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Abstract    

As the antibody sector has matured, it has seen significant increases in cell culture 

titres. However, it is hard to predict the consequences of titre increase on impurity 

levels and downstream processing (DSP) performance. Hence it is critical to have 

systematic methods to explore such interactions. This project explored the potential 

of high throughput cell culture linked to multivariate analysis, uncertainty analysis 

and bioprocess economics to characterise cell culture processes, not only in terms of 

growth and productivity but also host cell protein (HCP) levels, robustness and costs. 

A Quality by Design (QbD) approach to cell culture process development is 

presented. Using this QbD framework it was shown that there is scope for cell 

culture processes in which the ratio of mAb to HCP can be increased and the 

association of mAb titre to HCP reduced. It is therefore feasible to identify 

conditions whereby it is possible to increase antibody titre with little impact on HCP 

levels and hence subsequent DSP operations. (36.5 oC, 313 mOsm kg-1 media 

osmolality, 1 × 106 cells mL-1 seeding density, pH 6.8 and low cell generation 

number in this case). The impact of cell culture factors on protease activity 

(problematic HCP species) was assessed. Culture temperature was found to have a 

significant impact on protease activity, with a decrease in temperature resulting in 

lower protease activity. The relationship between HCP levels and protease activity 

was also examined and it was shown that an increase in total HCP levels at harvest 

did not result in a concomitant increase in protease activity. Multivariate data 

analysis based on regression was used to derive statistical cause-and-effect 

correlations able to link mAb titre and HCP levels to key cell culture factors. The 

resulting cell culture predictive correlations were then integrated into a whole 

bioprocess economics and optimisation framework. This allowed the identification of 

the most cost effective cell culture strategies as well as the impact of uncertainty in 

cell culture parameters on outputs (product output (kg) and HCP final (ng/mg)) and the 

likelihood of these falling out of specification. The work in this thesis highlights the 

benefits of a systematic approach to providing enhanced process understanding of the 

impact of cell culture strategies on downstream processes. This can be used to 

facilitate effective process integration and enable continuous improvements. 
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Chapter 1  

1 Literature review  

As the antibody sector has matured, it has seen significant increases in upstream 

(USP) productivities that have opened up the possibility for radical changes to the 

design and operation of cell culture suites. However, due to the inherently complex 

set of interactions that can affect cell culture performance, it is hard to predict the 

consequences on the impurity profiles and hence robustness of downstream (DSP) 

operations as titre increases. Quality by Design (QbD) initiatives are driving the need 

for greater understanding of the impact of USP changes on DSP, such as the impact 

of cell culture strategies on the downstream processing equipment duties so as to 

enable effective process integration and hence continuous improvements.  

This project will explore state-of-the-art high throughput cell culture and 

multivariate data analysis techniques to characterise cell culture operations, not only 

in terms of growth and productivity but also impurity levels. The resulting cell 

culture statistical cause-and-effect correlations will be integrated into process 

economics models so as to identify the most cost-effective integrated USP and DSP 

manufacturing strategies for the future.  

This introductory chapter provides an overview of biopharmaceutical drug 

development, impurities and the challenges they pose within the manufacturing 

process as well as outlining statistical and bioprocess economics modelling 

techniques. Section 1.1 provides an overview of biopharmaceutical drug 

development and its associated costs and risks. Section 1.2 reviews the current and 

future trends of monoclonal antibody manufacturing. Section 1.3 gives an outline of 

existing small-scale cell culture systems. Sections 1.4 and 1.5 focus on impurities 

present in biopharmaceutical manufacturing and the challenges they pose, with an 

emphasis on host cell proteins. Sections 1.6 and 1.7 highlight statistical and 

economics modelling techniques employed in evaluating biopharmaceutical 

manufacturing processes. Finally, the aim and organisation of the thesis are presented 

in Section 1.8.  
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1.1 Biopharmaceutical drug development   

Biopharmaceuticals are being developed to target different types of illnesses such as 

diabetes, multiple sclerosis, cancer, hepatitis and viral infections. They can be split 

into several categories: enzymes, hormones, antisense drugs, vaccines, monoclonal 

antibodies, cytokines, clotting factors, peptide therapeutics and cell therapies 

(Sekhon, 2010). In this thesis the focus will be towards monoclonal antibodies 

(mAbs) as they have become essential to current medicine and represent one of the 

main biopharmaceutical products in development at the moment (Rodrigues et al., 

2010; Ecker et al., 2015).  

1.1.1 Marketed biopharmaceuticals  

Biologics are increasingly important and now represent some 50 % of the portfolio of 

major pharmaceutical companies. Every year there are more than 600 biologics 

under development, the majority of which are monoclonal antibodies (Van Amum, 

2015). The first recombinant protein approved on the market was genetically 

engineered insulin in 1982. Following insulin’s great success on the market, the US 

Food and Drug Administration (FDA) has approved more than 300 non-recombinant 

therapeutics, including vaccines and blood products as well as over 100 recombinant 

protein biopharmaceuticals (www.fda.gov; Rader, 2013). 

Mammalian cell expression has become the predominant production system 

for recombinant proteins due to its ability to carry out human-like post-translational 

modifications and to synthesize proteins very similar to those occurring naturally in 

terms of biochemical properties and molecular structure (Zhu, 2011, Khan, 2013). 

Almost all of the biopharmaceuticals approved are made in either mammalian cells, 

bacterium (E.coli) or yeast (Pichia pastoris, Saccharomyces cerevisiae) (Berlec and 

Strukelj, 2013). Around 70 % of approved recombinant proteins are expressed in 

CHO cells (Gutierrez et al., 2012). This shows that mammalian expression systems 

are the main choice for biopharmaceutical manufacturing.  

With regards to the economic impact of marketed top selling 

biopharmaceutical products (Table 1-1), almost 75 % of the total revenue comes 

http://www.fda.gov/
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from products manufactured using mammalian cell expression systems and the 

remaining 25 % from products manufactured using bacterial (e.g. E.coli). The 

worldwide market of therapeutic proteins was valued at $93 billion in 2010 and is 

predicted to increase to $141.5 billion by 2017. This constitutes an increase rate of 

6.2 % within the 7 years period (GBI Research, 2011).  

1.1.2  Marketed monoclonal antibodies   

Monoclonal antibodies (mAbs) represent a considerable proportion of the 

biopharmaceutical industry’s current biotherapeutics portfolio (Zhang et al., 2014).  

As a result of their extensive application range, mAbs are globally used in a wide 

range of applications such as therapeutics or diagnostics. In therapeutics they are 

used to treat a wide range of disease conditions, with autoimmune disorders and 

different types of cancer being the most frequent targets (Table 1-2) (Shukla and 

Thommes, 2010; Elvin et al., 2013).  

The majority of mAbs on the market and in clinical development are derived 

from a few mammalian cell lines: Sp2/0, NS0, CHO (Chinese Hamster Ovary). CHO 

cells are the most commonly used expression system for the industrial production of 

recombinant proteins, including monoclonal antibodies. Some of the key advantages 

of CHO include the fact that methods for gene amplification, cell transfection and 

clone selection are well characterized and the protein of interest is secreted in the 

culture media which simplifies the purification process (Gutierrez et al., 2012; 

Bailey-Kellogg et al., 2014).  

The mAbs market experienced newfound interest at the turn of the century 

and has been steadily increasing over the past decade. Antibodies are the fastest 

growing segment of biopharmaceuticals; in 2006, the global mAbs market was 

estimated to be $20.6 billion with only 25 approved mAbs on the market (Coco-

Martin and Hamsen, 2008), in 2008 to be $39 billion while in 2013 this grew to $75 

billion, and 47 mAb products approved in the US and Europe, almost double 

compared to 2006. The mAbs market has seen a 90 % increase in growth sales 

between 2008 and 2013, compared to 26 % for sale of other recombinant protein 
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therapeutics. Out of the 47 mAb products approved in 2013, 18 of them had sales 

over $1 billion, 7 had sales over $6 billion and Humira (AbbVie Inc.) reported record 

sales of ~ $12.5 billion in 2014. Their success will continue to dominate the 

biopharmaceutical pipeline and market, with analysts forecasting a compound annual 

growth rate of 3-5 new products approved/year, leading to 70 mAb products on the 

market by 2020 and combined world sales of nearly $125 billion (Ecker et al., 2015). 

The main drivers behind the continuing increase of mAb products on the market are 

the ageing worldwide population as well as an increase in standard of living in 

emerging markets. 

1.1.3 Development costs and risks  

The development of therapeutic antibodies is a long, expensive and risky process that 

has to comply with rigorous regulatory requirements. Tough decisions must be made 

in order to find a balance between speed to market, low cost, high quality and 

flexibility (Farid, 2009). Biopharmaceutical companies therefore need to achieve 

development efficiency and an advantage over competitors by starting to use new 

bioprocess technologies (Bareither and Pollard, 2011). Drug supply development 

cost needs to be lowered and the time from discovery to market must also be 

reduced. To develop and bring a new drug to the market takes up to 10-15 years 

(Roy, 2011; Schnatz, 2013). The estimate for drug development costs was $802m in 

2003 (DiMasi et.al, 2003), over $1 billion in 2010 (Adams and Brantner, 2010) and 

$2.6 billion in 2015 (Avorn, 2015). Due to FDA’s strict regulatory requirements 

clinical trials have low success rates (~16 % from Phase I to market). On average, 

seven years are needed to go through the clinical trials and obtain the regulatory 

approvals, to market a new drug (Kaitin, 2010).   

Clinical trials are made up of three phases. In Phase I, the required drug is 

tested for safety on a small number of healthy volunteers (20-80), in Phase II, the 

drug is tested in terms of safety and efficacy on a small number of patients (100-300) 

and Phase III involves much larger scale clinical studies that monitors the long term 

use of the drug with up to 3000 patients participating. They account for most of the 

drug development cost, with reports showing up to 70 % of all research and 
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development (R&D) costs being spent on Phase I to Phase IV clinical trials (Bernt 

and Cockburn, 2012). A high number of candidates must be screened in order to pick 

out a small number of prospective drugs. From these, only a few are found to be 

effective at treating diseases. For a company to remain successful, it needs to have a 

selection of drugs in the pipeline. Using an economic model of drug discovery and 

development, Paul et al. (2010) predicted that large Pharma companies should aim 

for 2-5 launches per year, requiring 18-45 molecules to enter Phase I clinical trials. 

These numbers are rarely achieved, even by very large companies. A more realistic 

estimation would be 1-2 launches per year, requiring around 9-18 molecules to enter 

Phase I clinical trials (Farid, 2001). The success rate of bringing a new drug to the 

market has lowered since the FDA has become stricter regarding the approval 

processes. In 2007, FDA approved only 19 new drugs, representing the lowest 

number since 1983 (Courtenay, 2008).  

1.1.4 Manufacturing development and costs 

Monoclonal antibodies have relatively low potency and require high doses over an 

extended period of time, which involves large amounts of purified product per 

patient (Aldington and Bonnerjea, 2007; Tao et al., 2014). Antibody manufacturing 

facilities now reach sizes of around 45,000 m2 and have multiple bioreactors with 

total capacities up to 200,000 L (Farid, 2009).   

One of the major challenges of biopharmaceuticals, especially monoclonal 

antibodies is reducing the selling price in order to make them more affordable to 

patients. Monoclonal antibodies based therapeutics for autoimmune diseases cost 

around $15,000 - $20,000 per year to treat a single patient. Products designed for rare 

diseases will cost a lot more. The reason why these therapies are so expensive is 

partly due to the need for frequent administration of high doses.  It is also due to the 

high drug development costs given the high attrition rates that mean companies need 

to recoup the investment made in the development of not only the successful drug 

but also the failed drugs. A major component of the drug development process is the 

establishment of robust manufacturing processes and analytical methods for each 

drug candidate in the portfolio. Monoclonal antibodies are manufactured in 
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mammalian cells, involving a time-consuming two weeks of cell culture to obtain the 

product. Monoclonal antibody based drugs also require frequent injections at high 

doses to be effective. Taking Humira, a mAb based drug to treat rheumatoid arthritis, 

as an example, the recommended dose is 40 milligrams every two weeks, with a total 

of over 1 g per year, per patient (Fanneau de la Horie, 2010). 

Fixed capital investment (FCI) represents the amount of money required to 

build the biopharmaceutical facility ready to use. It generally involves the 

construction expenses for the buildings, the cost of purchased equipment, piping and 

instrumentation and utilities. Investment costs for monoclonal antibodies 

manufacturing facilities range between $40 M to $650 M with $7,130 - $17,000 per 

m2 and $1,765-$4,220 per L for volumes between 20,000-200,000 L (Farid, 2007). 

Table 1-3 shows the capital investment costs reported for facilities built by large 

biopharmaceutical companies such as Genentech and Lonza. Table 1-3 also shows 

that these facilities reach sizes of 500,000 ft2 (46,450 m2) with bioreactor volumes of 

up to 200,000L attained with multiple bioreactors (Farid, 2007). 

The biopharmaceutical industry is facing some difficult challenges such as 

pressure from healthcare providers to decrease drug prices, reduced average patent 

life, increased competition in generic markets and a reduction in revenues due to 

patent expiration (Collier, 2009). Biopharmaceutical manufacturing involves 

advanced technology and very rigorous regulatory compliance such as good 

manufacturing practices (GMP). Pharmaceutical companies are under high pressure 

to minimise fixed costs so they resort to reducing their internal capacities in 

manufacturing and R&D and increase their outsourcing (Zhang et al., 2011). The 

current total global pharmaceutical outsourcing market is around $130 billion. From 

2009-2014 it grew at a compound annual growth rate (CAGR) of 9.4 % and is further 

expected to grow at a CAGR of 8.7 % from 2015-2020. It is predicted to reach up to 

$215 billion by 2020 (PR Newswire Research, 2015).  
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Table 1-1: Top 10 best-selling biotech drugs in 2014* 

Product 

Revenue 

US $  

Billion (B) 

Date 

approved 
Manufacturer Expression system Indication 

Humira 12.54 2002 AbbVie Mammalian (CHO) Rheumatoid arthritis, 

Remicade 9.25 1998 Johnson & Johnson, Merck Co. Mammalian (NSO) Crohn disease 

Rituxan 8.68 1997 Roche, Biogen Idec Mammalian (CHO) Non-Hodgkin lymphoma 

Enbrel 8.54 1998 Amgen, Pfizer Mammalian (CHO) Rheumatoid arthritis 

Lantus 7.28 2000 Sanofi E.coli Diabetes 

Avastin 6.96 2004 Roche Mammalian (CHO) Colorectal cancer 

Herceptin 6.79 1998 Roche Mammalian (CHO) Breast cancer 

Neulasta 5.86 1998 Amgen, Kyowa Hakko Kirin E.coli Myelosuppressive Chemotherapy 

Prevnar 4.46 2002 Pfizer Bacterial Prevension of invasive pneumococcal disease 

Avonex 3.01 1996 Biogen Idec Mammalian (CHO) Multiple sclerosis 

 

* Adapted from http://cellculturedish.com/2015/03/10-biologics-on-best-selling-drugs-list-for-2014/ 
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Table 1-2: FDA approved antibody-based therapeutics*  

Brand Name: INN Target: Antibody type Indication Company Approval Date 

(Pending): Idarucizumab Dabigatran: Humanized Fab Anticoagulation Boehringer Ingelheim Pending 

(Pending): Mepolizumab IL-5: Humanized IgG1 Asthma GlaxoSmithKline Pending 

(Pending): Necitumumab EGFR: Human IgG1 Cancer Eli Lilly & Co. Pending 

Repatha: Evolocumab PCSK9: Human IgG2 High cholesterol Amgen Pending 

Praluent: Alirocumab PCSK9: Human IgG1 High cholesterol Sanofi and Regeneron Pharmaceuticals 2015 (US) 

Unituxin: Dinutuximab GD2: Chimeric IgG1 Cancer United Therapeutics 2015 (US) 

Cosentyx: Secukinumab IL-17a: Human IgG1 Autoimmune Novartis 2015 (US,EU) 

Opdivo: Nivolumab PD1: Human IgG4 Cancer Bristol-Myers Squibb 2014 (US) 

Blincyto: Blinatumomab CD19, CD3: Murine bispecific tandem scFv Cancer Amgen 2014 (US) 

Keytruda: Pembrolizumab PD1: Humanized IgG4 Cancer Merck & Co. 2014 (US) 

Cyramza: Ramucirumab VEGFR2: Human IgG1 Cancer Eli Lilly & Co. 2014 (US,EU) 

Entyvio: Vedolizumab 47 integrin: Humanized IgG1 Autoimmune Takeda Pharmaceuticals U.S.A. 2014 (US,EU) 

Sylvant: Siltuximab IL-6: Chimeric IgG1 Castleman disease Janssen Biotech 2014 (US,EU) 

Gazyva: Obinutuzumab CD20:Humanized IgG1, glycoengineered Cancer Genentech 
2013 (US)  

2014 (EU) 

Kadcyla: Ado-trastuzumab 

emtansine 
HER2: Humanized IgG1, immunoconjugate Cancer Genentech 2013 (US,EU) 

Abthrax: Raxibacumab B. anthrasis PA: Human IgG1 Anti-infective Human Genome Sciences 2012 (US) 

Perjeta: Pertuzumab HER2: Humanized IgG1 Cancer Genentech 
2012 (US) 

 2013 (EU) 

Adcetris: Brentuximab vedotin CD30: Chimeric IgG1, immunoconjugate Cancer Seattle Genetics 
2011 (US) 

2012 (EU) 

Benlysta: Belimumab BLyS: Human IgG1 Autoimmune Human Genome Sciences 2011 (US,EU) 

Yervoy: Ipilimumab CTLA-4: Human IgG1 Cancer Bristol-Myers Squibb 2011 (US,EU) 

 Adapted from *Chames et al. (2009), Ecker et al. (2015), FDA 
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Table 1-3: Capital investment costs for antibody-based facilities using mammalian cells* 

 (Adapted from *Pollock (2013))

 Production bioreactor capacity 

Manufacturing facility 
Date facility 

completed 

Capital Investment 

($ US M) 

Area 

(sq. feet) 
Number 

Size 

(L) 

Total 

(L) 

Boehringer ingelheim expansion 

—Biberach, Germany 
2003 315 – 6 15,000 90,000 

Lonza Biologics expansion—Portsmouth, NH, 

USA 
2004 207 270,000 3 20,000 60,000 

Amgen—BioNext, West Greenwich, RI, USA 2005 500 500,000 9 20,000 180,000 

Genentech expansion—Oceanside, CA, USA 2005 380 470,000 6 15,000 90,000 

Imclone expansion—Branchburg BB50, NJ, 

USA 
2005 260 250,000 9 11,000 99,000 

Biogen Idec—Hillerød, Denmark 2007 350 366,000 6 15,000 90,000 

Lonza biologics—Tuas, Singapore 2009 250 – 4 20,000 80,000 

Genentech expansion—Vacaville, CA, USA 2009 600 380,000 8 25,000 200,000 

Bristol-Myers Squibb – Devens, MA, USA 2011 750 – 6 20,000 120,000 

Pfizer Biotech Campus, Grange Castle, Ireland 2011 1800 – 6 12,500 75,000 

MedImmune, Frederick, MD, USA 2011 600 337,000 4 12,500 50,000 
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1.2 Antibody manufacture 

The immune’s system B-lymphocytes produce monoclonal antibodies in response to 

foreign proteins named antigens. The primary function of antibodies is recognizing 

and attacking foreign bodies like bacteria and viruses, which invade the organism. 

The history of therapeutic antibodies began in 1986 when the FDA approved the first 

of a generation of murine derived antibodies, OKT3TM. The use of murine derived 

antibodies has its limitations, such as the production of anti-murine antibodies 

(HAMA) by the human immune system. Further development gave rise to ReoProTM, 

the first chimeric antibody (only the light chains of the antibody were of murine 

origin) in 1993 by Johnson & Johnson. In this case the human immune response was 

not as strong as with OKT3TM. This immunogenicity had to be reduced, therefore 

scientists tried to find a way to eliminate the murine component. As a consequence, 

in 1998, Genentech introduced on the market the first humanized antibody, 

HerceptinTM, developed to fight against breast cancer. Then in 2002, FDA approved 

the first human antibody produced by phage display technology, HumiraTM (AbbVie 

Inc). Most of the approved mAbs in current use are either chimeric or humanized 

(Sommerfeld and Strube, 2005; Chames et al., 2009).  

1.2.1 Antibody platform process 

Platform processes are defined as a series of manufacturing operations that can be 

relevant to more than one product, with the aim of reducing manufacturing 

investments and eliminating process re-design for each new product. Antibody 

manufacture adopts a platform approach with standard unit operations used for the 

downstream process including clarification using centrifugation as well as depth and 

membrane filtration, antibody capture through Protein A affinity chromatography, 

polishing, virus removal and formulation (Curling, 2004). Platform processes give a 

general approach to antibody production, which significantly lowers the development 

time (Farid, 2009). An antibody platform often used for monoclonal antibodies is 

presented below.  
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Figure 1-1 : Typical upstream process for monoclonal antibodies  

(Adapted from Shukla and Thommes (2010)) 

 

Figure 1-2: Typical downstream process for monoclonal antibodies  

(Adapted from Shukla and Thommes (2010)) 
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In the upstream process cells are grown stepwise. Firstly, the cells are frozen 

in a master cell bank and various working cell banks. Then, the cells are cultured in 

shake flasks and grown in gradually larger volumes for a few weeks. This will then 

constitute the inoculum for large-scale fermentation (10,000-20,000 L). Once the 

cells are added to the large-scale bioreactors, they are cultured for approximately 2 

weeks, predominately as fed-batch processes. For large-scale production of mAbs a 

typical bioreactor train is shown in Fig. 1-1 (Sommerfeld and Strube, 2005). 

The harvest material is first clarified by either centrifugation or filtration, 

widely used current techniques for harvest operations. Centrifugation may not give 

an acceptable degree of solid removal in order to be able to load the centrate directly 

onto the first chromatography capture step. A filtration step using depth filters may 

also additionally be required. Depth filters are capable of removing host cell protein 

(HCP), any potential cell debris and other impurities. It has also been shown to 

reduce the level of turbidity seen in Protein A eluate of a monoclonal antibody 

process (Yigzaw et al., 2006). Protein A Chromatography involving a low pH elution 

step captures and purifies monoclonal antibodies. This step also acts as a viral 

inactivation step. Two polishing steps such as cation- (CEX) and anion- (AEX) 

exchange chromatography are usually employed in order to meet the purity 

requirement imposed by the regulatory authorities. A virus filtration step is necessary 

to provide additional assurance that the virus is removed and the product is safe, 

followed by a final ultrafiltration/diafiltraton step which helps formulate and 

concentrate the product (Fig. 1-2). Overall purification yields range from 70-80%. 

Different companies use similar platform processes as it can be seen in Table 1-4. 

(Shukla et al., 2007; Kelley, 2009; Shukla and Thommes, 2010; Zhang et al., 2014).  

Looking at several existing manufacturing processes employed by companies 

for the production of marketed monoclonal antibodies (Table 1-4) it can be observed 

that clarification (achieved by centrifugation or microfiltration) is the common first 

step in these processes. In the majority of cases, Protein A affinity chromatography is 

used as a capturing step which also incorporates a viral inactivation step due to its 

low pH elution. Several ion exchange steps follow protein A. These polishing 

chromatographic steps are used for the removal of DNA fragments, HCPs, potential 
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leaches from Protein A and other impurities. If the required purity is not attained, 

extra chromatographic steps such as hydrophobic interaction or size exclusion may 

be considered (Sommerfeld and Strube, 2005). 

Table 1-4: Analysis of different production processes for marketed antibody-based 

therapeutics* 

 Herceptin Rituxan MabCampath Synagis Remicade Simulect 

Cell removal 1 1 1 1 1 1 

Affinity 

chromatography 
2 2 2  2 2 

Virus 

inactivation 
3 3 3 4 3 3 

Cation 

exchange 
4 5 4 2 4 5 

Anion 

exchange 
5 4  3, 6 6, 7 4 

Hydrophobic 

interaction 
6      

Size exclusion 

chromatography 
  5 8   

Virus clearance  6 6 5, 7 5 6 

Sterile filtration 7 7 7 9 8 7 

            *Adapted from Sommerfeld and Strube (2005) 

1.2.2 Quality by Design  

The concept of Quality by Design (QbD) for biopharmaceutical drug development 

was initiated by the Food and Drug Administration (FDA) and involves a better 

understanding of the product and its manufacturing process, aiming to build product 

quality into the process by design, as opposed to testing for it at the end. QbD 

comprises of three main components: process knowledge involving a good 

understanding of the impact process inputs have on process performance, the 

identification of potential critical quality attributes (CQA) and understanding the 

relationship between the manufacturing process and these CQA as well as the link 

between CQA and product’s clinical properties. A CQA can be defined as a quality 

attribute of the product that has the ability to influence safety and efficacy (Abu-Absi 

et al., 2010; Eon-Duval et al., 2012a). The Quality by Design approach for 

characterising mammalian cell culture processes has been widely used (Abu-Absi et 

al., 2010; Horvath et al., 2010; Rouiller et al., 2012).  
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1.2.3 Increases in mAb titres  

The bioreactor concentration of recombinant products, cultured in mammalian cells 

has seen an increase of over 20-fold within the last two decades. The main reasons 

for these advances have been improvements in the capability to isolate high producer 

cell lines through gene amplification and cell isolation as well as the development of 

improved fed-batch protocols (Butler and Meneses-Acosta, 2012). Further factors 

contributing to the increase in production yield are optimisation of culture media, 

addition of small molecule enhancers and improvement to process control such as 

dissolved oxygen, pH, temperature and media osmolality (Bai et al., 2011). These 

advances are able to increase cell productivity, extend culture duration and maintain 

a high viability for longer (Lu et al., 2013). Bai et al. (2011) showed that a 

combination of iron and citrate added to chemically defined media increased mAb 

production in CHO cells by 30-40 %, without impacting on product quality. 

Modelling approaches, such as multivariate data analysis helped improve the sector’s 

knowledge with regards to culture conditions in order to optimize cell growth and 

improve product titre (Elvin et al., 2013). Nowadays, mAb concentration of 3-5 g L-1 

are commonly achieved and titres up to 10-13 g L-1 in fed-batch processes are 

reported (Kelley, 2009; Li et al., 2010). Antibody titres as high as 17 and 25 g L-1 

have also been attained. Titres of 17 g L-1 have been reported in concentrated fed-

batch cultures while titres of 25 g L-1 were reported in perfusion cultures. Both 

systems are based on the alternative tangential flow (ATF) system (Shevitz et al., 

2011). Antibody titres of 25 g L-1 were achieved in PER.C6 human cells using a 

continuous cell culture process operated in “concentrated fed-batch” mode (eXtreme- 

Density, XD). This was performed using a modified ATF perfusion system to retain 

the cells and the product in the bioreactor (Schiermer et al., 2010; Chon and Zarbis-

Papastoitsis, 2011). Improvements in mAb titres are essential in order to assist high 

drug dosage, increased demands and be able to control production costs (Robert et 

al., 2009).  

 Improvements in cell culture processes have resulted in higher mAb titres by 

increasing culture duration, cell densities and specific cell productivity (Brodsky et 

al., 2012). This involves bioreactors operating at high cell densities (>1 × 107 cells 
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mL-1), leading to higher levels of host cell proteins, nucleic acids, media and feed 

components (Westoby et al., 2011). XD cultures exhibit very high cell densities (> 

150 × 106 viable cells mL-1) compared to conventional levels of 10-20 × 106 cells 

mL-1, in fed-batch cultures. These high levels of cell densities put increased pressure 

on harvesting techniques (both centrifugation and filtration) due to their high solids 

content (≤ 40%). Changes in upstream processes require optimisation of downstream 

process methods (Tscheliessnig et al., 2013).  

 Processes featuring higher titres can pose facility fit challenges in 

biopharmaceutical purifications suites (Brodsky et al., 2012; Yang et al., 2014). The 

large volumes of buffers, chromatography resins and large filter areas needed to cope 

with higher titres, are generally incompatible with current manufacturing facilities 

(Aldington and Bonnerjea, 2007; Kelley, 2009; Stonier et al., 2012). Mismatch in 

equipment sizes can cause bottlenecks and together with process fluctuations upon 

scale-up leads to discarding expensive product. Yang et al. (2014) explains that large 

scale manufacturing facilities which have fixed equipment, find it harder to adopt 

debottlenecking strategies that involve equipment changes in response to fit issues 

derived from higher titres. They found that titre, CEX and AEX eluate volumes were 

the most significant factors impacting unexpected mass loss and they propose three 

debottlenecking solutions. Using larger volume pool tanks for AEX, CEX and viral 

inactivation steps, reducing the eluate volumes of the CEX and AEX steps as well as 

using higher capacity resins for these steps could minimise product loss.  

These high mAb concentration feed volumes are putting increased pressures 

on legacy facilities with downstream equipment that was designed for a much lower 

amount of mAb (Stonier et al., 2012; Yang et al., 2014; Tao et al., 2014). These 

pressures arise from the increased level of solids affecting harvesting operations and 

the higher amount of impurities (higher level of total HCPs and problematic HCPs) 

affecting purification steps. The harvest and purification equipment reach their limits 

in terms of capacity, which results in higher material consumption, processing times 

and cost. At low mAb titres, the cost of upstream manufacturing is higher than 

downstream but higher titres shift the cost from USP to DSP (Chon and Zarbis-

Papastoitsis, 2011; Levy et al., 2014). The downstream costs for CHO processes 
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represent between 50-80 % of the total cost of manufacturing a recombinant protein 

(Lowe, 2001; Guiochon and Beaver, 2011). In order to minimise these cost and to 

ensure the DSP is able to cope with the upstream feed, improvements need to be 

made to current technologies as well as looking into cheaper, more efficient 

technologies. Alternative steps should be able to either purify the proteins 

individually or minimise the burden on the current purification steps through partial 

purification (Butler and Meneses-Acosta, 2012; Saraswat et al., 2013). 

1.2.4 Future trends of antibody platform 

The upstream process platform for monoclonal antibodies production has 

considerably progressed in terms of the cell line development and bioreactor process 

that resulted in high product titres. Even though the current process platform is safely 

and widely used in industry, a number of drivers will lead to further development in 

the next decade. Due to the recent development in achieving high titres, the necessity 

to build biopharmaceutical facilities with high volume bioreactors (eg. 20,000L) will 

decrease. Producing lower volumes will lead to higher use of disposables in 

manufacturing and will emphasize the need for facility flexibility (Shukla and 

Thommes, 2010).  

New cell culture technologies are being evaluated to make the processes even 

more robust and to reduce the operation costs. Some of these new technologies 

include the development of new on-line process monitoring and control systems as 

well as the development of high-throughput cell culture systems. Cell culture 

monitoring using accurate in situ sensors for measuring relevant parameters could 

improve the development and optimisation of cell culture processes. Stainless steel 

tanks are the current choice for laboratory and pilot scale process development as 

well as for the large-scale manufacture of antibodies. The capital investment and 

maintenance cost for fixed plant equipment is very high and the validation 

requirements in terms of cleaning and sterility are high as well. These issues can be 

overcome by the use of disposable bioreactors, which have become extensively used 

in mammalian cell bioprocesses. They have the advantages to increase plant capacity 

and flexibility by reducing the turnaround time, easier and more rapid to implement 
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design changes and smaller footprint (Li et al., 2010; Butler and Meneses-Acosta, 

2012). 

Product recovery for centrifugation can be low due to an increased need of 

desludging (particularly in large-scale continuous centrifugation). Clarification post 

centrifugation can also be affected due to shear forces cell disruption. Depth filters 

alone are unable to handle high-solids feedstreams and are usually used in 

combination with centrifugation. Tangential flow filtration (TFF) is able to handle 

high solids but the yield might be poor. Schirmer et al. (2010) presented an 

alternative method to centrifugation, which in combination with filtration would 

benefit the clarification of high-density cell harvests. The enhanced cell settling 

method (ECS) involves the addition of weak IEX matrices to the cell culture harvest, 

which enhances cell settling. They demonstrated that this method greatly reduces 

HCP and DNA levels in partially clarified harvests. Westoby et al. (2011) showed 

how a reduction in cell culture fluid pH to 4.7-5 induced flocculation and 

precipitation of impurities which increased the average particle-size. This method 

enhanced impurity removal and improved tangential flow microfiltration throughput 

and filter capacity.   

Most of the manufacturing processes use Protein A chromatography as the 

capturing step, but there are some potential disadvantages associated with Protein A 

chromatography such as high resin cost, potential ligand leaches and sensitivity to 

product residence time (Chon and Zarbis-Papastoitsis, 2011; Saraswat et al., 2013). 

Alternatives to Protein A for capture of mAbs include batch chromatography (cation-

exchange chromatography (CEX) (used in the process of manufacturing HUMIRA 

and Synagis), mixed-mode chromatography and continuous chromatography. Cation-

exchange processes used to have low capacity (20-30g/L) and in the past they were 

not able to deal with high cell culture titres. Most recently processes have been 

developed with higher CEX capacities, of 100 g/L, for monoclonal antibodies, 

demonstrated using real feeds as well as model systems. These newly improved 

chromatographic media have the ability to achieve high capacity at only 1/5 of 

Protein A cost, making them a more appealing alternative to affinity chromatography 

(Gagnon, 2010; Chon and Zarbis-Papastoitsis, 2011). Tao et al. (2014) showed the 
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feasibility of using CEX for direct capture of mAbs from high titre cell culture 

harvest. Another alternative for the capturing step is mixed-mode chromatography 

(anion exchange and hydrophobic interaction) which can be optimised by design of 

experiments and can present comparable yields to those seen in Protein A, but at a 

much lower cost (Toueille et al., 2011). Pezzini et al. (2011) used mixed-mode 

chromatography for capture of mAbs from CHO cell culture supernatants. They also 

evaluated four types of mixed-mode resins, in their ability to minimise HCP levels. 

Semi-continuous chromatography (e.g. periodic counter current (PCC)) has been 

successfully applied to the capture of mAbs from cell culture supernatant. Mahajan et 

al. (2012) showed the application of three small-scale columns operated using the 

PCC principles for the purification of low and high mAb titres. It also highlighted a 

40 % reducing in the cost of resin, buffer and processing time when the multi-column 

chromatography was compared to affinity chromatography. Pollock et al. (2013) 

evaluated the application of semi-continuous 3-column and 4-column PCC 

chromatography system for the capture of mAbs and showed that the use of semi-

continuous chromatography can reduce manufacturing costs of early clinical phase 

material.  

Non-chromatographic purification methods such as membrane 

chromatography or selective precipitation are likely to arise (Shukla et al., 2007). 

Membrane chromatography uses filtration membranes with ligands immobilised to 

the inner pore surface resulting in a selective adsorption of molecules, separating 

them based on their chemical behaviour (Frohlich et al., 2012). Membrane 

chromatography has been used in both flow through and bind-and-eluate mode in 

industrial applications (Hirai et al., 2009; Liu et al., 2010). Precipitation can be used 

as an impurity removal step prior to harvest (using caprylic acid) (Brodsky et al., 

2012) or capture by CEX (using PEG) (Lain et al., 2010). Brodsky et al. (2012) 

showed the use of caprylic acid precipitation being implemented in a bioreactor prior 

to harvest as well as being used as an alternative to polishing chromatography, 

following Protein A affinity chromatography.  
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1.3 Small scale cell culture 

The relationship between culture conditions and process outcomes is very 

complex. A multi-factorial experimentation strategy can be used to analyse 

relationships and provide the highest amount of data in the shortest amount of time 

(Montgomery, 2009). It is difficult to apply this strategy to bench-top or large-scale 

bioreactors due to high resource requirements as well as high capital equipment and 

infrastructure costs (Lewis et al., 2010). The need to perform large numbers of 

experiments under controlled, bioreactor conditions has resulted in the development 

and implementation of high-throughput, small-scale systems for process 

development (Legmann et al., 2009; Lewis et al., 2010; Jones et al., 2015).  

Among the small-scale devices investigated are shake-flasks, microtitre plates 

and stirred bioreactors (Kumar et al., 2004; Betts and Baganz, 2006; Duetz, 2007). 

Fed-batch cultivations are not easily conducted on a routine basis and under 

controlled conditions making shake flasks less favourable for bioprocess 

optimisation. To overcome these limitations new small-scale and high throughput 

(HT) systems are now being commercialized. These are better able to mimic the 

performance of stirred tank bioreactors and provide sufficient data. HT technologies 

facilitate faster timelines, shorter development times while fewer resources are 

required.  (Amanullah et al., 2010). Various designs of HT micro-scale bioreactors 

have been reported in literature, starting from simpler standard plate with integrated 

sensors measuring pH and oxygen levels (microtitre plate based bioreactors, e.g. 

Simcell), to more advanced cell culture systems with better control capabilities 

(stirred mini bioreactors, e.g. Micro 24® MicroReactor (Pall Life Sciences, Port 

Washington, NY) and the ambr® (Sartorius Stedim, Royston, UK). To be able to 

support the HT micro-scale bioreactors, HT analytical techniques such as the 

Gyrolab workstation (Gyros, Uppsala, Sweden) (quantification of HCP 

concentration) have also been implemented in industry.  
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1.3.1 Traditional small-scale culture systems 

1.3.2 Shaken vessels  

1.3.2.1 Shake flasks 

Shake flasks are widely used and have the advantage of low price and being easy to 

handle. Shake flasks are manufactured in different sizes with capacity ranging from 

25 mL to 5L, made of plastic or borosilicate glass and equipped with or without 

baffles. They are usually operated on orbital shaking devices at specific shaking 

frequencies while only the temperature is controlled. The mixing and mass transfer 

within the flasks is achieved due to orbital shaking (Büchs et al., 2000). Flasks not 

containing baffles should be operated in a way in which bubbles are not formed and 

this will provide good gas-liquid mass transfer conditions (Büchs, 2001). pH is kept 

within a reasonable range with the help of buffers and with the use of recent optical 

sensor system. Dissolved O2 can also be accurately measured (Tolosa et al., 2002; 

Witmann et al., 2003). pH can be measured by using invasive pH probes. The 

dependency of shake flasks on orbital shaking for agitation and on surface aeration 

makes reduced oxygen transfer a major limitation in comparison with stirred tank 

reactors (Bareither and Pollard, 2011). Baffled shake flasks with high agitation and 

smaller working volume can be used to maximize oxygen transfer (Lotter and Büchs, 

2004). The use of shake flasks for process development is limited not only because 

of oxygen transfer issues but also because of little similarity to stirred tank 

bioreactors, difficulty to control DO, pH and maintain feed capability (Bareither and 

Pollard, 2011). 

1.3.2.2 Spin tubes  

To increase the throughput and reduce the size of shake flasks, De Jesus et al. (2004) 

developed a scale-down system named “Tube Spin”. Centrifuge tubes of 50 mL are 

used for culturing, set on a rotational shaker in the incubator. In situ control and 

measurement of DO and pH cannot be performed, but the system can still be used for 

large screening experiments, primarily for cell line selection and media optimisation. 
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Vented caps can be used for this system in order to allow gas exchange via the 

headspace. Tube Spin can be connected to an automated liquid handling system to 

increase its capabilities.  

1.3.2.3 Microtitre plates 

Due to their increased throughput, microtitre plates (MTP) are increasingly replacing 

shake flasks (Silk et al., 2010). The pharmaceutical industry invested significantly in 

the development of high throughput screening (HTS), in order to accelerate drug 

discovery. Microtitre plates can be manufactured in a wide range of sizes (6-1,536 

wells) however only 24, 48 and 96 well formats are commonly used in the 

development of bioprocesses. In strain selection process for primary screening the 96 

well plates is normally used (Bareither and Pollard, 2011). Common volumes used in 

microtitre plate vary from 0.025 mL to 5 mL therefore the use of these provide at 

least 50-fold decrease in medium needed compared to shake flasks as well as a cost 

reduction (Silk et al., 2010). This process can be automated with the help of robotics 

with modern pipetting and dispensing systems. In this way, numerous samples can be 

managed in a short period of time. Being able to perform parallel cultivation in 

microwell plates with a reduction in scale and lower labour costs demonstrates that 

new biopharmaceuticals produced will be able to get to the market more quickly 

(Silk et al., 2010). 

Many studies regarding mixing and oxygen mass transfer rate (OTR) in 

MTPs have been published (Lye et al., 2003; Harms et al., 2006), which shows that 

OTR is sufficient to support the needs of suspension cell culture (Chen et al., 2009). 

Microtitre plates face challenges related to liquid evaporation rates while keeping 

acceptable aeration and gas exchange rates (Chen et al., 2009) and contamination 

risks produced by aerosol formation at high shaking rates (Kumar et al., 2004). To 

tackle the online monitoring problem of microtitre plates, non-invasive fluorescent 

technology is used by the incorporation of fluorescence patch sensors into the base of 

each well for monitoring and measurement of OD, pH and DO (Chen et al., 2009; 

Bareither and Pollard, 2011). Silk et al (2010) presented a technique for the 

successful fed-batch culture of mammalian cells (GS-CHO cell line) in shaken 24-
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standard round well plates with growth rates, antibody productivities and viabilities 

that are the same as those in standard shaken flasks. This work demonstrated the 

possibility of carrying out fed-batch mammalian cell cultures in shaken micro well 

formats. 

1.3.2.4 Micro 24 bioreactor 

The Micro 24 is a miniaturized bioreactor system used as a scale-down model for 

cell culture process development. It uses a specialized 24 deep-well plate as shown in 

Fig 1-3. Each individual well can be controlled like an independent bioreactor. In this 

way, throughput can be increased whilst maintaining data quality and quantity. Each 

well contains non-invasive sensors for temperature, pH and DO, as well as a 0.2 μm 

sparge membrane for gas blending using air and a thermal heat conductor. To seal 

each well, vent caps are used. 

 

 

 

 

 

 

Figure 1-3: Micro 24 bioreactor 

Chen et al. (2009) first showed the assessment of the Micro 24 for process 

development of mammalian cell culture. They compared the performance of the 

miniaturized bioreactor (5 mL w/v) with that of a 3L (2 L w/v) bench-scale 

bioreactor using fed-batch culture of CHO cells. DO, pH and temperature were 

controlled within each well and agitation was controlled at plate level. In term of 

gases, N2, clean air and CO2 were monitored and controlled. These experiments were 

carried out to examine the reproducibility between all 24 wells and scalability 

between M24 and the 2 L bioreactor. Similar results have been shown for the two 

systems in terms of percent cell viability, culture doubling time as well as the 

integrated viable cell counts. Ammonia, lactate, glucose and glutamate profiles were 
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also similar when comparing the M24 and 2L bioreactor cultures. This work shows 

that M24 is a good scale-down model for cell culture applications but no engineering 

basis for the M24 – 2L bioreactor comparison was presented. 

1.3.3 Stirred systems  

Stirred systems are generally better than most of the static or shaken systems 

regarding online monitoring and control. Stirred systems give a high degree of 

freedom to increase mass transfer and mixing by increasing gassing rate and stirred 

speed as well as offering a consistent environment (Kumar et al., 2004).  

1.3.3.1 Spinner-flasks 

Spinner-flasks were the first stirred bioreactors designed for animal cell growth 

(Wang et al., 2002). A standard spinner-flask has a stirred shaft and side arms with 

screw caps. The medium and inoculum can be added through these arms as well as 

different types of probes such as pH and temperature, for gassing the flask with O2 

and CO2 (Kumar et al., 2004, Yeatts and Fisher, 2011). The maximum culture volume 

which can be used is dependent on the cell types, how often the culture media is 

changed and how the culture conditions vary throughout the culture cycle. Online 

measurement of cells oxygen uptake rate (OUR) and pH control can be achieved. 

CHO suspension cell cultures can be easily cultivated in spinner-flasks (Kumar et al., 

2004).  

1.3.3.2 Stirred minibioreactors 

Stirred minibioreactors are a miniature version of conventional stirred bioreactors. 

These bioreactors are fabricated from borosilicate glass, polycarbonate or stainless 

steel having the top head-plate made of PEEK (polyetheretherketone) or 

polycarbonate. These are equipped with various ports for probes such as temperature, 

pH and dissolved O2.  Common volumes used vary from 50 mL to 300 mL.  Stirred 

minibioreactors have comparable performance to traditional bioreactors and even if 

these are small, critical operating parameters such as temperature, pH and dissolved 
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O2 can still be monitored and controlled at the required levels. These are ideal for 

research studies or later stage cell culture process development, as small amounts of 

medium are required in order to run long-term fed-batch operations. Some of the 

disadvantages associated with these are their limitations in high-throughput screening 

and their high cost in comparison with other small scale devices as well as a high 

degree of manual operations such as cleaning and sterilization (Kumar et al., 2004).  

1.3.3.3 ambr system (advanced micro scale bioreactor) 

(a)                                           (b) 

  

Figure 1-4: Illustration of (a) ambr microscale bioreactor vessel (b) automated ambr 

workstation   

The ambr is an advanced micro scale bioreactor, which attempts to mimic the 

performance of large scale bioreactors at a 10-15 mL microscale, using disposable 

reactor cartridges. The selection of improved cell lines can be achieved faster due to 

the system’s ability to enable fast evaluation of various bioreactor cultures while 

providing significant savings in terms of materials and labour. The ambr system has 

3 key components: the ambr bioreactor vessel (Fig. 1-4 (a)), which provides the scale 

down mimic, the automated ambr workstation (24 or 48) (Fig. 1-4 (b)), which allows 

parallel bioreactor cultures and saves user time and the ambr software that helps 

process the data. The ambr bioreactor vessel is composed of non-invasive sensors for 

measuring and controlling DO and pH, placed at the bottom of the bioreactor. In 

contrast to the micro 24 system (Section 1.3.2.4) it has a marine impeller just like the 

one used for large bioreactors, a sparge tube for the gas supply with an in-line filter 

and a vessel cap designed for reliable robotic removal and replacement. Automation 
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is achieved for culture set-up, inoculation, liquid additions (media, cells, antifoam, 

feeds), sampling, therefore the risk of cross contamination is minimized. 

Lewis et al. (2010) evaluated the capability of the ambr 24 system to replicate 

the characteristics of classical bioreactors at micro-scale by comparing it to a 7L 

bench-top bioreactor. It has been shown that viability profiles and antibody titres 

obtained in the ambr 24 system under fed-batch conditions are in good correlation 

with those seen in the 7L bioreactor. Batch cultures were carried out simultaneously, 

in all 24 vessels under identical conditions in order to demonstrate reproducible 

growth profiles across all 24 bioreactors. It was demonstrated that the ambr system 

shows good vessel-to-vessel consistency in terms of viable cell number as well as 

consistent antibody titres between individual bioreactors and between the two culture 

stations within the system. Similar work performed by Hsu et al. (2012) and Moses 

et al. (2012) showed good comparability between ambr 24 and 2L, 3L bench-top 

bioreactors, respectively, in terms of online controls, culture performance, 

metabolites and product quality. Nienow et al. (2013) showed good comparability 

between the ambr system and 5L bioreactors as well as investigating the physical 

characteristics of this microscale bioreactor system. Rameez et al. (2014) also 

showed highly reproducible results between the ambr 24 and 3L, 15L and 200 L 

stirred tank bioreactors in terms of cell growth, process capabilities and product titre.    

1.3.3.4 Microfluidic “SimCell” bioreactor 

Seahorse Bioscience Inc. (Billerica, MA) has developed the SimCell system, which 

is a high-throughput micro-bioreactor scale-down model based on microfluidic 

technologies (Kim et al., 2011; Kim et al., 2012). This system is a fully integrated 

robotics platform that was created to reproduce the required conditions within 

suspension culture bioreactors. The platform contains micro-bioreactor arrays, each 

composed of 6 micro-bioreactors. These bioreactors are secured in a cassette-type 

system containing transparent, biocompatible, membranes that allow gas transfer, 

used to reach up to 20 million cells mL-1 (Heath and Kiss, 2007; Legmann et al., 

2009). Each micro-bioreactor has a volume smaller than 800 μL. Oxygen and carbon 

dioxide transfer is possible in each micro-bioreactor due to the gas permeable 
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membrane. Losses due to evaporation are minimized due to their controlled design. 

Agitation of multiple cassettes can be achieved by rotational agitation (20 rpm) 

inside each incubator. Computational fluid dynamics (CFD) confirmed that this 

mimics the expected shear rate of conventional stirred tank bioreactors (Bareither 

and Pollard, 2011). The SimCellTM System is comprised of five incubators, each of 

them able to hold maximum 42 micro bioreactors (MBs) with 1,260 experiments in 

total. At the incubator level, parameters such as gas composition for DO and pCO2, 

temperature and relative humidity can be controlled. Fluorescence detection can be 

used for measuring pH and dissolved oxygen in the micro-bioreactors (Amanullah et 

al., 2010). The “SimCell” system is able to achieve high throughputs (more than 

1000 concurrent experiments) and data generation rates due to a fully automated 

robotics system capable of sampling, controlling temperature, pH and monitoring 

dO2, cell mass by optical density within each of the six microbioreactors on each 

plate (Heath and Kiss, 2007).  

Amanullah et al. (2010) presents the application of SimCellTM micro-

bioreactor for the fed-batch culture of GS-CHO transfectant expressing a model lgG4 

monoclonal antibody. For examining process scalability and reproducibility in a 250 

mL shake flask, 3 and 100 L bioreactors, 114 parallel MBs were used. The 

performance of the MBAs, including viable cell density, MBA protein titer and 

metabolite profiles were compared to those obtained in the shake flask, 3 and 100 L 

bioreactor cultures. Titre profiles, glucose concentration profiles and lactate 

concentration were comparable to the scale-up versions and within ±20 % of 

historical data. The results show that the SimCell platform operated in fed-batch 

mode with pH, glucose and DO control is able to successfully reproduce both shake 

flask and bioreactor cultures and sustain viable cell concentrations up to 12 × 106 

cells mL-1.  

1.4 Impurities in biopharmaceutical manufacturing 

The impurities present during the manufacturing process of therapeutic proteins such 

as mAbs can be divided into two main categories: product and process related 

impurities. Product-related impurities could comprise of unwanted molecular 
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variants of the product such as oxidized forms, precursors, aggregates or degraded 

products. Process-related impurities arise from the manufacturing process itself 

(either upstream or downstream). Process-related impurities include host cell 

proteins (HCPs), DNA, chemical additives  (inducers, antibiotics, protease inhibitors) 

as well as impurities from the downstream process (e.g. leachables such as Protein A, 

plastics, heavy metals) (Shukla et al., 2008; Tscheliessnig et al., 2013).  

1.4.1 Host cell proteins (HCPs) 

HCPs are a unique and complex group of impurities that can be present in the 

supernatant due to secretion of the host cell or released through cell breakage and 

reduced viability of the cells. They account for a large subgroup of process-related 

impurities (associated with the type of process used and not the product itself). It has 

been reported that their presence in the final recombinant mAb product can raise 

safety concerns, as particular HCP species could cause adverse clinical effects in 

humans, even when low levels are present. For this reason it is required to closely 

monitor them and demonstrate that the downstream manufacturing process is able to 

reduce HCPs to acceptable low levels as detected by a sensitive analytical method 

(FDA, 1997). Typical target values of impurities in the final recombinant mAb 

products are <100 ppm of host cell proteins, <5% high molecular weight 

immunogenic aggregates and 10 ng/dose of DNA (Wang et al., 2009; Chon and 

Zarbis-Papastoitsis, 2011; Levy et al., 2014; Reisinger et al., 2014).   

 HCPs are complex in their structure and composition, displaying a wide 

range of properties. A group of HCPs resulting from one process can be very diverse 

compared to another process, presenting different structure, isoelectric points, 

molecular mass and hydrophobicity. They can pose significant challenges to the 

downstream process, due to the varying amount, composition and characteristics 

during a particular cell culture process (Gronemeyer et al., 2014). The protein of 

interest, the host organism, subcellular localization of expression, cell culture and 

harvest conditions have been shown to influence the abundance and composition of 

HCPs present in the harvest material (Shukla et al., 2008; Wang et al., 2009; Jin et 

al., 2010; Gutierez et al., 2012; Tarrant et al., 2012). Jin et al. (2010) explored the 
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effect of several upstream process parameters on HCP profile and found culture 

viability had the most significant impact on the HCP profile. A similar result was 

also published by Tait et al. (2012) which found that most of the HCPs were present 

in the supernatant, originating through lysis or cell breakage associated with a 

decrease in viability. Hogwood et al. (2013) showed that the choice of depth filters 

during primary recovery modified the HCP profile and HCP concentration in 

harvested cell culture fluid. Schirmer et al. (2010) reported a reduction in harvest 

HCP levels of 60 % when the enhanced cell settling method (ECS) was used while 

Shukla et al. (2008) reported 2.3 logs of HCP clearance (LRV) over Protein A step. 

This figure dropped to 1.4 when the “worst-case” strategy was applied. The “worst-

case” strategy involved operating steps at a combination of operating parameters that 

give the poorest clearance of HCPs over that step.  

 A sub-group of these HCPs are known as problematic and prove difficult to 

remove during purification due to their association with the mAb or with the 

chromatographic matrix (Dorai et al., 2011; Aboulaich et al., 2014; Levy et al., 2014; 

Valente et al., 2015). Varying combinations of USP factors that have the potential to 

alter the impurity profile which is then carried on to the downstream process can 

make clearance of these difficult to remove impurities more complicated. Wu (2013) 

showed that the USP composition of HCPs can impact impurity clearance during 

purification. Individual problematic HCPs should be identified early in process 

development (USP) and their clearance monitored during downstream. During 

process development it is essential to understand the impact of the USP and DSP 

process on the HCP profile. This could help reduce the cost of goods by minimizing 

the burden of HCPs on the DSP or through the implementation of alternative, more 

cost effective methods. Ensuring a minimal HCP content in the supernatant could 

reduce the risk of any residual immunogenic HCPs to be found in the final drug 

product (Hogwood et al., 2014).  

1.4.2 Analytical tools for detection, monitoring and quantitation of HCPs 

Highly sensitive and appropriate analytical methods are required for measuring 

HCPs at various stages within the manufacturing process, in order to support process 
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development, validation and to ensure regulatory approval. The ideal method (or 

combination of methods) should be able to produce quantitative results, to identify 

all HCP species present in a sample, to provide high-throughput measurements and 

have a short processing time (Tscheliessnig et al., 2013). The current methods 

currently used to monitor, measure and identify HCPs are split into two categories: 

immuno-specific and non-specific. Immuno-specific methods identify HCPs by using 

polyclonal anti-HCP antibodies produced by immunization of a production animal 

(rabbits or goats) using supernatant or partially purified material from a relevant null 

cell line culture. A null cell line refers to a production cell line that does not have the 

product coding gene (Jin et al., 2010; Tscheliessnig et al., 2013). Nearly all 

biopharmaceutical companies use antibody reagents that were generated especially 

for their cell lines. Immuno-specific methods include ELISA, western blot and slot 

blot while non-specific methods include gel electrophoresis and mass spectrometry. 

Commonly used methods are described below.   

1.4.2.1 ELISA 

Enzyme-linked immunosorbent assay (ELISA) is an immuno-specific method and is 

the current gold-standard approach used to detect and measure total HCP 

concentrations during bioprocessing manufacturing and in the final drug substance. 

These assays are highly selective; provide high sensitivity and high-throughput mode 

operation. While ELISA can provide a good evaluation of the total level of HCPs in 

a given sample, it does not give any information on the specific HCP species that are 

found within the whole population. This prevents determining the risk associated 

with certain problematic HCPs (Jin et al., 2010; Bracewell and Smales, 2013; 

Hogwood et al., 2014; Thompson et al., 2014; Zhu-Simoni et al., 2014; Bracewell et 

al., 2015). ELISA cannot be used to identify qualitative changes in HCP population 

(Reisinger et al., 2014). Another drawback with this assay is the fact that in any anti-

HCP antibody pool, there are no antibodies that are able to identify every HCP 

species that might be present. There is the likelihood that very weak immunogenic or 

non-immunogenic species will not be identified (Bracewell et al., 2015). The 

sensitivity of this method relies on the antibody reagent used and generic HCP assay 
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kits might not be able to identify a wide range of HCPs, resulting from different cell 

line. Cell-line specific assays would provide improved sensitivity.  ELISA has been 

an invaluable tool for measuring and monitoring HCP concentrations during process 

development as well as in the final drug product and it will continue to be widely 

used by the biopharmaceutical industry to monitor and control HCPs. Another 

method for quantifying HCP levels is fourier transform mid infrared spectroscopy 

(FT-MIR). This method has the advantage of being able to measure the HCP 

concentration directly in the bioreactor or in a bypass. Capito et al. (2012) used FT-

MIR to quantify HCPs in a CHO cell culture fluid producing mAbs, after treatment 

with different polyelectrolytes for semi-selective clarification. The results were 

comparable to those obtained by ELISA.  

1.4.2.2 Gel electrophoresis 

Since ELISA is not capable of determining the diversity of HCPs within a sample, or 

how the HCP composition changes throughout a manufacturing process, extra 

methods to complement ELISA need to be used to be able to provide a more in-depth 

analysis of the HCP population (Bracewell et al, 2015). Due to the drawbacks of 

antibody-based immunoassays and the problem of identifying problematic HCP 

species which have the ability to associate with the product, it is crucial to use 

orthogonal methods that do not depend on immunoreactivity of HCP for HCP 

detection (Zhu-Simoni et al., 2014). ELISA can be used together with non-specific 

methods such as 1D- and 2D- polyacrylamide gel electrophoresis (1D/2D-PAGE). 

Gel electrophoresis is generally used to provide qualitative analysis of proteins 

within a sample. 2D electrophoresis is more regularly used during process 

development and characterization, in order to monitor changes in the HCP profile. 

They have the ability to analyze different HCPs on a single gel. 2D-PAGE gels 

separate HCPs first on the basis of the isoelectric point followed by separation due to 

size. The sensitivity of detection can be enhanced by the use of different staining 

methods which allows visualization of less abundant spots (Tscheliessnig et al., 

2013; Hogwood et al., 2014).  



 

55 

 

Gel-based methods are unable to identify low abundance HCPs, are labour 

intensive, time consuming and low throughput, also many HCPs could be masked by 

the product. 2D-PAGE gels can be used in combination with mass spectrometry 

(MS) to identify the specific HCPs correlating to particular spots on the gel. They 

have been widely used to examine the HCP composition at different stages of the 

manufacturing process, either by themselves (Jin et al., 2010) or in combination with 

mass spectrometry (Tait et al., 2012; Tarrant et al., 2012; Hogwood et al., 2013; 

Aboulaich et al., 2014; Levy et al., 2014; Valente et al., 2015). Jin et al. (2010) used 

2D-PAGE to estimate differences in HCP composition under different upstream and 

harvest conditions while Hogwood et al. (2013) used 2D-PAGE to investigate HCPs 

that are present post Protein A from both a mAb producing and null cell lines.      

1.4.2.3 Mass spectrometry (MS)  

Tscheliessnig et al. (2013) and Hogwood et al. (2014) presented several orthogonal 

methods that can be used to complement ELISA as well as 2D-PAGE gels. The 

method that has been widely used in recent years and appears to be the main 

complementary tool to ELISA is mass spectrometry. Mass spectrometry has the 

capability to detect and monitor multiple HCPs, including low abundance proteins, in 

the same sample, in a short time and in a HT way. Matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 

surface-enhanced laser desorption/ionization time-of-flight mass spectrometry 

(SELDI-TOF MS) are common mass spectrometry methods that either alone or in 

combination with 2D-PAGE gels have been used to monitor HCPs during process 

development. In comparison to 2D-PAGE gels that are not high throughput, require 

large sample volumes and are labour intensive, SELDI-TOF is much faster and 

requires smaller sample volumes. Both methods give information across distinct 

mass ranges, SELDI-TOF being able to provide information in the low molecular 

weight range whilst 2D-PAGE giving information across a higher molecular weight 

range.  

 Tait et al. (2012) used SELDI-TOF MS as a comparison method to 2D-PAGE 

gels, to investigate supernatant HCP profiles at different times throughout the 
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culture. Valente et al. (2015) used 2D-PAGE gels in combination with MALDI-

TOF/TOF MS to identify HCPs in harvest material that showed varied expression 

across different cell ages. Tarrant et al. (2012) used SELDI-TOF MS to determine 

the impurity profile within Protein A eluate pools for four different resins. Using this 

method they identified a number of residual HCPs present after Protein A. Pezzini et 

al. (2011) used mass spectrometry to determine the HCP profiles in the elution 

fractions of four different mixed-mode chromatography resins.  

 Liquid chromatography techniques can be coupled with mass spectrometry 

(LC-MS/MS) for the identification and quantification of HCPs from CHO cells 

(Doneanu et al., 2012). Thompson et al. (2014) presented an HCP enrichment 

method combined with LC-MS/MS which improved the identification and 

determination of relative abundance of HCPs present in a mAb drug product. After 

the enrichment step it was possible to identify 19 HCPs, compared to only one before 

the method was applied. There are also computer-based methods used for HCP 

identification and risk assessment (bioinformatics portals) (Wang et al., 2009) as well 

as for analyzing the immunogenicity risk from HCPs in CHO-based protein 

production (Bailey-Kellogg et al., 2014).    

1.5 Problematic HCPs 

1.5.1 Introduction  

The development of high producing recombinant protein expression systems is 

causing increased focus to be placed on the product’s composition and the 

downstream processing steps required to remove process-related impurities such as 

HCPs, lipids, DNA, etc. Even though this is the case, limited knowledge still exists 

about the range of HCPs that are problematic either by associating with the product 

throughout the manufacturing process and potentially eliciting an immune response 

in patients and/or causing product modification. There is also limited understanding 

regarding the relationship between the protein of interest, bioprocess conditions (both 

in USP and DSP) and problematic HCPs (Bracewell and Smales, 2013).  
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After the purification process, low levels of residual HCPs can still be found 

in the final product (Thompson et al., 2014). The main concern regarding the 

presence of residual HCP impurities in recombinant protein therapeutics is their 

potential impact on patient safety, by inducing an unwanted immune response with 

serious side effects. For this reason, HCP levels need to be reduced to a limit that is 

considered safe by the regulatory authorities. At present, immunoassays such ELISA, 

are almost always used to measure and monitor the total amount of residual HCP, but 

the composition is generally unknown. The levels of specific, critical HCPs are not 

independently measured (Zhang et al., 2014). Protein A affinity chromatography is 

the workforce of the mAb purification process due to its high specificity and 

capability to remove a large fraction of the total HCP and most other impurities in 

the supernatant (Butler et al., 2012; Zhang et al., 2014; Gronemeyer et al., 2014). 

Even after Protein A, problematic HCPs can still be found in the product fraction as 

well as persisting throughout the whole downstream process until final product 

(Aboulaich et al., 2014). Recent work has confirmed the need for a better 

understanding of the presence and potential risk of certain problematic HCPs. 

  HCPs can be found in the product fraction of bind-and-elute chromatographic 

steps. This can be due to two main methods. The first method is product-association 

(Shukla and Hinckley, 2008; Tarrant et al., 2012; Levy et al., 2014; Aboulaich et al., 

2014) through strong interactions that specific HCPs have with the mAb, resulting in 

their binding to the product. These species can then be transported through the DSP 

process, in combination with the mAb. The second mechanism involves certain 

HCPs binding to either the resin backbone or the ligand of the chromatographic step, 

resulting in their elution into the product fraction (Tarrant et al., 2012; Levy et al., 

2014; Valente et al., 2015). Out of the two mechanisms, the HCP-mAb interaction 

seems to be the more common cause by which problematic HCPs are found in the 

final product. Previous research performed by Tait et al. (2012), Nogal et al. (2012), 

Sisodiya et al. (2012) and Hogwood et al. (2013) has demonstrated that interactions 

during Protein A affinity chromatography are generally the main cause of HCPs co-

purifying with the product during the purification process. They have also noted that 

mAbs might interact only with specific subpopulations of the total HCPs (Aboulaich 

et al., 2014; Levy et al., 2014). Levy et al. (2014) showed that intracellular proteins 
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(found in cytoplasm, lysosome) represent a large fraction of all proteins interacting 

with mAbs. This emphasizes how minimizing HCP levels upstream might ease the 

pressure on downstream process in terms of HCP removal. A subgroup of 118 HCPs 

have been mentioned in literature as particularly hard to remove during downstream 

purification due to one of the two described mechanisms (Valente et al., 2015). 

Several publications have presented the importance and implementation of 

wash steps in order to disrupt HCP-mAb interactions during the purification of mAbs 

using Protein A affinity chromatography (Shukla et al., 2008; Shukla and Hinckley, 

2008; Aboulaich et al., 2014). Shukla and Hinckley (2008) compared the efficiency 

of various intermediate wash buffers in terms of their capability to disrupt HCP-mAb 

interactions during Protein A and identified a potential wash that can be used as a 

platform wash condition for Protein A (25 mM Tris, 10% isopropanol, 1 M urea and 

pH 9.0).  Aboulaich et al. (2014) investigated the effects of different wash modifiers 

on dissociating HCP-mAb interactions. They found that a combination of two wash 

modifiers (e.g. urea and sodium caprylate; caprylate and arginine) can have the 

potential to enhance HCP clearance through combined effects, reducing different 

types of interactions such as hydrogen bond, electrostatic and hydrophobic 

interactions. Levy et al. (2014) shows that by applying a high-salt wash, product-

associated impurities in a protein A affinity chromatography could be removed 

before product elution.   

Process-related impurities must be closely monitored and removed during the 

downstream process, to ensure that their concentration in the final product does not 

exceed the general guidelines of less than 100 ppm (ng/mg) for HCPs and 10 ng/dose 

for DNA (Chon et al., 2011). Important questions arise about what forms/ species of 

HCPs make up this 100 ng/mg limit and if any of the individual proteins found in 

this general mass defined as residual HCPs are likely to transform the product 

through association with it or enzymatic activity. There is reason to believe that this 

final HCP target might not be acceptable and instead of defining a general limit for 

all HCPs, there should be a more detailed criteria, based on a better understanding of 

the HCP population present (Bracewell et al., 2015). 
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1.5.2 Common problematic HCPs  

1.5.2.1 Protease 

Unwanted proteolytic activity is well known in mAb manufacturing due to an 

unknown mixture of proteolytic enzymes likely to be present among the broad range 

of HCPs present in the harvested cell culture fluid (Sandberg et al., 2006). The issue 

of proteolytic degradation of recombinant proteins is more common in serum-free 

cultures, due to the absence of serum proteins which would adsorb the proteases 

released in the culture medium (Elliott et al., 2003).  

There are numerous examples in literature that identify proteases as being 

problematic HCPs, by either association with the product or due to their impact on 

the therapeutic protein’s structural stability. Sandberg et al. (2006) describes how 

metalloproteases can destabilize Factor VIII production in CHO cells, Robert et al. 

(2009) and Dorai et al. (2011) showed how aspartic proteases and serine-threonine 

proteases are responsible for the fragmentation of fusion recombinant proteins and 

Gao et al. (2011) reports a high-purity human IgG1 mAb exhibiting fragmentation, 

that can be associated to residual proteolytic enzyme activity. In more recent studies, 

Dorai and Ganguly (2014) show how the presence of intracellular and secreted 

proteases can result in the enzymatic degradation of recombinant proteins, during 

fermentation and Aboulaich et al. (2014) identified serine protease as a problematic 

HCP, as it bound to all four mAb investigated and had the potential risk to cause 

enzymatic degradation of the mAbs. Serine protease was also identified as a 

purification challenge by a few other publications, which have seen it persist after 

Protein A chromatography (Doneanu et al., 2012; Hogwood et al., 2013) and mixed-

mode chromatography (Pezzini et al., 2011). Wang et al. (2014) outlines the 

significant impact residual host cell proteases can have on the long-term storage 

stability of the product. The US FDA raised safety concerns regarding these 

impurities, by delaying two Phase III clinical trials, as a result of antibodies against 

residual HCPs being present (Gutierrez et al., 2012).  
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In order to minimise the impact of degrading enzymes, such as proteases, the 

addition of inhibitors could in some cases be advantageous (Robert et al., 2009). 

Dorai et al. (2011) showed how protease cocktail inhibitors as well as inhibitors for a 

specific protease class (serine-threonine) inhibited the clipping process of a fusion 

protein. Clipping is a common cause of protein degradation, mostly attributed to the 

activity of proteases released by cells. The use of inhibitors specific for a particular 

type of proteases can also help identify the exact variety that is responsible for 

product degradation. Dorai et al. (2011) also investigated the effect of specific 

inhibitors for cysteine protease, metalo-protease and aspartic acid protease, each of 

them with no effect on the clipping process.  

1.5.2.2 Thioredoxin  

The thioredoxin system or parts of the thioredoxin system (TXN1) have been 

identified as being the causative factor for the reduction of inter-chain disulphide 

bonds of monoclonal antibodies produced by CHO cell culture upon scale-up (Kao et 

al., 2010; Trexler-Schmidt et al., 2010; Koterba et al., 2012). The thioredoxin system 

is present in the cytoplasm and together with glutathione/glutaredoxin system 

maintains the cellular redox balance and keeps intracellular protein disulfides 

reduced. The thioredoxin system is also known as a cell antioxidant (Koharyova and 

Kolarova, 2008; Kao et al., 2010).  

Trexler-Schmidt et al. (2010) firstly identified this problem during harvest 

operations and determined that the cause was the release of cellular enzymes due to 

mechanical cell shear. They tested several approaches to try and prevent disulfide 

reduction and found various levels of chemical inhibitors (EDTA, CuSO4, L-cystine), 

air sparging and low harvest cell culture fluid (HCCF) pH efficiently inhibited the 

mAb disulfide reduction. Kao et al. (2010) has built on the work of Trexler-Schmidt 

et al. (2010) and further identified through an in vitro experiment, that an active 

thioredoxin system or other reducing enzymes with thioredoxin-like activity were 

responsible for the mAb reduction problem in the HCCF. As the main causes for 

mAb reduction were identified to be the Trx system, hexokinase and G6PD, any 

inhibitor targeting any of these enzymatic pathways has the potential to prevent 
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disulfide bond reduction in mAb manufacturing. Koterba et al. (2012) also identified 

reduction of the mAb’s disulfide bonds during large-scale manufacturing of an IgG1 

mAb in CHO cells. They established that mammalian thioredoxin 1 (TXN1) is the 

enzyme responsible for the reduction and showed that by using transduction of a 

lentivirus expressing TXN1 shRNA, the expression of TXN1 in CHO cells can be 

reduced and the disulfide bond reduction prevented.  

1.6 Statistical modelling  

1.6.1 Introduction 

High value pharmaceutical products such as vaccines, hormones and monoclonal 

antibodies are mainly produced using mammalian cell cultures. Culture conditions 

are highly specialized and by making minor variations to these conditions cells are 

likely to either become nonviable or have reduced productivity. Mammalian cells 

have a very complex internal structure where interlinked biochemical processes take 

place, therefore making an accurate prediction of cell culture behaviour represents a 

significant challenge (Kontoravdi et al.,2005; Sidoli et al., 2005). 

Some of the most important aims of biopharmaceutical industry are the 

optimisation of cell culture processes in order to maximize antibody production as 

well as to reduce the time to market. An important task in defining an optimisation 

strategy is to identify and predict cell culture behaviour (De Alwis et al., 2007). In 

order to improve antibody production yields, cell culture experimentation is used. This 

involves trial and error optimisation of cell culture parameters, resulting in a large 

number of experiments, which can be time-consuming and expensive (Ho et al., 2006). 

Using mathematical models, initial experimental information can be organized in a 

coherent manner which helps identify and quantify key relationships between 

variables, process parameters and product output rates (Bailey,1998). Parameters that 

have significant effect on antibody production could  be identified by analysing these 

mathematical models. These can then be singled out for more detailed studies and used 

to help design experiments. This approach will result in a significant reduction in the 

required number of experiments with time and cost-saving implications (Ho et al., 
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2006). Using mathematical relationships to characterise different parts of mammalian 

cell culture behaviour and their integration into a predictive model, would contribute 

to the control of product quality and maximization of antibody production (Sidoli et 

al., 2004). The aim of mathematical modelling for mammalian cell cultures includes 

substitution of expensive and time consuming laboratory experiments with in silico 

ones, developing model-based algorithms for controlling product quality (Kontoravdi 

et al., 2005, 2007), process characterisation and identification of design space (Amit, 

2010; Abu-Absi et al., 2010; Rouiller et al., 2012) and the probability of process 

outputs falling out of specification (Stockdale and Cheng, 2009; Eon-Duval et al., 

2012b).  

1.6.2 Multivariate Data Analysis  

Biotech unit operations are often described by a large number of inputs (operational 

parameters) and outputs (performance parameters) along with complex interactions 

between them (Rathore et al., 2014). Given the large amount and complexity of 

variables in biological systems, it is almost impossible to extract and analyse the 

information using simple charting, univariate or bivariate methods of analysis. These 

types of analyses are usually ineffective and likely to result in misleading 

conclusions (Kourti, 2004; Kirdar et al., 2008). Significant information can be found 

in the correlations among process parameters and this information is overlooked 

when parameters are analysed independently (Rathore et al., 2014). This large 

amount of complex data needs methods of analysis that are able to handle multiple 

variables simultaneously but also reveal the relationship between them. 

Multivariate data analysis (MVDA) can overcome challenges associated with 

univariate or bivariate analysis such as missing data, variation introduced by 

deviating factors (noise and experimental error) and multicollinearity (Martin et al., 

2002; Kirdar et al., 2008). Multivariate data analysis is the analysis of multiple 

statistical variables at the same time and it helps understand, visualize and make 

predictions from the data. MVDA has significant advantages over traditional 

statistical tools. The powerful data mining abilities allows the analysis of complex 

data sets to identify essential patterns, while advanced regression methods can be 
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employed to accurately predict the system’s performance. It can predict the effect a 

change in one variable will have on other variables (www.camo.com). Multivariate 

data analysis in combination with design of experiments can greatly benefit biotech 

companies by improving process quality and understanding, reducing development 

timeframes and manufacturing costs and minimising time to market. Multiple linear 

regression (MLR), principal component analysis (PCA) and partial least squares 

(PLS) are some of the commonly used projection and regression methods in 

multivariate data analysis (Rathore, 2007).  

PCA is a mathematical analysis that provides a tool for dimensionality 

reduction leading to better visualisation and quantification of relations between the 

many variables. It uses an orthogonal transformation to convert a set of observations 

of potentially correlated variables into new, uncorrelated variables called principal 

components. The first principal component explains the highest variability in the 

data, with each folowing component, which are orthogonal to the previous principal 

components, accounting for most of the remaining variance (Kirdar et al., 2008; 

Rathore et al., 2014). 

PLS is a regression analysis technique for modelling relations between sets of 

observed variables. PLS constructs new predictor variables, named latent variables, 

which are optimal linear combinations of the original explanatory variables. As 

opposed to PCA which is generally used for the determination of trends, clusters and 

outliers and process analysis, PLS is used to relate process parameters to process and 

product quality attributes (Schwartz et al., 2009; Rathore et al., 2011; Abdi & 

Williams, 2013; Rathore et al., 2014). PCA and PLS are both methods that help 

compress data by keeping important information and disregarding the noise.  

Multiple linear regression (MLR) is a mathematical technique used to model 

the relationship between multiple independent predictor variables and a single 

dependent outcome variable (Marill, 2004). Multiple regression has the ability to 

predict an unknown response variable corresponding to a set of predictor variables as 

well as understanding the functional relationships between the dependent and 

independent variables. When multiple regression is used for prediction, the result is 

http://www.camo.com/
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an equation containing partial regression coefficients (McDonald, 2013). MLR 

provides a linear equation with respect to the predictor variables, but is unable to 

integrate any non-linear relationships that may occur between the predictors and the 

response variable. The linearity is only restricted to the model’s coefficients 

therefore the predictor variables can be non-linear. This allows the addition of non-

linearly transformed predictor variables (e.g. quadratic terms) in the linear regression 

modelling. Integrating such variables in the analysis allows for the non-linear 

behaviour in the data and the interaction between different variables to be taking into 

account while still having an easy explicable linear model (Hassan et al., 2013).  

1.6.3 Cell culture models  

Cell culture mathematical models are usually classified as mechanistic (kinetic) and 

empirical (statistical) models. Empirical models are only expected to accurately 

describe a set of observation, without taking into account the underlying mechanism. 

On the other hand, a mechanistic model describes the process, either directly 

observable or unobservable, under which the data was generated. In predictive 

microbiology models involve more empirical components (Baranyi and Pin, 2001). 

Mathematical models can play an essential role in the optimisation and control of 

bioreactors and fermentation processes. 

1.6.3.1 Kinetic models  

Tsuchiya et al. (1966) presented a microbial model classification spectrum that can 

also be applied to mammalian cell models. In this long established classification 

system, a mathematical kinetic model can be organized into each of the following 

categories (Sidoli et al., 2004): unstructured versus structured, unsegregated versus 

segregated, deterministic versus stochastic. Description of each model type in 

regards to cell culture modelling is presented in Table 1-5. 

Unstructured kinetic models  

Unstructured models are empirical and generally use extracellular data that is 

typically monitored during a culture, while considering intracellular processes as a 
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“black box”. Even though this method does not allow in depth study of cellular 

processes, these kinds of models have been described as being important in 

supporting optimisation and monitoring strategies (Provost and Bastin, 2004). In 

addition these models are useful for new cell systems when data is limited (Ho et al., 

2006). Quite a few examples of unstructured models used to describe mammalian 

cell growth (hybridoma cells) have been presented in the literature (Glacken et al., 

1989; Frame and Hu, 1991; Xie and Wang, 1994; Zeng, 1996; Jang and Barford, 

2000).  

Table 1-5: Classification system of mathematical kinetic cell culture models* 

* Adapted from Sidoli et al. (2004); Kontoravdi et al. (2007a, 2007b) 

Structured kinetic models  

Structured kinetic models, as opposed to unstructured kinetic models, which do not 

take into account the inner structure of the cell, incorporate biological knowledge by 

grouping the biomaterial into distinct compartments (Sidoli, Matalaris and Asprey, 

2004). Many structured models have been reported in literature (Tsuchiya et al., 

1966; Harder and Roels, 1982; Lee, 2001). As the number of parameters greatly 

increases with such detailed models, it becomes hard to provide parameter estimation 

(Flickinger, 2013). A structured, segregated and stochastic model offers the most 

realistic representation of cell behaviour during cell culture (Sidoli et al., 2004).  

Classification Description 

Unstructured Does not take into account the inner structure of the cells 

Structured 

Incorporates biological knowledge by separating the cells 

into compartments that are chemically and/or physically 

distinct 

Unsegregated 
Cell culture is homogeneous and composed of identical 

average cells 

Segregated 
Cell culture is heterogeneous and composed of cells in 

different stages of development 

Deterministic Cellular processes are not subject to variability 

Stochastic Cellular processes are random 
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1.6.3.2 Hybrid models  

Several hybrid models used in chemical and biochemical engineering have been 

presented in literature throughout the years (Schubert et al., 1994; Roubos et al., 

2000; Roubos, 2002; Ho et al., 2006; Kontoravdi et al., 2007). Hybrid models are 

powerful tools for process monitoring, control and optimisation (Galvanauskas et al., 

2004).  

1.6.3.3 Statistical models  

Kinetic versus statistical models  

Unstructured kinetic models are mechanistic models, which use mathematical and 

kinetic equations to describe growth rate, substrate consumption and product 

synthesis. A structured model can be developed from an unstructured kinetic model 

while splitting the whole process into small parts for a more detailed assessment. In 

terms of cell culture processes, the metabolism and growth of cells are multistage 

and complex biochemical processes, thus it is nearly impossible to produce a 

complete description of the growth and production mechanism. These structured 

models require the measurement of large numbers of parameters (Baughman and 

Liu, 1995), therefore are rarely used for the design, control and optimisation of 

bioprocesses. Statistical (empirical) models are alternatives to conventional model 

approaches, which are guided by kinetics, material and energy conservation rules 

(Lee and Gilmore, 2006). One of the disadvantages of statistical models when 

compared with structured kinetic models is the need for large number of experiments 

to investigate relationships between factors and responses. A solution to this is the 

use of design of experiments (DoE) approach, which minimises the number of 

experiments that need to be performed.  

Design of experiments  

Statistical methods require a large number of experiments. In most cases, cost, time 

and required resources limit the process of generating large amounts of data, 

therefore the data obtained needs to be rich in information. Using a statistically 
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designed experiment provides a good solution for acquiring information-rich data 

from the process of interest (Haaland, 1989, Montgomery, 2004). The design of 

experiments (DoE) is a computer-enhanced, systematic approach to experimentation 

that considers all factors simultaneously. The objective of a statistically designed 

experiment is to obtain effective results in the shortest possible time and with 

minimum resources (Cornell, 2002, Myers and Montgomery, 2002). Statistical 

models can be useful when there is no accurate mathematical model equation as well 

as when there are complex biochemical reactions and interaction between variables. 

Statistically designed experiments offer the ability to analyse many variables at the 

same time, with a low number of observations (Lee and Gilmore, 2006). 

1.6.4 Predictive modelling  

The introduction of the QbD concept has changed the way of looking at process 

understanding and control in the pharmaceutical and biopharmaceutical industry. 

Risk assessments, design of experiments, predictive models, process analytical 

technology and data analysis are essential tools within QbD. Process modelling is an 

essential part of the QbD framework (Kourti, 2015). Models are useful in facilitating 

process understanding and control, determination of design space and process 

development, making them part of the product lifecycle (Kourti, 2010). Statistical 

models combined with scale-down HT experimental systems can help improve the 

ability of gaining a much better design space confidence.  

Abu-Absi et al. (2010) developed regression models for specific growth rate 

and final viability at the seed bioreactor stage as well as normalized titre, high 

molecular weight (HMW) aggregate species, N-Linked oligosaccharide profile and 

analytical CEX change variant profiles at the production bioreactor stage. The design 

space for a monoclonal antibody cell culture process was mapped. The operational 

parameters at each stage (vial thaw, shake flask inoculum expansion, seed bioreactor 

and production bioreactor) were prioritized by a risk analysis approach such as 

failure modes and effects analysis (FMEA) and classified as non-key, key and 

critical. The model terms with significant effects on titre were seed bioreactor 

temperature, seed bioreactor final viable cell density (VCD), production bioreactor 
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temperature shift timing, production bioreactor pH, production bioreactor initial 

VCD and production bioreactor dissolved oxygen. The resulting regression model 

for titre had a reasonable prediction capability (predicted R2 of 0.61). Using 

predictive models, process conditions were optimised in order to achieve high 

product titre while controlling glycosylation.  

Rouiller et al. (2012) generated models for product titre, bioactivity and the 

levels of various product variants (glycoforms, oxidized forms), product-related 

impurities (HMW species, clipped forms) and process-related impurities (HCP, 

DNA). The production bioreactor step of an Fc-Fusion protein manufacturing cell 

process was characterized following quality by design (QbD) principles. A risk 

assessment exercise was employed to identify potential critical and key process 

parameters with a possible impact on product quality and process performance. 

Analysis of variance (ANOVA) was used to generate models for titre and each of the 

critical quality attribute identified using Design Expert software. The parameters 

influencing product titre were pH, dissolved oxygen (DO), culture duration and 

seeding density, while those influencing HCP were pH and to a lesser extent 

dissolved oxygen and culture duration. The resulting models were used to define the 

cell culture design space. The design space established for cell culture process 

resulted in the establishment of operational ranges for pH, DO and cell culture 

duration in order to provide consistent delivery of a cell culture harvest that meets 

the DSP requirements for impurities and the drug substance.   

1.7 Bioprocess economics modelling  

1.7.1 Introduction  

The success of new biopharmaceutical candidates relies more and more on economic 

issues. Pressures for cost and time reduction of drug development lead to links being 

made between a company’s manufacturing strategy and business strategy (Farid et 

al., 2005b). In order to minimize cost of development, reduce time-to-market and 

quantify risks for maintaining economic returns, fast and effective tools are 

necessary. Computer-aided design tools are able to help achieve these objectives and 
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guarantee rapid delivery of drugs to patients. The use of software tools to help make 

business decisions is critical. The application of process-cost modelling enables rapid 

comparison of different manufacturing and development options (Lim et al., 2010). 

Simulations can be used for cost analysis, resource utilization and mass balance 

assessment and are an important part in the analysis and selection of process options 

and characterization of unit operations, contributing to better decision-making in 

terms of business and process needs (Lim et al., 2005).  

1.7.2 Factors impacting COG/g 

In order to lower COG/g, efforts are made to try and decrease batch costs or to 

increase the overall process productivity by an increase in step yields. Increases in 

titres are expected to have a significant impact on lowering COG/g, assuming that 

DSP costs do not countermand the improvements in USP. As titres increase, the main 

costs of the manufacturing process are shifted to the DSP process as high proteins 

loads are needed to be purified by the chromatography steps (Butler and Meneses-

Acosta, 2012). This would result in adopting higher number of cycles or purchasing 

larger columns in order to cope, leading to an increase in costs per batch. The overall 

COG/g could still be reduced if the increase in the overall productivity compensates 

the higher DSP costs. As mAb titres will increase further in future years, the 

purification process will become a significant contributor to the overall COG/g and 

will drive the need for optimisation and cost savings (Farid, 2009).  

 The number of downstream steps as well as the yield of each step has an 

impact on the overall DSP yield. Increases in step yields combined with a reduction 

in DSP steps have led to a 40-75 % increase in overall yield, contributing to lower 

cost of goods (Werner et al., 2004; Li et al., 2005). Sommerfeld and Strube (2005) 

highlighted the importance of individual step yield increase on the overall COG/g. 

They showed that increasing the average step yield in a seven-step process from 85 

to 95 % led to an increase in the overall yield from 30 to 70 %, corresponding to a 40 

% lower downstream COG/g. In mAb manufacturing, the overall yield could be 

improved through the elimination of buffer exchange steps, by developing 

chromatography steps able to process material eluted from the previous step, with no 



 

70 

 

further treatment. Higher protein loads resulted from high titre cultures has an impact 

on the capacity of chromatography columns, especially when the limit for column 

diameters is 2 m. More cycles required to cope with the increased load will result in 

longer processing times, reducing the facility throughput and influencing COG/g. 

Improvements in resin binding capacity would reduce resin volumes and amount of 

buffer used. This would reduce consumables costs, a main part of the COG/g at 

higher demands and titres (Sommerfeld and Strube, 2005; Farid, 2009).  

1.7.3 Classification of process economic models 

Standard process economic models deal with problems such as predicting COGs, 

capital investment and cash flow analysis as well as risk assessment and project 

management. In order to determine COGs for a process, process models need to be 

combined with cost models (Farid et al., 2000). Certain parameters from process 

models such as resource usage and overall output are essential to COG models (Farid 

et al., 2005a, Mustafa et al., 2006). When selecting an appropriate software platform 

for these models, factors such as the desired outputs, the tool’s requirements 

specification and the level of detail need to be considered. Based on which decisions 

are made, the model can be static or dynamic and deterministic or stochastic (Table 

1-5). 

Table 1-6: Classification system of process economic models  

 

Classification Description 

Static   Unable to account for time dependent variations 

Dynamic  
Allow the evaluation of simultaneous processes over time  

Enable a more realistic estimation of cost 

Deterministic  Process outputs do not account for risk  

Stochastic  
Incorporate uncertainty within outputs  

Give a more realistic overview of the process 
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1.7.3.1 Static versus dynamic models  

Static models are the most commonly used models, spreadsheet-based, simple and 

easy to build. Static process models can be combined with cash flow models, to work 

out how profitable investments are as well as to COGs models in order to obtain the 

cost breakdown and evaluate how sensitive COG is to different process parameters. 

These can be best applied to estimate costs in early stages of projects. Puich and Paz 

(2004) showed that static models are not suited for situations where delays occur due 

to resource constraints.  

 Dynamic models are more complicated to build and use compared to static 

models, but these provide a more realistic tool for outputs estimation such as cost and 

throughput. They are time-dependent therefore they can evaluate how operations will 

change over time. Dynamic models are able to analyse simultaneous events, logistics 

and delays taking place during manufacturing process due to resource limitations 

(Puich and Paz, 2004, Rathore et al., 2004, Farid, 2007a). Dynamic process models 

are best implemented using discrete -event software packages while COG and cash 

flow are better observed in spreadsheet-based software (Mustafa et al., 2004, Lim et 

al., 2005, Lim et al., 2006).  

1.7.3.2 Deterministic versus stochastic models  

Deterministic models are conventional process models, which assume the process is 

certain if the inputs are fixed. The process outputs do not account for risk that might 

occur. This is not realistic as a manufacturing process is always facing technical and 

market-related uncertainties such as batch failures, cell culture titres, purification 

yields and processing time (Biwer et al., 2005, Lim et al., 2006).  

Stochastic (or probabilistic) models are models in which some of the model’s 

components are taken from a probability distribution. The outputs of these models 

are able to capture uncertainties giving a more realistic overview of the process 

studied (Wang, 2010). An overview of the deterministic and stochastic bioprocess 

economics models presented in the next section are shown in Fig. 1-5.
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Figure 1-5: Overview of deterministic and stochastic bioprocess economic models presented in this section 
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1.7.4 Deterministic process economics 

1.7.4.1 Biosolve  

Biosolve is a Microsoft Excel-based process-cost modelling tool that can be used for 

the optimisation and development of cost-effective bioprocesses. It can be applied in 

early stages of process development in order to recognize the impact of scale, as well 

as financial impact and to help make better business decisions. Biosolve can also be 

used to examine the most recent technologies and analyse their impact on specific 

processes (www.biopharmservices.com). The software is easy to use particularly by 

users that are already familiar with Microsoft Excel and it has a flexible 

configuration. Within the cost model a sequence of unit operations is defined. 

Process parameters such as flux rates and binding capacity can be specified as well 

as personnel requirements and operating time. The effects of varying different 

parameters on the operating costs can be analysed through two analysis tools: 

Sensitivity and Scenario. A cost database is included within the model to maintain 

costs regarding labour, consumables, etc. The main outputs of the software include 

capital investment, materials cost, all of which play a part in the COG calculation 

(Lim et al., 2010).  

Sinclair (2010) used the Biosolve software to assess the impact of different 

geographic locations on the COGs of a standard monoclonal antibody process. A 

case study is used to estimate cost contributions of different single-use systems on 

the manufacturing costs, making the comparison with stainless steel systems by 

taking into account various geographical regions. It was observed that the capital 

required to build a stainless steel facility was lowest in China, followed by 

Singapore, Japan and the UK. This is due to the lower labour fees paid in China. A 

29 % reduction is observed when comparing the UK with China. When changing 

from stainless steel to disposables, similar savings are occurring in each region. It is 

observed that the amount of savings is lowered as manufacturing costs are reduced.  
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1.7.4.2 SuperPro Designer  

SuperPro Designer is a commercial batch simulation package used to model 

bioprocesses. It involves all the process and subprocess steps as well as the cost 

associated with them. The generated COG models allow accurate estimation of the 

final cost of the product produced at manufacturing scale – from vial thawing to final 

product (Costioli et al., 2010). Some of its advantages include the ability to estimate 

profitability and cost, to quickly scale-up or scale-down equipment sizes for various 

annual outputs and the ability to generate graphical representation of flowsheets. 

This tool is able to simultaneously perform equipment sizing and costing, economic 

evaluation and material and energy balances (Shanklin et al., 2001). Some of the 

limitations associated with static models such as SuperPro Designer include the 

inability to account for constraints such as resource and utility as well as handling 

large datasets (Stonier et al., 2012). Another downside is the fact that probability 

distributions cannot be used to incorporate and illustrate uncertainties associated with 

parameters (Mustafa et al., 2006). 

 SuperPro Designer has been used to estimate the production cost, capital 

investment and key profitability indicators of monoclonal antibodies production 

processes using mammalian cell culture. Oh et al. (2004) used this tool to investigate 

the impact caused by increasing the staggered number of fermenters to double the 

annual production rate. A comparison between the base case and the optimized case 

showed that by increasing capacity, the total capital investment increases by 12% and 

the annual production cost increases by 88% while the ROI increases by 78% and the 

unit production cost decreases by 7%. Harrison et al. (2003) demonstrated how 

sensitive the production cost is to the annual production rate and showed the 

exponential decrease of the production cost as the production rate is 10 times higher. 

It has also been shown that the annual production rate influences the upstream to 

downstream costs ratio, therefore when the production rate increases, the costs move 

towards the downstream processing.  
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1.7.5 Stochastic process economics 

It is difficult to manage the manufacturing of biopharmaceuticals in order to 

maximize throughput and minimize the COGs due to technical, clinical and 

commercial uncertainties. There is an increased interest in the ability to model 

uncertainty in manufacturing operations. The most common uncertainties influencing 

the manufacture of biopharmaceuticals are technical and market-related. Some of the 

technical uncertainties include downstream processing yield, duration of 

manufacturing tasks, product titre during cell culture and the possibility of 

contamination. Market uncertainties comprise of dosage levels, costs of resources 

and market demand (Lim et al., 2005; Stonier et al., 2012). There are different ways 

of considering uncertainty such as sensitivity analysis and risk analysis including risk 

adjusted values and Monte Carlo simulations. These methods are described below.  

1.7.5.1 Sensitivity analysis  

Carrying out a sensitivity analysis of the principal variables is the easiest method of 

determining and quantifying uncertainties related with a particular project. 

Sensitivity analysis gives a systematic way to examine the effect of changing 

parameters by determining the impact of ± x % changes in each variable on the 

output measures therefore establishing the stability of the base case (Lim et al., 2005; 

Thabane et al., 2013).  

1.7.5.2 Risk analysis  

Risk analysis is an important part of Process Analytical Technology (PAT) used in 

the biopharmaceutical industry. PAT is an essential tool for the implementation of 

QbD, which can be used to monitor and control the manufacturing process (Riley 

and Li, 2011). Methods of incorporating risk necessary for more complicated 

problems require the assessment of probability functions for key uncertain factors. 

This can be done through ‘risk adjustment’ and ‘Monte Carlo simulation’ (Farid et 

al., 2005; Farid, 2007a). In risk adjustment, each input is weighted by how likely it is 

to occur. The output measures are then risk-adjusted values that illustrate expected 

average values, which consider all possible outcomes.  
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Monte Carlo Simulation  

Monte Carlo simulation is a type of stochastic modelling that can be used to 

determine the impact of project uncertainties on the outputs. It uses the input 

probability distributions to find out the probability distributions of the outputs. 

Monte Carlo technique imitates the randomness inherent in manufacturing by 

generating random outcomes for probabilistic factors when applied to a static or 

dynamic model. Repeating this simulation process a large number of times leads to a 

range of possible output values that help determine the system’s performance. Monte 

Carlo simulation has been used in various bioprocessing economic studies in order to 

examine the impact of manufacturing uncertainties such as batch failure, product titre 

and yield on cost (Pollock et al., 2013; Simaria et al., 2012; Allmendinger et al., 

2014b). Gold Sim (GoldSim Technology Group LLC, Washington, USA) and 

@RISK (Palisade Corporation, Newfield, NY, USA) are some of the commercial 

packages used for Monte Carlo simulations.  

1.7.6 Dynamic and stochastic studies 

Upstream process decisions are generally based on either perfusion or fed-batch 

cultures. Lim et al. (2006) used a risk-based discrete-event tool to assess the 

economic feasibility of fed-batch and perfusion cultures via a case study based on 

commercial production of antibodies at the 50 kg scale. The lower productivity and 

higher start-up costs of fed-batch processes were compared to the higher productivity 

and higher operational risks of perfusion processes. The deterministic analysis 

showed that the annual COG/g were very similar for both options under the stated 

assumptions, with 3% reduction in the perfusion option compared to the fed-batch. 

The deterministic analysis (no risk) recommended the perfusion option as the more 

economically feasible option due to the higher projected net present value (NPV) and 

lower initial investment. The stochastic analysis (incorporating risk by accounting for 

fluctuations in product titre, DSP yield and the feasibility of contamination and 

equipment failure) showed that the perfusion option had a lower reward/risk ratio 

and failed to meet the expected output. This would make the perfusion option 

infeasible when accounting for uncertainties and risks. The studies presented 
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highlighted the importance of incorporating risk and uncertainty when making 

manufacturing and economical decisions and the limitations of relying on 

deterministic analysis alone.  

1.7.6.1 Financial and operational multi-criteria decision-making (MCDM) 

Multiattribute decision making (MADM) models involve making decisions in the 

presence of various, usually conflicting criteria (Rao, 2007). The models have the 

ability to include qualitative as well as nonfinancial aspects of performance in the 

evaluation of different decisions (Farid et al., 2005b). The use of multiple criteria can 

be supported through multi-criteria decision-making (MCDM), one of the most 

common sections of decision-making (Triantaphyllou, 2000). A variety of methods 

are available in MCDM that have been used to process non-financial and financial 

data. For example, Platts et al. (2002) used the additive weighting technique to 

analyse the decision to invest in internal manufacturing capabilities or to outsource, 

Farid et al. (2005b) used the same method to investigate the decision to either build a 

pilot plant with only stainless steel equipment, a pilot plant based on fully disposable, 

components or a hybrid pilot plant with stainless steel fermenters but with fully 

disposable components in the downstream production areas. Furthermore, Steuer and 

Na (2003) published a review of 265 publications that concentrate on using MCDM 

to assist decision-making in financial situations. 

George et al. (2007) presents the development of a decision-support 

framework for decision-making scenarios that uses multi-criteria decision-making 

(MCDM). Its functionality is demonstrated through a case study based on a 

biopharmaceutical company confronted with several options for purchasing 

commercial manufacturing capacity. A stochastic analysis of options was carried out. 

The framework was implemented in Microsoft Excel and is composed of four 

features: a biomanufacturing process model, a profit and loss model, a MCDM 

technique (additive weighting technique) and a number of criteria used to 

differentiate between the different options. The model’s input variables are the 

expected fermentation titre, the anticipated success rate of each batch, the annual 

demand and the overall product yield, whereas the model’s outputs are COG/g and 
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the fixed capital investment (FCI) for constructing the plant. The deterministic 

analysis showed that the Build, Partner and Partner/Build options scored higher than 

the average additive weighting technique score. The Build option was the preferred 

option after this analysis as it had the highest score, followed by the Partner option 

and the Partner/Build option. This option results in the highest NPV value and the 

highest total value of assets. The sensitivity analysis showed that the most significant 

factor influencing the deterministic results was the company’s market capture. Monte 

Carlo simulation has demonstrated that the most profitable option and the one that 

has a greater potential to generate profit was the CMO/Build option. A stochastic 

analysis proved that the ranking positions remain the same as for the deterministic 

analysis with Build, Partner and Partner/Build being the top three. The application 

of the model to a case study highlighted the limitations of using a single criterion 

when making strategic manufacturing decisions as other important criteria might 

have been omitted. For the best option to be identified, the use of multiple criteria 

analysis under uncertainty is critical.  

1.7.6.2 Discrete-event simulation  

Stonier et al. (2013) presents the implementation of a decision-support tool designed 

to resemble process variations using advanced multivariate statistical techniques, to 

help discover the reasons of short-term facility fit problems. The large datasets 

generated from biopharmaceutical industrial batch processes are evaluated using 

principal component analysis together with clustering algorithms. This study expands 

on an already developed database-driven simulation platform that includes process 

economics, equipment sizing and mass balancing of purification sequences in 

antibody manufacturing processes (Stonier et al., 2012). This study presents the 

expansion of the tool to be able to mimic the stochastic aspects of industrial batch 

processes achieved by creating the ability to perform Monte Carlo simulations and 

identifying what is the best way to incorporate the stochastic results into advanced 

multivariate statistical analysis techniques. A typical monoclonal antibody 

manufacturing process was simulated in a 10.000 L facility. Generation of the base 

case data considering a titre of 2 ± 0.2 g/L shows that the predicted throughput is 

below the required one. This suggests a potential facility fit problem. The simulation 
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tool registered an error event when the tanks volume is exceeded. This arose in the 

AEX chromatography and virus inactivation pool volumes. As the largest volume 

that these tanks can hold is 2500 L, the extra volume was sent to waste resulting in 

product losses. These losses have a big influence on the overall throughput when a 

high number of batches are performed. This facility fit problem could be resolved by 

modifying the facility to redirect the product into auxiliary tanks. After the process 

modification, the variation in mass loss is removed.  

1.7.6.3 Evolutionary (genetic) algorithms (EA)  

Single-objective optimisation  

Optimisation techniques are used when the number of scenarios to be explored is too 

large for the scenarios to be individually evaluated. Simaria et al. (2012) introduces a 

meta-heuristic optimisation approach using genetic algorithms to focus on the 

difficulty of designing facilities with several possible permutations. This single-

objective optimisation technique is able to address various decisions at the same time 

in order to decide how best to design these facilities and minimise COG/g. This 

paper focuses on the design of flexible and cost-effective facilities while considering 

various purification sequences per product. The design of these facilities is regarded 

as an optimisation problem in which choices made at levels such as product, facility 

and unit operation represent the decision variables. The problem consists in 

determining the equipment sizing for each operation, the optimal upstream to 

downstream trains ratio as well as the sequence of purification steps that needs to be 

used for each product, while minimising COG and maintaining purity and demand 

for various products having different yields, demands and impurity levels. The 

algorithm is connected to a detailed process economics model to examine the 

numerous operational and financial outputs of each option.  The applicability of this 

algorithm is demonstrated through an industrially relevant case study. The case study 

examines the design of optimal purification sequences and chromatography column 

sizing strategies for a manufacturing facility producing three mAbs in different 

stages of development, with different demands and titres. The tool allowed the 
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selection of the most cost-effective purification sequences and sizing for each 

product in the facility.  

 Allmendinger et al. (2014a) builds on the work of Simaria et al. (2012) and 

examines the application of evolutionary algorithms for the identification of 

chromatography column sizing strategies for the sequence of purification steps used 

in the purification of mAbs. The closed-loop optimisation problem was defined as 

single-objective (minimise COG/g), subject to various constraints and uncertain 

parameters. Monte Carlo (MC) simulations based on probability distributions were 

adopted in order to account for the impact of uncertainty (fluctuations in titre) on 

COG/g. To demonstrate the framework’s ability to identify cost-effective 

chromatography equipment sizing strategies, an industrially-relevant case study 

looking at a single-product mAb facility was used. Chromatography column sizing 

strategies that resulted in savings up to 20 % in COG/g compared to the common 

approach used by industry (base case) where identified by the algorithm. Using 

stochastic EAs allowed the determination of more robust solutions, able to handle 

titre fluctuations.  

Multiobjective optimisation 

Allmendinger et al. (2014b) presented a framework which linked an evolutionary 

multiobjective optimisation algorithm (EMOA) to a process economics model. The 

aim was to identify sequences of chromatography purification steps and column 

sizing strategies that are subject to multiple objectives including COG/g, robustness 

in COG/g and the ability to remove impurities. An industrially relevant case study 

with different demands, USP: DSP train ratios and HCP levels was used to show the 

framework’s ability to identify purification processes that satisfy the objectives and 

are robust to uncertainty. The uncertainty was modelled using probability 

distributions during Monte Carlo trials in factors such as product titre, eluate 

volumes, dynamic binding capacities, step yields, HCP log reduction and initial 

HCP. The aim was to understand the influence of uncertainty on the DSP design with 

regards to chromatography sequence and column sizing. Variations in step yields and 

product titre have the most significant impact on COG/g while variations in initial 
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HCP levels and HCP logs impacted on HCP level post purification. The framework 

was able to identify purification processes that offered savings up to 10% compared 

to the industrial platform.   

 Making good decisions early in the development cycle of biopharmaceuticals 

is critical to the success of this sector. The use of computer-assisted models which 

are able to integrate bioprocess economics with stochastic behaviour, multiple 

conflicting objectives, manufacturing logistics and numerous constraints have been 

presented. Decision-support tools provide a very important resource to use in 

assessing alternative strategies to handle future challenges (Farid, 2013). 

1.8 Aims and Organisation of thesis 

The previous sections of this chapter outlined the current-state and future directions 

of biopharmaceutical drug development focusing on monoclonal antibodies. 

Overviews of the impurities encountered in biopharmaceutical manufacturing (with 

an emphasis on host cell proteins) including the challenges they pose were presented. 

In addition, statistical and economics modelling techniques currently used in 

evaluating biopharmaceutical manufacturing process were also highlighted. In the 

literature review it was shown that the antibody sector has made significant progress 

in increasing cell culture titres. However there is a limited understanding of the 

consequences of mAb titre increases on impurity levels and the subsequent 

downstream processing performance. Therefore, it is essential to have systematic 

methods to explore such interactions. Also, the impact of cell culture conditions on 

the levels of certain problematic HCPs (e.g. protease) as well as the relationship 

between HCP levels and protease activity has not been previously investigated.  

The aim of this thesis was to develop a systematic framework based on QbD 

principles, combining state-of-the-art, DoE driven, high throughput cell culture 

experiments (ambr system) with statistical cause-and-effect predictive correlations 

and process economic models. This will facilitate the identification of cell culture 

strategies that balance the needs of upstream and downstream manufacturability, 

robustness to process fluctuations and cost-effectiveness, early in the development 

cycle. An additional aim was to provide a better understanding of the relationship 
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between the protein of interest (mAb), cell culture conditions and the levels of HCPs 

and certain problematic HCPs (proteases) present in the harvest material. In order to 

achieve these aims, certain objectives were formulated and these form the basis of 

the subsequent chapters.  

 Chapter 2 provides an overview of the materials, equipment and analytical 

techniques used to perform small-scale cell culture experiments and protease studies. 

Statistical methods used to derive and evaluate predictive correlations developed 

based on high throughput ambr are presented. Software used to facilitate the 

statistical and economics analysis of cell culture strategies was also shown.  

 Chapter 3 presents a QbD approach to cell culture process development (high 

throughput ambr experimentation and Gyrolab analytics linked with DoE) to 

characterise cell culture performance associated with different generation numbers 

and explore the consequences of titre increase on HCP levels at harvest.  

 Chapter 4 investigates the impact of cell culture parameters (temperature, 

media osmolality and seeding density) on protease activity at harvest as well as 

examines the relationship between HCP levels, mAb concentration and protease 

activity resulting from unclarified harvest samples. A commercially available 

protease assay was optimised in order to make it suitable for the analysis of 

unclarified cell culture harvest. 

 Chapter 5 presents the use of multivariate analysis techniques (multiple linear 

regression) to characterise the high throughput cell culture data generate in Chapter 3 

using the ambr system and derive predictive cause-and-effect correlations. The 

statistical equations are able to predict cell culture outputs (mAb titre and HCP 

levels) based on cell culture inputs (temperature, seeding density, media osmolality, 

pH and timing of feed initiation).  

 Chapter 6 explores the integration of the predictive modelling equations 

derived in Chapter 5 with a prototype bioprocess economics and optimisation tool in 

order to identify the most cost-effective cell culture strategies as well as the impact 

of uncertainty in cell culture parameters on outputs (product output (kg) and HCP final 

(ng/mg)) and the likelihood of these falling out of specification. 
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Chapter 7 presents a summary of the main conclusions and discusses possible 

directions for future work.  
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Chapter 2  

2 Materials and methods  

2.1 Equipment used  

2.1.1 ambr system  

The ambr 24 and ambr 48 systems were used, consisting of 24/48 single-use 

bioreactors split into two/four cultures stations (CS1, CS2, CS3, and CS4) each 

containing 12 micro bioreactors. The ambr 24 was used for generating AMBR 1, 

AMBR 2 and AMBR 3 experimental data while ambr 48 was used to generate 

AMBR 4 experimental data. Each culture station has independent stirring and 

temperature control. Each micro bioreactor is equipped with a miniature marine 

impeller, a sparger for gas supply, as well as integrated optical sensors for pH and 

dissolved oxygen (DO) providing individual closed loop control of these parameters. 

In order to maintain aseptic operations during the culture, the system is placed inside 

a bio-safety cabinet (Lewis et al., 2010; Hsu et al., 2012; Moses et al., 2012).  

2.2 Cell culture  

2.2.1 Cell line  

The cell line used was a proprietary MedImmune CHO high producing cell line, 

expressing an IgG1 antibody. The cell line was cultured in protein-free CHO media 

supplemented with a two-part proprietary nutrient feed. Cells from different cell 

stocks (presenting different generation numbers) have been used for each of the 

AMBR experiments: 33, 44, 54 and 59 for AMBR 1, 2, 3 and 4 respectively. The 

cells with a generation number of 33 within AMBR 1 are closer to a mid-generation 

number as used by MedImmune for this particular cell line, whereas cells with a 

generation number of 54 within AMBR 3 are closer to a late generation number. For 

the purpose of this thesis, experiments with a generation number of 33, 44 and 54 

will be referred to as low, mid and high generation. 
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2.2.2 Fed-batch protocols  

Three levels of osmolality were used throughout the experiments: base level, 

intermediate and high osmolality media. The base osmolality refers to the osmolality 

of the proprietary MedImmune media, used for routine cell culture. The intermediate 

and high osmolality conditions were prepared by the addition of different amounts of 

NaCl stock solution to the base medium, while the concentration of all other 

components was kept constant. One day prior to inoculation 8 mL of media of 

different osmolalities was added to each ambr vessel, according to the DoE design.  

Prior to ambr inoculation, different shake flasks were set up with double the seeding 

density intended within the ambr DoE design, in the corresponding media osmolality. 

An 8 mL volume was then added from each shake flask to the corresponding ambr 

vessel to make up a final volume post inoculation of 16 mL with the correct seeding 

and media osmolality.   

Feeding of the cultures started on day two with five subsequent additions that 

involved the addition of a two-part feed (average 400 µL Part A feed and 24 µL Part 

B feed). For all ambr cultures, glucose concentration was monitored throughout and 

fed up to 8 g L-1 when the concentration fell below 5 g L-1. A sample of 100 µL was 

taken every day from each ambr microbioreactor for the measurement of glucose and 

lactate concentration. Starting from the media addition day, 20 μL of antifoam was 

added every other day to each AMBR culture. Cell counts measurements were 

performed every day using ViCell. A sample of 600 µL was taken on day 0 followed 

by a ¼ dilution with PBS for the subsequent days until harvest (150 µL). Titre and 

HCP samples (500 and 400 µL, respectively) were taken in the last five days of 

culture (day 11-15). Offline pH measurements (400 µL) were performed every other 

day starting with day 1. For all cultures, pH was controlled within ± 0.1 of the set 

value for each culture using CO2 in the inlet gas and the DO was maintained at 50 % 

of air saturation. According to the vendor guidance, a working volume of between 

10-15 mL in ambr 24 is sufficient in order to maintain optimum gas exchange and 

mixing time. Taking into account all the sample and addition volumes, the working 

volume within all of the ambr experiments did not drop below 10 mL until day 14. 

From day 13-15, the volume dropped from 10 mL to 8.1 mL. As the working volume 
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was maintained over 10 mL until day 14, it is not believed that the sampling and 

additions had any impact on the growth of the cultures (peak viable density usually 

achieved in day 8-10). Differential dilution across different conditions could only 

come from the small differences in glucose addition based on the algorithm 

presented above and base additions during the culture. There were very small 

differences in final volumes between different conditions which suggests that the 

differences were negligible. 

2.3 DoE experiments 

2.3.1 AMBR 1 

A DoE design with two parameters (seeding density and media osmolality) varying 

on three levels (32 full factorial) was set up for each of the two culture stations within 

AMBR 1, using low generation cells (33). The micro bioreactors were seeded at a 

density of 0.49, 0.8 and 1.14 × 106 cells mL-1, respectively and osmolalities of 314, 

353 and 394 mOsm kg-1 were used. A standard culture temperature of 36.5 oC was 

maintained for all cultures within CS1, while in CS2, a temperature shift to 33 oC 

was carried out after day 4 of culture. Certain cultures within AMBR 1 and AMBR 3 

were identified as outliers using PCA analysis. These cultures also showed an 

abnormal lactate profile compared to the rest of the cultures (data not shown) and 

were removed from subsequent analysis. The experimental design for AMBR 1 as 

well as the exact number of outliers removed from each culture station within each 

ambr experiment is summarised in Chapter 3, Table 3-1.  

2.3.2 AMBR 2 

For each culture station within AMBR 2, a 32 full factorial DoE design was carried 

out, using mid generation cells (44). For CS1, the seeding density and pH were 

varied on three levels (0.42, 0.69 and 1.06 × 106 cells mL-1; 6.6, 6.8 and 7) while the 

addition of feeds started on day 2 of culture for all 12 micro bioreactors. For CS2, all 

micro bioreactors were seeded at a density of 0.9 × 106 cells mL-1, while pH and 

timing of feed initiation were varied on three levels (6.6, 6.8 and 7; feed start day 1, 2 

and 3). A temperature of 36.5 oC and an osmolality of 313 mOsm kg-1 was 
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maintained for all 24 experiments. The experimental design for AMBR 2 is 

summarised in Chapter 3, Table 3-1. 

2.3.3 AMBR 3 

A DoE design with two parameters (seeding density and media osmolality) varied on 

three levels (32 full factorial) was set up for each of the two culture stations within 

AMBR 3 using high generation cells (54). The micro bioreactors were seeded at a 

density of 0.58, 1.19 and 1.8 × 106 cells mL-1, respectively and osmolality levels of 

310, 356 and 389 mOsm kg-1 were used. A standard culture temperature of 36.5 oC 

was maintained for all cultures within CS1, while in CS2, a temperature shift to 33 

oC was carried out after day 4 of culture. The experimental design for AMBR 3 is 

summarised in Chapter 3, Table 3-1. 

2.3.4 AMBR 4 

An ambr 48 was used to set up a face centred full factorial DoE design with centre 

and axial points at two temperatures. The samples from these experiments were used 

to carry out assay development work as well as generating results for protease 

analysis. Within the DoE design, three numerical factors were varied on five levels, 

seeding density (0.53, 1.1, 1.6, 2.1 and 3.57 × 106 cells mL-1), media osmolality (311, 

323, 335, 350, 365 mOsm kg-1) and pH (6.6, 6.8, 7, 7.2, 7.4). A standard culture 

temperature of 36.5o C was maintained for all cultures within CS1 and CS2, while for 

CS3 and CS4, a temperature shift to 33 oC was carried out after day 4 of culture.  

2.4 Analytical techniques 

2.4.1 CCH, qMab and specific HCP productivity (qHCP) 

Cell population growth was assessed in terms of the cumulative cell hours (106 cells 

ml-1 h). CCH was calculated by summing the areas under the viable cell growth 

curve. Each area (corresponding to the area between successive cell counts) was 

calculated as follows: 
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where VCD0 ,VCD1 represent the viable cell density (cells mL-1) in day 0 and day 1 

whereas h0, h1 represent the elapsed time (in hours) between two cell concentration 

readings. CCH was then calculated by summing the areas underneath the entire 

growth curve from inoculation to harvest: 
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The qMab at harvest was calculated as follows:  
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The qHCP at harvest was calculated as follows:  
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2.4.2 Cell generation number  
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where VCD(passage) represents the viable cell density (cells mL-1) of the day of passage 

(each 3 days) and VCD(seeding) represent the seeding density = 0.3 × 106 cells mL-1. 

The final generation number was calculated by adding the increase in generation 

number with each passage to the generation number of the previous passage.  

 n noGen ...  2 noGen   1 noGen  n -1 noGen    (6) 
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2.4.3 Viable cell concentration and Viability  

Viable cell concentration and percent viability were determined by the trypan blue 

exclusion method using Vi-CellTM XR Cell viability analyzer (Beckman Coulter, 

High Wycombe, UK). 

2.4.4 Protein A HPLC Analysis 

Monoclonal antibody concentrations were determined by protein A High Pressure 

Liquid Chromatography (HPLC) using an Agilent 1200 Series HPLC system 

(Agilent Technologies, South Queensferry, UK). Various sample volumes were 

loaded onto a Poros® Protein A 20 μm Column (Applied Biosystems, Warrington, 

UK) using a phosphate buffer (adjusted to pH 7.2) and eluted with phosphate buffer, 

pH 2. The elution peak was measured by UV detection (280 nm). The product peak 

was integrated and the monoclonal antibody concentration was determined using a 

standard curve of purified antibody. The protein A intra-assay variation (within a 

data set obtained from one experiment) has a coefficient of variation (CV) of ~ 3% 

while the inter-assay variation (from repeated experiments) was ~ 5 %. The CV for 

individual variables within an assay is calculated by the ratio of standard deviation to 

the mean while the CV of a statistical model is calculated by the ratio of the root 

mean squared error (RMSE) to the mean of the dependent variable. 

2.4.5 GyroslabTM xP workstation  

The HCP concentration was determined by GyrolabTM xP (Gyros, Uppsala, Sweden), 

a high throughput, automated adaptation of an ELISA that uses CDs with highly 

defined microstructures, to quantify HCP levels. Samples were diluted in Gyros 

Rexxip AN buffer and together with in-house reagents and buffers are added onto 

96-well microtitre plates. Biotin conjugated in-house sheep derived polyclonal 

antibodies (pAbs) against CHO HCPs are added to the CDs and spun over the 

streptavidin coated bed column. Samples are then added to the CDs and the HCPs are 

captured by the streptavidin bead-biotin pAb complex. Alexafluor647 conjugated 

pAbs against CHO HCPs are then added to the CD, which bind to the captured 

HCPs. The level of excitation of Alexafluor647 is proportional to the amount of 
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bound complexes and therefore HCPs. The quantification of HCPs levels is done by 

a comparison against a standard curve of known quantities of HCPs. The standard 

curve has a range of 6.1 – 100,000 ng mL-1. The assay’s lower limit of quantification 

is 20 ng mL-1 while the upper limit is 80,000 ng mL-1. Harvest samples which often 

provide HCP results > 1 × 106 ng mL-1 were diluted accordingly to ensure that the 

results reported were within the curve range. If the necessary dilution was 1:2, the 

sample was also analysed at 1:4 and 1:8 dilutions. Back calculated results from these 

dilutions need to be within the assay’s precision of 30 % CV. Within all ambr 

experiments performed, the assay variability was within 20 % CV.    

2.4.6 Protease assay  

The EnzChek® Protease Assay Kit (E6638, Molecular Probes, Eugene, OR) was used 

to assess protease activity within unclarified harvest samples, resulting from fed-

batch mammalian cell culture performed using the ambr system (Chapter 4). The 

assay is fluorescence-based and is capable of detecting metallo-, serine, acid and 

sulfhydryl proteases. The substrate, BODIPY FL casein, is heavily labelled with pH-

insensitive green-fluorescent BODIPY® FL dyes, resulting in almost total quenching 

of the conjugate’s fluorescence. The hydrolysis reaction initiated by the proteases 

found within the unknown samples, releases highly fluorescent BODIPY FL dye-

labelled peptides. The fluorescence increase, measured by a microplate reader, is 

proportional to the protease activity. The dye fluorescence was excited at 485 nm and 

the emission intensity at 530 nm recorded using a 495 nm cut-off filter on a 

Molecular Devices Gemini XPS microplate reader.  

2.4.6.1 Reagents preparation  

A 1.0 mg/mL stock solution of the BODIPY®-casein conjugate detection substrate 

was prepared by adding 0.2 mL of PBS to one of the vials containing the lyophilized 

substrate. This solution was then diluted 100-fold in 1X digestion buffer. The reagent 

was kept in the dark at 4oC. The 1X digestion buffer was prepared by diluting the 20 

X digestion buffer (200 mM Tris-HCl, pH 7.8) 20-folds with deionized water. Due to 

the nature of the unknown samples to be analysed (unclarified harvest samples) a 
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high dilution is required in order to accurately measure fluorescence increase. This 

would involve a higher amount of Tris-HCl digestion buffer than the one provided in 

the commercial kit, therefore the 20X Tris-HCl digestion buffer used in these 

experiments was prepared in-house using 7.4 g Tris Base and 21.9 g Tris Acid. 

Comparable results have been seen between trypsin standard curve using in-house 

digestion buffer and kit buffer (data not shown). 

2.4.6.2 Trypsin standard curve  

A solution of 50 mg mL-1 trypsin (stock 1) was diluted 100-fold in digestion buffer to 

make a 500 µg mL-1 solution (stock 2) and then diluted again 50-fold to make a 

10,000 ng mL-1 solution (stock 3). Stock 3 was then used to prepare a dilution series 

(10,000 ng mL-1 – 50 ng mL-1) with 1X digestion buffer in 1 mL total volume. An 

equal 100 µL volume of sample (trypsin) and substrate (BODIPY FL casein) were 

added to a white 96 wells microplate to generate duplicate samples. The plate was 

sealed, incubated at 40oC and then read every hour until enzyme depletion was 

achieved for the highest trypsin concentration. A buffer-only control (blank) was also 

prepared.  

2.4.6.3 Sample analysis  

Three 0.5 mL aliquots were taken at harvest from each culture of AMBR 4. The 

samples were kept at -80 oC until analysed. Once a sample was thawed and analysis 

it was subsequently discarded. Once thawed, the samples were diluted to 1.0 mL in 

1X digestion buffer in order to make up the following dilutions 1/2, 1/5, 1/10, 1/50, 

1/100, 1/500, 1/1000 and 1/2000.  An equal volume of sample and substrate (100 µL) 

was added to a white 96 wells microplate in order to generate duplicate samples for 

each dilution. Controls without the substrate (sample + digestion buffer) were also 

prepared for each dilution as well as a blank (buffer-only control). The plate was 

sealed, incubated at 40 oC and then read every hour until enzyme depletion was 

achieved. An incubation temperature of 40 oC was chosen for a faster reaction time 

as well as for consistency between plates (room temperature can fluctuate from one 

day to another). Raw intensity counts increases of the sample compared to the blank 
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of less than 20 % were considered as negative for protease activity per manufacturer 

guidelines. 

2.5 Statistical analysis  

2.5.1 Spearman’s Rank correlation test  

The strength of the correlations between variables was evaluated by Spearman’s rank 

correlation test which is a non-parametric test used to measure the strength of 

association between two variables, where the value rs = 1 means a perfect positive 

correlation and the value rs = -1 means a perfect negative correlation. Correlations 

with p-values less than 0.05 were considered significant. The formula used to 

calculate Spearman’s Rank is shown below. 
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where di is the difference in the ranks given to the two variable values and n is 

number of variables in each category.  

2.5.2 Model building  

In terms of model building, a number of different approaches exist. The aim of 

model selection is to minimize the number of predictors which account for the 

maximum variance in the dependable variable. All methods involve optimising the 

model by including all relevant variables and disregarding variables that only 

contribute a marginal increase in the predictive power of the model. These are 

forward addition, backward elimination and stepwise regression.  

2.5.2.1 Forward addition 

Forward addition starts only with the intercept and then performs “n” regressions 

with the intercept and each variable one at a time. The variable that contributed the 

most to the explanation of the response variable is added to the model. The next step 

is to perform “n-1” regressions with the intercept, the first variable added to the 
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model and the variable with the second highest significance from the remaining pool. 

The process is repeated until none of the remaining variables have a significant 

contribution to the model, given the variables that are already in the model. The main 

drawback of forward addition is the possibility of one of the included variables to 

become insignificant with the addition of newer variables.  

2.5.2.2 Backward elimination 

Backward elimination starts by constructing a model that includes all the variables. 

The least significant variable is then dropped from the model and the remaining 

variables are re-evaluated. The least significant variable is again dropped and the 

process is repeated until there are no more variables to be eliminated, all remaining 

variables are significant. Backward elimination also has its own drawbacks. 

Sometimes variables are dropped that would be significant when added to the final 

reduced model.  

2.5.2.3 Stepwise regression   

Stepwise regression is a mixture of the forward and backward selection techniques. 

Stepwise regression is a method of model building by adding or removing variables 

only based on the t-statistics of their estimated coefficients. Stepwise regression is a 

modification of the forward selection so that after each step in which a variable was 

added, all variables in the model are checked to see if they are significant. Stepwise 

regression has two levels of significance: one for adding variables and one for 

removing variables. The criterion for adding a variable to the model should be more 

rigorous than the criterion for keeping a variable in the model so the process does not 

get into an infinite loop (Howell, 2013). Stepwise selection is an algorithm for 

picking a “good” (useful) model (Kadane & Lazar, 2004).  

2.5.2.4 All possible regression 

All possible regression analysis tests all possible subsets of potential independent 

variables. If there are “n” potential independent variables then there are 2n distinct 
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subsets to be tested. All possible regression choses the best combination of predictors 

by running regression analyses for all possible predictors. One difficulty is deciding 

the optimal criteria to use in choosing the “best” model. A variety of criteria for 

choosing the best possible model exists, including the highest R2, the higher 

predicted R2, the lowest root mean square error (RMSE) or Akaike’s Information 

Criterion (AIC).  

2.5.3 Model selection  

In statistical data analysis, multiple competing models are often considered. The 

purpose of model selection is to identify a model that has a balance between the 

goodness-of-fit of the data, prediction capability and model complexity. Two of the 

main model selection criteria are the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC). For both, a lower value is preferred. The 

fundamental difference between the two criteria lies in the assumptions made. A 

model with a lower AIC value indicates the model is closer to the true relationship, 

whilst a model with a lower BIC value indicates the model is more likely to be the 

true relationship (Dziak et al., 2012; Vrieze, 2012). For ecological publications from 

1993 - 2013 that implemented formal methods for multi-model inference, the 

frequency of using AIC as a model selection criteria was 84% compared to 14% for 

BIC and 2% for other approaches (Aho et al., 2014). Information-theoretic criteria 

like AIC has been widely shown as a superior tool for choosing among statistical 

models as compared to the p-value (Anderson et al., 2000; Burnham & Anderson, 

2002; Gerrodette, 2011). AIC is best suited for finding the best model for predicting 

new data (Dziak et al., 2012; Murtaugh, 2014). AIC and BIC are simply measures for 

comparison of models, allowing relative ranking of several models. As a result, AIC 

and BIC are not able to quantify the goodness of fit or the actual predictive power of 

the model. The R2 and R2 predicted as well as root mean square error (RMSE) from 

ANOVA as well as residual plots should be used to evaluate the models. In this 

analysis, the focus was towards selection of models that are able to best predict the 

responses (titre and HCP). For this reason predicted R2 was the first main criteria for 

choosing between potential models. When R2 and predicted R2 values were very 
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similar between several models, then RMSE and AIC were taken into account. For 

both a smaller value is preferred.  

2.5.4 Model assumptions  

Most statistical tests depend on specific assumptions about the variables used in the 

analysis. When these assumptions are violated, certain inferences and predictions 

from the regression analysis may be inaccurate and unreliable, resulting in over- or 

under-estimation of significance or effect size(s). Common ways to detect violations 

in regression modelling assumptions involve diagnostic plots and residual tests. The 

multiple linear regression model is based on several assumptions (e.g. residuals are 

normally distributed with zero mean, are independent, have a constant variance and 

the mean of the response, at each set of values of the predictor is a linear function of 

the predictors) (Alexopoulos, 2010; Williams et al., 2013). The assumptions which 

will be tested in this analysis are the normality and autocorrelation of the residuals 

and the linearity of the model.  

2.5.4.1 Normality of residuals  

To check the normality of residuals, a histogram plot of the residuals can be used. If 

the residuals are bell-shaped distributed, this implies that the normality assumption is 

not violated. A common test to check the normality of residuals is the Shapiro-Wilk 

test. The test is recommended for sample size of less than 50 (Razali and Wah, 

2011). The null hypothesis of this test is that the data comes from a normal 

distribution. Small p-values indicate that the hypothesis of normality of the residuals 

should be rejected. 

2.5.4.2 Autocorrelation of residuals 

Durbin-Watson test is generally used to test for the presence of autocorrelation in 

residuals. Autocorrelation means that the adjacent observations are correlated. If the 

residuals are correlated, then the regression method does not accurately estimate the 

coefficient’s error resulting in predictors being shown as significant when this might 

not be the case. The Durbin-Watson statistic will be near 2.0 is there is no 
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autocorrelation. If the statistic is near 0.0, then there is evidence of positive 

correlation whereas if the statistic is near 4, there is evidence of negative 

autocorrelation. The p-value is for the DW statistic under the null hypothesis that 

there is no autocorrelation among the residuals. If there is no prior reason to believe 

that the autocorrelation should be positive or negative, then a two-tailed rejection 

region should be used. Using a =.05, the null hypothesis of no autocorrelation should 

be rejected whenever the p-value ≤ 0.025 or p-value ≥ 0.975 (Chatfield, 2014).  

2.5.4.3 Linearity of the model  

Nonlinearity is usually most evident in a residuals vs predicted graph, which is a 

common output of the standard regression. Ideally, the residual versus predicted plot 

should show a constant band of residuals on either side of the regression line, with a 

roughly constant variance, showing no trend in the residuals (Williams et al., 2013).  

2.5.5 Model validation 

Validation methods generally involves predicting outcomes for a small subset of the 

data using the remaining observations and then repeating the process for certain 

number of other subsets.  

2.5.5.1 K-fold cross validation  

Cross validation (CV) is a method of assessing the accuracy and validity of a 

statistical model. CV is the process through which only part of the data (training set) 

is used to fit the model. The remaining data (test set) is used to test the model. The 

size of the training and test sets are determined by the number of folds defined in a k-

fold cross validation. The k-fold cross validation method randomly divides the data 

into k subsets. One subset is used as the test set while the remaining subsets are used 

as the training set. For k=10, the data is divided into ten subsets, each representing 

10% of all the data. A predictive model is trained with 90% of the data and then 

validated with the remaining 10%. The process is repeated 9 other times so that each 

subset of the data serves as the test set. The root mean square errors of the k subsets 
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are squared and summed to construct the cross validation SSE (squared sum of 

prediction errors). The resulting SSE is then used to calculate a R2 k fold value. 

2.5.6 Definitions 

The following statistical parameters have been used to evaluate the resulting cell 

culture models. Ideally, models with a high R2 and R2 predicted as well as with a low 

root mean squared error (RMSE) will be chosen.   

2.5.6.1 Pearson’s coefficient (r) 

Pearson’s coefficient (r) also named correlation coefficient, measures the linear 

relationship between two variables in a sample and is used as an estimation of the 

correlation in the whole population.   
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where SSX refers to the variance of the X scores, SSY refers to the variance of the Y 

scores and SPXY refers to the variance shared between X and Y: 
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 2Y Y-YSS                     (11) 
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In simple linear regression, r2 represents the proportion of variance in the 

dependent variable that can be explained by the model. This is calculated by squaring 

the sample correlation coefficient (r) between the outcomes and their predicted 

values. If additional terms are included, R2, called the coefficient of determination, is 
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the square of the regression coefficient (R). This coefficient estimates the amount of 

variance in the dependable variable accounted for by a linear combination of the 

predictor variables. The remainder represents the proportion that is present in the 

error. The regression coefficient describes the relationship between the observed and 

predicted variables. With a perfect correlation of R = +1 or -1, then R2 = 1 and all 

variability in the dependent variable can be explained by the model. When R = 0, 

there is no relationship between the predictor(s) and the dependent variable, and 

none of the variability can be explained (Palmer & Connell, 2009; Hinton, 2014).  

2.5.6.2 R2 predicted  

R2 value is an indication of how well the model fits the experimental data, while the 

predicted R2 is an estimation of how well the model predicts a response value 

(Rouiller et al., 2012). The predicted R2 is calculated using regression analysis and 

indicates how well the model can predict responses for new combinations of 

variables within the -1 to +1 range, evaluated to develop the model (Abu-Absi et al., 

2010). R2 predicted was calculated as follows:  

  XY

 2 PRESS/SP1predR               (13) 

where PRESS represents the predicted residual sum of squares. PRESS is given by 

the following formula:  
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Regression models are generally used to predict response variables. The data 

available can be used to fit the model. Trying to assess how well the model predicts 

responses, using the same data that was used to fit the model can give over optimistic 

results. A solution to this would be to leave out an observation, fit the model with the 

remaining data and then predict the left out response. This leave-one-out-approach is 

a type of cross-validation, where a part of the data is used to fit the model while the 

rest is used to assess the model’s prediction capability.  For more complicated 

models with several predictors, the challenge of choosing the best model for 
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prediction can often arise when a large number of possible model choices exist. In 

this situation, the model with the smallest PRESS statistic should be chosen (Tarpey, 

2010; Howell, 2013). 

2.5.6.3 RMSE 

The root mean squared error (RMSE) measures the difference between the predicted 

and observed values. These differences are also called residuals and the RMSE is 

used to combine them into a single measurement. The RMSE of a model prediction 

with respect to the estimated response Ymodel is given by the square root of the mean 

squared error:  
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where Xobs is observed values and Xmodel is predicted values at time/place 

2.6 Software used  

2.6.1 JMP and Design Expert 

JMP and Design Expert have been used to analyse high-throughput data resulting 

from ambr run cultures. JMP and Design Expert are statistical software from SAS 

and Stat-Ease, respectively, capable of designing and analysing factorial design 

experiments. The software helps detect main effects and interactions as well as 

providing statistical equations and diagnostic plots for evaluation of models. Design 

Expert is an entry-level program able to perform basic statistics as well as linear 

regression while in addition JMP is capable of performing more advanced analysis 

such as multivariate analysis, statistical process control, reliability analysis, non-

parametric tests and a wider range of regression analysis as well as advanced 

graphics. Design Expert is more user-friendly and generally the results are easier to 

interpret than those from JMP. Certain features from each software have been used in 

this analysis (Chapter 5). The advanced multivariate analysis from JMP was used to 
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perform the stepwise all possible regression analysis as well as diagnostic plots and 

different methods for validating the underlying assumptions of the selected models 

while Design Expert was used for obtaining the predicted R2 statistic and the chosen 

model coefficients.  

2.6.2 C#, Microsoft Visual Studio and Microsoft Access  

The bioprocess economics and optimisation tool used was developed using the 

programming language C# (C-sharp) which runs using the .NET framework 

(Microsoft Visual Studio 2008, Microsoft Corporation, WA, USA). This was linked 

to a database (Microsoft Access, Microsoft Corporation, WA, USA). The tool, 

developed in the UCL Decisional Tools team, previously used by Simaria et al. 

(2012) and Allmendinger et al. (2014a) was updated to incorporate statistical cause-

and-effect correlations able to link mAb titre and HCP levels with key cell culture 

parameters. Cell culture factors such as culture temperature, seeding density, media 

osmolality, pH and timing of feed initiation were also integrated within the database. 

The optimisation tool was adjusted to take into account different levels of HCP.  
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Chapter 3 

3 Quality by design approach to cell culture process development  

3.1 Introduction 

As the antibody sector has matured, it has seen significant increases in upstream 

(USP) productivities, with titres reaching over 10 g L-1 in fed-batch cultures. 

However, given the complex set of interactions that can affect cell culture 

performance, it is hard to predict the consequences of titre increase on the host cell 

protein (HCP) levels at harvest and hence the robustness of downstream operations. 

Hence it is critical to have systematic methods to explore such interactions and 

improve process understanding of mammalian cell culture processes. 

The aim of this chapter was to use a QbD approach to characterise cell culture 

performance associated with different generation numbers and explore the 

consequences of titre increase on the HCP levels at harvest.  

3.2 Reproducibility of ambr system 

Within each AMBR experiment, aside from the DoE design, three additional centre 

points were added to each culture station. This was done in order to evaluate the 

ambr’s ability to provide consistency between vessels with identical conditions. The 

culture profiles of the four centre points within culture station 1 of AMBR 1 are 

presented in Fig. 3-1. Good vessel-to-vessel consistency has been observed within 

ambr vessels cultured under identical fed-batch conditions, in terms of viable cell 

density, glucose and lactate concentration (Fig. 3-1). Good comparability was also 

seen in terms of viability, antibody titre (within 10 %) and HCP levels (within 20 %) 

(data not shown). There was also a good vessel-to-vessel comparability between 

centre point conditions from AMBR 1, CS2, AMBR 2 and AMBR 3, but only 

AMBR 1, CS1 was chosen to be shown here.   
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Figure 3-1: Fed-batch culture profiles for centre points within AMBR 1 A) viable cell density, B) 

glucose concentration, C) lactate concentration. The cultures were seeded at 0.8 × 106 cells ml-1 

viable cell density, 353 mOsm kg-1 and 36.5 oC.  
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3.3  Growth profiles of CHO cells in fed-batch culture 

AMBR 1, 2 and 3 correspond to low, mid and high generation cells within DoE 

designs exploring the impact of culture temperature, starting media osmolality, 

seeding density, culture pH, timing of feed initiation and cell generation number on 

cell growth, specific antibody productivity, antibody titre and HCP concentration at 

harvest. The experimental design for AMBR 1, AMBR 2 and AMBR 3 are 

summarised in Table 3-1. The cell culture profiles for AMBR 1, AMBR 2 and 

AMBR 3 experiments using different generation number cells and their 

corresponding titre and viability profiles are summarized in Fig. 3-2, 3-3, 3-4, 

respectively. The growth profiles within all fed-batch cultures using a CHO high 

producing cell line showed a normal growth pattern. Within low generation cultures 

(AMBR 1), a maximum viable cell density (VCD) range of 13 - 27 × 106 cells mL-1, 

corresponding to a titre range of 6 – 8.3 g L-1 and a final viability of 55 - 68 % was 

seen at 36.5 oC, while a maximum VCD range of 12 - 19 × 106 cells mL-1, 

corresponding to a titre range of 6 – 8.2 g L-1 and a final viability of 70-84 % was 

seen at 33 oC. Within mid generation cultures (AMBR 2) a maximum VCD range of 

3 - 18 × 106 cells mL-1, corresponding to a titre range of 1 - 6.8 g L-1 and a final 

viability of 43 - 75 % was observed. Within high generation cultures (AMBR 3), a 

maximum VCD range of 19 - 26 × 106 cells mL-1, corresponding to a titre range of 6 

– 7.4 g L-1 and a final viability of 61 - 74 % was seen at 36.5 oC, while a maximum 

VCD range of 12 - 21 × 106 cells mL-1, corresponding to a titre range of 6.8 – 9.6 g 

L-1 and a final viability of 65 - 83 % was seen at 33 oC.  

The culture with the highest growth profile within AMBR 1 (Fig. 3-2, A)) 

was cultivated at 36.5 oC, 313 mOsm kg-1 media osmolality and 1 × 106 cells mL-1 

seeding density, while the lowest growth profile achieved was cultured at 36.5 oC 

followed by a temperature shift to 33 oC after day 4 of culture, 394 mOsm kg-1 media 

osmolality and 0.5 × 106 cells mL-1 seeding density. The culture with the highest 

growth profile within AMBR 2 (Fig. 3-3, A)) was seeded at a 0.75 × 106 cells mL-1 

seeding density and a 6.8 ± 0.1 pH was maintained while the lowest growth profile 

achieved was seeded at 0.5 × 106 cells mL-1 seeding density and a 6.6 ± 0.1 pH was 

maintained. The culture with the highest growth profile within AMBR 3 (Fig. 3-3, 
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A)) was cultivated at 36.5 oC, 320 mOsm kg-1 media osmolality and 1.25 × 106 cells 

mL-1 seeding density, while the lowest growth profile achieved was cultured at 36.5 

oC followed by a temperature shift to 33 oC after day 4 of culture, 390 mOsm kg-1 

media osmolality and 0.5 × 106 cells mL-1 seeding density. It appears that the 

different generation number cells used in the three sets of experiments, has the 

biggest influence on antibody titre at 36.5 oC. This will be discussed further in 

following sections.  

3.4 Effect of cell culture inputs and generation number on cell growth 

It has been extensively reported in literature that a decrease in temperature to 28-35 

oC from 36.5 - 37 oC (the conventional cultivation temperature for CHO cells) can 

arrest cell growth and prolong viability (Fox et al., 2004; Tait et al., 2013; Mason et 

al., 2014). This reduced growth rate has been shown to occur due to a cell cycle 

arrest in the G1 phase (Trummer et al., 2006), which also causes the cells in G1 

phase to be larger in size (Becerra et al., 2012). Moore et al. (1997) explains that low 

temperatures induce a significant suppression of cell death due to apoptosis while 

cell viability is preserved in temperature shift cultures, owing to a delay in the onset 

of apoptosis. Kaufmann et al. (1999) reported that cultures run at 37 oC show a much 

higher cell density compared to those having undergone a temperature shift. The 

increase in cell density was accompanied by lower cell viabilities at the end of the 

culture compared to cultures under hypothermic conditions. The progression of 

viable cell density and cell viability during fed-batch cultivation is presented in Fig. 

3-2, A) and B) for AMBR 1 (low generation), Fig. 3.3 A) and B) for AMBR 2 (mid 

generation), and Fig. 3-4 A) and B) for AMBR 3 (high generation). In comparison to 

the control cultures (where temperature was maintained at 36.5 oC), a temperature 

decrease to 33 oC significantly affected cell growth and viability. Reduced growth 

was observed at 33 oC while a higher viability was maintained throughout the 

culture, which agrees with literature (Abu-Absi, 2010). The CCH viable cells for 

cultures at 33 oC were on average 25 % lower than those achieved for cultures under 

optimum temperature, while the viability for the lower temperature cultures was on 

average 30 % higher at harvest point than cultures maintained at 36.5 oC. 
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Most cell culture media are designed to have an osmolality in the range of 

260 - 330 mOsm kg-1, so as to be approximately isotonic with human serum at 290 

mOsm kg-1 (Li et al., 2000). It has been widely investigated in literature the effect an 

increase in media osmolality has on cell growth, specific cell productivity and 

volumetric productivity. It was found that high osmolality media depressed cell 

growth and increased qMab (Lin et al., 1999; Ryu et al., 2000; Lee et al., 2003; Li et 

al., 2010). Lin et al (1999) explains that the increase in osmotic pressure lowers the 

water retention within the cells, resulting in shrinkage of cell size that may be the 

cause of cell growth inhibition. Within our experiments, the highest cell growth was 

achieved using base media (313 mOsm kg-1) while the lowest cell growth was 

achieved using high osmolality media (~ 394 mOsm kg-1). At 36.5 oC and low 

seeding density (0.5 × 106 cells mL-1), the maximum VCD was decreased by 

approximately 26 % and 51 % respectively when media osmolality was increased 

from 313 to 353 mOsm kg-1 and from 313 to 394 mOsm kg1 within AMBR 1 

cultures. At high seeding density (1 × 106 cell/mL), a decrease of 13 % and 19 % in 

maximum VCD was seen. In temperature shift cultures to 33 oC, the decrease in 

maximum VCD at low seeding density was 23 % and 39 %, while at high seeding 

density it was 6 % and 14 % respectively. Cultures seeded at a higher seeding density 

as well as cultures incubated under hypothermic conditions (33 oC) are less sensitive 

to increases in osmolality than cultures at 36.5 oC and low seeding density. These 

findings match those in literature; with Lee et al. (2003) reporting a decrease of 76 % 

in maximum VCD when media osmolality was increased from 300 to 450 mOsm kg-

1 and Kim et al (2002) presented an 80 % decrease in maximum VCD when 

osmolality was increased from 294 to 459 mOsm kg-1. 

Culture pH is an important environmental factor that should be accurately 

controlled to ensure the quality of the desired product. A wide range of optimum pH 

levels have been reported in literature, leading to the conclusion that the optimum pH 

for growth and recombinant protein production is cell line specific (Trummer et al., 

2006).  A decrease in culture pH from its optimum has been shown to significantly 

decrease cell growth (Tsao et al., 2005; Trummer et al., 2006). A slightly acidic 

condition was found to result in reduced glucose consumption and lactate build-up, 

leading to an increase in cell death (Tsao et al., 2005). Cultures that were maintained 
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at a pH of 6.6 showed a significant reduction in growth (by up to 3 fold) (Fig. 3-3, 

A)) as well as significantly lower specific cell productivity compared to cultures 

maintained at pH 6.8 and 7. A higher pH is accompanied by a higher cell specific 

glucose consumption rate, which gives a higher cell growth rate in the exponential 

phase (Li et al., 2010). Cultures maintained at a pH of 6.8 and 7 did not show a 

significant difference in the levels of VCD achieved, which shows that for this 

specific cell line, a pH range of 6.8 - 7 was suitable for cell growth. Link et al. (2004) 

also found a pH in the range of 6.8 - 7 to give the best growth for a recombinant 

MUC 1 fusion protein expressed by CHO-K1 cells.  

Cell generation number is seen to have an impact on cell growth.  Within cell 

cultures with a higher generation number (generation 44 and 54, compared to 

generation 33) an increase of 8.7 to 40.4 % in CCH viable cells is observed (Table 3-

2).
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Table 3-1: Experimental design setup for AMBR 1, AMBR 2 and AMBR 3 experiments 

 

 

 

 

 

 

 

 AMBR 1 AMBR 2 AMBR 3 

 CS1 CS2 CS1 CS2 CS1 CS2 

Number of 

experiments 
12 12 12 12 12 12 

Number of outliers 

removed 
1 3 0 0 1 0 

Generation number 33 44 54 

Seeding density   

(×106 cells mL-1) 

*(expected) 

0.49 

0.8 

1.14 

(0.5)* 

(0.75) 

(1) 

0.59  

0.82  

1.14 

(0.5)* 

(0.75) 

(1) 

0.42  

0.69 

1.06 

(0.5)* 

(0.75) 

(1) 

0.9  (1) 

0.58  

1.08  

1.8 

(0.5)* 

(1) 

(1.65) 

0.58  

1.19 

1.8 

(0.5)* 

(1) 

(1.65) 

Osmolality 

(mOsm kg-1) 

*(expected) 

314 

353 

394 

314 

353 

394 

313 313 

310  

331  

364 

(310)* 

(350) 

(390) 

319  

356  

389 

(310)* 

(350) 

(390) 

Temperature (oC) 36.5 33 36.5 36.5 33 

pH 6.8 

6.6 

6.8  

7 

6.6 

6.8  

7 

6.8  

Timing of feed 

initiation (day) 
2 2 2 

1 

2 

3 

2 2 
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Figure 3-2: Fed-batch culture profiles for AMBR 1 A) viable cell density, B) viability profiles, C) 

antibody titre. Two different temperatures have been used -- 36.5 oC, ··· 33 oC. Within the DoE 

design, cultures were seeded at a density of 0.49, 0.8, 1.14 × 106 cells mL-1 and the osmolality 

levels used were 314, 353, 394 mOsm kg-1 respectively. The pH was maintained at 6.8 ± 0.1 and 

feeding started on day 2 of culture. 
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Figure 3-3: Fed-batch culture profiles for AMBR 2 A) viable cell density, B) viability profiles, C) 

antibody titre. Three different pH levels have been used ··· 6.6, ─ 6.8 and 7. Within CS1 of 

AMBR 2 cultures, seeding density and pH levels were 0.42, 0.69, 1.06 × 106 cells mL-1 and 6.6, 

6.8, 7 while feeding started on day 2 of culture. Within CS2 of AMBR 2 cultures, pH and timing 

of feed initiation levels were 6.6, 6.8, 7 and day 1, 2, 3 respectively, while the starting seeding 

density was kept constant at 1 × 106 cells mL-1. A temperature of 36.5 oC and an osmolality of 

313 mOsm kg-1 were maintained for all 24 cultures. 
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Figure 3-4: Fed-batch culture profiles for AMBR 3 A) viable cell density, B) viability profiles, C) 

antibody titre. Two different temperatures have been used -- 36.5 oC, ··· 33 oC. Within the DoE 

design, cultures were seeded at a density of 0.58, 1.1, 1.8 × 106 cells mL-1 and the osmolality 

levels used were 320, 350, 390 mOsm kg-1 respectively. The pH was maintained at 6.8 ± 0.1 and 

feeding started on day 2 of culture. 
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3.5 Effect of cell culture inputs and generation number on qMab, titre 

and HCP levels 

3.5.1 qMab 

In the past decades the remarkable improvements in specific and volumetric 

productivities for mAbs have been achieved through extensive bioprocess 

engineering research (Wlaschin and Hu, 2006) and careful design/selection methods 

by the use of high-producers or strong clones (Becerra et al., 2012). Different 

approaches to try and improve the productivity of mammalian-based processes have 

focused on the increase in VCD and qMab (Tsao et al., 2005; Beccera et al., 2012). 

Temperature and media osmolality were chosen as parameters within AMBR 1 (low 

generation) and AMBR 3 (high generation) experiments due to their history of 

influencing the specific cell productivity (Kaufmann et al., 1999; Ryu et al., 2000; 

Lee at al., 2003; Becerra et al., 2012). Temperature is known as an important factor 

in process optimisation (Fox et al., 2004; Trummer et al., 2006). Lower cell culture 

temperature is often used to shift cell metabolism towards protein production and 

essentially improving productivity (Yoon et al., 2003; Tsao et al., 2005; Becerra et 

al., 2012). Initial studies into the effect of low temperature on qMab in mammalian 

cells were not encouraging, with qP either being unchanged (Chuppa et al., 1997) or 

decreased (Ryll et al., 2000). Several other studies have shown that qP can be 

significantly enhanced by culturing at temperatures in the 30 - 33 oC range 

(Kaufmann et al., 1999; Yoon et al., 2003). The effect of low temperatures on qP 

seems to be cell-line dependent, with certain CHO cell lines, achieving higher 

productivity under mild hypothermia (Fox et al., 2004). Within low generation 

cultures, a 6 – 24 % increase in qMab was seen in temperature shift cultures to 33 oC 

compared to cultures maintained at an optimum of 36.5 oC, whereas within high 

generation cultures, a 13 – 43 % increase in qMab was seen (data not shown). It seems 

that within high generation cell cultures, a shift to a lower temperature has a higher 

impact on qMab, than within low generation cultures.  

High osmolality media created by addition of sugars or salts (e.g. NaCl) has 

been known as an economical method of increasing qMab in CHO cultures (Lin et al., 
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1999; Ryu et al., 2000; Kim et al., 2002; Lee et al., 2003; Lin et al., 2010). Kim et al. 

(2002) reported increases in qMab of 390 % when media osmolality was increased 

from 294 to 459 mOsm kg-1, whereas Lee et al. (2003) saw an increase of 139 % in 

qMab when osmolality was increased from 300 to 450 mOsm kg-1. It was observed 

that an increase in initial media osmolality from 313 to 353 mOsm kg-1 and from 313 

to 394 mOsm kg-1 through addition of NaCl increased the qMab in all cultures (data 

not shown)  

Looking at the relationship between qMab and qHCP (Fig. 3-5 D), E), F)), for 

this cell line the specific productivity for the protein of interest (monoclonal 

antibody) per cell is always positively correlated to the specific productivity of total 

HCP per cell, regardless of the generation number used (Table 3-3). As the levels of 

HCP are used in correlation plots, in this chapter HCP is expressed as ng mL-1, as 

opposed to ng mg-1 (Chapter 6). This was done in order to identify the true 

relationship between HCP levels (in absolute value) and antibody titre. 

Within AMBR 2 (generation number 44) a 10 % decrease in qMab was 

observed when compared to lower generation number cultures (AMBR 1 – 

generation number 33) whereas within AMBR 3 (generation number 54) a 22 % and 

16 % decrease in qMab, at 36.5 oC and 33 oC, respectively, was observed, compared to 

AMBR 1 (Table 3-2). The reduction in qMab with an increase in generation number 

seen in AMBR 2 and AMBR 3, compared to AMBR 1, is an indication of cell line 

instability. For cell lines that are considered unstable, a common cause for lower 

specific productivity for the antibody with an increase in generation number is the 

loss of recombinant gene copy number (Dorai et al., 2012). The cell line instability 

problem is further discussed in the next section. 
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Table 3-2: The effect of generation number on CCH viable cells, qMab, antibody titre and HCP levels. The comparison is done between replicate conditions of AMBR 

2 and AMBR 3 in comparison to AMBR 1.  

 

Note: The values presented in this table are averages based on a minimum of two replicates across three AMBR experiments, under similar 

conditions 

 AMBR 1 AMBR 2 AMBR 1 AMBR 3 AMBR 1 AMBR 3 Stability study 

 CS1 CS1 + CS2 CS1 CS2 Mid Late 

Temperature (oC) 36.5 36.5 33 36.5 

Generation number 33 44 33 54 33 54 39 65 

CCH viable cells 

(×106 cells mL-1) 
3657 3975 (8.7 %) 4688 5414 (15.5 %) 3592 5042 (40.4 %) 3185         3509 (9 %) 

qMab  

(pg cell-1 day-1) 
42.5 38.2 (-10.1%) 41.0 31.9 (-22.2 %) 47.8 40 (-16.4 %) 11.8 9.4 (-20.8 %) 

Titre  

(g L-1) 
7.6 6.4 (-15.8 %) 8.2 7 (-14.6 %) 7.0 8.4 (19.5 %) 1.8 1.5 (-16.7 %) 

HCP levels 

(ng mL-1) 
1,713,760 2,071,358 (20.8 %) 1,820,485 2,414,488 (32.6 %) 2,333,260 3,147,810 (34.9 %) N/A 
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Figure 3-5: The plot of A), B), C) viability against HCP levels and the observed correlations between D), E), F) qMab and qHCP within AMBR 1, AMBR 2 and AMBR3 

experiments, respectively. See Materials and methods for details on AMBR 1, AMBR 2 and AMBR 3 experimental designs. 
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3.5.2 mAb titre and HCP levels  

Antibody titres can be increased through two different methods; increasing the 

integral area of viable cell days or increasing the cell specific productivity (Kim et 

al., 2002). Temperature is a key parameter that influences cell growth and 

recombinant protein production within cell culture, due to its effect on the cell cycle 

(Yoon et al., 2003). The effect of the different cell culture parameters within the DoE 

designs on titre and HCP levels is shown using 2D plots in Fig. 3-6 for AMBR 1, 2 

and 3 (low, mid and high generation, respectively). Within AMBR 1 cultures, CHO 

cells cultured at 33 oC achieved overall lower titre levels (average titre of 6.4 g L-1 

across all 12 cultures) compared to cells maintained at 36.5 oC (average titre 7.2 g L-

1). There was a 5-20 % decrease in titre for cultures at 33 oC, depending on other 

culture conditions within the DoE design. The correlation between antibody titre, 

viable cell density, antibody productivity, HCP levels and the qMab: qHCP ratio is 

shown in Fig. 3-7 for AMBR 1, 2 and 3. The increase in titre within AMBR 1 was 

correlated with an increase in viable cell density (Fig.3-7 A)), therefore the increase 

in qMab which occurred in 33 oC cultures did not compensate for the lower cell 

growth within these cultures, resulting in lower titres compared to cultures at 36.5 

oC. These findings are in agreement with literature, where Trummer et al. (2006) 

reported a 1.5 fold decrease in titre levels in cultures run at 33 oC compared to 

cultures at 37 oC and Abu-Absi et al. (2010) also reported decreased product titre at a 

lower production bioreactor temperature. It should be noted that in both cases, the 

lower culture temperature was set and maintained from the start of the culture.  

The increase in titre within AMBR 3 cultures was correlated with an increase 

in qMab (Fig.3-7 C)) and in this scenario, higher titres are seen in 33 oC cultures 

(average 8.6 g L-1), condition that favours higher qMab, compared to cultures 

maintained at 36.5 oC (average titre 6.9 g L-1) . There was a 15-30 % increase in titre 

for cultures at 33 oC, depending on other culture conditions within the DoE design. 

Similar results have been reported by Rameez et al. (2013) which found that a two 

fold increase in titre occurs in temperature shift cultures, performed in the ambr 

system. In comparison to our experiments in which the temperature was shifted to 33 

oC in day 4 of culture, Rameez et al. (2013) performed the temperature shift from 37 
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oC to 33 oC, in day 8 of culture, in order to allow maximal viable cell density to be 

achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Impact of different cell culture parameters (seeding density, media osmolality and 

timing of feed initiation) on antibody titre and HCP levels at two different temperatures ··· 36.5 

oC, ··· 33 oC, within AMBR 1, AMBR 2 and AMBR 3 experiments. See Materials and methods 

for details on AMBR 1, AMBR 2 and AMBR 3 experimental designs. 
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The effect of temperature on HCP levels within AMBR1 and AMBR 3 

cultures is shown in Fig. 3-6. In both set of experiments, a higher level of HCPs was 

seen in 33 oC cultures compared to 36.5 oC. A 25 % and 16 % increase in HCP levels 

in 33 oC cultures was seen on average for AMBR 1 and AMBR 3 experiments, 

respectively. This is in agreement with Tait et al. (2013) which has seen the HCP 

content determined by an industry standard ELISA assay being ~ 50 % higher in the 

culture grown under mild hypothermic conditions (32 oC) compared to cultures 

grown at 37 oC. Cultures at 33 oC are also known to have higher viabilities at harvest 

compared to cultures at 36.5 oC (Fig. 3-2 B), Fig. 3.4 B)) (Trummer et al., 2006; 

Abu-Absi, 2010; Rameez et al., 2013). This explains why within all experiments 

using different cell generations, HCP levels show a positive correlation with culture 

viability at harvest (Fig. 3-5, A), B), C)). The same behaviour was seen by 

Grzeskowiak et al. (2009) which observed higher HCP levels in higher viability 

cultures using HCP ELISA. Yuk et al. (2015) also shows that high density CHO 

cultures (>107 cells mL-1) operated in fed-batch mode and having high viabilities 

(>70 %) throughout the culture duration, can accumulate a high amount of 

immunogenic HCP (1-2 g L-1) in the extracellular environment at the time of harvest 

(day 14). LDH results showed that cumulative cell lysis can be considerable in high 

density fed-batch CHO cultures, despite high viability readings. These publications 

offer a possible hypothesis for why this might be happening but for this set of 

experiments, we cannot say with confidence that this applies here. 

An increase in media osmolality was shown to enhance qMab (Lin et al., 1999; 

Kim et al., 2002; Lee et al., 2003; Lin et al., 2010), however the use of high 

osmolality media did not increase the final antibody concentration due to cell growth 

being depressed at elevated osmolality (Kim et al., 2002; Lee et al., 2003). Fig 3-2 

shows the impact of media osmolality increase on titre and HCP levels at 36.5 oC and 

33 oC. As an increase in media osmolality occurs, a significant decrease in titre levels 

is seen in all cultures seeded at low cell density. The negative effect of increased 

media osmolality starts to decline, with an increase in seeding density. Cultures 

seeded at a high cell density are not sensitive to changes in osmolality, within the 

osmolality ranges investigated.  
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To be able to take advantage of the increased qMab in high osmolality cultures 

in order to increase the final antibody concentration, several strategies have been 

proposed in literature: 1) biphasic culture, where the osmolality was maintained at a 

physiological level to promote growth and then increased to maximize qMab (Kim et 

al., 2002), 2) addition of osmoprotective compounds to the cultures (e.g. glycine 

betaine) which can improve the cell growth at elevated osmolality, sustaining the 

enhanced qMab (Ryu et al., 2000).  

Within AMBR 1 and AMBR 3 cultures, the increase in media osmolality 

does not have a significant impact on HCP levels (Fig. 3-6). I am not aware that the 

effect of osmolality on CHO HCP levels at harvest point has been previously 

reported in the literature.  

Culture pH is a parameter known to significantly influence cell growth and 

recombinant protein production (Link et al., 2004; Yoon et al., 2005; Trummer et al., 

2006; Seo et al., 2013). Significantly lower antibody titres were achieved in cultures 

at pH 6.6 as compared to cultures at pH 6.8 and 7 (Fig. 3-3 C)). This is mainly due to 

the significant decrease in viable cell numbers in cultures maintained at pH 6.6 (Fig. 

3-3 A)).  Jardon and Garnier (2003) studied the effects of pH in the ranges 6.7 – 7.7 

for the production of recombinant adenovirus vector (rAV) using HEK293 cells and 

found that significantly lower titres were seen in cultures at pH 6.7 as compared to 

pH 7.2. I am not aware that the effect of pH on CHO HCP levels at harvest point has 

been previously reported in the literature. Fig 3-2 shows the effect of culture pH on 

HCP levels within AMBR 2 cultures. It can be seen that HCP levels for all cultures at 

pH 6.6 are significantly lower compared to cultures maintained at pH 6.8 and 7 

which correlates with significant lower growth in these cultures (Fig. 3-3 A)). 

Timing of feed initiation was not found to have a significant impact on antibody titre 

and HCP levels at low pH. At pH 6.8-7, higher titres are seen in cultures for which 

feeding started on day 1 of culture, but this correlates with an equivalent increase in 

HCP levels.  

In terms of biopharmaceutical production, cell line stability can be defined as 

reproducible product concentration and quality for a given cell line over prolonged 

periods of time, starting from thawing the master cell bank to a time point 
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determined to be the longest duration allowed for production (Wurm, 2015). At 36.5 

oC, within higher generation cell cultures (AMBR 2 – Gen 44; AMBR 3 – Gen 54) 

an increase in CCH viable cells, a decrease in qMab and a decrease in antibody titre 

can be observed. The comparison is done between replicate conditions of AMBR 2 

and AMBR 3 in comparison to AMBR 1. The trends are consistent with a previous 

stability study which shows a stability issue as described in Table 3-2. Other process 

conditions within AMBR 1 and AMBR 3, at 36.5 oC were the same with the previous 

stability study. There are several studies in literature that have presented on the 

instability of protein production from recombinant cell lines. The most common 

causes were identified as a loss of recombinant gene copy number as well as the 

appearance of a secondary, less productive population of cells (Dorai et al., 2012). 

Comparing AMBR 3 with AMBR 1 at 33 oC cultures, on average, CCH viable cells 

increased, qMab decreased and antibody titre increased between replicate conditions. 

 In literature, a reduction in culture temperature from optimum (36.5 oC) to 33 

oC is known to promote an increase in qMab whereas a lower cell growth is generally 

observed, trends which are more likely to mask a cell line stability issue compared to 

cultures maintained at 36.5 oC. At higher generation numbers (AMBR 2, 3) 

compared to AMBR 1, a higher HCP level was seen in all cultures, regardless of 

culture temperature or other cell culture inputs. 

3.6 Analysis 

Overall monoclonal antibodies titres can be increased or decreased due to a 

combination effects from changes in cell densities and/or specific cell productivities 

(Li et al., 2010), each with a different impact on impurity profiles. This depends on 

factors such as the cell line characteristics, bioreactor operating parameters, media or 

feed type and the feeding strategy. These have a significant influence on cell growth, 

productivity, viability, impurity profiles and may also have an impact on product 

quality. Increases in cell densities can be achieved by media optimisation that has a 

great impact on maximizing and maintaining viable biomass, feeding strategies and 

optimal control of culture conditions such as pH, DO and glucose (Fike, 2009). It is 

normally anticipated that when high titres are achieved, an increase in HCP levels 
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would also be seen. It was demonstrated that by using a QbD approach to cell culture 

process development (HT ambr experimentation, HT analytics and DoE) bioreactor 

scenarios where the ratio of mAb to HCP can be varied, are identified. This can 

potentially impact the purification strategy for mAbs where HCP contamination is an 

issue. This opens the potential of designing a bioreactor process in which mAb 

harvest titre is high whilst reducing HCP levels.  

3.6.1 Analysis of low generation cell experiments (AMBR 1) 

The experimental design of AMBR 1 is shown in Table 3-1. It was demonstrated that 

within low generation cultures, conditions known to increase the specific mAb 

productivity (hypothermic conditions and high osmolality) had a negative impact on 

titre, mainly due to depressed cell growth at these conditions. Fig. 3-7 A) shows how 

within AMBR 1 cultures, the increase in antibody titre correlates to an increase in 

viable cell number (expressed by CCH viable cells) while qMab is decreased. A 

Spearman’s rank correlation test was performed to assess the strength of the 

correlations between the different variables within AMBR 1, AMBR 2 and AMBR 3 

experiments. A summary of the results is presented in Table 3-4. It can be 

hypothesized that even though qMab is decreasing, the high number of viable cells 

achieved within the culture is the main driver for the increase in antibody titre. 

Assessing the relationship between qMab and qHCP, as a function of CCH increase 

(Fig. 3-7 G)), it is observed that as the viable cell density increases, the ratio of qMab: 

qHCP is increasing, suggesting that qMab is increasing at a higher rate than qHCP, 

resulting in a purer product which eases the load on the DSP. In this scenario, titre is 

higher at conditions that correlate with a high number of viable cells within the 

culture (in these experiments, T= 36.5 oC, a high seeding density (1 × 106 cells mL-1) 

and base media (313 mOsm kg-1), as well as an optimum combination of seeding 

density and starting media osmolality (e.g. medium seed (0.75 *106 cells mL-1) and 

medium osmolality (353 mOsm kg-1); high seed (1 × 106 cells mL-1) and high 

osmolality (394 mOsm kg-1)). So overall these observations suggest that the amount 

of product increases but not at the expense of an increase in HCP levels (Fig. 3-7 

D)). Similar plots have been done in order to assess the correlation between antibody 

titre, qMab, qMab: qHCP ratio and growth rate (as opposed to CCH viable cells). The 
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same conclusion can be drawn, therefore only correlation plots using CCH viable 

cells are shown. This is consistent with a similar trend presented by Jin et al. (2010), 

although they saw significant differences in product titre; no major change was seen 

in the levels and composition of HCPs.  

3.6.2 Analysis of mid generation cell experiments (AMBR 2) 

The experimental design of AMBR 2 is shown in Table 3-1. Switching to a different 

design space than AMBR 1 and using a different cell stock, a different scenario is 

identified, where the increase in antibody titre is correlated with an increase in viable 

cell density as well as specific mAb productivity (Fig. 3-7 B)). Evaluating the impact 

of antibody titre increase on HCP levels, as a function of increases in viable cell 

density, it can be observed that titre and HCP levels increase at a similar rate (Fig. 3-

7 E)), therefore the ratio of qMab: qHCP remains constant over the whole range of CCH 

viable cells (Fig. 3-7 H)). The influence of culture pH on cell growth is the reason for 

data clustering in Fig. 3-7 B), E), H). Cultures at pH 6.6 revealed significantly lower 

growth profiles, compared to cultures at pH 6.8 and 7 (Fig. 3-3 A)).  

3.6.3 Analysis of high generation cell experiments (AMBR 3) 

The experimental design of AMBR 3 is shown in Table 3-1. Extending the design 

space used for AMBR 1 experiments and using high generation cells, a third 

distinctive scenario is identified, where the increase in antibody titre is correlated 

with an increase in qMab, while a constant level of viable cells is seen within all 

cultures (Fig. 3-7 C)). Similar to AMBR 2, in this case, titre and HCP levels are seen 

to increase at a similar rate (Fig. 3-7 F)), with the ratio of qMab: qHCP remaining 

constant (Fig. 3-7 I)).  

So overall for this cell line, low generation cell number leads to an increase in 

antibody titre and reduced HCP levels while a mid and high generation number also 

leads to an increase in antibody titre but with a concomitant increase in HCP level. 

As mentioned in section 3.5.2, in cell lines that show instability, the appearance of a 

secondary, less productive population of cells has been identified (Dorai et al., 2012). 

In the experiments presented in this thesis, this can be potentially reflected by the 
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higher number of cells (CCH viable cells) and lower specific productivity (qMab) 

present in higher generation cultures compared to low generation cultures (Table 3-

2). It can be hypothesized that the increase in HCP levels with an increase in 

antibody titre in mid (AMBR 2) and high generation number (AMBR 3) cultures is 

attributed to the higher number of cells present in higher generation cultures 

(showing lower productivity for the mAb).  
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Figure 3-7: A correlation 

plot of antibody titre 

against HCP levels within 

AMBR 1, AMBR 2 and 

AMBR 3 experiments. 

The relationship between 

A) antibody titre, CCH 

and qMab, B) antibody titre 

and HCP levels, C) CCH 

viable cells and qMab: qHCP 

ratio is shown. See 

Materials and methods for 

details on AMBR 1, 

AMBR 2 and AMBR 3 

experimental designs.  
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Table 3-3: Summary of Spearman’s rank test for the correlations between variables in Figure 3-5. 

 

 Variable correlation Spearman’s coefficient (rs) p -value Summary 

 AMBR 1 – low generation (33) 

Figure 3-5 A) HCP vs Viability 0.789 4.822 × 10-5 Strong positive correlation (significant) 

Figure 3-5 D) qMab vs qHCP 0.83 8.921 × 10-7 Very strong positive correlation (significant) 

 AMBR 2 – mid generation (44) 

Figure 3-5 B) HCP vs Viability 0.299 0.0.2892 Weak positive correlation (insignificant) 

Figure 3-5 E) qMab vs qHCP 0.788 5.167 × 10-5 Strong positive correlation (significant) 

 AMBR 3 – high generation (54) 

Figure 3-5 C) HCP vs Viability 0.539 0.0078 Moderate positive correlation (significant) 

Figure 3-5 F) qMab vs qHCP 0.893 3.145 × 10-6 Very strong positive correlation (significant) 
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Table 3-4: Summary of Spearman’s rank test for the correlations between variables in Figure 3-7.  

 

 Variable correlation Spearman’s coefficient (rs) p -value Summary 

 AMBR 1 – low generation (33) 

Figure 3-7 A) Titre vs CCH 0.890 2.24 × 10-6 Very strong positive correlation (significant) 

Figure 3-7 A) Titre vs qMab -0.689 0.00079 Strong negative correlation (significant) 

Figure 3-7 B) Titre vs HCP -0.444 0.05009 Moderate negative correlation (insignificant) 

Figure 3-7 C) CCH vs qMab: qHCP 0.789 3 × 10-5 Strong positive correlation (significant) 

 AMBR 2 – mid generation (44) 

Figure 3- 7 D) Titre vs CCH 0.773 1.52 × 10-5 Strong positive correlation (significant) 

Figure 3-7 D) Titre vs qMab 0.644 0.00069 Strong positive correlation (significant) 

Figure 3-7 E) Titre vs HCP 0.578 0.00308 Moderate positive correlation (significant) 

Figure 3-7 F) CCH vs qMab: qHCP 0.489 0.0162 Moderate positive correlation (insignificant) 

 AMBR 3 – high generation (54) 

Figure 3-7 G) Titre vs CCH -0.305 0.156 Weak negative correlation (insignificant) 

Figure 3-7 G) Titre vs qMab 0.775 1 × 10-5 Strong positive correlation (significant) 

Figure 3-7 H) Titre vs HCP 0.571 0.0044 Moderate positive correlation (significant) 

Figure 3-7 I) CCH vs qMab: qHCP 0.230 0.289 Weak positive correlation (insignificant) 
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3.7 Conclusions 

Three AMBR experiments, using low, mid and high generation cells were performed 

in order to evaluate the impact that culture temperature, starting media osmolality, 

seeding density, culture pH, timing of feed initiation and cell generation number has 

on cell growth, specific antibody productivity, antibody titre and HCP concentration 

at harvest. A QbD approach is then presented to help establish the relationship 

between mAb titre and HCP levels within small-scale fed-batch mammalian cell 

culture. The results show that a temperature of 36.5 oC is optimum for increased 

mAb titre, cell growth and results in a lower HCP level as compared to 33 oC. High 

osmolality media increased qMab but had a negative effect on growth and antibody 

titre while a pH of 6.6 had a significant negative impact on cell growth, resulting in 

lower titres and HCP levels within these cultures. A stability issue is observed within 

higher cell generation cultures at 36.5 oC while at a lower temperature of 33 oC cell 

line instability is not apparent. Cells of a higher generation lead to an elevated ratio 

of HCP to product (AMBR 2, 3) as compared to lower generation cells (AMBR 1).  

 This chapter presents a QbD approach to cell culture process development 

(HT ambr experimentation and Gyrolab analytics linked with DoE) to show that 

there is scope for cell culture processes in which the ratio of mAb to HCP can be 

increased and the association of mAb titre to HCP reduced. It is therefore viable to 

identify conditions whereby it is possible to increase antibody titre with little impact 

on HCP levels and hence subsequent DSP operations. (36.5 oC, 313 mOsm kg-1 

media osmolality, 1 × 106 cells mL-1 seeding density, pH 6.8 and low cell generation 

number).  
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Chapter 4 

4 Analysis of problematic HCPs in cell culture processes  

4.1 Introduction 

Recent literature has emphasized the need for a better understanding of the impurity 

profile entering DSP and the cell culture factors that are likely to change this profile, 

as certain problematic HCPs have been identified in the final drug product 

(Aboulaich et al., 2014; Thompson et al., 2014). There is a limited understanding 

regarding the relationship between the protein of interest, bioprocess conditions (both 

in USP and DSP) and problematic HCPs (e.g. protease) (Bracewell and Smales, 

2013).  

 In addition to assessing the impact of cell culture inputs on the resulting mAb 

titre and HCP levels at harvest (Chapter 3), a deeper understanding was provided in 

this chapter regarding the USP factors influencing the activity of specific problematic 

HCPs (proteases). The aim of this chapter was to evaluate the impact of several cell 

culture parameters (temperature, media osmolality and seeding density) on protease 

activity at harvest as well as to examine the relationship between HCP levels, mAb 

concentration and protease activity resulting from unclarified harvest samples. A 

commercially available protease assay was optimised in order to make it suitable for 

the analysis of unclarified cell culture harvest.  

4.2 Protease assay development 

4.2.1 Trypsin standard curve  

The EnzChek® Protease Assay Kit (E6638, Molecular Probes, Eugene, OR) was used 

to measure protease activity within unclarified harvest samples, resulting from fed-

batch mammalian cell culture performed using the ambr system. The same protease 

assay kit was used by Robert et al. (2009) and Dorai et al. (2011) to measure the 
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amount of protease (aspartic acid protease and serine-threonine protease, 

respectively).  

To be able to determine if the protease assay is capable of measuring protease 

activity as well as to distinguish between low and high protease activity, a trypsin 

standard curve was performed, with trypsin concentration ranging from 50 – 10,000 

ng mL-1. An appropriate enzyme standard of known specific activity that closely 

matches the protease activity being determined was used. Trypsin is a serine protease 

that is commonly used in generating standard curves for protease activity assays. Fig 

4-1 shows the assay’s capability of distinguishing between different concentrations 

of trypsin; the trypsin concentration is proportional to the fluorescence increase.  

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6

F
lu

o
re

s
c
e

n
c
e

Time (h)
 

Figure 4-1: Trypsin standard curve. The trypsin concentration varied from 50 – 10,000 ng mL-1, 

in-house Tris-HCl digestion buffer was used for making up the dilutions and the plate was 

incubated in the dark at 40o C and measured at hourly intervals. The increase in trypsin 

concentration is proportional to the increase in fluorescence 

4.2.2 Investigate the colour effect of unknown samples  

The unknown samples that were used to determine the associated fluorescence 

increase due to protease activity are unclarified harvest samples resulting from 

previously performed ambr experiments. A relatively high protease activity was 



  

129 

 

expected to be present in these samples due to their associated high HCP content and 

their level of clarification.  For this reason, a wide range of dilutions was used in 

order to determine the appropriate one for measuring protease activity (neat, 1/2, 1/5, 

1/10, 1/50, 1/100, 1/500, 1/1000 and 1/2000).  

The experimental protocol specifies that an equal volume of sample and 

substrate (100 µL) to be added to a 96 wells microplate in order to measure the 

fluorescence emitted from the sample, which in turn is proportional to the protease 

activity. The colour of the 1:1 mixture of unknown sample and BODIPY casein 

substrate (U+S) was quite intense, especially for samples with a low dilution. 

Coloured samples can give a fluorescence reading, regardless of the presence of 

protease within the samples. This would make it difficult to assess if the fluorescence 

increase given by the samples with substrate over time was due to protease activity 

or due to the intensity of colour within these samples. To verify if coloured samples 

exhibit a fluorescence increase, a sample of casein substrate (light pink colour), in a 

1:1 ratio to digestion buffer (colourless) (S + B) was analysed in order to identify if 

there is any fluorescence increase due to colour alone. A fluorescence increase of ~ 

3X higher than the blank (digestion buffer) was observed (data not shown). To 

identify the fluorescence increase only due to the substrate, the fluorescence 

background of the buffer was subtracted from the fluorescence background of the 

substrate and buffer 1:1 mixture: S = (B+S) – B.  

In order to determine if the colour difference between different dilutions had 

an impact on the fluorescence increase, a fixed concentration of trypsin (3000 ng mL-

1) was incubated with casein substrate for 4 h in a 1:1 dilution. Fig. 4-1 shows that 4 

h is sufficient time for most of the 3000 ng mL-1 trypsin to become depleted. The 

3000 ng mL-1 trypsin in 1:1 mixture with casein substrate was then added to the 

different dilutions of an unknown sample and the corresponding fluorescence 

increase was read at time t = 0 (Fig. 4-2 A )). Control samples (without the 

BODIPY casein substrate) were prepared for each dilution of the sample, as a 1:1 

ratio of unknown sample and digestion buffer (U+B) (Fig. 4-2 A)). The true 

fluorescence increase due to protease activity was then obtained by subtracting the 

fluorescence background of the substrate-free control (unknown (U) + buffer (B)) as 
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well as the fluorescence background of the substrate (S) from the unknown sample 

containing the substrate (unknown (U) + substrate (S)) (Fig. 4-2 B)).  

 

Protease activity = (U+S) – (U+B) – S              (16)  

 

The background fluorescence given by the casein substrate (S) was constant 

for any unknown samples analysed. The protease activity calculated as (U+S) – 

(U+B) – S showed identical trends to the protease activity calculated as (U+S) – 

(U+B), therefore the latter formula was used in subsequent calculations to determine 

the true fluorescence increase due to protease activity. The protease activity was 

expressed in fluorescence change per unit sample as opposed to being calculated 

using a trypsin standard curve. The unknown samples originate from cell culture 

unclarified harvest; thus it is very likely that the samples contain one or more 

unknown proteases. In this case a standard curve might not be relevant. Plotting the 

true fluorescence increase due to protease activity versus the log of the dilutions used 

(Fig. 4-2 B)), the dilutions under which the colour effect was eliminated, were 

identified. It can be observed that between 1/10 to 1/100 dilution, there a relatively 

flat line, meaning that under these particular dilutions the colour effect is eliminated.  

 

 

A) 
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Figure 4-2: Investigation into the colour effect of unknown samples. A) Fluorescence increase 

associated with the unknown sample containing the substrate (U+S) (  ̶ ̶  ) and substrate-free 

control (U+B) (), B) Fluorescence increase due to protease activity (U+S) – (U+B) 

4.2.3 Effect of unclarified material on assay performance  

Next, an investigation was carried out to determine whether the particles within 

unclarified harvest samples interfere in any way with the assay. A comparison was 

made between one unclarified and two clarified levels of the same unknown sample, 

at all the dilutions previously mentioned. Out of the two clarified samples, one was 

clarified only through centrifugation, whereas the other one was clarified through 

centrifugation followed by sterile filtration. The same as before, a fixed 

concentration of trypsin (3000 ng mL-1) was incubated with casein substrate for 4 h 

in a 1:1 dilution until enzyme depletion. The concentration of trypsin used in 

combination with the substrate to reach enzyme depletion was the same as 

previously, in order to maintain consistency.  This solution was then added to the 

different dilutions of the three levels of clarification and the corresponding 

fluorescence increase was read at time t = 0 (U+S) (Fig. 4-3 A)   ). For each dilution 

of each clarification level, a corresponding control sample without the casein 

substrate (U+B) was prepared as a 1:1 ratio of sample and digestion buffer (Fig. 4-3 
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A) ···). The true fluorescence increase due to protease activity was then calculated 

(U+S) – (U+B) and plotted against the log of dilutions (Fig. 4-3 B)) 

Similar trends are observed for all three samples, regardless of the levels of 

clarification. This suggests that the particles within unclarified samples do not 

interfere with the assay and the performance of the assay in determining protease 

activity is similar regardless of the level of clarification used. The fluorescence 

intensity is seen to be slightly higher for the unclarified sample. This is due to the 

higher initial colour intensity, for each dilution of this sample.   
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Figure 4-3: Comparison between unclarified and clarified levels of the same unknown sample. 

Clarification was achieved through either centrifugation ( ─ ) or centrifugation followed by 

sterile filtration ( ─ ). A) Fluorescence increase associated with the three levels of clarification of 

the unknown sample containing the substrate (U+S) ( ─ ) and substrate-free control (U+B) (---), 

B) Fluorescence increase due to protease activity (U+S) – (U+B), for each level of clarification  

4.3 Analysis of unknown samples 

4.3.1 Identification of suitable dilutions 

Previously we identified 1/10, 1/50 and 1/100 dilutions as being the only dilutions 

from the ones investigated, under which the colour effect interference was not 

apparent. Next, we compared the protease activity associated with each dilution, for 

an unknown sample. Casein substrate has been added to each of the three dilutions of 

the unknown sample (U + S) and corresponding substrate-free control samples have 

also been prepared (U + B). The samples were added to a 96 well plate, kept in the 

dark at 40oC and read every hour for 5 h. The associated fluorescence increase of the 

samples with substrate (U+S) and of the substrate-free samples (U+B) for each 

dilution is shown in Fig. 4-4 A). The protease activity is then calculated by 

subtracting the substrate-free sample’s fluorescence from the sample with substrate 

fluorescence and presented in Fig. 4-4 B). Fig. 4-4 shows that for the 1/50 and 1/100 
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dilutions, the trends are much more consistent than that for 1/10 dilution. For the 

purpose of obtaining consistent and reproducible results, 1/50 and 1/100 dilutions 

were chosen for subsequent analysis.  

 Two sets of aliquots from all AMBR 4 cultures where analysed for protease 

activity in separate days. The overall variability between the two analysis days was 

within 10% (data not shown). This did not have an impact on the trends observed, 

therefore the results of only one set of aliquots is presented in this chapter.  
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Figure 4-4: Protease activity increase over time for an unknown sample. A) The fluorescence 

increase of the sample with substrate (U+S) ( ─ ) and substrate-free sample (U+B) ( --- ) for 

dilutions 1/10 ( ─ ), 1/50 ( ─ ) and 1/100 ( ─ ). B) Fluorescence increase due to protease activity 

((U+S) – (U+B)) for each of the three dilutions   

 In order to determine the most suitable time for reading the plates, a trypsin 

standard curve was performed, with trypsin concentration varying from 50 – 10,000 

ng mL-1. The plate was read every hour up to 5 h, then at 19 h and 24 h. We can see 

from Fig. 4-5 that the same distinction between the different levels of trypsin that can 

be seen all throughout 0-5 h is also maintained at the higher time points. For the 

purpose of analysing the plates in a timely manner, a time of 5 h was chosen for 

subsequent analysis using 1/50 dilution.  
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Figure 4-5: Trypsin standard curve. The trypsin concentration varied from 50 – 10,000 ng mL-1, 

in-house Tris-HCl digestion buffer was used for making up the dilutions and the plate was 

incubated in the dark at 40o C. The increase in trypsin concentration is proportional to the 

increase in fluorescence 

4.3.2 Impact of cell culture inputs on protease activity 

Published literature regarding proteases is mainly focused on the identification of 

these enzymes using mass spectrometry as part of downstream process development. 

This class of process-related impurities is of concern in the manufacturing process of 

therapeutic proteins. They are classified as problematic HCPs due to their ability to 

either associate with the product or due to their potential impact on the therapeutic 

protein’s structural stability (Robert et al., 2009; Dorai et al., 2011; Dorai and 

Ganguly, 2014; Aboulaich et al., 2014). Only a few studies went a step further to 

actually quantify the amount of proteases present in CHO cultures (Robert et al., 

2009; Dorai et al., 2011) but none of them investigated the relationship between 

protease activity and cell culture inputs (seeding density, media osmolality) and 

outputs (mAb titre, HCP levels) at harvest.  
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4.3.2.1 Temperature  

Lowering culture temperature from its optimum temperature for growth of 36.5 oC 

has been show to improve recombinant protein productivity (Yoon et al., 2003; Tsao 

et al., 2005; Becerra et al., 2012) arrest cell growth, reduce lactate production, 

glucose consumption and ammonia production as well as to maintain higher culture 

viability for longer (Fox et al., 2004; Tait et al., 2013; Mason et al., 2014). Apart 

from having a beneficial impact on protein specific productivity, product quality has 

also been shown to be temperature dependent. Enhanced product quality 

(characterized by minimal impact on structural stability) at lower culture temperature 

has been associated with lower protease activity and the lower activity of various 

other temperature-dependent enzymes (Chuppa et al., 1997; Kaufmann et al., 1999). 

The effect of culture temperature on proteolytic activity present within bacterial and 

mammalian cell cultures has been widely studied in literature (Chuppa et al., 1997; 

Clark et al., 2004; Zhang and Chang, 2004; Dragomirescu et al., 2008). Chuppa et al. 

(1997) studied the effect of temperature (34, 35.5 and 37 oC) on proteolytic activity 

within high-density perfusion mammalian culture. They found that protease activity 

at 34 and 35.5 oC was similar, and lower than the protease activity at 37 oC. Zhang 

and Chang (2004) investigated the effect of temperature on proteolytic activity of 

human HtrA2 protease in E.coli culture over a wide range, 25 to 70 oC. The 

proteolytic activity of HtrA2 was seen to rapidly increase with temperature from 25 

to 55 oC and then decreasing towards 70 oC. Qureshi et al. (2011) looked at 

optimising culture conditions for production of protease (for industrial purposes) by 

Bacillus subtilis. They tested a temperature range of 25 to 55 oC and found protease 

activity to increase up until 45 oC when it reached maximum and then decrease. In 

both cases, protease activity was found to be lower at a lower temperature.  

 Protease activity was measured at 1/50 dilutions within AMBR 3 (Fig. 4-6 

A)) and AMBR 4 runs (Fig. 4-6 B)). The % difference in protease activity between 

replicate conditions at 33 oC compared to 36.5 oC was calculated. Within AMBR 3 

cultures, at 33 oC, a 1.5 – 25 % decrease in protease activity was observed (Fig. 4-6 

A)), while up to 26 % decrease in protease activity was seen in AMBR 4 cultures. 

This shows that regardless of the other combination of cell culture conditions present 
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within each culture, as part of the DoE design, culture temperature has a significant 

impact on proteolytic activity. A reduction in culture temperature could control the 

activity of these problematic HCPs and minimise the risk of product degradation due 

to proteolytic activity, hence maintaining product quality.  

  

 

Figure 4-6: Difference in protease activity (%) between equivalent conditions at 33 oC compared 

to 36.5 oC for (A) AMBR 3 and (B) AMBR 4 

A) 

B) 
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4.3.2.2 Seeding density   

As part of the DoE designs for both AMBR 3 and AMBR 4, the influence of other 

cell culture inputs such as seeding density and starting media osmolality on protease 

activity could also be analysed. The influence of seeding density on protease activity 

has not been previously reported in literature. It can be observed from Fig. 4-7 A) 

that there is a constant level of protease activity (expressed as fluorescence increase) 

regardless of the seeding density used within AMBR 3 cultures. This suggests that 

for these cultures, the starting cell density within the DoE designs does not influence 

the protease activity in the harvest material.  

In AMBR 4 cultures (Fig. 4-7 B)), a moderate negative correlation (R2 = 

0.41) is observed between protease activity and seeding density. For AMBR 4 

experiments, an ambr 48 (48 parallel cultures) was used as opposed to an ambr 24 

(24 parallel cultures) for AMBR 3 experiments, therefore a wider seeding density 

range was able to be investigated. It is believed that the extended seeding density 

range (1.8 – 3.5 × 106 cells/mL) may be the cause of the negative trend observed 

between protease activity and seeding density within AMBR 4. Comparing the trend 

in AMBR 4 cultures that are under the same conditions as AMBR 3 (up to 1.8 × 106 

cells/mL seeding density), a similar constant protease activity was seen for the whole 

seeding density range, comparable to the trend seen in AMBR 3 (data not shown).  
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Figure 4-7: The impact of seeding density on protease activity (measured as a fluorescence 

increase) within AMBR 3 (A) and AMBR 4 (B) cultures 

4.3.2.3 Media osmolality 

Media osmolality has generally been used in cell culture for its known ability to 

influence the specific cell productivity. Several published articles have shown that an 

elevated media osmolality can increase specific mAb productivity in CHO cultures. 

A high level of osmolality is also known to suppress cell growth (Ryu et al., 2000; 

B) 

A) 
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Kim et al., 2002; Lee et al., 2003; Li et al., 2010). The impact of media osmolality on 

protease activity was not previously investigated in literature. It seems that within the 

osmolality range explored, 310 – 390 mOsm/kg in AMBR 3 (Fig. 4-8 A)) and 310 – 

370 mOsm/kg in AMBR 4 (Fig. 4-8 B)), protease activity is not affected by starting 

media osmolality. 

 

 

Figure 4-8: The impact of starting media osmolality on protease activity (measured as a 

fluorescence increase) within AMBR 3 (A) and AMBR 4 (B) cultures 

A) 

B) 
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4.3.3 Correlation between mAb titre, HCP levels and protease activity 

4.3.3.1 mAb titre  

The relationship between mAb titre and protease activity has not been previously 

examined in literature. Within AMBR 3 cultures, a weak negative correlation (R2 = 

0.28) is seen between antibody titre and protease activity at harvest (Fig. 4-9 A)), 

while within AMBR 4 cultures, a moderate positive correlation is seen (R2 = 0.45) 

(Fig. 4-9 B)). In order to understand the difference in trends between the two AMBR 

runs, for AMBR 4, the protease activity was plotted against mAb titre for only the 

conditions that were part of the design space in AMBR 3 (pH 6.8 and up to 1.8 × 106 

cells/mL seeding density). A weak negative correlation was also seen between 

protease activity and titre in this case (Fig. 4-10 A)) which implied that the overall 

positive trend seen in AMBR 4 must be a consequence of the conditions not present 

within the AMBR 3 design space. The main difference between AMBR 3 and 

AMBR 4 design spaces is the addition of culture pH in AMBR 4. The relationship 

between protease activity and mAb titre within the additional design space of AMBR 

4 was then assessed (Fig. 4-10 B)). A moderate positive correlation (R2 = 0.54) is 

seen which seems to be driving the overall AMBR 4 trend. There is limited literature 

on the impact of culture pH on CHO derived proteases. For CHO cultures, pH has 

been seen to have a significant impact on cell growth, mAb titre and HCP levels (Fig. 

3-1 B); Fig. 3-2 AMBR 2) and due to its effect on these parameters it is likely that 

pH would also have a significant impact on protease activity at harvest. Culture pH 

has been known to have a significant impact on protease activity within bacterial 

cultures (Dragomirescu et al., 2008; Qureshi et al., 2011). Dragomirescu et al. (2008) 

investigated the pH dependence of protease activity produced in Bacillus 

licheniformis cells in the 3-12 range and seen an increase in protease activity up until 

pH 8, followed by a decrease. Qureshi et al. (2011) looked at optimising culture 

conditions for protease production by Bacillus subtilis and found that protease 

synthesis increased with an increase in initial culture pH and reached maximum at 

pH 8.5. For this cell line, within the design space investigated and at constant pH, a 

slightly negative correlation was identified between protease activity and mAb titre 

(Fig. 4-10 A)). Once culture pH was added to the experimental design, the significant 
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effect pH had on cell growth, mAb titre and HCP levels drove the positive 

relationship between protease activity and mAb titre within AMBR 4 cultures (Fig. 

4-10 B)).  

 

 

Figure 4-9: The relationship between protease activity (measured as a fluorescence increase) 

and mAb titre within AMBR 3 (A) and AMBR 4 (B) cultures 

 

A) 

B) 
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Figure 4-10: The relationship between protease activity (measured as a fluorescence increase) 

and mAb titre within AMBR 4, split by pH. A) 6.8 B) 7-7.4  

4.3.3.2 HCP levels  

The abundance and composition of HCPs present in the harvest material can be 

influenced by a variety of factors, including cell culture and harvest conditions (Jin et 

al., 2010; Gutierez et al., 2012; Tarrant et al., 2012). In Chapter 3 it was shown that 

different combinations of USP factors can have an impact on the resulting HCP 

levels. In recent years a lot of focus has been put on understanding the type of 

proteins that remain in the final drug product as well as the mechanism of how they 

A) 

B) 
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end up there. If we could understand the factors that influence the activity of specific 

problematic HCPs as well as identifying if their activity increases with an increase in 

overall HCP level we could potentially design processes that would ease the burden 

on the purification process. This would ensure a lower DSP process cost (DSP cost 

accounts for 45-92 % of the total cost of manufacturing a recombinant protein) 

resulting in a lower COG/g.  

The hypothesis of protease activity increasing with an increase in total HCP 

levels was investigated. The relationship between the HCP and protease activity at 

harvest has not been previously looked at in literature. For both sets of experiments 

(AMBR 3 and AMBR 4) an increase in total HCP levels at harvest did not result in a 

concomitant increase in protease activity (Fig. 4-11 A), B)). As there are few 

published studies linking the levels of total HCP with levels of specific HCPs within 

the whole population, the levels of other types of problematic HCPs can increase 

with an increase in the overall HCP level. Yuk et al. (2015) investigated the 

relationship between phospholipase B-like-2 (PLBL2) and total HCP concentration 

in the supernatant and whole cell culture fluid, for three CHO null cell lines. PLBL2 

is an HCP species present in CHO cultures, classified as problematic due to its ability 

to interact with certain recombinant humanized mAbs (Vanderlaan et al., 2015). 

They have seen an increase in PLBL2 concentration with an increase in HCP 

concentration, in all three null cell lines. It seems that different species within the 

whole HCP population are expressed differently in relation to the overall HCP trend.  

Efforts should be made to try and minimise the total level on HCP in harvest 

material, as this will reduce the risk of any immunogenic residual HCP to be found in 

the final product (Hogwood et al., 2014).  
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Figure 4-11: The relationship between protease activity (measured as a fluorescence increase) 

and HCP levels within AMBR 3 (A) and AMBR 4 (B) cultures 

4.4 Conclusions 

The impact of several cell culture parameters (temperature, seeding density, media 

osmolality) on protease activity was examined. It was shown that apart from 

temperature which has a negative impact on protease activity, the other USP 

conditions did not significantly affect protease activity. The relationship between 

protease activity and HCP levels was assessed and it was shown that an increase in 

HCP levels does not result in a similar increase in protease activity (considering the 

A) 

B) 
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proteases as a population). One of the protease assay’s limitations is the fact that it 

considers the proteases as a whole population and is not able to distinguish between 

different classes of proteases. In order to pinpoint the specific proteases, more 

advanced proteomic studies such as mass spectrometry need to be used. Due to a lack 

of resources and time limitation, a more in-depth analysis of the composition of the 

protease population was not possible. It has not been yet evaluated how the levels of 

individual proteases might increase or decrease with regards to the HCP levels at 

harvest. This could help provide a better understanding of how USP factors influence 

the levels of potential problematic individual proteases that pass on to the DSP 

process. 

The identification of cell culture inputs that have an impact on increasing 

problematic HCPs (protease) can help design processes that not only result in lower 

total HCP levels but also lower activity of specific, problematic HCPs. Determining 

the factors that have an impact on protease activity early in process development 

enables the possibility to improve the purification process to be able to reduce these 

species and potentially minimize the chance of residual protease that could cause 

product damage or eliciting an immune response in patients. Manipulating the USP 

conditions in order to reduce the activity of problematic HCPs would have a benefit 

in reducing the cost of goods by minimising the burden on DSP or through the ability 

to implement alternative, more cost effective methods.  
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Chapter 5 

5 Derivation of predictive cause-and-effect correlations for cell 

culture using multivariate data analysis 

5.1 Introduction  

The optimisation of cell culture processes in order to maximize antibody production 

as well as to reduce the time to market is an important aim within the 

biopharmaceutical industry. An important task in defining an optimisation strategy is 

to identify and predict cell culture behaviour (De Alwis et al., 2007). Cell culture 

experimentation involving trial and error optimisation of cell culture parameters, 

results in a large number of experiments, which can be time-consuming and 

expensive (Ho et al., 2006). Process modelling helps identify and evaluate product 

and process variables that might be critical to product quality and performance, 

facilitating a better planning and design of experiments. Modelling enables 

knowledge-based decision making, resulting in increased development efficiencies, 

continuous quality improvements and cost reduction (O’Kelly et al., 2012).  

 The aim of this chapter was to characterise the high throughput cell culture 

data generate using the ambr system (Chapter 3) by multivariate data analysis 

techniques (multiple linear regression, all possible stepwise regression) to derive 

statistical cause-and-effect correlations. These statistical equations are able to predict 

cell culture outputs such as mAb titre and HCP levels at harvest, based on cell 

culture inputs (temperature, media osmolality, seeding density, pH and timing of 

feed initiation) (Fig. 5-1). ANOVA analysis, using Design Expert and JMP software, 

was used to determine the significance of each parameter, either individually or in 

interaction with others on titre and HCP levels. 

5.2 Results and discussions 

For identifying the most suited predictive models for antibody titre and host cell 

proteins (HCP) from each ambr run, a stepwise all possible regression analysis (as 
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described in section 2.5.2.4) was used to narrow it down to eight hierarchical, best 

models, with increasing number of model terms. Stepwise all possible regression 

analysis tests all possible subsets of the set of potential independent variables. An 

analysis of variance is performed for each model to identify the main factors with a 

significant influence on the corresponding response (antibody titre or HCP). The titre 

and HCP results were analysed using JMP and Design Expert. The Analysis of 

Variance (ANOVA) is presented in Fig. 5-2 for titre and Fig. 5-5 for HCP, for all 

three ambr runs. The significant factors and/or interactions are presented with a * 

(Table 5-1, 5-4). The selection of an optimal model should be a balance between 

maximising predicted R2 (described in section 2.5.6.2), R2 (described in section 

2.5.6.1) as well as minimising RMSE (described in section 2.5.6.3) and AIC 

(described in section 2.5.3). Regression, like most statistical techniques, has a set of 

underlying assumptions that are expected to be in place if we want the estimated 

model to be reliable. For the selected best model for each response, the underlying 

assumptions are verified. Within all the subsequent analysis, the variables media 

osmolality, seeding density, temperature, pH and feed start time are referred to in 

coded factors as A, B, C, D and E respectively. This is for an easier interpretation of 

the results. The optimal models for antibody titre and HCP from AMBR 1 (low 

generation) are presented in more detail below, but a similar analysis was performed 

for titre and HCP from AMBR 2 and AMBR 3. 

5.2.1 Titre prediction models from AMBR runs  

5.2.1.1 Model building and selection  

The best eight models resulting from the stepwise all possible regression analysis, for 

estimating antibody titre from AMBR 1 run are presented in Table 5-1 with their 

corresponding statistics. The R-squared term (R2) defined in equation (9) (Section 

2.5.6.1)  is an indication of how well the model fits the experimental data, while the 

adjusted R2 also takes into account the number of factors evaluated. This is helpful 

when comparing amongst models that were developed from datasets with different 

number of factors. The predicted R2 is calculated using regression analysis and is 

used to indicate how well the model can predict responses for new combinations of 
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variables within the same range evaluated to develop the model. The R2 k fold 

(Section 2.5.5.1) is a measurement of internal validation of the model and is an 

indication of how accurate and valid the statistical model is at predicting new data, 

within the same design space but different than the data used to initially build the 

model. RMSE refers to the model residuals while AIC is a model selection criteria 

used to compare between potential models. The focus for the resulting models is 

towards prediction; therefore predicted R2 and R2 k fold are critical statistics that 

have to be taken into account when selecting the best model. Their value should be 

maximised for a model with the best prediction capability. 
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Figure 5-1: Integration of AMBR run experiments with predictive modelling   
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Figure 5-2: Analysis of mAb titre models for AMBR 1, 2 and 3. The analysis of variance as well as the correlation between experimental values and predictions from 

each model is presented * Significant in terms of probability (p-value < 0.05) 
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Table 5-1: Summary statistics for eight “best” models for AMBR 1 titre presented in coded factors. The coded factors A, B and C refer to the cell culture variables 

media osmolality, seeding density and temperature, respectively 

 

 

 

 

 

 

 

 

 

 

 AMBR 1 – Titre STATISTICS 

Model 

terms 
Model R2 

Predicted 

R2 

Adjusted 

R2 
R2 k fold RMSE AIC 

1 B* 0.25 0.07 0.21 0.07 0.685 47.01 

2 B*+C* 0.48 0.27 0.41 0.29 0.591 43.12 

3 A*+B*+C* 0.71 0.49 0.65 0.56 0.454 34.96 

4 A*+B*+C*+AB* 0.80 0.60 0.74 0.64 0.390 31.79 

5 A*+B*+C*+AB*+BC 0.84 0.71 0.79 0.72 0.357 31.78 

6 A*+B*+C*+AB*+BC*+B2 0.85 0.72 0.79 0.71 0.355 35.85 

7 A*+B*+C*+AB*+AC+BC+B2 0.86 0.58 0.78 0.55 0.359 41.56 

8 A*+B*+C*+AB*+AC+BC+A2+B2 0.87 0.49 0.77 0.38 0.372 49.65 
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Out of the eight models shown in Table 5-1, model 6 has the highest 

predicted R2 of 0.72, closely followed by model 5 with a predicted R2 of 0.71. The 

R2 for model 6 is also slightly higher than model 5, with 0.85 compared to 0.84. The 

addition of more and more variables to a model will always increase the R2, but 

when the increase in R2 is very small it is not worth increasing the complexity of the 

model. Model 5 is considered to be the best model as the difference between model 5 

and 6 is very small in terms of R2 and predicted R2. Model 5 also has a slightly 

higher R2 k fold of 0.72 compared to 0.71 for model 6. The selected model for 

antibody titre from AMBR 1 is analysed in more detail below. A similar analysis was 

performed for antibody titre from AMBR 2 (APPENDIX Table 5-1A) and AMBR 3 

(APPENDIX Table 5-3A). The analysis of variance of model 5, the reduced 2FI 

(two-factor interaction) model, indicates that the significant model terms are media 

osmolality (A), seeding density (B), temperature (C), the interaction between seeding 

density and media osmolality (AB) and to a lower extent the interaction between 

media osmolality and temperature (BC). The p-value of the model of <0.0001 

implies that the model is significant (Fig. 5-2). The actual vs predicted graph is 

presented in Fig. 5-2. The ANOVA analysis for the best model for titre from AMBR 

2 and AMBR 3 as well as their corresponding actual vs predicted graphs are also 

presented in Fig.5-2. The final equations for AMBR 1 titre in coded and actual 

factors are presented below:  

Titre = β0 + β1 A* + β2 B* + β3 C* + β4 AB* + β5 BC          (17)

              

Titre = 1.06 - 0.06 × Osmolality + 3.51 × 10-6 × Seeding density + 0.69 × 

Temperature + 5.11×10-8 × Osmolality × Seeding density – 5.12 × 10-7 × 

Seeding density × Temperature                (18) 

The model’s coefficients are an indication of how different cell culture 

parameters influence mAb titre. This is useful for USP scientists to easily identify 

which parameters have the biggest impact and need close monitoring for maximising 

mAb titre. Media osmolality is seen to have a significant negative impact on titre, an 

increase in starting media osmolality results in lower titres. On the other hand, 

seeding density and temperature have a positive impact on titre, an increase in both 
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parameters leads to an increase in the overall titre. The highest titre within AMBR 1 

is achieved for the lowest media osmolality and the highest seeding density and 

temperature within the design space explored. Another significant term is the 

interaction between media osmolality and seeding density. The negative effect of an 

increase in media osmolality on its own, starts to decline with an increase in seeding 

density. In terms of titre, cultures seeded at a high density are less sensitive to 

changes in osmolality than cultures seeded at a low density (Fig. 3-2).  

In order to identify if the variability within the Protein A assay (Chapter 2, 

Section 2.4.4) has an impact on the signal to noise ratio within the AMBR 1 titre 

model, the model’s coefficient of variation (% CV) was calculated and then 

compared to the CV of the assay. The difference between the assay variability (5 %) 

and the calculated % CV of the AMBR 1 titre model (4.92 %) was insignificant 

which implies that the predictive capability of the model was not influenced by the 

variability within the Protein A assay. An insignificant difference was also seen 

between the variability of titre models for AMBR 2 and AMBR 3 and the assay’s 

inherent variation.  

Abu-Absi et al. (2010) and Rouiller et al. (2012) both used QbD principles to 

characterise cell culture processes, by adopting a risk assessment exercise to identify 

potential critical and key process parameters with possible impact on process 

performance. They then used a DoE approach to evaluate the identified parameters 

and generate regression models for product titre (mAb and Fc-Fusion protein, 

respectively) as well as certain product and process related impurities. The 

comparison between the titre models generated in this work and the models they 

present are shown in Table 5-2. The comparison looks at the main parameters having 

a significant impact on product titre as well as R2 and R2 predicted. The models 

discussed here are comparable to the models presented in literature in terms of how 

well the models are able to fit the experimental data and how well they can predict 

for new combination of factors within the same design space. The models include 

process parameters not found within the literature models, such as media osmolality 

and feed start time.  
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Table 5-2: Comparison between generated titre models and titre models found in literature. The 

comparison looks at the main parameters having a significant impact on product titre as well as 

R2 and R2 predicted 

TITRE 

Literature comparison Significant factors R2 
R2 

predicted 

AMBR 1 

(Low generation) 

 

 Media osmolality 

 Seeding density 

 Temperature 

 

0.84 0.71 

AMBR 2 

(Mid generation) 

 

 Seeding density  

 pH 

 Feed start time 

 

0.98 0.97 

AMBR 3 

(High generation) 

 

 Seeding density 

 Temperature 

 

0.91 0.82 

Abu-Absi et al. (2010) 

Product: mAb 

 

 Seed bioreactor temperature 

 Production bioreactor T shift timing 

 Production bioreactor DO  

 Production bioreactor initial VCD 

 

0.88 0.61 

Rouiller et al. (2012) 

Product: Fc-Fusion protein 

 

 pH 

 DO  

 Culture duration  

 Seeding density  

 

0.96 0.94 
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Figure 5-3: Comparison between observed and predicted values of AMBR 1 titre. Runs 1-11 

correspond to CS1 within AMBR 1, maintained at a temperature of 36.5 oC and runs 11-20 

correspond to CS2 within AMBR 1, maintained at a temperature of 36.5 oC followed by a 

temperature shift to 33 oC in day 4 of culture  

Once a model has been chosen, it needs to be tested in order to ensure that the 

model is capable of predicting new data, within the same design space. This can be 

done through internal and external validation. Internal validation refers to the ability 

of the chosen model to predict data that has already been part of the experimental 

design but was not used to construct the model (k-fold cross validation). The R2 k 

fold term has been already used as a selection criterion when choosing the “best” 

model. Using the chosen model, titre values have been predicted for the experimental 

design already performed. The observed vs predicted graph (Fig. 5-3) shows that the 

model chosen gives a good prediction of experimental values. Ideally, an external 

validation of the model would also be performed. An external validation involves 

using the model to predict titre values associated with combinations of input variable 

(within the same design space) that have not been previously performed as part of the 

experimental design. New sets of experiments would be run and the final measured 

titre values would be compared to the already predicted ones in order to assess the 
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model’s ability of externally predicting titre. As further experimentation was not 

possible within the time provided, only internal validation was used to assess the 

validity of the models (for both titre and HCP). 

5.2.1.2 Verifying assumptions   

In order to test the normality of residuals the Shapiro-Wilk test (as described 

in section 2.5.4.1) was performed. The Shapiro-Wilk statistics for titre and its 

corresponding p-value are presented in Table 5-3. The p-value of 0.61 is not 

statistically significant (p-values values lower than 0.05 are generally considered 

statistically significant) therefore the hypothesis of normality of residuals should not 

be rejected. This suggests that the assumption is not violated and the residuals are 

normally distributed. 

 Table 5-3: The statistics for the Shapiro – Wilk and Durbin – Watson Tests and their 

corresponding p-value for AMBR 1 Titre and HCP 

 

* A p-value < 0.05 is generally considered statistically significant  

To verify whether or not the residuals are correlated the Durbin-Watson 

autocorrelation test (as described in section 2.5.4.2) was performed. The Durbin – 

Watson statistics for titre and its corresponding p-value are presented in Table 5.3. 

The p-value of 0.94 is not included within the two-tailed rejection region of p-value 

≤ 0.025 or p-value ≥ 0.975, therefore the null hypothesis of no autocorrelation is not 

rejected. The residuals are not correlated.  

 Shapiro- Wilk W Test Durbin – Watson Test 

 W p-value* Durbin - Watson p-value* 

Titre 0.96 0.61 2.92 0.94 

HCP 0.91 0.06 2.24 0.57 
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 To check the linearity of the model, the residual vs predicted plot is evaluated 

(Fig. 5-4). The residuals are evenly distributed on either side of the regression line 

and there is no visible trend. The assumption of linearity is satisfied. 

 

 

 

 

 

 

 

Figure 5-4: Residual versus predicted values AMBR 1 titre 
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Table 5-4: Summary statistics for eight “best” models for AMBR 1 HCP presented in coded factors. The coded factors A, B and C refer to the cell culture variables 

media osmolality, seeding density and temperature, respectively 

 

 

 

 

 

 

 

 

 

 

* Significant value in terms of probability (p-value < 0.05)  

 AMBR 1 – HCP STATISTICS 

Model 

terms 
Model R2 

Predicted 

R2 

Adjusted 

R2 
R2 k fold RMSE AIC 

1 C* 0.63 0.55 0.61 0.57 214836 553.26 

2 B+C* 0.66 0.51 0.62 0.52 213495 555.03 

3 A+C*+A2 0.70 0.54 0.65 0.57 205486 555.91 

4 A+B+C*+A2 0.72 0.50 0.65 0.51 205141 558.72 

5 A+B+C*+AB+A2 0.78 0.48 0.70 0.38 189332 559.01 

6 A+B+C*+AB+BC+A2 0.78 0.40 0.68 0.28 194900 564.44 

7 A+B+C*+AB+AC+BC+A2 0.78 0.18 0.66 -0.02 202770 571.33 

8 A+B+C*+AB+AC+BC+A2+B2 0.78 -0.19 0.62 -0.36 211784 579.78 
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Figure 5-5: Analysis of HCP models for AMBR 1, 2 and 3. The analysis of variance as well as the correlation between experimental values and predictions from 

each model is presented * Significant in terms of probability (p-value < 0.05)
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5.2.2 HCP prediction models from AMBR runs  

5.2.2.1 Model building and selection  

The best eight models for estimating HCP from AMBR 1 run, with their 

corresponding statistics are presented in Table 5-4. Out of the eight models resulting 

from the all possible stepwise regression, model 1 has the highest predicted R2 of 

0.55 closely followed by model 3 with a predicted R2 of 0.54 and models 2 and 4 

with a predicted R2 of 0.51 and 0.50, respectively. Although model 1 has the highest 

predicted R2 it also has a poor fit, shown by its low R2 value of 0.63. This is due to 

the fact that model 1 has only one predictor for HCP (temperature) not taking into 

account any other factors within the design space that might affect HCP levels. This 

suggests that model 1 might not be the most suited for HCP prediction. The second 

model in terms of prediction capability is model 3, with a predicted R2 of 0.54 and a 

R2 of 0.70. Upon testing the underlying assumptions of this model, the normality of 

residuals assumption was violated, making it an unsuited model for the prediction of 

HCP levels. Out of the two models that follow closely in terms of prediction, model 

2 and 4, model 4 fits the data better with a R2 of 0.72 compared to a R2 of 0.66 for 

model 2, as well as having a lower error, reason for which it is considered to be the 

best model.  

 The selected model for HCP from AMBR 1 is analysed in more detail below. 

A similar analysis was performed for HCP from AMBR 2 (APPENDIX Table 5-2A) 

and AMBR 3 (APPENDIX Table 5-4A). The analysis of variance of model 4 

indicates that the significant model term is temperature (C), with media osmolality 

(A), seeding density (B) and the quadratic term for media osmolality (A2) having a 

much lower contribution to the overall model. The model’s p-value of 0.0004 implies 

that the model is significant. The actual vs predicted graph is shown in Fig.5-5 for 

AMBR 1. ANOVA analysis for the best HCP model for AMBR 2 and AMBR 3 as 

well as their corresponding actual vs predicted graphs are also presented in Fig.5-5. 
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The final equations for AMBR 1 HCP in coded and actual factors are presented 

below:  

HCP = β0+β1A + β2B + β3C* + β4A
2                (19) 

HCP = - 3.68 × 106 + 6.34 × 104 × Osmolality – 0.27 × Seeding density – 1.60 × 105 

× Temperature – 87.92 × Osmolality2               (20) 

The model’s coefficients are an indication of how different cell culture 

parameters influence HCP levels at harvest. The main significant factor influencing 

HCP levels is culture temperature (C), presenting the higher coefficient within the 

regression equation. Culture temperature is seen to have a significant negative impact 

on HCP levels, an increase in culture temperature leading to a lower HCP levels. 

Media osmolality and seeding density have a much lower effect on HCP levels, with 

osmolality having a small positive effect and seeding density a small negative effect. 

The lowest HCP level within AMBR 1 is achieved for high culture temperature (36.5 

oC), base osmolality (314 mOsm kg-1) and high seeding density (1.14 × 106 cell mL-

1). The same set of conditions also correspond to the highest mAb titre achieved 

within AMBR 1, which indicates that within this set of experiments, no compromise 

has to be made between high mAb titre and low HCP levels.  

 In order to identify if the variability within the Gyros HCP assay 

(Chapter 2, Section 2.4.5) has an impact on the signal to noise ratio within the 

AMBR 1 HCP model, the model’s coefficient of variation (% CV) is calculated and 

then compared to the CV of the assay. The difference between the assay variability 

(20 %) and the calculated % CV of the AMBR 1 HCP model (7 %) is significant 

which implies that the model’s ability to predict new data is affected by the high 

HCP assay variability. This is also reflected in the lower R2 predicted of the HCP 

models compared to the titre models.  

Rouiller et al. (2012) presented a HCP regression model for the production 

bioreactor of CHO cells expressing an Fc-Fusion protein. The most significant factor 

affecting HCP levels was pH and to a lesser extent DO and culture duration. The 
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comparison between this model and the HCP models generated from AMBR 1, 2 and 

3 data is presented in Table 5-5. The model presented by Rouiller et al. (2012) had an 

R2 of 0.92 and an R2 predicted of 0.88, which is higher than the statistics for the 

AMBR 1 and 3 models, but more similar to the AMBR 2 HCP model. The HCP 

models presented here include process parameters not previously used in literature to 

predict HCP, such as media osmolality, seeding density, culture temperature and feed 

start time. The analysis of variance for mAb titre and HCP levels, within AMBR 1 

experiments, indicates that the main factor with a significant influence on both titre 

and HCP is culture temperature. Culture temperature has a significant positive effect 

on mAb titre and a negative effect on HCP levels. At a high culture temperature 

(36.5 oC), a high titre and low HCP level is achieved within AMBR 1. 

The final predictive models for titre and HCP from each AMBR run are 

presented in Table 5-6 in coded factors. The HCP models presented here are not as 

good at fitting the experimental data as well as predicting new data, compared to the 

titre models. This could be explained by the fact that HCP levels, in comparison to 

product titre, are not routinely monitored and optimised through mapping the design 

space of a production bioreactor.  
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Table 5-5: Comparison between generated HCP models and HCP models found in literature. 

The comparison looks at the main parameters having a significant impact on product titre as 

well as R2 and R2 predicted 

HCP 

Literature comparison Significant factors R2 
R2  

predicted 

AMBR 1 

(Low generation) 
 Temperature 0.72 0.50 

AMBR 2 

(Mid generation) 

 

 pH 

 Feed start time 

 Media osmolality 

 

0.98 0.95 

AMBR 3 

(High generation) 
 Temperature 0.66 0.55 

Rouiller et al. (2012) 

 

 pH 

 DO  

 Culture duration  

 

0.92 0.88 
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Figure 5-6: Comparison between observed and predicted values of AMBR 1 HCP. Runs 1-11 

correspond to CS1 within AMBR 1, maintained at a temperature of 36.5 oC and runs 11-20 

correspond to CS2 within AMBR 1, maintained at a temperature of 36.5 oC followed by a 

temperature shift to 33 oC in day 4 of culture  

The observed vs predicted graph shows that the model chosen gives a good 

prediction of experimental values. 

5.2.2.2 Verifying assumptions   

In order to test the normality of residuals the Shapiro-Wilk test (as described in 

section 2.5.4.1) was performed. The Shapiro-Wilk statistics for HCP and its 

corresponding p-value are presented in Table 5-3. The p-value of 0.06 is not 

statistically significant therefore the hypothesis of normality of the residuals should 

not be rejected. This suggests that the assumption is not violated and the residuals are 

normally distributed.  

To verify if the residuals are not correlated, the Durbin-Watson 

autocorrelation test (as described in section 2.5.4.2) was performed. The Durbin – 
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Watson statistics for HCP and its corresponding p-value are presented in Table 5-3. 

The p-value of 0.57 is not included within the two-tailed rejection region of p-value 

≤ 0.025 or p-value ≥ 0.975, therefore the null hypothesis of no autocorrelation is not 

rejected. The residuals are not correlated.  

  To check the linearity of the model, the residual vs predicted plot is evaluated 

(Fig. 5-7). The residuals are evenly distributed on either side of the regression line 

and there is no visible trend. The assumption of linearity is satisfied.  

 

Figure 5-7: Residual vs predicted values AMBR 1 HCP 
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Table 5-6: Final predictive models for titre and HCP from each AMBR run presented in coded factors. The coded factors A, B, C, D and E refer to the cell culture 

variables media osmolality, seeding density, temperature, pH and feed start time, respectively 

 

 

 

 

 

 

 

 

  STATISTICS 

 Model R2 
Predicted 

R2 

Adjusted 

 R2 
R2 k fold RMSE AIC 

AMBR 1 – Titre A*+B*+C*+AB*+BC 0.84 0.71 0.79 0.72 0.357 31.78 

AMBR 1 – HCP A+B+C*+A2 0.72 0.50 0.65 0.51 205141 558.72 

AMBR 2 – Titre B+D*+E*+BD*+DE*+D2* 0.98 0.97 0.98 0.97 0.289 25.65 

AMBR 2 – HCP B+D*+E+BE+B2*+D2*+E2* 0.98 0.95 0.97 0.95 125536 652.77 

AMBR 3 – Titre  A+B*+C*+A2* 0.91 0.82 0.89 0.84 0.351 28.68 

AMBR 3 – HCP A+C* 0.66 0.55 0.62 0.57 206281 637.50 
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5.2.3 Importance of predictive models within QbD 

Following a meeting of the Process Analytical Technology Community of Practice of 

United Kingdom/Ireland, a survey aimed at finding out industrial experiences and 

opinions on the business benefits of Quality by Design was performed. The concept 

of modelling in QbD has numerous benefits and is widely used. All of the eleven 

companies surveyed (e.g. Abbott, Astra Zeneca, GSK, Merck, Pfizer, Eli Lilly, 

Bristol Myers Squibb, etc) are using Design of Experiments and empirical modelling. 

Modelling has been used for establishing an operating design space, predicting scale-

up parameters, guiding process development and improving product and process 

understanding. The implementation of statistical and mathematical modelling in QbD 

as well as other elements within the QbD framework (process analytical technology 

(PAT) tools, critical quality attributes risk assessments, real time release testing, etc) 

have brought significant benefits to the pharmaceutical industry.  Improved process, 

product knowledge and understanding, improved control strategy, improvement in 

product quality and product robustness/reproducibility, yield increase and cost 

reduction are just some of the main benefits (Kourti and Davis, 2012).  

5.3 Conclusions 

This chapter describes the application of QbD principles (HT scale-down model 

combined with statistical modelling) to the cell culture process of an IgG1 

monoclonal antibody, which resulted in the development of six predictive models 

(for low, mid and high generation cells). The experiments were performed using the 

ambr system and a DoE approach to identify the impact of cell culture inputs, both 

individually and as interactions, on critical quality attributes of the process (mAb 

titre and HCP levels). All of the parameters analysed (media osmolality, seeding 

density, culture temperature, culture pH and feed start time) were identified as main 

factors affecting mAb titre throughout all ambr runs, while culture temperature 

seemed to have the most significant impact on HCP levels, followed by culture pH, 

feed start time and media osmolality. The regression models generated were used to 
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explain the criticality of process parameters and allowed characterizing the impact of 

cell culture inputs on the performance of the cell culture process (antibody titre and 

HCP levels). The predictive models developed on the relationship between culture 

conditions, product titre and HCP levels will be used in the next chapter, within a 

whole process cost model, able to predict equipment sizes, cost of goods (COG) and 

optimal DSP process sequence associated with different cell culture strategies. This 

will enable rapid identification of the most promising and robust combinations of 

USP and DSP activities for more streamlined development in both existing and new 

facilities. 
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Chapter 6  

6 Integration of predictive cell culture correlations with bioprocess 

economics and uncertainty analysis  

6.1 Introduction 

Chapter 3 and 5 focused on using high throughput experimentation and multivariate 

data analysis to derive predictive cause-and-effect correlations for cell culture. The 

correlations provide a link between operating parameters and the cell culture 

performance in terms of cell count, antibody titre and HCP levels. The next challenge 

was to link the correlations to the impact on downstream processing, the final drug 

substance characteristics and the cost of goods. This would enable overall process 

yields, purities and costs to be determined as function of the cell culture operating 

parameters. Commercially available process economics packages tend to use simple 

short-cut mass models for cell culture that assume the yield and purity a priori with 

no capacity to substitute user-defined models. Hence this chapter explores the 

potential of integrating the correlations with cost models so as to determine the 

overall performance and robustness of whole bioprocess strategies.  

More specifically the aim of this chapter was to incorporate the predictive 

modelling equations generated in Chapter 5 with a prototype bioprocess economics 

and optimisation tool (Fig. 6-1, 6-2) in order to identify the most cost-effective 

combination of input cell culture conditions and chromatography column sizing 

strategies. The optimisation tool comprised a biomanufacturing process economics 

evaluation engine and database linked to a meta-heuristic optimisation algorithm. 

The impact of uncertainty in cell culture parameters on process performance and the 

likelihood of process metrics falling out of specification (output (kg), HCPfinal 

(ng/mg)) were assessed using Monte Carlo simulations.
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Figure 6-1: Overall integration of HT experimentation, predictive (statistical) modelling and economic modelling   
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6.2 Methodology  

6.2.1 Problem definition 

A bioprocess economics and optimisation tool using genetic algorithm developed at 

UCL (Simaria et al., 2012; Allmendinger et al., 2014) was firstly used to identify the 

impact of different titre and HCP loads from cell culture (resulting from AMBR 1, 2 

and 3) on the COG of a fixed USP and DSP process and to identify the optimal 

sizing of a DSP process (measured by the lowest COG/g). Secondly, the tool was 

used to investigate the impact of uncertainty within cell culture input parameters on 

output (kg) and HCPfinal (ng/mg). In this chapter HCP is expressed as ng/mg, as 

opposed to ng/mL (Chapter 3). FDA’s specification for HCP at the end of the 

manufacturing process is <100 ng/mg and as in this chapter, the impact of cell 

culture inputs on HCPfinal is assessed, this metric was chosen for HCP here. The 

optimisation problem considered here was subjected to an objective function, 

constraints and uncertain parameters, which are described in the following sections. 

6.2.1.1 Objective function  

The objective was to find the best combination of input parameters within each 

AMBR run that gives the minimal cost of goods per gram (COG/g) of manufactured 

product as well as understanding the impact of fluctuations in input parameters on 

the likelihood of process metrics falling out of specification. 

6.2.1.2 Constraints 

Various constraints need to be specified such that feasible results are generated by 

the optimisation tool.  
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Demand and batch constraints 

This constraint ensures that the amount of product manufactured satisfies the annual 

demand specified. The estimated total number of batches should not surpass the 

maximum number of batches that fit within the facility, during a year.  

Purity constraints  

This constraint ensures that the final level of host cell proteins (HCP) meets the 

purity target. HCPs are impurities in a mAb manufacturing process that need to be 

closely monitored and removed during the purification process in order to ensure 

patient safety. Given the initial level of HCPs (measured in ng of HCP per mg of 

product), the DSP process is required to lower the final HCP level to the final 

product specification limit of < 100 ng/mg.  

6.2.1.3 Manufacturing uncertainties  

The manufacturing process of antibodies can be subject to several uncertain factors. 

Here the focus is on potential fluctuations within input cell culture parameters. 

Uncertainties in starting media osmolality and seeding density were considered for 

AMBR 1 and 3 while uncertainties in pH and seeding density were considered for 

AMBR 2. In order to account for fluctuations in input cell culture parameters, a 

triangular distribution around each parameter was used. The framework represents 

uncertainty by associating each factor with a probability distribution, from which 

values are drawn at random during Monte Carlo (MC) trials. Uncertainty related to 

cell culture parameters, introduces uncertainty within process metrics such as product 

titre and HCP levels.  

6.3 Framework description  

The tool consists of three main components, as presented in Fig. 6-2:  

1. Meta-heuristic optimisation algorithm 
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2. Biomanufacturing process economic model 

3. Database (Simaria et al., 2012) 

The meta-heuristic optimisation algorithm searches the large decision space of 

process configurations and uses the process economic model to assess each 

alternative. The process economic model calculates several technical and financial 

outputs for a specific process configuration. The database keeps all the input data 

that needs to be used by the optimisation algorithm and process economics model, 

the output data that is generated by the framework as well as cost information with 

regards to resources such as labour and consumables.  

 

Figure 6-2: Main components of integrated bioprocess economics and optimisation tool* 

* (Adapted from Simaria et al. (2012))  

6.3.1 Bioprocess economics model  

The process economics model within the framework was based on previous UCL 

work (Lim et al., 2005; 2006 and Farid et al., 2005a; 2007b). The model was 

designed to use mass balance equations, time and detailed cost calculations in order 
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to determine cost of goods per gram (COG/g) of a specific process configuration. 

The COG contains both direct and indirect cost. The direct costs refer to the usage of 

resources such as materials (chromatography resins, buffers, membrane filters) and 

labour. The indirect costs are associated with the facility’s maintenance costs, 

depreciation and general utilities. The COG/g value is then calculated by dividing 

COG by the total amount of product manufactured in a year (Simaria et al., 2012; 

Allmendinger et al., 2014a, 2014b).  

6.4 Case study description  

An industrially-relevant case study was used to demonstrate the ability of the 

framework to calculate COG/g for different combinations of cell culture inputs and 

to determine the impact of uncertainty in the inputs on process outputs of a mAb 

manufacturing process (output (kg), HCP final (ng/mg)). The case study concentrates 

on a single-product mAb manufacturing facility that features a three chromatography 

step purification sequence to satisfy a total product demand of 500 kg/year. The 

chromatography step sequence was fixed to Protein A (Prot A) Anion Exchange 

(AEX)  Cation Exchange (CEX). The first and the third steps use packed-bed 

chromatography while the second step is a membrane chromatography step. The 

fluctuations in input parameters were modelled using triangular distribution, as 

shown in Table 6-2.  

6.5 Results and discussions  

6.5.1 Impact of cell culture parameters on COG/g 

The COG/g objective is manly affected by variations in mAb titre and process yield 

(Allmendinger, 2014b). Process yield is calculated by adding together the individual 

step yields of each unit operation in the DSP process and then dividing by the 

number of DSP steps. The impact of cell culture parameters on COG/g of a fixed 

USP and DSP manufacturing process is evaluated here; therefore process yield is 
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unchanged and does not have an effect on COG/g in this case. The main factor 

influencing the COG/g is mAb titre, as it has a direct impact on the mass of product 

manufactured which is the denominator of the COG/g. Variations in mAb titre can 

occur due to variations in input cell culture parameters.  

The model was updated to evaluate the impact of cell culture inputs used 

within the design of experiments for AMBR 1, 2 and 3 on mAb titre and HCP levels 

and consequently on COG/g. The experimental design is shown in Table 6-1. For 

each combination of cell culture inputs, the process economic model calculated the 

mAb titre and HCP levels using the predictive correlations generated in Chapter 5 

and then used these cell culture outputs to determine process and economic metrics 

as well as column sizing strategies (Fig. 6-1).  

Table 6-1: The experimental design investigated for the input cell culture parameters within 

AMBR 1, 2 and 3 

 Design space  

 Minimum Maximum Increments  Number of combinations 

AMBR 1  

Seeding density 

(× 106 cells/mL) 
0.5 1 0.25 

60 Media osmolality  

(mOsm/kg) 
310 400 10 

Temperature (oC) 33 36.5 N/A 

AMBR 2  

Seeding density 

(× 106 cells/mL) 
0.5 1 0.25 

27 pH  6.6 7 0.2 

Feed timing (h) 24 72 24 

Temperature (oC) 36.5 

AMBR 3  

Seeding density 

(× 106 cells/mL) 
0.6 1.8 0.4 

72 Media osmolality  

(mOsm/kg) 
310 390 10 

Temperature (oC) 33 36.5 N/A 
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Table 6-2: Details of case study scenario (Panel A) and probability distributions of uncertain factors (Panel B)* 

 

 

 

 

 

 

 

 

 

 

 

* In order to account for fluctuations in input cell culture parameters, a triangular distribution around each parameter was used (Tr).

Panel A: case study scenario 

Parameter Setting 

 

Chromatography steps 3 

Annual Demand 500 kg 

USP: DSP train ratio 2: 1 

Maximum final HCP level 100 ng/mg 

Bioreactor size 10,000 L 

Temperature 36.5 oC 

 AMBR 1/AMBR 3 AMBR 2 

Timing of feed initiation  48 h 24 h 

Panel B: probability distributions of uncertain factors   

Uncertain factor Probability distribution* Variation (%) 

AMBR 1   

Seeding density (×106) Tr (0.5, 0.75, 1)  33.3 

Media osmolality Tr (310, 350, 390) 11.4 

AMBR 2   

Seeding density (×106) Tr (0.5, 0.75, 1) 33.3 

pH Tr (6.6, 6.8, 7) 2.9 

AMBR 3   

Seeding density (×106) Tr (0.6, 1.2, 1.8) 50 

Media osmolality Tr (310, 350, 390) 11.4 
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For AMBR 1, the impact of titre and HCP load resulting from the 30 different 

combinations of cell culture inputs, for each temperature, on COG/g is shown in Fig. 

6-3. It can be seen that, as expected, COG/g is directly influenced by the mAb titre, 

with an increase in mAb titre resulting in a decrease in COG/g. For this set of 

experiments, in which low generation cells were used, it was previously shown that it 

is possible to increase antibody titre with little impact on HCP levels and hence 

subsequent DSP operations (Chapter 3). Here, it is shown that the combination of 

conditions that results in high mAb titre and low HCP levels also has the lowest 

COG/g. The combination of cell culture inputs, as well as the column sizing 

strategies for the lowest and highest COG/g achieved within each ambr run are 

presented in Table 6-3. The Protein A column sizing strategy for the lowest COG/g 

for each AMBR employs smaller columns (lower height) running for more cycles 

compared to the Protein A column sizing for the high COG/g cultures. This has a 

beneficial impact on the COG/g as it reduces the amount of Protein A resin used. 

Protein A is one of the most expensive unit operations within the manufacturing 

process of therapeutic proteins, particularly because of its highly expensive resin; 

therefore any savings in the amount of resin used would reduce the COG/g. 

A comparison between the COG breakdown for the lowest and highest 

COG/g achieved in AMBR 1 is presented in Fig. 6-4. The direct costs include the 

usage of resources such as materials (chromatography resins, membrane filters, 

buffers) and labour while the indirect costs are associated with the facility’s 

maintenance costs, depreciation and general utilities. A demand of 500 kg per year 

was assumed for this case study and in order for the lower titre cultures to be able to 

satisfy the annual demand; a higher number of batches is required. This will have an 

impact on the cost of labour, as a higher number of personnel would be necessary. 

The highest COG/g was achieved within cultures with the lowest mAb titre (Fig. 6-3) 

which explains the higher labour costs for these cultures. In higher titre cultures 

(lower COG/g) the resin utilisation is higher compared to lower titre cultures (72 % 

vs 63 %) which resulted in a lower cost of consumables, due to the fact that the cost 

of resins is a major contributor to the overall cost of consumables.    
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Figure 6-3: The impact of titre and HCP load resulting from AMBR 1 cell culture at A) 36.5 oC 

and B) 33 oC on the COG/g of a fixed USP and DSP process.  

 

 

A) 

B) 
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Figure 6-4: COG breakdown for the lowest and highest COG/g achieved within the design space 

of AMBR 1 

 

For AMBR 2, the impact of cell culture inputs on mAb and HCP levels is 

shown in Fig. 6-5 and on COG/g in Fig. 6-6. It can be seen that pH 6.6 has a 

significant negative impact on mAb titre and HCP levels, compared to pH 6.8 and 7 

(Fig. 6-5). This is due to its impact on suppressing cell growth (Tsao et al., 2005; 

Trummer et al., 2006). This negative impact on mAb titre, results in a significant 

increase in COG/g, regardless of other cell culture conditions within the DoE design 

(Fig. 6-6). Within a constant pH (6.8 and 7) a delay in the timing of feed initiation 

from 24 h to 72 h, resulted in a decrease in mAb titre and HCP levels for 0.5 and 

0.75 × 106 cells/mL seeding density, while for 1 × 106 cells/mL seeding density, a 

delay in timing of feed initiation resulted in a decrease in mAb titre and an increase 

in HCP levels. Generally, a delay in timing of feed initiation, led to an increase in 

COG/g, except for cultures with a pH of 6.6. 
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Table 6-3: Combination of input cell culture parameters for AMBR 1, 2 and 3 with their associated Prot A and CEX column sizing, for the lowest and highest 

COG/g achieved  in each case 

 
Combination of cell culture inputs 

COG/g 

(£) 

Column sizing 

Prot A CEX 

Media Osmolality 

(mOsm/kg) 

Seeding Density 

(×106 cells/mL) 

Temperature 

(oC) 
pH 

Time of feed 

initiation 

(h) 

height – diameter – cycles 

(cm – cm – no) 

AMBR 1 

310 1 36.5 6.8 48 96.3 20-120-7 24-90-9 

400 0.5 33 6.8 48 117.5 24-100-3 19-120-3 

AMBR 2 

310 0.5 36.5 7 24 99.4 23-100-9 24-120-5 

310 0.5 36.5 6.6 24 194.3 23-120-1 17-90-2 

AMBR 3 

370 1.8 33 6.8 48 96.4 23-120-8 15-120-10 

390 0.6 36.5 6.8 48 103.4 24-100-7 19-90-9 



 

 

 

1
8
3 

 

Figure 6-5: The impact of cell culture inputs on mAb titre and HCP levels within AMBR 2 cultures 
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Figure 6-6: The impact of cell culture inputs on COG/g within AMBR 2 cultures
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Figure 6-7: The impact of titre and HCP load resulting from AMBR 3 cell culture at A) 36.5 oC 

and B) 33 oC on the COG/g of a fixed USP and DSP process. 

 

 

 

A) 

B) 
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For AMBR 3, the impact of titre and HCP load resulting from the 36 different 

combinations of cell culture inputs on COG/g is shown in Fig. 6-7. Here, the COG/g 

is again directly influenced by the mAb titre, an increase in mAb titre resulting in a 

decrease in COG/g. This observation is more apparent in 36.5 oC cultures.  

 

Figure 6-8: Boxplots showing the distribution of COG/g for different AMBR runs. The box 

represents the 25th and 75th percentile with the median indicated by the middle horizontal line. 

The whiskers represent the observations with the lowest and highest COG/g for each AMBR 

run.  

The distribution of COG/g for all the combinations in cell culture inputs in each 

AMBR run is presented using box plots in Fig. 6-8. AMBR 2 (using mid generation 

cells) displayed the widest variation in COG/g. This is due to pH 6.6 which resulted 

in significantly lower titres than pH 6.8 and 7, resulting in high COG/g.  

6.5.1.1 Monte Carlo simulations   

In order to determine the number of simulation runs required to reach convergence, 

running averages of the simulation results were monitored until they levelled off 

(Fig. 6-9). This translated into running 150 Monte Carlo simulation runs in order to 

reach convergence in the output metrics and to characterise the variability in 
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performance measures (output and HCP final) due to uncertainty in seeding density 

and media osmolality for AMBR 1 and 3, and seeding density and pH for AMBR 2.  

6.5.1.2 Analysis 

The tool was used to predict the likelihood of product loss or failure to meet demand 

in AMBR 1 and 3, while in AMBR 2 the likelihood of the final HCP level (HCPfinal) 

being higher than 70 ng/ mg was assessed. MC simulations were employed to 

generate possible random outcomes by using the probability distribution of the input 

parameters, leading to a frequency distribution of outcomes for each output (output 

(kg), HCP final (ng/mg)). From these distributions the likelihood of particular 

thresholds being achieved can be determined (Stonier et al., 2013).  

 The expected fluctuations in cell culture input parameters can result in 

fluctuations in product titre and final HCP. Uncertainty within product titre can have 

a considerable impact on output. Fluctuations in product titre can lead to a) failure to 

meet demand (if fluctuation in cell culture parameters result in a lower titre than 

expected) or b) product waste (if resulting titre is higher than expected and the DSP 

cannot handle the excess) (Allmendinger, 2014a). Uncertainty with regards to 

processing time and step yields can also exist within a manufacturing process but are 

not examined in this thesis.  
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Figure 6-9: Running average in product yield for A) AMBR 1, C) AMBR 3 and in HCP final for 

B) AMBR 2 during Monte Carlo simulation trials.  

A) 

B) 

C) 



 

 

189 

 

For AMBR 1 and 3 a product output in the range of 500-550 kg/year was 

considered acceptable, with anything below or over this range, being considered out 

of specification. For AMBR 2, HCPfinal <70 ng/mg was considered in specification 

and anything above it out of specification. The general guidelines for HCP levels in 

the final product are set to less than 100 ppm (ng/mg). There are currently no 

guidelines referring to levels of specific HCPs within the whole population that can 

be found in the final product and have the potential to impact on the product 

structural stability. Bracewell et al. (2015) questions if the final HCP limit of 100 

ng/mg is acceptable and emphasizes that there should be more detailed criteria, based 

on a better understanding of the HCP population present. In all three sets of 

experiments performed, all of the cell culture input combinations satisfied the 100 

ng/mg limit of HCPs in the final product. Considering that the 100 ng/mg limit might 

not be acceptable in the future, within AMBR 2 the probability of HCPfinal > 70 

ng/mg was considered as being out of specification. 

The probability distributions (based on triangular distribution) used for cell 

culture input factors within each AMBR, with their corresponding % variation are 

shown in Table 6-2. These distributions are the initial distributions tested. Density 

plots showing the probability of falling out of specification with respect to output are 

shown in Fig. 6-11 A), B), C) for AMBR 1 and in Fig. 6-11 D), E), F) for AMBR 3. 

Different changes made to the initial distributions were also assessed. This allowed 

the identification of how tight cell culture inputs need to be controlled for the product 

output and HCPfinal not to fall out of specification.  

In AMBR 1 experiments, using the initial probability distributions, a 50 % 

probability of failing to meet demand and a 1 % probability of product waste were 

identified (Fig. 6-11 A)). In Chapter 3 it was shown that at 36.5 oC, mAb titre within 

AMBR 1, was influenced more by media osmolality than seeding density (Fig. 3-2). 

Considering this, the probability distribution for seeding density was kept constant 

while the distribution for media osmolality was first tightened to 340 ± 30 (310 – 370 

mOsm/kg). In this case, the probability of failing to meet demand was lowered to 25 
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% while the probability for product loss increased to 19 % (Fig. 6-10 B)). Product 

loss can occur in situations when titres are higher than expected and the 

chromatography columns do not have sufficient excess capacity to cope with higher 

product loads. Subsequently, the media osmolality distribution was tightened even 

further to 330 ± 20 (310 – 350 mOsm/kg) and the probability for both failure to meet 

demand and product lost were within acceptable limits (Fig. 6-11 C)). A 10% 

probability of failure was considered as being acceptable. A tighter control in the 

starting media osmolality needs to be performed in order to maintain process 

robustness. 

In AMBR 2 experiments, probability distribution within input parameters was 

used to assess the probability of HCPfinal (ng/mg) falling out of spec (HCPfinal > 70 

ng/mg). Using the initial probability distributions (Table 6-2), there is a 67 % 

probability of HCP final being higher than 70 ng/mg (Fig. 6.12 A)). It has been shown 

that pH has a significant impact on growth, mAb titre and HCP levels therefore a 

tighter pH control (6.8 ± 0.1) was assessed. This resulted in a decrease in the 

probability to 14 % (Fig. 6-12 B)). Cultures at pH 6.8, within AMBR 2, showed 

lower levels of HCP at harvest compared to cultures at pH 7 (Fig. 3-2). It was 

anticipated that a tighter pH control (6.8 ± 0.1) would result in lower levels of HCP 

final, for a fixed USP and DSP process, compared to a pH control of 6.8 ± 0.2. A 

further change was made in the probability distribution for seeding density (0.75 ± 

0.2 × 106 cells/mL) resulting in 0% chance of HCPfinal being higher than 70 ng/mg 

(Fig. 6-12 C)). Culture pH needs to be controlled within a tight range to ensure that 

the final HCP levels do not exceed a certain limit. 

For AMBR 3, using the initial probability distributions, a 33 % probability of 

failing to meet demand and a 4 % probability of product waste were identified (Fig. 

6-11 D)). Lowering the osmolality distribution range from 350 ± 40 (310 – 390 

mOsm/kg) to 340 ± 30 (310 – 370 mOsm/kg) resulted in an improvement in the 

probability for both ends of the spectrum (Fig. 6-11 E)). After exploring several 

changes within the seeding and osmolality distribution ranges, it was found that for a 
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seeding density of 1.2 ± 0.2 × 106 cells/mL and an osmolality of 340 ± 30 mOsm/kg, 

the probability of falling out of specification is relatively close to the acceptable 

limits (Fig. 6-11 F)). As for AMBR 1, a tighter control in starting media osmolality is 

required to ensure process robustness.  Performing uncertainty studies using MC 

simulations, combined with predictive correlations can be used to determine process 

validation acceptance criteria (PVAC) for key process parameters (media osmolality, 

seeding density, pH) (Fig. 6-10). Similar studies have been performed by Looby et 

al. (2011) and Gommers et al. (2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-10: Steps used for establishing PVAC using HT experimentation, ANOVA and Monte 

Carlo simulation methods 

Process Characterisation Studies  

(DoE driven HT small-scale experiments using the ambr system) 

Develop ANOVA Prediction Models  

(Cause-and-effect predictive correlations link the variation in 

operating parameters to process performance e.g. mAb titre and HCP 

levels as a function of key process parameters e.g. seeding density, 

media osmolality, pH, temperature, timing of feed initiation) 

Simulate Potential Manufacturing Variability Using  

Monte Carlo Simulation  

(Using ANOVA prediction models, run uncertainty analysis using 

Monte Carlo simulations for each performance parameter (product 

output and HCP 
final

) assuming a triangular distribution for the 

operating parameters) 

Establish Process Validation Acceptance Criteria for key process 

parameters 

(Define acceptable limits for each key process parameter (e.g. media 

osmolality, seeding density, culture pH) 
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Figure 6-11: Density plots showing the impact of tighter osmolality and seeding density control on the probability (P(x)) of the product output falling out of specification in 

AMBR 1 and AMBR 3, using MC = 150 for Seeding density 0.75 ± 0.25 × 106 cells/mL A) Osmolality 350 ± 40 mOsm/kg; B) Osmolality 340 ± 30 mOsm/kg; C) Osmolality 

330 ± 20 mOsm/kg in AMBR 1 and for Seeding density 1.2 ± 0.6 × 106 cells/mL D) Osmolality 350 ± 40 mOsm/kg; E) Osmolality 340 ± 30 mOsm/kg; F) Seeding density 1.2 ± 

0.2 × 106 cells/mL, Osmolality 340 ± 30 mOsm/kg in AMBR 3 

A) A) B) C) 

D) E) F) 
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Figure 6-12: Density plots showing the impact of tighter pH and seeding density control on the probability (P(x)) of the HCPfinal (ng/mg) falling out of specification in 

AMBR 2, using MC = 150 for Seeding density 0.75 ± 0.25 × 106 cells/mL A) pH 6.8 ± 0.2; B) pH 6.8 ± 0.1; C) Seeding density 0.75 ± 0.2 × 106 cells/mL, pH 6.8 ± 0.1 

 

 

A) B) C) 
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6.6 Conclusions  

The application of a meta-heuristic optimisation tool using genetic algorithms to an 

industrially relevant case study allowed the identification of the most cost-effective 

combinations of input cell culture conditions and column sizing strategies for AMBR 

1, 2 and 3 (low, medium and high generation number cultures). The stochastic aspect 

of the tool was used to perform an uncertainty analysis, using Monte Carlo 

simulations, to help understand the impact of uncertainty in cell culture inputs on 

process performance. Antibody titre was identified as the main factor having an 

impact on COG/g, an increase in titre resulting in a decrease in COG/g. Cell culture 

inputs that resulted in higher titres, also resulted in lower COG/g. Under the current 

model assumptions, at high mAb titres, the sizing strategy for Protein A 

chromatography employs smaller columns with a higher number of cycles, saving on 

the quantities of resin used and in this case leading to a lower COG/g. This is 

dependent on the resin/membrane reuse strategy. Within the low generation cell 

culture (AMBR 1), a tighter control of the media osmolality range ensured that the 

resulting product output did not fail to meet demand or allowed for product waste, 

within the acceptable limits. In the higher generation cell culture (AMBR 3), a tighter 

control in both seeding density and media osmolality ranges was necessary to remain 

in specification. These uncertainty studies using MC simulations linked to ANOVA 

derived cause-and-effect predictive correlations can be used to establish acceptable 

operating ranges for key process parameters (media osmolality, seeding density, pH). 

The results can be used by the cell culture process development team within a 

biopharmaceutical company to understand which cell culture parameters need a 

tighter control in order to avoid process outputs falling out of specification. Using the 

integrated QbD framework (process characterization studies based on DoE 

experiments using the ambr system, statistical analysis for deriving predictive 

correlations and uncertainty analysis using MC simulations), proven acceptable 

ranges (PARs)/process validation acceptance criteria (PVAC) for key process 

parameters can be determined (Fig. 6-10). Systematic approaches similar to the one 
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showed in this thesis are likely to be the core of “QbD-based” future regulatory 

submissions (Looby et al., 2011). 
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Chapter 7  

7 Conclusions and Future work 

7.1 Conclusions  

The overall output of this research is a systematic framework combining state-of-the-

art high throughput cell culture experiments (ambr system) with statistical 

correlations (derived through multivariate analysis techniques) and process economic 

models. This integrated framework enabled the identification of cell culture 

strategies that balance the needs of upstream and downstream manufacturability, 

robustness to process variations and cost-effectiveness, early in the development 

cycle.  

  DoE designed experiments were performed using the ambr system in order to 

evaluate the impact, different increases in antibody titres has on the resulting host 

cell protein levels at harvest. It has been shown that increases in mAb titre can be a 

result of different combinations of increases in cell densities and specific cell 

productivities (Fig. 3-3), each with a different impact on HCP levels and subsequent 

DSP steps. A Quality by design approach to cell culture process development was 

used to demonstrate that there is scope for cell culture processes in which the ratio of 

mAb to HCP can be increased and the association of mAb titre to HCP reduced. A 

combination of cell culture parameters that resulted in an increase of antibody titre, 

without a subsequent increase in HCP levels was identified within AMBR 1 

experiments (36.5 oC, 313 mOsm kg-1 media osmolality, 1 × 106 cells mL-1 seeding 

density, pH 6.8 and low cell generation number). Within these experiments, three 

different cell generation cells were used and a stability issue was observed within 

higher cell generation cultures at 36.5 oC while at a lower temperature of 33 oC cell 

line instability was not apparent. Cells of a higher generation lead to an elevated ratio 

of HCP to product (AMBR 2, 3) as compared to lower generation cells (AMBR 1).
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Recent literature has emphasized the need for a better understanding of the 

impurity profile entering DSP and the cell culture factors that are likely to change 

this profile, as certain problematic HCPs have been identified in the final drug 

product (Aboulaich et al., 2014; Thompson et al., 2014). There is a limited 

understanding regarding the relationship between the protein of interest, bioprocess 

conditions (both in USP and DSP) and problematic HCPs (Bracewell and Smales, 

2013). In addition to assessing the impact of cell culture inputs on the resulting mAb 

titre and HCP levels at harvest, a deeper understanding was provided on the impact 

of cell culture parameters on the activity of specific problematic HCPs (proteases). 

Proteases are a sub-class of host cell proteins, identified as problematic by a variety 

of publications, due to their ability of associating with the product throughout the 

DSP process or having an impact on the product’s structural stability (Dorai and 

Ganguly, 2014; Aboulaich et al., 2014; Wang et al., 2014). Culture temperature was 

identified as having the most significant impact on protease activity at harvest, a 

decrease in temperature resulting in a decrease in protease activity. Apart from 

temperature, other cell culture conditions investigated (seeding density and media 

osmolality) did not seem to have a considerable impact on protease activity. The 

relationship between protease and HCP levels was also assessed and it was shown 

that an increase in HCP levels does not result in a similar increase in protease 

activity. 

 The high throughput cell culture data generate using the ambr system was 

characterised by multivariate data analysis techniques (multiple linear regression, all 

possible stepwise regression) to derive statistical cause-and-effect correlations. These 

statistical equations are able to predict cell culture outputs such as mAb titre and 

HCP levels at harvest, based on cell culture inputs (temperature, media osmolality, 

seeding density, pH and timing of feed initiation). A set of equations for product titre 

and HCP levels were derived from AMBR 1, 2 and 3 (each set of experiments 

presenting a different cell generation number).  
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 The resulting cell culture predictive correlations were linked to a meta-

heuristic optimisation framework (optimisation algorithm, a biomanufacturing 

process economic model and a database). This allowed the selection of the most cost-

effective combination of input cell culture conditions and chromatography column 

sizing strategies (Table 6-3). The impact of uncertainty in cell culture parameters on 

process performance and the likelihood of process metrics falling out of specification 

were assessed using Monte Carlo simulations. The COG/g objective function was 

significantly influence by mAb titre, an increase in titre resulting in lower COG/g. 

Within AMBR 1 and AMBR 3 the variability in product yield (kg) due to uncertainty 

in seeding density and media osmolality was examined, while for AMBR 2, the 

variability in final HCP (ng/mg) due to uncertainty in seeding density and pH was 

assessed. Media osmolality and culture pH were identified as critical culture 

parameters, that need to be closely monitor in order to ensure that the resulting 

process metrics do not fall out of specification. Fluctuations in input parameters that 

can cause fluctuations in product titre can lead to situation in which the demand is 

not met or expensive product is wasted due to the insufficient capacity of purification 

steps to handle the increased product load.  

7.2 Future work  

There are a few areas within this work that might benefit from additional 

investigation or alternative approaches. Model validation is necessary in order to 

assess the ability of a statistical model to accurately predict outputs. This can be 

tested through internal and external validation. As previously presented in Section 

5.2.1.1, internal validation (using k-fold cross validation) has been used as one of the 

criteria to help identify the model with the best prediction capability. To further 

investigate how good the chosen models are at predicting outputs with new 

combinations of input variables (within the same design space), external validation 

should be performed. Future work should involve setting up an experimental design 

with new combinations of input variables. Once the experiments are completed, the 

measured output values (e.g. titre and HCP) should be compared with the previously 
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predicted valuates in order to evaluate how efficient the model is at externally 

predicting outputs.  

The systematic framework combining microscale experimentation with 

statistical correlations and process economic models has been shown to be an 

effective way of identifying robust and cost-effective cell culture strategies. This 

framework provides a foundation to build upon, where predictive correlations can be 

created for downstream processing steps such as primary recovery and 

chromatography. High throughput scale-down experimentation can be adopted to 

generate data in order to characterise the impact of cell culture conditions on 

clarification and purification potential. This data can then be used to develop models 

that link cell culture properties (e.g. cell density, viability, mAb titres) and recovery 

operating conditions (e.g. flow rate) to the performance of centrifugation and depth 

filtration (e.g. clarification, yield, purity, filter capacity) and purification potential.  

The impact of different ways of increasing antibody titre on HCP levels at 

harvest has been assessed within a high-producing CHO cell line. Three sets of 

experiments, each using a different generation of cells, resulted in three different 

bioreactor scenarios. The cell line used was seen to exhibit instability, with lower 

specificity for the mAb (qMab) in higher generation cultures. It is uncertain if the three 

scenarios identified are caused by the significant influence of the generation number 

on the cultures or by the different combinations of conditions within the three DoE 

designs examined. The application of the QbD approach (ambr system and Gyrolab 

workstation high throughput platform, linked with DoE) to a high producing stable 

CHO cell line could help identify the underlying cause of the different scenarios 

seen. If a cell line is seen to display a scenario in which the increase in antibody titres 

would not result in a subsequent increase in HCP levels, the optimisation strategies 

should be focused around the cell culture parameters that resulted in such a trend.  

 Cell culture processes are very complex unit operations and they generally 

require a large number of factors to be characterised in order to be able to try and 

accurately describe such processes. In the experiments performed, cell culture factors 
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such as temperature, seeding density, media osmolality, pH and timing of feed 

initiation were used to characterise cell culture processes. Further work can be 

focused on assessing the impact of additional cell culture parameters such as levels 

of dissolved oxygen, agitation speed as well as additional culture temperatures over a 

wider range, on antibody titres and HCP levels at harvest. Different outputs such as 

aggregate levels and DNA could also be investigated.  

 The antibody sector has seen significant increases in upstream productivities 

in recent years, with titres reaching over 10 g L-1 in fed-batch cultures. This increase 

in USP titres has resulted in increased focus to be placed on how these USP changes 

impact on the HCP profile and levels following onto the downstream process. It has 

been reported that certain HCP species can be found in the final drug product 

(Aboulaich et al., 2014; Thompson et al., 2014). Recent studies have confirmed the 

need for a better understanding of the presence and potential risk of certain 

problematic HCPs. In this work the impact of cell culture inputs on protease activity 

(identified as problematic HCPs) was assessed as well as the relationship between 

protease activity and total HCP levels. It was shown that the protease activity does 

not increase with an increase in HCP levels. Other published work, looked at the 

relationship between other problematic HCPs and total HCP levels (e.g. PLBL2, Yuk 

et al., 2015) and showed that an increase in PLBL2 concentration was seen with an 

increase in HCP concentration. This suggests that different species within the whole 

HCP population are expressed differently in relation to the overall HCP trend. Future 

work could be focused on investigating the impact of cell culture conditions on the 

levels of other problematic HCPs and evaluate how their levels change with the 

overall HCP levels. Identifying cell culture inputs that have an effect on the levels of 

different problematic HCPs could help design processes that not only result in lower 

total HCP levels but also lower levels of specific, problematic HCPs and in this way 

lowering the burden on to DSP.  

 As previously mentioned, one of the limitations of the chosen protease assay 

is its inability to distinguish between different protease species within the whole 
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protease population. The activity of different type of proteases (e.g. acidic, serine, 

metallo-) could either increase or decrease under different cell culture conditions. In 

order to identify the individual classes of proteases and how their activity changes 

with changes upstream, more advanced proteomic studies should be investigated. 

Future work could investigate the use of alternative proteomic methods such as mass 

spectrometry alone, or in combination with 2D-PAGE gels or liquid chromatography 

(LC-MS/MS). These methods have the ability to detect and monitor multiple 

proteins, in the same sample. So far it has been shown that it can be evaluated how 

the total levels of HCPs at harvest as well as the total protease activity within these 

HCP populations can change when the process parameters are changing. This future 

work would help provide a more in-depth understanding of how the activity of 

individual proteases might vary between different samples and over time.  

 It was previously shown that increases in antibody titres can be driven by two 

main mechanisms: increases in cell densities or specific cell productivities, each with 

a different impact on resulting HCP levels (Fig. 3-3). It would be valuable to 

investigate if the HCP profiles as well as the levels of certain problematic HCPs 

differ between processes in which an increase in antibody concentration is achieved 

through different mechanisms. For this cell line, the relationship between the specific 

productivity for the antibody (qMab) and the specific productivity for HCPs (qHCP) 

was evaluated. It was found that qMab and qHCP are positively correlated, despite the 

different combinations of conditions within the DoE design (Fig. 3-4). This might 

suggest that an increase in qMab could lead to a difference in expression for certain 

problematic HCPs.  



 

 

202 

 

References  

Abdi H, Williams LJ. 2013. Partial least squares methods: partial least squares 

correlation and partial least square regression. Methods in molecular biology. 930: 

549-579.  

Aboulaich N, Chung WK, Thompson JH, Larkin C, Robbins D, Zhu M. 2014. A 

novel approach to monitor clearance of host cell proteins associated with monoclonal 

antibodies. Biotechnol Prog 30(5): 1114-1124. 

Abu-Absi SF, Yang L, Thompson P, Jiang C, Kandula S, Schilling B, and Shukla 

AA. 2010. Defining process design space for monoclonal antibody cell culture. 

Biotechnol Bioeng 106:  894-905. 

Adams CP, Brantner VV. 2010. Spending on new drug development. Health 

Economics 19: 130-141.  

Aho K, Derryberry D, Peterson T. 2014. Model selection for ecologists: the 

worldviews of AIC and BIC. Ecology 95(3): 631-636. 

Aldington S, Bonnerjea J. 2007. Scale-up of monoclonal antibody purification 

processes. J Chrom B 848: 64-78.  

Alexopoulos EC. 2010. Introduction to Multivariate regression analysis. Hippokratia 

14 (Suppl 1): 23-28. 

Allmendinger R, Simaria AS, Turner R, Farid SS. 2014a. Closed-loop optimization 

of chromatography column sizing strategies in biopharmaceutical manufacture. J 

Chem Technol Biotechnol 89(10): 1481-1490.  

Allmendinger R, Simaria AS, Farid SS. 2014b. Multiobjective evolutionary 

optimization in antibody purification process design. Biochem Eng J 91: 250-264.  

Amanullah A, Otero JM, Mikola M, Hsu A, Zhang J, Aunins J, Schreyer HB, Hope 

JA, Russo AP. 2010. Novel micro-bioreactor high throughput technology for cell 

culture process development: Reproducibility and scalability assessment of fed-batch 

CHO cultures. Biotechnol Bioeng 106(1): 57-67. 

Anderson DR, Burnham KP, Thompson WL. 2000. Null hypothesis testing: 

problems, prevalence and an alternative. Journal of Wildlife Management 64:912-

923.  



 

 

203 

 

Avorn J. 2015. The $2.6 billion pill – Methodologic and policy considerations. N 

Engl J Med. 372: 1877- 1879.  

Bailey JE. 1998. Mathematical modelling and analysis in biochemical engineering: 

Past Accomplishments and future opportunities. Biotechnol Prog 14: 8-20. 

Bailey-Kellogg C, Gutierez AH, Moise L, Terry F, Martin WD, De Groot AS. 2014. 

CHOPPI: A web tool for the analysis of immunogenicity risk from host cell proteins 

in CHO-based protein production. Biotechnol Bioeng 111(11): 2170-2182. 

Banerjee A. 2010. Designing in quality: Approaches to defining the design space for 

a monoclonal antibody process. BioPharm Int 23(5) 

Baranyi J., Pin C. 2001. Modelling microbiological safety. Food Process Modelling. 

383-401.  

Bareither R, Pollard D. 2010. A review of advanced small-scale parallel bioreactor 

technology for accelerated process development: Current state and future trend. 

Biotechnol Prog 27(1): 2-14. 

BCCResearch. 2012. Antibody Drugs: Technologies and Global Markets. 

BCCResearch. 

Becerra S, Berrios J, Osses N, Altamirano C. 2012. Exploring the effect of mild 

hypothermia on CHO cell productivity. Biochem Eng J 60: 1-8.  

Beckmann TF, Kramer O, Klausing S, Heinrich C, Thute T, Buntemeyer H, 

Hoffrogge R, Noll T. 2012. Effect of high passage cultivation on CHO cells: a global 

analysis. Appl. Microbiol Biotechnol., 94: 659-671.  

Berlec A, Strukelj B. 2013. Current state and recent advances in biopharmaceutical 

production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol 

Biotechnol 40: 257-274.  

Berndt ER, Cockburn IM. 2013. Price indexes for clinical trial research: A feasibility 

study. National Bureau of Economic Research.  

Betts JI, Baganz F. 2006. Miniature bioreactors: current practices and future 

opportunities. Microbial Cell Factories 5: 21.  

Biwer A, Griffith S, Cooney C. 2005. Uncertainty analysis of penicilin V production 

using monte carlo simulation. Biotechnol Bioeng 90(2): 167- 179.  



 

 

204 

 

Bracewell DG, Smales CM. 2013. The challenges of product- and process related 

impurities to an evolving biopharmaceutical industry. Bioanalysis, 5(2): 123-126.  

Bracewell DG, Francis R, Smales CM. 2015. The future of host cell protein (HCP) 

identification during process development and manufacturing linked to a risk based 

management for their control. Biotechnol. Bioeng. Volume  

Brodski I, Zhang Cheng, Yigzaw Y, Vedantham G. 2012. Caprylic acid precipitation 

method for impurity reduction: An alternative to conventional chromatography for 

monoclonal antibody purification. Biotechnol Bioeng 109(10): 2589-2598. 

Broly H, Mitchell Logean C, Costioli MC, Guillemot Potelle C. 2010 Cost of Goods 

Modelling and Quality by Design for Developing Cost Effective Processes. 

BioPharm Int 23(6).  

Büchs J, Maier U, Milbradt C, Zoels B. 2000. Power consumption in shaking flasks 

on rotary shaking machines: I. power consumption measurement in unbaffled flasks 

at low liquid viscosity. Biotechnol  Bioeng 68: 589- 593. 

Büchs J. 2001. Introduction to advantages and problems of shaken cultures. Biochem 

Eng  J 7: 91-98.  

Burnham KP, Anderson DR. 2002. Model selection and multi-model inference: a 

practical information-theoretic approach. Springer, New York, USA. 

Butler M, Menesses-Acosta A. 2012. Recent advances in technology supporting 

biopharmaceutical production from mammalian cells. Appl. Microbiol Biotechnol 

96: 885-894.  

Capito F, Skudas R, Kolmar H, Stanislawski B. 2013. Host cell protein quantification 

by fourier transform mid infrared spectroscopy (FT-MIR). Biotechnol Bioeng 

110(1): 253-258.  

Chames P, Van Regenmortel M, Weiss E, Baty D. 2009. Therapeutic antibodies: 

successes, limitations and hopes for the future. Br J Pharmacol 157(2): 220-233.  

Chatfield C. 2014. Durbin-Watson test. Wiley StatsRef: Statistics reference online.  

Chen A, Chitta R, Chang D, Amanullah A. 2009. Twenty-four well plate miniature 

bioreactor system as a scale-down model for cell culture process development. 

Biotechnol Bioeng 102: 148-160. 

 

http://biopharminternational.findpharma.com/biopharm/author/authorInfo.jsp?id=52789
http://biopharminternational.findpharma.com/biopharm/author/authorInfo.jsp?id=52788
http://biopharminternational.findpharma.com/biopharm/author/authorInfo.jsp?id=52787
http://biopharminternational.findpharma.com/biopharm/author/authorInfo.jsp?id=52790


 

 

205 

 

Chon JH, Zarbis-Papastoitsis G. 2011. Advances in the production and downstream 

processing of antibodies. New Biotechnol 28(5): 458-463.  

Chuppa S, Tsai Y-S, Yoon S, Shackleford S, Rozales C, Bhat R, Tsay 

G,Matanguihan C, Konstantinov K, Naveh D. 1997. Fermentor temperature as a tool 

for control of high–density perfusion cultures of mammalian cells. Biotechnol 

Bioeng 55:328– 338. 

Clark KJR, Chaplin FWR, Harcum SW. 2004. Temperature effects on product-

quality-related enzymes in batch CHO cell cultures producing recombinant tPA. 

Biotechnol Prog 20: 1888-1892. 

Coco-Martin, JM, Harmsen, MM. 2008. A Review of Therapeutic Protein. 

BioProcess Int 28 - 33. 

Collier R. 2009. Drug development cost estimates hard to swallow. Canadian Medical 

Association 180: 279-280.  

Cordoba AJ, Shyong BJ, Breen D, Harris RJ. 2005. Non-enzymatic hinge region 

fragmentation of antibodies in solution. J Chrom. B., 818: 115-121.  

Cornell JA. 2002. Experiments with mixtures: Designs, models and the analysis of 

mixture data, 3rd ed., John Wiley & Sons, INC, New York. 

Courtenay M. 2008. What’s Ailing the Pharmaceutical Sector? Available from: 

http://seekingalpha.com/article/81093-what-s-ailing-the-pharmaceutical-sector 

[Accessed 23 October 2014]. 

De Alwis DM, Dutton RL, Scharer J, Moo-Young M. 2007. Statistical methods in 

media optimization for batch and fed-batch animal cell culture. Bioprocess Biosyst 

Eng 30(2): 107-113. 

De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm 

FM. 2004. TubeSpin satellites: a fast track approach for process development with 

animal cells using shaking technology. Biochem Eng J 17: 217-223.  

DiMasi J, Hansen R, Grabowski H. 2003. The price of innovation: new estimates of 

drug development costs. J Health Econ 22: 151–185.  

 

 

http://seekingalpha.com/article/81093-what-s-ailing-the-pharmaceutical-sector


 

 

206 

 

Doneanu CE, Xenopoulos A, Fadgen K, Murphy J, Skilton SJ, Prentice H, Stapels 

M, Chen W. 2012. Analysis of host-cell proteins in biotherapeutic proteins by 

comprehensive online two-dimensional liquid chromatography/mass spectrometry. 

mAbs 4(1): 24-44.   

Dorai H, Santiago A, Campbell M, Tang QM, Lewis MJ, Wang Y, Lu QZ, Wu SL, 

Hancock W. 2011. Characterization of the proteases involved in the N-terminal 

clipping of glucagon-like-peptide-1-antibody fusion proteins. Biotechnol Prog 27(1): 

220-231.  

Dorai H, Corisdeo S, Ellis D, Kinney C, Chomo M, Hawley-Nelson P, Moore G, 

Betenbaugh MJ, Ganguly S. 2012. Early prediction of instability of Chinese hamster 

ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. 

Biotechnol Bioeng 109(4): 1016-1030.   

Dorai H, Liu S, Yao X, Wang Y, Tekindemir U, Lewis MJ, Wu SL, Hancock W. 

2013. Proteomic  analysis of bioreactor cultures of an antibody extressing CHO-GS 

cell line that promotes high productivity. J Proteomics Bioinform 6(5): 98-108.  

Dorai H, Ganguly S. 2014. Mammalian cell-produced therapeutic proteins: 

heterogeneity derived from protein degradation. Curr Opin Biotechnol. 30: 198-204. 

Dragomirescu M, Vintila T, Vlad-Oros B, Preda G. 2008. Stabilization of microbial 

enzymatic preparations used in feed industry. Zootehnie Biotechnologi 41(1): 69-72. 

Duetz WA. 2007. Microtiter plates as mini-bioreactors: miniaturization of 

fermentation methods. Trends Microbiol 15(10): 469-475.  

Dziak JJ, Coffman DL, Lanza ST, Li R. 2012. Sensitivity and specificity of 

information criteria (technical report 12-119). The methodology center, Pennsylvania 

State University, PA.  

Ecker DM, Jones SD, Levine HL. 2015. The therapeutic monoclonal antibody 

market. mAbs, 7(1): 9-14.  

Elliott P, Hohmann A, Spanos J. 2003. Protease expression in the supernatant of 

Chinese hamster ovary cells grown in serum-free culture. Biotechnol. Lett. 22: 1949-

1952.  

Eon-Duval A, Broly H, Gleisner R. 2012. Quality attributes of recombinant 

therapeutic proteins:  an assessment of impact on safety and efficacy as part of a 

quality by design development approach. Biotechnol Prog 28(3): 608-622.  



 

 

207 

 

Eon-Duval A, Valax P, Solacroup T, Broly H, Gleixner R, Le Strat C, Sutter J. 

2012b. Application of the quality by design approach to the drug substance 

manufacturing process of an Fc Fusion protein: Towards a global multi-step design 

space. J Pharm Sci 101(10): 3604-3618. 

Farid SS, Novais JL, Karri S, Washbrook J, Titchener-Hooker NJ. 2000 A tool for 

modeling strategic decisions in cell culture manufacturing. Biotechnol Prog 16(5): 

829- 836.  

Farid S. 2001. A decision-support tool for simulating the process and business 

perspectives of biopharmaceutical manufacture. Thesis (Ph.D.), University College 

London.  

Farid SS, Washbrook J, Titchener-Hooker NJ. 2005a. Decision-support tool for 

assessing biomanufacturing strategies under uncertainty: stainless steel versus 

disposable equipment for clinical trial material preparation. Biotechnol Prog, 21(2): 

486-497.  

Farid SS, Washbrook J, Titchener-Hooker NJ. 2005b. Combining multiple 

quatitative and qualitative goals when assessing biomanufacturing strategies under 

uncertainty. Biotechnol Prog  21: 1183-1191. 

Farid SS. 2007a. Process economics of industrial monoclonal antibodies 

manufacture. J Chromatography B 848: 8-18.  

Farid SS, Washbrook J, Titchener-Hooker NJ. 2007b. Modelling biopharmaceutical 

manufacture: Design and implementation of SimBiopharma. Computers and Chem 

Eng 31: 1141-1158. 

Farid S. 2009. Process economic drivers in industrial monoclonal antibody 

manufacture. In: Process Scale Purification of Antibodies. John Willey and Sons 

239-261.  

Fike R. 2009. Nutrient supplementation strategies for biopharmaceutical production 

Part 2. Feeding for optimal recombinant protein production. BioProcess Int 46-52. 

Fox SR, Patel UA, Yap MG, Wang DI. 2004. Maximizing Interferon-g Production 

by Chinese Hamster Ovary Cells by Temperature Shift Optimization: Experimental 

and Modeling. Biotechnol Bioeng 85(2): 177-184. 

Frame KK, Hu WS. 1991. Kinetic study of Hybridoma cell growth in continuous 

culture I. A model for non-producing cells. Biotechnol Bioeng 37: 55-64. 



 

 

208 

 

Frohlich H, Villian L, Melzner D, Strube J. 2012. Membrane technology in 

bioprocess science. Chem Ing Tech 84: 905-917. 

Galvanaus V, Simutis R, Lübbert A. 2004. Hybrid process models for process 

optimisation, monitoring and control. Bioprocess Biosyst Eng. 26: 393-400. 

Gao SX, Zhang Y, Stansberry-Perkins K, Buko A, Bai S, Nguyen V, Brader ML. 

2011. Fragmentation of a highly purified monoclonal antibody attributed to residual 

CHO cell protease activity. Biotechnol Bioeng 108(4): 977-982. 

Glacken MW, Huang C, Sinskey AJ. 1989. Mathematical descriptions of Hybridoma 

culture kinetics III. Simulation of fed-batch bioreactor. J Biotechnol 10: 39-66. 

George E, Titchener-Hooker NJ, Farid SS. 2007. A multi-criteria decision-making 

framework for the selection of strategies for acquiring biopharmaceutical 

manufacturing capacity. Computers and Chemical Engineering 31: 889-901.  

Gerrodette T. 2011. Interference without significance: measuring support for 

hypotheses rather than rejecting them. Marine Ecology: An evolutionary perspective 

32:404-418.  

Gommers F, Perry RN, Nijhuis M, Eimers R. 2014. Monte Carlo simulations: A 

practical tool for setting process proven acceptable ranges for an antibody producing 

cell culture manufacturing process. Poster Cell Culture Engineering XIV, Quebec, 

Canada.  

Gronemeyer P, Ditz R, Strube J. 2014. Trends in upstream and downstream process 

development for antibody manufacturing. Bioengineering 1: 188-212. 

Grzeskowiak JK, Tscheliessnig A, Toh PC, Chusainow J, Lee YY, Wong N, 

Jungbauer A. 2009. 2-D DIGE to expedite downstream process development for 

human monoclonal antibodypurification. Protein Expr Purif 66: 58-65.  

Guiochon G, Beaver LA. 2011. Separation science is the key to successful 

biopharmaceuticals. J Chrom A 1218: 8836-8858. 

Gutierrez AH, Moise L, De Groot AS. 2012. Of [Hamsters] and men:  a new 

perspective on host cell proteins. Hum.  Vaccin. Immunother. 8(9): 1172-1174.  

Gyros. Available at <http://www.gyros.com/products/products-optimized/gyrolab-

xp-workstation/>. Accessed [23 July 2015]. 

 

http://www.gyros.com/products/products-optimized/gyrolab-xp-workstation/
http://www.gyros.com/products/products-optimized/gyrolab-xp-workstation/


 

 

209 

 

Haaland PD. 1989. Experimental design in biotechnology, Marcel Dekker, INC, New 

York 

Harder A, Roels JA. 1982. Application of simple structured models in 

bioengineering. Adv Biochem Eng 21: 56-107. 

Harrison RG, Todd PW, Rudge SR, Petrides D. 2003. Bioseparations science and 

engineering. New York: Oxford University Press 319-371.  

Harms P, Kostov Y, French JA., Soliman M, Anjanappa M, Ram A, Rao G. 2006. 

Design and performance of a 24-station high throughput micro-bioreactor. Biotechnol 

Bioeng 93: 6-13.  

Hassan SS, Farhan M, Mangayil R, Huttune H, Aho T. 2013. Bioprocess data mining 

using regularized regression and random forests. BMC Systems Biology 7(Suppl 1): 

S5.  

Heath C, Kiss R. 2007. Cell culture process development: Advances in process 

engineering. Biotechnol Prog 23(1): 46-51. 

Hinton PR. 2014. Multiple correlation and regression. Statistics explained. Taylor & 

Francis.  

Hirai M, Frau N, Zarbis-Papastoitsis G, Kuczewski M. 2009. Hydrophobic 

membrane adsorbers for large-scale downstream processing. BioPharm Int Supp 

Ho Y, Varley J, Mantalaris A. 2006. Development and analysis of a mathematical 

model for antibody-producing GS-NS0 cells under normal and hyperosmotic culture 

conditions. Biotechnology Progress 22: 1560-1569. 

Hogwood CEM, Tait AS, Koloteva-Levine N, Bracewell DG, Smales CM. 2013. The 

dynamics of the CHO host cell protein profile during clarification and protein A 

capture in a platform antibody purification process. Biotechnol Bioeng 110(1): 240-

251.  

Hogwood CEM, Bracewell DG, Smales CM. 2014. Measurement and control of host 

cell proteins (HCPs) in CHO cell bioprocesses. Curr Oppin Biotechnol 30:153-160.  

Horvath B, Mun M, Laird MW. 2010. Characterization of a monoclonal antibody 

cell culture production process using a quality by design approach. Mol Biotechnol 

45: 203-206.  



 

 

210 

 

Howell D. 2013. Multiple Regression. Statistical methods for psychology. 

Wadsworth Publishing. Chapter 15: 507-572. 

Hsu W, Aulakh R, Traul D, Yuk I. 2012. Advanced microscale bioreactor system: a 

representative scale-down model for bench-top bioreactors. Cytotechnology 64: 667-

678.  

Jang JD, Barford JP. 2000. An unstructured kinetic model of macromolecular 

metabolism in batch and fed-batch cultures of hybridoma cells producing 

monoclonal antibody. Biochemical Engineering Journal 4: 153-168. 

Jardon M, Garnier A. 2003. pH, pCO2 and temperature effect on R-Adenovirus 

production. Biotechnol Prog. 19: 202-208. 

Jiang Z, Droms K, Geng Z, Casnocha S, Xiao Z, Gorfien S, Jacobia SJ. 2012. Fed-

batch cell culture process optimization. Bioprocess International 10(3): 40-45. 

Jin M, Szapiel N, Zhang J, Hickey J, Ghose S. 2010. Profiling of host cell proteins 

by two-dimensional difference gel electrophoresis (2D-DIGE): Implications for 

downstream process development. Biotechnol Bioeng 105(2): 306-316. 

Jones SD, Ransohoff TC, Castillo F, Riske FJ, Levine HL. 2015. High-throughput 

process development approaches for biopharmaceuticals. Americal Pharmaceutical 

Review.  

Kadane JB, Lazar NA. 2004. Methods and criteria for model selection. Journal of the 

American Statistical Association. 99: 279-290.  

Kaitin KI. 2010. The landscape for pharmaceutical innovation: Drivers of cost-

effective clinical research. Pharm Outsourcing 1-6.  

Kao YH, Hewitt DP, Trexler-Schmidt M, Laird MW. 2010. Mechanism of antibody 

reduction in cell culture production processes. Biotechnol Bioeng 107(4): 622-632.  

Kaufmann H, Mazur X, Fussenegger M, Bailey JE. 1999. Influence of low 

temperature on productivity, proteome and protein phosphorylation of CHO cells. 

Biotechnol Bioeng 63(5): 573-582. 

Kelley B. 2007. Very large scale monoclonal antibody purification: The case for 

conventional unit operations. Biotechnol Prog 23: 995-1008. 

Kelley B. 2009. Industrialization of mAb production technology - the bioprocessing 

industry at a crossroads. MAbs 1(5):  443-452.  



 

 

211 

 

Khan KH. 2013. Gene expression in mammalian cells and its applications. Adv 

Pharm Bull 3(2): 257-263.  

Kim MS, Kim NS, Sung YH, Lee GM. 2002. Biphasic culture strategy based on 

hyperosmotic pressure for improved humanized antibody production in chinese 

hamster ovary cell culture. In Vitro Cellular & Developmental Biology – Animal, 

38: 314-319.  

Kim BJ, Zhao T, Young L, Zhou P, Shuler ML. 2011. Batch, fed-batch and 

microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized 

bioreactor. Biotechnol Bioeng 109(1): 137-145. 

Kim BJ, Diao J, Shuler ML. 2012. Mini-scale bioprocessing systems for highly 

parallel animal cell cultures. Biotechnol Prog 28(3): 595-607. 

Kirdar AO, Green KD, Rathore AS. 2008. Application of multivariate data analysis 

for identification and successful resolution of a root cause for a bioprocessing 

application. Biotechnol Prog 24: 720-726. 

Koharyova M, Kolarova M. 2008. Oxidative stress and thioredoxin system. Gen 

Physiol Biophys 27(2): 71-84.  

Kontoravdi C, Asprey SP, Pistikopoulos EN, Mantalaris A. 2005. Application of 

global sensitivity analysis to determine goals for design of experiments: An example 

study on antibody-producing cell cultures. Biotechnol Prog 21: 1128-1135. 

Kompala DS. 2013. Cell growth and protein expression kinetics. Upstream Industrial 

Biotechnology 2, Chapter 6, Wiley   

Kontoravdi C, Asprey SP, Pistikopoulos EN, Mantalaris A. 2007. Development of a 

dynamic model of monoclonal antibody production and glycosilation for product 

quality monitoring. Computers and Chemical Engineering 31: 392-400. 

Koterba KL, Borgschulte T, Laird MW. 2012. Thioredoxin 1 is responsible for 

antibody disulfide reduction in CHO cell culture. J Biotechnol 157: 261-267.  

Kourti T. 2004. Process analytical technology and multivariate statistical control, 

Part 1. Process Anal. Technol. 1:13-19. 

Kourti T. 2010. Pharmaceutical manufacturing: the role of multivariate analysis in 

design space. Control strategy, process understanding, troubleshooting, optimization. 



 

 

212 

 

In David J et al (ed) Chem engineering in the pharmaceutical industry: R&D to 

manufacturing. Wiley, 853-878.  

Kourti T, Davis B. 2012. The business benefits of Quality by Design (QbD). 

Pharmaceutical Engineering 32(4): 1-10.  

Kourti T. 2015. Multivariate analysis for process understading, monitoring, control 

and optimization of lyophilization processes. In Feroz J et al (ed) Quality by design 

for biopharmaceutical drug product development. Springer, 537-565.  

Kumar S, Wittmann C, Heinzle E. 2004. Minibioreactors. Biotechnol Lett 26: 1-10. 

Lain B, Zarbis-Papastoitsis G, Schirmer E, Kuczewski M. 2010. PEG Precipitation:  

A powerful tool for monoclonal antibody purification. BioPharm Int Supp 

Lang HJ. 1948. Simplified approach to preliminary cost estimates. Chemical Eng 55: 

112- 113.   

Lee JM. 2001. Biochemical Engineering. Department of Chemical Engineering, 

Washington State University, Pullman, WA 99164-2710. 

Lee MS, Kim KW, Kim YH, Lee GM. 2003. Proteome analysis of antibody-

expressing CHO cells in response to hyperosmotic pressure. Biotechnol Prog 19: 

1734-1741. 

Lee KM, Gilmore DF. 2006. Statistical experimental design and bioprocess modeling 

and optimization analysis. Repeated-measures method for dynamic biotechnology 

process. App Biochem and Biotechnol 135: 101-115. 

Legmann R, Schreyer HB, Combs RG, McCormick EL, Russo AP, Rodgers ST. 

2009. A predictive high-throughput scale-down model of monoclonal antibody 

production in CHO cells. Biotechnol Bioeng 104(6): 1107-1120.  

Levy NF, Valente KN, Choe LH, Lee KH, Lenhoff AM. 2014. Identification and 

characterization of host cell protein-associated impurities in monoclonal antibody 

bioprocessing. Biotechnol Bioeng 111(5): 904-912.  

Lewis G, Lugg R, Wales R. 2010. Novel automated micro-scale bioreactor 

technology: A qualitative and quantitative mimic for early process development. 

Bioprocessing Journal 9(1): 22-25.  

Li F, Zhou JX, Yang X, Tressel T, Lee B. 2005. Current therapeutic antibody 

production and process optimization. BioProcessing J Sept/Oct 1-8.  



 

 

213 

 

Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A. 2010. Cell culture processes 

for monoclonal antibody production. Landes Bioscience Journals MAbs 2: 466–479.   

Lim AC, Zhou Y, Washbrook J, Sinclair A, Fish B, Francis R, Titchener-Hooker NJ, 

Farid SS. 2005. Application of a decision-support tool to assess pooling strategies in 

perfusion culture processes under uncertainty. Biotechnol Prog 21(4): 1231-1242.  

Lim AC, Washbrook J, Titchener-Hooker NJ, Farid SS. 2006. A computer-aided 

approach to compare the production economics of fed-batch and perfusion culture 

under uncertainty. Biotechnol  Bioeng 93(4): 687-697.  

Lim JAC, Patkar A, McDonagh G, Sinclair A, Lucy P. 2010. Modeling bioprocess 

cost. Process economic benefits of expression technology based on Pseudomonas 

fluorescens. BioProcess Int November 62-70.  

Lin J, Takagi M, Qu Y, Gao P, Yoshida T. 1999. Enhanced monoclonal antibody 

production by gradual increase of osmotic pressure. Cytotechnology 29: 27-33. 

Link T, Backstrom M, Graham R, Essers R, Zorner K, Gatgens J, Burchell J, Taylor-

Papadimitriou J, Hansson GC, Noll T. 2004. Bioprocess development for the 

production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in 

protein-free medium. Journal of Biotechnology (110): 51-62.  

Liu HF, Ma J, Wnter C, Bayer R. 2010. Recovery and purification process 

development for monoclonal antibody production. MAbs 2(5): 480-499.  

Looby M, Ibarra N, Pierce JJ, Buckley K, O’Donovan E, Heenan M, Moran E. 2011. 

Application of a Quality by Design principles to the development and technology 

transfer of a major process improvement for the manufacture of a recombinant 

protein. Biotechnol Prog 27(6): 1718-1729.  

Lotter S, Buchs J. 2004. Utilization of specific power input measurements for 

optimization of culture conditions in shaking flasks. Biochem Eng J 17: 195-203.         

Lowe CR. 2001. Combinational approaches to affinity chromatography. Current 

Opinion in Chemical Biology 5(3): 248-256. 

Lu F., Toh PC, Burnett I, Li F, Hudson T, Amanullah A, Li J. 2013. Automated 

dynamic fed-batch process and media optimization for high productivity cell culture 

process development. Biotechnol Bioeng 110(1): 191-205. 

http://onlinelibrary.wiley.com/doi/10.1021/bp049578t/abstract?systemMessage=Wiley+Online+Library+will+be+disrupted+3+Sep+from+10-12+BST+for+monthly+maintenance


 

 

214 

 

Lye GJ, Ayazi-Shamlou P, Baganz F, Dalby P, Woodley J. 2003. Accelerated design 

of bioconversion processes using automated microscale processing techniques. 

Trends in Biotechnol 21: 29-37.  

Mahajan E, George A, Wolk B. 2012. Improving affinity chromatography resin 

efficiency using semi-continuous chromatography. J Chrom A 1227: 154-162.  

Marill KA. 2004. Advanced statistics: linear regression, part II: multiple linear 

regression. Academic Emergency Medicine 11(1): 94-102. 

Mason M, Sweeney B, Cain K, Stephens P, Sharfstein ST. 2014. Reduced culture 

temperature differentially affects expression and biophysical properties of 

monoclonal antibody variants. Antibodies 3: 253-271.  

Mayer-Bartschmid A, Clarkson M, Zoro B, Groth M, Schubel A. 2013. New 

improved automation of the AMBRTM microbioreactor implemented in a clone 

selection workflow. Poster 23rd ESACT Meeting, June  

McDonald JH. 2008. Multiple regression. Handbook of Biological Statistics. Sparky 

House Publishing 217-223.   

Montgomery DC. 2004. Design and analysis of experiments, 6th ed., John Wiley & 

Sons, INC, New York. 

Montgomery DC. 2009. Design and analysis of experiments. 7th ed. New Jersey: 

Wiley and sons, Inc., p. 656. 

Moore A, Mercer J, Dutina G, Donahue CJ, Bauer KD, Mather JP, Etcheverry T, Ryll 

T. 1997. Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in 

CHO cell batch cultures. Cytotechnology 23: 47-54.  

Moses S, Manahan M, Ambrogelly A, Ling WLW. 2012. Assessment of AMBRTM as 

a model for high- throughput cell culture process development strategy. Adv in 

Bioscience and Biotechnol 3: 918-927. 

Muller-Spath T, Aumann L, Strohlein G, Kornmann H, Valax P, Delegrange L, 

Charbaut E, Baer G, Lamprove A, Johnck M, Schulte M, Morbidelli M. 2011. Two 

step capture and purification of IgG2 using multicolumn counter-current solvent 

gradient purification (MCSGP). Biotechnol Bioeng 107(6): 974-984.  

Murtaugh PA. 2014. In defence of P values. Ecology 95(3): 611-617. 



 

 

215 

 

Mustafa MA, Washbrook J, Lim AC, Zhou Y, Titchener-Hooker NJ, Morton P, 

Berezenko S, Farid SS. 2004. A software tool to assist business-process decision-

making in the biopharmaceutical industry. Biotechnol Prog 20(4): 1096-1102  

[Correction: 2005 Biotechnol Prog  21(1): 320-320].  

Mustafa MA, Washbrook J, Titchener-Hooker NJ, Farid SS. 2006. Retrofit decisions 

within the biopharmaceutical industry. An EBA case study. Food Bioproducts 

Process 84(1): 84- 89.  

Myers RH, Montgomery DC. 2002. Response surface methodology: Process and 

product optimization using designed experiments, 2nd ed.. John Wiley & Sons, INC., 

New York. 

Nienow AW, Rielly CD, Brosnan K, Barg K, Lee K, Coopman K, Hewitt CJ. 2013. 

The physical characterisation of a microscale parallel bioreactor platform with an 

industrial CHO cell line expressing an IgG4. Biochem Eng J 76: 25-36. 

Nogal B, Chhiba K, Emery JC. 2012. Select host cell proteins coelute with 

monoclonal antibodies in protein a chromatography. Biotechnol Prog 28(2): 454-458.  

Novais JL, Titchener-Hooker NJ, Hoare M. 2001. Economic comparison between 

conventional and disposables-based technology for the production of 

biopharmaceuticals. Biotechnol Bioeng  75(2): 143- 153.  

Oh SKW, Kuek KH, Wong VVT. 2004. Design, simulation and optimization of a 

large-scale monoclonal antibody production plant: Upstream design. Pharmaceutical 

Eng 24(6): 42-46.    

O’Kelley M, Berry S, Walp D, Garrett A. 2012. Lifecycle modelling and simulation. 

www.quintiles.com  

Palmer PB, O’Connell DG. 2009. Regression analysis for prediction: Understanding 

the process. Cardiopulmonary physical therapy journal 20(3): 23-26. 

Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, 

Schacht AL. 2010. How to improve R&D productivity: the pharmaceutical industry’s 

grand challenge. Nature Reviews Drug Discovery 9: 203-214.  

 

 

http://www.quintiles.com/


 

 

216 

 

Pezzini J, Joucla G, Gantier R, Toueille M, Lomenech AM, Le Senechal C, Garbay 

B, Santarelli X, Cabanne C. 2011. Antibody capture by mixed-mode 

chromatography: A comprehensive study from determination of optimal purification 

conditions to identification of contaminating host cell proteins. J Chrom. A. 1218: 

8197-8208.  

Platts K., Probert DR, Canez L. 2002. Make vs. buy decisions: A process 

incorporating multi-attribute decision-making. International Journal of Production 

Economics 77: 247-257.  

Pollock J, Ho SV, Farid SS. 2013. Fed-batch and perfusion culture processes: 

Economic, environmental and operational feasibility under uncertainty. Biotechnol 

Bioeng 110(1): 206-219.  

PR Newswire. 2015. Outlook of the global pharmaceutical outsourcing market 2015-

2020 – Current market accounts for approx $130.65 billion. Research and Markets. 

Available at < http://www.prnewswire.co.uk/news-releases/outlook-of-the-global-

pharmaceutical-outsourcing-market-2015-2020---current-market-accounts-for-

approx-13065-billion-499341031.html> Accessed [23 June 2015]  

Provost A, Bastin G. 2004. Dynamic metabolic modelling under the balanced growth 

condition. J. Process Control 14: 717-728. 

Puich M, Paz A. 2004. Simulations improve production capacity. BioPharm Int, May 

1. 

Qureshi AS, Bhutto MA, Khushk I, Dahot MU. 2011. Optimization of cultural 

conditions for protease production by Bacillus subtilis EFRL 01. African J 

Biotechnol 10(26): 5173-5181. 

Rader RA. 2013. FDA Biopharmaceutical Product approvals and trends in 2012. 

Bioprocess International 11(3): 18-27.  

Rameez S, Mostafa SS, Miller C, Shukla AA. 2014. High-throughput miniaturized 

bioreactors for cell culture process development: reproducibility, scalability and 

control. Biotechnol Prog 30(3): 718-727. 

Ransohoff TC. 2009. If you build it, will they come? The promise and perils of 

investing in biomanufacturing capacity. Bioprocess Technology Consultants, Inc., 2nd 

Annual Sanford C. Bernstein Biosimilars Conference, New York, November 19. 

 

http://www.prnewswire.co.uk/news-releases/outlook-of-the-global-pharmaceutical-outsourcing-market-2015-2020---current-market-accounts-for-approx-13065-billion-499341031.html
http://www.prnewswire.co.uk/news-releases/outlook-of-the-global-pharmaceutical-outsourcing-market-2015-2020---current-market-accounts-for-approx-13065-billion-499341031.html
http://www.prnewswire.co.uk/news-releases/outlook-of-the-global-pharmaceutical-outsourcing-market-2015-2020---current-market-accounts-for-approx-13065-billion-499341031.html


 

 

217 

 

Rao RV. 2007. Introduction to multiple attribute decision-making (MADM) methods. 

Decision making in manufacturing environment using graph theory and fuzzy multiple 

attribute decision making methods. 2: 27-41.  

Rathore AS, Latham P, Kaltenbrunner O, Curling J, Levine H. 2004. Costing issues 

in the production of biopharmaceuticals. BioPharm Int, February. 

Rathore AS, Johnson R, Yu O, Kirdar AO, Annamalai A, Ahuja S, Ram K. 2007. 

Applications of multivariate data analysis in biotech processing. BioPharm Int 

Rathore AS, Bhushan N, Hadpe S. 2011. Chemometrics application in biotech 

processes: review. Biotechnol Prog 27: 307-315. 

Rathore AS, Mittal S, Pathak M, Arora A. 2014. Guidance for performing 

multivariate data analysis of bioprocessing data: Pitfalls and recommendations. 

Biotechnol Prog. 30(4): 967-973. 

Ratner B. 2010. Variable selection methods in regression: Ignorable problem, outing 

notable solution. Journal of Targeting, Measurement and Analysis for Marketing 18: 

65-75. 

Razali NM, Wah YB. 2011. Power comparison of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling tests. Journal of statistical modelling and 

analytics 2(1): 21-33. 

Reichenberger G. 2011. Improving immunoassay performance. New tools aim to 

reduce turnaround times in biotherapeutic development and production. [Online]. 

Available at: <http://gen.epubxp.com/i/64286/30>  Accesed [23 July 2014] 

Reisinger V, Toll H, Mayer RE, Visser J, Wolschin F. 2014. A mass spectrometry-

based approach to host cell protein identification and its application in a 

comparability exercise. Analytical Biochem 463: 1-6. 

Remer DS, Idrovo JH. 1991. Cost-estimating factors for biopharmaceutical process 

equipment. Int J Pharmacy and Technology 36-42.  

Riley BS, Li X. 2011. Quality by design and process analytical technology for sterile 

products –Where are we now? AAPS Pharm Sci Tech 12(1): 114-118.  

Robert F, Bierau H, Rossi M, Agugiaro D, Soranzo T, Broly H, Mitchell-Logean C. 

2009. Degradation of an Fc-fusion recombinant protein by host cell proteases: 

Identification of a CHO cathepsin D protease. Biotechnol Bioeng 104(6): 1132-1141.  

http://gen.epubxp.com/i/64286/30


 

 

218 

 

Rodrigues ME, Costa AR, Henriques M, Azeredo J, Oliveira R. 2010. Technological 

progresses in monoclonal antibody production systems. Biotechnol Prog 26(2): 332-

351.  

Roubos JA, Babuska R, Krabben P, Heijnen JJ. 2000. Hybrid modeling of fed-batch 

bioprocesses; combination of physical equations with metabolic networks and black-

box kinetics Journal A, Benelux Q J Automatic Control 41:17–23. 

Roubos H. 2002. Bioprocess modelling and optimisation. PhD thesis, Delft 

University of Technology, The Netherlands. 

Rouiller Y, Solacroup T, Deparis V, Barbafieri M, Gleixner R, Broly H, Eon-Duval 

A. 2012. Application of quality by design to the characterization of the cell culture 

process of an Fc-Fusion protein. European journal of pharmaceutics and 

biopharmaceutics 81(2): 426-437. 

Roy J. 2011. Drugs, medicines and regulatory authorities. Chapter 3. An introduction 

to Pharmaceutical Sciences: Production, Chemistry, Techniques and Technology. 43-

69.  

Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T. 2000. Performance 

of small–scale perfusion cultures using an acoustic cell filtration device for cell 

retention: characterization of separation efficiency and impact of perfusion on 

product quality. Biotechnol Bioeng 69: 440– 449. 

Ryu JS, Kim TK, Chung JY, Lee GM. 2000. Osmoprotective effect of glycine 

betaine on foreign protein production in hyperosmotic recombinant chinese hamster 

ovary cell cultures differs among cell lines. Biotechnol Bioeng 70(2): 168-175.  

Sandberg H, Lutkemeyer D, Kuprin S, Wrangel M, Almstedt A, Persson P, Ek V, 

Milkaelsson M. 2006. Mapping and partial characterization of proteases expressed 

by a CHO production cell line. Biotechnol Bioeng 95(5): 961-971.   

Saraswat M, Musante L, Ravida A, Shortt B, Byrne B, Holthofer H. 2013. 

Preparative purification of recombinant proteins: Current status and future trends. 

BioMed Research International 1-18.  

Scott C. 2012. A Decade of Product Development. BioProcess International, 10, 72-

78. 



 

 

219 

 

Schirmer EB, Kuczewski M, Golden K, Lain B, Bragg C, Chon L, Cacciuttolo M, 

Zarbis-Papastoitsis. 2010. Primary clarification of very high-density cell culture 

harvests by enhanced cell settling. BioProcess Int 32-29.  

Schnatz RG. 2013. Modern-day drug discovery and development. Remington- 

Essentials of Pharmaceutics. Chapter 7. Pharmaceutical Press 81-93.  

Schubert J, Simutis R, Dors M, Havlik I, Lubbert A. 1994. Bioprocess optimization 

and control: application of hybrid modelling. J Biotechnol 35: 51–68. 

Schwartz WR, Kembhavi A, Harwood D, Davis LS. 2009. Human detection using 

partial least squares analysis. Int. Conf. on Computer vision and pattern recognition 

(CVPR).  

Sekhon BS. 2010. Biopharmaceuticals: an overview. Thai J Pharm Sci 34: 1-19.  

Seo JS, Kim YJ, Cho JM, Baek E, Lee GM. 2013. Effect of culture pH on 

recombinant antibody production by a new human cell line, F2N78, grown in 

suspension at 33.0 oC and 37.0 oC. Appl. Microbiol Biotechnol 97(12): 5283- 5291. 

Shevitz J, Bonham Carter J, Lim J, Sinclair A. 2011. An economic comparison of 

three cell culture techniques. Biopharm Int 24(2).  

Shukla AA, Hubbard B, Tressel T, Gunhan S, Low D. 2007. Downstream processing 

of monoclonal antibodies-application of platform approaches. J Chromat B 848: 29-

39.  

Shukla AA, Hinckley P. 2008. Host cell protein clearance during protein A 

chromatography: development of an improved column wash step. Biotechnol Prog 

24: 1115-1121. 

Shukla AA, Jiang C, Ma J, Rubacha M, Flansburg L, Lee SS. 2008. Demonstration 

of robust host cell protein clearance in biopharmaceutical downstream processes. 

Biotechnol Prog 24: 614-622.  

Shukla AA, Thömmes J. 2010. Recent advances in large-scale production of 

monoclonal antibodies and related proteins. Trends Biotechnol 28(5): 253–261. 

Sidoli FR, Mantalaris A, Asprey SP. 2004. Modelling of mammalian cells and cell 

culture processes. Cytotechnology 44: 27-46. 



 

 

220 

 

Sidoli FR, Mantalaris A, Asprey SP. 2005. Toward global parametric estimability of 

a large-scale kinetic single-cell model for mammalian cell cultures. Industrial & 

engineering chemistry research 44: 868-878. 

Silk NJ, Denby S, Lewis G, Kuiper M, Hatton D, Field R, Baganz F, Lye GJ. 2010. 

Fed-batch operation of an industrial cell culture process in shaken microwells. 

Biotechnol Lett 32(1): 73-78.  

Simaria AS, Turner R, Farid SS. 2012.  A multi-level meta-heuristic algorithm for 

the optimisation of antibody purification processes. Biochem Eng J 69: 144-154. 

Sinclair A. 2010. How geography affects the cost of biomanufacturing. BioProcess 

Int June 1.  

Sinnott, RK. 1993. Coulson and Richardson’s Chemical Engineering. Oxford: 

Pergamon Press  6: 209-244.  

Sisodiya VN, Lequieu J, Rodriguez M, McDonald P, Lazzareschi KP. 2012. 

Studying host cell protein interactions with monoclonal antibodies using high 

throughput protein A chromatography. Biotechnol. J. 7(10): 1233- 1241.  

Sommerfeld S, Strube J. 2005. Challenges in biotechnology production- generic 

processes and process optimization for monoclonal antibodies. Chem Eng Proc 44: 

1123-1137.  

Steuer RE, Na P. 2003. Multiple criteria decision making combined with finance: A 

categorized bibliographic study. European Journal of Operational Research 150(3): 

496-515. 

Stockdale GW, Cheng A. 2009. Design Space and reliable operating region using a 

multivariate Bayesian approach with experimental design. Quality Technol & 

Quantitative Management 6(4): 391-408.  

Stonier A, Simaria AS, Smith M, Farid SS. 2012. Decisional tool to assess current 

and future process robustness in an antibody purification facility. Biotechonl Prog 

28(4): 1019-1028.  

Stonier A, Pain D, Westlake A, Hutchinson N, Thornhill NF, Farid SS. 2013. 

Integration of stochastic simulation with multivariate analysis: Short-term facility fit 

prediction. Biotechnol Prog 29(2): 368-377. 

 



 

 

221 

 

Tait AS, Hogwood CEM, Smales CM, Bracewell DG. 2012. Host cell protein 

dynamics in the supernatant of a mAb producing CHO cell line. Biotechnol Bioeng 

109(4): 971-982.  

Tait AS, Tarrant RD, Velez-Suberbie ML, Spencer DL, Bracewell DG. 2013. 

Differential response in downstream processing of CHO cells grown under mild 

hypothermic conditions. Biotechnol Prog 29(3): 688-696. 

Tao Y, Ibraheem A, Conley L, Cecchini D, Ghose S. 2014. Evaluation of high-

capacity cation exchange chromatography for direct capture of monoclonal 

antibodies from high-titer cell culture processes. Biotechnol Bioeng 111(7): 1354-

1364. 

Tarpey T. 2000. A note on the prediction sum of squares statistic for restricted least 

squares. The American Statistician. Taylor & Francis 54(2): 116-118. 

Tarrant RDR, Velez-Suberbie ML, Tait AS, Smales CM, Bracewell DG. 2012. Host 

cell protein adsorption characteristics during Protein A chromatography. Biotechnol 

Prog. 28(4): 1037-1044.  

Tcheliessnig AL, Konrath J, Bates R, Jungbauer A. 2013. Host cell protein analysis 

in therapeutic protein bioprocessing – methods and applications. Biotechnol J 8: 655-

670.  

Thabane L, Mbuagbaw L, Zhang S, Samaan Z, Marcucci M, Ye C, Thabane M, 

Giangregorio L, Dennis B, Kosa D, Borg Debono V, Dillenburg R, Fruci V, Bawor 

M, Lee J, Wells G, Goldsmith CH. 2013. A tutorial on sensitivity analyses in clinical 

trials: the what, why, when and how. BMC Medical Research Methodology 13:92. 

Thompson JH, Chung WK, Zhu M, Tie L, Lu Y, Aboulaich N, Strouse R, Mo W. 

2014. Improved detection of host cell proteins (HCPs) in a mammalian cell-derived 

antibody drug using liquid chromatography/mass spectrometry in conjunction with 

an HCP-enrichment strategy. Rapid Commun Mass Spectrom 28: 855-860.  

Toueille M, Uzel A, Depoisier JF, Gantier R. 2011. Designing new monoclonal 

antibody purification processes using mixed-mode chromatography sorbents. J 

Chrom B 879(13-14): 836-843.  

Trexler-Schmidt M, Sargis S, Chiu J, Sze-Khoo S, Mun M, Kao Y-H, Laird MW. 

2010. Identification and prevention of antibody disulfide bond reduction during cell 

culture manufacturing. Biotech Bioeng 106(3): 452-461. 



 

 

222 

 

Triantaphyllou E. 2000. Multi-criteria decision making methods: A comparative 

study. Dordrecht, The Netherlands: Kluwer Academic Publishers.  

Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-

Uhl K, Weik R, Borth N, Katinger H, Muller D. 2006. Process parameter shifting: 

Part I. Effect of DOT, pH and temperature on the performance of Epo-Fc expressing 

CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94(6): 1033-

1044.  

Tsao YS, Cardoso AG, Condon RGG, Voloch M, Lio P, Lagos JC, Kearns BG, Liu 

Z. 2005. Monitoring chinese hamster ovary cell culture by the analysis of glucose 

and lactate metabolism. Journal of Biotechnology 118: 316-327.  

Tsuchiya HM, Fredrickson AG, Aris R. 1966. Dynamics of Microbial Cell 

Populations. Adv. Chem. Eng. 6: 125-206. 

Van Amum P. 2015. Big Pharma up biologics manufacturing. Available at: 

<http://connect.dcat.org/blogs/patricia-van-arnum/2015/03/03/big-pharmas-ramps-

up-in-biologics-manufacturing > Accesed [20 June 2015] 

Vanderlaan M, Sandoval W, Liu P, Nishihara J, Tsui G, Lin M, Parker S, Wong RM, 

Low J, Wang X, Yang J, Veeravalli K, McKay P, O’Connell L, Tran B, Vij R, Fong 

C, Francissen F, Zhu-Simoni J, Quarmby V, Krawitz D. 2015. Hamster 

Phospholipase B-like 2 (PLBL2), a host cell protein impurity in CHO-derived 

therapeutic monoclonal antibodies. BioProcess Int. April. 

Valente KN, Lenhoff AM, Lee KH. 2015. Expression of difficult-to-remove host cell 

protein impurities during extended chinese hamster ovary cell culture and their 

impact on continuous bioprocessing. Biotechnol Bioeng 112(6): 1232-1242.  

Vrieze SI. 2012. Model selection and psychological theory: a discussion of the 

differences between the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC). Psychol Methiods 17(2): 228-243.  

Wang MD, Yang M, Huzel N, Butler M. 2002. Erythropoietin production from CHO 

cells grown in continuous culture in a fluidized-bed bioreactor. Biotechnol Bioeng 77: 

194-203.  

Wang X, Hunter AK, Mozier NM. 2009. Host cell proteins in biologics 

development: Identification, quantification, and risk assessment. Biotechnol Bioeng 

103(3): 446-458. 



 

 

223 

 

Wang H. 2010. Stochastic modeling of the equilibrium speed-density relationship. 

Thesis (Ph.D.), University of Massachusetts, USA. Available from: 

http://www.scribd.com/doc/59861228/4/Deterministic-vs-stochastic-models 

[Accessed 12 May  2015].  

Wang W, Ignatius AA, Thakkar SV. 2014. Impact of residual impurities and 

contaminants on protein stability. J Pharma Sci. 103(5): 1315-1330.  

Werner RG. 2004. Economic aspects of commercial manufacture of 

biopharmaceuticals. J Biotechnol 113: 171-182.  

Westoby M, Chrostowski J, de Vilmorin P, Smelko JP, Romero JK. 2011. Effects of 

solution environment on mammalian cell fermentation broth properties: enhanced 

impurity removal and clarification performance. Biotechnol Bioeng 108(1): 50-8. 

Williams MN, Grajales CAG, Kurkiewicz D. 2013. Assumptions of multiple 

regression: Correcting two misconceptions. Practical Assessment, Research & 

Evaluation 18(11): 1-14. 

Wittmann C, Kim HM, Heinzle E, John G. 2003. Characterization and application of 

an optical sensor for quantification of dissolved O2 in shake-flasks. Biotechnol Lett, 

25: 377-380. 

Wlaschin KF, Hu WS. 2006. Fed-batch culture and dynamic nutrient feeding. 

Adv.Biochem. Eng. Biotechnol. 101: 43–74. 

Wu P. 2013. Practical experiences integrating upstream and downstream processing. 

Am Pharml Rev 16: 84-86.   

Wurm FM. 2015. CHO History, CHO Evolution and CHO Genomics – an 

Unsolvable Enigma? Animal Cell Biotechnology: In Biologics Production. De 

Gruyter. 38-59.  

Xie L, Wang DIC. 1994. Fed-batch cultivation of animal cells using different 

medium design concepts and feeding strategies. Biotechnol Bioeng 43: 1175-1189. 

Yang Y, Farid SS, Thornhil NF. 2014. Data mining for rapid prediction of facility fit 

and debottlenecking of biomanufacturing facilities. J Biotechnol 179: 17-25. 

Yeatts AB, Fisher JP. 2011. Bone tissue engineering bioreactors: Dynamic culture 

and the influence of shear stress. Bone 48(2): 171-181.  

http://www.scribd.com/doc/59861228/4/Deterministic-vs-stochastic-models


 

 

224 

 

Yigzaw Y, Piper R, Tran M, Shukla AA. 2006. Exploitation of the adsorptive 

properties of depth filters for host cell protein removal during monoclonal antibody 

purification. Biotechnol. Prog 22: 288-296. 

Yoon SK, Song JY, Lee GM. 2003. Effect of low temperature on specific 

productivity, transcription level and heterogeneity of erythropoietin in Chinese 

hamster ovary cells. Biotechnol Bioeng 82(3): 289- 298. 

Yoon SK, Choi SL, Song JY, Lee GM. 2005. Effect of culture pH on erythropoietin 

production by Chinese hamster ovary cells grown in suspension at 32.5 and 37 oC. 

Biotechnol Bioeng 89(3): 345- 356.  

Yu M, Hu Z, Pacis E, Vijayasankaran N, Shen A, Li F. 2011. Understanding the 

intracellular effect of enhanced nutrient feeding towards high titer antibody 

production process. Biotechnol Bioeng 108(5): 1078-1088. 

Yuk IN, Nishihara J, Walker Jr D, Huang E, Gunawan F, Subramanian J, Pynn AFJ, 

Yu XC, Zhu-Simoni J, Vanderlaan M, Krawitz DC. 2015. More similar than 

different: Host cell protein production using three null CHO cell lines. Biotechno 

Bioeng finish 

Zeng AP. 1996. Mathematical modelling and analysis of monoclonal antibody 

production by Hybridoma cells. Biotechnol Bioeng 50: 238-247 

Zhang X, Chang Z. 2004. Temperature dependent protease activity and structural 

properties of human HtrA2 protease. Biochemistry (Moscow) 69(6): 687-692. 

Zhang J. 2011. New global pharmaceutical outsourcing trends. Pharmaceutical 

online. Available at <http://www.pharmaceuticalonline.com/doc/new-global-

pharmaceutical-outsourcing-trends-0001>  Accessed [23 June 2015]   

Zhang Q, Goetze AM, Cui H, Wylie J, Trimble S, Hewig A, Flynn GC. 2014. 

Comprehensive tracking of host cell proteins during monoclonal antibody 

purification using mass spectrometry. mAbs 6(3): 659-670. 

Zhu J. 2012. Mammalian cell protein expression for biopharmaceutical production. 

Biotechnol Adv 30(5): 1158-1170. 

Zhu-Simoni J, Yu C, Nishihara J, Wong RM, Gunawan F, Lin M, Krawitz D, Liu P, 

Sandoval W, Vanderlaan M. Host cell protein testing by ELISAs and the use of 

orthogonal methods. Biotechnol Bioeng 111(12): 2367-2379.  

http://www.pharmaceuticalonline.com/doc/new-global-pharmaceutical-outsourcing-trends-0001
http://www.pharmaceuticalonline.com/doc/new-global-pharmaceutical-outsourcing-trends-0001


 

 

225 

 

Appendix  

Chapter 5 Appendix



 

 

 

2
2
6 

Table 5-1A: Summary statistics for eight “best” models for AMBR 2 titre presented in coded factors. The coded factors B, D and E refer to the cell culture variables 

seeding density, pH and feed start time, respectively 

 

 

 

 

 

 

 

 

 AMBR 2 – Titre STATISTICS 

Model 

terms 
Model R2 

Predicted 

R2 

Adjusted 

R2 

R2 k 

fold 
RMSE AIC 

1 D* 0.58 0.50 0.56 0.49 1.307 86.09 

2 D*+D2* 0.96 0.94 0.95 0.94 0.430 34.55 

3 D*+E+D2* 0.96 0.94 0.96 0.94 0.401 34.23 

4 D*+E*+DE*+D2* 0.97 0.95 0.97 0.95 0.346 28.50 

5 B+D*+E+DE*+D2* 0.98 0.95 0.97 0.95 0.345 31.12 

6 B+D*+E*+BD*+DE*+D2* 0.98 0.97 0.98 0.97 0.289 25.65 

7 B+D*+E*+BD*+BE+DE*+D2* 0.99 0.94 0.98 0.94 0.268 26.12 

8 B+D*+E*+BD*+BE+DE*+B2+D2* 0.99 0.94 0.98 0.94 0.272 31.23 

9 B+D*+E*+BD*+BE+DE*+B2+D2*+E2* 0.99 0.92 0.98 0.93 0.281 38.24 
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Table 5-2A: Summary statistics for eight “best” models for AMBR 2 HCP presented in coded factors. The coded factors B, D and E refer to the cell culture 

variables seeding density, pH and feed start time, respectively.  

 

 

 

 

 

 

 

 

 

 

 AMBR 2 – HCP STATISTICS 

Model  

terms 
Model R2 

Predicted 

R2 

Adjusted 

 R2 
R2 k fold RMSE AIC 

1 D* 0.77 0.73 0.76 0.74 369805 688.62 

2 D*+D2* 0.95 0.94 0.94 0.94 177531 655.18 

3 D*+E+D2* 0.96 0.94 0.95 0.94 161510 652.70 

4 B*+D*+B2*+D2* 0.97 0.94 0.96 0.94 153935 652.77 

5 B+D*+E+B2*+D2* 0.97 0.94 0.96 0.94 142699 651.90 

6 B*+D*+E+DE+B2*+D2* 0.98 0.94 0.97 0.94 136509 652.99 

7 B+D*+E+BE+B2*+D2*+E2* 0.98 0.95 0.97 0.95 125536 652.77 

8 B+D*+E+BD+BE*+B2*+D2*+E2* 0.98 0.94 0.97 0.93 127115 657.89 

9 B+D*+E+BD+BE*+DE+B2*+D2*+E2* 0.98 0.94 0.97 0.92 130201 664.46 
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Table 5-3A: Summary statistics for eight “best” models for AMBR 3 titre presented in coded factors. The coded factors A, B and C refer to the cell culture variables 

media osmolality, seeding density and temperature, respectively. 

 

 

 

 

 

 

 AMBR 3 – Titre STATISTICS 

Model  

terms 
Model R2 

Predicted 

R2 

Adjusted 

 R2 
R2 k fold RMSE AIC 

1 C* 0.70 0.64 0.68 0.65 0.605 47.30 

2 B*+C* 0.82 0.74 0.80 0.73 0.481 38.60 

3 B*+C*+BC* 0.86 0.77 0.83 0.76 0.436 36.21 

4 A+B*+C*+A2* 0.91 0.82 0.89 0.82 0.351 28.68 

5 A+B*+C*+AB+A2* 0.92 0.83 0.90 0.84 0.335 29.47 

6 A+B*+C*+AB+BC+A2* 0.93 0.82 0.90 0.82 0.337 33.18 

7 A+B*+C*+AB+BC+A2*+B2 0.93 0.81 0.90 0.78 0.337 37.22 

8 A+B*+C*+AB+AC+BC+A2+B2 0.93 0.78 0.89 0.72 0.349 43.69 
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Table 5-4A: Summary statistics for eight “best” models for AMBR 3 HCP presented in coded factors. The coded factors A, B and C refer to the cell culture 

variables media osmolality, seeding density and temperature, respectively.  

 

 AMBR 3 – HCP STATISTICS 

Model  

terms 
Model R2 

Predicted 

R2 

Adjusted 

 R2 
R2 k fold RMSE AIC 

1 C* 0.59 0.51 0.57 0.51 218900 636.08 

2 A+C* 0.66 0.55 0.62 0.57 206281 635.18 

3 A+C*+AC 0.68 0.53 0.62 0.57 205586 637.15 

4 A+C*+AC+A2 0.68 0.48 0.61 0.53 210049 640.62 

5 A+B+C*+BC+A2 0.71 0.49 0.62 0.52 205719 642.56 

6 A+B+C*+AB+BC+A2 0.72 0.46 0.62 0.47 206660 646.20 

7 A+B+C*+AB+AC+BC+A2 0.73 0.42 0.61 0.47 209678 650.94 

8 A+B+C*+AB+AC+BC+A2+B2 0.74 0.27 0.59 0.34 215761 657.16 


