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Abstract. Randomized controlled trials provide essential evidence for the evalua-
tion of new and existing medical treatments. Unfortunately, the statistical analysis
is often complicated by the occurrence of protocol deviations, which mean we can-
not always measure the intended outcomes for individuals who deviate, resulting
in a missing-data problem. In such settings, however one approaches the analysis,
an untestable assumption about the distribution of the unobserved data must be
made. To understand how far the results depend on these assumptions, the pri-
mary analysis should be supplemented by a range of sensitivity analyses, which
explore how the conclusions vary over a range of different credible assumptions for
the missing data. In this article, we describe a new command, mimix, that can
be used to perform reference-based sensitivity analyses for randomized controlled
trials with longitudinal quantitative outcome data, using the approach proposed
by Carpenter, Roger, and Kenward (2013, Journal of Biopharmaceutical Statistics

23: 1352–1371). Under this approach, we make qualitative assumptions about how
individuals’ missing outcomes relate to those observed in relevant groups in the
trial, based on plausible clinical scenarios. Statistical analysis then proceeds using
the method of multiple imputation.

c© 2016 StataCorp LP st0440
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1 Introduction

Randomized controlled trials that collect longitudinal response data are widely used in
medical research because they provide essential evidence for the evaluation of new and
existing treatments. Unfortunately, protocol deviations—such as treatment withdrawal,
unblinding, or loss to follow-up—are unavoidable during the full course of a trial. Con-
sequently, we often cannot measure what we intended for deviating individuals. Planned
outcomes may be unobtainable because of the type of deviation. In addition, depending
on the nature of the analysis, even values that were recorded postdeviation may be best
regarded as missing. The result is a missing-data problem, complicating the analysis.

Complexity arises because—as in any analysis with missing data—we are forced
to make an assumption about the distribution of the unobserved data that crucially
cannot be verified from the observed data. Therefore, to understand how far the results
depend on these assumptions, the primary analysis should be supplemented by a range
of sensitivity analyses, which explore how the conclusions vary over a range of different
credible assumptions for the missing data (White et al. 2011).

The importance of sensitivity analysis in this context is highlighted in recent regula-
tory guidelines from the European Medicines Agency (Committee for Medicinal Prod-
ucts for Human Use 2010) and the U.S. National Research Council (2010), which rec-
ommends that “examining sensitivity to the assumptions about the missing data mech-
anism should be a mandatory component of reporting.” Ideally, inferences will be stable
across sensitivity analyses, indicating that the impact of the missing data does not seri-
ously affect the interpretation of results. However, it is even more important to report
the results of sensitivity analyses when they are contradictory.

When framing a sensitivity analysis, we need to consider carefully both the quantity
we wish to estimate and the population for which we wish to estimate it. Following the
National Research Council (2010) report, the term estimand is used to describe both
the target of inference and the population in which this is estimated. Thus, with missing
observations, we need to specify the statistical distribution of individuals’ postdeviation
responses. This is often done by specifying one or more parameters that relate indi-
viduals’ predeviation and postdeviation data (for example, see Carpenter and Kenward
[2013, chap. 10]). However, with reference-based sensitivity analysis, such statements
are made by reference to other groups of individuals in the trial (typically to individu-
als in different treatment arms), obviating the need for explicit parameter specification
(Carpenter, Roger, and Kenward 2013).

Before describing this approach further, we follow Carpenter, Roger, and Kenward
(2013) and distinguish between two main classes of estimands. The first considers the
estimated treatment effect when we assume that postdeviation individuals continue to
follow the trial “rules”—that is, abide by the protocol. This is referred to as a de jure
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estimand. The second explores robustness of inferences to various assumptions about
what might have happened—in other words, various de facto scenarios.

Under both de jure and de facto assumptions, we specify the joint distribution of
each individual’s predeviation and postdeviation data by reference to relevant groups
of individuals in the study. We can then calculate the distribution of each individual’s
postdeviation data given his or her predeviation data and use this to multiply impute m
completed datasets, fitting our substantive scientific model to each in turn and combin-
ing the results for inference using Rubin’s rules (Rubin 1987; Carpenter and Kenward
2013).

A natural assumption for the de jure estimand is that, in each treatment arm,
conditional distributions of later follow-up data given earlier follow-up data are the
same, whether or not an individual deviates. This corresponds to Rubin’s (1976) missing
at random (MAR) assumption that, conditional on observed variables, missing data are
equal in distribution to observed data. Under MAR, it is assumed that postdeviation
individuals continued to abide by the protocol. Hence, we refer to it as “randomized-arm
MAR” below. Under this assumption, the resulting estimates and inferences may also
be obtained by fitting a saturated repeated-measures model with separate covariance
matrices for each treatment arm (Carpenter and Kenward 2007, chap. 3).

For de facto estimands, we may wish to explore a range of assumptions, described
in more detail below. For example, we may assume that postdeviation individuals
behave as if they were on a reference (or control) treatment or that the responses
stabilize postdeviation. In this context, a distinct advantage of multiple imputation
(MI) is that it provides a convenient pathway for sensitivity analysis, because the
imputation model need not be formally consistent with the analysis model. Thus,
Carpenter, Roger, and Kenward (2013) extend the usual MAR-based MI approach and
build on the ideas of Little and Yau (1996) to define a collection of MI methods for the
inference under a range of contextually relevant de facto assumptions.

The approach falls into the pattern-mixture modeling framework (Little 1993, 1994),
where different distributions are specified for fully and partially observed cases such
that the overall outcome distribution is a mixture of the two. Each de facto assumption
typically corresponds to a different missing not at random data mechanism (Rubin
1976), where conditional distributions of later follow-up data given earlier follow-up data
differ between individuals who do and do not deviate. In this setting, some thought has
to be given to the appropriate variance of the MI estimator. We have argued elsewhere
(Carpenter et al. 2014) that Rubin’s (1987) rules give an appropriate estimate of the
variance, inflating the variance that would have been seen—had postdeviation data
followed the assumption and been observed—to allow for the information lost because
of the missing data.
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The purpose of this article is to describe a new command, mimix, that can be used
to implement the reference-based sensitivity analyses described by Carpenter, Roger,
and Kenward (2013) for quantitative longitudinal data. This command can therefore
be used to perform sensitivity analyses for longitudinal continuous clinical trials under
a range of qualitative assumptions about the postdeviation behavior.

In the next section, we give more details about the methodology of Carpenter, Roger,
and Kenward (2013) and present their generic algorithm for a continuous outcome. In
section 3, we outline the syntax of the mimix command. In section 4, we demonstrate
the mimix command by using data from a randomized double-blind controlled trial of
budesonide delivered by Turbuhaler for the treatment of adult patients with chronic
asthma. We discuss and conclude in section 5.

2 Methodology

In this section, we present the methodology of Carpenter, Roger, and Kenward (2013)
underlying the mimix command.

Consider a randomized clinical trial with continuous longitudinal follow-up and two
treatment arms, active and reference. Let i = 1, . . . , n index individuals, and let Ti

denote the randomized treatment arm. Let j = 0, . . . , J index the J scheduled obser-
vation times, with j = 0 denoting the baseline; then, the outcome for each individual
i at time j we denote by Yij . We assume that all individuals are observed at baseline,
and following protocol deviation, data are missing. For simplicity, we also assume that
there are no interim missing values, that is, no individuals with missing data at some
point in the follow-up that are later observed. Define Di as the last observation time
prior to deviation for each individual; Di therefore can take values 0, . . . , J . The column
vector YOi = (Yi0, . . . , YiDi

)T denotes an individual’s observed outcomes up to Di, and
if Di < J , then the column vector YMi = (Yi(Di+1), . . . , YiJ )

T denotes the missing
outcomes at times Di + 1, . . . , J .

For imputation, for each deviating individual where Di < J , we require the distribu-
tion of missing outcomes given their observed outcomes, treatment arm, and deviation
time, denoted as

(YMi|YOi, Di, Ti, η) (1)

where η are the parameters of this distribution whose values we must first estimate
before we can impute missing data from (1). Under MAR, (1) does not depend on Di

and is simply (YMi|YOi, Ti, η). However, where missing data are missing not at random,
this distribution will depend on Di, and we define a form for (1) that reflects a specific
assumption. Given this, MI is used for inference (Rubin 1987; Schafer 1997). That
is, we create m complete datasets by drawing from the appropriate Bayesian posterior
distribution of (η|YO), and we then draw the missing data from (1) by using the current
draw of η.
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To obtain η, we must choose a model for the observed data. With quantitative
longitudinal response data measured at scheduled times, we assume the data can be
modeled using the multivariate normal (MVN) distribution. In particular, we assume
an unstructured MVN model, with a separate mean for each timepoint in each arm and
a separate unstructured covariance matrix in each arm, to allow for the correlation
between repeated measures.

The generic algorithm of Carpenter, Roger, and Kenward (2013) that is implemented
by the mimix command can be summarized as follows:

1. Separately for each treatment arm, take all the observed data, assume MAR, and
fit an MVN distribution with an unstructured mean (that is, a separate mean for
each of the baseline and the postrandomization observation times) and a variance–
covariance matrix using a Bayesian approach with an improper prior for the mean
and an uninformative Jeffreys prior for the covariance matrix.

2. Draw a mean vector and covariance matrix from the posterior distribution for
each treatment arm. Specifically, we use the Markov chain Monte Carlo (MCMC)
method to draw from the appropriate Bayesian posterior, with a sufficient burn-in,
and we update the chain sufficiently in between to ensure that subsequent draws
are independent. The sampler is initiated using the expectation maximization
(EM) algorithm. Refer to Carpenter and Kenward (2013) and Gilks, Richardson,
and Spiegelhalter (1996) for a more in-depth discussion of MCMC methods and
their applications to missing data, and refer to Schafer (1997) for a description of
the applicable EM algorithm.

3. Use the draws in step 2 to form the joint distribution for each deviating individual’s
observed and missing outcome data as required. This can be done under a range
of assumptions to explore the robustness of inference about treatment effects. The
five options available in the software are described in detail in section 2.1.

4. Construct the conditional distribution of missing (postdeviation) given observed
outcome data (1) for each individual who deviated, using the individual’s joint
distribution formed in step 3. Sample the missing postdeviation data from this
conditional distribution to create a completed dataset.

5. Repeat steps 2–4 m times, resulting in m imputed datasets.

We use this algorithm to generate m imputed datasets. The substantive model of
interest is then fit to each imputed dataset in turn, and the results are summarized for
inference using Rubin’s rules. For example, the substantive analysis model is often an
analysis of covariance in which the final outcome is regressed on a randomized group
and adjusted for baseline. For a single scalar parameter of interest, θ, estimates θ̂m are
obtained with standard error σ̂m. Results across imputations can then be combined
using Rubin’s (1987) rules to estimate the overall treatment effect and its associated
standard error under the given assumption.
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Because Rubin’s rules condition on the number of imputations, estimates, confidence
intervals, and inferences will be sensible with two or more imputations. However, with
a small number of imputations, results will be imprecise (Rubin 1987). As discussed by
Carpenter and Kenward (2007), 5–10 imputations is sufficient to get a reasonably accu-
rate answer for most applications. For more critical inferences, at least 100 imputations
are recommended (Carpenter and Kenward 2013).

2.1 Constructing the joint distributions

The proposed framework revolves around the construction of appropriate joint distri-
butions for the observed and unobserved data for deviating individuals. These joint
distributions imply conditional distributions for the missing data given the observed
data, which are required for imputation (1). The five options described below were
proposed by Carpenter, Roger, and Kenward (2013), and they are available in the soft-
ware.

Randomized-arm MAR. The joint distribution of an individual’s observed and miss-
ing outcome data is MVN with a mean and covariance matrix from the individual’s
randomized treatment group. This option is natural for a de jure estimand.

Jump to reference (J2R). The joint distribution of an individual’s observed and
missing outcome data is MVN with a mean vector from the individual’s randomized
group up to his or her last observation time before deviating. Postdeviation, the
individual’s mean response profile follows that observed for a reference (typically
the control) group. The covariance matrix matches that from the randomized
arm for the predeviation measurements and the reference arm for the conditional
components for the postdeviation given the predeviation measurements. For in-
dividuals in the reference group with missing data, this means that the joint
distribution of those individuals’ observed and missing outcome data is formed as
MVN with a mean and covariance matrix from the individual’s randomized treat-
ment for predeviation and postdeviation measurements (as under randomized-arm
MAR). This option is appropriate when the postdeviation individuals ceased their
randomized treatment and started treatment similar to that available in one of
the other trial arms (the reference).

Last mean carried forward. The joint distribution of an individual’s observed and
missing outcome data is MVN with a mean vector from the individual’s random-
ized group up to his or her last observed time before deviating. Postdeviation, the
individual’s means are set equal to the value of the marginal mean for his or her
randomized treatment group at the last predeviation measurement. The covari-
ance matrix remains that from the individual’s randomized treatment group. This
is an appropriate option when the effect of treatment is maintained, on average,
postdeviation.

Copy increments in reference (CIR). The joint distribution of an individual’s ob-
served and missing outcome data is MVN with a mean vector from the individual’s
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randomized group up to his or her last observation time before deviating. Postde-
viation, the individual’s mean increments follow those from a reference (typically
the control) group. The covariance matrix is the same as for J2R. For individu-
als in the reference group with missing data, this means that the joint distribu-
tion of those individuals’ observed and missing outcome data is formed as under
randomized-arm MAR. This is an appropriate assumption when we wish to assume
that, postdeviation, the disease resumes the course observed in the reference arm.

Copy reference (CR). The joint distribution of an individual’s observed and miss-
ing outcome data is MVN with a mean and covariance matrix from a reference
(typically the control) group, regardless of deviation time. For individuals in the
reference group with missing data, this means that the joint distribution of those
individuals’ observed and missing outcome data is formed as under randomized-
arm MAR. This is a natural option for individuals who in fact followed a different
(reference) treatment from their randomized allocation.

For the J2R, CIR, and CR options, we need to specify a reference group (typically
the control arm). In many settings, it is then appropriate to impute missing data for
individuals in the reference group under randomized-arm MAR, and this is the default
in the software.

Full technical details on the construction of the appropriate covariance structure
can be found in Carpenter, Roger, and Kenward (2013) and Carpenter and Kenward
(2013). There is great flexibility for contextually appropriate sensitivity analysis because
different assumptions about the missing data can be made for different groups or specific
individuals.

We have not yet discussed interim missing data, which is when individuals have
missing data at some point in the follow-up but data are observed later. Interim missing
values can also be imputed under any of the assumptions outlined above following the
generic algorithm of Carpenter, Roger, and Kenward (2013). In some circumstances,
the assumption made for interim missing values may be different from that specified for
postdeviation data, and mimix allows for this. Interim missing observations may often
be reasonably imputed under randomized-arm MAR.

3 The mimix command

3.1 Syntax

The mimix command conducts MI under the distinct treatment arm–based assumptions
for missing data outlined in section 2.1. Optionally, two substantive models can also be
fit to each imputed dataset and the results summarized using Rubin’s (1987) rules. The
two substantive model options in mimix are a) a linear regression of the final timepoint
on treatment and baseline or b) a saturated repeated-measures model (that is, including
treatment crossed with visit and baseline crossed with visit) with separate covariance
matrices for each treatment arm. Other substantive models can be fit to the imputed
data in the usual way by using mi estimate.
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The syntax of the mimix command is the following:

mimix depvar treatvar, id(varname) time(varname)
[
clear

saving(filename
[
, replace

]
) covariates(varlist) interim(string)

iref(string) {method(string) | methodvar(varname)} mixed

{refgroup(string) | refgroupvar(varname)} regress burnbetween(#)

burnin(#) m(#) seed(#)
]

Data are required in long format with one record per individual per timepoint, where
depvar is the numeric outcome variable with missing data in the existing dataset and
treatvar identifies the treatment group variable in the existing dataset and may be either
a numeric or string variable.

id(varname) specifies the variable identifying individuals in the existing dataset. id()
is required and may be either a numeric or a string variable.

time(varname) specifies the variable identifying units of time in the original dataset.
time() is required and must be a numeric variable.

clear specifies that the original data in memory be cleared and replaced by the imputed
dataset. The imputed dataset must be saved manually if required. One of clear or
saving() is required.

saving(filename
[
, replace

]
) saves the imputed datasets. A new filename is required

unless replace is also specified. replace allows the filename to be overwritten with
new data. One of clear or saving() is required.

covariates(varlist) specifies any additional baseline covariates to be included in the
MI model and analysis if either the regress or the mixed option is specified. Any
specified covariates must be fully observed numerical variables. Dummy variables
must be generated for any factor covariates.

interim(string) specifies an alternative imputation method for all interim missing val-
ues (where the individual has data observed later). string may be mar, j2r, lmcf,
cir, or cr (not case sensitive). See section 3.3 for further details on specifying the
imputation method.

iref(string) specifies the level of treatvar chosen for the reference for all interim missing
values (where the individual has data observed later). iref() is required when
using the j2r, cir, or cr imputation method. See section 3.3 for further details on
specifying the imputation method.

method(string) defines the imputation method for all individuals. string may be mar,
j2r, lmcf, cir, or cr (not case sensitive). method() and methodvar() are mutually
exclusive; specifying both will return an error message. See section 3.3 for further
details on specifying the imputation method.
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methodvar(varname) specifies the variable in the original dataset that contains the
individual-specific imputation method(s). This option should be used if different
imputation methods are required for different individuals. methodvar() must be
a string variable containing one of mar, j2r, lmcf, cir, or cr (not case sensitive)
for each individual. methodvar() and method() are mutually exclusive; specifying
both will return an error message. See section 3.3 for further details on specifying
the imputation method.

mixed uses mi estimate with Stata’s default options to fit a saturated repeated-meas-
ures model using restricted maximum likelihood—with a separate mean for each
treatment and time, full covariate–time interactions for any included covariates(),
and a separate unstructured covariance matrix for each arm—to each of the imputed
datasets. mixed combines results using Rubin’s (1987) rules for inference. This
option may add substantially to the postimputation computation time if a large
number of imputations have been specified.

refgroup(string) specifies the level of treatvar chosen for the reference for all individ-
uals. This option is required when using the j2r, cir, or cr imputation method.
refgroup() and refgroupvar() are mutually exclusive; specifying both will return
an error message. See section 3.3 for further details on specifying the imputation
method.

refgroupvar(varname) specifies the variable in the original dataset that identifies the
level of treatvar chosen for the reference for each individual. This option is required
when using the j2r, cir, or cr imputation method. refgroupvar() and refgroup()

are mutually exclusive; specifying both will return an error message. See section 3.3
for further details on specifying the imputation method.

regress uses mi estimate with Stata’s default options to fit a linear regression of
depvar at the final timepoint on treatvar, and any included covariates(), to each
of the imputed datasets. It combines results using Rubin’s (1987) rules for inference.

burnbetween(#) specifies the number of iterations between pulls for the posterior in
the MCMC. The default is burnbetween(100).

burnin(#) specifies the number of iterations in the MCMC burn-in. The default is
burnin(100).

m(#) specifies the number of imputations required. The default is m(5).

seed(#) specifies the seed for the random-number generator. The default is seed(0),
meaning that no seed is specified by the user and so the current value of Stata’s
random-number seed will be used; this will result in different sets of imputations for
multiple program runs. To reproduce a set of imputations, the same random-number
seed should be used with the original data sorted in exactly the same order.
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3.2 Implementation details

Required data format

Data are required in long format with one record per individual per timepoint. If data
are in wide format, consult [D] reshape to convert data into long format.

Baseline covariates

Any additional included baseline covariates are required to be complete. Individuals
with missing covariate information will be highlighted for the user by mimix and will be
discarded in the imputation process and any requested analysis.

Potential error with sparse data

Stata’s mi impute mvn command (which uses the MCMC method initialized by the EM

algorithm to impute missing values) is used to complete steps 1 and 2 of the general
procedure, as detailed in section 2. If the response variable of interest is measured at an
occasion with only a few complete cases, mi impute mvn may terminate with an error
message if there is not enough information in the observed data to reliably estimate
aspects of the covariance structure in the required MVN model. If this is the case, we
advise the user to explore an alternative viable MVN model for the data by using the mi
impute mvn command. The response at the occasion with few observed outcomes may
need to be excluded from the analysis and mimix rerun.

Data output

The imputed datasets are produced in long format, with one record per individual per
timepoint per imputation, and are mi set in flong style, ready to analyze using mi

estimate. The imputed datasets are output in memory if clear is specified, and they
are saved in filename.dta if saving() is specified.

Analysis options

If the regress or mixed analysis option is specified, Stata’s mi estimate command is
used with default options to fit the specified analysis model to each imputed dataset
and to combine results using Rubin’s (1987) rules (see [MI] mi estimate). The usual
output will be displayed in the Results window. If alternative mi estimate options
or other substantive models are required following the completion of mimix, then mi

estimate can be used in the usual way for further analysis.
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Use of data preserve

Because of extensive manipulation of the data, mimix uses the preserve and restore

commands. While mimix can be successfully run on data that are already preserved,
we recommend that users cancel any previous data preserve by using restore, not to
ensure the clear and saving() options of mimix work as intended.

3.3 Specifying the imputation method

The mimix command must contain either the method() option or the methodvar()

option. method() indicates which imputation method should be employed for all indi-
viduals, while methodvar() indicates which imputation method should be employed for
each individual. method() and methodvar() are mutually exclusive options; specifying
both will return an error message.

If the method() option is used to request the same imputation method for all in-
dividuals, then values specified in method() must be one of those presented in table 1
(not case sensitive). If the methodvar() option is used to request different imputation
methods for different individuals, then a new variable that contains individual-specific
imputation methods must be generated and specified in methodvar(). The variable that
holds the individual imputation methods must only contain values presented in table 1
(not case sensitive), and the method specification cannot vary within an individual over
time.

If the j2r, cir, or cr imputation method is used, then either the refgroup() option
must also be used to specify the reference level of the treatvar for all individuals or the
refgroupvar() option must also be used to indicate the reference level of the treatvar for
each individual. Together, these variables allow for the required assumptions outlined
in section 2.1. If one of the imputation methods that includes a reference group is
specified for all individuals (or for specific individuals via methodvar()), then missing
data for individuals in that reference group (with the reference-imputation specification)
are imputed under randomized-arm MAR.

The interim() option specifies the imputation method for all interim missing values.
If this option is not used, any interim missing values will be imputed following the
method specified by the methodvar() or method() option, in the same way as missing
postdeviation data.
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Table 1. Specifying the imputation method

Method name Name to specify in
method() or methodvar()

Randomized-arm MAR mar

Jump to reference j2r

Last mean carried forward lmcf

Copy increments in reference cir or ciir
Copy reference cr

3.4 Stored results

mimix stores the following in r():

Scalars
r(N) total sample size
r(Nmiss) total number of individuals with incomplete data
r(Ncomp) total number of individuals with complete data
r(M) number of imputations
r(burnin) number of MCMC burn-in iterations
r(bbetween) number of MCMC burn-between iterations

Macros
r(depvar) name of dependent variable
r(treatvar) name of treatment group variable
r(covariates) names of covariates
r(method) imputation method (with method() only)
r(methodvar) imputation method variable (with methodvar() only)
r(rgroup) name of reference group (with refgroup() only)
r(rgroupvar) name of reference group variable (with refgroupvar() only)
r(rseed) random-number seed

Matrices
r(Ntreat) sample size in each treatment group
r(Ntreat mis) number of individuals with incomplete data in each treatment group
r(Ntreat comp) number of individuals with complete data in each treatment group
r(Ntreat pat) number of unique missing-value patterns in each treatment group
r(niter em) number of iterations EM takes to converge in each treatment group
r(lpobs em) observed log posterior in EM in each treatment group
r(conv em) convergence flag for EM in each treatment group

If the regress or mixed analysis option is used, then mi estimate is called within
the program run and the associated mi estimate results will also be stored in e()

(see [MI] mi estimate). If both regress and mixed are specified, then only the mi

estimate results of mixed will be stored in e().
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4 Example

Here we demonstrate the mimix command with data from a randomized double-blind
clinical trial of budesonide delivered by Turbuhaler for the treatment of adult patients
with chronic asthma (Busse et al. 1998). A total of 473 individuals were randomized to
a daily dose of either 200, 400, 800, or 1,600µg of budesonide or a placebo. The primary
outcome—measured at weeks 0 (baseline), 2, 4, 8, and 12—was forced expiratory volume
in one second (FEV1), recorded in liters (L); however, several individuals deviated and
did not complete the full 12-week follow-up.

In this article, we focus our attention on only the placebo and the lowest dose
active arm (200µg budesonide) for sensitivity analysis. The observed mean profiles by
treatment arm and the various missing-data patterns are shown in figure 1. Only 38 of
the 92 individuals in the placebo arm (41%) and 72 of the 91 individuals in the active
arm (79%) remained in the trial at 12 weeks; 3 individuals (2 placebo and 1 active) had
interim missing data.
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Figure 1. Observed mean FEV1 by treatment arm and deviation profile against time.
Solid lines join observed means at each timepoint for the various deviation (withdrawal)
patterns; dashed lines join observed means of the three individuals with interim missing
data. Numbers indicate the counts of individuals with the associated profile.

The primary analysis of the original trial consisted of a linear regression of the 12-
week FEV1 outcome on the treatment group, adjusted for baseline FEV1, using data from
the 110 individuals measured at week 12. This gives a treatment effect of 0.239 L, p =
0.017. We will use mimix to assess the robustness of the results to various postdeviation
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assumptions outlined in section 2.1. The interim missing outcomes will be imputed
under MAR.

In the following output, we describe the variables in the asthma trial dataset and
list their contents for one arbitrarily selected deviating individual.

. use asthma

. describe

Contains data from asthma.dta
obs: 732
vars: 5 12 Feb 2015 10:18
size: 11,712

storage display value
variable name type format label variable label

id int %8.0g Patient ID
time byte %9.0g Measurement time (weeks)
treat byte %8.0g treat1 Randomised treatment assignment
base double %12.0g Baseline FEV1 (L)
fev float %9.0g FEV1 (L)

Sorted by: id

. list in 37/40, noobs sepby(id)

id time treat base fev

5030 2 Placebo 1.14 .85
5030 4 Placebo 1.14 1.51
5030 8 Placebo 1.14 .
5030 12 Placebo 1.14 .

id is the unique individual identifier, and treat is the randomized treatment assign-
ment to placebo (treat = 2) or active (treat = 3). fev is the postbaseline FEV1

measurement (L), and time is the time of the FEV1 measurement in weeks. base is the
baseline FEV1 measurement. The dataset is already in long format with one observa-
tion per individual per timepoint, as required for mimix. We can see that the selected
individual deviated sometime between week 4 and week 8; consequently, the individual
has missing outcomes for weeks 8 and 12.

4.1 Sensitivity analysis using the mimix command

In this section, we perform a sensitivity analysis using each of the five options listed in
section 2.1 for constructing joint distributions. Results of these analyses are summarized
in table 2.

We first analyze the data under the randomized-arm MAR assumption for all individ-
uals, in other words, the de jure assumption that—postdeviation—individuals continued
on their randomized treatment as specified in the protocol. We create 50 imputations
and take the default MCMC burn-in of 100 iterations and burn-between of 100 iterations.
We include the baseline FEV1 measure in the imputation model as a covariate, but if
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this fully observed variable were used as an outcome, the results would be stochastically
identical. We use the regress option to specify that the substantive analysis is a linear
regression of 12-week FEV1 on randomized treatment and baseline FEV1. Imputation
with the (randomized-arm) mar option automatically means the interim missing values
will be imputed under MAR in each treatment group.

. mimix fev treat, id(id) time(time) method(mar) covariates(base) regress m(50)
> clear seed(101)
Performing imputation procedure for group 1 of 2...
Performing imputation procedure for group 2 of 2...

Performing regress procedure ...

i.treat _Itreat_2-3 (naturally coded; _Itreat_2 omitted)

Multiple-imputation estimates Imputations = 50
Linear regression Number of obs = 183

Average RVI = 0.4106
Largest FMI = 0.3495
Complete DF = 180

DF adjustment: Small sample DF: min = 91.39
avg = 99.15
max = 105.79

Model F test: Equal FMI F( 2, 149.8) = 40.69
Within VCE type: OLS Prob > F = 0.0000

fev Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Itreat_3 .3230728 .1042794 3.10 0.002 .1163241 .5298215
base .7240691 .0861441 8.41 0.000 .5531672 .8949709
_cons .3959986 .1971734 2.01 0.048 .0043602 .787637

Imputed dataset now loaded in memory
Imputed data created in variable fev using mar

The output displays the results from the requested analysis, along with a description
of the variable that now contains imputed data. Under randomized-arm MAR, the
treatment estimate is increased from the complete records regression reported above, to
0.323 L with a p-value of 0.002. The results of this analysis are shown in the top panel
of figure 2.

Because we used the clear option, the imputed dataset is stored in memory. The
imputed data are output using mi set flong. Note that the imputed dataset has not
yet been saved. If the saving() option is specified, then the imputed data will be saved
when the command is executed.

We now reimpute the asthma trial under the J2R assumption for all individuals,
with the placebo arm (treat = 2) first set as the reference. The interim() option is
included to impute the interim missing values under randomized-arm MAR. Including
the interim() option here does not actually affect the results because our substantive
model of interest considers the treatment effect at the final timepoint. Imputation of
interim values under MAR will have an impact when the mixed option is specified to
fit a saturated repeated-measures model, using all follow-up outcomes, to estimate a
separate baseline-adjusted treatment effect at each follow-up time.
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. mimix fev treat, id(id) time(time) method(j2r) refgroup(2) covariates(base)
> interim(mar) regress m(50) clear seed(101)
Performing imputation procedure for group 1 of 2...
Performing imputation procedure for group 2 of 2...

Performing regress procedure ...

i.treat _Itreat_2-3 (naturally coded; _Itreat_2 omitted)

Multiple-imputation estimates Imputations = 50
Linear regression Number of obs = 183

Average RVI = 0.4483
Largest FMI = 0.3510
Complete DF = 180

DF adjustment: Small sample DF: min = 91.07
avg = 109.09
max = 140.18

Model F test: Equal FMI F( 2, 156.9) = 32.45
Within VCE type: OLS Prob > F = 0.0000

fev Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Itreat_3 .2261827 .1028346 2.20 0.029 .0228754 .42949
base .6894261 .0933944 7.38 0.000 .5040403 .8748119
_cons .4669997 .2112431 2.21 0.030 .0473954 .8866041

Imputed dataset now loaded in memory
Imputed data created in variable fev using j2r
Interim missing data imputed using mar

The results of the J2R analysis with placebo as the reference are summarized in
table 2 along with the results of a J2R analysis with active as the reference. These
address the de facto assumption, when postdeviation individuals not randomized to the
reference treatment change to the reference treatment. Both of these analyses result in
a reduced treatment estimate relative to the de jure randomized-arm MAR assumption.
However, while J2R with placebo as the reference still gives a treatment effect that
is statistically significant at the 5% level, J2R with active as the reference does not.
This is because more individuals deviate in the placebo arm than in the active arm
(figure 1), and they tend to be individuals whose lung function is lower. The effect
of this versus analysis under randomized-arm MAR is shown in figure 2. The change
in placebo individuals under J2R-active reduces the treatment estimate by the greatest
amount.

Our next analysis is last mean carried forward. Figure 1 shows that the arm-specific
means begin to stabilize quite early in the follow-up. It is therefore to be expected that
last mean carried forward gives a slightly reduced estimate relative to randomized-arm
MAR, with a slightly higher p-value (see table 2). If we wish to assume that individuals’
lung function at deviation is broadly maintained postdeviation, then last mean carried
forward would be appropriate.
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Figure 2. Mean FEV1 against time, by treatment arm, for the four different deviation
(withdrawal) patterns under randomized-arm MAR (top panel) and J2R (bottom panel).
Solid lines join observed means before deviation, and dashed lines join the means of the
imputed data for that pattern.

The next two analyses are both CIR. In the first, the reference is the placebo, and
in the second, the reference is the active arm. Because more individuals deviate in the
placebo arm than in the active arm and because the placebo arm profiles tend to decrease
while those of the active arm increase, we again see a slightly larger treatment estimate
when the reference arm is placebo (see table 2). CIR with placebo reference is appropriate
if, postdeviation, we wish to assume that active individuals’ lung function starts to
decline from its current value at the same rate as seen in the placebo arm. CIR with
active reference is appropriate if, postdeviation, we wish to assume that postdeviation
placebo individuals access an active treatment and their lung function increases from
its current value at the rate seen in the active arm.

Finally, we consider CR with placebo reference and with active reference. Under
this assumption, an individual’s postdeviation data are imputed as if they had always
belonged to the reference arm. CR with placebo reference may be an appropriate de
facto assumption for individuals who could not tolerate the active treatment. Under
CR, predeviation individual-specific residuals about the mean are typically greater than
under J2R. This means that postdeviation profiles typically change less abruptly than
with J2R, which is what we observe here (see table 2). For CR with active reference, the
treatment estimate is greater than both treatment estimates under J2R but less than
the treatment estimates for all the other de facto assumptions.
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Table 2. Sensitivity analysis results

Analysis Treatment Standard p-value
estimate (L) error

De jure
Primary analysis (analysis of covariance) 0.239 0.099 0.017
Randomized-arm MAR 0.323 0.104 0.002

De facto
Jump to placebo 0.226 0.103 0.029
Jump to active 0.128 0.095 0.181
Last mean carried forward 0.296 0.096 0.003
Copy increments in placebo 0.281 0.103 0.007
Copy increments in active 0.277 0.082 0.001
Copy placebo 0.289 0.101 0.005
Copy active 0.251 0.082 0.003

We therefore conclude that if, postdeviation, medication has a comparable effect
with the lowest active dose, then individuals will have comparable lung function at the
end of the study. Otherwise, the sensitivity analysis is consistent with the primary
analysis of the trial in identifying a significant beneficial effect of treatment relative to
placebo.

5 Discussion

In this article, we introduced the mimix command to implement the reference-based
sensitivity analysis approach described by Carpenter, Roger, and Kenward (2013). This
approach sets out to provide contextually relevant sensitivity analysis of a longitudinal
clinical trial with continuous outcome data subject to individual deviation. As we de-
scribed, the approach constructs each individual’s joint predeviation and postdeviation
data distribution by reference to treatment groups and then imputes the individual’s
missing postdeviation data accordingly. The mimix program automates the steps of con-
structing the required joint distributions and the corresponding imputation distributions
under a range of assumptions. Further, if desired, the program will automatically fit
one of two substantive models to the resulting imputed data and combine the results by
using Rubin’s (1987) rules. The available substantive models are either a linear regres-
sion of the final timepoint on baseline or treatment or a saturated repeated-measures
model, as detailed above.

This method is appealing for sensitivity analysis because it does not require the
formal specification of any sensitivity parameters, which is notoriously difficult (White
et al. 2007). Rather than requiring quantitative assumptions, it asks for qualitative
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assumptions in respect to certain study arms. The associated quantitative assumptions
are then estimated from the data and used to produce imputations. Different qualitative
assumptions can be made for different individuals (or similar groups of individuals), and
the mimix command allows this flexibility through the methodvar() option, providing
contextually plausible sensitivity analyses.

Interim missing data, which in practice are likely to be inevitable to some extent,
are also accommodated by mimix. These may be imputed under randomized-arm MAR

(often the most appropriate assumption) or one of the alternative reference-based as-
sumptions.

The approach can be used for individuals who deviate immediately, that is, for those
who have no outcome data, as long as these individuals are included in the original
dataset. The relevant postdeviation distribution is constructed as outlined in section 2
for such individuals, and all outcome data are imputed from it.

Recall that we are modeling data from a clinical trial where patient outcome data
are collected according to a prespecified common schedule. The imputation model is
MVN, with a separate unstructured covariance matrix for each trial arm and a separate
mean for each timepoint. This is the most general, and by far the most appropriate,
model for such data (Molenberghs and Kenward 2007, chap. 5.6). If individual patients’
data are collected irregularly, the unstructured covariance matrix is no longer as natural
of an option, and other options may be considered. While it is possible that this may
encounter convergence difficulties with a very large number of timepoints and limited
number of patients, in our experience this is not common. In such situations, one may
need to consider alternative, more structured, forms of covariance matrix, but this is
beyond our current scope. If the data are skewed, one can consider transformation to
approximate normality, and then impute and transform back. Schafer (1997, chap. 6.4),
however, reports simulations showing that imputation drawn under the MVN model are
robust to moderate skewness.

If we have several baseline covariates on which we wish to condition the imputa-
tions, then a current restriction is that these must be fully observed. Moreover, at the
imputation step they are formally treated as continuous in the MVN imputation. Fully
binary variables can simply be included as they are (however they are coded). However,
fully observed c-level categorical variables must be included as (c− 1) dummy indicator
variables.

Following the general algorithm of Carpenter, Roger, and Kenward (2013), separate
models for the predeviation data are required in each treatment arm. Any covariates
potentially including the baseline response are consequently fit separately in each arm
prior to the construction stage, where the treatment arm parameters may be mixed
for subsequent imputation. If the covariates are markedly imbalanced across treatment
arms, this may result in inappropriate data distributions. However, in the randomized
controlled trial setting, the expected distribution of the covariates in the two arms will
be the same. Randomization should therefore ensure any covariates are well matched
and clinically similar in the two arms.
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Throughout this article, we focused on the two-arm randomized clinical trial setting;
however, this is not a constraint. mimix can be used to conduct reference arm–based
imputation for trials with more than two arms.

To summarize, the mimix command provides a computationally accessible tool for
reference-based sensitivity analysis. The assumptions available in the program corre-
spond to both de jure and de facto estimands, allowing sensitivity analysis that ex-
plores the effect of contrasting assumptions concerning the individual’s postdeviation
outcomes. We hope that this implementation will remove a barrier to trialists perform-
ing sensitivity analysis in practice.
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