay of different forces. These 

forces, as we shall see, affect the fluidization behaviour of powders and have been closely 

linked to the stability observed in gas-fluidized beds. Some notable examples of interparticle 

forces are reported below. 

2.2.1 Van der Waals forces 

 

This is due to the interaction between instantaneous dipoles formed in the atoms by their 

orbiting electrons. The rapidly changing dipole of one atom generates an electric field that 

induces the polarization of the neighbouring atom. The induced dipole of the latter produces an 

attractive interaction known as the van der Waals force. We should note that this type of 

attractive force does not only exist between atoms and molecules, but also between macroscopic 

particles. The van der Waals force    between two smooth spheres of radius   and separation   

is given by: 

                                                      
  

    
 (  

  

       
)                                                               

where    is the Liftshits-van der Waals coefficient; the latter depends on the nature of bodies in 

contact and the surrounding medium.    is a coefficient characterising the hardness of the 

bodies in contact (Krupp, 1967; Molerus, 1982; Massimilla & Donsi, 1976).  The Van der 

Waals force is generally more significant than other interparticle forces for fine particles of 

diameter less than 100    fluidized by dry gas, dominating over their fluid dynamic counterpart 

(Visser, 1989; Valverde et al., 1998; Seville et al., 2000). 
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2.2.2 Electrostatic forces 

 

In addition to van der Waals forces, electrostatic forces can also contribute to interparticle 

cohesion in fluidized beds. When non-conducting particles come into contact with surfaces of 

dissimilar material or slide along such surfaces, for example particles sliding along the wall of 

fluidized beds, there is generally an exchange of electrons in the surface layer.  This causes the 

particles to be electrically charged. The motion of a charged particle in the fluidized bed is 

influenced by the neighbouring charged particle, therefore creating an electrostatic force 

between them. According to Coulomb’s law, the electrostatic force    between two charged 

objects   and   is proportional to the product of their charges and inversely proportional to the 

square of the distance   between them (Fan & Zhu, 1998). Coulomb’s law is expressed as: 

                                                                          
 

   

    

  
                                                                       

where    and    are the charges on   and    respectively, and   is the permittivity of the 

surrounding medium. In general, when compared to van der Waals forces, electrostatic forces 

are not significant in a fluidized bed (Reitema, 1991). Nevertheless significant electrostatic 

forces can be generated in the bed depending on the material from which the fluidizing vessel is 

contructed. For instance, we see significant electrostatic effects when a fluidized bed reactor is 

made from Perspex.  

2.2.3 Capillary forces 

 

This arises when moisture from the surrounding gas condenses on the surface of particles, 

forming a liquid bridge in the gap between neighbouring particles. This produces a resultant 

attractive force on the two particles. Capillary forces can dominate the gravitational force on 

particles when the vapour pressure of surrounding gas is near the saturation vapour pressure and 

can be larger than van der Waals forces (Lian et al., 1993). The magnitude of capillary forces is 

very challenging to calculate. One method, proposed by Lian et al. (1993), is the boundary 
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method, where the total capillary force    is calculated at the liquid-solid contact. The capillary 

force is given by: 

                                                                              (2.6) 

where   is the surface tension of the liquid,   is the half-filling angle,   is the contact force and 

   is the pressure drop across the air-liquid interface. It is worth mentioning that in most 

fluidized beds applications, capillary forces are always small and can be neglected (Reitema, 

1991). 

Researchers have made considerable headway in investigating the role of interparticle forces on 

the behaviour of gas-fluidized beds. For instance, the understanding of the effects of 

interparticle forces on fluidization behaviour has led to the re-interpretation of Geldart’s (1973) 

classification of powders, using a dimensionless number known as the granular Bond number 

   . The latter is defined as the ratio of interparticle forces to the weight    of a particle. 

Powders having       are generally non-cohesive and bubble as soon as they are fluidized; 

these powders are classified by Geldart (1973) as Group B and D powders. Those powders for 

which      are very cohesive and generally difficult to fluidize; they are classified as Group 

C powders in the Geldart classification. Furthermore, powders having      exhibit smooth 

expansion over a range of superficial gas velocity as soon as they are fluidized; these are 

Geldart A powders. The fluidization behaviour of the latter is discussed in the next section. 

We should note that the Geldart classification was intended to predict the behaviour of powders 

fluidized by air at ambient conditions. Reitema (1984, 1991) pointed out that it is more 

appropriate to speak in terms of Geldart‟s A, B, C or D behaviour instead of Geldart‟s A, B, C 

or D powders, since the same powder can exhibit different fluidization behaviour depending on 

experimental conditions. For example, Geldart B materials can be fluidized homogeneously 

with substantial expansion under conditions of high temperature and pressure. Under these 

conditions, there is a significant increase in the interparticle forces among the particles, causing 

the granular bond number to take a value very close to unity; hence the shift in behaviour from 
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Geldart B to Geldart A. Likewise, a powder which shows Geldart C behaviour may exhibit 

Geladart A behaviour when fluidized by a gas of high viscosity or when certain additives (such 

as fumed silica) are added. This decreases the interparticle forces among the particles, causing a 

reduction in the granular bond number. These observations show that the behaviour of a fluid-

particle system depends largely on the ratio of interparticle forces to the weight of a particle,   .  

2.3 Solid-like behaviour of Geldart A gas-fluidized beds 

 

The controversy on the origin of stability of Group A powders started over 60 years ago when 

Wilhelm & Kwauk (1948) proposed their empirical criterion based on the Froude number. Since 

then researchers, some of which were reported in Section 2.1, have carried out theoretical and 

numerical studies to emphasize the role of fluid dynamic forces on the stability of Group A 

powders. Contrary to the views expressed by these authors, Reitema (1973) stated the stability 

of gas-fluidized particles is due to the existence of interparticle forces. He stated that the latter 

confer to the bed an effective elastic modulus that could stabilize the bed against small 

perturbations, making the bed behave like a weak solid rather than a fluid; this behaviour is 

referred to as solid-like behaviour. In their earlier studies, Reitema (1967) measured the 

electrical conductivity of a fluidized bed of coke particles. He observed that, during all 

fluidization stages, there is a considerable amount of electrical conductivity in the bed, 

signifying that particles are in frictional contacts with each other. On this basis he reported that 

particles in a fluidized bed arrange themselves in a string, with the latter behaving as a 

mechanical system, and exhibiting elastic behaviour. He stated further that a fluidized bed of 

cohesive particles, in a way, can be compared to a cigarette-tobacco consisting of crumpled 

strings. When a certain mass of tobacco is strongly compacted it is stable, but within certain 

limits displays elastic behaviour. When the tobacco is loosened, a more porous structure is 

obtained which is also stable and shows elastic behaviour. In the same way, a fluidized bed of 

cohesive particles displays an elastic property where the elasticity decreases as the porosity of 

the bed increases. To further provide evidence in support of fluidized bed stability by 

interparticles forces, Reitema & Mutsers (1973) conducted a tilting bed experiment. In the 
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experiment they tilted a homogeneously fluidized bed over the horizontal axis. They observed 

that the bed remains stable until a critical tilting angle is reached where the bed surface 

suddenly shears off. Their experimental set-up is reported in Figure 2.1. The critical tilting angle 

depends on bed expansion, particle size and particle density. When the bed is tilted, the 

direction of the drag force on the particles changes, whereas the surface of the bed does not 

slide. This implies that the change is being compensated by some other forces in the bed. 

Reitema (1973) referred to these forces as interparticle forces in bed. The experiment 

demonstrates that the homogeneous fluidized bed has a certain mechanical strength caused by a 

network of interparticle contacts.   

 

 

 

 

 

 

 

 

 

 

         (a)       (b) 

Figure 2.1: Tilting bed experiments (a) before shearing off (b) after shearing off. (Reitema & Piepers, 

1990) 

 

The idea of interparticle forces as a stabilizing agent for gas-fluidized beds led Mutsers & 

Reitema (1977) to conclude that an elasticity term (       , where   is the elasticity modulus 

of the bed and   is the vertical coordinate) should be added to the solid phase linear momentum 

balance equation. They employed Wallis (1969) criterion to show that a fluidized bed is 

unstable if: 
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where    is the particle density,    is the particle diameter,    is gas viscosity and   is the void 

fraction. Whenever there are perturbations in the bed, such as those arising from gas 

fluctuations, hydrodynamic stress is generated in the bed. Reitema (1977) stated that for a bed to 

be stable it must have a sufficiently large elasticity to compensate for the stress caused by 

perturbations in the bed.   

 

To highlight the solid-like behaviour of Geldart A powders, Donsi et al. (1984) carried out 

experiments similar to those of Reitema (1973). They measured the tilting angles of Geldart A 

and B powders. They observed for the latter powder that the tilting angle tend to zero when the 

particles are fluidized, implying that the upper surface of the bed shears off at minimum 

fluidization velocity. Conversely the tilting angle of Geldart A powders takes non-zero values 

throughout the period of homogeneous expansion. They explained that the tilting angle of 

Geldart B powders becomes zero at minimum fluidization because the particles do not maintain 

a network of interparticle contacts when they are fluidized; hence they do not have mechanical 

strength that such enduring contacts bring and therefore they bubble as soon as they are 

fluidized. Donsi et al. (1984) also measured the angle of internal friction of Group A powders, 

starting from the packed state (when the fluid flow rate is zero) to the minimum bubbling point. 

They reported that the angle of internal friction measured when the bed is fluidized accounts for 

the contribution of cohesive forces in the bed. They could not measure the angle of internal 

friction for Group B powders because they bubble as soon as they are fluidized.  

 

Although the above experiments provide evidence that stability of gas-fluidized particles is due 

to interparticle forces in the bed, Gilbertson & Yates (1996) expressed doubts on the use of such 

experiments for obtaining information on the stability of gas-fluidized beds. They carried out 

tilting bed experiments using the same powder investigated by Reitema, but they used metal as 

the bed container as opposed to perspex used by the latter author.  They reported a radically 
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different observation from Reitema: the surface of the bed shears off as soon as the particles are 

fluidized. They attributed the difference in observation to the different materials used for the 

fluidized bed container. Reitema used Perspex, which is more prone to cause electrostatic 

charges within bed. The interparticle forces generated by these charges are sufficient to stabilize 

the bed during tilting, thus validating Reitema's conclusions. However, Gilberton & Yates 

(1996) reported that Reitema’s results may only be applicable to their experiments and should 

not be generalized for all Group A powders. This is because they observed that the angle of tilt 

of the bed is different from the angle of tilt of the container. They argued that if the particles are 

held together by interparticle forces the two angles should be the same. They concluded that 

interparticle forces should not be ruled out as a potent factor responsible for the stability of 

Geldart A powders, but they should not be invoked as the sole explanation for their stability. 

Although their experiments seem to contradict the solid-like structure of gas-fluidized particles, 

they reported that there are possibilities of smaller, temporary structures in the bed due to fluid 

dynamic interactions, but they did not provide detailed explanation on the physical mechanisms 

governing the evolution of these structures.  

 

Empirical observations on magnetically stabilized beds (MSBs) appear to cast doubt on 

Gilberton & Yates (1996) conclusions. In these experiments, interparticle forces are induced on 

fluidized particles by applying an external magnetic field. Rosensweig (1979) carried out the 

fluidization of magnetisable particles by a gas stream in the presence of a uniformly applied 

magnetic field. He reported that fluid dynamic instability due to formation of bubbles was 

curtailed. The fluidized suspension expanded uniformly in a manner typical of Geldart A 

powders. Visual observations of the bed suggested that the MSB is free of agitation and solid 

recirculation, implying that the bed acquired a solid-like structure where particles are held 

together in enduring contacts by the magnetically induced interparticle forces. If interparticle 

forces did not play a dominant role in the stabilization, as Gilberton & Yates (1996) suggested, 

then the application of external magnetic field on the fluidized bed would not result in a 

dramatic change in the fluidization behaviour. Figure 2.2 shows Rosensweig’s comparison of 
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ordinary fluidized beds and MSBs. Further experimental studies revealed that the fluidity of 

MSBs decreases continuously as the magnetic field strength is increased, indicating that the bed 

becomes more solid-like. Lee (1983) measured the yield stress in a MSB. He reported that there 

is an appreciable yield stress in the bed which increased monotonically as the magnetic field 

strength is increased. The yield stress arises owing to the sustained contacts among particles as 

the interparticle forces increased. 

 

 

Figure 2.2: Comparison between an ordinary fluidized bed and a magnetized fluidized bed 

(Rosensweig, 1979) 

 

The dynamics of magnetically fluidized beds, as revealed by Valverde (2003), is controlled by 

the balance between the magnetically induced interparticle forces and the drag force. As the 

strength of the field increases, particles tend to form chains due to the prevalence of magnetic 

attractive forces over the drag force that tends to separate them. Further increase in the magnetic 

field strength leads to crowding of these chains of particles, causing the suppression of bubbles. 

To further investigate the solid-like structure of gas-fluidized beds, Espin et al. (2011) applied 

an external magnetic field to a naturally stabilized bed. They observed that the field does not 
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cause a remarkable increase in yield stress as one would expect. The reason for this, they 

reported, was that the field was applied when the particles were already fixed and therefore they 

were not free to rearrange. Their experimental results showed that interparticle forces provide 

the bed with a yield stress that stabilizes it, thus delaying the formation of bubbles.    

   

Tsinontides & Jackson (1993) investigated the stability of gas-fluidized beds by carrying out 

fluidization and defluidization of FCC particles. They measured the pressure drop and bed 

height as a function of superficial gas velocity. Their measurements revealed hysteresis between 

the fluidization and defluidization pressure drop and bed height curves. This strongly suggests 

the existence of compressive yield stress in the particle assembly which forms the expanded 

bed. Tsinontides & Jackson also demonstrated that the fluidized particles behave like a weak 

solid with an effective elastic modulus, revealing a solid-like behaviour of fluidized systems. To 

do this, they slowly increased the superficial gas velocity of a partially compacted bed. They 

observed no significant change in bed height, signifying that the bed has an ability to resist 

compression and confirming that it has a measure of elasticity arising from the sustained 

contacts among particles. Similar conclusions were made by several authors; see for instance 

Loezos et al., 2002; Srivastava & Sundaresan, 2002; Jackson, 2000. Tsinontides & Jackson 

measured the axial solid volume fraction along in the bed using a high resolution gamma-ray 

densitometer. Their measurements showed that a solid volume fraction profile developed along 

the vertical bed axis, implying that the particles are in contact and a finite yield stress exists. 

 

To further demonstrate the existence of yield stresses in a homogeneous gas-fluidized bed, 

Menon & Durian (1997) studied the motion of particles in a gas-fluidized bed. They measured 

the reflection of laser light from fluidized glass beads using diffusion-wave spectroscopy. They 

found no fluctuations in the interval of stable expansion. Their results revealed the presence of 

enduring contacts among particles due to the existence of interparticle forces in the bed. 

Fluctuations in particle motion, according to Reitema (1973), can only be initiated by instability 

due to bubbling. This observation revealed that the homogeneous state of the bed behaves like a 
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weak solid, supporting the solid-like behaviour of Geldart A powders. Similar measurements 

were made by Cody et al. (1996). They measured bed expansion and shot noise due to particle 

impacts on the wall of a bed of FCC powder. They reported that the bed was completely silent 

in the stable interval of homogeneous expansion until the superficial gas velocity reached a 

certain critical value.  

 

The fundamental role of interparticle forces in stabilizing the fluidization of Geldart A powders 

was demonstrated by Marzocchella & Salatino (2004). They fluidized the particles using carbon 

dioxide at pressures ranging from subcritical to supercritical conditions. As they varied the 

pressure, the fluid density changed from the values typical of gases to those of liquids, and 

hence the fluid dynamic behaviour of the bed changed. They observed that the increase in fluid 

density causes the interval of bubble-free expansion to be extended. They carried out a 

statistical analysis of the heat transfer coefficient fluctuations in the bed. The analysis revealed a 

negligible fluctuation in the interval of homogeneous expansion, signifying that particle 

mobility is substantially hindered at superficial gas velocities within the range of homogeneous 

expansion. This observation supports the solid-like behaviour of Geldart A powders. 

 

The solid-like behaviour of Geldart A powders is not only demonstrated by experimental 

investigations. Koch & Sangani (1999) studied the behaviour of Geldart A powders using the 

kinetic theory. They derived the particle-phase pressure for a homogeneous suspension of 

particles, and carried out a linear stability analysis of the system. Their results indicated that a 

gas-fluidized bed where there are no enduring particle contacts is also always unstable. This led 

them to conclude that bubbling can only be restrained by a solid-like behaviour of expanded 

beds.  

Similarly, Fortes et al. (1998) used a theoretical approach to provide further insight into the 

solid-like behaviour of Geldart A powders. They adopted the Eulerian-Eulerian modelling 

approach to describe the fluidized suspension. The results of their investigation show that the 

stability of Geldart A powders has two distinct origins: one that is fluid dynamic, arising from 
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the interactions between the solid and fluid phases, and one that is not, arising from interparticle 

forces. Their results also revealed that the latter are responsible for the formation of clusters in 

gas-fluidized beds and deposition of particles on the vertical walls of the bed.  

 

Ye et al. (2005) investigated the influence of interparticle forces on the fluidization behaviour of 

Geldart A powders using the Discrete Element Methods (DEM). They modelled the interparticle 

forces by adopting the Hamaker expression for van der Waals force between two spheres.  They 

reported that interparticle van der Waals force delays the transition from homogeneous to 

bubbling regime. In particular, they noted that the minimum bubbling velocity increases as the 

granular bond number (the ratio of interparticle forces to the weight of a particle) increases, 

signifying that bubbling is delayed because the interparticle forces are increased.  

 

Experimental and theoretical investigations such as those reported above provide evidence that 

homogeneous gas-fluidized particles maintain a network of enduring contacts which stabilizes 

the bed against small perturbations. The bed thus behaves like a weak solid with an effective 

elastic modulus, having ability to resist compression. In contrast to the solid-like behaviour of 

gas-fluidized Geldart A powders, most beds of granular material fluidized by liquids exhibit a 

non-bubbling fluid-like behaviour; they expand homogeneously without having any form of 

enduring particle contacts. Therefore gas-fluidized and liquid-fluidized beds are considered as 

systems displaying a radically different behaviour. However, experimental observations show 

that gas-fluidization of fine powders also display a non-bubbling fluid-like behaviour. This 

observation appears to reconcile the different opinions about the forces responsible for the 

stability of gas-fluidized beds; the solid-like behaviour on the one hand supports the idea that 

interparticle forces are responsible for the stability, while the fluid-like behaviour strengthens 

the view of those ascribing stability to fluid dynamic forces. Before reporting on the fluid-like 

behaviour of gas-fluidized fluidized beds, we report its distinctive features in liquid-fluidized 

beds.  
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2.4 Fluid-like behaviour of particles fluidized by liquids 

 

Generally, granular materials fluidized by liquid display a smooth expansion without formation 

of visible bubbles as the fluid velocity is increased. The particles are freely suspended in the 

liquid, being fully supported by the upward flow of the latter. Unlike gas-fluidized beds of 

Geldart A powders which show solid-like behaviour, liquid-fluidized beds display a fluid-like 

behaviour, having in particular no ability to transmit stress through the particulate assembly, 

since there are no enduring contacts among the particles. In this condition, the stability of the 

fluidized particles is solely due to the fluid dynamic forces arising from the interaction between 

the fluid and the particles.  

Researchers have made considerable efforts to predict the expansion profiles of liquid-fluidized 

beds. These profiles provide the velocity-voidage relationship which is often of great interest in 

fluidized bed applications. Numerous empirical and semi-empirical correlations have been 

developed for the velocity-voidage relationship in liquid-fluidized beds. Most of these 

correlations, summarized by Jamialahmadi & Müller-Steinhagen (1992), are reported in Table 

2.1. Most of the correlations reported in Table 2.1 are applicable over a restricted range of 

Reynolds number, except for the Richardson & Zaki (1954) equation which covers the fluid 

dynamic regime from viscous to inertial flow. The Richardson & Zaki (1954) equation is the 

most widely used of all; hence we will place more emphasis on it. Although it was developed 

for particles falling in a stationary liquid under the influence of gravity, it is justifiable to use the 

equation for liquid fluidized beds, since sedimentation and fluidization are similar processes 

viewed from different frames of reference. When the Richardson & Zaki equation is employed 

in fluidization processes, the sedimentation velocity   becomes the superficial liquid velocity. 

Over the years, the equation has proved to be accurate in providing an excellent account of 

expansion profiles of non-bubbling liquid-fluidized beds.  

 

 

 



Chapter 2                               The stability of gas-fluidized beds                                        2016 

 

32 
 

 

 

 

Table 2.1: Correlations for predicting bed expansion in liquid-fluidized beds 

Author Equation Range of 

Application 

Type 

of  equation 

Steinour (1944) 
 

  

                    
         

       

Semi-empirical 

Brinkman (1947) 
 

  

            [  (
 

   
  )]

   

       Theoretical 

Lewis et al. (1949) 
 

  

       

            

 

Empirical 

Hawksley (1951) 
 

  

      ( 
        

            
) 

             

 

Semi-empirical 

Jottrand (1952) 
 

  

      

              

 

Empirical 

Lewis & Bowerman (1952) 
 

  

          

          

 

Empirical 

Richardson & Zaki (1954) 

 

 

  

    

 

 

 

 

 

 

Semi-empirical 

Happel (1958) 
 

  

 
          

 
          

 
         

        
 
 

         Theoretical 

Oliver (1961) 
 

  

              [           
 
 ]         Semi-empirical 

Letan (1974) 

 

  

 
          

          

      (   
 
  

)
     

      

 
             

 

Semi-empirical 

Foscolo et al. (1983) 

 

  

 
  

         
                          

 

  

 
                        

     

         

     

 

  

 *
  

            
+

   

                                   

 

Theoretical 

𝑅𝑒𝑡      

 

𝑅𝑒𝑡      

    𝑅𝑒𝑡      

  𝑛         𝑑𝑝 𝐷 

  𝑛         𝑑𝑝 𝐷 𝑅𝑒𝑡
      

  𝑛         𝑑𝑝 𝐷 𝑅𝑒𝑡
     

  𝑛     𝑅𝑒𝑡
     

  𝑛      

Ret < 0.2 

0.2 < Ret <1 

1< Ret < 200 

200 < Ret < 500 

Ret > 500 
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It is important to note that the Richardson & Zaki (1954) equation, and indeed other correlations 

reported in Table 2.1, are purely fluid dynamical and entirely unrelated to particle-particle 

interactions in the bed. These correlations were derived for monodisperse spherical particles 

which are uniformly suspended in the fluid; hence they are appropriate for investigating 

fluidized systems manifesting fluid-like behaviour. Nonetheless, as we shall see in Chapter 3, 

these equations (in particular the Richardson & Zaki equation) have also been employed to 

study the behaviour of gas-fluidized in the solid-like regime, such as those reported in Section 

2.2. 

 

Although most liquid-fluidized beds exhibit non-bubbling behaviour, displaying smooth 

appearance and expanding progressively as fluid velocity is increased, Anderson & Jackson 

(1969) reported a different observation in their liquid-fluidized bed of glass beads. Their 

experiment was carried out in a 1.8 m tall cylindrical tube. They observed that the bed of glass 

beads was traversed by one-dimensional travelling voidage wavefronts.  They observed that the 

amplitude of these waves increased exponentially as the distance from the distributor plate 

increased, signifying that the bed is by no means uniform beyond a certain extent of bed 

expansion. Similar observations were reported by Ham et al. (1990). They studied the 

homogeneous fluidization of small particles with liquid. They conducted a wide range of 

experiments changing the particle size, particle density and fluid properties. They measured 

instabilities in the bed using light extinction technique proposed by Anderson & Jackson (1969). 

This technique measures the amount of light attenuation by particles in suspension and uses this 

to calculate particle concentration in the bed. Ham et al. (1990) reported that uniform 

fluidization exists between the minimum fluidization velocity and a certain critical velocity    

beyond which the bed began to be unstable with significant particle velocity fluctuations. These 

observations made researchers conclude that non-uniform structures (bubbles) do exist also in 

liquid-fluidized beds, but they occur very slowly, whereas in gas-fluidized beds the evolution of 
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these non-uniform structures occurs very rapidly (Anderson et al., 1995; Glasser et al., 1997; 

Homsy, 1998; Duru & Guazzelli, 2002). 

Table 2.2: Cases of bubbling behaviour in liquid-fluidized beds 

Author Powder Experimental method Observations 

Wilhelm & Kwauk 

(1948) 

1.3mm lead shot Visual observations Bubbling and intermittent 

motion 

Peck & Watkins (1956) 7mm glass beads Visual observations Bubbling  fluidization with 

pockets of water 

Hanratty & Bandukwala 

(1957) 

0.56mm steel spheres Visual observations Motion of solids similar to 

gas-solid systems 

Cairns & Prausnitz 

(1960) 

3mm glass and lead 

spheres 

Visual observations Bubbling and void waves 

moving upwards 

Harrison et al. (1961) 0.7mm lead shot Visual and still 

photographs 

Bubbling behaviour 

Hasset (1961a,b) 1-1.5mm glass ballotini Visual and still 

photographs 

Partial voids and bubbles 

observed 

Kelly (1961) 9-19mm steel ball Gamma rays absorption Slugging bed with large 

density fluctuations 

Simpson & Roger (1961) 1.71mm lead shot Visual observations Lens-shaped bubbles at the 

bed wall and top 

Reuter (1964) 1mm lead shot Photographs Bubble shape similar to 

gas-fluidized beds 

Volpicelli et al. (1966) 3mm plastic and steel 

spheres 

Photographs Non-uniform particle 

distribution 

Bicknell & Whitmore 

(1967) 

9-12mm resin spheres Visual observations Waves of high voidages 

travelling upwards 

Trupp (1968) 1.2-9.7mm glass and lead 

spheres 

Visual observation and 

high-speed movie 

Parvoids for glass bed and 

Sloshing of the lead bed 

Garside & Al-Dibouni 

(1973) 

1.8-3mm glass ballotini Visual observations Boiling appearance of bed 

surface 

Kwauk (1973) 0.5-4mm glass spheres Still photographs Dense and dilute region 

present in the bed 

El-Kaissy & Homsy 

(1976) 

0.5-1.4mm glass beads Visual observations and 

light transmitting 

techniques 

Horizontal waves and high 

voidage regions measured 

Kmiec (1978) 6mm glass beads Photographs Inhomogeneity in particle 

distribution 

Didwania & Homsy 

(1981a) 

0.5-1.1mm glass beads Light transmission and 

optical scanning 

Wavy, turbulent and 

bubbling regimes 

Dorgelo et al. (1985) 10mm marble Visual observations Slugging behaviour 

observed 
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The experimental evidence reported above demonstrates that liquid-fluidized beds (in general 

fluidized beds in the fluid-like regime) are not uniform over the entire range of bed expansion, 

although these non-uniform structures rarely develop into macroscopic bubbles. To the naked 

eye, a fluidized bed in the fluid-like regime appears smooth and uniform; nonetheless the 

existence of mesoscale non-uniform structures proves that such beds are not really 

homogeneous. 

 

The origin of non-uniform structures in liquid-fluidized beds has been associated with particle 

inertia, resulting from the relative motion between the fluid and particles. The relative motion 

between them is assumed to impart a fluctuating velocity on the particles. The velocity 

fluctuations generate a particle phase pressure    and viscosity   , both of which are functions 

of   . This in turn generates an effective elasticity on the particle phase       . If the latter is 

greater than zero and is sufficiently large to overcome the destabilization arising from particle 

inertia and voidage dependence on the drag, the bed is stable; otherwise the bed becomes 

unstable (Sundaresan, 2003).  

 

Although, generally, liquid fluidization of granular materials can be extremely smooth, and in 

some cases characterised by the evolution of mesoscale structures, such as those reported in the 

preceding paragraphs, it is indeed possible for such beds to exhibit macroscopic bubbling. This 

was first observed by Wilhelm & Kwauk (1948) for the fluidization of lead spheres by water. 

Since then, several other experimental works which confirmed the bubbling behaviour of liquid-

fluidized beds have been reported in the literature. These are summarized in Table 2.2.  

 

It is interesting to note that the similarity between liquid-fluidized beds and gas-fluidized beds is 

quite remarkable. Some liquid-fluidized beds reported in Table 2.2 bubble as soon they are 

fluidized; a behaviour typical of Geldart B powders fluidized by gas, while some expand over a 

substantial interval of superficial gas velocity before bubbling, similar to what is observed for 
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Geldart A powders. In the latter, however, the bubble-free expansion is usually characterised by 

solid-like behaviour, while for liquid-fluidized beds the behaviour is completely fluid-like.  

 

 

2.5 Fluid-like behaviour of fine particles fluidized by gas 

 

We reported in Section 2.2 that gas-fluidization of Geldart A powders results in homogeneous 

expansion over an interval of superficial gas velocity. Experimental observations revealed that 

such homogeneous expansion is possible because the fluidized particles maintain a network of 

enduring contacts. The latter, as said, confers to the bed an effective elastic modulus which 

stabilizes the bed against small perturbations and delays their bubbling. The bed therefore 

behaves like a weak solid having the ability to resist compression – a behaviour referred to as 

solid-like behaviour. In this section we wish to clarify that the solid-like behaviour is not a 

necessary condition for the homogeneous gas-fluidization of all kinds of particles. Indeed, as 

experimental observations reveal, highly cohesive powders (such as Geldart C powders) 

fluidized by gas can exhibit non-bubbling fluid-like behaviour typical of granular materials 

fluidized by liquids reported in Section 2.3. However, to achieve this, fluidization assisting 

methods need to be used. These methods act in a way to reduce the interparticle forces in the 

bed, thus enhancing the fluidization of these highly cohesive powders. Before reporting on the 

fluid-like behaviour of gas-fluidized fine particles, we will briefly review the various assisting 

methods that have been employed to enhance the fluidization of highly cohesive powders. 

2.5.1 Fluidization assisting methods 

 

The assisting methods used in fluidization of highly cohesive powders include the use of 

acoustic wave, mechanical vibration, magnetic/electric field, tapered beds and the addition of 

foreign materials (also called flow control additives). 

2.5.1.1 Sound assisted fluidization 
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Morse (1955) was the first author to study the fluidization behaviour of cohesive powders under 

the influence of acoustic fields of various sound pressure levels and frequencies. He applied an 

acoustic field to the bottom of the bed using loudspeakers. He found that submicron particles 

which had shown intense channelling were smoothly fluidized when he applied an acoustic field 

with a frequency in the range of 50 to 500 Hz. Other researchers (Chirone et al., 1992, 1993; 

Russo et al., 1995; Levy et al., 1997; Guo et al., 2005, 2006) have reported enhanced 

fluidization with the use of acoustic waves. The common observation among these researchers 

is that there is a minimum sound pressure level below which the acoustic field does not have 

any effect on the fluidization quality of fine powders. They reported that when the sound 

pressure level is below this minimum, the acoustic oscillation strength is not high enough to 

initiate fluidization. They also observed that large agglomerates are formed in the bed when the 

sound pressure level is very high due to greater collisions between the particles and smaller 

agglomerates. 

2.5.1.2 Mechanical vibrations 

 

Fluidization of highly cohesive powders has been achieved with the aid of mechanical 

vibrations. Dutta & Dullea (1991) used external mechanical vibrations to improve the 

fluidization quality of fine powders. Several others (Marring et al., 1994; Noda et al., 1998; 

Wank et al., 2001; Tasirin & Anuar, 2001; Mawatari et al., 2002; Xu et al., 2004; Valverde & 

Castellanos, 2006; Levy & Celeste, 2006; Harris, 2008; Zhang & Zhao, 2010; Wang et al., 

2010; Kaliyaperumal et al., 2011) have also achieved a smooth fluidization of Geldart C 

powders with the aid of mechanical vibrations. Despite the success of this method in enhancing 

the fluidization of highly cohesive powders, more research is needed to clarify the effects of 

vibration frequency and amplitude on fluidization behaviour (Shabanian et al., 2012).  

2.5.1.3 Magnetically assisted fluidization 

 

This method involves the use of oscillating magnetic fields to enhance the fluidization of fine 

and ultrafine particles. This method has been generally implemented to enhance either the 
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fluidization of magnetic particles or a mixture of magnetic and non-magnetic particles. To 

achieve fluidization, the particles reorganize themselves to form a chain structure along the lines 

of the magnetic field. Zhu & Li (1994, 1996) reported that the chain structures block the 

channels and eventually eliminate them, allowing for even distribution of gas through the bed 

and thus enhancing fluidization. 

2.5.1.4 Electrically assisted fluidization 

 

Kashyap et al. (2006, 2008) investigated the influence of electric fields on the fluidization 

behaviour of fine particles. They reported that cohesive particles were fluidized with a 

considerable bed expansion under the influence of an electric field. The latter breaks the 

cohesive forces among the particles, thus enhancing their fluidization. Several others (Valverde, 

2008; Quintanilla et al., 2008; Lepek et al., 2010) have also reported improved fluidization of 

fine particles with the aid of externally applied electric fields.  

2.5.1.5 Centrifugal fluidized beds 

 

Qian et al. (2001) studied the effect of centrifugal force on the fluidization of fine particles 

theoretically. They reported that particles belonging to Geldart C classification will manifest 

Geldart A behaviour under the action of a centrifugal force. To confirm their theoretical studies, 

they fluidized 7   alumina particles (Geldart C powder) in centrifugal fluidized bed operating 

at a high rotating speed. They reported that at a sufficiently high speed of rotation, the bed 

behaves like a Geldart A powder.  

2.5.1.6 Tapered fluidized beds 

 

Vankatesh et al. (1996) showed that using a fluidized bed with a conical base, having an 

expanding section along the direction of flow, greatly enhanced the fluidization of fine particles. 

Others (Yang, 2005; Tong et al., 2004) have also reported improved fluidization quality with the 

use of tapered beds.  
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2.5.1.7 Addition of foreign particles 

 

This method has significant advantages over those previously discussed. Most methods 

described above are difficult to implement for large-scale applications, requiring significant 

modifications to the fluidized bed reactors (Valverde, 2003). Some of these methods are not 

economically feasible except for selected applications, for instance the use of external 

mechanical vibrations and oscillating magnetic field (Ajbar et al., 2011). Addition of foreign 

particles however does not need any change to the reactor. This method can be used for a wide 

range of particle size, shape and density (Zhou & Li, 1999; Song et al., 2009; Ajbar et al., 

2005). Owing to the advantages of this method over others, it has been widely adopted to 

investigate the fluid-like behaviour of fine powders.  

Valverde et al. (2001) investigated the non-bubbling fluid-like behaviour of gas-fluidized beds 

by adding foreign particles, to which they referred as flow control additives, to the fine powder. 

Their investigations revealed that the non-bubbling fluidization of these conditioned powders 

exhibit both solid-like (the Geldart A behaviour reported in Section 2.2) and fluid-like (the 

general behaviour of liquid-fluidized beds reported in Section 2.3) behaviour. They reported that 

the solid-like behaviour was observed at superficial gas velocities below a critical value   , and 

the fluid-like behaviour was observed for higher values of the superficial gas velocity. To 

demonstrate this, they fluidized toner powders of two different colours – yellow and magenta, 

having mean size of 8.53  . To enhance their fluidization, the powders were conditioned by 

adding flow control additives. They placed the powders in a container divided into two equal 

halves by a vertical removable partition; the magenta powder on one side and the yellow 

powder on the other side of the partition. The powders were then subjected to an upward flow of 

air. When the powders were fluidized, the partition was carefully removed. For values of 

superficial gas velocities below    no mixing was observed between the yellow and magenta 

powders, signifying that the particles were held in permanent contacts – a solid like behaviour. 

In this condition, they observed that the gas pressure drop was below the weight of the particles 
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per cross sectional area, implying that a fraction of particles derive support from their mutual 

permanent contacts and that the bed has a certain measure of mechanical strength. To further 

confirm this, they did a similar experiment to Reitema (1973). They tilted the bed slowly and 

observed that the bed remained stable while its upper surface was also tilted. When the 

superficial gas velocity was increased above   , a radically different behaviour was observed. 

Even though the bed did not manifest bubbling behaviour, the yellow and magenta powders 

mixed successfully. The bed weight was fully supported by the gas flow; the gas pressure drop 

being exactly equal to the bed weight per cross sectional area. In this state, stresses due to 

enduring interparticle contacts vanished. Stresses in the bed were now generated by collisions 

among the particles due to fluctuations in their motion and the non-bubbling fluidized state is 

purely a result of fluid dynamic interactions in the bed, as in the case of liquid-fluidized beds 

discussed in the preceding section. Valverde et al. (2001) reports that the non-bubbling fluid-

like bed has some properties of a liquid. For instance, when the bed enters the fluid-like regime, 

its upper surface remains horizontal when it was tilted just like one would expect a liquid to 

behave. They also measured the diffusion coefficient of magenta powder as it mixes with the 

yellow powder. They reported that the diffusion coefficient is a strong function of superficial 

gas velocity, increasing exponentially with the latter.  

Valverde (2003) investigated the effect of particle size on the fluid-like regime of gas-fluidized 

powders. They reported that the range of superficial gas velocity in which the bed manifests 

fluid-like behaviour increased as the particle size reduces. From their results they sought to 

establish a link between the two agents of stabilization proposed for gas-fluidized beds – fluid 

dynamic and interparticle forces. They reported that the reduction in the extent of fluid-like 

regime as the particle size is increased revealed the reduced contribution of fluid dynamic forces 

on bed stability. They observed that when the particle size is such that the granular Bond 

number was      , the fluid-like regime disappeared completely, indicating that the stability 

of the bed is due to enduring contacts in the particulate assembly. The fluidization behaviour is 

now similar to what one observes in the fluidization of Geldart A powders.  
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The non-bubbling fluid-like behaviour of gas-fluidized beds is quite similar to the fluid-like 

behaviour of liquid-fluidized beds. In the latter, as reported in Section 2.3, the absence of 

macroscopic bubbling does not necessarily mean that the bed is stable (Homsy, 1998; Jackson, 

2000; Duru & Guazzelli, 2002). Similarly, the smooth expansion of gas-fluidized bed in the 

fluid-like regime does not mean that the bed is stable. Experimental observations by Valverde 

(2003) revealed the existence of mesoscale structures in the bed. As they increased the 

superficial gas velocity the number of local voids detected in the bed increased until the bed 

enters the bubbling regime. Furthermore density fluctuations, measured by fluctuations in light 

reflectance, increase with bed height for values of gas velocities below the minimum bubbling 

velocity. For velocities above the latter, these fluctuations continue to grow without limit. A 

similar result was obtained by Duru & Guazzelli (2002) by direct visualization of liquid-

fluidized beds.  

Although there are similarities between non-bubbling fluid-like regime of gas-fluidized beds 

and liquid-fluidized beds, we should note that one striking difference exists. The non-bubbling 

fluid-like regime of fine powders is characterised by the dynamic aggregation of freely 

suspended particles. The aggregation is caused by attractions among the particles, which make 

them form light aggregates in the suspension. The size of the aggregates, according to 

Castellanos (2005), is dictated by the dynamic equilibrium between the interparticle forces and 

the flow shear on the surface of aggregates. The fluid-like regime of gas-fluidized beds of fine 

particles therefore consists of light aggregates uniformly suspended in the fluid. This type of 

dynamic aggregates has not been reported for liquid-fluidized beds, raising a question of 

whether the empirical correlations reported in Section 2.3 can be employed to investigate the 

fluid dynamic behaviour of non-bubbling fluid-like gas-fluidized beds.  

Castellanos (2005) investigated the sedimentation of a gas-fluidized bed in the non-bubbling 

fluid-like regime using a modified Richardson & Zaki (1954) equation. The latter has to be 

modified to account for the presence of clusters. Castellanos (2005) described the settling 

velocity of the aggregates using the following equation: 
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                (2.8) 

where   is the superficial gas velocity,    is the terminal settling velocity of individual 

aggregates,     is the volume fraction of aggregates and   is the Richardson & Zaki exponent. 

The terminal settling velocity of individual aggregates    and the volume fraction of aggregates 

   are expressed in terms of the number of particle   per aggregate as follows: 

        ;                 (2.9) 

where   is the average ratio of aggregate size to particle size,    is the terminal settling velocity 

of a particle and    is the particle volume fraction. If we substitute Eq.2.9 into Eq.2.8 we obtain: 

                                                                
 

  
 

 

 
(  

   

 
)

 

                                                                   

Eq. 3.0 is the modified Richardson & Zaki (1954) equation for investigating the non-bubbling 

fluid-like behaviour of fine powders.  

2.6 Conclusions 

 

There has been a long controversy regarding the mechanism responsible for the stability of 

Geldart A powders. On one side of the argument are those proposing that fluid dynamic forces 

are responsible for the stability, on the other side others ascribed the stability to the existence of 

interparticle forces in the bed. Experimental observations revealed that gas-fluidized beds of 

Geldart A powders have an effective elastic modulus which stabilizes the bed against small 

perturbations. The elastic modulus arises because particles in the bed form a network of 

enduring contacts which confers to the bed a certain mechanical strength which allows the 

particles to be stable over a certain range of superficial gas velocity before transiting to 

bubbling; a behaviour referred to as solid-like. The solid-like behaviour strengthens the idea that 

interparticle forces are responsible for the stability of Geldart A powders. The solid-like 

behaviour of gas-fluidized particles is different from the fluid-like behaviour observed in liquid-

fluidized beds. In liquid-fluidized beds particles are uniformly suspended in the fluid and 
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enduring particle contacts are absent. In the fluid-like state, the stability of the bed is purely a 

result of fluid dynamic forces arising from fluid-particle interactions.  

Valverde (2001) sought to reconcile the arguments on the stabilizing agents of gas-fluidized 

beds. He demonstrated that the homogeneous regime of gas-fluidized particles consists of both 

solid-like and fluid-like regimes. The latter prevails when the superficial gas velocity is 

increased above a certain critical value, and the bed is fluidized in a manner similar to liquid-

fluidized beds. He showed that the extent of the fluid-like regime reduces as the particle size 

increases; most gas-fluidized beds of Geldart A particles are fluidized in the solid-like regime. 

In the following chapter the behaviour of this class of powder is studied more closely using 

theoretical and experimental methods.  
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Chapter 3 

Theoretical and experimental investigation 

of the behaviour of homogeneous  

gas-fluidized beds 

 

This chapter is concerned with an investigation on the mechanics of homogeneous expansion in 

gas-fluidized beds using experimental and theoretical approaches. 

1. We recap some salient points raised in Chapter 2 regarding the solid-like behaviour of 

gas-fluidized powders. 

2. We introduce the Richardson & Zaki (1954) equation, discussing on its ability to 

describe the expansion profiles in gas-fluidized beds. 

3. We describe the process of fluidization and defluidization in gas-fluidized beds. 

4. We model the homogeneous expansion in gas-fluidized beds using a linear momentum 

balance equation, and accounting for enduring contacts among the particles. 

5. We perform fluidization and defluidization experiments to validate our numerical 

results. 

Parts of this chapter have been published: 

Oke, O., Lettieri, P., Mazzei, L. (2015). An investigation on the mechanics of homogeneous 

expansion in gas-fluidized beds. Chemical Engineering Science, 127, 95-105. 
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3.1 Introduction 

 

Gas-fluidized beds of Geldart A powders manifest homogeneous expansion over a certain range 

of superficial gas velocity before transiting to the bubbling regime. Experimental observations 

have shown that this behaviour results from enduring particle contacts which confers to the bed 

a measure of mechanical strength which stabilizes it and therefore delays its bubbling. 

Conversely, for most gas-fluidized beds such enduring contacts are absent and therefore they 

bubble as soon as they are fluidized. These considerations have been reported in Chapter 2. In 

this chapter we intend to provide further insight into the stable behaviour of cohesive 

homogeneous gas-fluidized beds. We believe that the effect of cohesiveness in such beds is 

reflected by the presence of enduring contacts among the particles. These enduring contacts are 

characteristic of the homogeneous gas-fluidized beds in the solid-like regime; therefore we 

focus our analysis on it.  To do this, we carried out fluidization and defluidization experiments, 

analysing the results using the Richardson & Zaki (1954) equation. We believe that such 

experiments will further give us insight into the behaviour of homogeneous gas-fluidized beds.  

In our analysis we also employed the linear momentum balance equation proposed by Jackson 

(2000), which accounts for enduring contacts among the particles, to investigate the stable 

behaviour of gas-fluidized particles. In what follows, we briefly review the Richardson & Zaki 

equation, discussing on its ability to predict the expansion profiles of gas-fluidized beds. 

3.2 The Richardson & Zaki (1954) equation and homogeneous expansion of gas-fluidized 

beds 

 

The expansion characteristics of homogeneous fluidized beds have been of great interest to 

researchers. This is because knowing the expansion of a fluidized bed is crucial to its design and 

operation. For liquid-fluidized beds, many empirical and semi-empirical correlations have been 

developed to predict the expansion profiles (refer to Table 2.1 in Chapter 2). The most widely 

used of these correlations is the Richardson & Zaki (1954) equation; a simple, but powerful 
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equation that correctly captures bed expansion over the entire fluid-dynamic regime from 

viscous to inertial flow. The equation reads: 

          
        (3.1) 

where   is an empirical parameter which depends on the free fall particle Reynolds number    , 

and    is the unhindered terminal settling velocity of the particles. Several correlations have 

been proposed for determining the value of  . In particular, we report the empirical relationship 

proposed by Rowe (1987), which we used in this work: 

                                                      
            

   

          
   

                                                            

Here   and   are the values ascribed to   in the limits of viscous and inertial regimes, 

respectively.  Richardson & Zaki (1954) take   and   to be equal to 4.65 and 2.39, respectively; 

Rowe (1987) employs the values of 4.70 and 2.35, while Khan & Richardson (1989) and 

Gibiliaro (2001) use 4.80 and 2.40. The unhindered terminal settling velocity   , on the other 

hand, can be obtained in the creeping flow regime using the well-known Stokes equation: 

                                                                   
(     )   

 

    
                                                                  

Here    and    are the viscosity and density of the fluid, respectively,    and    are the particle 

diameter and density, respectively, and   is the gravitational acceleration. Other expressions 

have been suggested as an improvement to the Richardson & Zaki (1954) equation, but their 

ability to predict the expansion profiles of homogeneous fluidized beds do not differ 

significantly from the latter (see for instance Garside & Al-Dibouni, 1977; Riba & Couderc, 

1977; Hirata & Bulos, 1990).  

The Richardson & Zaki (1954) equation and the correlations proposed for estimating the 

exponent   are found to hold for liquid-fluidized systems, where they are very accurate in 

providing an excellent account of the expansion profiles of such systems. The values of the 

parameter   in such systems range from 2.35 to 4.8 in the limits of inertial and viscous regimes. 
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But questions were raised regarding the applicability of this correlation to gas-fluidized systems. 

While trying to answer these questions, Godard & Richardson (1968) conducted several 

experiments on powders fluidized by air and characterized by extremely narrow size 

distributions. They found that the relationship between the superficial fluid velocity and the 

void fraction could be expressed in the Richardson & Zaki form, given in Eq. 3.1; however, the 

values of the exponent   for all the powders tested were found to be greater than those predicted 

by Eq. 3.2. They also found that the values of the parameter    determined by extrapolating the 

logarithmic void fraction-velocity plots were greater than the terminal velocity of the particles. 

To emphasize this, we shall denote these experimental values as    and   
 . The latter, as said, 

differ from the fluid dynamic values of    and    observed in liquid-fluidized beds and 

predicted by Eqs. 3.2 and 3.3, respectively. 

Lettieri et al. (2002) studied the homogeneous bed expansion of FCC catalysts fluidized by 

gases at high temperatures. They employed the Richardson & Zaki equation to describe the 

homogeneous expansion of these particles, estimating the values of the parameters in the 

equation. These values were compared with those of   and     predicted by Eqs. 3.2 and 3.3, 

respectively; for all the FCC catalysts considered, they found that the former (that is,    

and    
 ) were much higher than the latter (that is,   and   ). They attributed this to the 

formation of clusters in the bed, which are caused by the presence of interparticle forces.  

In the same vein, Geldart & Wong (1984, 1985) investigated the bed expansion characteristics 

of Group A powders. They fluidized different materials with different gases and found the 

values of    between 4 and 60, showing that materials with higher cohesiveness have greater 

values of the exponent. The summary of their experimental work is reported in Table 3.1. 

Moreover, they observed that in non-cohesive systems, the value of the terminal velocity given 

by the Stokes equation is very close to that extrapolated from the logarithmic plot of the 

Richardson & Zaki equation, whereas for cohesive systems it is greater. 
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Table 3.1: Richardson & Zaki (1954) exponent (Geldart & Wong, 1984) 

Fluid Powder Type Geldart Group   

 

Air        AC 6.60 

       A 6.82 

     AC 12.24 

   AC 7.55 

     A 5.21 

      C 15.75 

      C 60.00 

      C 51.00 

    A 4.38 

   A 5.95 

   A 4.00 

     A 7.76 

     A 5.19 

    A 4.96 

     A 4.48 

        C 35.03 

Nitrogen        AC 6.61 

   AC 7.55 

    A 5.20 

     A 4.38 

   A 5.91 

    A 5.50 

Arction - 12    AC 8.00 

     A 7.21 

    A 5.21 

 

All the foregoing experimental evidence, and much more not reported here, allow us to 

conclude that the Richardson & Zaki equation is capable of describing the bed expansion of gas-

fluidized particles, but the values of the equation parameters are greater than those required for 

liquid-fluidized systems (in general, fluidized systems in which fluid dynamic forces dominate 

over interparticle forces). Researchers have presented compelling experimental evidence to 

show that the greater values obtained for the parameters are indications of the presence of 

interparticle forces. For instance, Geldart & Wong (1984) correlated the          to the Hausner 
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ratio,          (where      is the bulk density of the powder under prolonged tapping and     is 

the bulk density obtained under loose packing condition). The higher the Hausner ratio, the 

more significant is the role of interparticle cohesive forces. Similarly, Lettieri et al. (2002) 

reported an increase in the value of    with temperature  These observations appear to support 

the idea that these forces play a crucial role in the stabilization of gas-fluidized fine powders. 

 

We should note that the expansion of non-cohesive homogeneous powders depends only on the 

drag force exerted by the fluid on the particles, in addition to the effective weight of the latter; 

as a consequence, the values of   and     (which refer to liquid-fluidized beds, in which 

interparticle forces are negligible compared to their fluid dynamic counterpart) are directly 

related to the drag force magnitude. Conversely, the expansion of cohesive powders depends not 

only on the fluid dynamic forces just mentioned, but also on the forces that the particles exert on 

one another; accordingly, the values of    and   
  (which refer to gas-fluidized beds, in which 

interparticle forces are often as important as their fluid dynamic counterpart) lump together the 

effects of both forces and are not directly related only to the drag force magnitude. This 

observation is important when one intends to model the drag force. 

In this chapter, our goal is to investigate the homogeneous regime in gas-fluidized beds, 

intending to show that the stress transmitted through sustained contacts among particles plays a 

role in the bed homogeneous behaviour and is responsible for the higher values of    and   
  

observed experimentally for fine particles. To this end, we employed a theoretical model to 

analyse the expansion of gas-fluidized powders, taking into consideration enduring particle-

particle contacts. We used the model to determine the axial void fraction profiles through the 

bed at different superficial gas velocities. By plotting the mean void fraction against the 

superficial gas velocity in the Richardson & Zaki form, we then computed the values of the 

parameters  and    which appear in the correlation. We then conducted fluidization and 

defluidization experiments to validate our theoretical results. Before presenting the model, we 
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briefly report on the processes of fluidization and defluidization, on which the remaining part of 

this work focuses.  

3.3 The processes of fluidization and defluidization of fine particles 

 

In describing these processes, we find it more convenient to examine defluidization first. 

Consider a fluid bed of small, light particles, such as those belonging to Group A of the Geldart 

(1973) classification. We assume that the bed is homogeneous and in the fluid-like regime, so 

that no enduring contacts are present among the particles. These, in consequence, are fully 

supported by the fluid. Being the bed homogeneous, the volume fraction of solid, denoted as  , 

is uniform throughout it. If we slightly decrease the fluid flow rate, the bed contracts, remaining 

uniform and in the fluid-like regime, until   attains the value needed by the drag force to 

balance the effective weight of the bed. If we continue to decrease the fluid flow rate, the 

volume fraction of solid will eventually reach a value      at which the granular material is 

able to resist compression. When the bed reaches this compaction, it enters the solid-like 

regime, in which particles do form enduring contacts and the bed starts behaving like a weak 

solid. The more   exceeds the value      (that is, the more compact the bed), the larger the 

stress needed to cause compressive yield (that is, further bed compaction). We assume that the 

compressive yield stress tends to infinity at some value     ; when the bed reaches this 

compaction, it cannot compact further, no matter how large the compressive stress to which it is 

subjected becomes. Hence, with Tsinontides & Jackson (1993), we can model the compressive 

yield stress using the following constitutive equation: 

                                     
         

         
                                    

                                                                                                                                   (3.4)                           

where      and   are positive constants which must be determined experimentally. As 

said,        denotes the lowest solid volume fraction at which the assembly of particles is 

capable of supporting stress through a structure of enduring contacts, whilst      denotes the 
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highest solid volume fraction that one can obtain in a defluidization process without resorting to 

mechanical means. The interval between      and      is largely determined by the 

cohesiveness of the material. For large, smooth, non-cohesive particles, such as those belonging 

to Groups B and D of the Geldart (1973) classification,      and      are very close; this is 

because particles are brought to random close packing under very small compressive stress, 

insofar as they are unable to form a network of enduring contacts. For small, rough, cohesive 

particles, which are able to form such a network, the interval between       and      is instead 

much larger. These groups of particles are able to form extended structures which can resist 

compressive stress over a broader range of particle concentration. This might explain why, 

during fluidization, they can expand homogeneously over a wide range of superficial gas 

velocity before transiting to the bubbling fluidization regime. In this work, we focus on this 

second group of particles. 

When the bed enters the solid-like regime, its structure is uniform – the solid volume fraction 

being equal to      everywhere. In this condition, the bed is still fully supported by the fluid. 

But when the fluid flow rate is decreased further, the bed compacts non-uniformly, the mean 

bulk density increasing progressively from the top of the bed to its bottom: a solid volume 

fraction profile develops along the vertical bed axis. In particular, if we assume that the bed is 

in a condition of incipient yield everywhere, in each location the solid volume fraction takes the 

value required by the compressive yield stress to equate the compressive stress present at that 

location. The bed is only partially fluidized, being partly supported by the distributor plate and 

partly by the frictional forces acting between the walls of the vessel and the particles. And even 

if the bed may look homogeneous to the naked eye, it is not. When the fluid flow rate vanishes, 

the bed is completely defluidized and fully supported by the distributor plate and the vessel 

walls; also in this case, the bed is inhomogeneous, the solid volume fraction increasing towards 

the bed bottom. 

Consider now the bed of granular material that is resting on the distributor plate. If an upward 

flow of gas is established, the bed structure, and in particular the solid volume fraction profile 
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along the vertical axis of the bed, initially remains unchanged, the pressure drop through the bed 

rises, and the particles become partly supported by the drag force exerted on them by the fluid. 

At a sufficiently large flow rate, the bed weight is entirely supported by the drag force, but in 

general the bed retains its structure, without dilating (in other words, it does not fluidize). A 

further increase in gas flow rate generates tensile stress within the granular material. When the 

latter exceeds the tensile yield stress which the material may sustain, the bed breaks and 

fluidization begins. When this happens, the pressure drop, and hence the drag force, is equal to 

the sum of the weight of the bed and the tensile yield stress which must be exceeded before the 

bed dilates (Tsinontides & Jackson, 1993; Watson et al., 2001). 

The condition for the bed to dilate, according to Tsinontides & Jackson (1993), is first met at the 

contact surface between the bed and the distributor plate; thus, the fluidization process 

commences by the fracture of the bed at its lowest point. When this happens, the stress at the 

bottom and top of the bed vanishes and the bed accelerates upwards. The acceleration is caused 

by the imbalance between the bed weight and the drag force; the latter, as said, is greater than 

the former when the bed detaches from the distributor plate. As the bed travels upwards, its 

bottom part, which is a free surface, gradually erodes, generating a rain of particles behind it. 

These particles recompact to form a new, more dilute bed. While the fluid flow rate is kept 

constant, the original packed bed continues to travel upward, gradually becoming shorter in 

length as its lower region progressively disappears, until it is entirely replaced by the new bed. 

This dynamic process is complex, and since we also lack an exact understanding of the 

mechanics of erosion, predicting how the newly-formed bed is structured (particularly, how the 

solid volume fraction varies along the bed axis) is not possible. We do not expect the bed to be 

at incipient yield conditions, but nothing can guarantee that it is fully supported by the fluid 

(and therefore fully fluidized).  

The above description presents a contrary view to the conventional idea that sees fluidization as 

a uniform dilation process taking place throughout the particle assembly. It also makes us regard 

homogeneous beds differently, not necessarily as systems with uniform solid volume fraction 
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which are entirely supported by the fluid: this is only observed in beds that are in the fluid-like 

regime. More often, homogeneous beds are in the solid-like regime, and so are only partly 

fluidized, presenting a solid volume fraction gradient along the bed axis. Homogeneous beds do 

not always consist of particles which float freely in the fluid with no form of particle-particle 

contact. The presence of structures of sustained particle contacts in uniform beds presents a 

view that has to be further investigated. One often uses the Richardson & Zaki (1954) equation 

to describe the bed expansion of any kind of homogeneous bed, although the equation was 

derived merely for beds in the fluid-like regime, in which interparticle forces are absent or 

negligible. Also this aspect has to be investigated in more detail. This is what we now intend to 

do. 

3.4 Theoretical analysis 

 

The Eulerian averaged equations of motion have been used extensively to study the dynamics of 

fluidized particles (Oke et al., 2015; Mazzei et al., 2010; Mazzei et al., 2008; Lettieri & Mazzei, 

2009; Owoyemi et al., 2007). These equations, reported hereunder, express the conservation of 

mass and linear momentum for the solid and fluid phases. Here we intend to use them, making 

necessary assumptions and simplifications, to investigate the homogeneous expansion in gas-

fluidized beds. As said, solid-like homogeneous expansion occurs when the particles are able to 

form a network of enduring contacts; these contacts confer mechanical strength to the bed, 

making the latter expand over a range of fluid flow rates before the onset of bubbling. The 

averaged equations of motion for the fluid phase are: 

                                      
  

  
   (   )                                                                                              

                     

      

  
     (     )                                                                 

Those for the solid phase are: 

                                   
  

  
   (   )                                                                                               
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     (     )                                                                    

Here  ,  ,   ,   ,   ,   ,    and    are, respectively, the volume fractions, densities, mean 

velocities and effective stress tensors for the fluid and particle phases;    is the particle number 

density,   is the gravitational acceleration vector and   is the interaction force per unit particle 

exerted by the fluid phase on the particle phase. 

To apply these equations in our case, we refer to the processes of fluidization and defluidization 

described in the previous section. At each stage of fluidization or defluidization, the particulate 

assembly is assumed to be in an equilibrium state, so that the local mean value of the particle 

velocity is zero everywhere in the bed. This is what we try to achieve in fluidization and 

defluidization experiments when, at each increase or decrease of fluid flow rate, we wait for a 

certain period of time to allow the bed to attain fluid dynamic equilibrium before taking 

measurements. If the local average velocity of the particles vanishes, the linear momentum 

balance equation for the solid phase reduces to a force balance that one obtains by setting the 

left-hand side of Eq. 3.8 to zero: 

                                                   (3.9) 

The first term in Eq. 3.9 has two major contributions: the stress transmitted through contact 

forces   and that generated by collisions and momentum transfer owing to fluctuations in 

particle velocity around its local average (Jackson, 2000). Several authors have examined the 

magnitude of the contribution of the latter stress to    in beds operating in the solid-like regime 

(see, for instance, Cody et al., 1996 and Menon & Durian, 1997). They measured the particle 

granular temperature, because this provides a direct indication about the contribution of 

collisional and kinetic stress to the total stress   . Cody et al.  (1996) measured bed expansion 

and shot noise resulting from the collisions of particles against the vessel walls. Their results 

revealed that, over a substantial range of bed expansion, the bed is completely silent, indicating 

that the contributions of collisional and kinetic stress are negligibly small. This observation is 

consistent with the conclusion of Tsinontides & Jackson (1993) that particle assemblies form a 
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network of enduring contacts that stabilizes the bed throughout the range of solid-like 

homogeneous expansion, and demonstrates that stress transmitted through enduring particle 

contacts plays a major role in stabilizing gas-fluidized suspensions, contributing significantly to 

the effective stress tensor of the particulate phase. So, in the present considerations, we neglect 

the contributions of kinetic and collisional stress, considering only the stress transmitted through 

particle-particle contacts.   

Let us consider again the processes of homogeneous fluidization and defluidization of particles 

in a vessel of diameter  . We assume that the particles are constrained to move in one 

dimension; thus, we consider only the component of      acting on the planes normal to the 

direction of motion: the normal stress  . This represents the stress transmitted through a 

network of enduring particle contacts. If we account for the frictional force between the 

particles and the vessel walls, Eq. 3.9 becomes: 

                                                 
  

  
 

 

 
                                                                                

Eq. 3.10 is a force balance in the z-direction, assumed to be vertical, for a particle assembly in 

the regime of stable bed expansion. In Eq. 3.10,   is the   -component of the stress,   is the 

vertical coordinate measured downwards from the upper surface of the bed,   is the bed 

diameter,    is the coefficient of wall friction,   is the Janssen coefficient, while   is the 

superficial velocity of the fluid. 

The first term on the left-hand side of Eq. 3.10 relates to the forces transmitted via particle-

particle contacts. In this work, we aim to investigate how their presence influences the 

behaviour of the bed, in particular its homogeneous expansion. The second term represents the 

frictional force exerted on the particle assembly by the walls of the vessel containing the fluid 

bed; the positive sign applies to the defluidization process, in which the bed slowly 

consolidates, while the negative sign applies to the fluidization process. The first term on the 

right-hand side is the gravitational force acting on the particles, while the second term models 

the fluid-particle interaction force. With Jackson (2000), we consider the drag and buoyancy 
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forces to be the main contributors to    ; hence, other contributions, such as lift or virtual mass 

forces, are neglected. The constitutive equation used to model the fluid-particle interaction force 

is: 

                                               
         

      
 
 

  
                                                                        

where     is the unhindered terminal settling velocity of a particle and   is the fluid dynamic 

Richardson & Zaki (1954) exponent. The first term of Eq. 3.11 represents the drag force 

component of the fluid-particle interaction force, while the second term is the buoyancy force. 

We point out that the hydrodynamic value of    is used because the drag force is hydrodynamic 

and entirely unrelated to particle-particle interaction forces. If we employed the experimental 

value of   in Eq.3.11, we would no longer be modelling the drag force: we would be modelling 

an „effective force‟ that combines the drag and interparticle forces – this has been mentioned in 

Section 3.2. Therefore, to calculate the value of   in Eq. 3.11, we employed Eq. 3.2, which is 

purely fluid dynamical and unrelated to particle-particle contacts. 

The force balance on the fluid phase yields: 

                                           
  

  
 

         

      
 
 

  
                                                                        

where   is the fluid pressure. If we combine Eq. 3.10 and 3.11, we obtain the following 

equation: 

                         
  

  
 

 

 
             [  

 

      
 
 

  
]                                                    

In Eq. 3.13 there are two unknown functions:      and     . To find the solid volume fraction 

profile      in the bed, we need to express the normal stress    as a function of   and then 

substitute this expression in the linear momentum balance equation. During defluidization, the 

variables   and   are related, if we assume that the bed is in conditions of incipient yield 

everywhere; thus, following Tsinontides & Jackson (1993), we can employ Eq. 3.4. In Section 



Chapter 3                   Homogeneous expansion of gas-fluidized beds                               2016 

 

57 
   

3.5, we will report how we obtained the values of the constants in the equation. Consequently, 

for a defluidization process, we can write: 
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where the derivative of      can be calculated by means of Eq. 3.4. The value of   is related to 

the angle of internal friction    as follows: 

                                                     
        

        
                                                                                     

To estimate the coefficient of wall friction  , following Mabrouk et al. (2008), we use the 

relationship reported below: 

                                                                      
  

 
                                                                              

where    is the particle-wall cohesion coefficient, which we assume to be negligibly small since 

no strong cohesion is present between the particles and the steel walls of the vessel.  

To calculate the solid volume fraction profile in the bed at each operating condition, we 

integrate Eq. 3.14, using the following boundary condition: 

                                                                       (3.17) 

This condition is given at the lower limit of the integration domain, which coincides with the 

top surface of the bed. The upper limit of the integration domain, which coincides with the 

bottom surface of the bed, located at    , where   denotes the bed height at the given 

operating condition, is unknown at the start of the numerical integration of Eq. 3.14. To 

determine it, we start integrating Eq. 3.14 from the top of the bed, terminating the integration at 

the value of   which satisfies the following condition: 

                                                             ∫                
 

 

                                                                   

where   is the particle mass loading, that is, the mass of particles per unit cross-sectional area. 

Thus, by imposing the condition reported in Eq. 3.18 on the solution of Eq. 3.14, we can 
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determine the solid volume fraction profile      and the bed height   for a given superficial 

fluid velocity. Knowing      allows us to integrate Eq. 3.12 to obtain the fluid pressure profile 

at different values of  . 

In the fluidization process, if we assume that the tensile yield stress of the powder is vanishingly 

small, we can argue that, as the velocity is gradually increased from zero,   at the bottom of the 

bed decreases to finally vanish when the minimum fluidization velocity    is reached. 

Following this argument, we can determine the value of    as follows. During fluidization, Eq. 

3.13 reads: 

                       
  

  
 

 

 
             [  

 

  

 

      ]                                                     

In this case,   and   are no longer functionally related; so, Eq.3.19 cannot be solved to obtain 

     at each superficial gas velocity, as we did during the defluidization process. For 

fluidization velocities lower than the minimum fluidization velocity, this does not present a 

problem, because the bed retains the structure acquired during the defluidization process, and 

therefore the solid volume fraction profile      is known, being equal to that obtained during 

defluidization for a zero fluid velocity. This allows us to solve Eq. 3.19 to determine the stress 

profile     . We can easily solve the differential equation by using the integrating factor     , 

where          If we multiply both sides of Eq.3.19 by      and then integrate with respect 

to  , we obtain: 

                        ∫        
 

 

 
    

  
∫

 

      
           

 

 

                

As reported in Section 3.3, at the minimum fluidization point   vanishes at the top and bottom 

of the bed and so the left-hand side of Eq. 3.20 vanishes. In these conditions, the velocity   is 

equal to the minimum fluidization velocity   ; therefore, we obtain: 

                            
  

  
 (∫        
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Eq. 3.21 allows calculating the value of the minimum fluidization velocity given the axial 

profile     . The latter, as said, is the solid volume fraction profile obtained in the 

defluidization process when the gas flow rate is zero (that is, the bed is fully defluidized).  

3.5 Experimental 

 

We investigated two types of powders: Powder 1(Alumina) and Powder 2 (Ballotini). Their 

properties are reported in Table 3.2. For each powder we performed two sets of experiments: 

first, fluidization and defluidization experiments, which allowed us to determine the pressure 

drop and bed height profiles in the bed; second, experiments aimed to determine the 

compressive yield stress   of the powder, which allowed us to obtain the values of the 

parameters appearing in Eq. 3.4. Before conducting the experiments, we carried out sieve 

analysis to determine the mean sizes of the powders.  

3.5.1 Powder preparations  

 

Particle size analysis using test sieves is, and has been, the standard for many years. Other 

methods have been developed, but they are commonly used for sub-micron analysis where 

sieves are difficult to use. To obtain representative samples of the powders, avoid segregation 

and ensure homogeneity, we shuffled large batches of powders.  To carry out the sieve analysis 

we weighed each sieve and recorded their weight. We placed a known mass of powder on the 

top sieve of a stack of sieves and covered the top. We shook the stack, keeping it in the vertical 

position, using a mechanical shaker for about five minutes. Figure 3.1 shows the arrangement of 

the sieve stack and the mechanical shaker. We weighed the powder retained on each sieve and 

the bottom pan and recorded their weight. This allowed us to calculate the percentage of powder 

on each sieve and the mean particle size. We carried out the experiments three times to ensure 

repeatability. Figures 3.2 – 3.5 report the normal and cumulative size distributions of the 

powders.  Table 3.2 reports the properties of Powder 1 and 2. 
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Figure 3.1: Sieve stack and mechanical shaker arrangement 

 

Figure 3.2: Normal particle size distribution of Powder 1 
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Figure 3.3: Cumulative particle size distribution of Powder 1 

 

Figure 3.4: Normal particle size distribution of Powder 2 
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Figure 3.5: Cumulative particle size distribution of Powder 2 

 

Table 3.2: Physical properties of powders (Oke et al., 2015) 

 Powder 1 Powder 2 

 

Mean particle diameter (µm) 53 66 

Particle density, kg/m
3 

1730 2500 

Angle of internal friction,   40
0 

13
0
 

Minimum fluidization velocity 

(cm/s) 

0.113  0.633 

Minimum bubbling velocity (cm/s) 0.301 0.971 

 

3.5.2 Fluidization and defluidization experiments 

 

We carried out fluidization and defluidization experiments in three different tubes, made of 

stainless steel, with nominal internal diameters of 10 cm, 5 cm and 2.5 cm, and height of 1 m. 

We chose stainless steel as vessel material to minimize electrostatic effects. The latter usually 
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arise as a result of continuous contact and separation between the particles and the vessel walls. 

Electrostatic effects create serious problems in fluidized beds, making particles adhere to the 

wall and in some cases generating channelling. One method suggested by Katz & Sears (1969) 

to minimize these effects is to increase the humidity of the fluidizing gas. We did not resort to 

this method, because it would increase the cohesiveness of the particles, making it impossible to 

distinguish between the effects of air humidity and those (that continue to be) present also in dry 

conditions. In any case, the electrostatic effects were reduced significantly with the use of 

stainless steel as vessel material. The gas distributor, made of a 5mm-thick sintered mesh with 

pore size of 20   , was mounted between the tubes and the windbox (whose diameter, in each 

case, was equal to that of the tube). We used dry air, from compressed air cylinders, as 

fluidizing medium, passing it through a pressure regulator to minimize flow fluctuations. We 

measured the gas flow rates by means of flow meters and the pressure drops across the bed by 

means of a digital manometer. 

To visualize the bed, we used a pulsed x-ray system consisting of an x-ray generator, an x-ray 

tube and an image intensifier, respectively labeled 1, 2 and 3 in Figure 3.6. The x-ray tube and 

the image intensifier are mounted on a twin column suspension unit that allows them to be 

moved vertically or horizontally across the room. The horizontal movement allowed us to adjust 

the distance between the x-ray tube and the image intensifier, while the vertical movement 

allowed us to visualize different heights in the fluidized bed. Each column can be moved 

vertically independently or as a synchronized pair. The x-rays are produced from a high-voltage 

source ranging from 40 to 150 kV and frequencies up to 72 Hz, pulsed at 25 fps. The x-ray 

pulses, synchronized with an image capturing device, pass through the fluid bed. The absorption 

of the x-rays by the latter is proportional to the nature and quantity of the material along its path. 

The x-ray beam that emerges from the fluid bed is amplified by the image intensifier by 

converting the x-ray absorption pattern to an image of sufficient brightness and contrast. These 

are then recorded by a video camera. The images from the camera are sent by fibre optics to a 
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dual processor industrial PC that has the capacity to store real-time image sequences of high 

quality. 

To start the experiments, we placed a known mass of particles in the tube. We aerated the bed at 

low flow rate for about 30 minutes to ensure that the particles were moisture-free. We then 

increased the flow rate, allowing the bed to bubble gently for a period of time. After, we 

decreased the air flow in small intervals until the bed was entirely defluidized. At each step, we 

let the bed equilibrate, subsequently measuring the bed height and pressure drop. After 

completing the defluidization process, we increased the air flow rate in small increments, 

measuring at each step the bed height and the pressure drop through the bed until the latter 

entered the bubbling regime.  

3.5.3 Determination of the powder compressive yield stress 

 

To determine the compressive yield stress of the powders investigated, we adopted a procedure 

proposed by Valverde et al. (1998). We placed a known mass of particles in the tube with 

diameter of 10 cm. We allowed the bed to bubble gently for a while, and then we slowly 

reduced the gas flow rate until it became entirely defluidized. We finally measured the bed 

height. We then added a known mass of particles to the bed, letting the latter bubble gently for a 

while; then, we slowly defluidized it, recording its resting height. By repeating this procedure, 

we obtained the bed height   as a function of the mass loading  . We then calculated the mean 

solid volume fraction  ̅    for each value of   using this relation: 

                                                             ̅    
 

    
                                                                                 

The variation with   of the experimental values obtained for  ̅ , along with a curve fit, is shown 

in Figure 3.7 and 3.8 for Powders 1 and 2, respectively.  

We see that  ̅ increases rapidly when the bed is shallow, remaining approximately constant 

when it becomes sufficiently deep. This constant value gives a rough estimate of     . We now 

use these figures to determine the compressive yield stress curves for the two powders. 
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The increase in  ̅ as the bed height increases is caused by an increase in compressive stress, 

owing to the weight of the particles; this makes the latter rearrange into a more compact 

ensemble in the lower parts of the bed. Assuming that wall friction plays a negligible role – this 

is why to carry out these measurements we used the vessel of largest diameter – we can 

calculate the compressive yield stress at the bottom of the bed using the following relation: 

         ̅                                    (3.23) 

If we now succeed in determining the corresponding values of     , that is, of the solid volume 

fractions at the bottom of the bed for the various bed heights considered, combining the 

functions      and      we can obtain the compressive yield stress locus     . Our task is 

thus finding a way to obtain the values     . These differ from those of  ̅   : the former are 

the local values of the solid volume fraction at the bottom of the bed, whereas the latter are the 

mean values of the solid volume fraction, averaged over the entire bed.  

 

Figure 3.6: Experimental set-up showing the x-ray machine employed to visualize the bed. 1: x-ray 

generator 2: x-ray tube 3: image intensifier. 
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Figure 3.7: Average solid volume fraction against bed height for Powder 1 

 

Figure 3.8: Average solid volume fraction against bed height for Powder 2 
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To derive an expression for     , we proceed as follows. We begin by writing: 

                                                   ∫          ̅     
 

 

                                                                         

Differentiating both sides of Eq. 3.24 with respect to  , we obtain: 

                                                            ̅     
  ̅

  
                                                                        

We can now use the experimental curve  ̅    reported in Figures 3.7 and 3.8 and Eq. 3.25 to 

evaluate      and use Eq. 3.23 to evaluate     . 

Figures 3.9 and 3.10 report the curves      for Powders 1 and 2 obtained with this method. The 

figure shows that the stress needed to cause compressive yield is small at low values of  . But 

as the latter increases,   rises slowly at first and then rapidly. To obtain the values of the 

parameters that appear in Eq. 3.4, we fitted the equation to the experimental curves in Figures 

3.9 and 3.10; the results are reported in Table 3.3, along with other properties of the powders. 

 

Figure 3.9: Compressive yield strength   against solid volume fraction   obtained experimentally for 

Powder 1. 
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Figure 3.10: Compressive yield strength   against solid volume fraction   obtained experimentally for 

Powder 2. 

 

Table 3.3: Simulation parameters 

  Powder 1 Powder 2 

Terminal velocity, m/s    0.10 0.25 

Richardson & Zaki exponent   4.60 4.30 

Coefficient of wall friction   0.80 0.27 

Solid volume fraction beyond which 

enduring particle contacts vanish 

      
   

 0.5565 0.5486 

Maximum solid volume fraction        
   

 0.6343 0.5800 

Janssen’s coefficient   0.20 0.63 

Positive parameter   1.00 1.00 

Positive parameter   1.00 1.00 

Positive parameter, N/m
2   32.00 35.00 

 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0.576 0.577 0.578 0.579 0.580 0.581 0.582

C
o

m
p

re
s

s
iv

e
 Y

e
il
d

 S
tr

e
n

g
th

 [
N

/m
2
]

Solid Volume Fraction [-]



Chapter 3                   Homogeneous expansion of gas-fluidized beds                               2016 

 

69 
   

3.6 Results and discussion 

 

Figures 3.11 – 3.13 refer to Powder 1 and report the plots, obtained through fluidization and 

defluidization experiments, of the pressure drop, normalized with respect to the bed weight per 

unit cross-sectional area of the tube, against the superficial gas velocity. The corresponding bed 

height profiles are reported in Figures 3.14 – 3.16. Similar profiles, reported in Appendix D, 

were obtained for Powder 2. In Figures 3.11 – 3.13, during the fluidization process, the 

normalized pressure drop rises linearly until the velocity reaches the minimum fluidization 

value. At this point, the normalized pressure drop increases above unity, revealing that the 

pressure drop through the bed exceeds the effective bed weight. This is observed for all the tube 

diameters investigated. There is a noticeable increase in the pressure drop overshoot as the bed 

diameter decreases; we attribute this to wall effects, which become more pronounced as the tube 

diameter becomes smaller. Similar pressure drop overshoots have been reported by several 

authors (see for instance, Tsinontides & Jackson, 1998; Valverde et al. 1998; Srivastava & 

Sundaresan, 2002). We observe that the normalized pressure drop at fluidization velocities 

beyond the point of initial expansion is less than unity; this means that the pressure drop does 

not support the full weight of the bed, and that in the latter compressive stress is at work. This is 

contrary to what one would expect in ideal fluid beds, where the pressure drop exactly balances 

the effective weight of the particles, the bed being unable to transmit stress. Although the bed 

expands, it is not fully fluidized, being in the solid-like regime over the entire interval of stable 

expansion, before transiting to the bubbling regime at a superficial gas velocity of 0.30 cm/s. 

This powder, therefore, never enters the fluid-like regime, even if, when the superficial gas 

velocity approaches the minimum bubbling velocity, the compressive yield stress almost 

vanishes (the normalized pressure drop being equal to 0.98). This kind of behavior is common 

to Group A powders, having been reported many times in the literature (Tsinontides & Jackson, 

1998; Jackson, 2000; Srivastava & Sundaresan, 2002; Loezos et al., 2002). For more cohesive 

powders, such as those belonging to Geldart’s Group C, the stable expansion interval features 

both solid-like and fluid-like regimes. This point has been discussed in Chapter 2. 
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Figure 3.11: Normalized pressure drop (mg/A) against superficial gas velocity for Powder 1 obtained 

experimentally.   is the mass of the powder,   is the bed crossectional area and   is the acceleration due 

to gravity. Tube diameter - 10 cm. 

 

 

Figure 3.12: Normalized pressure drop (mg/A) against superficial gas velocity for Powder 1 obtained 

experimentally.   is the mass of the powder,   is the bed crossectional area and   is the acceleration due 

to gravity. Tube diameter - 5 cm. 
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Figure 3.13: Normalized pressure drop (mg/A) against superficial gas velocity for Powder 1 obtained 

experimentally.   is the mass of the powder,   is the bed crossectional area and   is the acceleration due 

to gravity. Tube diameter – 2.5 cm. 

 

 

Figure 3.14: Normalized bed height (      against superficial gas velocity obtained experimentally for 

Powder 1.    is the initial bed height. Tube diameter – 10 cm.  
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Figure 3.15: Normalized bed height (      against superficial gas velocity obtained experimentally for 

Powder 1.    is the initial bed height. Tube diameter – 5 cm.  

 

 

Figure 3.16: Normalized bed height (      against superficial gas velocity obtained experimentally for 

Powder 1.    is the initial bed height. Tube diameter – 2.5 cm. 
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Table 3.4: Experimental and theoretical values of minimum fluidization velocities  

 Powder 1 

 

Powder 2 

Minimum Fluidization Velocity (cm/s) 

 

D (cm) Experimental Theoretical Experimental Theoretical 

10.0 0.102 0.106 0.610 0.614 

5.0 0.112 0.110 0.641 0.623 

2.5 0.121 0.117 0.648 0.637 

 

 

Figures 3.11 – 3.13 report also the theoretical fluidization and defluidization curves. The 

fluidization curves extend up to the superficial gas velocity at which the structure of the bed, 

acquired during defluidization, breaks down and fluidization begins; to continue these curves to 

higher superficial gas velocity values, we would have to assume something about the structure 

of the fluidized bed; the simplest assumption is that the bed is fully fluidized (i.e., homogeneous 

and in the fluid-like regime), so that no compressive stress is present. However, as the 

experimental curves reported in Figures 3.11 – 3.13 reveal, this is untrue, because the 

normalized pressure drop is less than unity. As a consequence, we preferred to stop the 

fluidization curves at the end of the initial linear branch. The minimum fluidization velocities 

predicted theoretically and those obtained experimentally are reported in Table 3.4. 

 

The theoretical and experimental fluidization/defluidization curves are very similar, except in 

one respect. The theoretical normalized pressure drop curves during defluidization approach a 

value of unity when the gas velocity exceeds 0.24 cm/s; the model, therefore, predicts that 

between this velocity and the minimum bubbling velocity the bed finds itself in the fluid-like 

regime. This is not observed experimentally, even if, for velocities larger than 0.24 cm/s, the 

bed is almost entirely fluidized. The reason for this, we believe, is that the value of      

estimated experimentally (through the best-fit procedure reported in Section 3.5) and adopted in 

the model is slightly underestimated, so that the model predicts a transition of the system to the 

fluid-like regime when in reality the bed is still able to sustain a weak compressive stress. 
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3.7 Solid volume fraction profiles 

 

By integrating Eq. 3.14 numerically, using for the parameters the values reported in Table 3.3, 

we determined the solid volume fraction profiles in the bed at various superficial gas velocities 

  during defluidization. Figures 3.15 and 3.16 report the solid volume fraction vertical profiles 

for Powders 1 and 2 at different superficial gas velocities. At each velocity, the volume fraction 

varies significantly near the top of the bed, remaining fairly constant at lower heights; this 

shows that the bed bulk density builds up with depth. The figure also shows that the solid 

volume fraction at the bottom of the bed decreases as the superficial velocity of the gas 

increases.  

This is because at larger velocities the bed is more expanded, and we do expect lower and lower 

values of the solid volume fraction as the bed becomes progressively less packed; this indicates 

that as the gas velocity increases a larger fraction of the bed weight is supported by the fluid. 

The profiles of solid volume fraction show that the beds are not fully fluidized until the fluid 

velocity reaches the value of 0.24 cm/s for Powder 1 and 0.82 cm/s for Powder 2. At such 

values, the beds enter the fluid-like regime, becoming fully fluidized. We can tell because the 

solid volume fraction becomes constant over the entire depth of the bed: this implies that the 

particles are uniformly suspended into the fluid and particle-particle contacts are absent. In such 

a condition, the gradient of the normal stress vanishes, so that the beds can no longer transmit 

stress due to a network of particle-particle contacts; accordingly, spatial variations in solid 

volume fraction no longer exist. 
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Figure 3.15: Normalized bed height (      against solid volume fraction   obtained theoretically for 

powder 1.    is the initial bed height. 

 

Figure 3.16: Normalized bed height (      against solid volume fraction   obtained theoretically for 

powder 2.    is the initial bed height. 
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Figure 3.17: Normalized bed height (       against solid volume fraction   in tubes of different 

diameters obtained theoretically for Powder 1.     is the initial bed height. 

 

Figure 3.18: Normalized bed height (       against solid volume fraction   in tubes of different 

diameters obtained theoretically for Powder 2.     is the initial bed height. 
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To see if wall friction affects the solid volume fraction profile in the bed, we ran simulations at 

various values of the bed diameter, keeping the superficial velocity of the fluid constant. Figures 

3.17 and 3.18 show the plot of normalized bed height against solid volume fraction for Powders 

1 and 2 respectively. We observe that, at a given value of the superficial fluid velocity, the solid 

volume fraction, in particular at the bottom of the bed, decreases as the value of   decreases. 

This is due to the additional support provided by the walls of the vessel, the latter reducing the 

component of the particle weight balanced by the action of the distributor plate. At larger 

velocity, the difference among the solid volume fraction profiles becomes less significant; the 

profiles at 0.15 cm/s for Powder 1 and 0.80 cm/s for Powder 2 are closer than those obtained at 

lower velocities. The reason for this is that at a high superficial gas velocity, the bed expands 

more, the enduring contacts among the particles reduce, and therefore the normal stress 

decreases considerably. This causes a corresponding decrease in the frictional force at the walls, 

since the latter is directly related to the normal stress   (refer to the second term on the left-hand 

side of Eq.3.10). At these high velocities, the dependence of the frictional force on the normal 

stress outweighs that on the vessel diameter; hence, the solid volume fraction profiles do not 

vary appreciably as   changes. 

3.8 Richardson & Zaki equation and homogeneous expansion in gas-fluidized beds 

 

Before advancing further, let us briefly recap the aim of this chapter. We pointed out, in Section 

3.2, that the correlation of Richardson & Zaki (1954) holds for both liquid-fluidized and gas-

fluidized beds, but for the latter the values of the parameters   and    appearing in the 

correlation are greater than those predicted by the relations reported in the literature, which 

instead are reasonably accurate for liquid-fluidized beds. As said, we denote the larger values 

holding for gas-fluidized beds as    and   
 . These values reflect the effects of both fluid 

dynamic and interparticle forces, whilst the values of   and    reflect only the effects of the 

former, insofar as in liquid-fluidized beds the interparticle forces play a negligible role. We 

believe that the larger values of    and   
  are caused by the enduring contacts among the 
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particles, which in turn are a manifestation of cohesiveness. In homogeneous fluidized beds in 

the fluid-like region these contacts are absent, and the Richardson & Zaki parameters take on 

the expected fluid dynamic values denoted as   and   . In most of the stable interval of 

homogeneous expansion, nevertheless, gas-fluidized beds find themselves in the solid-like 

region, where enduring contacts among particles are present. We believe that these play a key 

role, their presence explaining why the values of the Richardson & Zaki parameters are larger 

than expected. We are now in a position to put this claim to the test. The model results provide, 

for any given superficial gas velocity, the axial profile of the solid volume fraction, and 

therefore of the void fraction as well. Using these profiles, we may determine the mean values 

of the void fraction through the bed as a function of the superficial gas velocity: these values are 

those that one measures in experiments on homogeneous fluidized beds and uses in the 

Richardson & Zaki correlation. To determine the    and   
  values theoretically, we operate as 

follows: from the profiles of solid volume fraction, we calculate the mean solid volume fraction 

 ̅  at each fluidizing velocity   in the stable interval of expansion, using the following 

relationship: 

                                                                            ̅  
 

 
∫       

 

 

                                                           

By plotting   against   ̅in the Richardson & Zaki form:  

                                                              
             ̅                                                         

we then obtain the theoretical values of    and   
  from the slope and intercept on the velocity 

axis of the function above, respectively. The logarithmic plot of   against     ̅  for Powder 1 

is shown in Figure 3.19 for the bed with 10 cm diameter. Table 3.5 reports the theoretical and 

experimental values of    and   
  in beds of different diameters for Powders 1 and 2. The 

theoretical values of    and   
  obtained from our simulations show a reasonable agreement 

with the experimental results. In particular, the values of    are higher than the limiting values 

ascribed to   in the limit of inertial regime (discussed in Section 2). We also observe from Table 

3.5 that the values of    and   
  increase as the bed diameter decreases; this is true for both 
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powders. This is due to the wall effects becoming more pronounced as the bed diameter 

reduces. 

To further confirm our results, we ran simulations using powders investigated by Tsinontides & 

Jackson (1993) and Srivastava & Sundaresan (2002) – Powder 3 and 4, respectively. The 

physical properties of these powders are reported in Table 3.6. We adopt the same approach 

reported in the preceding paragraph to determine the values of    and    
 . The simulation 

results, alongside those obtained using Powder 1 and 2, are reported in Table 3.5. The results 

again show that the theoretical values of    and   
  agree fairly well with the empirical values.  

 

Figure 3.19: Logarithmic plot of velocity against bed voidage obtained theoretically.  The points represent 

the theoretical data, while the solid line is the linear fit.  

 

To investigate the role of enduring particle contacts in homogeneous fluidization, we reasoned 

as follows: if truly there were no particle-particle contacts in the fluidized bed, the particles 

floating freely in the fluid and the homogeneous expansion being dictated solely by fluid 

dynamic forces, as some authors argue, we would expect the values of    to be the same as the 

values used in our simulations to model the drag force (that is, the values of  ). To explain this, 
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let us consider Eq. 3.13. The latter reduces to the Richardson & Zaki equation if we neglect the 

contribution of stress transmitted by enduring particle contacts. In this case, the equation merely 

expresses the fluid dynamic force balance (where the drag force on the particles balances their 

effective weight) which one would expect if the bed were to be uniformly fluidized; hence, the 

equation yields the hydrodynamic   and    values used as input in the model. However, as seen 

from the experiments, the values of    and   
  obtained for the powders are larger than the 

hydrodynamic ones (see Table 3.5). This reveals that by accounting for the stress transmitted 

via contacts among particles, we are able to capture the expansion profiles in the bed and to 

correctly predict the expansion parameters featuring in the Richardson & Zaki equation.  

Table 3.5: Summary of Richardson & Zaki (1954) parameters  

 Experimental 

 

Theoretical Hydrodynamic 

Powder 1 

D (cm)      
            

  (m/s)           

10.0 5.36 0.183 5.04 0.144 4.6 0.10 
5.0 5.96 0.309 5.49 0.204 4.6 0.10 
2.5 6.62 0.587 6.35 0.437 4.6 0.10 

       

Powder 2 
D (cm)      

            
  (m/s)           

10.0 5.03 0.437 4.94 0.417 4.3 0.25 
5.0 5.21 0.524 5.11 0.476 4.3 0.25 
2.5 6.21 1.156 6.13 1.081 4.3 0.25 

Powder 3 
D (cm)      

            
  (m/s)           

5 5.01 0.224 5.10 0.189 4.5 0.12 
2.5 5.86 0.333 5.69 0.292 4.5 0.12 

Powder 4 
D (cm)      

            
  (m/s)           

5 6.40 0.156 6.67 0.206 4.72 0.06 
2.5 7.43 0.331 7.61 0.374 4.72 0.06 

 

 

Table 3.6: Physical properties of Powders 3 and 4 

 

 

 

 

 Powder 3 Powder 4 

Mean particle diameter (µm) 50 75 

Particle density, g/cm
3 

2.35 1.44 

Angle of internal friction,   130 300 
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3.9 Conclusions 

 

We investigated the solid-like regime of homogeneous fluidization using both experimental and 

theoretical methods. We adopted a one-dimensional model to investigate the behaviour of gas-

fluidized beds of fine particles in the homogeneous fluidization regime, accounting for enduring 

contacts among particles. These contacts, which are a manifestation of cohesiveness, strongly 

affect the expansion profiles of the beds. In particular, the values of the expansion parameters   

and    of the Richardson & Zaki (1954) equation obtained when we accounted for stress 

transmitted through enduring particle contacts are higher than those obtained from purely fluid 

dynamic considerations. This agrees with what occurs in reality. We validated our numerical 

results by carrying out fluidization and defluidization experiments. The results indicate that 

fluid dynamic correlations for calculating the values of   and    , like those reported, for 

instance, in Gibilaro (2001), are unsuitable for describing the expansion profiles of gas-fluidized 

beds.
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Chapter 4 

Literature review on 

solid mixing in gas-fluidized beds 

 

This chapter reviews the process of solid mixing in gas-fluidized beds. 

1. We review the importance of solid mixing in gas-fluidized beds and the mechanism by 

which it proceeds. 

2. We report on experimental and theoretical works carried out on lateral and axial solid 

mixing in gas-fluidized beds. 

3. We discuss various methods adopted for measuring the rate of lateral solid mixing in 

gas-fluidized beds.  

4. We report different empirical correlations developed for estimating lateral dispersion 

coefficients in gas-fluidized beds. 

Parts of this chapter have been published: 

Oke, O., Lettieri, P., Salatino, P., Mazzei, L. 2015. Eulerian modelling of lateral solid mixing in 

gas-fluidized suspensions, Procedia Engineering, 102, 1491 – 1499.  
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4.1 Introduction 
 

Fluidized beds operate in different regimes depending on the superficial gas velocity. For most 

gas-fluidized beds, when the superficial gas velocity exceeds the minimum fluidization velocity, 

the bed enters the bubbling regime. This regime is characterized by the formation of bubbles, 

which cause vigorous mixing of solids in the bed. At higher gas flow rates agitation becomes 

more intense, and the movement of solids becomes more vigorous, creating violent mixing 

between the solid and gas phases. Intense mixing in the bed promotes extremely high surface 

contact between the fluid and the solid per unit volume of the bed, high heat and mass transfer 

and high relative velocity between the fluid and the dispersed solid phase.  

Excellent mixing in fluidized beds allows them to find applications in many industrial 

operations. For instance good mixing in fluidized bed dryers promotes high intensity drying and 

high thermal efficiency with uniform and easily controllable temperature. This ensures that 

mixing is achieved quicker because of high rates of heat and mass transfer. Excellent mixing 

also allows easier maintenance and operation of the dryer and enhances greater adaptability to 

automation (Chandran et al., 1990).  

In polymerization reactors good mixing is needed to achieve efficient operation and desired 

results (Naimer et al., 1982; Kim & Choi, 1999; McAuley et al., 1994). This ensures excellent 

gas-solid contact, minimal gas-bypassing and uniform temperature. The latter ensures that there 

are no hot spots in the bed. Hot spots are regions of maximum temperature in the bed, causing 

deleterious effects such as catalyst deactivation and undesirable reactions.  In addition, the 

polymerization reaction is highly exothermic, generating significant amount of heat. Good 

mixing in the reactor allows the heat to be removed by fast flowing stream of fluidizing gas. 

Successful applications of fluidized beds to other highly exothermic and temperature sensitive 

processes has been achieved due to the excellent mixing that they provide.  

Chemical synthesis in fluidized bed reactors relies on efficient mixing. Usually, the reactions in 

a chemical synthesis require strict temperature control. This is because the reaction may be 
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explosive outside a narrow temperature range. In addition, the yield of the desired products are 

sensitive to the temperature level of operations; hence, excellent solid mixing is needed for 

safety of operations and profitability. 

Knowing how solids mix is also important in defining input parameters for modelling of 

fluidized bed reactors. Petersen & Werther (2005) developed a fluidized bed reactor model 

using lateral mixing data as an input parameter. They were able to investigate the distribution of 

volatiles (       and     in the region close to the feed point. Similarly, Wischnewski et al. 

(2010) simulated a 3-D industrial circulating fluidized bed (CFB) combustor, describing gas and 

solid mixing in the bed by using lateral solid mixing data. Similarly, Pallarès & Johnsson (2008) 

investigated fuel concentration at the bottom region of a fluidized bed combustor by developing 

a model which accounts for mixing patterns and fuel conversion in the bed. To use the model, 

lateral mixing data at the bottom part were necessary input parameters. 

In a fluidized bed combustor the rate at which solid fuel mixes laterally has a strong influence 

on the performance of the plants. This is because it affects the combustion efficiency, the 

allocation of heat release and the formation of emissions (Gomez-Barea & Leckner, 2010). It is 

therefore crucial to ensure that fuel spreads homogeneously over the whole cross-section of the 

bed. To do this, fuel is usually fed at multiple entry points with the aid of a spreader. However, 

each added feed point increases the installation cost, making it crucial to minimize the feed 

entry points and, at the same time, maintain fuel burnout to achieve low emissions. These 

requirements make the knowledge of how fuel mixes laterally essential for optimal design of the 

fluidized bed combustor.  

A good understanding of the mixing process is very important in the design of large-scale 

fluidized beds. Solid mixing studies combined with gas flow analysis and reaction mechanisms 

provide the basis for designing commercial fluidized bed reactors (Shen, et al. 1995). Therefore, 

several authors have examined the phenomenon of mixing in fluidized beds; on the one hand 

using experimental approaches to investigate the causes of mixing and the mechanisms by 
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which it proceeds, on the other hand using theoretical approaches to describe the process and 

predict it for design purposes.  

The importance of solid mixing in fluidized beds has made researchers focus more on its study 

(Marsheck & Gomezplata, 1965; Rowe, et al.1965; Partridge, 1965; Rowe & Widmer, 1973; 

Nguyen et al., 1977; Potter, 1971). Knowing the mechanism by which mixing occurs is crucial 

in designing efficient fluid bed reactors. This is because it affects important phenomena such as 

heat and mass transfer rates, which in turn can affect mechanical design of fluidized bed 

accessories such as the number and position of solids feed and withdrawal points (Mostoufi & 

Chaouki, 2001). Therefore, a better understanding of how mixing proceeds will significantly aid 

the design and operation of fluidized beds.  

4.2 The mechanism of solid mixing in gas-fluidized beds 

 

When granular materials are fluidized with a velocity that is at least equal to their minimum 

bubbling velocity, bubbles begin to form in the bed. These are regions of low solid density or 

voids rising in the bed. They are usually enveloped by a cloud of circulating gas and particles 

which is generally referred to as bubble cloud. The region below the bubble is the wake region. 

The latter is most likely formed because the pressure in the lower part of the bubble is less than 

in the nearby emulsion, drawing the gas into the bubble. This causes partial collapse of the 

bubble and creates turbulent mixing (Kunii & Levenspiel, 1991). The turbulent mixing causes 

solids to be drawn up behind the bubble, forming the wake region. As bubbles rise through the 

bed, they periodically shed the wake, leaking solids into the emulsion. This implies that there is 

exchange of solids between the wake and the emulsion. 

Researchers believe that solid mixing in fluidized beds is caused mainly by the actions of the 

bubbles. The wakes of the bubbles carry solids from the bottom of the bed to the top. Along the 

way up, there is exchange of particles among the bubble wakes and the rest of the bed. This 

phenomenon is referred to as wake shedding. To balance the upward transport of solid particles, 
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there is a downward movement of solid particles in the bubble-free region, creating a global 

circulation of particles in the bed. This mechanism is illustrated in Figure 4.1.  

Several authors (Sitnai & Whitehead, 1985; Lin et al., 1985; Yamazaki et al., 1986) studied the 

mixing mechanisms of different types of powders. They reported that mixing of Geldart B 

powders generally depends on the geometry of the bed and the fluidizing velocity. At low 

fluidizing velocities, and in beds of aspect ratio lower than unity, the emulsion phase moves 

upwards in the regions near the wall and downwards at the centre of the bed. At higher flow 

rates however there is a reversal of the flow; the emulsion now moves downwards in the regions 

close to the wall and upwards at the bed axis. In beds having aspect ratio greater than unity, two 

regions of solid circulation form in the bed: the first forms in the region close to the distributor 

and the second forms near the top of the bed. At higher gas flow rates, the latter region becomes 

more vigorous and dominates the entire solid mixing process. 

 

 

 

 

 

 

 

 

Figure 4.1: Solid mixing mechanism in fluidized beds (Yang, 2003) 

The solid mixing pattern of Geldart A powders is more complex: there is both upflow and 

downflow of emulsion at the center of the bed (Tsutsui et al., 1979). Mixing of Geldart D 
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powders is characterized by elongated bubbles near the distributor plates which transform into 

spherical bubbles as they move up the bed (Fitzgerald, 1980). The bubbles grow rapidly and do 

not follow any specific path. This makes it difficult to establish a solid mixing pattern, as is the 

case for other classes of powders. Canada et al. (1978) reported that at higher superficial gas 

velocities, bubbles coalesce, forming large voids which produce large bed oscillations and 

cyclic movement of the bed surface. 

Solid mixing in a freely bubbling bed is not only caused by vertical motion of bubbles, but also 

by bursting of bubbles at the bed surface. This induces lateral dispersion of parts of the wake’s 

particles over a wide area, and the remaining particles are ejected into the freeboard (Shen, et 

al., 1995). Lateral mixing of particles is also improved by coalescence and lateral motion of 

bubbles, as well as gross particle circulation or the so-called ‘Gulf Stream’. 

4.3 Axial and lateral solid mixing in gas-fluidized beds 

 

The importance of solid mixing has made researchers focus on its study. To do this, they 

investigated how solid mix axially (vertically) and laterally (horizontally) in fluidized beds. 

May (1959) was among the first to investigate the process of axial mixing. He measured axial 

mixing rate using the dispersal of radioactive particles injected at the bed surface, analysing the 

results using the diffusion equation: 

                                                                           
                                                                              

where   represents the concentration of tracer particles,     represents the axial dispersion 

coefficient and y is the axial spatial coordinate. He found reasonable agreement between the 

latter equation and experimental results for Geldart A powders fluidized in a bed of aspect ratio 

24. However, when the experiments were carried out in a bed of aspect ratio 6.4 the model 

could not fit experimental results satisfactorily.   



Chapter 4              Literature review on solid mixing in gas-fluidized beds                     2016         

 

88 
    

Similarly, Miyauchi et al. (1981) studied axial mixing of Geldart A powders in a turbulent bed, 

analysing the results using Eq. 4.1. They found that mixing data could be well represented by 

the latter. They derived the following equation for    : 

               [         (4.2) 

where    is the superficial gas velocity and   is the vessel width. Avidan & Yerushalmi (1985) 

also found reasonable agreement between Eq. 4.1 and experimental data when they studied axial 

solid mixing in the turbulent regime, but their data fitted poorly when the bed was in the 

bubbling regime.  

To explain why the experimental results of May (1959) did not satisfactorily fit the diffusion 

equation at low bed aspect ratio, Kunii & Levenspiel (1969) reported that low aspect ratios 

cause strong solid circulation; consequently, strong convective mixing (as a result of bulk 

movement of particles), rather than diffusive mixing (due to random fluctuations in particle 

velocity), prevails; so that their experimental data cannot satisfactorily fit the diffusion equation. 

Conversely, May (1959) obtained a reasonable fit in tall beds because there was mild solid 

circulation. Furthermore, when bubbling is vigorous, which is the case in the turbulent regime, 

convective mixing is less dominant, and hence experimental data are better fitted by the 

diffusion equation. This explains why Miyauchi et al. (1981) and Avidan & Yerushalmi (1985) 

obtained reasonable agreement between Eq. 4.1 and their experimental data.  

Esin & Altun (1984) studied the rate of axial solid mixing using ion-exchange resins as tracer 

particles. They placed a known amount of particles in the bed and a uniform layer of accurately 

weighed tracer particles were placed on top. Then the bed was fluidized by air. After fluidizing 

the bed for a certain period, they switched off the air supply. Subsequently, they determined the 

concentration of tracer particles at different horizontal layers along the bed, analysing the results 

using the diffusion equation.  They derived the following correlation for    : 
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Following May (1959), Mostoufi & Chaouki (2000) adopted a radioactive particle tracking 

technique to investigate the mechanism of axial solid mixing. They fluidized FCC particles at 

different fluidization velocities, covering bubbling and turbulent regimes. They reported that 

upward movement of solids occurs by diffusive mechanism, while downward movement 

proceeds via convective transport. Their results showed that the upward motion was 

characterised by bubble-bubble and/or cluster-cluster interaction in the central part of the bed. 

On the other hand, solid clusters descend with very little interaction with other clusters, making 

the downward solid movement a convective process. Similar to foregoing authors, they 

quantified the rate of upward solid mixing using the diffusion equation.  

Lee & Kim (1990) studied axial mixing of solids in a fluidized bed containing glass beads, but 

they focussed on mixing in the slugging and turbulent flow regimes. They used axial transport 

of heat at steady state to determine the mixing rate of solids, analysing their experimental results 

using the diffusion equation. Their results showed that effective axial mixing rates did not 

change appreciably in the slugging regime, but increased with an increase in gas velocity in the 

turbulent regime. Others (Geldart, 1973; Cranfield, 1978; Abrahami & Resnick, 1974) also 

investigated axial mixing of solids in fluidized beds experimentally. 

Experimental work on solid mixing is not only limited to axial mixing; researchers have 

investigated lateral mixing, focussing on the mechanism by which it proceeds and on how the 

lateral mixing rate can be quantified. Hirama et al. (1975) showed that bubble eruption at the 

bed surface contributes significantly to lateral solid dispersion. To demonstrate this, they 

installed lattice at the bed surface to restrict the movement of solids at the surface. They found 

that the lateral solid mixing rate was higher than when no lattice was installed on the surface of 

the bed, showing that the burst of bubbles at the bed surface substantially affects lateral solid 

mixing.  

Similarly, Merry & Davidson (1973) investigated how solids mix laterally in fluidized beds. 

They reported that uneven distribution of fluidizing medium will promote lateral solid mixing, 
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stating that the process induces rapid mixing in the bed, and subsequent eruption of bubbles at 

the bed surface. The eruption of bubbles causes their solid contents to be ejected into the free 

board over a wide area. Kunii & Levenspiel (1991) provided more insight on the mechanisms of 

eruption of bubbles at the bed surface. They stated that the bubble pressure being higher than 

the pressure at the bed surface causes the bubble to ‘’pop’’ on reaching the surface, spraying 

solids from the bubble roofs into the freeboard. In addition to this, bubbles may rise faster than 

the sorrounding material, causing the solids in the wake of the bubble to be thrown as a clump 

into the bed surface. They further stated that the coalescence of bubbles as they emerge at the 

bed surface may result in strong ejection of wake solids into the freeboard, thus increasing 

lateral solid transport. In the same vein, Shi & Fan (1984) investigated the mechanism of lateral 

solid mixing using coloured particles as tracers. They reported that the lateral solid mixing 

mechanism consists of movement of bubbles through the bed, eruption of bubbles at the bed 

surface and gross particle circulation in the bed. 

To further investigate the process of lateral solid mixing, Pallarès et al. (2007) carried out solid 

mixing studies in fluidized bed boilers. They showed that under operational conditions the flow 

pattern of fuel in the latter is highly convective and structured in horizontally aligned vertical 

vortices with alternating rotational directions. These are referred to as bubble paths. Each main 

bubble path is assumed to create a solid mixing cell around itself. In each cell, these three 

mechanisms for lateral dispersion occur: bubble wake mixing, emulsion drift sinking and bubble 

eruption of scattering at the bed surface. They reported that the net lateral dispersion is the result 

of solid exchange between different mixing cells.  

Instead of studying axial and lateral solid mixing in separate experiments, some researchers 

concentrated on investigating both in the same experiments. Valenzuela & Glicksman (1984) 

carried out a qualitative study on solid mixing in a two-dimensional bubbling bed using glass 

bead particles of sizes between 600 and 850   , investigating axial and lateral mixing by using 

heated particles as tracers. They carried out two experiments: the first was by measuring the 

steady state temperature around a heated wire placed at the centre of the bed, while the second 
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was by measuring the transient temperature response of heated particles injected in the bed. 

Their results revealed that lateral solid mixing is partially due to mixing in the bubble wakes. 

They also reported that upward solid transport is characterized by a mixing length of the order 

of the bubble size, while downward solid transport is more uniform and at a much lower 

velocity. 

Similarly, Shen & Zhang (1998) investigated the effect of particle size on both axial and lateral 

mixing of solids in fluidized beds using heated particles as tracers. The heated particles were 

injected pneumatically into the bed and the bed temperature was measured at different locations. 

The results of their experiments show that temperature fluctuations become more prominent as 

the particle size increases. Their results also revealed that convective axial mixing rates are 

higher than those for lateral mixing. They reported that lateral mixing of solid is composed of 

two components: the primary being the diffusive component generated by the random motion of 

solids, and the secondary being the convective component imparted by the motion of bubbles. 

They further interpreted their experimental results using a convection-diffusion model for solid 

mixing. 

Schlichthaerle & Werther (2001) adopted a different approach to study both axial and lateral 

mixing in the bottom zone of circulating fluidized beds (CFB). They injected solid carbon 

dioxide into the bed and measured the temperature and gas concentration at different locations, 

analysing their results using the convection-diffusion equation. The experiment was carried out 

in a CFB riser with a rectangular cross-section and at operating conditions similar to those 

usually present in fluidized bed combustors. Their measurements showed a higher extent of 

mixing in the axial direction than in the horizontal direction, supporting the observations of 

Shen & Zhang (1998). 

Most studies on solid mixing reported in the preceding paragraphs were analysed using either 

the diffusion equation or the diffusion-convection equation, but as the understanding of 

fluidized bed hydrodynamics grew, researchers began to study the process of solid mixing using 
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mechanistic models that would enable them to make fundamental measurements for the design 

of large-scale fluidized beds. The simplest version of these mechanistic models was introduced 

by van Deemter (1967). He developed a counter-current solid circulation model for mixing of 

solids in a bubbling fluidized bed. He then used the model to investigate axial mixing in a gas-

fluidized bed. To develop this model, he divided the solid phase into two streams: one flowing 

upwards and another flowing downwards with exchange between the two streams.  By taking a 

mass balance for the tracer injected into the bed, he derived a differential equation describing 

the axial mixing of the tracer. This reads: 

   
  

  
   

  

  
                                                                               

 
  

  
   

  

  
                                                                           

where   and  ,   and  , and   and   are the solid volume fractions, tracer volume fractions 

and phase velocities in the upward and downward moving phases respectively and   is the 

interchange mass transfer coefficient between the two phases.  

Sitnai (1981) proposed a modified form of van Deemter’s counter-current solid circulation 

model. The model is similar to that derived by the latter author, except in one aspect: he divided 

the bed into three regions instead of two. He assumed that there is a thick region of solids 

descending down the vessel wall, representing the third region. The governing equations 

therefore contain three partial differential equations of solid concentration. The model was 

employed to interpret mixing data, revealing that there is low circulation of solids and high solid 

exchange rate between phases. He reported that both processes affect heat and mass transfer 

rates in fluidized beds. The model however cannot predict random, short-term, disturbances 

near the bed surface.  

Shen et al. (1995) adopted the procedure of Sitnai (1981) to develop a model for investigating 

axial and lateral mixing in fluidized beds. The model divided the solid mixing process in two 
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components: the first is the convection component between the upward moving bubble wakes 

and the down-flowing emulsion phase; the second is the diffusion in the emulsion phase. Their 

results also showed that the vertical mixing of solids is much faster than the lateral mixing. 

Several researchers (Gilliland & Mason, 1949; Leva & Grummer, 1952; May, 1959; Tailby & 

Cocquerel, 1961; Talmor & Benenati, 1963; Bailie, 1967; Potter, 1971) have developed 

theoretical models to study the mixing process in fluidized beds. 

The key limitation of the counter-current solid circulation model is the lack of reliable equations 

for estimating the exchange coefficients appearing in the model. Researchers have employed 

different means to estimate these coefficients. For instance, Kunii & Levenspiel (1969), through 

their bubbling bed model, developed an expression for the interchange mass transfer coefficient. 

The model considered the bed as consisting of a continuous phase, called the emulsion, through 

which bubbles rise. The latter are surrounded by a cloud of rising gas and particles, called 

bubble cloud. The bubbling model bed indicates that the gas in a vigorous bubbling bed exists in 

three regions: bubbles surrounded by cloud gas, both rising through an emulsion gas. The model 

provides relationships among various quantities necessary for describing bubble conditions in 

the bed, in particular the interchange mass transfer coefficient    appearing in the counter-

current solid circulation model: 

                                                         
        

        

   

  

                                                                

where     is the minimum fluidization voidage,     is the minimum fluidization velocity, 

  is the bubble fraction and     is the bubble diameter. 

The foregoing experimental and theoretical studies on axial and lateral solid mixing revealed 

their importance in ensuring efficient operation of fluidized bed processes. In recent times, 

researchers have concentrated more on the study of lateral mixing of solids in gas-fluidized 

beds. This is because of its importance in large scale fluidized beds. Grace (1981) emphasizes 

the importance of lateral solid mixing in shallow beds, stating that its knowledge is even more 
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important than that of axial mixing in assessing the performance of gas-solid fluidized beds. In 

the remaining part of this chapter, and in the next chapter, we focus on lateral solid mixing, 

reporting on various works that have been done on it and the methods employed for measuring 

the rate at which it occurs.  To quantify the rate at which solids mix laterally in fluidized beds, 

researchers often resort to lateral dispersion coefficient,    ; this, as we shall see in this study, is 

an effective diffusivity relating to the time that solids take to spread laterally over a given 

distance in the bed. Lateral dispersion coefficient is usually defined using the following 

equation: 

                                                                   
                                                                             

where   represents the void-free solids concentration,     represents the lateral dispersion 

coefficient and x is the horizontal spatial coordinate. This equation, as just said, should be 

regarded as a definition of such coefficient. We will now report various experimental methods 

adopted by researchers for estimating     . 

4.4 Estimating lateral dispersion coefficients in gas-fluidized beds 

 

A pioneering attempt at estimating lateral dispersion coefficients was by Brotz (1956). He used 

a shallow rectangular bed, consisting of two solids which are similar in physical properties, but 

differ only in colour. He separated the solid with a removable partition plate which divided the 

bed into two equal parts. He fluidized the bed for a certain time and the partition was removed. 

By measuring the rate at which the two solids approach uniformity, he estimated the lateral 

dispersion coefficient. 

Gabor (1964) used a similar experimental method to Brotz. Instead of using solids of different 

colours in his analysis, he used differences in magnetic property. In the experiment, he used 

copper and nickel having different magnetic behaviour but having the same density, size and 

shape. He placed the solids in a rectangular vessel separated by a partition placed at the centre. 

On removing the partition, mixing occurred on either side of the centre line. After a certain 



Chapter 4              Literature review on solid mixing in gas-fluidized beds                     2016         

 

95 
    

mixing time, he turned off the fluidized gas and carried out sampling at known radial distances 

across the bed. From the sampling, he determined the concentration profiles across the bed. By 

employing the diffusion-type equation, he estimated the value of the lateral dispersion 

coefficient. He developed an empirical relationship for the dispersion coefficient     as follows: 

                                    *
       

   
+                                                                      

Here    is the diameter of the fixed packing in   ,    is the particle diameter in   ,   is the 

superficial gas velocity in  ft./s and      is the superficial gas velocity in ft./s. 

Borodulya & Epanov (1982) employed a heated particle tracer to determine lateral solid 

dispersion coefficients in fluidized beds. They also divided the bed into two parts; the heating 

chamber and the working chamber with a movable barrier. They pre-heated a very small portion 

of the bed to a temperature of 400-600
o
C and poured it into the heating chamber. By measuring 

the time taken for thermocouples in different locations of the bed to show a variation in 

temperature, they estimated the dispersion coefficient. They proposed the following correlation 

for     : 
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In Eq. 4.11,    is the equivalent diameter of the vessel,    is the bed height at rest,   is the 

superficial gas velocity,     is the minimum fluidization velocity.    is the Froude number 

given by the following expression: 

                                                       
       

 

   
                                                                                    

Shi & Fan (1984) measured lateral dispersion of solids in a rectangular fluidized bed using a 

similar approach to that employed by Brotz (1959). They divided the bed equally into two parts 

using a removable partition inserted vertically in the bed. In the first half of the bed they put 
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dyed particles and in the other half they put undyed particles. Shi & Fan fluidized the particles 

at constant superficial gas velocity and quickly removed the partition when the stable state of 

fluidization was reached. After fluidizing the particles for a certain time, they took samples of 

mixed particles from different lateral positions of the bed. By washing a weighed sample with a 

known amount of water, they used spectrophotometer to determine the concentration of tracer 

particles in the sample. From series of experimental runs carried out, they obtained the 

following correlation for the lateral solid dispersion coefficient: 
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Here    and    are the densities of particle and fluid respectively,    is the fluid viscosity,    is 

the particle diameter and     is the height at minimum fluidization. 

Bellgart & Werther (1986) estimated the lateral solid dispersion in fluidized beds by using 

carbon dioxide pellets as a tracer. The sublimation of the latter is an endothermic process having 

a thermal effect on the bed and the formation of gaseous     can be used to locate the tracer. 

They measured the temperature gradient in the bed and the concentration of evaporated carbon 

dioxide on the surface of the bed. From their experimental measurements, they obtained the 

following correlations: 
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They determined the value of    from the experiment to be               ,   is the 

acceleration of gravity,    is the thickness of the suspension layer around a bubble and   is the 

expanded bed height. 

Berruti et al. (1986) determined the axial and lateral solid dispersion coefficient by continuously 

measuring solid tracer concentration at different locations in the bed. They inserted a tube filled 

with tracer up to a particular level in the centre of an empty reactor. Then, they charged sand 
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into the reactor to reach the same level as the tracer. They fluidized both the tracer and the sand 

for a certain time sufficient to reach stable fluidization, and the tube containing the tracer was 

subsequently removed to allow the sand and the tracer to mix. Samples were collected and 

analyzed. They obtained the following correlation: 
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Here    and    are the densities of particle and fluid respectively,    is the fluid viscosity,    is 

the particle diameter and     is the height at minimum fluidization. 

Du & Wei (2002) studied lateral mixing behaviour of FCC particles in fluidized beds using 

phosphor tracer techniques. They injected the tracer into the bed using pneumatic tracer injector. 

With the aid of an electric flash, the phosphor tracers were excited and gave out emissive light 

immediately. The intensity of light given out by the particles at various locations in the bed was 

measured using a detector. The tracer concentration is proportional to the emissive light strength 

of the particles. By performing the experiments under various operating conditions and particle 

properties, Du & Wei (2002) derived the following correlation for the lateral solid dispersion 

coefficient: 
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Here   is the sphericity of the particles,     is the particle Reynolds number,    is the diameter 

of tracer particles,    is the density of particles originally in the bed and   is the void fraction. 

Several other empirical methods, reported in Table 4.1, have been used by researchers to study 

the lateral dispersion of solids in fluidized beds. Kashyap & Gidaspow (2011) summarized these 

methods as saline (Rhodes et al., 1991), ferromagnetic (Avidan & Yerushalmi, 1995), thermal 

(Borodulya & Epanov, 1982), radioactive (Mostoufi & Chaouki, 2001), carbon (Winaya et al., 
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2007) and phosphorescent tracers (Du et al., 2002). These empirical approaches to studying 

lateral solid mixing in fluidized beds have their limitations. For instance, in thermal tracking 

techniques the heat transferred to the fluid phase and walls makes it difficult to interpret the 

results. In radioactive tracing methods, safety of equipment and personnel are of great concern. 

In phosphorescence tracking, most successful applications are usually in dilute fluidized beds.  

Table 4.1: Experimental results on lateral solid mixing in gas-fluidized beds 

Author Bed size (m) Tracer particles Range of Dsr (m
2
/s) 

Highley & Merrick (1971)   1.52 Radioactive 0.007 – 0.015 

Borodulya et al. (1982)   0.70 

0.60   0.20 

0.40   0.25 

0.50   0.05 

Heated bed material Not evident 

Shi & Fan (1984) 0.30   0.05 Dyed bed material 0.0001 – 0.0008 

Subbarao et al. (1985) 0.20   0.010 Heated bed material 0.0001 – 0.08 

Bellgardt &Werther (1986) 2.0   0.3 Carbon dioxide ice  0.0007 – 0.0026 

Berruti et al. (1986)   0.27 Potassium cyanide 0.0002 – 0.002 

Xiang et al. (1987) 2.6   1.6 Coal particles 0.001 – 0.01 

Salam et al. (1987) 0.90   0.15 Coal particles 0.0005 – 0.002 

Yang & Kojima (1995) 0.30   0.05 Coal particles 0.0004 – 0.0016 

Xiao et al. (1998) Tapered[ 

2.5   0.15 

Mung bean 0.04 – 0.40 

Schlichthaerle & Werther 

(2001) 

1.0   0.3 Carbon dioxide ice 

particles 

0.12 
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For all solid tracer techniques, the common limitation is that repeatable results are only 

guaranteed if numerous runs of experiments are carried out, which may not be practicable in 

real experiments. In addition to these, experiments with solid tracers are difficult to perform 

because of lack of continuous sampling and existence of residual tracers. Furthermore, the 

values of dispersion coefficients reported by these studies differ by up to four orders of 

magnitude making it difficult to generalize or scale up the results from these studies (Liu & 

Chen, 2010).  

 

Despite previous experimental and theoretical investigations of the influence of geometry (Liu 

& Chen, 2010; Xiao et al., 1998), operating conditions (Bellgardt et al., 1985; Bellgardt & 

Werther, 1986; Chirone et al., 2004; Lim & Argarwal, 1994; Pallares et al., 2007) and particle 

properties (Pallares & Johnsson, 2006; salam et al., 1987; Xiang et al., 1987) on lateral mixing 

in fluidized beds, the understanding of how these parameters affect the dispersion coefficient is 

still limited. This is because the mechanisms governing solid mixing are quite complex. There 

are several disconnected values reported for lateral solid dispersion coefficients in the literature. 

We observed differences of about five orders of magnitude in their values (Gidaspow et al., 

2004; Breault, 2006; Jiradilok, 2007). These differences are due to the fact that investigators 

used different definitions, theories, and approaches to determine them (Kashyap & Gidaspow, 

2011). 

More importantly, studies on lateral solid dispersion in fluidized beds using a computational 

approach are still scanty. This has hindered the advancement of knowledge on how various 

design and operating parameters affect the coefficient. The computational approach to studying 

lateral solid mixing in fluidized beds offers some distinct advantages: an accurate 

computational-based model that describes well the lateral mixing process can be useful for the 

design of fluidized bed reactors. This reduces time and eliminates the cost of constructing pilot 

plants. It also helps to avoid the risks inherent in pilot plant scale-up processes. Another 
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important advantage is that a fundamental model can help to shed light on the mechanisms of 

lateral mixing potentially allowing for considerably more insight. To the best of our knowledge, 

numerical works on lateral solid dispersion in fluidized beds have only been carried out by Liu 

and Chen (2010) and Farzaneh et al. (2011). Liu & Chen (2010) employed a hybrid model to 

determine lateral dispersion coefficient in large-scale fluidized beds. They used a combination 

of Eulerian-Granular simulation and fictitious particle tracing technique. This approach involves 

tracking massless fictitious tracer particles in the bed. They determined lateral dispersion 

coefficients using two methods; micro and macro methods. The latter is based on fitting the 

transient particle concentration profile by the Fickian-type diffusion equation, while the former 

is based on statistics of particles from the Langrangian view. They used the Fickian-type 

method to study the distribution of fuel particles over the cross-section of a fluidized bed, 

assuming that the dispersion rate of fuel particles is the same as that of inert bed materials. 

However, the validity of their approach has been questioned by Farzaneh et al. (2011). They 

argued that the assumption that the dispersion rate of fuel particles and inert bed materials are 

the same is not convincing because they have substantially different size and density. Farzaneh 

et al. (2011) employed the Lagrangian modeling approach to determine lateral dispersion 

coefficients. They developed a multi-grid Lagrangian model to study the lateral dispersion of 

fuel particles in the inert bed materials. The approach was adopted to account for the size 

difference between the fuel particles and the inert particles. By using statistical methods, they 

determined the lateral dispersion coefficient in the bed. As with other Lagrangian-based 

approaches, the method is limited with respect to the number of particles that can be tracked. 

In the next chapter, we employed the Eulerian-Eulerian modelling approach to determine lateral 

solid dispersion coefficients in fluidized beds, investigating how changes in operating 

parameters affect it. The approach describes both the solid and fluid phases as interpenetrating 

continua. The model consists of the continuity equations and linear momentum balance equation 

written for each phase. These equations are valid for any physical and chemical system, and 

therefore this approach does not introduce any assumption in the model, except for the 



Chapter 4              Literature review on solid mixing in gas-fluidized beds                     2016         

 

101 
    

constitutive equations needed to render the equations mathematically closed. We follow an 

approach similar to that proposed by Brotz (1956). He used two solids of equal physical 

properties, but differing in colour. The solids were separated by a vertical partition plate which 

divided the bed into two equal parts. He fluidized the bed for a certain time and then removed 

the partition; by measuring the rate at which the two solids mix, he estimated the lateral 

dispersion coefficient. Following Brotz, we defined two solid phases, Solid-1 and Solid-2, with 

equal physical properties, differing only in the names assigned to them in the computational 

code. We then placed Solid-1 on the left and Solid-2 on the right of a removable partition. We 

fluidized the bed with air at ambient temperature, allowing it to reach pseudo-stationary 

conditions, and then removed the partition. From the radial concentration of the Solid-1 phase, 

we estimated the lateral solid dispersion coefficient at the assigned operating conditions.  

 

4.5 Conclusions 

 

Efficient mixing is crucial in many fluidized bed processes including combustion, drying, 

polymerization and granulation. To study the phenomenon of solid mixing, researchers often 

investigate how solids mix vertically (axially) and horizontally (laterally) in the bed. There has 

been considerable effort to investigate axial and lateral solid mixing experimentally. 

Researchers have adopted several approaches including radioactive, thermal, saline and 

phosphorescent tracing methods. In all these experimental techniques, the common limitation is 

that repeatable results are only guaranteed if numerous runs of experiments are carried out, 

which may not be practicable in real experiments. In addition to these, experiments with solid 

tracers are difficult to perform because of lack of continuous sampling and existence of residual 

tracers. More recently, computational fluid dynamics (CFD) simulations have proved to be 

effective in the study of fluidized beds. By using CFD, it is possible to simulate the behaviour of 

large-scale fluidized beds directly and gain insight into the fluid dynamic interactions in the bed. 
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In the next chapter we focus on lateral solid mixing. We use the CFD modelling approach to 

investigate it, examining the effects of operating conditions on it.  
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Chapter 5 

 

2D CFD simulations of lateral solid mixing in 

gas-fluidized beds 

 

This chapter is concerned with 2D CFD simulations of lateral solid mixing in gas-fluidized 

beds. 

1. We describe lateral solid mixing using the Eulerian-Eulerian modelling approach. 

2. We quantify mixing by means of a lateral dispersion coefficient. 

3. We investigate the influence of design parameters and operating conditions on lateral 

dispersion coefficients. 

4. We validate our numerical results with empirical correlations reported in the literature. 

5. We investigate the influence of frictional stress models on our numerical results.  

Parts of this chapter have been published: 

 

Oke,O., Lettieri, P., Solimene, R., Salatino, P., Mazzei, L. 2014. Numerical simulations of 

lateral solid mixing in gas-fluidized beds. Chemical Engineering Science, 120, 117-129. 
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5.1 Introduction 

 

In Chapter 4 we reported different experimental methods employed to investigate lateral solid 

mixing in gas-fluidized beds. We emphasized the dearth of computational approach to studying 

lateral solid mixing, stressing the need to further explore computational methods in 

investigating the latter. In the present chapter we employ the multiphase fluid dynamic 

equations, consisting of the continuity and linear momentum balance equations written for the 

fluid and the solid phases, to investigate lateral solid mixing. These equations are valid for any 

physical or chemical system, since they are essentially expressing the law of conservation of 

mass and linear momentum. Nonetheless, these equations are mathematically unclosed. They 

contain some indeterminate terms which must be closed in order to solve the governing 

equations numerically. These terms are the fluid-particle interaction force, particle-particle 

interaction force(this arises when there are more than one solid phases) and effective stress 

tensor.  The various constitutive equations employed to close these indeterminate terms are 

reported. We then solve the governing equations along with their constitutive equations 

numerically. We investigate the influence of superficial gas velocity, bed height and bed width 

on lateral dispersion coefficients, validating the numerical results with experimental data. 

Subsequently, we examine how the constitutive equations used to model the frictional flow 

regime affect lateral dispersion coefficients. To begin, we report on how we define the lateral 

dispersion coefficient and the methodology we adopt to estimate it. 

5.2 Lateral dispersion coefficient – Definition and estimation 

 

Sometimes one might be interested in estimating how fast particles mix in a fluid bed at given 

operating conditions, without wanting to solve complex and numerically expensive models. One 

way of doing this is resorting to axial and lateral dispersion coefficients; these, as said, are 

effective diffusivities relating to the time that solids take to spread axially and laterally over a 

given distance in the bed. We are going to focus on the lateral dispersion coefficient; therefore, 

before going any further, let us clarify how the latter is defined. Most researchers (Brotz, 1956; 
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Borodulya & Epanov, 1982; Shi & Fan, 1984; Liu & Chen, 2010) define it through an equation 

analogous to Fick’s law of molecular diffusion, writing: 

                                                                           
                                                                             

where   represents the void-free solids concentration,     represents the lateral dispersion 

coefficient and x is the horizontal spatial coordinate. This equation, as just said, should be 

regarded as a definition of such coefficient. Let us briefly comment on the applicability of Eq. 

5.1 to the present investigation. One might wonder how the diffusion equation above can be 

relevant to the study of lateral solid mixing in fluidized beds. Lacey (1954) proposed a 

diffusion-like mechanism for solid mixing, arguing that particles spread through a surface in a 

manner similar to ordinary molecular or thermal diffusion. Each particle has equal chance of 

moving to either side of the surface, closely resembling the motion of molecules of a gas. 

Indeed, experimental data obtained by Carstensen and Patel (1977) revealed that mixing of 

binary particles can be well characterized by Eq. 5.1 as long as the mean diameter of the 

particles are identical, the coefficient      appearing in the equation lumping together the effects 

of various mechanisms responsible for solid mixing such as wake transport, emulsion drifting, 

bubble coalescence and break-up. Therefore      is affected by operational and design 

conditions such as superficial gas velocity, bed height, bed geometry, bed width, including 

material properties such as particle size and density. This makes      different from the 

diffusion coefficient appearing in the original Fick’s law which is constant for a given solute in 

a solvent. For shallow beds, particle ejection/fall-back in the freeboard upon bubble bursting at 

the bed surface may also be relevant.  

Take a 2D bed (we consider two dimensions to simplify the description, but similar 

considerations hold in three dimensions) where the concentration of solids depends in general 

on both spatial coordinates, so that           , with   and   denoting the horizontal and 

vertical coordinates, respectively. The concentration in Eq. 5.1 is averaged over the vertical 

direction, and hence is a function of the   coordinate only, so that         . For a given 
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system, by matching the actual concentration function        , which one can determine either 

experimentally or numerically, with the analytical solution of Eq. 5.1, one can find the lateral 

dispersion coefficient. We should bear in mind that, unlike molecular diffusion coefficients,     

is not just a function of the particle properties, but depends on the system geometry and on the 

operating conditions. Let us be more specific. Often, to determine the lateral dispersion 

coefficient, one considers a bed divided into two equal compartments; the particles occupying 

the compartments differ solely in colour (having in particular same size and density). For 

instance, one can have red particles in the left compartment and white particles in the other, as 

shown in Figure 5.1. The functions          and        represent the concentration of just one 

kind of particles, say the red ones, which are regarded as tracer particles. Hence, the initial 

conditions characterizing this particular setup are: 

                 ̅                  
 

 
                   

 

 
                                            

The boundary conditions that one needs to assign to solve Eq. 5.1 are: 

                                                                                                                                              

 

 

 

 

Figure 5.1: A set-up for estimating lateral dispersion coefficients 

 

 

 

 

Figure 5.2: A set-up showing vertical layers for estimating lateral dispersion coefficients 
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In the real experiment (which may be numerical) the two compartments, as reported above, are 

separated by a removable wall. At time    , one fluidizes the system, waiting for the latter to 

reach pseudo-stationary conditions. Then one removes the partition, letting the red and white 

particles spread through the bed. The void-free concentration of red particles, which one in 

theory could measure (or calculate numerically), is         . One can then divide the bed in a 

given number of vertical layers, as shown in Figure 5.2, and calculate the value of    in each 

layer using the relation: 

                                                    
 

  
∫           
  

                                                                     

where    denotes the volume of each vertical layer. The next step is solving Eq. 5.1, using the 

conditions in Eq. 5.2 and 5.3. For this simple system an analytical solution is given by: 
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Here we have reported explicitly the dependence of the analytical solution on the parameter    . 

Then, to estimate     we simply match the profiles          and            . To do this, we 

define: 

                                                                                                                                         

The task of determining     then reduces to finding the value of     that minimizes   in Eq. 

5.6. This value gives the lateral dispersion coefficient for the system under investigation. By 

repeating this procedure for many geometries and operating conditions, one can obtain a 

correlation of the form written in Eq. 5.7, which others can then use to estimate    ; this 

reduces the need for solving complex models or conducting experiments each time one is 

interested in estimating    . 
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Here   is the superficial gas velocity,     the minimum fluidization velocity,     the height at 

minimum fluidization,    the particle density,    the fluid density,    the fluid viscosity and   

the bed width. 

As said, one can use the lateral dispersion coefficient     to roughly estimate the time   that 

solids take to spread laterally over a distance    in the bed. To demonstrate this, we note that:  
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where  ̅ represents the concentration scale (whose value does not affect  , because Eq. 5.1 is 

linear in the concentration). Eq. 5.1 thus yields: 

                                                                              
  

   
                                                                             

So, if one knows the value of     for a given design and set of operating conditions, one can 

estimate the time   required for the solids to spread laterally over the length   in the bed.  

We would like to emphasize that the parameter     in Eq. 5.1 is different from the coefficient 

appearing in the original Fick’s law. In the latter the parameter is molecular diffusivity, which is 

constant for a solute in a given solvent. Fick’s law relates only to the diffusion of molecules 

generated by their random motion. The lateral dispersion coefficient, conversely, is affected by 

various competing mechanisms. These, as experimental evidence reveals, include bubble break-

up at the upper bed surface and subsequent ejection of particles into the freeboard, wake 

transport, and drifting of emulsion owing to the passage of bubbles. Hence, the lateral 

dispersion coefficient is affected by several variables, among which we find bubble size and 

velocity, particle size and density as well as fluid density and viscosity. Shi & Fan (1984) 

reported that gross particle circulation also affects lateral mixing, this circulation in turn 

depending on bed height and superficial gas velocity. Determining     is therefore quite 

challenging. 
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Another clarification is in order. As said, when calculating lateral dispersion coefficients, we 

operated in terms of concentrations averaged along the vertical direction of the bed, considering 

the function       , defined through Eq. 5.5, in place of the function         . In doing so, we 

lost information about vertical variations in concentration, which we expect to be present; these 

variations, nevertheless, are accounted for, inasmuch as they affect the value of        and in 

turn that of    . We had to operate in terms of vertically-averaged concentrations, for we 

decided to define     through Eq. 5.1, which is one-dimensional and accounts solely for 

variations along the horizontal space coordinate. We employed Eq. 5.1 to define     because 

this is the relation usually used in the literature; in particular, the researchers cited in this article 

who measured     experimentally - and whose results we used to validate our simulations - did 

adopt this definition and, as a consequence, operated in terms of vertically-averaged 

concentrations. 

5.3 Multiphase fluid dynamic model 

 

The governing equations in this work consist of balance equations for mass and linear 

momentum written for the fluid and the two solid phases: 

Continuity equation – Fluid phase 

                                                                                                                                                        

Continuity equation – Solid phase   

                                                                                                                                                    

Dynamical equation – Fluid phase 

                 (     )      (       )                                                          

Dynamical equation – Solid phase   
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Here   is a phase index, subscripts 1 and 2 identify the solid to the left and to the right of the 

partition, respectively (as reported in Section 5.2),    and   ,   and    are the densities and 

volume fractions of the fluid and solid phases, respectively, while   is the gravitational 

acceleration. Furthermore,   ,   ,   ,   ,   , and     are the averaged velocities, effective stress 

tensors and interaction forces per unit particle exerted by the fluid and by the  th solid phase on 

the  th solid phase, respectively. The equations written above are unclosed; various terms need 

to be expressed constitutively. 

5.3.1 Fluid-particle interaction forces 

 

The main components of the fluid-particle interaction force are the buoyancy and drag forces. 

We neglect other contributions (Owoyemi et al., 2007); thus, we write      
    

 
. We 

define the buoyancy force as     
        . We close the drag force using the expression of 

Mazzei & Lettieri (2007): 
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Here    is the particle diameter of the  th solid phase,     and    
  are particle Reynolds 

numbers, while    and   
  are drag coefficients. 
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5.3.2 Particle-particle interaction force 

 

We assume that the interaction force     exchanged between particles of different phases 

includes only a drag-like contribution. Therefore, it is proportional to the slip velocity between 

the phases. We use the constitutive equation developed by Syamlal (1987): 
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where     is a coefficient of restitution equal to 0.90,      is a coefficient of friction equal to 

0.15 and     is a radial distribution function that one obtains by combining the radial 

distribution functions    and    of the  th and  th particle phases, respectively. Their 

expressions are: 
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Here   is the overall solid volume fraction, while      is the maximum value that   can attain. 

5.3.3 Effective stress 

 

We close the effective stress tensors using the Newtonian constitutive equations: 

                     (   
 

 
  ) (    )      (5.17) 
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  )                                                      

where   ,   ,   ,   ,    and    are the averaged pressures, viscosities and dilatational viscosities 

of the fluid and particle phases, respectively;   is the identity tensor, while    and    are the 

rate of deformation tensors defined as: 
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Closing the effective stress tensors therefore reduces to finding constitutive expressions for the 

pressure, viscosity and dilatational viscosity of each phase. The fluid is regarded as 

incompressible and so the fluid pressure does not need a constitutive expression. The viscosity 

   is assumed to be constant, while the dilatational viscosity    is neglected. For the solid 

phases, we need constitutive expressions to model all these quantities.  

The solid phase can be in two flow regimes: the viscous regime where particles undergo 

transient contacts and momentum transfer is translational and collisional, and the frictional 

regime, where particles are in enduring contacts and momentum transfer is mainly frictional. In 

both regimes, the solid phase is modelled as a continuum; in the viscous regime it is 

characterized by a viscous solid pressure   
 ,  viscosity   

  and dilatational viscosity   
 , while 

in the frictional flow regime it is characterized by a frictional solid pressure   
 , viscosity   

  

and dilatational viscosity   
 .  

We express   
  using the closure of Lun et al. (1984) 
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Here      is the granular temperature of the  th phase. In the present study,      ,     coincides 

with the restitution coefficient    and     reduces to   . For the viscosity   
  we adopt the 

closure of Gidaspow (1994): 
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For the dilatational viscosity   
  we use the closure of Lun et al. (1984): 
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The granular temperatures are governed by balance equations for the pseudointernal energies 

related to the fluctuation velocities of the particles (Gidaspow, 1994; Syamlal et al., 1993). The 

equation reads: 

                                          
    

    
                                          

where   
  is a sink term representing losses of pseudointernal energy caused by inelastic 

collisions,   
  is a source term representing the generation of particle velocity fluctuations by 

fluctuating fluid-particle forces, while   
  is a sink term representing dampening of particle 

velocity fluctuations caused by viscous resistance to particle motion. The pseudointernal energy 

per unit particle mass is     
     

 
, and    is the pseudothermal heat flux. For the closures of  

     
    

  and   
  we refer to Gidaspow (1994). 

In the frictional flow regime, as reported earlier, particles interact largely through frictional 

enduring contacts. These are not accounted for by the kinetic theory of granular flow. Therefore, 

to model the flow properties in this regime, one needs to adopt the theories of plasticity and soil 

mechanics. Shaeffer (1987) developed a model that relates   
  to   

  based on the principles of 

soil mechanics. The model reads: 

                                                         
  

  
     

 √  
                                                                                     

where   is the angle of internal friction and    is the second invariant of the rate of deformation 

tensor. The frictional solid pressure is often modelled by means of arbitrary functions that have 

no theoretical basis but correctly describe qualitatively how dense granular media behave 

(Syamlal et al., 1993). The prime feature that must be captured is that such materials cannot 

reach compactions that are unphysically high. A closure for the frictional solid pressure that 

some modellers use is: 

  
     

                                          (5.25) 
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where      is the frictional packing limit, and A and B are coefficients having typical values of 

25 and 10, respectively. This equation is extremely sensitive to the deviation of   from      

and this could lead to big pressure fluctuations and violent numerical instabilities (Schaeffer, 

1987). Eq. 5.25 is often employed with radial distribution functions that are bounded and so do 

not diverge positively when   approaches     . For instance, the model of Syamlal et al. 

(1993), used in the CFD code MFIX, adopts the expression of Lebowitz (1964): 

                                        (  
   

  
∑

  

  

 

   

)                                                                                        

where, as opposed to Eq. 5.16,      does not feature. As in Eq. 5.16    diverges when   

approaches     , the viscous solid pressure already prevents the mixture from overpacking; 

therefore, one can use the same equation used to model the viscous solid pressure, that is, Eq. 

5.20, to model also the total solid pressure in the frictional regime (instead of summing to the 

viscous solid pressure an additional contribution modelled by means of an arbitrary divergent 

function, qualitatively sound but theoretically unfounded). 

These considerations induced us to employ the so-called KTGF-based model, a frictional model 

partly based on the kinetic theory of granular flows (KTGF) which accounts only for the 

frictional viscosity    
  neglecting the frictional solid pressure   

  and the frictional dilatational 

viscosity   
 . When   exceeds   , the model keeps on using the viscous closure for the solid 

pressure, Eq. 5.20, but increases the solid viscosity by adding to the viscous contribution, Eq. 

5.21, the frictional one given by Eq. 5.24. As a consequence, the solid viscosity becomes: 

      
    

                  (5.27) 

In Eq. 5.24 the pressure used in the calculation is the viscous solid pressure (which, as said, 

coincides with the total solid pressure, since the frictional solid pressure is not considered). 
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5.4 Boundary and initial conditions 

 

The computational grid (uniform, with square cells of 5 mm side) is two dimensional; hence the 

front and back wall effects are neglected. On the left, right and middle walls, no-slip boundary 

conditions apply. At the bottom of the bed, a uniform inlet fluid velocity   is specified. The 

fluid is ambient air. At the upper boundary, the pressure is set to       . On all the boundaries, 

the solid mass fluxes are set to zero.  

Initially, the bed is fixed and consists of two equal and adjacent compartments partitioned by a 

removable wall. Each compartment consists of solids having the same size and density. The 

voidage is set to 0.4 everywhere in the bed. We fluidize the solids in each compartment with the 

same superficial gas velocity for about three seconds until they reach stable fluidization, and 

then we remove the partition. To obtain the horizontal solid volume fraction profiles in the bed, 

we divide the bed into twenty equal vertical layers evenly distributed over the horizontal 

direction and we compute the void-free solid volume fraction in each layer following the 

procedure reported in Section 5.2.  

 

 

 

5.5 Results 

 

We considered two sets of powders: Powder 1 was used by Shi & Fan (1984) in their 

experimental study of lateral mixing of solids in batch fluidized beds, and Powder 2 was 

investigated by Mori & Nakamura (1965). The parameters used to simulate these powders, in 

particular the geometry and the bed height, are chosen to replicate the experimental work of 

these authors. We report in Table 5.1 the parameters employed in the simulations of Powder 1; 

those for Powder 2 are reported in Table 5.2. 
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Table 5.1: Simulation parameters for Powder 1 

Parameters Value 

Vessel height  0.35   

Bed Width 0.20 - 1.00   

Superficial gas velocity 0.87 – 1.17     

Particle diameter 491    

Particle density 2620       

Minimum fluidization velocity 0.20 m/s 

Bed height 0.05 – 0.11   

Computational cell 0.005   

Time-step 0.001   

 

As said in Section 5.2, we fluidized the bed, divided it into two equal parts by a removable 

partition, for a certain period, allowing them to reach pseudo-stationary conditions, and then 

removed the partition. We ran preliminary simulations, removing the partition after running 

simulations for three and five seconds, and comparing the void-free concentration profiles 

obtained in the two cases, as shown in Figures 5.3 – 5.6. The figures show the void-free 

concentration profiles at different times measured after the partition was removed. We observed 

that there was no significant difference between the two; consequently, in subsequent 

simulations, we removed the partition after three seconds. 

Table 5.2: Simulation parameters for Powder 2 

Parameters Value 

Vessel height  0.30   

Bed Width 0.90   

Superficial gas velocity 0.45 – 0.75     

Particle diameter 595    

Particle density 1400       

Minimum fluidization velocity 0.25 m/s 

Bed height 0.17 – 0.23   

Computational cell 0.005   

Time-step 0.001   
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Figure 5.3: Void-free mass fraction profiles at t = 1.0 second after removing the partition. 

 

Figure 5.4: Void-free mass fraction profiles at t = 2.0 seconds after removing the partition. 
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Figure 5.5: Void-free mass fraction profiles at t = 4.0 seconds after removing the partition. 

 

Figure 5.6: Void-free mass fraction profiles at t = 5.0 seconds after removing the partition. 
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5.5.1 Effect of superficial gas velocity 

 

From the solid volume fraction profiles obtained numerically, we calculated the void-free mass 

fraction  ̂  of solid phase   in each layer: 

                                    ̂   
   

       
                                                                                           

We ran the simulations at various superficial gas velocities (starting from 0.87 m/s, which is the 

minimum velocity investigated experimentally by Shi & Fan, 1984, up to 1.17 m/s, with 

increments of 0.10 m/s), keeping the minimum fluidization bed height at 5.23 cm (which is the 

maximum bed height at minimum fluidization conditions investigated by Shi & Fan, 1984) and 

the bed width at 0.6 m (which is the single bed width investigated by Shi & Fan, 1984). We 

fitted the void-free mass fraction profiles obtained from our simulations with those obtained 

from the analytical solution of Fick’s law, using the least square regression method, as reported 

in Section 5.2. In Figures 5.7 and 5.8 we report the profiles of void-free mass fraction obtained 

from the Fick’s equation (Eq. 5.1) and those obtained numerically at t = 5.0 s for superficial gas 

velocities of 0.87 and 1.07 m/s respectively. Similar profiles are found at other times, but we 

have chosen 5.0 s as representative time. We obtained a reasonable fit, as Figures 5.7 and 5.8 

show. Figure 5.9 shows the values of dispersion coefficients calculated at different times for 

different superficial gas velocities. We observe an initial, sudden, increase in     in the first two 

seconds. Subsequently, the values of     remain approximately stable.  

 

Figure 5.10 reports the snapshots of particle concentrations obtained from the simulations at a 

superficial gas velocity of 0.87 m/s (4.35 times    ). The figure shows how particles placed at 

the left of the removable partition spread to the right. We observe from Figure 5.10 that the 

spread of the particles proceeds in a manner similar to what one would observe in, for instance, 

the molecular diffusion of ink in water; even though in this case the spread of particles is 

induced primarily by bubbles. This diffusion-like spread of particles explains why we obtained 

a reasonable fit between our numerical results and those obtained from the Fick’s equation. 
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Figure 5.7: Solid 1 void-free vertically-averaged mass fraction horizontal profiles for a superficial fluid 

velocity of 0.87 m/s for Powder 1. The ‘Fick’ profile is that obtained from the analytical solution of the 

Fick’s law, while the ‘Fluent’ profile is that obtained numerically. 

 

 

 

Figure 5.8: Solid 1 void-free vertically-averaged mass fraction horizontal profiles for a superficial fluid 

velocity of 1.07 m/s/ for Powder 1. The ‘Fick’ profile is that obtained from the analytical solution of the 

Fick’s law, while the ‘Fluent’ profile is that obtained numerically 
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Figure 5.9: Lateral dispersion coefficients at different superficial gas velocities for Powder 1  

 

Figure 5.10: Solid 1 volume fraction profiles at different times for superficial fluid velocity of 0.87 m/s 

for Powder 1. The minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The 

horizontal dashed line indicates where the bed ends and the freeboard begins. 
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The snapshots showing the contours of particle concentrations at superficial gas velocity of 1.17 

m/s (5.85 times    ) are reported in Figure 5.11. It is interesting to observe that the contours of 

solid volume fraction shown in this figure are partly different from those in Figure 5.10, even 

though the snapshots were taken at the same computational times. In Figure 5.11 we observe 

streams of particles transported into the freeboard in a region close to the bed surface. This is 

caused by the burst of bubbles and subsequent ejection of their solid content into the freeboard. 

As reported by Davidson & Harrison (1971), particles are carried up through the bed in the 

bubble wakes, and when bubbles burst, part of them spreads over the surface of the bed. This 

kind of solid transport is absent in Figure 5.10. This additional mechanism, observed when the 

superficial gas velocity is larger, contributes to the higher value of      obtained at this velocity, 

as reported in Figure 5.12. 

 

Figure 5.11: Solid 1 volume fraction profiles at different times for superficial fluid velocity of 1.17 m/s 

for Powder 1. The minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The 

horizontal dashed line indicates where the bed ends and the freeboard begins. 
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In Figure 5.12 we plot     against the superficial gas velocity, comparing our simulation results 

with those obtained from empirical correlations available in the literature. We observe that the 

value of the dispersion coefficient increases as the superficial gas velocity increases. This is 

expected, because an increase in velocity induces more vigorous mixing in the bed, rendering 

solid circulation more intense and enhancing lateral solid transport. As said, at higher superficial 

gas velocities an additional mechanism affects lateral mixing; this is the solid transport across 

the bed surface caused by bubble eruption. These observations were also reported by Kunii & 

Levenspiel (1989). Figure 5.12 also shows that the numerical values of the dispersion 

coefficient have the same order of magnitude as those given by the empirical correlations, but in 

all cases overestimate the latter. We will later address the reason for the overestimation. 

 

Figure 5.12: Dispersion coefficient values at different superficial fluid velocities for Powder 1. The 

minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The values are compared with 

those obtained from empirical correlations in the literature. 

5.5.2 Effect of bed height 

 

We investigated the effect of bed height on lateral dispersion coefficients. To do this, we ran 

simulations at different minimum fluidization bed heights (spanning the range between 5.23 cm 

0

1

2

3

4

5

6

7

8

9

10

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

D
sr

  ×
1

0
3

   
[m

2
/s

]

Superficial gas velocity  [m/s]

Shi & Fan

Borodulya

Berruti

Gabor

Present work



Chapter 5                            CFD simulations of lateral solid mixing                                  2016 

 

124 
    

and 11.23 cm), fixing the superficial gas velocity at 1.07 m/s (5.35 times    ) and the bed 

width at 0.6 m. Following the same procedure outlined above, we obtained the void-free 

horizontal mass fraction profiles in the bed. We report in Figure 5.13 and 5.14 the profiles when 

the bed height is 7.23 and 9.23 cm, respectively. The numerical profiles fit reasonably well the 

analytical ones obtained from the Fick’s law. As shown in Figure 5.15, we observe an increase 

in dispersion coefficient as the bed height is increased. This is because as the bed height 

increases, bubbles grow in size causing more recirculation and more particles to be drawn into 

their wakes. As bubbles erupt at the bed surface, they eject more particles into the freeboard, 

enhancing the lateral transport of solids. These effects are observed in the snapshots of solid 

volume fraction reported in Figure 5.16 for different bed heights at t = 5.0 s. 

 

Figure 5.13: Solid 1 void-free vertically-averaged mass fraction horizontal profiles for a minimum 

fluidization bed height of 7.23 cm for Powder 1. The superficial fluid velocity is 1.07 m/s, while the bed 

width is 0.60 m. The ‘Fick’ profile is that obtained from the analytical solution of the Fick’s law, while 

the ‘Fluent’ profile is that obtained numerically. 
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Figure 5.14: Solid 1 void-free vertically-averaged mass fraction horizontal profiles for a minimum 

fluidization bed height of 9.23 cm for Powder 1. The superficial fluid velocity is 1.07 m/s, while the bed 

width is 0.60 m. The ‘Fick’ profile is that obtained from the analytical solution of the Fick’s law, while 

the ‘Fluent’ profile is that obtained numerically. 

 

 

Figure 5.15: Dispersion coefficient values at different minimum fluidization bed heights for Powder 1. 

The superficial fluid velocity is 1.07 m/s, while the bed width is 0.60 m. The values are compared with 

those obtained from empirical correlations in the literature.  
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Figure 5.16: Solid 1 volume fraction profiles at minimum fluidization bed heights of 5.23 cm, 7.23 cm, 

9.23 cm and 11.23 cm for Powder 1. The superficial fluid velocity is 1.07 m/s, while the bed width is 0.60 

m. The horizontal dashed line indicates where the bed ends and the freeboard begins. 

 

As the bed height increases, the size of the bubbles increases, implying that greater volume of 

emulsion can be driven aside. This leads to more intense mixing, and hence increases solid 

lateral transport. We also compared the simulation results with empirical correlations available 

in the literature, as shown in Figure 5.15. The values of dispersion coefficients obtained from 

the simulations have the same order of magnitude as those given by the empirical correlations; 

again, however, the numerical results overestimate the empirical ones. 

5.5.3 Effect of bed width 

 

Most researchers investigating lateral solid dispersion in fluidized beds often neglect the 

influence of bed width. For instance, Shi & Fan (1984) in their experimental work on lateral 

solid mixing in batch gas-fluidized beds summarized the mechanisms governing lateral solid 

mixing as: bubble movement through the bed, bubble burst at the surface, and gross particle 

circulation in the bed. In summarizing the parameters on which these mechanisms depend, they 

did not include bed width. Several other authors (Berruti et al., 1986; Bellgardt & Werther, 
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1986; Salam et al., 1987; Xiang et al., 1987; Winaya et al., 2007) who have developed empirical 

correlations for lateral dispersion coefficients also ignore bed width as a parameter that might 

affect it. We believe that bed geometry should influence lateral mixing, and hence the 

coefficient quantifying it,      This is because bed geometry plays a crucial role in gross particle 

circulation, which is an important mechanism responsible for lateral solid mixing.  

 

To investigate the influence of bed width on lateral solid dispersion, we considered beds of 

different widths, ranging from 0.2 to 1.0 m. We fluidized these beds, maintaining the superficial 

gas velocity at 1.07 m/s and the minimum fluidization bed height at 5.23 cm. We then 

determined the lateral dispersion coefficient at each value of bed width, using the approach 

described previously. In Figure 5.17, we report the values of the dispersion coefficient at 

different bed widths. The figure shows that the coefficient increases rapidly as the bed width 

increases from 0.2 to 0.4 m, afterwards increases slowly and finally becomes approximately 

constant. 

 

 

Figure 5.17: Dispersion coefficient values at different bed widths for Powder 1. The superficial fluid 

velocity is 1.07 m/s, while the minimum fluidization bed height is 5.23 cm. 
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To explain this trend, let us briefly report on the observation by Pallarès et al. (2007) regarding 

the mechanisms of lateral solid mixing. They reported that lateral solid mixing is due to 

horizontally aligned vertical vortices, rotating in alternate directions (these vortices are referred 

to as mixing cells). In these mixing cells, the following mechanisms for solid mixing take place: 

bubble wake mixing, drifting aside of emulsion and bubble eruption at the bed surface. The net 

lateral solid transport in the bed results from the exchange of solids in the mixing cells and is 

determined by the integral length scale of macroscopic solids circulation patterns. It is likely 

that the integral length scale of solids circulation be constrained by bed width for comparatively 

narrow beds. For wide beds the integral length scale of solids circulation, hence lateral solid 

transport, should rather be dictated by bed height. 

5.6 Discussion 

 

It is clear from the results presented above that the values of     obtained from our simulations 

are larger than those predicted by empirical correlations, albeit the order of magnitude of the 

coefficient is correctly captured. We believe that this overestimation has two main causes. The 

first relates to how the frictional stress of the solid phase is modeled constitutively; we address 

this aspect in the next section. The second has to do with the dimensionality of our simulations. 

Our simulations are 2D (a choice often found in the literature, in our case dictated by our 

computational resources, the real-time duration of each simulation and the number of 

simulations that our analysis requires). In actual fluidized beds the lateral motion of the solid 

has, we might say, two degrees of freedom (bubble-induced particle lateral motion develops in a 

horizontal plane), while in 2D fluidized beds only one degree of freedom is present (particle 

lateral motion can only develop along a horizontal line). Hence, when comparing lateral solid 

dispersion coefficients obtained numerically by means of 2D simulations with those estimated 

using empirical correlations, one needs to account for the 2D nature of the simulations. As 

discussed by Norouzi et al. (2011), omitting one dimension in the simulations significantly 

affects the value of the coefficient. The latter, in particular, is overestimated, as we have also 

observed in our work. We shall address this aspect later. 



Chapter 5                            CFD simulations of lateral solid mixing                                  2016 

 

129 
    

5.7 Influence of hydrodynamic models 

 

The Eulerian equations of motion adopted in this work, as said in section 5.1, contain 

indeterminate terms that need to be expressed constitutively. Such terms are the fluid-particle 

and particle-particle interaction forces and the fluid and solid stress tensors. To close the stress 

tensors, one usually regards the phases as Newtonian continua; therefore, the closure 

relationships take the form reported in Eq. 5.17 and 5.18. So, the problem of closure reduces to 

finding constitutive expressions for the pressure, viscosity and dilatational viscosity for each 

phase. For the solid phases one needs to model these parameters constitutively. 

To model the solid stress, one usually adopts the kinetic theory of granular flows (KTGF). This 

assumes that particles are smooth and spherical, that collisions are binary and instantaneous and 

that the powder is far from the frictional packing limit. Thus, the kinetic and collisional 

momentum transfer arising from the particle velocity fluctuations and the particle collisions are 

modelled following the Enskog theory for dense gases (Chapman and Cowling, 1970). 

Nevertheless, in several fluidized bed applications, like the one investigated in this work, 

particles interact largely through frictional enduring contacts, and the kinetic theory of granular 

flows does not take into account these important interactions. Hence, using the kinetic theory to 

model the solid stress in dense systems is inadequate and creates problems. We will now discuss 

in detail these problems. 

In regions of high solid volume fraction, particles interact with multiple neighbours and the 

mechanism for stress generation is not just due to kinetic and (particularly) collisional 

contributions, but also to sustained contacts among particles. These contacts make particles 

dissipate a lot of energy, making them form very dense regions in the bed. This increases the 

ability of the granular assembly to resist shearing, because tangential frictional forces at contact 

points are now present. Consequently, the frictional viscosity of the bed is larger than that 

predicted by the granular kinetic theory model, insofar as this does not account for frictional 
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interactions. So, using the kinetic theory alone to model dense fluidized beds underpredicts the 

solid viscosity, overestimating in turn the extent of particle mixing. 

Enduring particle contacts in dense regions of fluidized beds do not only affect the viscosity of 

the solid phase, but also its pressure. The latter has a more pronounced effect on the fluid 

dynamics of the bed than the former, for the solid pressure influences significantly the 

formation and the size of the bubbles. Let us explain why. The two-phase theory by Toomey & 

Johnstone (1952) suggests that the void fraction around the bubbles and that in the emulsion 

phase are equal, for the theory assumes that all the gas in excess of that required to just fluidize 

the bed results in the formation of bubbles, the emulsion phase remaining at minimum 

fluidization conditions with uniform void fraction. However, local measurements of bed 

porosity by Lockett et al. (1967), done via capacitance probes, revealed that the void fraction 

around the bubbles is not uniform. This was observed experimentally by many other authors 

(Nguyen et al., 1973; Collins, 1989; Fan et al., 1990). Experimental investigations of voidage 

distributions around bubbles by Yates et al. (1994), and numerical simulations by Patil et al. 

(2005), confirmed this, showing that the void fraction decreases exponentially from the bubble 

interface to the bulk of the emulsion phase.  Figure 5.18 reports the void fraction distribution 

around a bubble, as revealed by experimental and numerical studies (Patil et al., 2005); regions 

A, B and C represent the bubble, the bubble boundary and the bulk of the emulsion phase, 

respectively. A question that one may want to ask is how the void fraction distribution around 

the bubbles and the frictional interactions among the particles affect the size of the bubbles. 

Answering this question will allow us to highlight the role of frictional stress on the dynamics 

of bubbling beds. 
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Figure 5.18: Solid volume fraction profile vs. normalized distance from the bubble centre (  /  ).    is 

the distance from bubble centre and    is the bubble diameter. 

 

The bubble size is affected by the resistance that the gas finds to cross the bubble boundary and 

reach the emulsion phase. The larger the resistance, the less leaky the bubble boundary is and, in 

consequence, the larger the bubble results. The resistance through the bubble boundary depends 

on the drag experienced by the gas. This decreases when the void fraction around the bubbles 

increases. The frictional solid pressure strongly influences the void fraction distribution around 

the bubbles by reducing the compaction of solids around their interface, which increases the gas 

flow through the bubble boundary into the emulsion phase, thereby leading to smaller bubbles. 

Hence, if one employs the kinetic theory to model the solid pressure, without accounting for 

frictional stress, the solid pressure and in turn the void fraction around the bubbles are 

underestimated. This increases the drag experienced by the gas around the bubble boundaries 

and in turn reduces the gas leakage from the latter. This makes numerical simulations 

overestimate the sizes of the bubbles and the extent of particle mixing. 

To overcome this problem, Johnson & Jackson (1987) proposed that the frictional stress should 
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captures the flow regime in which the solid pressure is dictated mainly by kinetic and collisional 

contributions, whilst the former captures the flow regime in which enduring contacts are present 

among the particles. Even if the physical basis of adding the two stress contributions might be 

argued, the approach captures well the two extremes of granular flow. The frictional stress is 

usually modeled as follows: 

       
     

     
 
(       

 )              (5.29) 

where   
  is the frictional pressure and   

  is the frictional viscosity (the dilatational viscosity 

is usually neglected). When the solid volume fraction exceeds a threshold value     , the 

frictional contribution to the solid pressure and viscosity are added to the viscous contribution: 

                                                       
    

      ;           
    

          (5.30) 

Johnson & Jackson (1987) proposed the following constitutive equation for the frictional 

pressure: 

                              
  {

 
         

         
                                          

  
                                                           

                                    (5.31)                                              

Here  ,   and   are empirical constants,      is the minimum solid volume fraction at which 

particles start generating stress through enduring contacts, while      is the maximum volume 

fraction that the particles can attain. The frictional viscosity is then related to the frictional 

pressure by the Coulomb (1776) friction law: 

  
    

               (5.32) 

where   is the angle of internal friction of the granular material.      

Another approach to modelling frictional stress was proposed by Shaeffer (1987) based on the 

principles of soil mechanics. The frictional pressure is given by: 

   
                                 (5.33) 
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While the frictional viscosity is modelled by:  

                                                                
  

  
     

 √  
                                                                              

where     is the second invariant of the rate of deformation tensor. 

Following the reasoning of Johnson & Jackson (1987), Srivastava & Sundaresan (2003) 

employed an additive approach to describe the solid stress, using Eq. 5.31 to model the 

frictional pressure. To model the frictional viscosity, they adopted a modified form of Shaeffer’s 

model: 

                                 
  

  
     

 √   
     

  
 

                                                                        

where      is the granular temperature and    is the particle diameter. The additional term 

      
 

 ensures that numerical singularity is avoided in regions where    approaches zero, 

provided that in such regions the granular temperature does not vanish. They used this hybrid 

model to simulate the rise of a bubble in a fluid bed. To highlight the role of frictional stress on 

the bed dynamics, they ran another simulation without accounting for it. The results of their 

simulations revealed that frictional stress influences the bed dynamics significantly, affecting 

the shape and size of the bubbles. Passalacqua & Marmo (2009) employed the model of 

Srivastava & Sundaresan (2003) to investigate the influence of frictional stress on bubble 

growth in fluidized beds. They reported that it affects significantly the size of the bubbles: with 

frictional stress accounted for, the predicted bubble size was significantly lower than that 

observed in simulations with no frictional stress implemented. They also showed that the value 

ascribed to     , appearing in Eq. 5.31, plays a key role: the size of the bubbles predicted with 

lower values of      are smaller than those obtained with higher values of the parameter. This 

is expected, for the lower the value of     , the sooner frictional stress is accounted for (in the 

simulations) and the more particle compaction reduces around the bubbles; this in turn makes 
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the latter leakier, reducing their sizes. This effect, as we shall see, affects significantly lateral 

dispersion. In light of this, we conclude that the way in which frictional stress is modelled 

affects significantly the fluid dynamic behaviour of fluidized beds; particularly in bubbling 

beds, where the latter is dictated mainly by the action of bubbles. In this section, we intend to 

investigate the role of frictional stress modelling on lateral solid mixing. These significantly 

influence bubble size and shape, which in turn affect how quickly the solid spreads throughout 

the bed. To investigate this aspect, we ran simulations using the operational conditions reported 

in Table 5.1 and considering the different cases outlined in Table 5.3. We tested different 

frictional pressure and viscosity models, changing the solid volume fraction at which the bed 

enters the frictional flow regime (    ) and observing the effects of these variations on lateral 

dispersion.  

Table 5.3: Summary of simulation cases.  

 Frictional               

Pressure Model 

Frictional              

Viscosity Model 

Frictional                

Packing Limit 

 

Cases KTGF J & J Schaffer J & J 0.50 0.61 

 

1 X  X   X 

2 X  X  X  

3 X   X  X 

4 X   X X  

5  X  X X  

 

Figure 5.19 shows the plot of the lateral dispersion coefficient against the superficial gas 

velocity for Cases 1 and 2. These cases are identical; except that in Case 2 frictional stress is 

introduced earlier (the value chosen for      is lower). Figure 5.19 shows that     is predicted 

better in Case 2, its values being lower and closer to those found empirically. The same is 

observed for Cases 3 and 4, which are also identical, except that in Case 4 frictional stress is 

introduced earlier, as shown in Figure 5.20. 
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Figure 5.19: Dispersion coefficient values at different superficial fluid velocities for different simulation 

cases. The minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The details of the 

cases are reported in Table 5.3. 

 

Figure 5.20 shows that the values of     in Case 4 are lower than those in Case 3. This is 

because frictional stress is introduced earlier. The effect of this, as said in the preceding 

paragraphs, is that the voidage around the bubbles increases, reducing the compaction of the 

particles and lowering the drag experienced by the fluid. Consequently, the leakage of gas 

through the bubble boundary increases, leading to bubbles of smaller size compared with cases 

where the introduction of the frictional stress is delayed. To illustrate this, we determined a 

statistical distribution of the bubble diameters by dividing the diameter range into classes, as 

shown in Figure 5.21.  
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Figure 5.20: Dispersion coefficient values at different superficial fluid velocities for different simulation 

cases. The minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The details of the 

cases are reported in Table 5.3. 

 

Figure 5.21: Comparison of bubble size distributions for Cases 1 and 2 for Powder 1. The superficial fluid 

velocity is 1.07 m/s, the minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The 

details of the cases are reported in Table 5.3.  
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Although there is no general consensus on how the equivalent bubble diameter should be 

defined, we took it to be the diameter of a circle having the same area (we are working in two 

dimensions) as the bubble. Thus, the equivalent bubble diameter is calculated as follows: 

                                                                      √
  

 
                                                                                 

where   denotes the area of the bubble. We used image analysis software to process the 

simulation results and compute the area of the bubbles. To do this, we assumed that bubbles are 

continuous regions in which the void fraction is larger than 0.85. By establishing a colour 

contrast between these regions and the other parts of the bed, the software allows to determine 

the number of bubbles and their areas. Figure 5.21 shows that Case 2, where we introduced the 

action of frictional stress earlier, predicts the largest percentage of small-sized bubbles, which 

belong to diameter classes [0cm, 1cm] and [1cm, 2cm]. Conversely, Case 1 predicts higher 

percentages for greater bubble diameter classes. The reduction in bubble size observed in Case 2 

reduces the extent of lateral mixing, causing     to have lower values. 

To investigate the effects of frictional viscosity models on particle mixing, we compare Cases 1 

and 3. In the first we adopted the model of Schaeffer (1987), while in the second that of Johnson 

& Jackson (1987). In both we used the same value for     . As Figure 5.22 shows, Case 3 

gives lower values for    . This is because the model of Johnson & Jackson (1987) gives larger 

values of the frictional viscosity than those predicted by the model of Schaeffer (1987) 

(Passalacqua & Marmo, 2009). The larger the solid viscosity is, the more the granular assembly 

is able to resist shearing; this effect reduces the extent to which particles mix laterally, leading 

to lower values of the dispersion coefficient. 
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Figure 5.22: Dispersion coefficient values at different superficial fluid velocities for Cases 1 and 3. The 

minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m. The details of the cases are 

reported in Table 5.3. 

In the cases investigated, we highlighted the influence of frictional viscosity on lateral mixing, 

modelling the frictional pressure by means of the kinetic theory while varying the frictional 

viscosity model and the frictional packing limit. The simulation results revealed that increasing 

the effective viscosity of the solid slows down the bed dynamics, making the particles less able 

to mix, thereby reducing    . We think that we can further improve the simulation results by 

changing the frictional pressure model. Thus, instead of modeling the frictional pressure using 

the kinetic theory, we used the semi-empirical model proposed by Johnson & Jackson (1987). 

The simulation set-up is shown in Table 5.3, Case 5. In Figure 5.23 we compare the results 

obtained from Cases 4 and 5. In the latter we obtained lower     values than in the former for 

all values of the superficial gas velocity. This is expected because the frictional pressure 
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predicts smaller bubbles than Case 4. To confirm this, we carried out a statistical analysis of the 

bubble size distributions on these cases, as we did previously. This is reported in Figure 5.24.  

 

Figure 5.23: Dispersion coefficient values at different superficial fluid velocities for Cases 4 and 5. The 

minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m.  

 

Figure 5.24: Comparison of bubble size distributions for Cases 4 and 5. The superficial fluid velocity is 

1.07 m/s, the minimum fluidization bed height is 5.23 cm, while the bed width is 0.60 m.  
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In Figure 5.24, we observe that Case 5 has a higher proportion of small bubbles in the size range 

[0, 1cm], [1cm, 2cm] and [2cm, 3cm].The results obtained revealed that Case 5 gives the best 

set-up for predicting     out of all the cases considered. To confirm this, we used the set-up in 

Case 5 to investigate Powder 2. The properties of this powder are reported in Table 5.2.We 

compared the results with those obtained using the set-up in Case 1 (which is the default in 

Fluent). We began by investigating the influence of the superficial gas velocity on the 

dispersion coefficient. To do this, we kept the minimum fluidization bed height at 0.17 m and 

the bed width at 0.9 m, we fluidized the bed at different superficial gas velocities and we 

calculated the values of the dispersion coefficient. The results are reported in Figure 5.25. The 

trends observed are similar to what we reported for Powder 1: the dispersion coefficient 

increases with the superficial gas velocity, and Case 5 gives better predictions than Case 1.  

 

Figure 5.25: Dispersion coefficient values at different superficial fluid velocities for Cases 1 and 5 for 

Powder 2. The minimum fluidization bed height is 17.0 cm, while the bed width is 0.90 m. The details of 

the cases are reported in Table 5.3. 

 

Figures 5.26 and 5.27 show the snapshots of solid volume fraction of solid-1 at 0.45 m/s (1.8 

times     ) and 0.75 m/s (3 times    ), respectively.  
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Figure 5.26: Solid 1 volume fraction profiles at different times for superficial fluid velocity of 0.45 m/s 

for Powder 2. The minimum fluidization bed height is 0.17 m, while the bed width is 0.90 m. The 

horizontal dashed line indicates where the bed ends and the freeboard begins. 

 

Figure 5.27: Solid 1 volume fraction profiles at different times for superficial fluid velocity of 0.75 m/s  

for Powder 2. The minimum fluidization bed height is 0.17m, while the bed width is 0.90 m. The 

horizontal dashed line indicates where the bed ends and the freeboard begins. 
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We also ran simulations changing the bed height and keeping the superficial gas velocity and 

bed width at 0.65 m/s (2.6 times    ) and 0.9 m, respectively. Figure 5.28 shows that the 

dispersion coefficient increases with bed height, and that Case 5 predicts better results than Case 

1. 

Figure 5.28: Dispersion coefficient values at different minimum fluidization bed heights for Cases 1 and 5 

for Powder 2. The superficial fluid velocity is 0.65 m/s, while the bed width is 0.90 m. The details of the 

cases are reported in Table 5.3. 
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be accomplished by accounting for the degree of freedom lost when passing from a 3D to a 2D 

case, hence      Figure 5.30 reports, for Case 1, the original and scaled-down values of the 

dispersion coefficient obtained numerically and those obtained from the empirical correlations. 

The scaled values of     compare fairly well with predictions of Borodulya et al. (1982), but are 

still larger than the values yielded by the other empirical correlations. Altogether, it may be 

concluded that values of     of reasonable accuracy can be obtained from 2D simulations with 

proper consideration of particle frictional stress combined with scaling to account for simulation 

dimensionality. This aspect is further investigated in Chapter 6. 

 

Figure 5.29: Comparison of dispersion coefficient values obtained by scaling down the original results in 

Case 1. The details of the cases are reported in Table 5.3. The values are compared with those obtained 

from empirical correlations in the literature.  
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parameters and operational conditions on the values of    , considering how the latter is 

affected by the constitutive equations used to model the frictional solid stress. The simulation 

results show that     increases with the superficial gas velocity and bed height. We also 

observed that     increases rapidly at low values of bed width, but as this increases,     rises 

slowly and then remains approximately constant. Furthermore, we investigated the influence of 

the fluid-dynamic model used in the simulations on the numerical results. To do so, we ran 

simulations with different frictional pressure and viscosity models, changing the solid volume 

fraction at which the bed is assumed to enter the frictional flow regime. The results showed that 

the model choice significantly affects the numerical results. Bubble size distributions in the bed 

show that early introduction of frictional solid stress results in the formation of smaller bubbles, 

leading to lower values of    . We confirmed such findings by running simulations with 

another powder. For the two sets of powders, we obtained similar trends in     values. Finally, 

we examined the influence that the 2D dimensionality of our simulations has on the numerical 

results obtained. The overestimation found is partly due to this dimensionality issue. A simple 

scaling rule based on the consideration of the loss of degree of freedom of lateral particle 

motion when passing from a 3D to a 2D domain was effective to largely reconcile simulated 

and empirical values of    .  This aspect is investigated in greater detail in Chapter 6.  
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Chapter 6 

 

3D numerical simulations 

of lateral solid mixing in gas-fluidized beds: 

CFD and DEM studies 

 

This chapter is concerned with the numerical simulations of lateral solid mixing using both the 

Eulerian-Eulerian and the Eulerian-Lagrangian modelling approaches:  

1. We investigate the effects of simulation dimensionality on the numerical results 

presented in Chapter 5. 

2. We run 2D and 3D simulations, comparing their numerical results. 

3. We use the Discrete Element Modelling (DEM) approach to investigate the process of 

lateral solid mixing. 

5. We carry out a parametric study to examine the influence of collision parameters on the 

accuracy of DEM simulations. 

6. We compare the numerical results obtained from the CFD and DEM simulations.   

Parts of this chapter have been submitted for publication: 

Oke, O., Lettieri, P., van Wachem, B.G.M., Mazzei, L. 2015. Lateral solid mixing in gas-

fluidized beds: CFD and DEM studies. Chemical Engineering Research & Design. Submitted 

for publication. 
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6.1 Introduction 

 

In Chapter 5 we adopted the Eulerian-Eulerian approach to investigate lateral solid mixing in 

gas-fluidized beds. We investigated the influence of design and operational conditions on lateral 

dispersion coefficients,    . For all the cases considered numerical results overestimated the 

empirical values of the latter, but within the same order of magnitude. We identified two 

possible causes for the overestimation. The first relates to the two-dimensional nature of our 

simulations; in actual fluidized beds the lateral motion of the solid has, we may say, two degrees 

of freedom (bubble-induced particle lateral motion develops in a horizontal plane), while in 2D 

fluidized beds solely one degree of freedom is present (particle lateral motion can only develop 

along a horizontal line). Thus, lateral dispersion coefficients obtained in 2D simulations should 

be expected to overestimate empirical results. This observation was also reported by Norouzi et 

al. (2011). To address the dimensionality issue, we proposed a simple scaling rule based on the 

consideration of the loss of a degree of freedom of lateral particle motion when passing from a 

3D to a 2D domain. The overprediction, nevertheless, was not eliminated. The second 

overestimation cause that we identified relates to how the solid-phase frictional stress is 

modelled constitutively. We attempted to investigate this aspect by using different frictional 

stress models, and changing the solid volume fraction value      at which the bed was assumed 

to enter the frictional flow regime. We obtained improved results with this, but numerical 

results were still higher than the empirical ones. 

The present chapter intends to address these problems. We believe that the issue of simulation 

dimensionality can be investigated by running 3D simulations. Thus, we ran 3D simulations, 

considering the same powder, the same computational setup and the same simulation cases 

employed in our former 2D simulations. This permitted us to see how simulation dimensionality 

affects the numerical results. Furthermore, we attempted to investigate the frictional stress 

modelling issue by using DEM simulations. These offer a simpler way of describing the 

rheology of the solid phase. This is because we no longer need to model the solid stress, since 

the solid is no longer modelled as a continuum. As we shall see later, in the DEM model the 
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mechanisms responsible for particle-particle interaction are well captured by just three 

parameters: spring constant, damping coefficient and friction coefficient. Finally, we compared 

the results of the Eulerian-Eulerian and Eulerian-Lagrangian simulations.  

To estimate lateral dispersion coefficients, we follow an approach similar to that proposed by 

Brotz (1956), reported in Chapter 5. We briefly summarise the approach again for clarity:  He 

used two solids having the same physical properties, but differing in colour. The solids were 

separated by a vertical partition plate which divided the bed into two equal parts. He fluidized 

the bed for a certain time and then removed the partition; by measuring the rate at which the two 

solids mix, he estimated the lateral dispersion coefficient. Following Brotz, we placed two types 

of solids (for example, red and blue particles) with the same physical properties, but differing in 

colour, in a 3D rectangular bed. We placed the red particles on one side and the blue particles on 

the other side of a removable partition. We fluidized the bed with air at ambient temperature, 

allowing it to reach pseudo-stationary conditions, and then removed the partition. The solution 

of the Eulerian-Lagrangian model provides the position of each particle at a given point in time, 

and this can be used to calculate the spatial concentration profile of the particles after the 

partition is removed. Similarly, the solution of the Eulerian-Eulerian models provides the radial 

solid concentration profiles which can be used to estimate the rate of lateral solid mixing.  We 

divide this chapter into two parts: the first part is concerned with 3D Eulerian-Eulerian 

simulations and the second part is about the Eulerian-Lagrangian (DEM) simulations of lateral 

solid mixing.  

6.2 2D versus 3D simulations of gas-fluidized beds 

 

Until recently, many numerical simulations of dense fluidized beds were two-dimensional (2D) 

(Gidaspow & Ettehadieh, 1983; Ettehadieh et al., 1984; Lyczkowski et al., 1987; Bouillard et 

al., 1989; Ding & Gidaspow, 1990; Tsuo & Gidaspow, 1990; Ding &  Lyczkowski, 1992; 

Kuipers et al., 1992; Wang & Bouillard, 1993; Gamwo et al., 1995; Nieuwland et al., 1996; 

Boemer et al., 1995; Blazer et al., 1995; Enwald et al., 1997). This is because three-dimensional 



Chapter 6                DEM and CFD simulations of lateral solid mixing                           2016 

 

148 
    

(3D) simulations are computationally expensive due to memory capacity and processor speed of 

available computers. To date, even with available computational resources, 3D simulations are 

still very expensive because the governing equations have to be integrated over a longer period 

of time to compute the inherently chaotic dynamics of the fluidization process (Xie et al., 2008).  

Many experimental works aimed at gaining fundamental insights into the dynamics of fluidized 

beds are also carried out using 2D beds (often referred to as pseudo-2D beds because there are 

no beds that are truly two-dimensional; the latter is generally understood to mean rectangular 

equipment having a small depth compared to their width and height). The use of 2D beds for 

experimentation has many advantages, especially when studying the growth, velocity and 

coalescence of bubbles: it allows bubbles to be readily seen and photographed; it is relatively 

easy to modify the distributor plates; a 2D bed and its ancillary equipment, when compared to a 

3D bed of the same width, is cheaper to fabricate (Geldart, 1970). Thus, 2D beds have helped 

researchers to understand the behaviour of fluidized beds better.  

Researchers have obtained satisfactory results from 2D simulations of gas-fluidized beds. Many 

of these simulations were carried out for systems where the fluid dynamics are inherently two-

dimensional; in such systems the variation of fluid dynamic properties in space and time can be 

neglected in the third dimension. For example, Johanssen et al. (2006) performed 2D 

simulations of a rectangular fluidized bed, validating their numerical results with experimental 

data from a pseudo-2D bed. In the latter, particle motion in the depth direction is suppressed and 

the fluid dynamics can be assumed to be two-dimensional. Their numerical results showed good 

agreement with experimental data. Other researchers (Boemer et al., 1998; Goldschmidt et al., 

2001; Goldschmidt et al., 2004; Chiesa et al., 2005; Sun et al., 2006) have also employed 2D 

simulations to investigate pseudo-2D bed and reported considerable success.    

Despite the success of 2D simulations in understanding and predicting the dynamic behaviour of 

fluidized beds, significant differences between 2D and 3D simulations have been reported. Pyle 

& Harrison (1967) compared the rise velocities of bubbles in 2D and 3D beds. They reported 
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that bubbles in 2D beds have lower rise velocities than those in 3D beds. Similarly, Geldart & 

Kelsey (1968) compared bed expansion in 2D and 3D beds. They reported that, under the same 

condition of superficial gas velocity, particle properties and bed height, 2D beds have higher 

bed expansion than 3D beds. This is expected, since in the former bed solid flow is completely 

restrained in the third dimension.  

Peirano et al. (2001) performed numerical simulations of a rectangular bubbling bed using the 

Eulerian-Eulerian (E-E) modelling approach. They compared their numerical results with 

experimental values of pressure fluctuations and bed height fluctuations. They observed 

significant differences between 2D and 3D simulations; in particular only the 3D simulations 

could predict correctly the experimental data. They concluded that 2D simulations should be 

used with caution.  Similarly, Cammarata et al. (2003) studied bubbling behaviour of fluidized 

beds in rectangular apparatus using 2D and 3D simulations. They compared the bed expansion 

and bubble size obtained from their simulations with the predictions form Darton’s (1977) 

equation. They reported that a more physically realistic behaviour was obtained in 3D 

simulations. They concluded, like Peirano et al. (2001), that 3D simulations should be 

preferably used, except in situations where the system is 2D by nature.  

Xie et al. (2008) presented a slightly contrary view to the authors in the preceding paragraph. 

They reported that 2D E-E simulations are still applicable for studying the behaviour of 

fluidized beds, but within a certain range of operating conditions. They performed 2D 

simulations of cylindrical and rectangular beds, investigating the bubbling, slugging and 

turbulent regime of fluidization. Their results showed that 2D simulations can accurately predict 

the behaviour of the bubbling regime where the superficial gas velocity is close to the minimum 

bubbling velocity. However, like Peirano et al. (2001), they emphasized that caution must be 

taken when employing 2D simulations in other fluidization regimes.  

Similarly, Reuge et al. (2008) investigated the expansion and bed height fluctuations of Geldart 

B particles using E-E simulations. They carried out both 2D and 3D simulations of the bed. 
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Their results showed that 2D simulations overestimated the bed expansion, while 3D 

simulations correctly predicted them. They concluded that 3D simulations are necessary to 

correctly predict the behaviour of fluidized beds. Significant quantitative differences between 

2D and 3D simulations were also reported by Li et al. (2010) in their CFD simulations of gas 

mixing in fluidized beds. They reported that bed expansion, solid concentration, gas and solid 

velocities were different in 2D and 3D simulations. Accordingly Li et al. (2010) concluded that 

2D simulations cannot be used to accurately simulate a 3D system.   

Quite recently, Li et al. (2014) evaluated the difference between 2D and 3D simulations of 

circulating fluidized beds. They compared the axial pressure gradient and radial void-fraction 

profiles obtained from 2D and 3D simulations with those obtained experimentally. Their results 

showed that, unlike 3D simulations, 2D simulations could not satisfactorily predict experimental 

data.  

The works reported in the preceding paragraphs show that there are significant differences 

between the dynamics of 2D and 3D beds. We believe that better agreement between our 

numerical simulations and experimental data may be achieved if simulations are performed in 

3D. Accordingly, we ran simulations in 3D, using the same powder and the same computational 

set-up used in the 2D simulations, and considering all the simulation cases investigated for the 

latter. The results of our simulations are now reported in the following sections. 

6.2.1 Results and discussion on 3D Eulerian-Eulerian simulations 

 

The governing equations, initial and boundary conditions are the same as those used in Chapter 

5 for our 2D simulations. The geometry employed is also the same, except that the present 

geometry is 3D. The computational domain is shown in Figure 6.1, while Table 6.1 reports the 

simulation parameters employed in the present simulations.  
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Figure 6.1: Computational grid of our 3D simulations 

Table 6.1: Simulation parameters for 3D E-E simulations of Powder 1 

Parameters Value 

Vessel height  0.35 m 

Bed depth (thickness) 0.05 m 

Bed Width 0.60 m 

Superficial gas velocity 0.87 – 1.17     

Particle diameter 491    

Particle density 2620       

Minimum fluidization velocity 0.20 m/s 

Bed height 0.05 m 

Computational cell 0.005   

Time-step 0.001   

 

From the solid volume fraction profiles obtained numerically, we calculated the void-free mass 

fraction  ̂  of solid phase   in each layer: 

                                    ̂   
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We ran the simulations at various superficial gas velocities, keeping the minimum fluidization 

bed height at 5.23 cm, the bed width at 0.6 m and the bed depth at 5 cm. We fitted the void-free 

mass fraction profiles obtained from our simulations with those obtained from the Fick’s law 

using the least square regression method, as did previously. In Figure 6.2 we report the profiles 

of void-free mass fraction obtained from the Fick’s law and those obtained numerically at t = 

5.0 s at superficial gas velocities 0.87 m/s, for both 2D and 3D simulations. Similar profiles are 

found at other times, but we have chosen 5.0 s as representative time. We obtained a good 

match between the theoretical and numerical profiles. 

 

Figure 6.2: Solid 1 void-free vertically-averaged mass fraction horizontal profiles for a superficial fluid 

velocity of 0.87 m/s/. The ‘Fick’ profile is that obtained from the analytical solution of the Fick’s law, 

while the ‘Fluent’ profile is that obtained numerically. 

 

We observe that concentration falls faster in time in the 2D simulations compared to the 3D 

simulations. This is expected because in the latter simulations there movement of solid and gas 

is restrained by the front and back walls. Consequently the lateral movement of solid is slower 

in 3D simulations. This is confirmed by the snapshots of solid-1 concentration reported in 
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Figures 6.3A and 6.3B, which refer to the 2D and 3D simulations, respectively, and to a 

superficial gas velocity of 0.87 m/s. The figures show how the tracer particles placed at the left 

of the removable partition wall spread to the right. We observe that the movement of solids in 

the 2D simulation is faster than that in the 3D simulation. This, as mentioned, is consistent with 

the profiles reported in Figure 6.2.   

 

Figure 6.3: Solid-1 volume fraction profiles at different times for superficial fluid velocity of 0.87 m/s. 

(A) 2D simulations (B) 3D simulations. The minimum fluidization bed height is 5.23 cm, while the bed 

width is 0.60 m. The horizontal dashed line indicates where the bed ends and the freeboard begins. 

 

Table 6.2: Simulation cases for E-E simulations 

 Frictional               

Pressure Model 

Frictional              

Viscosity Model 

Frictional                

Packing Limit 

 

Cases KTGF J & J Schaffer J & J 0.50 0.61 

 

1 X  X   X 

2 X  X  X  

3 X   X  X 

4 X   X X  

5  X  X X  

 

 

t = 1.0 s t = 4.0 s

t = 5.0 s t = 6.0 s

t = 8.0 s t = 10.0 s

 

0.000 

0.176 

0.235 

0.265 

0.324 

0.382 

0.441 

0.500 

0.559 

 

t = 1.0 s t = 4.0 s

t = 5.0 s t = 6.0 s

t = 8.0 s t = 10.0 s

 

0.000 

0.105 

0.158 

0.210 

0.263 

0.316 

0.368 

0.421 

0.526 

 

A B
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We ran simulations considering the different cases reported in Table 6.2, using the same 

operational conditions reported in Table 6.1, as we did in Chapter 5. We tested different 

frictional pressure and viscosity models, changing the solid volume fraction at which the bed 

enters the frictional flow regime (    ) and observing the effects of these variations on lateral 

dispersion.  

Figures 6.4 - 6.8 show the variation of lateral dispersion coefficient with superficial gas velocity 

for cases 1 – 5. The values of      are compared with the empirical data of Shi & Fan (1984). 

We observe an increase in     as the superficial gas velocity is increased. This is true for both 

2D and 3D simulations. Nevertheless, in all the cases considered, 2D simulations clearly 

overestimate     values, and their values are higher than those of 3D simulations. Bègis & 

Balzer (1997) and Bègis et al., (1998) have reported significant difference between fluidization 

dynamics predicted by 2D and 3D simulations. To explain this, Xie et al. (2008) carried out a 

budget analysis of the governing partial differential equations, evaluating each term appearing 

in the latter. Their analysis revealed that the difference between 2D and 3D simulation results is 

due to the additional terms appearing in the three dimensional equations of change. The 

difference, according to Xie et al. (2008), increases as the superficial gas velocity increases. 

This possibly explains why, in Figures 6.4 – 6.8, the difference between      values obtained in 

2D simulations and 3D simulations increases as the superficial gas velocity increases. We 

observe in Figures 6.4 – 6.8 that 3D simulations results agree reasonably well with empirical 

data in all cases than the 2D simulations.  

 

Figures 6.4 - 6.8 show that the results of the 2D simulations are appreciably affected by the 

model used for the frictional solid stress (frictional pressure and frictional shear viscosity) and 

by the value ascribed to     . The reasons for this were discussed in Chapter 5 and so will not 

be repeated here. The results of the 3D simulations are far less sensitive to the frictional solid 

stress model. In both 2D and 3D simulations, we see that lowering the value of      or using 

the constitutive model of Johnson & Jackson (1987) instead of the kinetic theory of granular 
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flow (KTGF) model for the frictional pressure results into lower values of the lateral dispersion 

coefficient. As explained in Passalacqua & Marmo (2009), this is because the model of Johnson 

& Jackson (1987) yields larger solid pressure than the KTGF model, given the same solid 

concentration, whilst lowering the value of      introduces this effect sooner, that is to say, at 

lower power compaction. Larger solid pressures in turn result into smaller bubbles, reduced 

solid recirculation and reduced solid dispersion. This trend is found also in the 3D simulations, 

but the effect is less significant. For instance, for a fluid velocity of 1.17 m/s, the difference in 

the     value between Cases 1 and 5 is 1.9 E-3 m
2
/s for the 2D simulations, while it reduces to 

0.3 E-3 m
2
/s for the 3D simulations.  

 

 

 

Figure 6.4: Dispersion coefficient values at different superficial fluid velocities for Case 1. The values are 

compared with those obtained from empirical data of Shi & Fan (1984). 
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Figure 6.5: Dispersion coefficient values at different superficial fluid velocities for Case 2. The values are 

compared with those obtained from empirical data of Shi & Fan (1984). 

 

Figure 6.6: Dispersion coefficient values at different superficial fluid velocities for Case 3. The values are 

compared with those obtained from empirical data of Shi & Fan (1984). 
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Figure 6.7: Dispersion coefficient values at different superficial fluid velocities for Case 4. The values are 

compared with those obtained from empirical data of Shi & Fan (1984). 

 

Figure 6.8: Dispersion coefficient values at different superficial fluid velocities for Case 5. The values are 

compared with those obtained from empirical data of Shi & Fan (1984). 
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6.3 Eulerian-Lagrangian (DEM) Simulations 

 

Before advancing further let us briefly recap one of the main goals of this chapter. The Eulerian-

Eulerian models employed in Chapter 5 overestimated the values of     . We identified two 

possible causes for the overestimation: the first relates to the 2D nature of our simulations and 

the second has to do with how we modelled the frictional solid stress appearing in the Eulerian-

Eulerian models. We investigated these issues in Section 6.2. It is clear from the results 

presented in the latter that the major cause for the overestimation is largely the 2D nature of our 

previous simulations. This section investigates the capability of the Eulerian-Lagrangian (E-L) 

modelling approach to estimate lateral dispersion coefficients with the intent of comparing the 

simulation results with those obtained using the Eulerian-Eulerian models. The E-L approach 

used in this work is the Discrete Element Method (DEM). In the latter, we track the motion of 

each particle individually, and the fluid phase is described using the averaged equations of 

motion. The particle-particle interaction can be modelled either by using a soft sphere or a hard 

sphere approach. The following sections summarize these approaches, commenting on their 

relative advantages and disadvantages. 

6.3.1 Hard-sphere approach 

 

In the hard-sphere approach, collisions between particles are assumed to be binary and 

instantaneous. Collisions are processed one by one according to the order in which the events 

occur. The approach uses the conservation equations of linear and angular momenta to calculate 

the velocities of particles emerging from collisions. The model equations for this approach are 

reported below. These are based on the hard-sphere model developed by Hoomans et al. (1996, 

2000, 2001). 

Consider two colliding spheres   and   with position vectors    and   , diameters    and   , and 

masses     and   , respectively. The normal and tangential unit vectors are defined 

respectively as: 
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|     |
               

   

|   |
                                                                  

where     can be expressed as: 

                                        (     )  (
 

 
     

 

 
    )                                                            

    and    denote the linear velocities of the spheres and    and    their angular velocities 

before collisions, and the corresponding velocities after collisions are denoted by primes. The 

impulse   exerted on sphere   by sphere   is given by: 

         
         (  

    )          (6.4) 

and 

                                                  
   
  

   
      

   

  
(  

    )                                               

where   is the moment of inertia about the centre of a  sphere given by: 

                                 (6.6) 

where   is the mass of the sphere and   is its diameter. The relative velocity at the point of 

contact is expressed     

Eq. 6.4 and 6.5 can be combined to obtain:  
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)   
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)   (     )                                    

To determine the velocities of particles after collision, we need to calculate the impulse     

Therefore we use the following closure models. First, we express the coefficient of normal 

restitution   characterising the normal component of     as: 

           
                                (6.8) 

where 0       The coefficient of dynamic friction (      is written as:   
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                  |     |                                                                    (6.9) 

and the coefficient of tangential restitution         is given by: 

           
                               (6.10) 

 If we combine Eq. 6.7 and 6.8, we obtain the normal component of the impulse vector: 

                                                   
      (       )

 
  

 
 
  

                                                                          

For the tangential component of    two types of collisions are possible: sticking or sliding.  

According to Lu et al. (2005), if 

 

                                           
         

   (     )   
(       )                                                                      

then, the collision involves sliding, and  

                                                                      (6.13) 

If collision involves sticking, 

                                         
         

   (     )   
(       )                                                                         

then, 

                                            
         

   (     ) 
(       )                                                                         

Given the definitions of    in Eq. 6.11, 6.13 and 6.15, the velocities of particles after collision 

can be calculated from Eq. 6.4 and 6.5.  

When the hard-sphere model is used for simulations of dilute systems, they are much faster than 

soft-sphere simulations, since the former approach does not take into account multiple collisions 

at the same instant. Campbell & Brennen (1985) were the first to use the hard-sphere model to 

investigate granular systems. Subsequently, it has been employed to study a wide range of 
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complex system. Hoomans et al. (1996) used the hard-sphere approach, together with CFD 

conservation equations for the fluid phase, to study gas-solid flow in fluidized beds. Through 

this approach, they investigated the influence of particle-particle interaction on bubble 

formation. Later, they used the approach to examine segregation caused by density and size 

difference in fluidized beds (Hooman et al., 2000). Other researchers (Goldschmidt et al, 2001; 

Li & Kuipers, 2002; Helland et al., 1999; Lun, 2000; Zhou et al., 2004) have also employed the 

hard-sphere approach to investigate various aspects of fluidized beds, including high pressure 

fluidization, circulating fluidized beds and gas turbulence. Nevertheless, the approach becomes 

useless when particle concentration is high, such as those encountered in dense fluidized 

systems, because it does not consider multiple contacts of particles. When this happens, the soft-

sphere approach becomes the plausible alternative.  

6.3.2 Soft-sphere Model 

 

The soft-sphere model was developed originally by Cundall & Strack (1979). In this method, 

particles are allowed to overlap slightly at the point of collisions, and the forces at the point of 

contacts are calculated from the deformation history of the contacts. The physical motivation for 

the soft-sphere model is that collisions of particles are accompanied by deformation at the point 

of contact. The deformation, described by the overlap displacement of two particles, is the 

driving force of the soft-sphere model (van Wachem, 2003). The greater the overlap, the greater 

the repulsive force between the colliding particles.  The soft-sphere model allows for multiple 

overlap; the net contact force is calculated as the addition of all pair-wise interactions. Tsuji et 

al. (1993) were the first authors to use the soft-sphere approach to simulate the dynamics of 

fluidized beds. Based on the model developed by Tsuji et al. (1993), Iwadate & Horio (1998) 

introduced van der waals forces to simulate the fluidization of cohesive particles. The soft-

sphere model has also been employed in other applications such as heat transfer (Li & Mason, 

2000) and coal combustion (Zhou et al., 2003).  
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In the soft-sphere models, the motion of particles is described individually by applying 

Newton’s equation of motion.   

6.3.2.1 Equations of motion 

 

The linear motion of a particle  , assumed to be spherical, with mass    and centre coordinate 

   , can be modelled using the Newton’s second law of motion: 

                                              

    

   
                                                                                       

Here       is the total contact force. The latter is the addition of individual contact forces exerted 

by all other particles in contact with particle  .       has  normal and tangential components: 

                                                     ∑               

 

                                                                           

where        and        are the normal and tangential components of    , respectively, where     

represents the contact force exerted by particle   on particle  .         is the total external force 

acting on particle  . This can be decomposed into the following forces: 

                                (6.18) 

here      ,     , and      are the gravitational, drag and pressure forces respectively. Other 

contributions to        such as the virtual mass, lift, Faxen and Basset forces are neglected. 

Lastly,      is the sum of all other particle-particle forces, which can include electrostatic and 

van der waals forces. In this work, we do not consider these particle-particle forces. 

The rotational motion of particle   is given by: 

                                                              
   

  
                                                                                          

where    is the moment of inertia,    is the angular velocity and    is the torque of particle  . 

The torque depends only on the tangential component of individual contact forces, thus: 
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                                                           ∑              

 

                                                                     

where     is the unit vector from the centre of particle   to that of particle        is the radius of 

particle  . We should note that although the total force acting on particle   is given by the sum of 

the forces on the right hand side of Eq. 6.16, only the tangential component of the contact force 

exerted by particle   on particle   is used in Eq. 6.20 to calculate     According to Xu & Yu 

(1997), the total external force (the fluid-particle interaction force and the gravity) acts on the 

centre of mass of the particle, hence it has no contribution to the rotational motion of the latter. 

Conversely, the interparticle forces (the total contact force and the particle-particle interaction 

force) act on the contact point between particle   and  , generating a torque which causes 

particle   to rotate. The only interparticle force acting between particle   and   is     (since the 

contribution of      has been neglected). The tangential component         of the latter is 

therefore responsible for the effective torque on particle  . As said in the preceding paragraphs, 

the translational and rotational motions of particles are described Eqs. 6.16 and 6.19. By 

integrating these equations, we obtain the evolution in time of particle positions and velocities.  

6.3.2.2 External force 

 

The gravitational force      on particle   is expressed as: 

                                                                                                     (6.21) 

The drag force       that the fluid exerts on particle   is given by: 

                                                                                                                        (6.22) 

Here    and    are the linear velocity and volume of particle  , respectively, while   denotes the 

drag coefficient, whose constitutive expression has been reported in Chapter 5.  

The pressure force      on particle   is expressed as: 

  

                                                                                                  (6.23)
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where    represents the volume-averaged fluid pressure. This force may be regarded as the 

buoyancy force acting on particle  . The expression that we selected for the drag coefficient   is 

consistent with this choice of buoyancy force.  

We will now describe the contact force scheme employed in the soft-sphere approach. 

6.3.2.3 Contact force  

 

The most widely used contact force model in DEM simulations, which is also employed in this 

work, is the spring, slider and dash-pot model, proposed by Cundall & Strack (1978). The 

diagram representing this model is reported in Figure 6.11.  

The Cundall & Strack (1978) contact force model considers three mechanisms of particle-

particle interactions. These mechanisms are captured by three mechanical elements in the model 

– spring, dash-pot and slider. The spring simulates the deformation following collision of 

particles. The dash-pot models the energy dissipation due to particle-particle interaction, and the 

slider simulates the frictional force arising when particles slide on each other under the 

application of a normal force. The effects of these mechanisms on particle motion are captured 

by the following parameters: the spring stiffness  , the damping coefficient   and the coefficient 

of friction  . This is represented in Figure 6.11. 

 

Figure 6.11: Graphical representation of spring/dashpot model (Tsuji et al., 1992). 
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When particle   is in contact with particle  , the contact force        acting on particle   is given 

by the sum of the forces due to the spring and the dashpot: 

                                                                       
                                   (6.24) 

With Tsuji (1992), we used the Hertzian contact theory to model the relationship between the 

normal spring force and the normal displacement; the relationship between the two is non-

linear. In Eq. 6.24,    is the normal spring stiffness,    is the normal displacement or overlap, 

   is the normal damping coefficient and     is the relative velocity between particles   and    

given by: 

                                                         (     )                    (6.25) 

The normal vector     and the overlap    are given by: 

                   
     

|     |
                        (     )  |     |                                                     

The expression for the tangential component of the contact force depends on whether particles   

and   slide on each other (kinetic friction) or not (static friction). If they do not, the force is 

given by: 

                                                                                                                (6.27) 

where   ,   ,    and     are the spring stiffness, the displacement, the damping coefficient 

andthe unit vector in the tangential direction. The vector     and the tangential displacement    

are found by adding the displacement vectors through subsequent time-steps of collision (van 

Wachem et al. 2015). If the following relation is satisfied: 

        |      |    (6.28) 

particles   and   slide. Then, Eq. 6.27 no longer holds and must be replaced by: 
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                                                                        |      |                       (6.29) 

The next step is determining the values of the normal and tangential spring constants and 

damping coefficients. We address this in the following sections.  

6.3.2.4 Spring stiffness 

 

For two spheres of equal size, Tsuji (1992) suggested the following expression to calculate the 

normal spring stiffness: 

                                                                            
√     

      
  

                                                                 

where    is the Young modulus and    is the Possion ratio of particle  . In the case of contact 

between a sphere and a wall,    is given by: 

                                                                    

 √  

 
    

 

  
 

    
 

  

                                                         

where    and    are the Young modulus and Poisson ratio of the wall, respectively. 

The relation for calculating the tangential spring stiffness was derived by Mindlin (1949) and 

Mindlin & Deresiewicz (1953) and reads: 

                                                                            
 √     

    
  

                                                           

where    is the shear modulus of particle  . This is related to the Young modulus    and to the 

Poisson ratio    as follows: 

                                                                               
  

       
                                                               

For the case of contact between a particle and the wall, Tsuji (1992) provides the following 

expression for calculating the tangential spring stiffness: 
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 √    

    
  

                                                                

6.3.2.5 Damping coefficient 

 

Following van Wachem et al. (2010), we use the following expressions for the damping 

coefficients: 

                                         √      
   

   ;      √      
   

                                    (6.35) 

For collisions between particle   and  , it is: 

                                                             
     

       
                                                                              

For collisions between particle   and the wall,     . where   is a parameter that depends on 

the coefficient of restitution  . This dependence is well defined by Tsuji et al. (1992), as 

reported in Figure 6.12.  

 

 

 

 

 

 

 

Figure 6.12: Relationship between parameter   and restitution coefficient   (Tsuji et al., 1992) 

We would like to point out that although the values of    and    can be obtained from Eq. 6.30, 

6.31, 6.32 and 6.34, in practice the values assigned to these parameters are smaller than those 
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obtained from these equations (which are based on the material properties, that is, the Young 

modulus and Poisson ratio); this is because otherwise the integration time step required in the 

simulation becomes impractically small. So, when assigning the values of    and   , one takes 

into account computational efficiency as much as material properties (Gera et al., 1998; 

Kawaguchi et al., 1998; Mikami et al., 1998; Kaneko et al., 1999; Rong et al., 1999; Rhodes et 

al., 2001; Tian et al., 2007). Extra care has to be taken when choosing the stiffness values, for 

too small values can lead to unrealistic overlap between the colliding particles, rendering the 

results inaccurate, whereas too large values can render the computational time exceedingly high. 

Tsuji et al. (1993) suggested a normal stiffness value of 800 N/m. This value has been widely 

used by researchers, producing acceptable results (refer, for instance, to Gera et al., 1998; 

Kawaguchi et al., 1998; Mikami et al., 1998; Kaneko et al., 1999; Rong et al., 1999; Rhodes et 

al., 2001). Albeit this value reduces the computational effort considerably, there is a risk that the 

accuracy of the simulation results might be affected (Di Maio & Di Renzo, 2004). All these 

aspects will be examined in this chapter. 

6.3.3 Comparison between hard-sphere and soft-sphere approaches 

 

Although numerical simulations of fluidized beds have been carried out using both hard-sphere 

and soft-sphere models, each approach has distinct features which make it suitable in some 

applications and unsuitable in others. In soft-sphere models, slight deformation is allowed at 

contact points of particles and multiple contacts among particles are permitted. This is not 

possible in hard-sphere models where collisions are binary and instantaneous. Similarly, it is 

quite straightforward to incorporate cohesive forces into soft-sphere models. This is because 

collisions among particles are described using the Newton’s equations of motion of individual 

particles. In hard-sphere models, doing this is quite challenging because the model equations are 

not in terms of forces; they are derived via momentum exchange at the point of contact (Van der 

Hoef et al., 2006). However, soft-sphere models, when compared to their hard-sphere 

counterpart, present some difficulties when dealing with particles of different sizes. In soft-
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sphere models, one needs to use different values of spring constants to model contact forces 

between particles of different sizes. Doing this is quite challenging. 

Table 6.3: Comparison between hard and soft-sphere models. (YY) – Good; (Y) – Normal; (N) – Not 

suitable (Van der Hoef et al., 2006).  

 Hard-sphere Soft-sphere 

Computing efficiency YY Y 

Multiple contacts N YY 

Dense systems N YY 

Incorporation of cohesive force Y YY 

Energy conservation during collisions YY Y 

Multiple particle sizes YY Y 

 

Furthermore, hard-sphere models are more straightforward and require less complicated 

constitutive equations than soft-sphere models. In the latter, we need to derive closure equations 

for the contact force, damping coefficient and stiffness. Some of these equations rely on the 

physical properties of particles which, in some cases, have to be determined experimentally. We 

briefly summarize the comparison between hard and soft-sphere models in Table 6.3. In this 

work, we employ the soft-sphere approach. 

6.3.4 DEM simulation results and discussion 

 

This section investigates the capability of the Eulerian-Lagrangian (DEM) modelling approach 

to estimating lateral dispersion coefficients with the intent of comparing their simulation results 

with those obtained using the Eulerian-Eulerian models. In the former approach, as said, we 

solve relatively less complicated models; in particular, closure problems for frictional solid 

stress no longer arise, since we do not solve average equations.  

Setting up DEM simulations 

The DEM simulations code (MultiFlow) employed in this code was provided by Professor 

Berend Van Wachem at Imperial College London. Setting up simulations in MultiFlow requires 

selecting the files that describe the simulation. This include selecting the options file case.mf  

containing the simulation set-up, a mesh.geo file containing the computational mesh and a 

compileoptions.h file including specific options at compile time and a script for running 
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MultiFlow. Additionally, the user needs to select the USERinit.c file for describing the initial 

conditions, USERBoundary.c file for describing the boundary conditions. It is important to note 

that appropriate values should be used in the above files and if changes are made to any of the 

files, one needs to recompile MultiFlow. A detailed description of how MultiFlow works, 

including the step-by-step guide of how to use the codes are reported in Appendix A. 

Discussion 

It is important to point out that the powder and the bed geometry used in Section 6.2 for our 

Eulerian-Eulerian simulations are different from those used in the DEM simulations. This is 

consequence of the limitations imposed by this modelling approach. The simulations required to 

treat the same geometry and powder considered in the previous CFD simulations are far too 

expensive for our computational resources, requiring about 13 million more particles than those 

used in the DEM simulations that we were able to run. Since our aim is to compare the 

performance of the Eulerian-Eulerian and Eulerian-Lagrangian modelling approaches, we 

simulated a new geometry and powder. We used the powder investigated experimentally by 

Grakhovskii (1968), which has a bigger mean size than those employed previously in Section 

6.2. The parameters used in our simulations, in particular the bed height and the superficial gas 

velocities, were chosen to replicate the work of the author. However, the bed depth and width 

used in our simulations are smaller than those of Grakhovskii (1968) (He used a bed of depth 

100 mm and width 1000 mm). This is again because of the huge computational cost we will 

incur if we employed the bed dimensions of the former author. In Table 6.4 we summarize the 

powder properties and the bed dimensions employed in our simulations.    
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Table 6.4: DEM simulation parameters for Powder 2 

Conditions of particle 

Particle shape  Spherical 

Diameter 3 mm 

Density 1000 kg/m
3
 

Stiffness 40,9772 N/m
3/2

 

Restitution coefficient 0.90 

Friction coefficient 0.1 – 0.4 

Poisson ratio 0.33 

Minimum fluidization velocity 0.76 m/s 

Number 29,470 

Conditions of gas 

Density 1.2 kg/ m
3
 

Viscosity  1.7 × 10
-5 

Ns /
 
m

3
 

Simulation conditions 

Bed height  60 mm 

Bed width 200 mm 

Bed depth 60 mm 

Superficial gas velocity 1.9 – 2.66 m/s 

 

To estimate the     values, we used the same procedure as in the Eulerian-Eulerian simulations. 

The results of DEM simulations provide the position of each particle at any given time. This 

allowed us to determine the radial void-free concentration profiles in the bed. By matching these 

profiles with those obtained analytically from the Fick’s equation, we calculated the     values 

at different operational conditions. We report in Figure 6.13 the concentration profiles for a 

superficial gas velocity of 1.9 m/s; the values of the other parameters are those shown in Table 

6.4. The profile given by the CFD simulation is also included for completeness. We observe a 

good agreement between the numerical and analytical profiles. These refer to a time          

but similar results were obtained at other times and superficial gas velocities.   
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Figure 6.13: Void-free concentration profiles obtained in DEM and CFD simulations at superficial gas 

velocity of 1.9 m/s. 

 

We should notice that the accuracy of the simulations depends strongly on the values assigned 

to the parameters appearing in the model (i.e., restitution coefficient, particle-particle friction 

coefficient and stiffness or spring constant); hence, extra care has to be taken when choosing 

them. The coefficient of restitution accounts for the kinetic energy dissipated when particles 

collide. The energy that is lost is accounted for by the contact damping force included in the 

DEM model through the dashpot model. It is customary to base the damping coefficient on the 

collisional properties of the particles, in particular the restitution coefficient e. Nevertheless, we 

should notice that the latter is neither a material property nor a constant, but it depends, among 

other parameters, on the relative impact velocity of the colliding particles (Kuwabara & Kono, 

1987). However, the variation of the restitution coefficient is negligible, except at very high 

impact velocities (usually 10 m/s and above) (Labous et al., 1997). So, the value of   is 

normally taken to be constant in DEM simulations. The typical value employed in the literature 

is 0.90, and therefore in the present work we employed this value. Unlike the coefficient of 

restitution, the friction coefficient and spring constants depend on the material properties. The 

friction coefficient is an empirical parameter whose value depends on many factors, including 
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particle shape, particle size and surface texture, whilst the spring constants depend on the 

Young’s modulus and Poisson’s ratio of the material. Since we do not have the empirical values 

for these parameters (even if we did, we could not have used them, insofar as the simulations 

would have been too expensive computationally), we performed a parametric study to determine 

how the values assigned to them influence the numerical results of our simulations. 

   

To investigate how friction coefficient and stiffness affect our numerical predictions of    , we 

carried out sensitivity analyses on them using the values of parameters reported in Table 6.4 as a 

reference case. We begin by considering the effect of friction coefficient. The latter is a key 

parameter that can significantly affect the fluid bed dynamics in DEM simulations. Cleary et al. 

(1998) carried out a sensitivity analysis of friction coefficient on solid mixing rate in a ball mill 

using DEM simulations. They reported that the mixing rate increased as the friction coefficient 

was reduced. To investigate the influence of friction coefficient on lateral solid mixing, we 

performed simulations using different values of   in the range commonly employed in DEM 

simulations of fluidized beds, keeping the normal spring stiffness    at 40977 N/m
3/2

, the 

restitution coefficient at 0.9 and the superficial gas velocity at 2.66 m/s (3.5 umf)(an 

intermediate value in the range investigated experimentally by Grakhovskii (1968)). The 

snapshots of the bed, obtained using the reference conditions in Table 6.4 at a superficial gas 

velocity of 2.66 m/s, at different computational times are reported in Figure 6.14. The latter 

shows the lateral spread of particles past the removable wall partition. This is similar to what we 

observe in CFD simulations in the previous section. Figure 6.15 shows that     reduces as the 

friction coefficient increases. This is consistent with the findings of Cleary et al. (1998) and had 

to be expected, because when the friction force increases, sustained interaction among particles 

increases, inhibiting the motion of the solid and thereby reducing    ; nevertheless, the order of 

magnitude of       remains the same.  
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Figure 6.14: Snapshots of the bed at different computational times obtained at a superficial gas velocity of 

2.66 m/s. 

Figure 6.15: Lateral dispersion coefficient vs. friction coefficient. 
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Generally, the value of the stiffness should as well be carefully chosen, since it affects the 

integration time-step significantly: the higher the stiffness, the smaller the necessary integration 

time-step. This is because higher stiffness results in shorter collision times. Stiffness also 

influences interparticle overlap during collisions; generally, small stiffness leads to large 

interparticle overlap. Stiffness values must be chosen in such a way as to attain a balance 

between accuracy and computational efficiency. A large stiffness value, albeit it may yield more 

accurate results, does reduce the computational efficiency dramatically. On the other hand, 

when stiffness values are impractically small, the accuracy of the simulations could be 

compromised. Therefore, it requires careful judgement on the modeller’s part to strike a 

reasonable balance between accuracy and efficiency. To investigate the effect of stiffness on the 

lateral dispersion coefficient, we conducted a sensitivity analysis on it, using the parameters 

reported in Table 6.4 as a reference case. We ran simulations at different stiffness values, 

keeping the coefficient of restitution at 0.90, the friction coefficient at 0.20 and the superficial 

gas velocity at 2.66 m/s. Figure 6.16 reports how     changes with stiffness. We can see that 

    decreases slowly initially, and then more rapidly, as stiffness increases. However, the order 

of magnitude of      remains unchanged.  
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Figure 6.16: Lateral dispersion coefficients at different stiffness values. 

 

We investigated how the bed thickness (i.e. the bed depth in the z-direction) influences the     

values, because we could not simulate directly the experimental system, adopting the real value 

of bed depth (100 mm), owing to the enormous computational resources required. Hence, we 

decided to investigate how the choice of bed depth value affects the numerical prediction of      
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Delgado et al., 2011). This is because, as the bed depth reduces, the effect of wall friction 

becomes more pronounced, limiting the movement of the particles. For this same reason, we 

believed that the bed thickness would affect our numerical results. Indeed, studies have shown 

that bed thickness does affect bubble size, shape, velocity and expansion (Geldart, 1970; Geldart 

& Cranfield, 1972; Rowe & Everett, 1972; Cranfield & Geldart, 1974; Glicksman & 

McAndrews, 1985); these are important parameters that strongly influence solid mixing in fluid 
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1.0

1.5

2.0

2.5

3.0

3.5

4.0

100 1,000 10,000 100,000 1,000,000

D
sr

×
1

0
3
[m

2
/s

]

Stiffness [N/m2/3]



Chapter 6                DEM and CFD simulations of lateral solid mixing                           2016 

 

177 
    

velocities, using geometries of depths       and      , where    is the particle diameter, and 

(in a third case) periodic walls (imposing periodic boundary conditions at the front and back 

walls of the vessel). The values of the simulation parameters were those shown in Table 6.4. 

Figure 6.17 reports how     changes with the superficial gas velocity for the various bed depths 

examined. We note that     reduces as the depth of the bed is decreased, as expected. The 

simulations run with periodic boundary condition give higher values of     than those with rigid 

walls, because the walls do not constrain the bed dynamics. Since the depth of the bed 

considerably affects solid dispersion, in the simulations one should employ the correct 

dimension (the same as that of the real system investigated experimentally). If doing so is not 

feasible (for instance because the number of particles to be tracked would be too large), then 

one has to keep in mind that simulating a narrower bed may affect the simulation results, 

leading to lower dispersion coefficient values, as seen in Figure 6.17.   

Figure 6.17: Dispersion coefficient values for different superficial gas velocities and bed depths. The 

minimum fluidization bed height is 6 cm, while the bed width is 0.20 m. ‘dp’ is the particle diameter.  
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have seen, depends largely on the values chosen for the simulation parameters. So, even if we 

are not faced with the problem of constitutively expressing the frictional solid stress, as we are 

in the Eulerian-Eulerian simulations, we are still faced with the challenge of assigning 

appropriate values to the simulation parameters. To overcome this issue, one needs to estimate 

the parameters experimentally, but doing so is extremely time-consuming, and, as pointed out in 

Section 6.3.2, employing the empirical values in the simulations would require enormous 

computational resources; this, in particular, is true for the spring constants. In the next section, 

we compare the DEM simulation results with the experimental ones and those obtained from the 

Eulerian-Eulerian simulations. 

6.4 DEM vs. CFD simulations 

 

We ran simulations in CFD using the same powder, geometry and operational conditions 

employed in the DEM simulations. Table 6.5 reports the simulation parameters and the powder 

properties used in the CFD simulations. In the DEM ones, we considered two stiffness values: 

40,977 N/m
3/2 

and 409,772 N/m
3/2

. For each, we ran simulations at various superficial gas 

velocities, keeping the other parameters constant (the values are those reported in Table 6.4). 

Figure 6.18 reports how      changes with superficial gas velocity. We observe that      

increases with superficial gas velocity; this is expected because an increase in the latter induces 

more bubbling, which makes the rate of lateral solid mixing rise. The     values calculated at 

40,977 N/m
3/2

 are larger than those calculated at 409,772 N/m
3/2

. This is true for all the 

superficial gas velocities considered and agrees with what Figure 6.16 reports.   

 

In the CFD simulations we considered Cases 1 and 5 reported in Table 6.2. The void-free mass 

fraction profile for Case 1 obtained at a superficial gas velocity of 1.9 m/s is reported in Figure 

6.13. In Figure 6.18, it is interesting to note that the     values obtained in Case 5 are lower 

than those obtained in Case 1. The trend is the same as that observed in Section 6.2. The figure 

also shows that the CFD simulations predict the     values better than the DEM simulations, 

although the empirical data are still slightly overestimated. The predictions of the DEM 
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simulations are fairly accurate, the order of magnitude of the results matching that of the 

empirical data. This reveals that DEM simulations are equally capable of estimating      

accurately, provided one assigns appropriate values to the collision parameters. 

 

Figure 6.18: Dispersion coefficient values for different superficial gas velocities for DEM and CFD 

simulations. The minimum fluidization bed height is 6 cm, the bed width is 0.20 m and the bed depth is 6 

cm. 
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Density 1000 kg/m
3
 

Minimum fluidization velocity 0.76 m/s 

Conditions of gas 

Density 1.2 kg/ m
3
 

Viscosity  1.7 × 10
-5 

Ns /
 
m

3
 

Simulation conditions 

Bed height  60 mm 

Bed width 200 mm 

Bed depth 60 mm 

Superficial gas velocity 1.9 – 2.66 m/s 
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6.5 Conclusions 

 

We investigated lateral solid mixing in gas-fluidized beds using the Eulerian-Eulerian (CFD) 

and the Eulerian-Lagrangian (DEM) modelling approaches. The former approach describes both 

the solid and fluid phases as interprenetrating continua, while the latter tracks the motion of 

each particle and solves the average equations of motion only for the continuous phase. We 

examined the influence of simulation dimensionality on our CFD results. To do this, we ran 

simulations in 3D at different superficial gas velocities. Our results showed that as the latter 

increases as      increases. We compared our 3D simulation results with those previously 

obtained in 2D. We observed that 3D simulations predict      better. Subsequently, we ran 3D 

DEM simulations, adopting the same methodology used in CFD to estimate     . The results 

obtained agreed reasonably well with empirical results. DEM simulation results revealed that 

the accuracy of numerical predictions depends on the choice of collision parameters; in 

particular, the restitution coefficient, the friction coefficients and the stiffness. Both DEM and 

CFD modelling approaches provided a reasonably good prediction for       Nevertheless, CFD 

simulations yield slightly better results than DEM simulations.  
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Chapter 7 

 

Conclusions and future work 

 

Fluidization is a winning technology employed in various industrial processes such as drying, 

coating, granulation, food freezing, oil cracking and oil reforming, to cite just a few. Designing 

a fluidized bed is very challenging because of the complex interrelationships among the 

particles and between the solid and fluid phases. For many years, and partly today, process 

engineers have always relied on pilot plant and scale-up relationships to design fluidized beds. 

This approach is by no means efficient; a satisfactory performance of the bed on a pilot plant 

scale does not guarantee an efficient performance on a commercial scale. This makes the scale-

up method risky and uncertain. Computational fluid dynamics offers an attractive alternative 

that can significantly contribute to designing fluidized beds more efficiently. CFD can directly 

simulate commercial size beds and permits to investigate the influence of design and process 

conditions on its performance. We must however emphasize that the accuracy of CFD 

simulation results depends on the accuracy of models employed. To develop accurate models, it 

is important that we understand the complex fluid dynamic behaviour of fluidized beds.  

The behaviour of gas-fluidized beds depends, among other things, on the superficial gas 

velocity. The latter determines the fluid dynamic regime in which the bed operates. Typically, 

when the superficial gas velocity exceeds the minimum fluidization velocity, pockets of gas, 
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referred to as bubbles, are seen rising through the bed and the bed behaves like a boiling liquid. 

This fluid dynamic regime is known as the bubbling regime. As the superficial gas velocity 

increases, the bed may operate in other regimes including turbulent, fast fluidization and 

pneumatic transport. However, for powders belonging to Group A of Geldart (1973) 

classification, there exists an interval of stable expansion before they transit to the bubbling 

regime. Thus, for this class of powder, when the superficial gas velocity exceeds the minimum 

fluidization velocity, the suspension does not bubble; rather, it expands homogeneously over a 

certain range of superficial gas velocity. 

The origin of stability of Group A powder has been a subject of controversy among researchers. 

Some researchers argued that the stability of Group A powder is solely due to the fluid dynamic 

forces in the bed, some maintained that it is due to the existence of interparticle forces, while 

others attribute the stability to the existence of both fluid dynamic and interparticle forces in the 

bed. In Chapter 2, we reviewed this lingering controversy on the origin of stability of this class 

of powders, drawing from both theoretical and experimental evidence. We reported on the 

experimental discovery by Valverde (1998) which harmonized the differing ideas on the 

stability of gas-fluidized beds, revealing that the homogeneous regime of gas-fluidized beds 

consists of two distinct regimes of solid-like and fluid-like behaviours. The solid-like regime is 

characterized by the existence of enduring contacts among particles, which are manifestations of 

interparticle contact forces. In the fluid-like regime, however, enduring particle-particle contacts 

are absent and the particles are freely suspended in the fluid.  

In Chapter 3, we investigated the homogeneous regime more closely, using theoretical and 

experimental methods. We modelled the stable interval of expansion, accounting for enduring 

particle contacts and wall effects. One of the crucial input parameters to the model is the yield 

locus of the powders. This features five independent parameters which must be determined 

experimentally. The experimental results provided the compressive strength values at different 

solid volume fractions at the bottom of the bed, which were then fitted to the yield locus 
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expression of Johnson et al. (1990). This allowed us to determine the five independent 

parameters in the yield locus expression which were used as inputs into the model. We solved 

the model numerically to obtain the expansion profiles in the bed at different fluidization 

velocities in the interval of stable bed expansion, back-calculating from them the values of 

expansion parameter   appearing in the model. For all the cases considered, we observed that 

the values of n are higher than those obtained by purely fluid dynamic correlations, such as 

those advanced by Richardson & Zaki and Rowe (1987). This effect was more pronounced in 

beds of smaller diameter. To validate our model, we carried out fluidization and defluidization 

experiments. This involved measuring the pressure drop and bed height at different superficial 

gas velocities in the interval of stable bed expansion. Because our fluidizing vessels were made 

of stainless steel, we used a pulsed x-rays facility at UCL to enable us to see through the bed in 

order to measure the bed height. We analysed our results by means of the Richardson & Zaki 

equation, determining the parameters   and    appearing in the latter. We obtained a reasonable 

agreement between numerical and experimental findings. The results revealed that enduring 

contacts among particles, which are manifestations of cohesiveness, plays a crucial role in the 

homogeneous expansion of gas-fluidized beds. In a liquid-fluidized bed such particle-particle 

contacts are absent, and one can confidently use the fluid dynamic correlations commonly found 

in the literature to analyze their expansion profiles.  

The results presented in Chapter 3 revealed that sustained frictional contacts among particles 

exist even in the homogeneous gas-fluidized state of fine powders. We confirmed this from our 

theoretical and experimental analyses. The numerical solution of linear momentum balance 

equation for homogeneous fluidized beds shows that solid volume fraction profiles develop 

along the bed axis which is a consequence of enduring particle contacts. The back-calculated 

values of Richardson & Zaki parameters, obtained theoretically and experimentally, also reveal 

that enduring contacts do play a role in the homogeneous expansion of gas-fluidized beds. The 

results presented in this work thus support the view that interparticle forces are likely the 

dominant mechanism responsible for the homogeneous expansion of gas-fluidized beds. This is 
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contrary to the ideas of some authors, reported in Chapter 2, that fluid dynamic forces play a 

major role.   

In Chapter 4, we examined the phenomenon of solid mixing in the bubbling regime of gas-

fluidized beds. We reviewed the importance of solid mixing in the latter, highlighting the 

mechanisms by which it proceeds. We reported on the processes of axial and lateral solid 

mixing, emphasizing their importance in the design and efficient operation of large-scale fluid 

beds. We then discussed various experimental methods employed in the literature for measuring 

the rate of lateral solid mixing and the empirical correlations available for its estimation.  

In Chapter 5, we used the Eulerian-Eulerian modelling approach to investigate the phenomenon 

of lateral solid mixing in gas-fluidized beds. We quantified the rate of lateral solid mixing by 

means of a lateral dispersion coefficient    . The latter was defined using an equation 

analogous to the Fick’s law of molecular diffusion. We solved the Eulerian-Eulerian models in 

CFD codes to obtain the void-free solid volume fraction profiles in bed. By matching void-free 

solid volume fraction profile obtained numerically with those obtained analytically from the 

Fick’s equation, we determined the values of     at different operational conditions. The results 

of our simulations revealed that     increases with the superficial gas velocity and bed height, 

while it initially increases with bed width, but then remains approximately constant. In all the 

simulation cases, our numerical results overestimated the empirical ones, but the order of 

magnitude was predicted correctly.  

We provided a two-fold explanation for the overestimation: on one side, it reflects the different 

dimensionality of simulations (2D) as compared with real fluidized beds (3D), which affects the 

degrees of freedom of particle lateral motion. On the other, it is related to the way frictional 

solid stress was modelled: we employed the kinetic theory of granular flow model for the 

frictional solid pressure and the model of Schaeffer (1987) for the frictional solid viscosity. To 

investigate how sensitive the numerical results are on the constitutive model adopted for the 

frictional stress, we ran the simulations again using different frictional models and changing the 
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solid volume fraction at which the bed is assumed to enter the frictional flow regime ( 
   

 . We 

observed that     is quite sensitive to the latter. We obtained the best prediction when  
   

 

    .  Nevertheless, numerical results still overestimated the empirical ones. To investigate the 

effect of simulation dimensionality on our results, we proposed a simple scaling rule, based on 

the loss of degree of freedom when passing from a 3D to a 2D domain. The overprediction, 

nevertheless, was not eliminated.   

In Chapter 6, we focussed on the problem of overestimation reported in Chapter 5, using both 

CFD and DEM approaches. In the former, we ran 3D simulations using the same powder, the 

same operational conditions and the same computational setup as in the previous 2D simulations 

reported in Chapter 5. We observed that the frictional stress model, and in particular the value of 

solid volume fraction at which the bed is assumed to enter the frictional regime, plays a role in 

the numerical simulations of lateral solid mixing. This was also observed in our 2D simulations, 

but in the 3D case the effect is less pronounced. The 3D simulations predicted     more 

accurately than the 2D simulations, the simulation dimensionality appearing to be the most 

important factor. 

To analyse further the role of frictional stress models, we ran 3D DEM simulations, employing 

the soft-sphere approach in order to model the particle-particle contact forces. This approach, 

when compared to its CFD counterpart, offers a relatively simpler alternative for describing the 

rheology of the solid phase, since we longer model the solid stress. To run the DEM 

simulations, we carried out a sensitivity analysis on some collision parameters employed. The 

simulation results revealed that the accuracy of numerical predictions depends on the values 

assigned to the collision parameters; in particular, the friction coefficients and the stiffness. Our 

simulation results showed that      decreases with both friction coefficient and stiffness. We 

compared the numerical results obtained from DEM simulations with those from CFD 

simulations. We observed that both modelling approaches predicted     fairly accurately. 

Nevertheless, CFD simulations yielded slightly better results. 
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7.1 Future work 

 

In Chapter 2 we reported the ongoing controversy on the origin of stability of gas-fluidized 

particles. Some researchers attributed the stability to the existence of interparticle forces in the 

bed, while some argued that the stability arises from the fluid dynamic forces, and some others 

maintained that both forces are responsible. To gain deeper insight into this problem, it will be 

interesting to investigate the fluidization of Geldart A powders using the DEM approach. The 

latter offers a flexible way to incorporate interparticle forces and to vary their magnitude. Thus, 

one can run two sets of simulations: the first set will account for interparticle forces and the 

other will not. This study will allow us to further highlight the role of interparticle forces on the 

homogeneous fluidization of Geldart A powders.  

We reported in Chapter 2 that the granular Bond number is an important parameter that 

determines the fluidization behaviour of powders. For Geldart B powders     , hence they 

bubble as soon as they are fluidized; for Geldart A powders     , so they exhibit smooth 

expansion over a range of superficial gas velocity as soon as they are fluidized. It is worth 

investigating whether Geldart B powders can be fluidized homogeneously by increasing their 

granular Bond number to unity. This can be achieved by imposing interparticle forces on them. 

If they do fluidize homogeneously, do they fluidize in the solid-like or fluid-like regime? 

In Chapter 3, we modelled the stable expansion of gas-fluidized beds and we estimated the 

expansion parameter   . We observed that the values of the latter are higher than those obtained 

from purely fluid dynamic correlations, signifying that enduring particle contacts, and indeed 

interparticle forces, do play a role in the homogeneous expansion. It is necessary to investigate 

how changes in the magnitude of interparticle forces will affect the value of the expansion 

parameter   . By imposing varying magnitudes of interparticle forces and back-calculating the 

latter, one can further gain useful insights into the relationship between parameter   and 

interparticle forces. 



Chapter 7                               Conclusions and future work                                               2016 

 

 

187 
    

In Chapters 4 to 6, we investigated the process of lateral solid mixing in bubbling gas-fluidized 

beds, emphasizing its importance in the efficient operation of large-scale fluidized beds, such as 

fluidized bed combustors. In our analyses, we considered particles similar in physical 

properties, but differing only in the names assigned to them in the computational codes. This 

approach, even though enabled us to investigate the influence of operational conditions on 

lateral solid mixing, presented a simplistic view of fluidized bed combustion processes. In 

actual combustors, the fuel and inert bed materials differ substantially in size and density. In the 

future, it would be necessary to account for this ddifference.   

Furthermore, in our simulations we considered a batch process, where the particles are charged 

into the reactor at once and then fluidized for given length of time. This is the usual method 

commonly employed by most researchers studying solid mixing process in fluidized beds. 

Nevertheless, many physical and chemical processes are carried out in fluidized beds with 

continuous flow of solids. To design and operate these processes, it is crucial to know the 

residence time distribution of particles in the bed which can be used to characterize the mixing 

process. The methodology adopted in this work can be employed to incorporate continuous flow 

of solids into the bed. This, however, will require using a definition of     which is different 

from those used in this work and assigning appropriate boundary and initial conditions.  
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APPENDIX A 
 

Set-up procedures for the Eulerian-Lagrangian simulations 

A.1 Preliminaries 

 

This section provides a basic guide for setting the Eulerian-Lagrangian simulations.  

1. Log in to the computer with the following username and password: 

Username: luca 

Password: gbzv4321 

2.  The MultiFlow software runs on linux operating system. When you login, open a 

terminal. To do this, click on a black square icon at the bottom right corner of the 

screen. An interface appears as shown in the figure below: 
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3. Type eclipse inside the interface and press enter on the keyboard. This takes the 

user to eclipse workspace which contains the programme for the MultiFlow 

simulations. 

4. In the eclipse workspace, there are three major project directories: MFTL, 

MultiDoc and MultiFlow. The latter is the most relevant for setting up and running 

multiflow simulations. 

5. Double click on MultiFlow. This brings out a number of sub-directories. 

6. Double click on examples. Again, this contains many sub-directories. Double click 

on EulLag, and then click on FluidizedBed.  

7. Then, double click on Delft-FluidizedBed; a number of files appear. The most 

relevant ones are: run, run-mf, USERBoundary.c and USERinit.c.  

A.2 Setting up simulations 

 

8. Double click on USERBoundary.c file. This is where you set the boundary 

conditions, in particular the inlet superficial gas velocity. You can set this value on 

the line 110 and 114 of the programme. The USERBoundary.c is as shown below, 

with the line number omitted. Line 110 and 114 are written in bold letters in the 

programme below. 

/*************************************************************

* 

 *  This file 

 * 

 *  Is intended to specify the boundary conditions on all the 

outer 

 *  boundaries, or inner thin walls, by setting A, B, and C. 

 * 

 *  The routine will be called for every boundary and for 

every variable. 

 * 

 * Creation date: 05-09-2003 

 * Author (C) Berend van Wachem 

 * 

 

*************************************************************/ 

 

#include <string.h> 
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#include "cfdmesh.h" 

#include "constants.h" 

#include "petsc.h" 

#include "general.h" 

 

int USERBoundary(char *varname, char *typename, char 

*boundname, int direction, int Istart, int Jstart, int Kstart, 

int Iend, 

    int Jend, int Kend, int blocknumber, int Ilen, int Jlen, 

int Klen, double *A, double *B, double *C, struct CFDMesh 

*Mesh) 

{ 

 

  int i, j, k; 

  int index = 0; 

  double *XC, *YC, *ZC; 

  int bladdress; 

  int ierr; 

  Vec *VFRAC; 

  double *vfrac; 

  int OwnThisBlock = MF_NO; 

  int OwnThisPoint = MF_NO; 

  int HaveVolumeFraction = MF_NO; 

  int lblock; 

  int li, lj, lk; 

  int Ireal, Jreal, Kreal; 

 

  

/*************************************************************

************/ 

  /*  Find out if current processor owns this block number                 

*/ 

  

/***********************************************************/ 

  if ((lblock = FindBlock(Mesh->NMyBlocks, Mesh->CFDBlocks, 

blocknumber)) >= 0) 

  { 

    OwnThisBlock = MF_YES; 

 

    ierr = VecGetArray(Mesh->CFDBlocks[lblock].CC.X, 

&XC);CHKERRQ(ierr); 

    ierr = VecGetArray(Mesh->CFDBlocks[lblock].CC.Y, 

&YC);CHKERRQ(ierr); 

    ierr = VecGetArray(Mesh->CFDBlocks[lblock].CC.Z, 

&ZC);CHKERRQ(ierr); 

  } 

 

  if (FindDataListofLocalVectors(Mesh->BLCC, "VFracL", 

&VFRAC)) 

  { 

    HaveVolumeFraction = MF_YES; 

  } 

 

  if (HaveVolumeFraction && OwnThisBlock) 

  { 

    ierr = VecGetArray(VFRAC[lblock], &vfrac);CHKERRQ(ierr); 
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  } 

 

  /* Loop over boundary */ 

 

  for (k = Kstart; k < Kend + 1; k++) 

  { 

    for (j = Jstart; j < Jend + 1; j++) 

    { 

      for (i = Istart; i < Iend + 1; i++) 

      { 

        index = (i - Istart) + (j - Jstart) * (Iend - Istart + 

1) + (k - Kstart) * (Iend - Istart + 1) * (Jend - Jstart + 1); 

 

        if (OwnThisBlock) 

        { 

          Ireal = (i - Mesh->CFDBlocks[lblock].IGs + Mesh-

>CFDBlocks[lblock].IDs - 1); 

          Jreal = (j - Mesh->CFDBlocks[lblock].JGs + Mesh-

>CFDBlocks[lblock].JDs - 1); 

          Kreal = k - Mesh->CFDBlocks[lblock].KGs + Mesh-

>CFDBlocks[lblock].KDs - 1; 

 

          bladdress = (Ireal - Mesh->CFDBlocks[lblock].IGs) + 

(Jreal - Mesh->CFDBlocks[lblock].JGs) * Mesh-

>CFDBlocks[lblock].IGe 

              + (Kreal - Mesh->CFDBlocks[lblock].KGs) * Mesh-

>CFDBlocks[lblock].IGe * Mesh->CFDBlocks[lblock].JGe; 

 

          if (OwnGlobalPoint(Ireal, Jreal, Kreal, Mesh-

>CFDBlocks[lblock].Is, Mesh->CFDBlocks[lblock].Js, 

              Mesh->CFDBlocks[lblock].Ks, Mesh-

>CFDBlocks[lblock].Ie, Mesh->CFDBlocks[lblock].Je, Mesh-

>CFDBlocks[lblock].Ke, 

              Mesh->CFDBlocks[lblock].IGs, Mesh-

>CFDBlocks[lblock].JGs, Mesh->CFDBlocks[lblock].KGs, Mesh-

>CFDBlocks[lblock].IGe, 

              Mesh->CFDBlocks[lblock].JGe, Mesh-

>CFDBlocks[lblock].KGe, &li, &lj, &lk)) 

          { 

            OwnThisPoint = MF_YES; 

          } 

          else 

          { 

            OwnThisPoint = MF_NO; 

          } 

        } 

 

        if (memcmp(boundname, "INLET", 5) == 0) 

        { 

          if (memcmp(varname, "Pressure", 5) == 0) 

          { 

            A[index] = 0.0; 

            B[index] = 0.0; 

            C[index] = MF_FLOW_EXTRAPOLATE; 

          } 

          else if (memcmp(varname, "UVelocity", 5) == 0) 
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          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            if (HaveVolumeFraction && OwnThisPoint && 

OwnThisBlock) 

            { 

              C[index] = 5.02 / vfrac[bladdress]; 

            } 

            else 

            { 

              C[index] = 5.02; 

            } 

          } 

          else if (memcmp(varname, "VVelocity", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "WVelocity", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "TEMPERATURE", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = 100.0; 

          } 

          else if (memcmp(varname, "VFrac", 4) == 0) 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

          else 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

 

        } 

        else if ((memcmp(boundname, "PRESS", 5) == 0) || 

(memcmp(boundname, "OUT", 3) == 0)) 

        { 

          if (memcmp(varname, "Pressure", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "UVelocity", 5) == 0) 

          { 
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            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "VVelocity", 5) == 0) 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "WVelocity", 5) == 0) 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "VFrac", 4) == 0) 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

          else 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

        } 

        else if ((memcmp(boundname, "WALL", 4) == 0) || 

(memcmp(boundname, "SIDEWALL", 8) == 0)) 

        { 

          if (memcmp(varname, "Pressure", 5) == 0) 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "UVelocity", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "VVelocity", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = 0.0; 

          } 

          else if (memcmp(varname, "WVelocity", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = 0.0; 

          } 
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          else if (memcmp(varname, "TEMPERATURE", 5) == 0) 

          { 

            A[index] = 1.0; 

            B[index] = 0.0; 

            C[index] = -100.0; 

          } 

          else if (memcmp(varname, "VFrac", 4) == 0) 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

          else 

          { 

            A[index] = 0.0; 

            B[index] = 1.0; 

            C[index] = 0.0; 

          } 

        } 

        else 

        { 

          A[index] = 0.0; 

          B[index] = 1.0; 

          C[index] = 0.0; 

        } 

 

      } /* End looping over K */ 

    } 

  } 

  //    ierr = VecRestoreArray(Mesh->CFDBlocks[lblock].CC.X, 

&X); 

  //    CHKERRQ(ierr); 

  //    ierr = VecRestoreArray(Mesh->CFDBlocks[lblock].CC.Y, 

&Y); 

  //    CHKERRQ(ierr); 

  // 

  //    if (Mesh->ThreeD) 

  //    { 

  //        ierr = VecRestoreArray(Mesh-

>CFDBlocks[lblock].CC.Z, &Z); 

  //        CHKERRQ(ierr); 

  //    } 

 

 

  if (HaveVolumeFraction && OwnThisBlock) 

  { 

    ierr = VecRestoreArray(VFRAC[lblock], 

&vfrac);CHKERRQ(ierr); 

  } 

 

  if (OwnThisBlock) 

  { 

    ierr = VecRestoreArray(Mesh->CFDBlocks[lblock].CC.X, 

&XC);CHKERRQ(ierr); 

    ierr = VecRestoreArray(Mesh->CFDBlocks[lblock].CC.Y, 

&YC);CHKERRQ(ierr); 
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    ierr = VecRestoreArray(Mesh->CFDBlocks[lblock].CC.Z, 

&ZC);CHKERRQ(ierr); 

  } 

 

  return (0); 

} 

 

9. Double click on USERinit.c file to set the initial conditions for the primary cell. 

Usually you do not need to change anything here.  The file is shown below: 

/*******************************************************

******* 

 *  This file 

 * 

 *! Is intended to specify all initial conditions for 

the primary cell 

 *! centered variables. 

 * 

 *  This routine is called only once, in the beginning 

of a non restart run 

 * 

 * Creation date: 18-11-2003 

 * Author (C) Berend van Wachem 

 * 

 * File $Id:USERinit.c 6 2007-03-20 20:52:28Z berend $ 

 * Last modified by: $Author:berend $ 

 * On: $Date:2007-03-20 21:52:28 +0100 (Tue, 20 Mar 

2007) $ 

 * 

 

********************************************************

*********/ 

 

#include <string.h> 

#include "cfdmesh.h" 

#include "constants.h" 

#include <stdlib.h> 

#include "general.h" 

#include "io.h" 

#include "petsc.h" 

#include "options.h" 

 

int USERInit(char *varname, double *varray, int Istart, 

int Jstart, int Kstart, int Iend, int Jend, 

    int Kend, int blocknum, struct CFDMesh *Mesh, struct 

MFOptions *Options) 

{ 

  int ierr; 

  int i, j, k, address; 

  double *X, *Y, *Z; 

  int bladdress; 
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  double x0 = 1.5e-2; 

  double y0 = 4.5e-2; 

  double r0 = 4e-3; 

 

  /* Open up Mesh->CFDBlocks[blocknum].X, Y and Z */ 

  ierr = VecGetArray(Mesh->CFDBlocks[blocknum].CC.X, 

&X); 

  CHKERRQ(ierr); 

  ierr = VecGetArray(Mesh->CFDBlocks[blocknum].CC.Y, 

&Y); 

  CHKERRQ(ierr); 

 

  if (Mesh->ThreeD) 

  { 

    ierr = VecGetArray(Mesh->CFDBlocks[blocknum].CC.Z, 

&Z); 

    CHKERRQ(ierr); 

  } 

 

  /* Loop over boundary */ 

  for (i = Istart; i < Iend + Istart; i++) 

  { 

    for (j = Jstart; j < Jend + Jstart; j++) 

    { 

      for (k = Kstart; k < Kend + Kstart; k++) 

      { 

        /* Calculate address */ 

        address = (i - Istart) + (j - Jstart) * Iend + 

(k - Kstart) * Iend * Jend; 

 

        bladdress = (i - Mesh->CFDBlocks[blocknum].IGs) 

+ (j - Mesh->CFDBlocks[blocknum].JGs) 

            * Mesh->CFDBlocks[blocknum].IGe+ (k - Mesh-

>CFDBlocks[blocknum].KGs) 

            * Mesh->CFDBlocks[blocknum].IGe* Mesh-

>CFDBlocks[blocknum].JGe; 

 

        if (memcmp(varname, "Pressure", 5) == 0) 

        { 

          varray[address] = (double) 0.0; 

        } 

        else if (memcmp(varname, "UVelocity", 5) == 0) 

        { 

          varray[address] = (double) 2.0000; 

        } 

        else if (memcmp(varname, "VVelocity", 5) == 0) 

        { 

          varray[address] = (double) 0.0000; 

        } 

        else if (memcmp(varname, "WVelocity", 5) == 0) 

        { 

          varray[address] = (double) 0.0; 

        } 

        else if (memcmp(varname, "TEMPERATURE", 5) == 0) 

        { 

          varray[address] = (double) 1.00; 
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        } 

        else if (memcmp(varname, "VFrac", 5) == 0) 

        { 

          if (X[bladdress] <= 0.7) 

          { 

            varray[address] = 1.0; 

          } 

          else 

          { 

            varray[address] = 1.0; 

          } 

        } 

        else if (memcmp(varname, "Density", 5) == 0) 

        { 

          varray[address] = Options->Phase[0].density; 

        } 

      } 

    } 

  } 

 

  ierr = VecRestoreArray(Mesh->CFDBlocks[blocknum].CC.X, 

&X); 

  CHKERRQ(ierr); 

  ierr = VecRestoreArray(Mesh->CFDBlocks[blocknum].CC.Y, 

&Y); 

  CHKERRQ(ierr); 

 

  if (Mesh->ThreeD) 

  { 

    ierr = VecRestoreArray(Mesh-

>CFDBlocks[blocknum].CC.Z, &Z); 

    CHKERRQ(ierr); 

  } 

 

  return (0); 

} 

 

 

10. Next, double click on the run file. It is a script to run the simulations. 

11. Double click on the run.mf file. This contains really the set-up of the 

simulations. The file is quite self-explanatory (Please note that the 

particle box number in the file below should be kept in the range 1.01 – 

1.4. This number affects the fluid volume fraction in the bed; if you choose 

a number that is too large, the volume fraction may be unrealistically 

small). Here we set the conditions for the fluid and the particles. The 

run.mf file is shown below: 
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######################################################## 

MultiFlow Options File                                                                                 

######################################################## 

# All options need to be specified, 

# or set to "DEFAULT". 

# If an option is NOT specified, MultiFlow will ask 

# to do so. 

 

# debugging options 

# these can only be yes or no 

 

# 

# Information about the phases to be solved in the 

system 

# 

PHASE 01 

  Fluid 

  Eulerian 

  Incompressible 

  Density 1.280 

  Viscosity 1.7e-5 

  AutoMesh 70 2 120 0.0 0.0 0.0 3.5e-1 1.0e-3 6.0e-1 

  GravityVector -9.81 0.0 0.0 

END 

 

PHASE 02 

  Solid 

  Lagrangian 

  TimeStep 1.0e-3 

  CollisionModel Tsuji 

  AutoTimeStep 

  MinCollisionStep 040 

  WallYoungsMod 1.0e+6 

  WallPoissonRatio 0.33 

  WallFriction 0.35 

  WallRestCoef 0.9 

#  ParticleType <NUM> <DIAM> <DENSITY> <YOUNGS> 

<POISSON> <FRICT> <REST COEF> 

ParticleType 01 4.9e-04 2620.0 1.0e+6 0.33 0.35 0.9 

ParticleType 02 4.9e-04 2620.0 1.0e+6 0.33 0.35 0.9 

ParticleType 03 0.02 0500 1.0e+7 0.35 0.1 0.06  

ParticleType 04 0.03 1000 1.0e+7 0.35 0.1 0.06 

# InitBlockParticles 01 0.0 0.0 0.0 90.0e-3 8e-03 

115.0e-03 1.8e-4  

InitBlockParticles 01 0.0 0.0 0.0 -5.0e-2 1.0e-03 2.99e-

1 1.0e-4 

InitBlockParticles 02 0.0 0.0 3.01e-1 5.0e-2 1.0e-03 -

6.0e-1 1.0e-4 

# InjectParticles <PNUM> <Point> <Velocity> <StartTime> 

<EndTime> <interval> <randomness> 

ParticleBox 1.2 

#  PSDFileName <PNUM> <FILENAME> 

# PSDFileName 01 examples/EulLag/FluidizedBed/Delft-

FluidizedBed/psd 

#  ParticleOutlet OUTLET 

  GravityVector -9.81 0.0 0.0 
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END 

# 

# Executing, timesteps, filenames 

# 

EXCECUTE 

#Restart NO 

Restart YES 

  ResDirectory wallresults1 

  ResTime Last 

  TimeSteps 10 1.0e-3 

  OutputFrequency 10 

  OutputFileName results.mfo 

END 

 

# 

# Convergence criteria 

# 

CONVERGENCE 

  Mass 1.0e-6 

  Maxiter 500 

END 

 

NUMERICS 

  AdvScheme UPWIND 

END 

 

12. Then you can compile the simulation set-up. To do this, click on the project icon at 

the top of the screen. A number of options appear from which you have to click on 

build project. For every modification you make in the simulation set-up, remember 

to re-compile the simulation before going to step 13. 

13. To run the simulation, open another terminal (black square icon at the bottom right 

corner of the screen). Then type the following command 

cd  src/eclipseworkspace/MultiFlow/ 

then press enter. This takes you to the MultiFlow directory. 

14. The next step is to run the simulations. To do this, type the following command in 

the terminal: 

examples/EulLag/FluidizedBed/Delft-FluidizedBed/run 

now you are running the script called ‘run’ in the Delft-FluidizedBed directory.  

A.3 Visualization and post-processing 
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15. The results of the simulations are created in a directory (assume this directory is 

called results). You will go to the paraview directory and translate the results from 

the native MultiFlow format to a format that can be read in paraview (paraview is a 

software for post processing and visualization of simulation results). To do this, 

type the following commands in the terminal 

cd  paraview 

this takes you to the paraview directory.  

16. To translate the results, use the following command 

mftovtk  -d ../results; ptovtk -d ../results; collection -d ../results 

then press enter. 

17. To go to the paraview software for visualization, type paraview in the terminal and 

press enter. 

 

The following additional steps are needed if you run a simulation with partition and 

you intend to remove the partition. 

18. The programme that adds and removes partition to the geometry is the 

createparticlebox.c file which you can find in the MultiFlow directory. The 

programme line 1573 adds or removes a partition from the geometry. If the line is 

deactivated, by adding double backslash (//) before the text on this line, the partition 

is removed, otherwise the partition is present in the geometry. If you intend to run 

simulations with a partition, you need to define two types of particles, one on each 

side of the partition, in the run.mf file in step 10 above; you will also need to 

specify the location of the partition in the geometry. This is also done in the 

createparticlebox.c file.  For instance, if you intend to insert a partition at the 

middle of  a geometry having a width of 0.6, in the createparticlebox.c file you 

will set the zwallv = 0.3. Remember also to specify the values of other spatial 

coordinates; these should be the same as the depth and height of your geometry. 

Another important parameter that needs to be specified in the createparticlebox.c 
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file is the xdims and ydims values. The latter is approximately the number of 

particles that fit in the y direction divided by the particle box number (step 11 

above), while the xdims is approximately the number of particles that fit in the x 

direction divided by the particle box number. 

19. To remove the partition when the simulation is completed, you need to move the 

simulation results to a new directory, for example let us assume that the name of the 

new directory is wallresults. To do this, type the following commands inside the 

terminal (you may not need to open another terminal for this, you can type the 

command inside the same terminal where you ran the simulations): 

mv results wallresults 

20. Then remove the partition by following the steps in 18. 

21. After this, in the run.mf file remove the ash symbol (#) before the RESTART YES, 

and put it before the RESTART NO option. Recompile the simulations (step 12) 

and start running the simulations (following the steps from 13). 
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APPENDIX B 

Creating geometries in ANSYS Workbench 

 

B.1 Procedures 

 

The following is a step-by-step guide on how to create geometries in ANSYS workbench.  

1. Open Workbench. 

2. Create a new project by double clicking on mesh icon at the left hand side of the screen. 

A box comes up in the project schematic containing three icons – 1.mesh 2. Geometry 

3. Mesh. 

3. Double click on the geometry option. This takes you to the design modeller which 

enables you to create the geometry.  

4. In the design modeller, select the unit of distance you would like to work with, usually 

the S.I. unit is preferred – meters. 

5. In the tree outline, select the XY plane. 

6. Click on the sketch icon at the top of the page – a blue icon with a star on top. This 

brings out the option of sketch 1 in the tree outline. 

7. Then click on sketching at the bottom of the tree outline. This brings out the sketching 

toolbox. 
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8. Select rectangle and draw, from the origin, the rectangle of your choice in the XY plane. 

You can adjust the dimensions of the rectangle by clicking on dimension below the 

sketching toolbox. Then click on the side whose dimension you wish to modify. Then in 

the detailed view write the dimension of your choice. When you are happy with the 

sketch, click on generate at the top of the screen. 

9. If you intend to have geometry separated by a partition, repeat steps 6 – 8. You will 

then have two sketches in the tree outline – Sketch 1 and Sketch 2. 

10. Select the Sketch 1 in the tree outline. Then, on top of the page, click on concept, then 

surfaces from sketches. On the details view (below the page) click on operations and 

select add frozen. Still on the details view, set the value of thickness to 0.0001m. 

11. Repeat Step 10 for Sketch 2. 

12. In the tree outline, click on 2 parts 2 bodies. When you do this, you have two surface 

bodies appearing below the 2 parts 2 bodies. Click on the first surface body, then in the 

details view select fluid option. Repeat this for the other surface body. 

13. Save the project by clicking on the save icon at the top left of the screen. 

14. Go back to the workbench page (the original page that came up when you opened the 

Workbench). Double click on mesh (3). The geometry you have created comes up in a 

separate window. 

15. Right click on mesh (at the left side of the screen), and then click on insert and the 

mapped face meshing, select the geometry (the sketch you have created) and then click 

on apply in the box below. 

16. Mapped face meshing option appears on the left hand side of the screen. Right click on 

mapped face meshing and then insert and then sizing. A box appears at the bottom left 

of the screen. Using the mouse, click on the face of the sketch you intend to ‘mesh’. 

Then click on apply (in the geometry option) inside the box. In the latter, the type of the 

mesh should be element size, then in the element size (below the ‘type’ option) specify 

the dimension of your element (grid size). THEN click on update at the top of the 
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screen. This generates the mesh for the face you selected. If you have more than one 

face, repeat step 16. 

17. The next step is to name the edges. To do this, click on the second box at the top of the 

screen, have an edge highlighted in green. Then, select each edge by right clicking. 

Then, you have an option –create named selection. Click on the latter and name the 

edge as you wish. Do this for all the edges, except the partition (If you are dealing with 

geometry having partition).  

18. You also need to name the faces. To do this, click on the third box at the top of the 

screen, having a face highlighted in green, then select the face and right click. Click on 

create named selection and name the face as you wish. If you have two faces, do this for 

the other face. 

19. Export the file as .msh file. To do this click on file, and export as .msh file. 

B.2 Loading the mesh in Fluent 

 

20. Load the mesh you have created in workbench into Fluent. Go to cell zone condition, 

change the solid type to fluid. Below the mesh you loaded in Fluent, there is a typing 

interface. Type mesh, then press enter on the keyboard.  

21. Then type modify-zones, and press enter again. 

22. Type fuse-face-zones and press enter again. This procedure is necessary for the 

following reasons: We created two rectangles in workbench and we joined them 

together. Essentially we have two edges at the middle of the rectangles which must be 

fused together to make one partition; hence the reason for this step. 

23. Type the ID number of surface_body_face1. To know the ID go to boundary conditions, 

then click on surface_body_face1. The ID comes out. Do this also for 

surface_body_face1 (if applicable). Press enter three times. Once this has been done, a 

fuse zone is created named interior-4 in the list of the boundary conditions. This 

interior-4 has to be changed to wall boundary condition. You can do this by selecting 
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the interior-4, and changing the boundary condition to a wall in the box below the list of 

boundary conditions. A message comes up asking you to confirm if you wish to change 

the interior-4 to wall. Click on Yes. Then an interface comes up where you can select 

the condition of the wall you wish. Usually, we use a stationary wall with a no-slip 

boundary condition. Click Ok. This completes the task. 

B.3 Creating a 3D geometry 

 

24. Follow steps 1-9 above.  

25. Then extrude the geometry. To do this, select the sketches you have created (by clicking 

on it in the tree outline) and click on the extrude icon at the top of the page. Down the 

page, you will see the detailed view box. Click on add material and select add frozen 

option. You can specify the depth of the extrusion in the detailed view box by changing 

the FDI depth value to the value of your choice. Then click on generate. Do this for all 

the sketches in the tree outline if you have more than one sketch. 

26. Click on 2parts 2bodies (depending on the number of bodies you joined together). Click 

on solid. In the detailed view box below, change the option to fluid. Do this for the two 

solids (if applicable). Then click save. 

27. Go back to the workbench click on mesh (step 14 above). A graphical interface comes 

up which brings out the geometry you have created. 

28. In the outline at the left side of the screen, right click on mesh and select the option 

generate mesh. 

29. You can modify the mesh by clicking on sizing in the box below and adjusting the 

element size to the value of your choice and click on update. 

30. The next step is to name the faces of the geometry. To do this click on the third box at 

the top, having a face highlighted in green. Then select each of the faces by clicking on 

them, then right click and create a named selection and name them accordingly. Do this 

for all the faces, except for the partition. 
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31.  Then you need to name the bodies (If you have joined two or more bodies together). To 

do this, click on fourth box on top of the page – having all the faces green. Then select 

the body by clicking on it, right click and create a named selection. This enables you to 

assign names to the body or bodies.  

32. Save and export the mesh as .msh file. 

In Fluent 

33. Load the geometry in Fluent. Again, we need to fuse the partition together. 

34. To do this, follow steps 20 – 23. The only difference here is that instead of fusing 

surface_body_face1 and surface_body_face2, we fuse instead wall_zone1_body and 

wall_zone2_body. This completes the task. 
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APPENDIX C 

 

Setting up simulations in ANSYS FLUENT 
 

C.1 Introduction 

 

This section provides a guide on how to set up Eulerian-Eulerian simulations in ANSYS 

FLUENT 12.1. The procedures given in this section are based on the simulation cases 

considered in our research, but users can easily adapt the procedures to suit their purpose.  

C.2 Procedures 

 

The following gives the outline of how to set-up the simulations 

1. Open Fluent. An interface, inside the red box in the screenshot below, comes up. Here 

you can select the dimension of the simulations you intend to run. Select double 

precision, and serial. Then click Ok.  
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2. Next, load the mesh. To do this, click on file at the top of the page. Select read, then 

select case. Navigate to the folder where you have saved your mesh and UDFs. Select 

the mesh and click Ok. Refer to the screenshot below. 

 

 

3. Click on General at the left side of the screen. The under solver select pressure-based, 

absolute, transient/steady (this depend on the type of simulations you intend to run, but 

generally we choose transient). 
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4. Next, select model at the left side of the screen. Then click on multiphase, select 

Eulerian. Next, specify the number of phases. The screenshot for this step is shown 

below. In our simulations we used 3 Eulerian phases because we have two solid phases 

and one fluid phase. 

 

 

5. Click on material under the problem setup. Then click on fluid (Usually, this is the 

default. You can either leave it or modify the fluid properties to suit your purpose). 

Once you are happy with the fluid properties, write the name of the first solid phase, for 

example you can name it solid-1. Then input its density and viscosity. For the latter, 

choose a very small value; we suggest 10
-6

. Then click on change/create. A message 

pops up asking you if you want to overwrite air, click No. If you have more than one 

solid phase, repeat the same thing you did for solid-1. 

6. The next step is to load the UDF. To do this, click on Define (at the top of the page), 

then user-defined, then click function, then click compiled. A box comes up as shown 

below. Click add, then navigate to the UDF folder. Click on build, then Ok. Then click 

on load. This loads the UDF. 
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7.  Next, click on Define, then user-defined, then function hook. A box comes up as 

shown in the screenshot below. In the box, click edit for the initialization, another box 

pops up, select initialization and click Ok. Do the same for the post-processing.  

 

8. Next, we need to specify the number of memories. To do this, click on Define, then 

user-defined, then click memory. You can now specify the number of memories you 

want. This will depend on your UDF. 

9. Next, click on phases under problem set-up group. If you have three phases, like we 

had, you have one primary phase and two secondary phases, as shown in the screenshot 

below. Select the first secondary phase, then click edit.  
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A box comes up. Select phase material, select granular under granular temperature 

model. Select phase property. Then input the diameter of the particle. For the 

following options, we suggest you make your selections as shown below, but you can 

modify them to suit your purpose. 

Granular viscosity   Gidaspow 

Granular bulk viscosity  Lun et al. 

Frictional viscosity   KTGF 

Angle of internal friction  Default 

Frictional pressure   KTGF 

Frictional modulus   Derived 

Frictional packing limit  Default  

Granular temperature   Algebraic 

Solid pressure    Lun et al. 

Radial distribution   Lun et al. 

Elasticity modulus   Derived 

Packing limit    Default 
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Next, click on interaction. A box, with green boundary in the screenshot above, comes 

up. Here, you select the drag coefficient of your choice; in our case, we used the user-

defined drag. To select the drag coefficient, you have to click on edit. 

10. Next, click on boundary conditions in the problem setup group. A box comes up as 

shown in the screenshot below. Select each zone and choose the appropriate boundary 

condition from the type. For faces that are walls, select wall; for outlet, select pressure 

outlet; for inlet, select velocity inlet. For the velocity inlet, here you need to specify the 

magnitude of the superficial gas velocity. To do this, you select phase-1by clicking on 

phase, select phase-1 in the drop-down menu and click edit. 

 

 

 

11. Click on solution methods. We suggest that you make the following selections; of 

course you can make selections to suit your purpose. 

Scheme  multiphase couples 

Gradient Green-Gauss cell based 

Momentum Second order upwind 

Volume fraction Quick 

12. Click on solution initialization in the problem setup group. Then click initialize again. 
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13. In the problem setup group, click on calculation activities. Then select how you would 

like the solutions to be saved (we suggest saving every 100 time steps). Next, click edit, 

an autosave box comes up, select eachtime. Click Ok. 

14. Next, click on display at the top of the page. Then click on residuals. A box comes up 

where you can modify the absolute criteria; we suggest you change the absolute criteria 

to 10
-5

. 

15. Next, click on run calculations in the problem setup group. Here you input the time 

step (we suggest a value of 0.001 s), the number of time steps (this depends on how 

long you want your simulations to run), maximum iteration/time step (we suggest 250), 

reporting interval (use the default value of 1), profile update interval (we suggest the 

default value of 1). If you are satisfied with the simulation setup, then click on calculate 

to start your simulations. 

You may want to display your setup before starting the simulations or during the simulations. 

To do this, click on display at the top of the page. Then graphics and animations, then click 

contours. Then you can display the contours of any parameter you like. 
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APPENDIX D 

 

Experimental Results 
 

 

 

D.1 Particle size distributions for Powder 1(Alumina) 

 

This section reports the particle size distribution of powders used for fluidization and 

defluidization experiments. 
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D1. 2 Experimental run 2 

 

D1. 3 Experimental run 3 
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D.2 Particle size distributions for Powder 2(Ballotini) 

 

 

D2. 1 Experimental run 1 

 

D2. 2 Experimental run 2 
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D2. 3 Experimental run 3 

D.3 Pressure drop curves for fluidization and defluidization (Powder 2) 

 

 

D3. 1 Normalized pressure drop (mg/A). Tube diameter – 10.0 cm. 
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D3. 2 Normalized pressure drop (mg/A). Tube diameter – 5.0 cm. 

 

D3. 2 Normalized pressure drop (mg/A). Tube diameter – 2.5 cm. 
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D.4 Bed height curves for fluidization and defluidization (Powder 2) 

 

D4.1 Normalized bed height (      against superficial gas velocity – Tube diameter 10 cm 

 

D4.2 Normalized bed height (      against superficial gas velocity – Tube diameter 5cm 
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D4.3 Normalized bed height (      against superficial gas velocity – Tube diameter 2.5cm 
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