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Abstract 

The combined PIXE–PIGE method was used for the analysis of 43 glass fragments from the 

archaeological site Tonovcov grad in western Slovenia, with 10 of these additionally being analysed 

by LA-ICP-MS. The glass objects were attributed to the Late Antique production of the 4th–7th c. AD, 

with two examples of early Roman glass and three glass beads, one of them presumably of oriental 

origin. The analysis showed typical natron-type glass, produced in the Levantine region around the 

river Belus, and a few examples of HIMT glass, which could be recognized also in several other 

recycled objects. Only one glass bead, found in Early Medieval context, was made of the ash of 

halophytic plants. 

 

 

 

1. Introduction 

The fortified settlement of Tonovcov grad is located on a steep isolated hill above the Socˇa River 

near the modern city of Kobarid in western Slovenia; its position is strategic and controls the traffic 

towards the upper Socˇa valley. In spite of this and sporadic remarks in older historic literature it 

was recognized as a site rather late, in 1991 [1]. In subsequent years, systematic excavations were 

performed, revealing several buildings, a water cistern and a complex of Early Christian churches. 

Though several finds indicate that the site was populated from prehistory and Early Roman period 

until the Carolingian and Medieval period, its main settlement phase is Late Antiquity and involves 

two sub-phases: the first in the second half of the 4th and beginning of the 5th century, and the 

second between the end of the 5th and beginning of the 7th century [2]. Among the finds, which are 

predominantly from these two periods, there are also numerous fragments of glass. The majority of 

them (118) were discovered in the so-called building 1, situated on the slope below the church 

complex and dated to the second Late Antique phase. Typologically, they include stemmed goblets, 

footed beakers, beakers, bottles, lamps, plates, bowls and window glass. Elongated bubbles in the 

window glass indicate that it was produced by the cylinder technique. According to the dating based 

on the archaeological evidence, the glass of Tonovcov grad belongs to the period between the 4th 
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and early 7th centuries; only two glass fragments can be typologically dated to an earlier period of 

1st–3rd centuries [2]. 

Glass of the Late Antique period had already attracted several research interests of the analysts [3–

22], though Tonovcov grad is the first Slovenian site to be analysed. The site where the closest 

analogies with Tonovcov grad are anticipated are San Martino di Ovaro, which is only 58 km away as 

the crow flies; however, several mountain ranges and passes make the ground communication 

between the two sites difficult. Numerous glass finds from San Martino di Ovaro were analyzed by 

PIXE [14]; the glass composition of Late Antique samples agreed well with the Levantine I glass 

samples according to Freestone [23], indicating intense commercial relations between Northern Italy 

and the raw glass production area in the Palestinian coast. A similar scheme of the glass from 

Tonovcov grad is expected. 

 

2. Experimental 

The glass objects were analyzed in air by a proton beam of 3 MeV nominal energy, provided by the 

Tandetron accelerator of the Jozˇef Stefan Institute in Ljubljana. Due to stopping in the exit window 

and about 1 cm wide air gap between the window and target, the projectile impact energy at the 

target was about 2.7 MeV. The intensity profile of the beam was Gaussian, with 0.8 mm full width at 

half maximum. A combined PIXE–PIGE method was applied. For PIXE, the exit window of 8 m 

aluminium foil was used, in order to avoid the presence of scattered high energy X-ray lines in the 

spectra. The path-length of induced X-rays in the air was about 5.7 cm. Precise values of both air 

gaps (with an accuracy of 0.1 mm) was determined by a series of measurements on known metal 

and simple chemical compound targets, using the argon signal induced in air as an internal standard 

[24]. Spacers made of nylon rods were used to keep the experimental geometry fixed. Two X-ray 

spectra were measured in each measuring spot. Using air as the only absorber, the lightest element 

detected was silicon. Running the measurement at a current of a few tenths of nA for about 500 s, 

the counting statistics limited detection of elements heavier than iron. For detection of heavier 

elements, the detector was equipped with an additional absorber of 0.1 mm aluminium foil, while 

the proton current was increased to a few nA at a measuring time of 400–500 s. The two spectra 

were combined into one using the Ka line of iron for normalization. 

The concentrations of Na, Mg and Al, essential elements for glass characterization, were determined 

according to their induced gamma ray emissions (PIGE). The exit window for PIGE measurements 

was a 2 lm tantalum foil, which emits proton-induced gamma rays below 300 keV. The proton 

current was about 3 nA and the measurements lasted about 30 min. The proton current was 

measured by a thin wire mesh intersecting the beam; transmission of the mesh was 58% [25]. The 

gamma rays employed for the analysis were 440 keV for Na, 585 for Mg and 1014 keV for Al. The 

latter line is also induced in Mg, but with negligible intensity at proton energies above 2.4 MeV [26]. 

Its production becomes important at lower energies, for example at 1.77 MeV its production in Mg is 

8% of that in Al [27], but the production in Al at 1.7 MeV is only 0.3% of that at 2.4 MeV [26]. We 

therefore estimate the Mg contribution of 1014 keV line in our spectra was minute. 

The concentrations of Na, Mg and Al were determined according to the known values in the 

standard glass NIST 620, using the surface approximation [28]. As this approach requires the proton 

stopping power in the sample and standard, the unknown concentrations were determined by an 

iterative procedure, considering both X-ray and gamma-ray intensities simultaneously. The matrix 

effects for X-ray and gamma ray production were calculated individually for each iteration step. The 

sum of all metal oxides was normalized to unity. For monitoring the accuracy of the procedure, the 
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sum of metal oxides was also calculated according to the X-ray yield of argon from the air. These 

values typically departed from unity within ±10%, though a few samples with irregular or corroded 

surfaces exhibited larger differences, up to 30%. For control purposes, the standard glasses NIST 620 

and 621 were analyzed periodically as unknown samples. 

The concentration uncertainties for major elements were ±5%, but increased to 10–20% for trace 

elements close to their detection limits. A peculiar example was Mg, whose detection limit was 

about 0.2% due to interference of its 585 keV line with the line of 583 keV from the natural 

background, and due to strong Compton background of sodium lines at 1634 and 1636 keV. The two 

effects imply that magnesium concentrations were uncertain by 10%. The limit of detection for 

aluminium was about 20 g/g. For the heavier elements obtained from the X-ray spectra, the limits 

of detection between Co and Zr (and Pb with its L lines) were about 10 g/g, and for Sn and Sb they 

were about 50 g/g. 

Ten samples were also selected accidentally from the set and analyzed by LA-ICP-MS at the 

CNRS/IRAMAT laboratory in Orléans. These values were used as a test of our procedures, but they 

also provided concentrations of several elements present in concentrations below 1 g/g level.  

 

3. Results 

The analytical results obtained by the PIXE–PIGE method are shown in Table 1. Single zeros denote 

non-detected elements. Elemental concentrations are shown in the form of oxides, whose sum was 

normalized to unity. For iron we formally adopted the oxide form Fe2O3, which, however, does not 

exclude the presence of FeO; the ratio of the two oxides determines the blue-green or yellow tint of 

glass [4,16,29]. The oxidation number of iron could not be detected by our methods. 

The LA-ICP-MS values were first used for comparison with the PIXE–PIGE data. Table 2 shows the 

concentration ratios of representative elements obtained by both methods. The agreement is 

generally good, though some systematic differences are evident. Sodium values are generally 13% 

higher for PIGE, which is contrary to expectations, as the surface concentrations (probed by PIGE) 

should be somewhat smaller than the bulk values on account of surface leaching. The magnesium 

concentrations are also higher, though the magnesium data show prominent scattering, which is 

result of poor counting statistics and high background contribution close to the detection limit. 

Aluminium concentrations are also scattered by 10%, though their mean is closer to unity, which 

excludes systematic normalization error in PIGE measurements. Among the X-ray determined 

concentrations, potassium values are overestimated between 20% and 95%. The reasons for these 

differences cannot be explained by X-ray techniques only, as potassium neighbours, chlorine and 

calcium show very good agreement with the LA-ICP-MS data. The only possible reason could be 

improper subtraction of the X-ray background or interference of potassium Ka and argon Kb lines, 

but these effects would be detected at the analysis of NIST 620 glass standard. Systematic 

underestimation of PIXE values by 20% is observed for manganese and iron, however, small 

scattering of the iron data indicates the error was introduced by the calibration procedure. 

The concentrations of trace elements that were detected by LA-ICP-MS only are listed in Table 3; it is 

split into two parts, the first showing the contents of rare earths, and the second the remaining light 

and heavy elements. 

 

4. Discussion 

The data of Table 1 were first studied for characteristic grouping using the principal component 

analysis (Fig. 1) of the oxides Na2O, MgO, Al2O3, SiO2, K2O, CaO, TiO2 and Fe2O3. The selection of 
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oxides reflects basic properties of the glassmaking process of the raw glass, but excludes its 

discoloration and pigmentation. Fig. 1 shows that the glasses of Tonovcov grad form quite a compact 

group. Only three data depart considerably from the main group: two glass beads and one vessel 

(23592 goblet foot). Fig. 1 also reveals that the three lamps are quite similar to each other, but 

distant from the two fragments of early Roman glass. A noticeable feature is three samples marked 

by an oval, whose raw material is identified further in Figs. 3 and 4. 

The type of the flux is typically identified in the bivariate MgO– K2O plot [14], as shown in Fig. 2. As 

expected, all investigated glass objects (except one) belong to natron-type glass, identified by MgO 

concentrations below 1.6% and K2O concentrations below 1% [30]. The same three samples as 

identified in Fig. 1 largely depart from the main group: two glass beads and a goblet foot. One of the 

two beads (22304) shows an MgO content of 5.7%, which qualifies it as glass made of the ash of 

halophytic plants. This type of glass appears in Europe regularly only after 800 AD and its early 

examples represent import from the Byzantine and Islamic world [23]. The glass bead 22304 is 

indeed of the oriental type and may be related to the short Carolingian period phase of the site. The 

other two items (bead 23653 and goblet foot 23592) show a higher content of K2O (1.72 and 3.59%, 

respectively). Such high K2O concentrations are not uncommon among the Late Roman glass 

[15,22,31] and may result, for example, from the presence of alkali feldspars in the glass batch. 

The main group of Fig. 2 also shows an interesting time structure. The two Early Roman glass 

samples (23060/1, 23007) are characterized by low MgO values around 0.5%, while the 4th–7th 

century samples (lamps) contain MgO concentrations around 1.5%. Similar high MgO values were 

observed in the 7th century glass from Crypta Balbi in Rome [4]; lower MgO concentrations were 

found for the 8th c. glass from the same site, which may be explained by a higher content of recycled 

earlier glass in the objects [5]. 

Production places of primary raw glass are identified according to the calcareous component of the 

siliceous sand and the admixture of aluminium oxides [23]. In Fig. 3, we plotted results of our 

measurements together with the elemental ranges found in the literature; for the sake of clarity we 

have limited ourselves to the compositional groups that coincide with our measurements only. 

Group 3 of Foy [11] designates glass production in the Levantine area around the Belus River in a 

rather broad time period between the 3rd c. BC and 9th c AD. The subgroup of group 3 involves early 

Roman glass of the Imperial period (we denote it as 3/3.1–3.3 as it was derived from the group 3 

subtracting the post-Roman groups 3.1–3.3 [11]); this group nicely coincides with the two groups of 

coloured glass from the shipwreck of Iulia Felix [32]. Group 4 of Foy [11,33] designates glass of the 

2nd and 3rd c. AD that was decolorized by antimony. The origin of group 4 remained unknown until 

recently; isotopic studies of glass from the Ouest Embiez and Iulia Felix shipwrecks suggest this glass 

was also made in Palestine, but likely in a different workshop [34]. All these groups are shown as 

ellipses with the axes that measure four standard deviations. Beside this, Fig. 3 also shows the Late 

Roman glass groups as defined by Freestone [23]: HIMT and Levantine I and II. These groups are 

plotted as rectangles, following the method of Zucchiatti [14]. We can see that nearly all our samples 

coincide with Foy’s group 3 and Freestone’s Levantine I glass, so they originate from the Palestinian 

glassmaking area. A slight shift between the group 3 and Levantine I denotes a minor variation of the 

glass composition with time, as the Levantine I glass is dated to the 5th–7th c. AD [23]. The reason 

for this variation may be geological or anthropogenic, i.e., gradual moving of the production site. As 

the analyzed glass selection involves only two examples of early Roman glass, it is not surprising that 

the region of group 4 in Fig. 3 remained empty. 
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The only example of window glass (23060/4) is located at the low Al2O3 border of Levantine I glass; 

this type of glass was widely used for glass manufacture in different geographic regions [14,35,36]. 

The three glass samples isolated in Fig. 1 contain the lowest CaO concentrations and are located in 

the cross-section of the group 3 and HIMT in Fig. 3. These samples (23054, 23674 and 23424) 

contain more than 0.46 TiO2, 1.76% Fe2O3 and 1.38% MnO, which characterizes them as HIMT 

glass. This glass was first observed by Freestone among the glasses of Carthage, but it appeared also 

among the glasses of Aoste [29] and in south France [10]. In Britain, HIMT glass appeared as early as 

330 AD and represents the most wide-spread glass type in Late Antiquity [37]. For the window glass, 

it was recognized among the glass fragments from the Theoderic’s villa in Galeata [17]. Glass 

belonging to the Levantine I and HIMT types was also discovered among the Early Byzantine glass in 

Ganzirri, Sicily [16]. The sand source of HIMT glass is different from the Palestinian sources, but has 

not been identified yet; Egypt is one of the possible locations. 

The distinction of the HIMT glass from the Levantine I is evident in Fig. 4, which shows the contents 

of siliceous sand impurities Ti, Sr and Zr. In Fig. 4a we observe linear correlation between TiO2 and 

Fe2O3, which indicates mineral origin of both elements. Exceptions are two glass beads (23653, 

23654) and HIMT glass that are evidently of different origins. SrO concentrations are above 440 lg/g, 

which is consistent with the composition of the maritime siliceous sand that contains shell fragments 

as a source of CaO [23]. 

HIMT glass is characterized by a high content of zirconium [9], which is also observed in our case 

(Fig. 4c). Two correlation lines are further observed in Fig. 4c, which clearly indicate two sand 

sources. The glasses arranged around the HIMT line contain lower ZrO2 values and were very likely 

recycled using HIMT glass. 

The rare earth pattern is shown in Fig. 5, normalizing the elemental concentrations to the mean 

values encountered in the upper continental crust [38]. It seems there is no significant time 

structure, except the values for the 4th–5th c. being higher than those in the later glass. However, 

this is on account of the sample 23054, which is the only example of HIMT glass in Table 3. In 

comparison with the glasses from Ganzirri, Sicily [16], glass of the 5th– 7th c. from Tonovcov grad 

corresponds to group 1 of Ganzirri; this is understandable, as the glass in both cases is of Levantine I 

type. Group 2 of Ganzirri represents HIMT glass; in our case it is sample 23054 that fits into this 

group. The rare earth pattern from both sites is therefore matching and confirms distinction 

between Levantine I and HIMT glass according to the rare earth elements. 

Summarizing, there are 26 samples identified as Levantine I, while another 11 show significant 

similarities to Roman blue/green glass. Of these, the two early Roman samples stand out with a 

lower strontium content relative to the lime content; the remaining nine samples fall into two nearly 

equally strong groups of low and elevated titania, respectively. It is possible that the four samples 

with higher titania include a proportion of recycled HIMT glass in them; most other oxide 

concentrations are also consistent with this, except for magnesia, which is slightly too high in the 

mixed group compared to HIMT. Thus, it is also possible that the four samples with elevated titania 

content were produced from a less pure sand, due to the before-mentioned geological or 

anthropogenic changes in sand source. 

For decoloration, MnO was used for all investigated glasses. MnO concentrations are spanning an 

interval between 0.23% and 2.14%, which agrees with the decoloration method in group 3. The 

concentrations of Sb2O3 are typically below 0.06%, which may indicate values not added on 

purpose, but the presence of antimony as the result of recycling; the source of antimony may be 

opaque tesserae added to the glass batch [4]. Only one sample of early Roman glass (23060/1) 
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contains a higher content of Sb2O3 of 0.13%: however, even this value is not high enough to denote 

intentional decoloration by antimony. For antimony oxide, the concentrations added on purpose 

should be higher than 0.2% [30] and for manganese higher than 0.5% [39]. The antimony content in 

the fragment 23060/1 is then result of recycling during an early Roman period. 

Among the other elements used for pigmentation, three blue samples (two beads and an early 

Roman cup) were pigmented by a combination of cobalt and copper oxides on 0.1% level. The red 

colour of the bead 23653 was attained by addition of 2.5% CuO; this bead also contains 1.8% SnO2, 

which may indicate bronze as a copper source. 

The recycling history may also be followed according to the content of heavy elements that increase 

with the number of recycling steps. The contents of Cu and Zn suggest similarity between the three 

lamps, which may indicate production in the same secondary workshop (see Fig. 6). 

 

5. Conclusion 

The glasses of Tonovcov grad show two characteristic glass sources: glass from the Levantine area 

near the River Belus, which represents the majority of the investigated samples, and a small group of 

three samples that are characterized as HIMT glass according to their high titanium, iron and 

manganese contents. Further, the contents of zirconium and strontium reveal that certain glasses 

were recycled with the HIMT glass. The presence of HIMT glass makes distinction between the glass 

inventories of Tonovcov grad and San Martino di Ovaro, which is archaeologically and geographically 

its closest (analyzed) parallel. The joint occurrence of Levantine I and HIMT glass makes the glass 

inventory of Tonovcov grad more similar to that of Ganzirri in Sicily. This shows that the settlement 

of Tonovcov grad retained strong economic and political contacts with the Mediterranean world. 

However, the large fractions of Levantine I glass make the three sites specifically different from the 

Western Europe, which was main consumer of HIMT glass. This indicates specific trade routes in Late 

Antiquity. The production of Levantine I glass probably boomed after that of HIMT glass, in a period 

when the economic connections between the Mediterranean and Atlantic Europe were already in 

decline. 
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No.  Na2O MgO Al2O3 SiO2 SO3 Cl K2O CaO TiO2 MnO Fe2O3 CoO NiO CuO ZnO Br Rb2O SrO ZrO2 SnO2 Sb2O3 PbO 

23654 Quadruple glass bead 18.5 1.11 2.66 65.3 0.77 1.04 0.90 6.62 0.16 0.81 1.56 0.100 0.0087 0.1137 0.0069 0.0012 0.0013 0.056 0.023 0 0.016 0.124 

23653 Small glass bead (red) 15.0 0.98 2.59 54.6 0.29 1.26 1.72 9.00 0.23 0.42 2.29 0 0.0140 2.5160 0.8526 0.0104 0 0.103 0.009 1.32 0 6.679 
22304 Glass bead (blue) 14.3 5.70 1.80 65.3 0.53 0.69 3.19 6.52 0.08 0.51 0.77 0.067 0.0035 0.0806 0.3622 0.0010 0 0.053 0.012 0.011 0 0.049 

23060/1 Bluish glass 17.5 0.48 2.27 69.3 0.53 0.96 0.84 6.91 0.08 0.40 0.37 0 0.0013 0.0228 0.0029 0.0004 0.0009 0.045 0.006 0 0.129 0.054 
23007 Cup (early; blue) 18.1 0.63 2.31 68.5 0.51 1.05 0.69 7.12 0.05 0.23 0.60 0.057 0.0027 0.1277 0.0072 0.0006 0.0014 0.044 0.004 0.008 0.024 0.018 
23014 Lamp 17.7 1.42 2.53 63.8 0.64 0.84 0.87 9.21 0.14 1.55 1.04 0 0.0027 0.0068 0.0037 0.0017 0 0.094 0.012 0 0.028 0.015 
23426 Lamp (church) 17.8 1.30 2.65 65.3 0.60 0.77 0.95 7.54 0.14 1.78 1.12 0 0.0030 0.0075 0.0037 0.0017 0.0008 0.085 0.011 0 0 0.013 
23427 Lamp (church) 19.7 1.30 3.17 62.3 0.72 0.80 0.80 8.54 0.15 1.41 0.93 0 0.0032 0.0129 0.0037 0.0016 0.0010 0.094 0.013 0 0.015 0.028 
23060/2 Goblet foot 17.7 1.13 3.14 65.7 0.64 0.74 0.80 7.82 0.13 1.33 0.76 0 0.0016 0.0066 0.0020 0.0015 0.0009 0.079 0.011 0 0.020 0.012 
23060/3 Fire-rounded rim 17.4 1.41 2.48 64.8 0.54 0.69 1.11 8.94 0.14 1.51 0.81 0 0.0020 0.0079 0.0027 0.0010 0.0008 0.082 0.008 0 0.013 0.010 
23017 Glass handle 18.6 1.03 2.61 66.3 0.49 0.85 0.86 6.51 0.23 0.99 1.27 0 0.0021 0.0064 0.0029 0.0014 0.0011 0.056 0.016 0 0 0.009 

23034 Fire-rounded rim 20.5 1.29 2.34 65.9 0.74 0.78 0.54 6.24 0.10 0.93 0.57 0 0.0013 0.0038 0.0018 0.0011 0.0006 0.055 0.009 0 0.004 0.005 
23055 Bottle 19.4 1.49 2.65 63.8 0.64 0.84 0.68 8.10 0.14 1.32 0.76 0 0.0015 0.0042 0.0021 0.0011 0.0007 0.074 0.010 0 0.016 0.005 
23074 Beaker base 18.9 0.94 2.27 67.4 0.46 0.97 0.54 6.17 0.19 0.85 1.08 0 0.0016 0.0038 0.0021 0.0012 0.0011 0.050 0.013 0 0.004 0.005 
23069 Balsamarium (base) 20.2 0.70 2.19 65.5 0.70 0.77 0.63 7.36 0.11 1.10 0.64 0 0.0018 0.0046 0.0031 0.0010 0.0005 0.073 0.008 0 0.016 0.004 
23026 Fire-rounded rim 17.5 1.33 2.51 64.0 0.65 0.79 0.94 9.46 0.14 1.50 0.85 0 0.0013 0.0096 0.0024 0.0014 0.0006 0.092 0.010 0.005 0.014 0.016 
23071 Goblet foot 20.8 0.72 2.38 66.3 0.67 0.99 0.55 5.95 0.11 0.77 0.65 0 0.0013 0.0093 0.0020 0.0010 0.0009 0.048 0.008 0 0 0.011 
23078 Plate 15.8 1.07 3.14 67.8 0.59 0.80 0.86 8.75 0.06 0.75 0.34 0 0.0009 0.0010 0.0016 0.0006 0.0011 0.057 0.005 0 0 0.002 

23082 Goblet foot 20.6 1.19 2.57 64.0 0.67 0.93 0.65 7.33 0.12 1.17 0.61 0 0.0007 0.0047 0.0018 0.0014 0.0010 0.065 0.009 0 0.023 0.007 
23009 Fire-rounded rim 17.4 1.42 2.40 64.4 0.62 0.91 0.90 9.08 0.14 1.49 1.03 0 0.0023 0.0053 0.0033 0.0016 0.0009 0.087 0.010 0 0.028 0.013 
23068 Beaker base 20.4 1.00 2.17 65.5 0.77 0.85 0.62 7.26 0.09 0.73 0.51 0 0.0009 0.0016 0.0016 0.0015 0.0011 0.072 0.008 0 0 0.001 
23033 Bottle rim 20.0 1.45 2.34 66.1 0.51 0.92 0.52 6.49 0.25 0.46 0.78 0 0.0010 0.0028 0.0020 0.0009 0.0008 0.058 0.018 0 0 0.004 
23400 Goblet foot 19.0 0.98 2.21 64.8 0.67 0.90 0.84 8.59 0.13 1.01 0.71 0 0.0009 0.0038 0.0028 0.0011 0.0009 0.077 0.009 0 0.026 0.005 
23083 Goblet foot 20.5 0.54 2.12 67.4 0.59 0.94 0.43 6.42 0.07 0.61 0.32 0 0.0009 0.0019 0.0013 0.0009 0.0005 0.052 0.005 0 0 0.002 
23607 Goblet foot 20.6 0.39 2.31 67.0 0.73 0.94 0.77 5.96 0.08 0.68 0.38 0 0.0011 0.0030 0.0042 0.0013 0.0009 0.049 0.006 0 0 0.001 

23030 Cup Foy 21a 19.7 0.83 1.89 67.2 0.72 1.10 0.51 6.83 0.07 0.70 0.36 0 0.0009 0.0022 0.0016 0.0009 0.0005 0.054 0.005 0 0 0.001 
22994 Rim 17.9 1.52 2.95 63.1 0.57 0.66 1.04 9.88 0.15 1.14 0.85 0 0.0012 0.0027 0.0025 0.0007 0.0009 0.090 0.011 0 0 0.002 
23029 Goblet wall 17.8 1.45 2.76 63.3 0.67 0.66 0.85 9.70 0.15 1.42 0.91 0 0.0013 0.0037 0.0026 0.0009 0.0011 0.092 0.012 0 0 0.004 
23054 Base (olive color) 17.7 1.23 2.42 66.8 0.41 0.87 0.67 5.75 0.52 2.12 1.38 0 0.0016 0.0056 0.0036 0.0011 0 0.054 0.036 0 0 0.003 
23576 Goblet rim 19.8 1.37 2.87 63.1 0.57 0.82 0.91 7.98 0.14 1.45 0.80 0 0.0022 0.0072 0.0031 0.0016 0.0010 0.083 0.009 0 0 0.010 
23594 Goblet rim 18.3 1.41 2.74 65.7 0.59 0.86 0.75 7.12 0.18 1.13 0.87 0 0.0011 0.0125 0.0037 0.0009 0.0009 0.058 0.012 0 0.056 0.018 
23674 Cut rim 18.7 0.92 2.70 65.5 0.51 0.94 0.48 6.27 0.50 1.76 1.49 0 0.0011 0.0057 0.0030 0.0011 0 0.060 0.037 0 0 0.002 

23424 Cut rim 17.0 1.09 2.91 66.5 0.42 0.97 0.59 6.25 0.46 2.05 1.58 0 0.0011 0.0063 0.0034 0.0009 0 0.053 0.030 0 0 0.001 
23501 Goblet rim 19.8 1.31 2.78 62.5 0.64 0.90 0.81 8.87 0.15 1.21 0.84 0 0.0014 0.0080 0.0034 0.0011 0 0.083 0.010 0 0.020 0.035 
23502 Goblet rim 18.3 1.30 2.65 64.6 0.67 0.81 1.01 7.64 0.15 1.42 1.16 0 0.0025 0.0429 0.0043 0.0014 0.0012 0.083 0.010 0 0.039 0.047 
23425 Goblet foot 17.8 1.29 2.23 65.5 0.60 0.81 0.70 8.93 0.12 1.24 0.65 0 0.0011 0.0034 0.0016 0.0008 0 0.086 0.010 0 0.023 0.004 
23498 Goblet foot 17.9 1.68 2.48 65.3 0.58 0.82 1.01 7.63 0.15 1.58 0.71 0 0.0016 0.0046 0.0048 0.0010 0.0010 0.077 0.011 0 0.013 0.008 
23433 Beaker base 17.5 1.41 2.68 65.0 0.68 0.77 0.97 7.36 0.14 2.14 1.13 0 0.0027 0.0082 0.0037 0.0015 0 0.094 0.011 0 0 0.013 
23497 Beaker base 20.1 1.10 2.49 64.4 0.58 0.79 0.82 7.42 0.11 1.26 0.70 0 0.0025 0.0054 0.0033 0.0013 0.0008 0.073 0.007 0 0 0.011 

23829 Goblet rim 19.8 1.42 2.38 63.8 0.59 0.85 0.87 7.84 0.13 1.36 0.74 0 0.0019 0.0060 0.0029 0.0014 0 0.081 0.008 0 0 0.012 
23828 Goblet foot 18.3 1.44 2.61 62.7 0.68 0.60 0.93 9.89 0.14 1.26 1.27 0 0.0019 0.0054 0.0032 0.0009 0 0.110 0.010 0 0 0.013 
23592 Goblet foot 17.1 1.04 2.91 64.6 0.43 0.74 3.59 7.35 0.11 1.24 0.71 0 0.0013 0.0065 0.0019 0.0013 0 0.074 0.010 0 0.024 0.011 
23060/4 Window glass 17.3 0.99 2.48 66.1 0.49 0.69 0.66 8.79 0.13 1.46 0.77 0 0.0020 0.0054 0.0019 0.0009 0.0008 0.081 0.011 0 0.029 0.009 

Table 1 

Composition of the glass from Tonovcov grad – concentrations of oxides in mass%. Single zeros denote the elements below detection limits. 

  



Nuclear Instruments and Methods in Physics Research B 311 (2013) 53–59 

   La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

23426 Lamp 5–7c. 8 13.5 1.9 7.9 1.6 0.4 1.3 0.2 1.4 0.3 0.8 0.1 0.8 0.1 

23069 Bals. 5–7c. 6.4 11.2 1.5 6.5 1.3 0.3 1.2 0.2 1.2 0.2 0.7 0.1 0.7 0.1 
23078 Plate 5–7.c 5 10.7 1.3 5.1 1 0.3 0.9 0.1 0.9 0.2 0.5 0.1 0.5 0.1 
23082 Goblet 5–7.c 6.6 12.4 1.6 6.3 1.3 0.3 1.1 0.2 1.1 0.2 0.7 0.1 0.7 0.1 
23033 Bottle 4–7c. 7.3 13.6 1.8 7.5 1.5 0.4 1.4 0.2 1.4 0.3 0.8 0.1 0.9 0.1 
23607 Goblet 5.c 5.1 9.1 1.2 5 1 0.3 0.9 0.2 1 0.2 0.5 0.1 0.5 0.1 
23030 Cup 5–6.c. 4.7 8.5 1.1 4.6 0.9 0.3 0.8 0.1 0.8 0.2 0.5 0.1 0.5 0.1 
23054 Base 4–5c. 10.8 19.3 2.5 10.9 2.2 0.5 1.9 0.3 2.3 0.4 1.3 0.2 1.4 0.2 
23497 Beaker 4–5c. 7.5 13.3 1.7 7.3 1.5 0.4 1.4 0.2 1.2 0.2 0.7 0.1 0.7 0.1 

23068 Beaker 4–5c. 6.3 11.9 1.5 5.8 1.1 0.3 1 0.2 1 0.2 0.6 0.1 0.6 0.1 

   Li B P2O5 V Cr As Y Nb In Ba Hf Ta Th U 

23426 Lamp 5–7c. 6.44 172 2101 33 16 6 7 2.5 0.2 296 2.1 0.2 1.4 1.2 
23069 Bals. 5–7c. 3.12 206 770 26 12 4.2 7 1.9 0 333 1.6 0.1 1.1 1.3 
23078 Plate 5–7.c 2.52 94 1062 11 9 2.5 5 1.2 0 271 0.7 0.1 0.6 0.6 
23082 Goblet 5–7.c 3.23 169 728 21 13 4 6 2.2 0 256 1.7 0.1 1.2 1.1 
23033 Bottle 4–7c. 1.28 94 738 25 11 2.9 6 1.7 0 310 1.5 0.1 1 1.2 

23607 Goblet 5.c 4.6 195 1262 21 37 2.5 7 3.2 0.1 180 3.6 0.2 1.5 1.4 
23030 Cup 5–6.c. 2.51 116 465 17 9 2.7 5 1.2 0 197 1.1 0.2 0.8 0.8 
23054 Base 4–5c. 2.37 160 373 18 10 3.5 5 1.1 0 183 0.9 0.1 0.6 0.9 
23497 Beaker 4–5c. 2.35 158 542 52 63 5 11 5.4 0.1 976 7.7 0.4 2.6 1.6 
23068 Beaker 4–5c. 3.52 142 1248 26 13 6 7 2.4 0.1 275 1.9 0.2 1.3 1 

Table 3 

Elemental or oxide concentrations (in g/g) that were only detected by LA-ICP-MS; rare earths (top) and several others (below). 


