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Classical nature of nuclear spin noise near clock transitions of Bi donors in silicon
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Whether a quantum bath can be approximated as classical Gaussian noise is a fundamental issue in central
spin decoherence and also of practical importance in designing noise-resilient quantum control. Spin qubits
based on bismuth donors in silicon have tunable interactions with nuclear spin baths and are first-order
insensitive to magnetic noise at so-called clock transitions (CTs). This system is therefore ideal for studying the
quantum/classical Gaussian nature of nuclear spin baths since the qubit-bath interaction strength determines the
back-action on the baths and hence the adequacy of a Gaussian noise model. We develop a Gaussian noise model
with noise correlations determined by quantum calculations and compare the classical noise approximation to the
full quantum bath theory. We experimentally test our model through a dynamical decoupling sequence of up to
128 pulses, finding good agreement with simulations and measuring electron spin coherence times approaching
1 s—notably using natural silicon. Our theoretical and experimental study demonstrates that the noise from a
nuclear spin bath is analogous to classical Gaussian noise if the back-action of the qubit on the bath is small
compared to the internal bath dynamics, as is the case close to CTs. However, far from the CTs, the back-action
of the central spin on the bath is such that the quantum model is required to accurately model spin decoherence.
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Introduction. Central spin decoherence due to coupling to
the environment is not only a central issue in understanding
quantum-to-classical transitions [1,2], but also one of the key
challenges in the realization of quantum computation [3].
There are two distinct models to describe the decoherence
processes in such cases: in the semiclassical model, the
central spin accumulates random phases due to thermal or
quantum fluctuations of the environment [4,5], while in
the quantum model, the coupling between the central spin
and the environment produces entanglement and results in
leakage of the which-way information from the central spin to
the environment [6–9]. The fundamental difference between
these two models lies in the fact that the classical noise is
independent of the central spin state while the quantum noise
is governed by the difference of environmental Hamiltonians
conditioned on the qubit state, called the back-action from the
central spin [10,11].

The classical noise model of quantum baths, especially
the Gaussian stochastic noise model, is a useful approx-
imation in designing noise-resilient quantum control [12],
which would otherwise require a large amount of numerical
simulations of many-body dynamics of quantum baths. Dy-
namical decoupling has been employed to extract the noise
spectra of baths [13–17], which are in turn used to design
optimal quantum control for protecting quantum coherence
and quantum gates. The viability of such methods critically
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depends on whether the Gaussian noise picture is valid or
not. Therefore, examining the conditions for the validity of
a classical Gaussian noise model is not only of fundamental
interest but also highly desirable for accurate quantum control
under realistic conditions.

Bismuth donors in silicon (Si:Bi) have recently attracted
much attention in spin-based quantum computation due to a
number of favorable properties [18–21]. These include long
electron spin coherence times of up to 3 s [22] observed
for Bi donors (in isotopically enriched silicon-28) tuned to
so-called clock transitions (CTs)—also known as optimal
working points [23] or zero first-order Zeeman transitions)—
whose frequency is insensitive, to first order, to magnetic
field fluctuations. The coherence times of donor electron
spins in natural silicon are typically limited to a few hundred
microseconds by the 5% naturally abundant 29Si nuclear spins.
At CTs, the effect of the 29Si on the electron spin coherence
is strongly suppressed (though not completely removed),
leading to coherence times of up to 100 ms. Previous studies
have focused on quantum approaches to model electron spin
decoherence from 29Si nuclear spin baths [24,25]; however,
performing such calculations near the CTs can be challenging
due to the strongly correlated nuclear spin baths [24].

In this Rapid Communication, we explore the applicability
of a classical Gaussian stochastic noise description [26,27]
of the nuclear spin bath around Bi donors in natural silicon,
especially near the Si:Bi CTs. Such classical Gaussian noise
is fully characterized by the two-point correlation functions
or the noise spectrum [27]. We demonstrate the validity
of such a semiclassical model by comparisons with exact
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results from the quantum model and with experimental
measurements.

System and Hamiltonian. For the Si:Bi system interacting
with a 29Si nuclear spin bath (Ii = 1/2 and natural abundance
4.7% throughout the host lattice), the system Hamiltonian is
divided into three parts [24,25]:

H = Hcs + Hint + Hbath, (1)

with

Hcs = ωeS
z − ωBi

n I z
0 + A0S · I0, (2a)

Hint = Sz
∑

i

AiI
z
i , (2b)

Hbath = −ωSi
n

∑
i

I z
i +

∑
i<j

Ii · Dij · Ij , (2c)

where S is the Bi donor electron spin operator, I0 (Ii) is
the 209Bi ( 29Si) nuclear spin operator, ωe, ωBi

n , and ωSi
n are

correspondingly the Larmor frequencies of the donor electron
spin, 209Bi and 29Si nuclear spins (which are related to their
gyromagnetic ratios γ by ωα = γαB), A0 (Ai) is the coupling
strength between the donor electron spin and the 209Bi
( 29Si) nuclear spins, Dij is the nuclear-nuclear interaction
tensor, and B is the magnetic field applied along the z axis.
Here we have neglected the nonsecular terms in Hint which
induce the central spin relaxation, because the qubit energy
splitting is much larger than the qubit-bath coupling (see the
Supplemental Material for detailed discussions on the effects
of the nonsecular terms on the pure-dephasing model) [28].

Semiclassical model for quantum decoherence. The com-
bined Bi donor electron-nuclear spin system (S = 1/2, and
I0 = 9/2) with the Hamiltonian Hcs has 20 eigenstates with
eigenenergies dependent on the magnetic field [28]. By
focusing on a pair of the eigenstates, |+〉 and |−〉, of the
central spin, we can recast the system Hamiltonian in Eq. (1)
as a function of these two central spin states:

H (±) = ±P+ − P−
2

βz + P+ + P−
2

βz + Hbath, (3)

where βz = ∑
i β

z
i = ∑

i AiI
z
i is the Overhauser field operator

and P± = 〈±|Sz|±〉. The CTs are characterized by P+ � P−
such that central spin decoherence at the |+〉 ↔ |−〉 transition
is strongly suppressed due to the nearly identical evolutions
of the nuclear environment conditioned on the central spin
state (i.e., H (+) � H (−)). Consequently, the back-action of
the central spin on the environment [10,11] is quite small
near the CTs (|P+ − P−| � |P+ + P−|), so we may infer that
a semiclassical model for quantum decoherence should well
reproduce the results from the quantum model.

The two-point correlation function of the nuclear spin noise
is defined as

C(t) = 〈βz(t)βz(0)〉 = 〈eiHetβz(0)e−iHetβz(0)〉, (4)

where 〈· · · 〉 = Tr[ρb · · · ] denotes the ensemble average over
the density matrix ρb = I/2M for M nuclear spins at infinite
temperature, and He = |P+|+|P−|

2 βz + Hbath is the effective
Hamiltonian for the nuclear spin bath. We include the term
|P+|+|P−|

2 βz in He for the following considerations. When the
qubit is in the state |+〉 or |−〉, the nuclear spin bath feels a

bias field P±βz, which significantly affects the bath dynamics
and hence the correlation functions. Note that the sign of the
bias field is immaterial, that is, the bias field with opposite
sign (i.e., −P±βz) would produce the same bath correlation
function. For the qubit in a superposition state, to average the
effects of different bias fields due to different qubit states, we
choose the form |P+|+|P−|

2 βz. The numerical results actually
show that such a choice yields the least discrepancy between
calculation and measurement.

In dynamical decoupling (DD) control, a sequence of N π

flips are applied to the central spin at times {t1,t2, . . . ,tN }
to suppress magnetic noise [29,30]. In this Rapid Com-
munication we consider N -pulse Carr-Purcell-Meiboom-Gill
(CPMG-N ) control [31,32] with tk = (2k − 1)t/(2N ) (for
k = 1,2, . . . ,N ). With the Gaussian approximation [27], the
central spin decoherence under DD control is

L(t) = exp

[
−P 2

e

2

∫ t

0

∫ t

0
dt1dt2C(t1 − t2)f (t1)f (t2)

]

= exp

[
−P 2

e

2

∫ ∞

−∞

dω

2π
C(ω)

F (ω,t)

ω2

]
, (5)

where Pe = |P+ − P−| is the scaling factor, and C(ω) =∫ ∞
−∞ eiωtC(t)dt is the noise spectrum of the nuclear spin noise

[since C(t) = C(−t), so C(ω) = C(−ω)], f (t) = (−1)k for
[tk−1,tk] is the modulation function (t0 = 0,tN+1 = t), and
F (ω,t) = |∑N

k=0(−1)k(eiωtk+1 − eiωtk )|2 is the filter function.
Characterization of the nuclear spin noise. The correlation

functions C(t) for the natural 29Si nuclear spin bath in
silicon are calculated by the cluster-correlation expansion
(CCE) method [8,12,28]. As a typical example, we choose to
study the central spin transition between |+〉 ≡ |5, − 1〉 and
|−〉 ≡ |4, − 2〉, using the basis |F,mF 〉 where F (= I0 ± S)
is the total spin and mF (= mS + mI0 ) is its projection. This
transition is a CT at B = 79.9 mT (where P+ = P− = 0.0525).

In Fig. 1(a), we show the relative correlation function
C(t) − C(0) corresponding to the quantum fluctuations of
nuclear spin noise calculated for a random nuclear spin
configuration with B ‖ [110]. Since C(t) depends on the
specific nuclear spin configuration, we show in Fig. 1(b)
the relative correlation functions averaged over many bath
configurations. The results can be well fitted by a stretched
exponential decay:

C(t) = C(0) + �2{exp[−(|t |/τ )n] − 1}, (6)

where � is the correlation amplitude, τ is the correlation time,
and n is the stretch factor. In Fig. 1(c), we show the fitting
parameters as functions of the magnetic field orientation. As
the field direction varies from [001] → [111] → [110], the
correlation amplitude � first increases with θ (the angle from
[001]), reaches a maximum at about 55◦ ([111]), and then
slightly decreases. The stretch factor n has about the same trend
as � apart from some oscillations due to systematic fitting
errors, while the correlation time τ has the opposite trend. The
dependence of the correlation functions on the magnetic field
orientation is due to the anisotropy of the dipolar interaction
between nuclear spins and the silicon lattice structure [33,34],
and can be well understood from a microscopic analysis of the
nuclear spin dynamics.
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FIG. 1. (Color online) (a) Relative two-point correlation func-
tions C(t) − C(0) at the CT (BCT = 79.9 mT) calculated by different
orders of CCE (CCE-M denotes the Mth-order CCE truncation by
keeping cluster correlations up to a certain size M). Here we choose
a specific nuclear spin configuration with B ‖ [110] and the nuclear
spin bath includes about 5000 29Si nuclear spins within 8 nm from
the donor spin. (b) C(t) − C(0) (solid lines) at the CT for several
magnetic field orientations in the [001]-[110] plane with θ = 0◦

corresponding to [001]. Results are obtained by averaging over 50
different nuclear spin configurations. Dashed lines are fits of the form
�2{exp[−(|t |/τ )n] − 1}. (c) The fitting parameters as functions of θ .

As the major contribution [see Fig. 1(a) for the results of
different CCE orders], the pairwise flip-flop processes in the
nuclear spin bath lead to a correlation function as

C(t) = C(0) +
∑
{i,j}

{
2Z2

ijD
2
ij

Z2
ij + D2

ij

[cos(ωij t) − 1]

}
, (7)

where ωij = 2
√

Z2
ij + D2

ij is the noise frequency, Zij =
|P+|+|P−|

4 (Ai − Aj ) is the energy cost of flip-flop processes,
Dij = γ 2

n (3 cos2ϑij − 1)/4|Rij |3 is the dipolar interaction
strength, Rij is the displacement between the ith and j th
nuclear spins, and ϑij is the angle between Rij and B. For
a given Zij , the correlation amplitude and noise frequency
increase with the dipolar interaction strength Dij . When B ‖
[001], the nearest-neighbor nuclear spin pairs have zero dipolar
interaction, so the flip-flop processes mainly occur between the
second- and third-nearest neighbors. This produces a minimum
in � and n and a maximum in τ , as a result of the relatively slow
nuclear spin dynamics. When B ‖ [111], the nearest-neighbor
nuclear spin pairs have the strongest dipolar interaction, so
� reaches a maximum, τ a minimum, and n ≈ 1 since the
relatively fast nuclear spin dynamics make the noise like a
classical Lorentzian noise.

Comparisons with experiments and quantum model. To
explore the validity of the semiclassical model, we compare
in Fig. 2 the decoherence obtained from Eq. (5) with the
results from both the CCE method [8] and the experimental
measurements. The measurements were conducted on a natSi
sample doped with 209Bi at a concentration of 3 × 1015 cm−3.
The experiments were realized at 4.8 K, which gives an
electron spin relaxation time T1e of 3.5 s. The magnetic field
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FIG. 2. (Color online) Comparisons of electron spin decoherence
obtained by the quantum model (solid lines), the semiclassical
model (dashed lines), and the experimental measurement (circles).
Measurements were made using [(a)–(c)] the |5, − 1〉 ↔ |4, − 2〉
transition at various fields shifted from the CT at 79.9 mT, or (d)
the |5, − 4〉 ↔ |4, − 5〉 transition close to the high-field limit at
468.65 mT. (e) The spin decoherence time for T2e under CPMG
control obtained from the models and experiment for various
fields. Here N = 2,4,8,16,32,64,128 corresponds to the DD control
CPMG-2, XY-4, XY-8, XY-16, (XY-16)×2, (XY-16)×4, (XY-16)×8.
In theoretical calculations, CPMG-N is equivalent to XY-DD. The
experimental data is corrected to remove effects of instantaneous
diffusion and spin relaxation (Ref. [28]). The theoretical results are
obtained by averaging over 100 nuclear spin configurations.

was aligned close to the [241] crystal axis. The DD π pulses
were applied through adiabatic fast passages (hyperbolic
secant functions, 20 μs in duration spanning 6 MHz close to
the CT and 12 MHz in the high-field limit) in order to achieve
high-fidelity operations despite the electron spin resonance
linewidth, which ranged from 6 to 12 MHz at the fields
studied here [28]. Owing to the high-fidelity DD control via the
adiabatic passage method, remarkably, we managed to apply
more than 100 control pulses and therefore extend the electron
spin coherence times to 1 s in the natural silicon sample. We
expect this can be further increased by using optimal magnetic
field orientations and higher-order DD.

The results from the quantum model and the experimental
data are in good agreement for all the magnetic fields.
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However, this is not the case for the semiclassical model.
Close to the CT [BCT + 0.15 mT in Fig. 2(a), where P+ =
0.0527, P− = 0.0521], the semiclassical coherence, quantum
coherence, and experimental results coincide for various DD
control sequences, indicating that the nuclear spin bath is
well described by a classical noise. It should be pointed
out that the exact CT cannot be reached in the ensemble
experiments since the hyperfine coupling to randomly oriented
bath spins results in different donors requiring different values
of B in order to sit at a CT. Moreover, the CCE theory
encounters difficulties at the exact CTs due to the dominance
of long-range hyperfine-mediated nuclear spin interactions
in the bath [35,36]. As the magnetic field is shifted away
from the CT [BCT + 9 mT in Fig. 2(b), where P+ = 0.0695,
P− = 0.0340] the semiclassical model begins to show small
deviations from the quantum model for DD with large numbers
of pulses. Further still [BCT + 35 mT in Fig. 2(c), where P+ =
0.1172, P− = −0.0198], there are clear deviations between
the semiclassical and quantum models for all levels of DD
control, but the time scales remain nearly equal. Finally, for
the transitions in the high-field limit [B = 470 mT in Fig. 2(d),
where P+ = 0.4264, P− = −0.5], the semiclassical model
ceases to be valid and shows significant differences from the
quantum model and the experiment.

These comparisons demonstrate the classical Gaussian
nature of the nuclear spin noise near the CT. This is understand-
able since the feedback of the central spin on the evolution of
the nuclear spin bath (∼ |P+−P−|

2 ) is largely reduced at the CT.
For a bath with a large number of spins/particles, Gaussian
statistics should be a good approximation (as a result of the
central-limit theorem) [12]. However, our current study does
not exclude the possibility of non-Gaussian statistics [12]
causing the discrepancy between the classical noise model
and the measurement in the regions far from the CT, which is
an interesting issue for future study.

Limitations of DD noise spectroscopy method. Previous
studies have adopted the DD noise spectroscopy method to
characterize the baths [13–15]. The main idea is to use a
specific DD control sequence (such as CPMG-N with large N )
with the filter function approximated as a Dirac delta function
at ω0 = ±πN/t [see Fig. 3(b)], i.e., F (ω,t)/(ω2t) ≈ π [δ(ω −
ω0) + δ(ω + ω0)], and following Eq. (5) to determine the noise
spectra as S(±ω0) = −2ln[L(t)]/(tP 2

e ). This method relies on
the validity of the semiclassical Gaussian noise model.

However, the Gaussian noise model may be insufficient
when the back-action of the central spin on the environment
dynamics is significant. For example, in the natSi:Bi system,
the Gaussian noise model is invalid for transitions far away
from CTs. To demonstrate this point, we use the DD noise
spectroscopy method to determine the effective noise spectra
corresponding to the CPMG-100 case, and then use the derived
noise spectra to calculate the spin decoherence under other
DD control sequences. We note that a similar test has been
carried out for the singlet-triplet spin qubit decoherence in
semiconductor quantum dots [37]. In Fig. 3(a) we show the
comparisons between the exact decoherence model and the
semiclassical model using the DD noise spectroscopy method,
and find increasing discrepancies as the pulse number of
CPMG-N deviates from 100. In contrast, close to the CTs,
the DD noise spectroscopy method can not only reproduce the
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FIG. 3. (Color online) Calculated electron spin decoherence un-
der an exact quantum model (solid lines) and semiclassical model
obtained from noise spectroscopy of the CPMG-100 DD (dashed
lines), evaluated (a) far from the CT (BCT + 1000 G) and (c) close to
the CT (BCT + 10 G). (b) Filter function F (ω,t)/(ω2t) for CPMG-100
noise spectroscopy, with t = 10 ms. (d) Comparison of the noise
spectrum from the CPMG-100 spectral decomposition in (c) to the
exact one from CCE calculations. Here we choose a specific nuclear
spin configuration with B ‖ [110].

spin decoherence curves for other DD control [see Fig. 3(c)],
but also well reproduce the exact noise spectrum obtained
from CCE calculations [see Fig. 3(d)]. Here the decoherence
profile shows increasingly violent oscillations (corresponding
to the relatively high-frequency noise) for a single nuclear
spin configuration, reducing the efficiency of DD control at
long-time scales. The reason is that when the DD modulation
frequency matches the noise frequency, the noise can be
amplified rather than suppressed [38].

Summary. We have presented a semiclassical model to
study the decoherence of electron spin qubits in natural silicon
near the CTs in a natSi:Bi system. The comparisons of the
semiclassical results against the exact quantum results and
experimental measurements demonstrate that the nuclear spin
bath acts more and more like a classical Gaussian noise as the
CTs are approached. Our findings deepen the understanding
of spin baths near CTs and are useful for optimizing the
DD control in silicon-based quantum computation—indeed
we have already shown here that using DD at CTs, electron
spin coherence times of about 1 s can be measured in natural
silicon.
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[27] Ł. Cywiński, R. M. Lutchyn, C. P. Nave, and S. Das Sarma,

Phys. Rev. B 77, 174509 (2008).
[28] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.92.161403, which includes Refs. [6–
8,18,21,22], for detailed descriptions of the calculations and
experimental setup.

[29] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).
[30] G. de Lange, Z. H. Wang, D. Risté, V. V. Dobrovitski, and R.
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[35] Ł. Cywiński, W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett.
102, 057601 (2009).
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