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Abstract. We present an evaluation of the accuracy of a system for
image guided radical prostatectomy using the daVinci telemanipulator.
The system is split into components and ten sources of error identified.
The magnitude of three of these error sources; segmentation of bone from
MRI, registration to patient using intraoperative ultrasound, and endo-
scope tracking error is determined experimentally. The remaining errors
are estimated from the literature. We demonstrate that the distribution
of ultrasound slices used for registration can reduce the system error by
up to 0.7mm. Our results show that our system can localise the prostate
to within 3.7mm RMS, and that the largest component of the this error
is the segmentation of the pelvic bone from MRI.

1 Introduction

Introducing image guidance to laparoscopic prostatectomy has the potential to
reduce the occurrence of positive margins and improve post operative potency
by allowing the surgeon to intra operatively visualise the locations of tumours
and neuro-vascular bundles. In this paper we present an image guidance system
being developed for use during radical prostatectomy using the daVinci4 system.

This paper seeks to determine the accuracy with which pelvic anatomy can be
overlaid with video data for this system and identify the main sources of overlay
error. The system is described in Section 2 and the overall system error divided
into ten discrete sources. Three of the main sources of error are investigated by
experiments detailed in Sections 3, 4, and 5. Other error sources are obtained
from the literature and discussed in Section 2.

2 System Description

Figure 1 details the system and defines the ten sources of error. Prior to surgery
the prostate and surrounding structures are manually segmented from patient
MRI scans. The resulting patient model which can be overlaid on the endoscope
video by registering the model to the patient and tracking the endoscope. The

4 Intuitive Surgical Inc. Sunnyvale, CA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79499205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 S. Thompson et al.

Fig. 1. Schematic of image guided prostatectomy system. The system is divided into
three sections. The ten component errors are also defined and quantified. The system
error is the sum of squares of the component errors.

registration is achieved by locating the pelvic bone in theatre using tracked
ultrasound. The pelvic bone is used in preference to skin based fiducial markers
as it will not be affected by insufflation of the patient abdominal cavity, and
is closely coupled to the prostate via the urethra. Furthermore, the pelvis is a
large bone with the prostate positioned near its centre of gravity. The pelvis
registration error will therefore be reduced when applied to the prostate. Using
the pelvic bone for registration requires that the pelvic bone is segmented from
the preoperative MRI data. It is not practical to manually segment the pelvic
bone, so an automatic bone segmentation algorithm must form a key part of the
system.

The pelvic bone is imaged in theatre using a B mode ultrasound probe tracked
using an Optotrak Certus.5 The endoscope was also tracked using the Optotrak
using a collar mounted around the endoscope body as shown in Figure 2. This
was used in preference to the daVinci forward kinematic data to allow the system
to work independently of the daVinci and to enable later comparison of the
accuracy of both systems. It is assumed that each error is independent and
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Fig. 2. The pelvic anatomy phantom in theatre, showing the fiducial markers on the
phantom and the tracking collar on the endoscope. The six coordinate systems are also
noted.

normally distributed, so the system error can be found by taking the root of
the sum of squares of the component errors. A discussion of each of the errors
defined in Figure 1 follows.

1. Manual segmentation of soft tissues. Determination of the accuracy of
manual segmentation of soft tissues is difficult, requiring multi modality and
cadaver studies. Applicable values are not in the literature and determination
of these errors is beyond the scope of this report.

2. Automatic bone segmentation. See Section 3.
3. Registration error. See Section 4.
4. Ultrasound calibration error. The analysis in Section 4 is based on ul-

trasound data collected in a water bath. However it is known from Penney
et al.[1] that the mismatch in the speed of sound between the water-based
calibration and human tissue causes a registration error when used on real
data. Penney et al. found that this mismatch increased registration error for
the pelvic bone up to 0.8mm.

5. Endoscope calibration error. Endoscope calibration is performed by
viewing a static calibration grid as previously performed on the daVinci
by Mourgues et al. [2]. They report 1 pixel error, which corresponds to ap-
proximately 0.2mm.

6. Soft tissue motion. This refers to motion of the prostate relative to the
pelvic bone between preoperative imaging and registration. Based on the
results reported by Hoogeman et al.[3] we have estimated these movements
to be 2mm Root Mean Square (RMS). By controlling the scan position and
bladder/rectum filling this figure may be reduced.

7. Camera tracking. See Section 5.
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8. Intraoperative soft tissue motion. Once the surgeon begins cutting the
tissues of interest, the model will become obsolete. This system is intended
to provide the surgeon with an accurate overlay of the model only when the
prostate first becomes visible, (after navigation around the bladder) allow-
ing the surgical plan to be updated prior to prostate removal. We expect
that prostate will not have moved significantly at this stage due to its close
coupling with the pelvis via the urethra.

9. Change in endoscope calibration. Multiple endoscope lenses are used
during a typical prostatectomy. Separate calibrations can be performed on
each lens preoperatively and the system updated each time the lens is changed.
Furthermore, we have observed that while it is possible to alter the endo-
scopes focal length during the procedure, this is not typically done.

10. Whole patient motion. Registration is performed with the patient in the
operative position. Based on observations from current procedures the pa-
tient does not move during surgery.

3 Effect of Bone Segmentation Errors

3.1 Method

The boundary between soft tissue and bone in pelvic MRI images is often indis-
tinct and of variable appearance. Segmentation based solely on image appearance
is therefore not robust. By constraining the segmentation, using prior informa-
tion of the bone shape, a more robust segmentation is possible. Schmid et al.[4]
and Thompson et al.[5] present promising results for segmenting the pelvic bone
from MRI using shape models. We use the method proposed by Thompson et
al. [5]. Our shape model is built from 21 CT data sets, where the twelve largest
modes of variation are used for segmentation.

The downside of using a shape model to constrain the segmentation is that
there will inevitably be segmentation errors caused by the mismatch between
the best matching model shape and the actual shape. What follows is an inves-
tigation to quantify what effect these will have on prostate localisation error.
This analysis excludes the optimisation error which will dependent on the ac-
tual algorithm used to optimise the shape parameters of the model. We also
assume that the model training set is representative of the patient population.
This assumption will be tested as more data is collected.

3.2 Model Cross Validation

The 21 data sets used to build the model were used in a cross validation proce-
dure to determine the shape modelling error. Segmentations for each image were
first generated by propagating a manual segmentation from a single training set
using the same non-rigid registration algorithm (Crum et al.[6]) as was used to
construct the model. As this included registration errors we term it a bronze
standard (which was checked visually) and a corresponding bronze standard de-
formation vector. Each training set was then segmented using a shape model
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built from the 20 other training sets. This was done by solving b = ΦT(S − S̄)
where b is the optimal shape weight vector, Φ is the matrix of deformation
modes, S̄ is the model mean and S the bronze standard deformation vector.
A manual segmentation was then propagated using b, giving a model based
segmentation.

3.3 Calculating Registration Error

The 21 bronze standard and model-based segmentation were now compared to
determine the effect of the model-based segmentation on the Target Registration
Error (TRE) at the prostate. For each training image a set of ideal ultrasound
slices was created by slicing (using tri-linear interpolation) the bronze stan-
dard segmentation. Physically realistic ultrasound planes collected during the
experiment described in Section 4 were used for this. These slices were then
rigidly registered to the model derived segmentation using the registration al-
gorithm described in Section 4. As the registration algorithm is sensitive to its
starting position, the registrations were each repeated 100 times, starting from
positions randomly and uniformly spread over a six dimensional (one dimension
per degree of freedom) hypersphere of radius 10mm (rotations were scaled as
1◦ = 4mm). This radius should correspond with the initialisation distance that
can be achieved by manual alignment of the data sets in theatre. The resulting
registrations were then used to calculate the TRE at six points on the surface
of a nominal prostate.

The registration algorithm described in Section 4 is sensitive to the num-
ber and spatial distribution of ultrasound slices used. As the objective function
(Equation 1) is not normalised, the registration can be biased to be more ac-
curate in a given region by simply including more ultrasound slices from that
region. This is of particular importance when registering to an imperfect seg-
mentation of the bone, as the registration can be biased to regions where the
segmentation is known to be more accurate. Therefore, each of the model based
segmentations were divided into three anatomical regions (left iliac:pubis:right
iliac) and the mean surface to surface errors checked. On average the pubic
regions were better segmented by the shape model than the iliac regions. To
test whether this knowledge could be used to give a better registration result,
two methods were used. They each used 420 ultrasound slices. Method A used
two slices from each of the iliac regions for every pubic slice (164:82:164), while
method B used three pubic slices for every four iliac slices (120:180:120). The
actual slices used were randomly chosen from a set of 654 possible slices for each
repeat registration.

3.4 Results

For each slice distribution method 2100 registrations were performed (21 seg-
mentations × 100 repeats from different starting positions). Histograms of the
resulting TRE at the prostate surface are shown in Figure 3. It can be seen that
weighting the registration to the pubis region creates a noticeable improvement
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in the overall registration accuracy. With the registration so weighted the RMS
registration error due to model based segmentation of the bone is 2.81mm. This
figure was calculated after the removal failed registrations. A registration was
classed as a failure if its TRE was greater than 3 standard deviations from the
mean TRE.
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Fig. 3. Target registration error at the prostate surface for registrations using shape-
model derived segmentations. Twenty one separate segmentations were tested 100 times
each. 2 different distributions of ultrasound slices were used. Method B weights the
registration to the pubic region, which results in a more accurate registration. Whilst
there are some failed registrations with very high TREs, as this is a visual overlay
system these would be spotted by the surgeon and the overlay system either turned off
or the registration repeated.

4 Registration in Theatre

Using a tracked ultrasound probe, each pixel on the 2D ultrasound slices can
be placed in 3D space via a probe calibration, determined preoperatively using
an invariant point method. The ultrasound slices are first converted into “bone
edge probability” images as per Penney et al.[1]. For each pixel a “distance
to artefact” is calculated then bone edge probabilities are taken from a look-
up table of “distance to artefact” and intensity vs bone edge probability. The
look-up table is trained on a separate set of manually segmented ultrasound
images. The bone edge images are thresholded, discarding pixels with a bone
edge probability of zero, The remaining points are stored as a list of n 3D
points xi with corresponding bone edge probabilities EPi. The segmented MRI
data is stored as a binary (BoneEdge=1000, NotEdge=0) voxel image IMRI

(0.71 × 0.71 × 2mm).

The six degree of freedom registration between the two data sets is found
using a gradient descent algorithm. For each potential transform T the objective
function is defined by Equation 1 where IMRI(Txi) is the voxel value corre-
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sponding to point Txi, found by nearest neighbour interpolation.

F =

n∑

i=1

EPi × IMRI(Txi) (1)

The optimiser starts with a step size of 4mm and 0.986 degrees. The step
size is halved each time a local maximum is reached. The terminal step size
is 0.0625mm. Smaller terminal step sizes did not improve registration accuracy.

At step sizes greater than 0.25mm IMRI is blurred with a Gaussian kernel
of 4mm to increase the capture range.

4.1 Registration Accuracy

The registration accuracy is the combination of the ultrasound calibration error,
the tracking accuracy of the probe, the error in converting ultrasound intensity to
bone edge probability, and the registration algorithm error. This was determined
using a pelvis phantom in a water bath. Figure 2 shows the phantom.

A CT image of the phantom data was manually segmented to give a gold
standard bone segmentation. Ultrasound slices were collected and converted to
bone edge probability maps. The ultrasound data was then registered to the CT
data as per Equation 1. The resulting registration was compared to a gold stan-
dard registration established using eight fiducial markers around the perimeter
of the phantom. This was repeated 100 times from random starting points as
discussed in Section 3. The resulting RMS TRE at the prostate was 0.49 mm.

5 Endoscope Tracking

5.1 Endoscope Tracking Error

The tracking accuracy for the endoscope tip was determined analytically using
the method proposed by Fitzpatrick et al.[7], treating the Infra Red Emitting
Diodes (IRED) localisation as the fiducial localisation error and the tip locali-
sation error as the TRE. The individual IRED tracking error was found to be
0.02mm by tracking static IREDs over time. This matches the result reported
by Barnes et al.[8]. The system is intended to be used while the endoscope is
stationary, so it is valid to use the static error, rather than a dynamic measure.
It was found that when surgical drapes were placed over the IREDs the error
increased to 0.05mm. This figure was used together with the IRED geometry to
solve equation 46 in Fitzpatrick et al. [7] for the endoscope tip error.

Due to technical and clinical limitations of where the IREDs can be attached
to the daVinci and where the tracker can be positioned in the operating theatre,
many of the fourteen IREDs are obscured at any given point, so the actual tip
localisation error varies from frame to frame. The effect of this was assessed
by performing a simulated prostatectomy on the phantom in theatre. Approxi-
mately 9000 frames of video were collected. Of these 1400 were discarded as their
calculated tip error was greater than 2mm. The RMS error for the remaining
frames was 0.80 mm.



8 S. Thompson et al.

6 Discussion

We have carried out an analysis of the component errors present in our image
guidance system. The errors identified are summarised in Figure 1 and the system
error is estimated to be 3.7mm. The largest contribution to this error is from
segmentation of the pelvic bone. The accuracy of our shape-model segmentation
method compares well with other published pelvic shape models, so to improve
this segmentation will probably require extension beyond shape-model based
segmentation.

Further research will be required to ascertain the size of error which can be
tolerated in our system. Visual overlay systems can tolerate larger errors than
blind navigation systems as the surgeon can mentally adjust for some error.
We aim to carry out further phantom experiments to determine the directional
distribution of the error which will determine how it appears on screen. We
are also aiming to test the system live during surgery which will enable us to
investigate the size of the overlay errors and to visualise a number of error sources
(such as soft tissue deformation) which are not simulated in out phantom studies.

This is a first accuracy assessment for a complex image guided surgery sys-
tem. Although a great deal of further analysis of the individual components and
how they interact is required, we discuss the errors for a complete system from
preoperative imaging to surgical video overlay.
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