
Using Fully Homomorphic Hybrid Encryption to Minimize

Non-interactive Zero-Knowledge Proofs∗

Craig Gentry
IBM T.J. Watson Research Center, U.S.

cbgentry@us.ibm.com

Jens Groth
University College London, U.K.

j.groth@ucl.ac.uk

Yuval Ishai
Technion, Israel

yuvali@cs.technion.ac.il

Chris Peikert
Georgia Institute of Technology, U.S.

cpeikert@cc.gatech.edu

Amit Sahai
University of California Los Angeles, U.S.

sahai@cs.ucla.edu

Adam Smith
Pennsylvania State University, U.S.

asmith@psu.edu

Abstract

A non-interactive zero-knowledge (NIZK) proof can be used to demonstrate the truth of a
statement without revealing anything else. It has been shown under standard cryptographic
assumptions that NIZK proofs of membership exist for all languages in NP. While there is
evidence that such proofs cannot be much shorter than the corresponding membership witnesses,
all known NIZK proofs for NP languages are considerably longer than the witnesses.

Soon after Gentry’s construction of fully homomorphic encryption, several groups indepen-
dently contemplated the use of hybrid encryption to optimize the size of NIZK proofs and dis-
cussed this idea within the cryptographic community. This article formally explores this idea of
using fully homomorphic hybrid encryption to optimize NIZK proofs and other related crypto-
graphic primitives.

We investigate the question of minimizing the communication overhead of NIZK proofs for
NP and show that if fully homomorphic encryption exists then it is possible to get proofs that
are roughly of the same size as the witnesses.

Our technique consists in constructing a fully homomorphic hybrid encryption scheme with
ciphertext size |m|+poly(k), where m is the plaintext and k is the security parameter. Encrypting
the witness for an NP-statement allows us to evaluate the NP-relation in a communication-
efficient manner. We apply this technique to both standard non-interactive zero-knowledge proofs
and to universally composable non-interactive zero-knowledge proofs.

The technique can also be applied outside the realm of non-interactive zero-knowledge proofs,
for instance to get witness-size interactive zero-knowledge proofs in the plain model without any
setup or to minimize the communication in secure computation protocols.

Keywords: Non-interactive zero-knowledge proofs, fully homomorphic encryption, hybrid en-
cryption, secure function evaluation, minimizing communication.

∗ c©IACR 2014. This article is a minor revision of the version published by Springer- Verlag available at
http://dx.doi.org/10.1007/s00145-014-9184-y. The original publication is available at www.springerlink.com.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79498935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Non-interactive zero-knowledge (NIZK) proof systems [BFM88] yield proofs that can convince oth-
ers about the truth of a statement without revealing anything but this truth. We will consider
statements of the form x ∈ L, where L can be an arbitrary language in NP. We require that the
NIZK proof be complete, sound, and zero-knowledge.

Completeness: Given a witness w for the statement x ∈ L there is an efficient algorithm to
construct a convincing proof π.

Soundness: A malicious prover cannot convince the verifier that a false statement is true.

We focus on unconditional soundness, where even an adversary with infinite computing power
cannot create a convincing proof π for x /∈ L.

Zero-knowledge: A malicious verifier learns nothing but the truth of the statement. In particular,
the proof π does not reveal the witness w that the prover used when constructing the proof π.

Only languages in BPP have NIZK proofs in the plain model without any setup [Ore87, GO94,
GK96]. Blum, Feldman and Micali [BFM88] therefore suggested the common reference string model,
where the prover and the verifier have access to a bit-string that is assumed to have been generated
honestly according to a specific distribution. The common reference string can for instance be
generated by a trusted third party or by a set of parties executing a multi-party computation
protocol. Groth and Ostrovsky [GO07] has as an alternative suggested NIZK proofs in the multi-
string model, where many parties generate a random string and the security of the NIZK proof relies
on a majority of the strings being honestly generated.

1.1 Related work

NIZK proofs have many applications, ranging from early chosen-ciphertext secure public-key en-
cryption schemes [DDN00] to advanced signature schemes [BW06, CGS07]. There is therefore a
significant body of research dealing with NIZK proofs.

Blum, Feldman and Micali [BFM88] proposed an NIZK proof for all of NP based on a number
theoretic assumption related to factoring. Feige, Lapidot and Shamir [FLS99] gave an NIZK proof
for all of NP based on the existence of trapdoor permutations.

While these results established the existence of NIZK proofs based on general assumptions,
other works have aimed at defining stronger security properties such as non-malleability [Sah01],
robustness [DDO+02] and universal composability [Can01, GOS12].

There has been significant progress in reducing the complexity of NIZK proofs based on general
assumptions [Dam92, DDP02, KP98, Gro10] and Groth, Ostrovsky and Sahai [GOS12, Gro06, GS08]
have constructed practical NIZK proofs using techniques from pairing-based cryptography.

Recently Gentry [Gen09b, Gen09a] proposed a fully homomorphic encryption scheme and demon-
strated that fully homomorphic encryption can be used to construct NIZK proofs whose size depends
only on the size of the witness and on the security parameter, but not on the size of the circuit
used to verify the witness. However, the ratio between the proof size and the witness size in this
construction grows polynomially with the security parameter.

Soon after Gentry’s construction of fully homomorphic encryption, several groups independently
contemplated the use of hybrid encryption to optimize the size of NIZK proofs and other related
cryptographic primitives (e.g. [Ish09, PS09]). This article formally explores the idea of using fully
homomorphic encryption to minimize communication.

2

1.2 Our contribution

We construct NIZK proofs for arbitrary NP-languages in which the size of the common reference
string is poly(k) and the size of the proof is essentially the same as the witness, i.e., |π| = |w|+poly(k)
where k is the security parameter. This is essentially the best one could hope for given our current
knowledge on the complexity of deciding membership of NP-languages. Indeed, any interactive proof
system for NP in which the communication from the prover to the verifier is substantially smaller
than the witness size would imply a breakthrough in complexity theory [GH98, GVW02].

In Table 1, we compare our NIZK proofs with the current state of the art NIZK proofs for Cir-
cuit Satisfiability based on, respectively, trapdoor permutations [Gro10] and specific cryptographic
assumptions [GOS12, Gro10, Gen09a]. All of these NIZK proofs are publicly verifiable given the
common reference string, the statement and the proof.

CRS size Proof size Assumption

Groth [Gro10] |C| · poly(k) |C| · poly(k) Trapdoor perm.
GOS [GOS12] poly(k) |C| · poly(k) Pairing-based
Groth [Gro10] |C| · polylog(k) + poly(k) |C| · polylog(k) + poly(k) Naccache-Stern
Gentry [Gen09a] poly(k) |w| · poly(k) FHE and NIZK

This work poly(k) |w|+ poly(k) FHE and NIZK

Table 1: Comparison of NIZK proofs with security parameter k, circuit size |C| and witness size
|w|.

Our result is quite general and applies not only to standard NIZK proofs, but also to NIZK
proofs with stronger security properties such as simulation soundness and non-malleability [Sah01]
as well as universal composability [Can01]. Universally composable NIZK proofs have the property
that they retain their security properties in any environment, even an environment where arbitrary
protocols are running concurrently with the NIZK proof. We propose a universally composable
NIZK proof that is secure against adaptive malicious adversaries assuming provers are able to erase
data from their systems after constructing their proofs. The universally composable NIZK proofs
are also |w|+ poly(k) bits long.

1.3 Our technique: fully homomorphic hybrid encryption

Our technique is based on a hybrid form of fully homomorphic encryption. A fully homomorphic
encryption scheme allows taking two ciphertexts and computing a new ciphertext containing the
sum or the product of their plaintexts even if the secret key is unknown. More generally, we can
take t ciphertexts and compute a new ciphertext containing the evaluation of an arbitrary circuit
on their plaintexts. Following the breakthrough work of Gentry [Gen09b], several subsequent works
improved the efficiency of fully homomorphic encryption and the assumptions on which it can be
based [SV10, vDGHV10, SS10, BV11, BGV12, Bra12, BGH13].

There are many applications of fully homomorphic encryption schemes. It is not known whether
they imply the existence of NIZK proofs though. However, if NIZK proofs do exist then fully
homomorphic encryption can be used to reduce the size of the proofs. Gentry [Gen09a] showed
that using fully homomorphic encryption it is possible to get NIZK proofs where the proof size is
proportional to the witness size. If we are looking at the satisfiability of a large circuit with a few
input wires, i.e., a small witness for satisfiability, this is a significant improvement over other NIZK
proofs that tend to grow proportionally to the circuit size.

3

Gentry proposed to encrypt every bit of the witness using a fully homomorphic encryption
scheme. Using the operations of the fully homomorphic encryption scheme it is possible to eval-
uate the circuit on the plaintexts to get a ciphertext that contains the output. Using an NIZK
proof the prover then constructs a proof for the public key being valid, the encrypted inputs being
valid ciphertexts and the output ciphertext being an encryption of 1. Since the proof contains |w|
ciphertexts and |w| proofs of their correctness the total complexity is |w| · poly(k).

In this paper, we present a simple modification of Gentry’s NIZK proof that decreases the proof
size to |w|+ poly(k). The idea is to construct a fully homomorphic hybrid encryption scheme. We
first encrypt the witness w using a symmetric key encryption scheme, for instance using a one-time
pad with a pseudorandom string, and then use the fully homomorphic encryption scheme both to
decrypt the symmetrically encrypted witness and then evaluate the circuit on the witness.

More precisely, the prover will given a witness w for the satisfiability of a circuit C construct
(u, pk, s̄), where u is an encryption of w using a symmetric encryption scheme and pk is a public
key for the fully homomorphic encryption scheme and s̄ is a fully homomorphic encryption of the
secret key s used to construct u. Now the prover gives an NIZK proof for pk being a valid public
key, s̄ being a valid encryption of a key s and that after decrypting u using s and evaluating C on
the resulting plaintext the output is 1. The length of u is |w| and the polynomially many other
components are of size poly(k) each so the total size of the proof is |w|+ poly(k).

Fully homomorphic hybrid encryption is applicable in many situations. We apply it to non-
interactive zero-knowledge proofs here, but one could for instance also use it in a similar way to
get interactive zero-knowledge proofs in the plain model with a communication complexity of |w|+
poly(k). This compares favorably with the best previous communication-efficient interactive zero-
knowledge proofs [KR08, IKOS09, GKR08], in which the communication complexity either grows
linearly with the circuit size or is polynomial in the witness size and restricted to low-depth circuits.
Following a preliminary version of our work, a similar use of fully homomorphic hybrid encryption
has been used in the context of computationally private information retrieval [BV11, Lip11].

An additional application of fully homomorphic hybrid encryption is to minimizing communi-
cation in general secure computation. For simplicity, we address here the case of secure two-party
computation in the semi-honest model (i.e., when the parties are honest-but-curious). Concretely,
consider the case where Alice and Bob hold inputs x and y respectively and want to compute f(x, y)
for a given polynomial time computable function f . Using a fully homomorphic hybrid encryption
scheme, there is a simple 2-party protocol to accomplish this task that is secure against static honest-
but-curious adversaries: Alice encrypts x under her own key and Bob using the fully homomorphic
property evaluates the function f(·, y) on the encrypted x, which Alice can then decrypt. The com-
munication of this protocol is |x|+ poly(k) · |f(x, y)| bits, which is optimal for functions f(x, y) with
a small output, such as the function corresponding to Yao’s millionaires problem [Yao82]. Using
specific fully homomorphic encryption schemes [BGV12, Lip11] the communication can be reduced
further to be |x|+ |f(x, y)| · (1 + o(1)) + poly(k), which is useful when the output is large. We note
that this approach can also be applied in the multi-party case via the use of threshold fully homo-
morphic encryption [Gen09b], and that security against malicious parties can be obtained without
increasing the asymptotic communication complexity by using sublinear-communication arguments
(cf. [NN01]).

2 Preliminaries

Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when |f(k) − g(k)| = O(k−c) for every
constant c > 0. We say that f is negligible if f(k) ≈ 0 and that f is overwhelming if f(k) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We write

4

y ← A(x) for the process of picking randomness r at random and setting y = A(x; r). We also write
y ← S for sampling y uniformly at random from the set S.

We will now define non-interactive zero-knowledge proofs and describe three tools that will
be used in our constructions of minimal size NIZK proofs, namely fully homomorphic encryption
schemes, pseudorandom generators and strong one-time signatures.

2.1 Fully homomorphic public-key encryption

A fully homomorphic bit-encryption scheme enables computation on encrypted bits. There is an
evaluation algorithm Eval that takes as input an arbitrary Boolean circuit and an appropriate
number of ciphertexts and outputs a new ciphertext containing the output of the circuit evaluated
on the plaintexts.

The encryption scheme consists of four algorithms (KFHE, E,D,Eval). The probabilistic polyno-
mial time key generation algorithm KFHE on input 1k (and randomness ρ← {0, 1}`KFHE

(k)) outputs
a public key pk and a decryption key dk. The probabilistic polynomial time encryption algorithm
E given a public key pk and a bit b (and randomness r ← {0, 1}`E(k)) outputs a ciphertext c. The
deterministic polynomial time decryption algorithm D given a public key pk and a ciphertext c re-
turns a bit b or an error symbol ⊥. Finally, the deterministic polynomial time evaluation algorithm
Eval takes a public key pk, a Boolean circuit C and t ciphertexts as input and returns a ciphertext.
We require that the encryption scheme be compact, which means that there is a polynomial upper
bound `Eval(k) on the size of the ciphertexts output by Eval, which is independent of the size of the
circuit C.

We will often encrypt a bit-string one bit at a time. We therefore define Epk(m) to be the tuple
(Epk(m1), . . . , Epk(m|m|)), where m1, . . . ,m|m| are the bits of m. When being explicit about the
randomness used, we define Epk(m; r̄) = (Epk(m1; r1), . . . , Epk(m|m|; r|m|)) for r̄ = (r1, . . . , r|m|) ∈
({0, 1}`E(k))|m|.

The properties we need from the fully homomorphic encryption scheme are correctness and
indistinguishability under chosen plaintext attack as defined below.

Definition 1 (Correctness) (KFHE, E,D,Eval) is (perfectly) correct if for all all inputs m ∈
{0, 1}∗ and all Boolean circuits C with |m| input bits

Pr
[
(pk, dk)← KFHE(1k); m̄← Epk(m); v = Evalpk(C; m̄) : Ddk(v) = C(m)

]
= 1.

Definition 2 (IND-CPA security) (KFHE, E,D,Eval) is indistinguishable under chosen plain-
text attack (IND-CPA secure) if for all non-uniform polynomial time A

Pr
[
(pk, dk)← KFHE(1k); b← {0, 1}; c← Epk(b) : A(c) = b

]
≈ 1

2
.

Please note that by a standard hybrid argument the above security definition implies IND-CPA
security also when using Epk for a bit-by-bit encryption of an arbitrary polynomial-size message m.

2.2 Pseudorandom generators

A length-flexible pseudorandom generator is a deterministic polynomial time algorithm G that on
input (s, `), where s ∈ {0, 1}k, returns an `-bit string. Pseudorandomness means that G’s output
looks random, which we now define formally.

5

Definition 3 (Pseudorandom generator) G is a pseudorandom generator if for all non-uniform
polynomial time A and all polynomially bounded `

Pr
[
s← {0, 1}k; y = G(s, `(k)) : A(y) = 1

]
≈ Pr

[
y ← {0, 1}`(k) : A(y) = 1

]
.

Length-flexible pseudorandom generators can be constructed from one-way functions [HILL99]. The
existence of fully homomorphic encryption therefore implies the existence of length-flexible pseudo-
random generators.

2.3 Strong one-time signatures

A strong one-time signature scheme consists of three algorithms (KSIG, Sign,Vfy). The key gen-
eration algorithm KSIG is a probabilistic polynomial time algorithm that on input 1k returns a
verification key vk and a signing key sk. The signing algorithm Sign is a probabilistic polynomial
time algorithm that on input sk and an arbitrary message m returns a signature sig. The signature
verification algorithm Vfy is a deterministic polynomial time algorithm that given a verification key
vk, a message m and a signature sig returns 1 (acceptance) or 0 (rejection). We require that the
scheme be correct and strongly existentially unforgeable under a single chosen message attack, where
“strongly” means that the adversary is not even allowed to obtain a different signature on the same
message. We give the formal definition below.

Definition 4 (Correctness) (KSIG,Sign,Vfy) is (perfectly) correct if for all m ∈ {0, 1}∗

Pr
[
(vk, sk)← KSIG(1k); sig← Signsk(m) : Vfyvk(m, sig) = 1

]
= 1.

Definition 5 (Strong existential unforgeability under one-time chosen message attack)
(KSIG,Sign,Vfy) is strongly existentially unforgeable under a one-time chosen message attack if for
all non-uniform polynomial time stateful interactive A

Pr
[
(vk, sk)← KSIG(1k);m← A(vk); sig← Signsk(m); (m′, sig′)← A(sig) :

(m′, sig′) 6= (m, sig) ∧ Vfyvk(m
′, sig′) = 1

]
≈ 0.

We will use a strong one-time signature scheme that has fixed-length signatures, i.e., where there is
a polynomial upper bound `SIG(k) on the length of the signatures.

Fixed-length strong one-time signatures can be constructed from one-way functions (from uni-
versal one-way hash-functions [NY90] and Lamport signatures used in combination with Merkle
trees [Rom90]). The existence of fully homomorphic encryption therefore implies the existence of
fixed-length strong one-time signatures.

2.4 Non-interactive Zero-Knowledge Proofs

Let R be a polynomially bounded, polynomial time computable binary relation. For pairs (x,w) ∈ R
we call x the statement and w the witness. Let L be the NP-language L = { x : ∃w (x,w) ∈ R }.
We write R(x,w) ∈ {0, 1} (0 is no, 1 is yes) for the output of the polynomial time decision algorithm
for R on input (x,w).

We will construct NIZK proofs that have almost the same size as the witnesses. The proofs
therefore leak the length of the witnesses, so we will assume that for all x ∈ L of the same length,
all witnesses have the same length which can be efficiently computed given 1|x|. There is only little
loss of generality here, since by definition of NP all witnesses have length polynomial in |x| and an

6

appropriate amount of padding could be used to ensure that all witnesses have the same length. We
note that most popular NP-complete languages such as SAT, Circuit Satisfiability and Hamiltonicity
have statements that uniquely determine the length of potential witnesses.

An efficient-prover non-interactive zero-knowledge proof for the relation R consists of three
probabilistic polynomial time algorithms (K,P, V). K is the common reference string generator
that takes the security parameter written in unary 1k and outputs a common reference string σ.1

P is the prover algorithm that takes as input the common reference string σ, a statement x and a
witness w such that (x,w) ∈ R and outputs a proof π. V is the verifier algorithm that on a common
reference string σ, a statement x and a proof π outputs 0 or 1. We interpret a verifier output of 0
as a rejection of the proof and a verifier output of 1 as an acceptance of the proof.

Definition 6 (K,P, V) is a non-interactive zero-knowledge proof for R if it is complete, sound and
zero-knowledge as described below.

Perfect completeness. Completeness means that a prover with a witness can convince the
verifier. For all adversaries A

Pr
[
σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (x,w) ∈ R

]
= 1.

Statistical soundness. Soundness means that it is impossible to convince the verifier of a false
statement. For all adversaries A

Pr
[
σ ← K(1k); (x, π)← A(σ) : x /∈ L and V (σ, x, π) = 1

]
≈ 0.

If the probability is exactly 0, we say (K,P, V) is perfectly sound.

Computational zero-knowledge. (K,P, V) is zero-knowledge if it is possible to simulate the
proof of a true statement without knowing the witness. Formally, we require the existence of a
probabilistic polynomial time simulator S = (S1, S2). S1 outputs a simulated common reference
string σ and a simulation trapdoor τ . S2 takes the simulation trapdoor and a statement as input
and produces a simulated proof π. We require for all non-uniform polynomial time adversaries A

Pr
[
σ ← K(1k) : AP (·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1

k) : AS(·,·)(σ) = 1
]
,

where P (·, ·) on input (x,w) ∈ R returns π ← P (σ, x, w) and S(·, ·) on input (x,w) ∈ R returns
π ← S2(τ, x).

3 Minimal NIZK Proofs from Fully Homomorphic Encryption

We will now construct an NIZK proof system for an arbitrary NP-relation R. The common reference
string has length poly(k) and the proof for a statement x has size |w| + poly(k), where |w| is the
size of witnesses for x.

As explained in the introduction, the idea in the proof system is to use a pseudorandom one-
time pad to encrypt the witness as u = w ⊕ G(s, |w|). This ciphertext has length |w|. Using a
fully homomorphic encryption scheme the prover encrypts the seed s for the pseudorandom one-
time pad. Both the prover and the verifier can use the evaluation algorithm to compute a fully
homomorphic encryption of R(x, u ⊕ G(s, |w|)). The prover gives an NIZK proof for the key for

1Our constructions can be instantiated with a uniformly distributed σ, but other distributions are useful for
broadening the class of intractability assumptions on which our results can be based.

7

the fully homomorphic encryption scheme having been correctly generated, that a seed s has been
correctly encrypted and that the resulting encryption of R(x, u⊕G(s, |w|)) decrypts to 1. The fully
homomorphic encryption part and the NIZK proof have size polynomial in k, independently of the
sizes of |w| or |x|. The total size of the proof is therefore |w|+ poly(k).

In order to make this more precise, define given a relation R and a pseudorandom generator G
the deterministic polynomial time computable function f that takes as input the security parameter
k, a statement x and a string u of length |w| and outputs a Boolean circuit Cx,u with k input wires
such that Cx,u(·) = R(x, u ⊕ G(·, |w|)). Define also given a fully homomorphic encryption scheme
(KFHE, E,D,Eval) the relation

RF = {((pk, s̄, v), (ρ, s, r̄)) :

ρ ∈ {0, 1}`KFHE
(k) ∧ (pk, dk) = KFHE(1k; ρ) ∧ r̄ ∈ ({0, 1}`E(k))|s| ∧ s̄ = Epk(s; r̄) ∧Ddk(v) = 1}.

Let (KF , PF , V F) be an NIZK proof system for RF with zero-knowledge simulator (SF1 , S
F
2). We

can now give the detailed specification of the NIZK proof for R in Figure 1.

K(1k)
Return σ ← KF (1k)

V(σ, x,Π)
Parse Π = (pk, s̄, u, π)
Cx,u = f(1k, x, u)
v = Evalpk(Cx,u, s̄)
Return V F (σ, (pk, s̄, v), π)

P(σ, x, w)
s← {0, 1}k
u = w ⊕G(s, |w|)
Cx,u = f(1k, x, u)

ρ← {0, 1}`KFHE
(k)

(pk, dk) = KFHE(1k; ρ)

r̄ ← ({0, 1}`E(k))k

s̄ = Epk(s; r̄)
v = Evalpk(Cx,u, s̄)
π ← PF (σ, (pk, s̄, v), (ρ, s, r̄))
Return Π = (pk, s̄, u, π)

S1(1
k)

Return (σ, τ)← SF1 (1k)

S2(τ, x)

u← {0, 1}|w|
Cx,u = f(1k, x, u)
(pk, dk)← KFHE(1k)

s̄← Epk(0
|w|)

v = Evalpk(Cx,u, s̄)
π ← SF2 (τ, (pk, s̄, v))
Return Π = (pk, s̄, u, π)

Figure 1: NIZK proof system for R.

Theorem 7 (K,P, V) described in Figure 1 is an NIZK proof system for R.

Proof. Perfect completeness follows from the perfect completeness of (KF , PF , V F) and the perfect
correctness of the fully homomorphic encryption scheme. The prover generates a valid key pair
(pk, dk), makes valid encryptions of the bits in s and by the correctness of the fully homomorphic
encryption scheme v decrypts to 1 provided w = u ⊕ G(s, |w|) is a witness for x. The statement
and witness provided to PF is therefore valid and the completeness of (KF , PF , V F) implies that
the resulting proof π is acceptable.

Statistical soundness follows from the statistical soundness of (KF , PF , V F) and the correctness
of the fully homomorphic encryption scheme. To see this, consider a proof Π = (pk, s̄, u, π) for
a statement x. By the statistical soundness of π there exists ρ such that (pk, dk) = KFHE(1k; ρ)
and v = Evalpk(Cx,u, s̄) decrypts to 1 under dk. Furthermore, the statistical soundness also guar-
antees that s̄ = Epk(s; r̄) for some seed s and randomness r̄. The perfect correctness of the fully
homomorphic encryption scheme now guarantees that w = u⊕G(s, |w|) is a witness for x ∈ L.

Computational zero-knowledge follows from the computational zero-knowledge of (KF , PF , V F),
the pseudorandomness of G and the IND-CPA security of (KFHE, E,D,Eval). Figure 1 describes

8

a zero-knowledge simulator (S1, S2) and we will now show that for every non-uniform polynomial
time A

Pr
[
σ ← K(1k) : AP (·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1

k) : AS(·,·)(σ) = 1
]
,

where P (·, ·) on input (x,w) ∈ R returns P (σ, x, w) and S(·, ·) on input (x,w) ∈ R returns S2(τ, x).
Consider generating the common reference string using (σ, τ)← SF1 (1k) instead of using K = KF

and consider a modified oracle P ′(·, ·) that on (x,w) ∈ R returns a proof Π = (pk, s̄, u, π) generated
as a normal prover P (σ, x, w) would do except instead of computing π ← PF (σ, (pk, s̄, v), (ρ, s, r̄))
it simulates π ← SF2 (τ, (pk, s̄, v)). By the zero-knowledge property of (KF , PF , V F) we have for all
non-uniform polynomial time A

Pr
[
σ ← K(1k) : AP (·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← SF1 (1k) : AP ′(·,·)(σ) = 1

]
.

Let P ′′ be a modification of P ′ where the responses Π = (pk, s̄, u, π) are generated by computing
s̄ ← Epk(0

k). By the IND-CPA security of (KFHE, E,D,Eval) a hybrid argument gives us that for
all non-uniform polynomial time A

Pr
[
(σ, τ)← SF1 (1k) : AP ′(·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← SF1 (1k) : AP ′′(·,·)(σ) = 1

]
.

Finally, since S1 = SF1 we can view S as a modification of P ′′ where the responses Π = (pk, s̄, u, π)
are generated such that u← {0, 1}|w|. By the pseudorandomness of G we have for all non-uniform
polynomial time A

Pr
[
(σ, τ)← SF1 (1k) : AP ′′(·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1

k) : AS(·,·)(σ) = 1
]
.

We conclude that (S1, S2) is a zero-knowledge simulator for (K,P, V). �

The transformation preserves many properties of the underlying NIZK proof (KF , PF , V F). If KF

outputs uniformly random common reference strings, then so does K. If the underlying NIZK proof
has perfect soundness, then so does (K,P, V). If the underlying NIZK proof is a proof of knowledge,
i.e., given a secret extraction key ξ related to the common reference string it is possible to extract
the witness, then so is the resulting witness-length NIZK proof.

4 Universally Composable NIZK Proofs from Fully Homomorphic
Encryption

We will now give an NIZK proof system that is secure in the universal composability (UC) frame-
work [Can01]. Universally composable NIZK proofs are secure even in an environment where ar-
bitrary other protocols are running concurrently and automatically satisfy strong security notions
such as non-malleability. The universally composable NIZK proofs we construct are communication-
efficient consisting of |w|+ poly(k) bits.

In the universal composability framework the secure execution of a protocol by a set of parties
is modeled by an ideal functionality. We say a protocol is secure if it is equivalent to the parties
handing all their inputs to an honest, trusted and incorruptible ideal functionality, which computes
the corresponding protocol outputs and hands them to the parties. The parties send their protocol
inputs and receive their protocol outputs through a secure private authenticated channel to the ideal
functionality, although we allow for the adversary to schedule or block the arrival of outputs.

9

Ideal NIZK Proof Functionality FRNIZK

Parameterized with NP-relation R and running with parties P̃1, . . . , P̃n and adversary S.

Proof: On input (prove, sid, x, w) from a party Pi ignore if (x,w) /∈ R. Send
(prove, Pi, sid, x) to S and wait for answer (proof , π). Upon receiving the answer store
(sid, x, π) and return (proof , sid, x, π) to Pi.

Verification: On input (verify, sid, x, π) from a party Pj check whether (sid, x, π) is stored.
If not send (verify, Pj , sid, x, π) to S and wait for an answer (witness, w). Upon
receiving the answer, check whether (x,w) ∈ R and in that case, store (sid, x, π). If
(sid, x, π) has been stored return (verification, sid, x, π, 1) to Pj , else return
(verification, sid, x, π, 0) to Pj .

Figure 2: Ideal NIZK proof functionality FRNIZK.

We are interested in securely realizing the ideal non-interactive zero-knowledge functionality
FRNIZK described in Figure 2. The session ids sid are used to distinguish different invocations of the
same functionality, which may for instance use different common reference strings in the underlying
implementations. The functionality captures completeness by allowing a prover to compute a proof
π for a statement x if it has a witness w such that (x,w) ∈ R and will always verify such proofs
as being correct. The ideal functionality captures an ideal form of soundness, since the only way
a proof π for a statement x can be accepted is if at some point a witness w such that (x,w) ∈ R
has been provided to the ideal functionality. The ideal functionality also captures an ideal form of
zero-knowledge, since it leaks no information about the witnesses used by honest provers.

Let us clarify what it means to securely realize FRNIZK. We will construct a protocol φNIZK

to be run by parties P1, . . . , Pn that receive protocol inputs and make protocol outputs to the
environment in which they are operating. We model the environment as a non-uniform polynomial
time algorithm Z. The execution of the protocol itself is attacked by a non-uniform polynomial time
adversary A that may communicate with the environment and corrupt parties adaptively. When
corrupting a party Pi the adversary learns the present state of the party and takes control over the
actions of Pi. We say the protocol φNIZK securely realizes FRNIZK if there is a simulator S that can
simulate the protocol execution on top of the ideal functionality FRNIZK. The simulator S runs with
dummy parties P̃1, . . . , P̃n that instead of running φNIZK simply forward their inputs to the ideal
functionality FRNIZK and return the responses from FRNIZK to the environment. The simulator S has
the same ability as A to corrupt dummy parties and to communicate with the environment, but
does not have access to the internals of the ideal execution taking place inside FRNIZK. Formally,
φNIZK securely realizes FRNIZK if for any non-uniform polynomial time adversary A there is a non-
uniform polynomial time simulator S such that no non-uniform polynomial time environment can
distinguish between φNIZK executed by real parties P1, . . . , Pn under attack by A and FRNIZK being
used by dummy parties P̃1, . . . , P̃n in the simulation by S.

We will present a non-interactive protocol φNIZK that securely realizes FRNIZK for an arbitrary
NP-relation R. A proof for a statement x with witnesses of size |w| consists of |w| + poly(k) bits.
We make two assumptions, namely that a fully homomorphic encryption scheme (KFHE, E,D,Eval)

exists and that FRF

NIZK can be securely realized for the relation

RF = {((pk, s̄, v, vk), (ρ, s, r̄)) :

ρ ∈ {0, 1}`KFHE
(k) ∧ (pk, dk) = KFHE(1k; ρ) ∧ r̄ ∈ ({0, 1}`E(k))|s| ∧ s̄ = Epk(s; r̄) ∧Ddk(v) = 1}.

10

We have generalized RF slightly compared to the previous section by allowing statements to have
an arbitrary string vk in the end. This will be used later in combination with one-time signatures
to prevent proofs from being modified.

There are several examples of protocols securely realizing FRNIZK for Circuit Satisfiability in the
common reference string model [DDO+02, Gro06, GOS12] and in the multi-string model [GO07]
under standard cryptographic assumptions, and a related functionality has been securely realized in
the registered public key model [BCNP04]. This implies that we already have many candidates for

a secure realization of FRF

NIZK. A useful feature of the UC framework is the universal composition
theorem [Can01] that says if a protocol φF

′
securely realizes an ideal functionality F in an F ′-hybrid

model where it can make calls to an ideal functionality F ′, then for any protocol ψ securely realizing
F ′ we have that φψ securely realizes F . Our result therefore says that any secure realization of FRF

NIZK

implies a communication-efficient secure realization of FRNIZK if fully homomorphic encryption exists.
The construction of our universally composable NIZK proof is quite similar to the NIZK proof in

Section 3 except the prover will make a strong one-time signature on each proof in order to prevent
modifications of the proof and the protocol will call FRF

NIZK instead of using a standard NIZK proof
system (KF , PF , V F) in the construction. We therefore proceed directly to giving the details of the
protocol in Figure 3.

Universally Composable NIZK Protocol φNIZK

Pi on (prove, sid, x, w)

Ignore if (x,w) /∈ R
s← {0, 1}k
u = w ⊕G(s, |w|)
Cx,u = f(1k, x, u)

ρ← {0, 1}`KFHE
(k)

(pk, dk) = KFHE(1k; ρ)

r̄ ← ({0, 1}`E(k))k

s̄ = Epk(s; r̄)
v = Evalpk(Cx,u, s̄)
(vk, sk)← KSIG(1k)

Run FRF

NIZK using input
(prove, sid, (pk, s̄, v, vk), (ρ, s, r̄))
and immediately deleting dk, ρ, s, r̄

Wait for answer (proof , sid, π)
sig← Signsk(x, pk, s̄, u, vk, π)
Return (proof, sid, x, (pk, s̄, u, vk, π, sig))

after deleting all other data

Pj on (verify, sid, x,Π)

Parse Π as Π = (pk, s̄, u, vk, π, sig)
Check Vfyvk(x, pk, s̄, u, vk, π, sig) = 1
Cx,u = f(1k, x, u)
v = Evalpk(Cx,u, s̄)

Run FRF

NIZK using input
(verify, sid, (pk, s̄, v, vk), π)

Wait for answer
(verification, sid, x, π, b)

Check b = 1
If all checks pass return

(verification, sid, x,Π, 1)
Else return (verification, sid, x,Π, 0)

Figure 3: Universally composable NIZK proof for R.

Theorem 8 The protocol φNIZK in Figure 3 securely realizes FRNIZK in the FRF

NIZK-hybrid model.

Proof. We have to show that for any adversary A there is an ideal process adversary S such that no
environment Z has more than negligible advantage in distinguishing between φNIZK running with
P1, . . . , Pn and A and FRNIZK running with dummy parties P̃1, . . . , P̃n and S. Our proof strategy is
to start with φNIZK running with A and modifying the experiment in steps that the environment

11

has negligible probability of distinguishing. For this purpose we define three additional simulators
SREAL,SEXT,SSIM that are used in intermediate steps and have the ability to control FRNIZK in
various ways. Informally, SREAL running with the ideal functionality FRNIZK takes full control over
FRNIZK and makes a perfect simulation of A running with φNIZK. SEXT modifies the simulation
SREAL such that whenever an NIZK proof that has not been created by FRNIZK is verified as being
valid it extracts the corresponding witness and inputs it to FRNIZK. SSIM and S complete the security
proof by enabling the simulation of honest parties making NIZK proofs without knowledge of the
witnesses.

We now give the details of the simulators and the security proof.

SREAL: SREAL learns the inputs to FRNIZK and controls the outputs. It can therefore run a perfect

simulation of P1, . . . , Pn and A running φNIZK in the FRF

NIZK-hybrid model.

SREAL simulates A and forwards all communication between the simulated A and the envi-
ronment Z. Whenever the simulated A corrupts a simulated Pi, SREAL corrupts P̃i and lets it
interact with the environment asA instructs the simulated Pi to interact with the environment.

When SREAL receives (prove, Pi, sid, x) from FRNIZK it is because an honest P̃i has input
(prove, sid, x, w) with (x,w) ∈ R. Since SREAL knows the inputs to FRNIZK it can simulate

Pi running φNIZK in the FRF

NIZK-hybrid model including FRF

NIZK sending (prove, (pk, s̄, v, vk))
to A and on getting the answer (proof , π) making the signature sig to complete the proof
Π = (pk, s̄, u, vk, π, sig). SREAL answers (proof ,Π) to FRNIZK.

On input (verify, Pj , sid, x,Π) from FRNIZK the simulator SREAL knows that the honest party
P̃j has queried (verify, sid, x,Π) to FRNIZK, where (sid, x,Π) has not been stored before and
hence not been created by an honest party. SREAL simulates Pj running the verification
protocol on input (verify, sid, x,Π). The simulator forces FRNIZK to return the resulting answer
(verification, sid, x,Π, b) and stores (sid, x,Π) in FRNIZK if b = 1.

The simulation by SREAL is exactly like running φNIZK in the FRF

NIZK-hybrid model, except
for the fact that a proof Π for a statement x output by an honest party P̃i is guaranteed
to be accepted in the verification phase and once a proof Π for a statement x is accepted,
it will always be accepted by FRNIZK. However, if we look at a real execution of φNIZK we
see that the correctness of the signature scheme, the correctness of the fully homomorphic
encryption scheme and the properties of FRF

NIZK guarantees that proofs Π created by honest
parties Pi are accepted and also that accepted proofs will always be accepted again. To the
environment, a real execution of φNIZK in the FRF

NIZK-hybrid model with adversaryA is perfectly
indistinguishable from the simulation by SREAL running with FRNIZK.

SEXT: SEXT runs like SREAL when proofs are constructed, but changes the way proofs are verified.
As SREAL it simulates Pj getting input (verify, sid, x,Π) in the execution of φNIZK, but if
the answer is (verification, sid, x,Π, 1) then it extracts a witness w such that (x,w) ∈ R and
aborts the simulation if the extraction fails.

More precisely, on input (verify, Pj , sid, x,Π) from FRNIZK the simulator SEXT simulates the
honest Pj getting input (verify, sid, x,Π) in φNIZK. If Pj outputs (verification, sid, x,Π, 0)
then SEXT returns (witness,⊥) to FRNIZK and forwards the resulting (verification, sid, x,Π, 0)
message to P̃j . On the other hand, if Pj outputs (verification, sid, x,Π, 1) then SEXT will
try to extract a witness w such that (x,w) ∈ R, return (witness, w) to FRNIZK and send the
resulting (verification, sid, x,Π, 1) message to P̃j .

SEXT parses Π = (pk, s̄, u, vk, π, sig). We only need to extract a witness for Π, when the signa-
ture sig on (x, pk, s̄, u, vk, π) is valid, because otherwise the protocol φNIZK will reject the proof.

12

Part of the verification protocol consists in querying FRF

NIZK on (verify, sid, (pk, s̄, v, vk), π),

where v = Evalpk(Cx,u, s̄). The simulated FRF

NIZK will only return (verification, sid, x, π, 1) if
an honest party created the proof π on (pk, s̄, v, vk) or if A supplies a witness (ρ, s, r̄) such that
(pk, dk) = KFHE(1k; ρ) and s̄ = Epk(s; r̄) and Ddk(v) = 1. In the latter case, this tells SEXT

what dk is and hence it can compute s and w = u ⊕ G(s, |w|). The correctness of the fully
homomorphic encryption scheme shows that in this case, the witness w satisfies (x,w) ∈ R
and therefore SEXT can submit (witness, w) to FRNIZK. On the other hand, if an honest party
created the proof π on (pk, s̄, v, vk) then the strong existential unforgeability of the one-time
signature scheme implies that there is negligible probability of the adversary producing a dif-
ferent valid signature sig using vk. There is therefore only negligible risk of SEXT not being
able to extract a witness w.

SSIM: SEXT runs the verification process of FRNIZK without interference, but in the proof process
it uses knowledge of the inputs the honest parties provide to FRNIZK. In the next couple of
modifications of the simulator, we will move towards simulating the proofs instead of using
knowledge of the inputs to FRNIZK.

Let SSIM be a modification of SEXT that instead of running a perfect simulation of FRF

NIZK

allows simulated honest parties to submit (prove, sid, (pk, s̄, v, vk)),⊥) even if (x,w) /∈ R.

This means, FRF

NIZK may ask A for a proof π for a false statement (pk, s̄, v, vk) and store
(sid, (pk, s̄, v, vk), π) as being a valid proof and return (proof , sid, (pk, s̄, v, vk), π) to the re-
questing party Pi.

SEXT can now change the way it constructs s̄ to instead set s̄← Epk(0
k). Due to the IND-CPA

security of the fully homomorphic encryption scheme this tuple of ciphertexts s̄ is indistinguish-
able from a bit-wise encryption of s. Running FRNIZK with SSIM is therefore computationally
indistinguishable from running FRNIZK with SEXT.

S: We will now make a modification of SSIM to get a simulator that does not have access to the
internals of FRNIZK. S is a modification of SSIM that simulates the proof created by an honest
party Pi by setting u← {0, 1}|w| instead of using u = w⊕G(s, |w|). Since G is a pseudorandom
generator, it is not possible for the environment to distinguish whether SSIM or S is making
the simulation with FRNIZK.

Since S does not need to know the witness when simulating a proof for an honest party Pi, it runs
entirely without access to or control over the workings of FRNIZK. As we have shown S running with

FRNIZK is indistinguishable from the protocol φNIZK running with A in the FRF

NIZK-hybrid model. The

protocol φNIZK therefore securely realizes FRNIZK in the FRF

NIZK-hybrid model. �

We have assumed a dynamic corruption model in the construction. However, we can also apply
our construction if FRF

NIZK can be securely realized against static adversaries, in which case we get
a witness-length universally composable NIZK proof for any NP-relation R that is secure against
static adversaries.

There may be many ways to securely realize FRF

NIZK and by the universal composition theo-
rem [Can01] our result shows that all of them imply the existence of witness-length universally
composable NIZK proofs if fully homomorphic encryption exists. In particular, we get witness-
length universally composable NIZK proofs in the common reference string model, the multi-string
model and under any other setup assumption under which universally composable NIZK proofs
exist.

13

5 Fully Homomorphic Hybrid Encryption

We have implicitly been using a hybrid encryption approach in the construction of the non-interactive
zero-knowledge proofs. The underlying hybrid encryption scheme has ciphertexts that are both fully
homomorphic and communication-efficient: the encryption of a plaintext m has size |m|+ poly(k).
Such a scheme is useful in itself, so we will now explicitly define fully homomorphic encryption
for arbitrary length messages and show that the construction satisfies the definition.2 We note
that, unlike some definitions of fully homomorphic encryption, we allow the encrypted output to be
encoded differently from the encrypted input.

5.1 Defining fully homomorphic encryption of arbitrary size messages

A fully homomorphic encryption scheme consists of four algorithms (K∗FHE, E
∗, D∗,Eval∗). The

probabilistic polynomial time key generation algorithm K∗FHE on input 1k (and randomness ρ ←
{0, 1}`K∗FHE

(k)
) outputs a public key pk and a decryption key dk. The probabilistic polynomial time

encryption algorithm E∗ given a public key pk and a plaintext m ∈ {0, 1}∗ (and randomness r ←
{0, 1}`E∗ (k)) outputs a ciphertext c. If we have a tuple of plaintexts ~m = (m1, . . . ,mn) to encrypt,
we will for simplicity write ~c ← E∗pk(~m) when generating ~c = (c1, . . . , cn) as ci ← E∗pk(mi) (using

randomness ~r = (r1, . . . , rn) ← ({0, 1}`E∗ (k))n). The deterministic polynomial time decryption
algorithm D∗ given a public key pk and a ciphertext returns a message m or an error symbol ⊥.
Finally, the (possibly probabilistic) polynomial time evaluation algorithm Eval∗ takes a public key
pk, a Boolean circuit C and n ciphertexts as input and returns a ciphertext. A well-formed request
to Eval∗ with a circuit that has n blocks of t1, . . . , tn input wires and tout output wires includes input
ciphertexts with plaintexts of lengths t1, . . . , tn and the output ciphertext then contains a plaintext
of size tout. We require that the encryption scheme be compact, which here means that there is a
polynomial upper bound `∗Eval(k, tout) on the size of the ciphertexts output by Eval∗.

Definition 9 (Correctness) (K∗FHE, E
∗, D∗,Eval∗) is (perfectly) correct if for all Boolean circuits

C and all valid inputs ~m = (m1, . . . ,mn)

Pr
[
(pk, dk)← K∗FHE(1k);~c← E∗pk(~m); v ← Eval∗pk(C,~c) : D∗dk(v) = C(m1, . . . ,mn)

]
= 1.

Definition 10 (IND-CPA security) (K∗FHE, E
∗, D∗,Eval∗) is indistinguishable under chosen

plaintext attack (IND-CPA secure) if for all non-uniform polynomial time (A,D)

Pr
[
(pk, dk)← K∗FHE(1k); (m0,m1,St)← A(pk); b← {0, 1}; c← E∗pk(mb) : D(St, c) = b

]
≈ 1

2
,

where A outputs m0,m1 of the same bit-length.

Correctness and IND-CPA security were needed in the construction of non-interactive zero-
knowledge proofs. However, in other scenarios such as secure function evaluation it is also necessary
that the evaluation algorithm hide the circuit C used by the evaluation algorithm. Our definition
of circuit privacy does not require the output of the evaluation algorithm to look identical to a

2In fact, our non-interactive zero-knowledge proofs require a bit more than just a fully homomorphic encryption
scheme for arbitrary size messages. In the constructions, we used directly that one of the components u of the hybrid
encryption scheme is of the same bit-length as the witness and therefore automatically a valid encryption of some
|u|-bit witness w. This means we did not have to prove u was well-formed and kept down the size of the NIZK proof π.
For this reason, we needed to work directly with the construction instead of just plugging in any fully homomorphic
encryption scheme for witness-length messages.

14

fresh encryption of the output. Instead, it only requires that this encrypted output reveal to the
decryption algorithm no more than the plaintext output C(m). This corresponds to the notion of
“1-hop” homomorphic encryption from [GHV10]. We require circuit privacy to hold even when the
randomness used by the key generation and by the encryption algorithm are known; this is crucial
for applications in which one party generates keys and encryptions and another evaluates C.

Definition 11 (Circuit privacy) (K∗FHE, E
∗, D∗,Eval∗) is computationally circuit private if for

all non-uniform polynomial time (A,D)

Pr
[
ρ← {0, 1}`K∗FHE

(k) ; (pk, dk)← K∗FHE(1k; ρ); (C, ~m,~r, St)← A(ρ);

~c = E∗pk(~m;~r); v ← Eval∗pk(C,~c) : D(St, v) = 1
]

≈ Pr
[
ρ← {0, 1}`K∗FHE

(k) ; (pk, dk)← K∗FHE(1k; ρ); (C, ~m,~r, St)← A(ρ);

v ← Eval∗pk(Id, E
∗
pk(C(~m))) : D(St, v) = 1

]
,

where A outputs consistent C and ~m = (m1, . . . ,mn) and ~r, and where Id is a circuit that simply
returns its input (with tout input and output wires).

(K∗FHE, E
∗, D∗,Eval∗) is statistically circuit private if the above holds even for unbounded (A,D).

Often statistical circuit privacy can be obtained by running a rerandomization algorithm on
the output ciphertext after completing a deterministic fully homomorphic evaluation of the circuit.
Such a division of labor gives us the best of two worlds. In our construction of non-interactive
zero-knowledge proofs it was necessary to have a deterministic evaluation algorithm such that the
computation could be replicated by the verifier who knew what the circuit was. In the secure
function evaluation protocol in Section 6 on the other hand we will need circuit privacy but are
happy to have a probabilistic circuit evaluation algorithm.

5.2 Length-optimal fully homomorphic hybrid encryption scheme construction

In our constructions of non-interactive zero-knowledge proofs we implicitly used a hybrid encryption
approach where we first encrypt a symmetric encryption key and then use that to encrypt the
plaintext. By using a pseudorandom one-time pad we made the ciphertext have size |m|+ poly(k),
which is minimal except for an additive overhead. We recap the construction in Figure 4, which relies
on a fully homomorphic bit-encryption scheme (KFHE, E,D,Eval) and a pseudorandom generator
G as defined in Section 2.

K∗FHE(1k) = KFHE(1k)

E∗pk(m)

s← {0, 1}k
u = m⊕G(s, |m|)
s̄← Epk(s)
Return c = (s̄, u)

D∗dk(v) = Ddk(v)

Eval∗pk(C, c1, . . . , cn)

Parse ci = (s̄i, ui)
Cu ← f(1k, C, u1, . . . , un)
Return v ← Evalpk(Cu, s̄1, . . . , s̄n)

where f(1k, C, u1, . . . , un) returns a circuit Cu
such that for all s1, . . . , sn ∈ {0, 1}k
Cu(s1, . . . , sn) = C(u1 ⊕G(s1, |u1|), . . . , un ⊕G(sn, |un|))

Figure 4: Fully homomorphic encryption for arbitrary size plaintexts.

15

Lemma 12 If (KFHE, E,D,Eval) is IND-CPA secure and G is a pseudorandom generator then
(K∗FHE, E

∗, D∗,Eval∗) is IND-CPA secure.

Proof. Consider the generation of s̄ ← Epk(s). By the IND-CPA security of the bit-encryption
scheme this is computationally indistinguishable from s̄ ← Epk(0

k). Next, we pick u ← {0, 1}|m|
uniformly at random instead of generating it as a pseudorandom one-time pad. By the pseudoran-
domness of G this modification only changes the adversary’s distinguishing advantage negligibly.
Now everything but the length of the encrypted plaintext is perfectly hidden and we conclude
(K∗FHE, E

∗, D∗,Eval∗) is IND-CPA secure. �

Lemma 13 If (KFHE, E,D,Eval) has computational (statistical) circuit privacy then
(K∗FHE, E

∗, D∗,Eval∗) as constructed above has computational (statistical) circuit privacy.

Proof. Given a circuit privacy adversary (A,D) for (K∗FHE, E
∗, D∗,Eval∗) we can con-

struct a circuit privacy adversary (B,D) for (KFHE, E,D,Eval). The adversary B(ρ) runs
(C,m1, . . . ,mn, (s1, r̄1), . . . , (sn, r̄n), St)← A(ρ). It then computes u1 = m1 ⊕G(s1, |m1|), . . . , un =
mn ⊕G(sn, |mn|) and Cu = f(1k, C, u1, . . . , un). B returns (Cu, s1, . . . , sn, r̄1, . . . , r̄n, St).

The computational (statistical) circuit privacy of (KFHE, E,D,Eval) gives us

Pr
[
ρ← {0, 1}`K∗FHE

(k) ; (pk, dk)← K∗FHE(1k; ρ); (C,m1, . . . ,mn, (s1, r̄1), . . . , (sn, r̄n),St)← A(ρ);

ci = E∗pk(mi; (si, r̄i)); v ← Eval∗pk(C, c1, . . . , cn) : D(St, v) = 1
]

= Pr
[
ρ← {0, 1}`KFHE(k) ; (pk, dk)← KFHE(1k; ρ); (Cu, s1, . . . , sn, r̄1, . . . , r̄n, St)← B(ρ);

s̄i = Epk(si; r̄i); v ← Evalpk(Cu, s̄1, . . . , s̄n) : D(St, v) = 1
]

≈ Pr
[
ρ← {0, 1}`KFHE(k) ; (pk, dk)← KFHE(1k; ρ); (Cu, s1, . . . , sn, r̄1, . . . , r̄n, St)← B(ρ);

v ← Evalpk(Id, Epk(Cu(s1, . . . , sn))) : D(St, v) = 1
]

= Pr
[
ρ← {0, 1}`K∗FHE

(k) ; (pk, dk)← K∗FHE(1k; ρ); (C,m1, . . . ,mn, (s1, r̄1), . . . , (sn, r̄n),St)← A(ρ);

v ← Eval∗pk(Id, E
∗
pk(C(m1, . . . ,mn))) : D(St, v) = 1

]
,

which shows (K∗FHE, E
∗, D∗,Eval∗) has computational (statistical) circuit privacy. �

Let us call an encryption scheme length-optimal if the encryption procedure produces ciphertexts
of size |m| + poly(k), where |m| is the size of the plaintext and k is the security parameter. The
following theorem then summarizes the results of this section.

Theorem 14 If IND-CPA secure fully homomorphic public key bit-encryption schemes exist, then
length-optimal IND-CPA secure fully homomorphic public key encryption schemes for arbitrary size
plaintexts exist. If IND-CPA secure circuit private fully homomorphic public key bit-encryption
schemes exist, then length-optimal IND-CPA secure circuit private fully homomorphic public key
encryption schemes for arbitrary size plaintexts exist.

Proof. The existence of bit-encryption implies the existence of pseudorandom generators. The con-
struction of (K∗FHE, E

∗, D∗,Eval∗) in Figure 4 is perfectly correct. Since the encryption procedure
outputs ciphertexts of size |m| + poly(k) the scheme is length-optimal. Lemma 12 shows the con-
struction preserves IND-CPA security and Lemma 13 shows that the construction preserves circuit
privacy. �

16

6 2-Party Secure Function Evaluation

As an illustration of the usefulness of fully homomorphic encryption for messages of arbitrary length,
we will look at the case of 2-party secure function evaluation. Here Alice and Bob have inputs x and
y respectively and Alice wants to learn f(x, y) for a given polynomial time computable function f .

Given a fully homomorhic encryption scheme for arbitrary size plaintexts the construction of a
2-party secure function evaluation protocol is very simple. Alice encrypts her input x under her own
public key and send the ciphertext to Bob. Bob then applies a suitable circuit to the ciphertext to
compute the evaluation of f(x, y) and sends it back to Alice. Alice can now decrypt and get the
result. (A slight extension of the protocol would allow also Bob to learn the result f(x, y) by having
Alice sending the result encrypted under Bob’s public key.) Intuitively, Alice’s input will remain
private because of the IND-CPA security of the encryption scheme while Bob’s input will remain
private because of the circuit privacy of the encryption scheme. The full construction can be found
in Figure 6.

To formalize 2-party secure function evaluation, we use the universal composability frame-
work [Can01], which we also used for non-interactive zero-knowledge proofs in Section 4. Here,
however, we will only consider the case of static adversaries that corrupt a fixed set of parties from
the start of the protocol and do not corrupt any more parties after that. We will also restrict our-
selves to the case of honest-but-curious adversaries. This means corrupted parties controlled by the
adversary follow the protocol honestly but the adversary will try to learn some extra information
about the honest parties private inputs. We do not assume the parties have access to a common
reference string but we do assume their communication is authenticated. If a party Pi receives a
message from Pj it is therefore guaranteed this message did indeed originate from Pj although we
can expect the adversary to have learned the contents of the message.

The ideal 2-party secure function evaluation functionality is given in Figure 5. Note that the
size of the input x and the size of the output z = f(x, y) are not secret but everything else is kept
secret by the ideal functionality. There is one restriction we place on the polynomial time function
f , which is that given |x| and y it should be possible to determine uniquely the size of the output
f(x, y). This restriction, which is standard since UC protocols typically do not hide the lengths of
inputs and outputs, is needed in our construction to enable the construction of a polynomial size
circuit C|x|,y(·) with a fixed number of output wires that corresponds to the computation of f(·, y).

Ideal 2-party secure function evaluation functionality Ff2SFE

Parameterized with a polynomial time function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and running
with parties P̃1, . . . , P̃n and adversary S.

• On input (input, sid, Pi, Pj , x) from a party Pi store (sid, Pi, Pj , x), send (sid, Pi, Pj , |x|)
to S and ignore any future (input, sid, Pi, Pj , ∗) inputs from Pi.

• On input (input, sid, Pi, Pj , y) from a party Pj where (sid, Pi, Pj , x) has been stored,
compute z = f(x, y), send (sid, Pi, Pj , |z|) to S and (result, sid, Pi, Pj , z) to Pi and
ignore future inputs of the form (input, sid, Pi, Pj , ∗) from Pj .

Figure 5: Ideal 2-party secure function evaluation functionality Ff2SFE.

Theorem 15 φ2SFE in Figure 6 securely realizes F f2SFE against static honest-but-curious adver-
saries if (K∗FHE, E

∗, D∗,Eval∗) is an IND-CPA secure fully homomorphic encryption scheme with

17

Universally composable 2-party secure function evaluation protocol φ2SFE

• A party Pi on input (input, sid, Pi, Pj , x) from the environment generates
(pk, dk)← K∗FHE(1k) and c← E∗pk(x). It stores (sid, Pi, Pj , dk) and sends
(sid, Pi, Pj , pk, c, |x|) to Pj .

Pi ignores future inputs of the form (input, sid, Pi, Pj , ∗) from the environment and
waits for a response of the form (sid, Pi, Pj , v) from Pj . When receiving such a response
it computes z = D∗dk(v) and outputs (result, sid, Pi, Pj , z) to the environment.

• A party Pj after receiving (input, sid, Pi, Pj , y) from the environment and message
(sid, Pi, Pj , pk, c, |x|) from party Pi creates a circuit C|x|,y(·) corresponding to f(·, y) on
length |x| inputs and computes v ← Eval∗pk(C|x|,y, c). Pj then sends (sid, Pi, Pj , v) to Pi
and ignores all future inputs of the form (input, sid, Pi, Pj , ∗).

Figure 6: Universally composable 2-party secure function evaluation for f .

computational circuit privacy.

Proof. S in the ideal process runs a copy of A and will try to simulate an execution of the protocol
such that A and the environment Z cannot detect that they are running in the ideal process. S
forwards all communication between the simulated A and the environment Z and S simulates for
each dummy party P̃i a corresponding real world party Pi. Since A is static the set of corrupted
parties is fixed from the start and S has full control over the corresponding corrupted dummy parties.
Whenever a corrupted dummy party P̃i receives an input S sends it to the ideal functionality, and
whenever a simulated party Pi makes an output to the environment, S delivers the corresponding
output from the ideal functionality to P̃i so it can output it to the environment. For each pair of
parties (Pi, Pj) engaging in the protocol there are four options:

Pi and Pj are both corrupt: As specified above S learns the inputs x and y of the parties and
submits them to the ideal functionality on behalf of P̃i and P̃j . If A in the protocol outputs the
result to Z on behalf of Pi, then S delivers the ideal functionality’s result to P̃i and outputs
it to the environment.

Pi is corrupt and Pj is honest: In this setting S has to simulate the message (sid, Pi, Pj , v) that
Pj sends to Pi. Since P̃i is corrupted, S knows the ideal functionality’s result z = f(x, y). It
can therefore compute v ← Eval∗pk(Id, E

∗
pk(z)) and use that in Pj ’s response to Pi.

Pi is honest and Pj is corrupt: In this setting S has to simulate the message
(sid, Pi, Pj , pk, c, |x|) that Pi sends to Pj . On input (sid, Pi, Pj , |x|) from the ideal
functionality S therefore picks (pk, dk) ← K∗FHE(1k) and c ← E∗pk(0

|x|) and instructs Pi to
send (sid, Pi, Pj , pk, c, |x|) to Pj .

Pi and Pj are both honest: Here S has to simulate the entire communication between Pi and Pj .
On input (sid, Pi, Pj , |x|) from the ideal functionality S therefore picks (pk, dk) ← K∗FHE(1k)
and c ← E∗pk(0

|x|) and instructs Pi to send (sid, Pi, Pj , pk, c, |x|) to Pj . On subsequent input

(sid, Pi, Pj , |z|) from the ideal functionality S then computes v ← Eval∗pk(Id, E
∗
pk(0

|z|)) and
instructs Pj to send (sid, Pi, Pj , v) to Pi.

To see this is a good simulation, observe first that since A is honest-but-curious it always instructs
corrupt parties Pi to act like an honest party would do, so it does for instance output the correct

18

protocol output in the simulation when both parties are corrupt, generates a valid key and ciphertext
when Pi is corrupt, and computes v correctly on the basis of y if Pj is corrupt. The IND-CPA security
of the encryption scheme guarantees the ciphertext c ← E∗pk(0

|x|) in the simulation when Pi is
honest cannot be distinguished from the correct encryptions c← E∗pk(x). The computational circuit
privacy of the encryption scheme guarantees that v ← Eval∗pk(Id, E

∗
pk(z)) cannot be distinguished

from the correct evaluation v ← Eval∗pk(C|x|,y, c) when Pj is honest, even when given the randomness
used for generating c. When both Pi and Pj are honest the computational circuit privacy shows
the real protocol running with v ← Eval∗pk(C|x|,y, c) cannot be distinguished from a simulated v ←
Eval∗pk(Id, E

∗
pk(f(x, y))). The IND-CPA security then says this cannot be distinguished from running

v ← Eval∗pk(Id, E
∗
pk(0

|z|)) and that having c ← E∗pk(x) cannot be distinguished from c ← E∗pk(0
|x|).

This means the simulation in the ideal process cannot be distinguished by Z from the real execution
of the protocol. �

Using the hybrid encryption scheme (K∗FHE, E
∗, D∗,Eval∗) from Section 5 Alice’s (Pi’s) commu-

nication is |x|+ poly(k) bits. For small output sizes |z| = O(1) this gives an overall communication
of |x|+ poly(k) so there is only an additive overhead.

For large output sizes, the existence of fully homomorphic bit-encryption only guarantees a total
communication of |x| + poly(k)|z| bits. However, using specific cryptographic assumptions it is
possible to get a communication complexity of |x| + |z| · (1 + o(1)) + poly(k). This follows from
Lipmaa’s [Lip11] method to batch many ciphertexts into one in the fully homomorphic encryption
scheme by Brakerski, Gentry and Vaikuntanathan [BGV12].

Acknowledgments

Jens Groth was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307937 and the Engineering
and Physical Sciences Research Council grant EP/G013829/1.

Yuval Ishai was supported by the European Union’s Tenth Framework Programme (FP10/2010-
2016) under grant agreement no. 259426 ERC-CaC, by ISF grant 1361/10, and by BSF grant
2012378.

Chris Peikert was supported by the National Science Foundation under CAREER Award CCF-
1054495, by the Alfred P. Sloan Foundation, and by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL) under Contract No. FA8750-11-C-0098.
The views expressed are those of the authors and do not necessarily reflect the official policy or
position of the National Science Foundation, the Sloan Foundation, DARPA or the U.S. Government.

Amit Sahai was supported in part from a DARPA/ONR PROCEED award, NSFgrants 1228984,
1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office
of Naval Research under Contract N00014-11- 1-0389. The views expressed are those of the author
and do not reflect the official policy or position of the Department of Defense, the National Science
Foundation, or the U.S. Government.

Adam Smith was supported by US National Science Foundation awards #0941553 and #0747294.

References

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally compos-
able protocols with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

19

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In STOC, pages 103–112, 1988.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based ho-
momorphic encryption. In Public Key Cryptography, volume 7778 of Lecture Notes in
Computer Science, pages 1–13, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages
868–886, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, 2011.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles.
In EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 427–444,
2006.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size
without random oracles. In ICALP, volume 4596 of Lecture Notes in Computer Science,
pages 423–434, 2007.

[Dam92] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. In EUROCRYPT, volume 658 of Lecture Notes in Com-
puter Science, pages 341–355, 1992.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[DDO+02] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 566–598, 2002.

[DDP02] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-
optimal characterization of two NP proof systems. In RANDOM, volume 2483 of
Lecture Notes in Computer Science, pages 179–193, 2002.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205–214, 1998.

20

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic encryp-
tion and rerandomizable Yao circuits. In CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 155–172, 2010.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 323–341, 2007.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. Journal of the ACM, 59(3):11, 2012.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In ASIACRYPT, volume 4248 of Lecture Notes in Computer Science,
pages 444–459, 2006.

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 341–358, 2010.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 415–432,
2008.

[GVW02] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM Journal on Computing, 39(3):1121–1152,
2009.

[Ish09] Yuval Ishai. Efficiency vs. assumptions in secure computation. Presentation at Im-
pagliazzo’s Worlds Workshop, 2009.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system
for NP with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In ICALP, volume 5126 of Lecture
Notes in Computer Science, pages 536–547, 2008.

[Lip11] Helger Lipmaa. Efficient multi-query CPIR from ring-LWE. Cryptology ePrint Archive,
Report 2011/595, 2011.

21

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In STOC, pages 590–599, 2001.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, pages 427–437, 1990.

[Ore87] Yair Oren. On the cunning power of cheating verifiers: Some observations about zero
knowledge proofs. In FOCS, pages 462–471, 1987.

[PS09] Chris Peikert and Adam Smith. Concise, uninformative proofs. Rump Session Presen-
tation at Asiacrypt, 2009.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387–394, 1990.

[Sah01] Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543–553, 2001.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASI-
ACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 377–394, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography, volume 6056 of Lecture
Notes in Computer Science, pages 420–443, 2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In EUROCRYPT, volume 6110 of Lecture Notes
in Computer Science, pages 24–43, 2010.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164, 1982.

22

