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ABSTRACT 

Satellite cells are responsible for most of adult skeletal muscle regeneration. 

Upon activation they differentiate into transient amplifying myoblasts that 

undergo cell fusion to form multinucleated fibres. Despite their remarkable 

differentiation ability and the positive outcomes obtained with transplantation 

in dystrophic mice and recently in patients with oculo-pharyngeal muscular 

dystrophy (OPMD), clinical trials in patients with Duchenne muscular 

dystrophy (DMD) showed limited efficacy, mainly ascribed to myoblasts low 

survival and poor migration ability. Muscle pericyte-derived mesoangioblasts 

(perivascular cells associated to the capillaries) also contribute to muscle 

regeneration and colonise the satellite cell niche. These cells can be injected 

systemically and migrate through the vascular endothelium, circumventing the 

necessity of multiple intra-muscular injections. Mesoangioblasts have been 

also tested in a recently completed phase I / II clinical trial to assess their 

safety profile in five DMD patients (EudraCT no. 2011-000176-33). We 

hypothesise that exploiting the key properties of myoblasts and 

mesoangioblasts may have the potential to produce clinically relevant cells, 

superior to those currently available. This work shows that exposure to 

molecules involved in pericyte specification such as the Notch ligand DLL4 

and the growth factor PDGF-BB can induce direct reprogramming of primary 

satellite cells to pericyte-like cells. Reprogrammed cells acquire perivascular 

marker expression without losing the satellite cell marker Pax7. These highly 

myogenic cells can be expanded in culture and showed increased 

engraftment. In vitro and in vivo experiments also showed improved migration 
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ability, similar to what has been observed with mesoangioblasts. Additionally, 

this thesis includes a set of experiments aiming to assess the self-renewal 

potential of mesoangioblast-derived cells via serial transplantation assays. 

Overall, the results obtained improve our understanding of smooth / skeletal 

fate choice and self-renewal, providing evidence of the possibility of exploiting 

a direct reprogramming approach to allow systemic delivery of myoblasts for 

cell therapies of muscular dystrophies. 
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CHAPTER 1:  

1. INTRODUCTION  

1.1. The skeletal muscle tissue 

1.1.1. General architecture 

Striated skeletal muscle is the most abundant tissue of the adult human body 

accounting for ≈38% of the total body mass (Relaix and Zammit, 2012). This 

system is composed by approximately 640 different muscles (depending upon 

anatomical classification) and is responsible for: 1) movement and posture; 2) 

supporting soft tissues; 3) guarding body openings; 4) maintaining body 

temperature; 5) storing nutrients (Janssen et al., 2000). The functional units of 

a skeletal muscle are cylindrical structures named myofibres. A myofibre 

contains up to hundreds of nuclei sharing a continuous cytoplasm. These 

syncytial cells are formed by the fusion of mononuclear progenitor cells 

termed myoblasts (Mintz and Baker, 1967). While the length of a human 

myofibre can easily sit in the range of centimetres, its diameter is normally 

around 10-100µm (Ropper A., 2014). Each myofibre contains bundles of 

myofibrils, which are composed of a repeated series of thousands of 

sarcomeres.  Within each sarcomere are filaments of actin and myosin that 

interact to produce the force (Huxley, 1974). During postnatal growth the 

overall number of myofibres remains constant, but each myofibre grows in 

size by additional myoblast fusion (Yin et al., 2013). While the specific force of 
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a muscle fibre depends on its diameter, the strength of the whole muscle 

structure depends mainly on the combination of diameter and number of 

fibres composing it (Krivickas et al., 2011). The diameter of the fibres, the 

content of myoglobin, the presence of different myosin isoforms and the 

number of mitochondria determine the speed of contraction (Scott et al., 

2001).  

Muscle fibres are classified in two groups according to their speed of 

contraction: type 1, slow-twitch fibres characterised by an oxidative 

metabolism and type 2, fast-twitch fibres predominantly glycolytic. Type 2 

fibres can be sub-grouped in 2a, 2b and 2x on the basis of the myosin isoform 

composing their sarcomeres that in turn influence the speed of contraction 

(2b being the fastest). Virtually all muscles are composed of a mixture of type 

1 and 2 myofibres though in variable proportion (Scott et al., 2001). 

Figure 1. Structure of the skeletal muscle. The image depicts the structure 

of a skeletal muscle, and its anchoring to the bone through a stiff connective 

tissue structure named tendon. The arrows point to the hierarchy of 

connective tissue structures, that contributes to the stability of the tissue 

embedding the muscle fibres in bundles named fascicles. (Illustration 

obtained from the “Biotechnology learning hub” public repository). 

The myofibres run in parallel along the muscle’s axis while a layer of 

connective tissue named epimysium holds the whole structure together. 

Within the epimysium, myofibres are grouped in bundles (named fascicles) 

that are held together by an additional connective tissue layer named 

perimysium. This infiltrates between the myofibres, creating a thin scaffold 
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named the endomysium, which is also part of the basal lamina of the muscle 

fibres (Figure 1) (Light and Champion, 1984). This layered structure of 

connective tissue contributes to the stiffness and stability of the muscle tissue 

and creates the environment defined as the muscle stem cell niche (Yin et al., 

2013). The muscular blood supply relies on the presence of an arterial tree 

that branches through the epimysium, generating a large number of branches 

through the perimysial layer. A tight capillary network originating from these 

arterioles surround the single muscle fibres running along the endomysium. 

These capillaries need to adapt their length depending on the contracted or 

relaxed status of the muscle, and for that purpose they are characterised by a 

sinusoidal spring-like shape (Korthuis, 2011). Myoglobin, a protein present in 

the muscle, is smaller but similar to haemoglobin (its circulating counterpart) 

and guarantees oxygen supply to the tissue. Myoglobin and mitochondria are 

abundant in slow-twitching myofibres, allowing the continuous production of 

energy through an oxidative metabolism. For this reason muscles rich in slow 

fibers do not undergo fatigue. In contrast, fast-twitching muscles allow rapid 

movements but their metabolism is glycolytic and thus they fatigue after 

repetitive contractions (Kendrew et al., 1958; Nelson, 2000). 

1.1.2. Muscle contraction 

The mechanics behind skeletal muscle contraction have been outlined by a 

theoretical approach developed independently by Rolf Niedergerke, Jean 

Hanson, Hugh and Andrew Huxley in the early 1950’s and is commonly 

known as the sliding filament theory (Huxley and Niedergerke, 1954; Huxley 
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and Hanson, 1954). During the active phase of this process the sarcomeres 

shorten, generating what has been consequently defined as the contraction 

force. The contraction of a muscle relies on the simultaneous contraction of 

the single myofibres composing it. 

Figure 2. Schematic representation of the sarcomeric structure. The 

thick myosin filaments (green) are the active component of the contractile 

apparatus. The thin filaments are composed of actin (red), troponin (orange) 

and tropomyosin (yellow). Titins (light blue) anchor the thick filaments to the 

alpha-actinin composing the Z-disk (purple). Thanks to the presence of a 

central spring-like domain (blue), titins are responsible for the passive 

elasticity and stiffness of the muscle tissue. T tubules are invaginations of the 

sarcolemma and are depicted at the edges of this scheme (light blue). The T 

tubule network mediates the transduction of the action potential through an 

acetylcholine-receptor-mediated depolarization. This depolarization causes 

the release of calcium ions from the sarcoplasmic reticulum cisternae located 

between the T tubules and the Z disk, initiating the muscle contraction. 

Adapted from Kobirumaki-Shimozawa et al. (2012). 

An action potential originated in the central nervous system reaches the 

muscles through a motor neuron, which is responsible for transmitting the 

stimulus down its axon to the muscle. In resting conditions, vesicles 

containing acetylcholine are localised where the motor neuron comes in close 

proximity with the myofibre forming an area with a convolute pretzel-shape 

structure named neuromuscular junction (NMJ) (Balice-Gordon and Lichtman, 

1990; Sine, 2012). The action potential causes an influx of calcium ions 

towards specific voltage-gated channels present at the NMJ. This calcium 

influx causes the fusion of the acetylcholine-containing vesicles with the 

plasma membrane, leading to the release of its contents in the extracellular 
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space. For this reason, muscle contraction can be described as a calcium-

mediated process (Szent-Gyorgyi, 1975). Here the acetylcholine associates 

with the nicotinic acetylcholine receptor, a pentameric trans-membrane ion 

channel present on the myofibre membranes in areas concomitant with the 

neuromuscular junction (Miyazawa et al., 2003). This activation causes an 

immediate influx of sodium through a Na+ / K+ channel, triggering an action 

potential which is then propagated through the myofibre membrane towards a 

network of T-tubules (light blue in figure 2). T-tubules are normally located in 

between two sarcoplasmic reticulum structures named terminal cisternae, to 

form a cluster known as the triad. This depolarisation activates voltage-

dependent L-type calcium channels in the T tubule causing calcium release 

(via calcium releasing channels named ryanodine receptors) at each of its 

contact points with the sarcoplasmic reticulum. At this stage the sarcoplasmic 

reticulum releases calcium ions into the cytoplasm, which leads to the 

movement of troponin C and causes its conformational change and the 

dissociation of troponin from tropomyosin, a molecule composing the thin 

filaments (Figure 2). This conformational change exposes the myosin-binding 

domain of the actin filaments. Myosin is the engine of muscle contraction and 

the main component of the thick filaments (Figure 2). At this stage myosin, 

which has an ATPase domain, uses the energy obtained by hydrolysing it to 

ADP+P to bind to the actin filaments and pull them in a ‘power stoke’, 

generating the contraction. These movements cause a reduction in the 

distance between the Z-disks, shortening the sarcomere and consequently 

the whole muscle structure. This phenomenon has been for this reason 
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defined as ‘contraction’. This process, known as the sliding filament theory, is 

repeated as long as calcium is freely bound within the thin filaments and ATP 

is available. Relaxation occurs by a sequence of events including: 1) 

degradation of the acetylcholine operated by acetylcholinesterases, 2) 

termination of the action potentials; 3) sarcoplasmic reticulum stopping 

calcium release and starting to actively pumping it back within its 

compartments. A lack of calcium induces a conformational switch in the 

troponin / tropomyosin, which masks the myosin binding domain on the actin 

filaments, preventing the activity of myosin heads. At this stage, the elastic 

tension built on tendons leads to passive elongation of the muscle fibre that 

returns to its resting state. 

1.1.3. Muscle repair / regeneration 

Skeletal muscle fibres (also known as myofibres) are syncytial cells 

containing several hundreds of post-mitotic nuclei. Healthy muscles have 

large myofibres with peripheral myonuclei. Although skeletal muscle is a post-

mitotic tissue, it preserves the ability to regenerate following injuries, intense 

exercise or as a consequence of degenerating pathologies such as muscular 

dystrophies (Carlson, 1973; Tedesco et al., 2010). The process through which 

muscle regeneration occurs has been a controversial topic for a long time; 

specifically, whether regeneration occurs due to fusion of mono-nucleated 

precursors, or by generation of mono-nucleated cells derived from 

fragmentation of the damaged myofibres. Various papers published across 

1960 and 1961, provided compelling evidence that, at least in higher 
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vertebrates, myofibres originate and regenerate from fusion of mononuclear 

cells (Capers, 1960; Konigsberg, 1960; Pietsch, 1961; Stockdale and Holtzer, 

1961).  

Alexander Mauro reported the presence of mononuclear cells located 

beneath the ensheathing endomysial basal lamina that surrounds the 

myofibres. These mono-nucleated cells have their niche at the periphery of 

the myofibres on top of the sarcolemma and have been named satellite cells 

due to their anatomical position (Mauro, 1961) Satellite cells are considered 

the main players in post-natal skeletal muscle growth, tissue homeostasis and 

regeneration. Upon damage, these resident stem cells exit their quiescent 

status, undergo asymmetric cell division and generate transient amplifying 

progenitors named myoblasts, which expand upon symmetric cell division 

(Relaix and Zammit, 2012; Sambasivan and Tajbakhsh, 2015; Tedesco et al., 

2010; Yin et al., 2013). Mintz and Baker formally demonstrated that after an 

initial proliferative phase, myoblasts contribute to muscle regeneration by 

differentiating and undergoing cell fusion to repair the damaged myofibres or 

to replace them with newly formed ones (Mintz and Baker, 1967). Satellite cell 

activation has been shown to support muscle regeneration even after 

repeated muscle-wide / toxin-induced injuries, requiring the generation of a 

large number of myoblasts on each occurrence (Luz et al., 2002). A study 

from the 1960’s also demonstrated that this regeneration mechanism is so 

strong that is able to restore muscle function even if an entire muscle is 

explanted, minced and relocated back in situ (Studitsky, 1964). 
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The nuclei of mature healthy fibres are located at the periphery of the 

fibre, underneath the plasma membrane. Regenerating muscles, are 

characterised by fibre size heterogeneity, increased number of centrally 

nucleated myofibres and for the presence of an increased number of small 

regenerating fibres (identifiable by a reduced cross sectional area) (Maughan 

et al., 1983; Wroblewski et al., 1982). Skeletal muscle repair involves also the 

infiltration of inflammatory cells and fibroblasts contributing to the removal of 

the necrotic damaged fibres and to the tissue remodelling process 

(respectively). In patients with severe muscular dystrophies, the regeneration 

process fails as a consequence of the exhaustion/dysfunction of the stem cell 

pool. The infiltrate cells start depositing non-contractile extracellular matrix, 

collagen and fat in the interstitium in a process named fibrosis, interfering with 

the muscle function, strength and regeneration ability (Mann et al., 2011).  

 

 

Figure 3. Histological hallmarks of muscle degeneration, regeneration 
and fibrosis. The panel shows microphotography images of canine skeletal 

muscle sections. The top images (a) represent sections stained with 

haematoxylin and eosin. The canine DMD model depicted on the right shows 

the presence of centrally nucleated myofibres indicating active muscle 

regeneration. Notably, the diameter of the fibres is less homogeneous than 

the one of the control section on the left. The bottom part of the panel (b) 

shows a Masson trichrome staining performed on control (left) and dystrophic 

(right) samples. This staining highlights in red the myofibres while connective 

tissue infiltrate is stained in blue showing clear signs of fibrosis in the 



	 26	

dystrophic sample on the right (Scale bar 100 µm). Adapted from Smith et al. 

(2011). 

In addition to satellite cells and myoblasts, several other progenitors such as 

interstitial cells and pericytes have been shown to undergo myogenic 

differentiation during development, regeneration or upon transplantation 

(reviewed in (Benedetti et al., 2013; Peault et al., 2007; Tedesco et al., 2010). 

A specific section of this thesis details these cell types, focussing on their role 

and possible applications for cell therapy.  
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1.2. Muscle satellite cells and myoblasts 

Satellite cells were first observed via transmission electron microscopy by 

Alexander Mauro in 1961 and are located in a peripheral position to the 

muscle fibres. These cells have a high nucleus to cytoplasm ratio and their 

anatomical position is intimately juxtaposed to the muscle fibres, with their 

niche underneath the myofibre basal lamina (Mauro, 1961). As demonstrated 

with experiments performed in the early 1980’s, using developing chick and 

quails, satellite cells originate from the somites, spheres of paraxial 

mesoderm that generate skeletal muscle, axial skeleton and dermis (Armand 

et al., 1983; Gros et al., 2005; Sambasivan and Tajbakhsh, 2007). A 

pioneering study by Michael Rudniki and colleagues linked satellite cells to 

the paired box transcription factor Pax7, showing that inactivation of this gene 

led to a severe depletion of this cell population (Seale et al., 2000). Different 

lineage tracing experiments ascribed the origin of satellite cells to the 

appearance of Pax7 or Myf5 positive cells at different stages of embryonic 

development; however the exact progenitors that give rise to satellite cells still 

remain to be identified (Biressi et al., 2013; Lepper and Fan, 2010; 

Tajbakhsh, 2009; Zammit et al., 2004). Quiescent satellite cells represent 

around 6% of the total number of nuclei of a healthy adult muscle and can be 

identified by the expression of Pax7 (Zammit et al., 2006b) (Figure 4). Pax7 is 

indeed present virtually in all the quiescent satellite cells of the adult muscle 

(Gnocchi et al., 2009) and has been shown to have an essential role for their 

lineage specification and survival (Kuang et al., 2006).  
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Figure 4. Immunofluorescence for Pax7 on a single myofibre isolated 
from a murine skeletal muscle. The image depicts a freshly isolated single 

myofibre obtained from a wild type murine muscle. In the phase contrast 

image on the left (a), it is possible to appreciate the striped sarcomeric 

structure and the presence of a single cell at the periphery. The image on the 

right (b) shows an immunofluorescence staining of the same fibre for the 

satellite cell marker Pax7 (depicted in green). The peripheral cell stains 

positive for Pax7 and is therefore identified as a satellite cell. The myofibre 

was counterstained with Hoechst (blue) to visualise the nuclei (Scale bar 

15µm). 

Radioactive thymidine tracing experiments demonstrated that in the adult, 

satellite cells are mitotically quiescent but can undergo activation and rapidly 

enter the cell cycle following an injury (Snow, 1977). Satellite cell activation is 

a complex process that involves the combination of different signals coming 

from the damaged myofibres, but also from vasculature and innervation (Yin 

et al., 2013). Satellite cells undergo both symmetric and asymmetric cell 

division as shown in label retention experiments on purified cells (Rocheteau 

et al., 2012; Shinin et al., 2006). The whole regeneration process occurs in 

the mouse in approximately one week after toxin-induced damage during 
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which asymmetric and symmetric cell divisions are finely regulated to 

maintain the stem cell pool (Whalen et al., 1990; Zammit et al., 2002) 

The differentiation process is mainly controlled in vertebrates by four 

myogenic regulatory factors (MRFs): MyoD, Myf5, Mrf4 and Myogenin 

(Buckingham, 2001; Hammond et al., 2007; Pownall et al., 2002). Myf5 and 

MyoD mainly control the progression of activated satellite cells towards the 

myogenic differentiation (Tajbakhsh et al., 1996). Subsequently these 

activated cells start expressing Myogenin and start fusing to form 

regenerating fibres that finally also express MRF4 (Montarras et al., 1991).  

The status of a satellite cell can be defined according to its marker 

expression pattern. As shown in Figure 5, Pax7 positive / MyoD negative 

satellite cells can be defined as quiescent. Activated satellite cells, which 

undergo asymmetric and symmetric cell division, should be positive for both 

the markers (Pax7 positive / MyoD positive). However, MyoD positivity as 

defining criteria to identify activated satellite cells is still debated, suggesting a 

more relevant role for Myf5 (Kuang et al., 2008; Rudnicki et al., 2008). 

Myoblasts, canonically undergoing only symmetric expansion, progressively 

turn off Pax7 and activate Myogenin lately towards their transition to the 

“myocyte” status. These committed myocytes then differentiate fusing to form 

new myofibres and turn off MyoD (please refer to Figure 5 for a schematic 

overview on the process of satellite cell activation). 
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Figure 5. Satellite cell activation. The scheme depicts the process of 

satellite cell activation, which in vivo is followed by asymmetric cell division. 

Pax7, MyoD, and Myf5 are expressed in differentiating cells while only Pax7 

is expressed in the cells returning to quiescence in order to replenish the pool 

of progenitors. Adapted from Tedesco et al. (2010). 

The regenerative potential of satellite cell-derived myoblasts was confirmed in 

the early nineties, with experiments showing that transplanted myoblasts can 

sustain host muscle regeneration upon serial injury (Morgan et al., 1993; Yao 

and Kurachi, 1993). The first formal evidence of quiescent satellite cell self-

renewal was obtained with single fibre transplantations into regeneration-

insufficient irradiated mice. This experiment demonstrated that as few as 

seven satellite cells can give rise to thousands of myonuclei and hundreds of 

satellite cells able to support subsequent rounds of muscle regeneration 

(Collins et al., 2005). The self-renewal potential of satellite cells was then 

confirmed with a lineage tracing experiment in which Pax7 / nGFP positive, 

freshly isolated satellite cells sustained up to 7 rounds of serial 

transplantation, contributing to muscle regeneration and to the maintenance 

of a pool of Pax7 / nGFP positive satellite cells (Rocheteau et al., 2012). 
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1.3. Pericytes and mesoangioblasts 

Although firstly observed by Eberth in 1871 (Eberth, 1871), paternity of the 

pericyte identification is generally assigned to Rouget. The French scientist 

described these as a population of contractile cells which surrounds the blood 

vessel walls (Rouget, 1874, 1879). Rouget cells have since been re-named 

pericytes, referring to their anatomical localisation in close immediacy to the 

endothelial layer (Zimmermann, 1923). In the first half of the twentieth 

century, numerous publications described pericytes, questioning also their 

ability to contract. This partly reflects pericyte heterogeneity and the confusion 

about their cell identity (Armulik et al., 2011). Currently cells defined as 

pericytes are localised in the vascular basal membrane as seen via electron 

microscopy (Miller and Sims, 1986). These cells possess a prominent 

nucleus, a small content of cytoplasm and several large cytoplasmic 

protrusions. Nowadays, it is clear that different cell types are located in the 

perivascular compartment and the correct identification of the various sub-

populations is still challenging (Krueger and Bechmann, 2010). The clear 

identification of these cells becomes even more difficult in conditions of active 

angiogenesis such as during embryogenesis and tissue regeneration. It is 

also widely accepted that pericytes are more frequent in the proximity of 

micro-vessels (capillaries, venules and terminal arterioles), although this has 

been recently challenged by the observations of sub-endothelial pericyte-like 

cells in large vessels (Diaz-Flores et al., 2009). Vascular smooth muscle cells 

(VSMCs), fibroblasts, and macrophages recurrently occupy the 

periendothelial position together with pericytes (Armulik et al., 2011). The 
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view that pericytes and vascular smooth muscle cells belong to the same 

lineage is commonly accepted. However, it is important to consider that no 

single molecular marker has been recognised as unequivocally identifying 

pericytes and distinguishing them from vascular smooth muscle cells 

(VSMCs) and other perivascular mesenchymal cells. The multiple markers 

generally utilised, are neither cell-specific nor constant in their expression 

(Armulik et al., 2011). Perivascular cells have been classified as pericytes 

(peri, around; cyte, cell) or alternatively as vascular mural cells or vascular 

smooth muscle cells (VSMC) depending on their morphology and location 

(Hirschi and D'Amore, 1996; Zimmermann, 1923). These cells are located 

around blood capillaries, arterioles and venules. In these vessels, endothelial 

cells and pericytes share the basal membrane and are connected by tight, 

gap, and adherens junctions. A single pericyte can be indeed connected with 

several endothelial cells by cell protrusions that wrap around and along the 

blood vessel (Gerhardt and Betsholtz, 2003; Kovacic and Boehm, 2009). 

Pericytes detected around large arteries not only occupy the periendothelial 

position, but can be found in the media and adventitia associated with the 

vasa vasorum (Andreeva et al., 1998). Distinguishing between pericytes and 

VSMC is a complicate; moreover it is not possible to exclude that one cell 

type may represent subtypes of the other or that these share the same 

progenitors. It has also been suggested that pericytes that reside in close 

proximity with the endothelium of large vessels could be the progenitors of 

VSMC (Armulik et al., 2005; Armulik et al., 2011). Pericytes number and 

distribution is highly variable according to size and vessel type. These cells 
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are frequently found on small venules and arterioles and more rarely on 

capillaries; they cover irregularly the veins with large membrane processes 

while they continuously cover the arteries where they form an embedding cell 

layer. Blood pressure has been indicated as one of the factors regulating their 

distribution, as observed in the retina (Wallow et al., 1993). The heterogeneity 

of pericytes is shown in the differences observed in correlation to the organ in 

which they are located. In the central nervous system, they interact via tight 

junction with the endothelial cells, composing the blood brain barrier (BBB) 

(Ballabh et al., 2004). Kidney pericytes are also known as mesangial cells 

(Betsholtz et al., 2004), while in the liver they are named Ito cells (Ito and 

Nemoto, 1952). In the murine and human skeletal muscle, 90% of the 

capillaries have been found to be associated with Neuro-glial 2 proteoglycan 

(NG2) positive pericytes (Kostallari et al., 2015). 

 

Figure 6. Schematic representation of pericyte location and functions. 
The scheme depicts the most commonly recognised functions in which 

pericytes (in green in the scheme) have a crucial role (Winkler et al., 2011a). 

Pericytes have several functions in all tissues. In the central nervous system 

for example, pericytes are one of the main components of the blood-brain 

barrier (BBB) and together with vascular smooth muscle cells, have been 

indicated as potentially responsible for blood flow regulation through 

vasoconstriction / dilation mechanisms (Rucker et al., 2000) (Figure 6). They 

do this by directly interacting with the extracellular matrix and closely with 

endothelial cells via gap junctions (Li et al., 2011). Another process in which 
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pericytes have a crucial role is angiogenesis. This process requires both the 

recruitment of endothelial cells from pre-existing vessels (Lamalice et al., 

2007) and of pericytes from the surrounding tissue (Armulik et al., 2005) via 

different signalling pathways such as delta-mediated Notch signalling, PDGF 

and TGF-β that will be further detailed in the next paragraphs of this thesis. 

Because of all these different characteristics and locations, it is 

particularly difficult to concur on a universal definition of pericytes. Some 

cytoskeletal proteins such as Desmin, a muscle specific class III intermediate 

filament protein, and α-smooth muscle actin (SMA) have been used to identify 

pericytes. Desmin is, for example, normally also expressed by differentiated 

skeletal, cardiac and smooth muscle cells; whereas SMA is also known to be 

present on smooth muscle cells and myofibroblasts (Nehls et al., 1992; 

Ronnov-Jessen and Petersen, 1996). NG2 is a chondroitin sulphate 

proteoglycan strongly expressed by pericytes, in particular during 

angiogenesis and can bind basic-FGF, PDGF-AA, plasminogen and 

angiostatin (Abboud, 1995). Therefore NG2 has been commonly utilised to 

identify pericytes. NG2 knockout mice are viable, but show compromised 

revascularisation upon damage (Ozerdem and Stallcup, 2004; Rajantie et al., 

2004). However, this proteoglycan is not specific for pericytes and is 

commonly expressed by other cell types such as immature neural stem cells 

capable of differentiation into neurons or glia. PDGFr-β (Platelet-Derived 

Growth Factor Receptor beta) is also a commonly utilised pericyte marker. 

This receptor is localised in the pericyte membrane and has a crucial role in 

the recruitment of these cells by the endothelium during angiogenesis 
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(Betsholtz, 2004). PDGFr-β deficient mouse embryos lack micro-vascular 

pericytes and develop frequent micro-aneurysms (Lindahl et al., 1997). 

Analysis of the gene expression profile of these PDGFr-β deficient mice 

highlighted the lack of RGS-5 (a regulatory G protein); for this reason RGS-5 

has been recently proposed as a novel pericyte marker (Berger et al., 2005). 

CD13 is a surface marker that was utilised to identify pericytes in the early 

nineties (Kunz et al., 1994), is now less common because the expression of 

this protein is also observed in vascular smooth muscle cells, inflamed 

endothelium, myeloid, epithelial and gut cells (Armulik et al., 2011).  

Alkaline phosphatases (APs) are a group of glycoproteins able to 

hydrolyse a large range of monophosphate esters and have their optima at an 

alkaline PH. The first evidence linking AP expression to the capillaries, was 

published in 1965 (Mizutani and Barrnett, 1965). In humans, four AP isoforms 

have been recognised while there are only three in the mouse (Stefkova et 

al., 2015). Although its physiological function is still unknown, AP is 

histochemically traceable in the mouse embryo as early as the 2-4 cell stage 

(Mulnard and Puissant, 1987). The tissue nonspecific isoform (TnAP) is 

conserved across the species and its sequence (composed of 12 exons) 

codes for an enzyme expressed by a subset of pericytes of the skeletal 

muscle (Grim and Carlson, 1990; Safadi et al., 1991) bone and heart 

(Schultz-Hector et al., 1993).  AP-positive cells have been easily isolated from 

skeletal muscle and cultured in vitro, showing mesenchymal morphology and 

pericyte marker expression (Levy et al., 2001).  
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Figure 7. Pericytes and mesoangioblasts. The diagram depicts 

mesoangioblasts (in vitro counterpart of the AP+ pericytes), as a subset of 

muscle pericytes, subgroup of the general ensemble of vessel associated 

pericytes. 

A pioneering study published in 2002, in collaboration between the groups of 

Paolo Bianco and Giulio Cossu, reported that cells isolated from the 

embryonic murine dorsal aorta and ascribed to the perivascular lineage (by 

the expression of CD34, Flk-1, SMA and c-Kit), were able to generate in vivo 

different mesodermal tissues. For this reason, these cells have been named 

mesoangioblasts (Minasi et al., 2002). Similar cells have been subsequently 

isolated from murine (Sampaolesi et al., 2003), canine (Sampaolesi et al., 

2006) and human skeletal muscle biopsies (Dellavalle et al., 2007) and 

resulted capable to contribute to skeletal muscle regeneration also upon intra-

arterial delivery. Adult mesoangioblasts are defined as the in vitro counterpart 

of a subset of muscle pericytes expressing Alkaline Phosphatase (Figure 7). 

Taken together, these properties make mesoangioblasts an appealing 
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candidate for cell therapy purposes (Sampaolesi et al., 2005). Interestingly, 

recent lineage tracing experiments have shown that TnAP-positive pericytes 

and their progeny, contribute to postnatal muscle development and give rise 

to Pax7 positive satellite cells during growth and regeneration (Dellavalle et 

al., 2011).  
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1.4. The muscular dystrophies  

	

Muscular dystrophies are a heterogeneous group of inheritable myopathies 

involving muscle tissue degeneration, with considerable variation in their 

clinical manifestation and severity (Emery, 2002). Overall, these pathologies 

are characterised by a progressive weakening and degeneration of the 

skeletal muscle tissue (Mercuri and Muntoni, 2013). The unifying feature of 

these pathologies is regarded as the altered muscle morphology. Histological 

studies have shown variations in fibre size, monocyte infiltration, necrosis and 

replacement by fat and connective tissue (Emery, 2002). These pathologies 

have been grouped in different categories in accordance with the 

predominant distribution of the main symptom, the muscle weakness (Figure 

8). In some forms of muscular dystrophy a cardiac involvement is present with 

variable extent (Verhaert et al., 2011). Variable cognitive impairment has 

been also reported in some forms of muscular dystrophy such as in DMD 

(Bresolin et al., 1994; Wicksell et al., 2004), dystroglycanopathies (Waite et 

al., 2012), and in  some forms of congenital muscular dystrophy (Cardamone 

et al., 2008). Different hypostesis have been formulated to explain the 

cognitive impairment observed in DMD. Clinical investigation of the role of 

dystrophin in the central nervous system suggested that its lack might have 

significant relevance in explaining this defect. Interestingly, a recent report 

highlighted that a three base-pair deletion affecting the brain isoform of 

dystrophin’s binding site for the β-dystroglycan is sufficient to cause 

intellectual disabilitiy either in patients that shows no muscular symptoms (de 
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Brouwer et al., 2014). It has been postuated that lack of dystrophin correlates 

with alterations in the distribution and function of the GABAA inhibitory 

receptor impacting on the clinical efficacy of drugs, sleep disorders and motor 

control. These phenomena are frequently alterated in DMD patients 

(Anderson et al., 2002). Defects in the assembling and processing of the 

distroglycan complex in both neurons and glia are also associated with a 

spectrum of brain abnormalities. The role of dystrophin and the dystroglycan 

complex in the clustering of GABAA receptors may explain the association of 

DMD mutations with cognitive impairment in some patients (Waite et al., 

2012).  

 

Figure 8. Distribution of predominant muscle weakness in different 
types of muscular dystrophy. A, Duchenne-type and Becker; B, Emery-

Dreifuss; C,limb-girdle; D, facioscapulohumeral; E, distal, F, oculopharyngeal. 

The affected areas are shaded in grey (Emery, 2002).  

Although some forms of muscular dystrophy affect nuclear membrane 

proteins, the majority of these pathologies involve, directly or indirectly, genes 

coding for components of the dystrophin associated protein complex (DAPC) 

(Figure 9), located on the myofibre membrane (Ervasti et al., 1990). This 

complex functions as a link between the intracellular F-actin cytoskeleton and 

the extracellular matrix (Davies and Nowak, 2006). Overall, this group of 

genetic defects causes alterations in the mechano-elastic support to the 

muscle contraction, leading to ruptures of the myofibre membrane. 



	 40	

 

Figure 9. Schematic representation of the Dystrophin associated protein 
complex (DAPC). The scheme depicts the main components of the DAPC. 

Dystrophin is located inside the cell and its N-terminus is bound to the actin 

cytoskeleton. The C-terminus is associated to a large complex of membrane 

glycoproteins. This consists of sarcoglycans (α, β, γ, and δ subunits), 

dystroglycans (α - and β ), sarcospan, and syntrophins (α - and β ). 

Mutations in the dystrophin gene lead to BMD and DMD. Mutations in the 

sarcoglycan subunits cause various forms of limb girdle muscular dystrophy 

(LGMD). LGMD2B is caused instead, by mutation in the gene coding for 

Dysferlin. LGMD2I is a distinct form of LGMD caused by a mutation in the 

FKRP gene, encoding a Golgi apparatus protein. Mutations in the genes 

encoding the nuclear envelope protein emerin and lamin A/C cause Emery-

Dreifuss muscular dystrophy and various forms of Laminopathy. 

Abbreviations: bm, basement membrane (basal lamina); pm, plasma 

membrane (plasmalemma); NMJ, neuromuscular junction; AChR , 

acetylcholine receptor. Adapted from Emery 2002. 
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More than half of the identified forms of muscular dystrophy are grouped 

under the definition of limb-girdle muscular dystrophies (LGMD); other forms 

include Emery-Dreifuss, distal, facioscapulohumeral (FSHD) and 

oculopharingeal muscular dystrophy (OPMD), congenital muscular dystrophy 

(CMD). Auspiciously, the genetic defects causing the most common of these 

disorders have been already identified. This essential information allows 

accurate diagnosis making also feasible genetic counselling and prenatal 

screenings (Emery, 2002). 

As mentioned above, some of these pathologies directly affect proteins 

composing the DAPC; this includes for example Duchenne muscular 

dystrophy (detailed in the next paragraph) and sarcoglycanopathies (forms of 

limb girdle muscular dystrophies involving the sarcoglycans) (Gordon and 

Hoffman, 2001). In some forms of LGMD and CMD the DAPC is indirectly 

affected. In dystroglycanopathies for example, mutations are mainly affecting 

genes like FKTN, FKRP, POMT1, POMT2 and POMGNT1, ISPD and LARGE 

causing a defect in the post-translational glycosylation of α-Dystroglycan. 

Dystroglycans are responsible of forming a link between the actin 

cytoskeleton and the extracellular matrix and alteration in its glycosylation 

status interfere with this interaction causing a broad spectrum of muscle and 

non muscle-related symptoms (Muntoni et al., 2011). Laminopathies are a 

heterogeneous group of diseases affecting the LMNA gene and its splicing 

products lamin A and C. These proteins, together with emerin are major 

components of the nuclear lamina and play a fundamental role in the 

organization of the nuclear architecture in all human cells. Laminopathies 
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cannot be defined as muscle disorders sensu stricto. Not all mutations in the 

LMNA gene results in a muscle disease phenotype. However, some forms of 

these diseases manifest predominantly with muscle weakness and 

degeneration, as in the case of LMNA-related congenital muscular dystrophy 

and Emery-Dreifuss muscular dystrophy. Notably in these pathologies, the 

DAPC is not involved at all (Bione et al., 1994; Brown et al., 2008; Mercuri et 

al., 2004; Scharner et al., 2010). 

Dystrophic muscles are subjected to continuous degeneration and 

regeneration cycles. This dysfunction is initially compensated by the resident 

tissue progenitors that increase their number of symmetric and asymmetric 

divisions to regenerate the damaged tissue, leading to an initial phase of 

muscle pseudo-hypertrophy (Reimers et al., 1996). However, this 

compensatory mechanism is not sufficient to sustain long-term tissue 

regeneration, mainly because the newly formed muscle / myofibres carry the 

same genetic defects, resulting in the same level of fragility and subsequent 

degeneration.  Additionally, this increased number of cell divisions causes the 

premature exhaustion of the resident muscle stem cell pool (Sacco et al., 

2010). As mentioned above, the repeated cycles of degeneration-

regeneration that the muscle tissue undergoes, with the constant presence of 

necrotic and damaged myofibres, result in a chronic inflammatory status, 

reflected by an increased resident monocyte presence, combined with fibrotic 

and adipose infiltration. Indeed, dystrophic patients in an advanced stage of 

the disease show extensive muscle fibrosis, where the myofibres are 

replaced with fat and connective non-contractile tissue, causing a permanent 
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loss of muscular function (Mann et al., 2011). This might be even worsened 

by transient aberrant vascular regulation observed in some DMD patients 

(Palmieri et al., 1988). Studies on transgenic mice ascribed this phenomenon 

to the lack of dystrophin in the vascular smooth muscle, causing the 

anomalous NO-dependent modulation of α-adrenergic vasoconstriction in the 

active muscles, leading to transient ischaemic events and contributing to 

patient’s muscle degeneration (Ito et al., 2006; Thomas, 2013).  

The lifespan and quality-of-life of the patients affected by muscular 

dystrophies has significantly improved in the last two decades, mainly thanks 

to advanced corticosteroid treatment regimes and improvements in the 

standards of care (Bushby et al., 2010a, b). It is important to mention that 

currently there is no definitive treatment that can affect the long-term 

progression of this group of diseases. Advancements in pharmacological 

approaches, gene manipulation and stem cell therapies are suggesting 

cautious optimism on the possibility of finding definitive cures for certain / 

specific muscular dystrophies in the not-too-distant-future (Emery, 2002).  

1.4.1. Duchenne muscular dystrophy 

The most common of these pathologies, with an incidence of up to 1:3,500 

male children, is Duchenne muscular dystrophy (DMD; weakness distribution 

represented in Figure 8 A). The paternity on the identification of this pathology 

is still debated. Recent bibliographic research linked the discovery to an 

Italian physician named Gaetano Conte, who described two cases in a 

national scientific journal in 1836 (Nigro, 2010). The first international 
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publication describing this pathology appeared in 1851, authored by a British 

doctor named Edward Meryon (Emery, 2000; Meyron, 1851). This study 

highlighted the familial inheritance of the disease and that the vast majority of 

the patients affected were male. As a cause, Meryon, with an astonishing 

visionary intuition (given the then available methodology), excluded alteration 

in the spinal cord but linked the symptoms to rupture and destruction of the 

muscle membrane. Detailed histological analyses have since confirmed the 

fragility of the myofibres membranes and the presence of connective and 

adipose tissue infiltrate in the muscles of patient at the late stage of the 

disease (Meyron, 1851). This pathology owes its name to the French 

neurologist Duchenne de Boulogne, who detailed the clinical symptoms a few 

years later (Duchenne, 1868).  

DMD has an early onset in childhood, with the child experiencing 

difficulties running and climbing stairs. In this disease the muscle weakness is 

mainly proximal and progressive with most of the affected individuals 

becoming wheelchair-bound by the age of 12-15. The premature death of 

individuals in late adolescence mainly occurs because of cardiac and 

respiratory complications. Better clinical care of these conditions has 

significantly prolonged life expectancy and delayed progressive 

immobilisation, but patients are still facing a long final period of almost 

complete inability to move. 

It was only in 1987 that the DMD gene was identified as the defective 

molecule in DMD and its milder form, Becker muscular dystrophy (BMD) 
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(Hoffman et al., 1987). This gene is located in the Xp21 locus of the X 

chromosome. It is the largest gene known in nature (2.4Mb) and codes for a 

protein named dystrophin.  Dystrophin is usually absent in DMD patients (as 

shown in the figure 10), whereas it can be present in a reduced amount or 

abnormal size in patients with BMD. The dystrophin protein is one of the main 

components of the dystrophin-associated protein complex (DAPC) and is 

required for the stability of the complex (Petrof et al., 1993). When absent, the 

structural link between the cytoskeleton and the plasmalemma becomes 

fragile. Upon contraction, this weakens causing ruptures and damages to the 

myofibres. 

Clinical diagnosis is validated via immunohistochemistry and 

immunoblotting; further molecular analyses of the specific mutation revealed 

that most of the mutations causing DMD (60%) are intragenic deletions 

(Koenig et al., 1989). BMD is less frequent and less severe than DMD, 

although the gene and muscles affected coincide (Becker and Kiener, 1955). 

In BMD patients the production of dystrophin is not completely ablated, or the 

protein is present in a shorter isoform, thanks to spontaneous exon skipping 

events that exclude the exon containing the mutation at the transcriptional 

level. For this reason, progression and chronic muscular degeneration is 

generally slower in BMD patients, with a life expectancy that increases up to 

more than 50 years of age (Emery, 2002). 
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Figure 10. Immunofluorescence staining for Dystrophin on a healthy 
donor and DMD patient muscle cryo-section. The image shows an 

immunofluorescence staining performed using an anti-dystrophin monoclonal 

antibody. Healthy donor muscle biopsies show sharp dystrophin-positive rims 

at the periphery of the myofibres; this rim is generally absent in sections 

obtained from DMD patient biopsies. Adapted from Emery (2002) 
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1.5. Therapeutic approaches to treat muscular dystrophies 

 

Although no definitive cure for muscular dystrophies is available to date, a 

number of different experimental strategies aiming to treat dystrophic patients 

are currently under preclinical and clinical investigation. These strategies can 

be classified in three main different groups:	

- Pharmacological approaches 

- Exon skipping, gene editing and gene addition / replacement 

- Stem / progenitor cell therapies 

Each therapeutic approach aiming to treat dystrophic patients needs to face 

major challenges related to the nature of the disease itself. The need to target 

different muscles in the body, the cardiac and respiratory involvement (for 

DMD), the potential immune response (Maffioletti et al., 2014), the 

requirement of a long-term effect and the need to prevent or at least limit 

fibrotic tissue accumulation within the muscle all have to be taken into 

account (Mercuri and Muntoni, 2013; Tedesco and Cossu, 2012). The 

following paragraphs will give an overview on the mechanisms and results 

achieved with pharmacological and genetic correction strategies. A more 

comprehensive review on the cell therapy strategies adopted along the years 

will be provided.  In the cell therapy section, additional information will be 

given on the physiological role of the stem cells and progenitors relevant for 

this work: satellite cells and pericytes.  

1.5.1. Pharmacological approaches 
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Different pharmacological approaches have been attempted to directly 

address the primary defect in muscular dystrophies, or in alternative to 

provide a functional compensatory system. Gentamicin and Ataluren (known 

also as PTC124) have been shown to restore the dystrophin expression in 

both in vitro and in vivo studies by suppressing nonsense mutations that 

frequently occur in Duchenne patients (Barton-Davis et al., 1999; Welch et al., 

2007). The mechanism underlying this strategy is the induction of a ribosomal 

read-through of the premature stop mutations, leading to the restored 

production of the full-length functional dystrophin. Despite a favourable 

pharmacodynamic response to the drug, recent clinical trials on Gentamicin 

have demonstrated modest beneficial effects accompanied by significant side 

effects (Malik et al., 2010). To reduce the toxicity of Gentamicin and increase 

its specificity, a hybrid liposomes-based drug-delivery system has been 

recently developed and might lead to a future clinical assessment (Yukihara 

et al., 2011). However encouraging results have been observed in a Phase II 

clinical trial with Ataluren, where it has been shown that this drug is beneficial 

at a relatively low dose, allowing its use in an on-going Phase III clinical trial 

where the long-term safety and efficacy will be assessed (Bushby et al., 

2014). Most importantly, in May 2014 the European Medicines Agency 

granted conditional marketing authorisation for this drug, under the 

commercial name of Translarna™, making it the first drug approved for the 

treatment of DMD patients (Ryan, 2014). 

An alternative pharmacological approach for DMD proposed in the 

early 1990’s by the group of Kay Davis consists in a functional compensation 
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of the missing dystrophin protein up-regulating its autosomal paralogue: 

utrophin (Tinsley and Davies, 1993). Increased levels of utrophin, achieved 

upon the overexpression of a truncated version of the transgene, can restore 

the assembly of the dystrophin associated protein complex (DAPC) at the 

level of the sarcolemma and have been shown to alleviate the dystrophic 

pathology in pre-clinical studies on animal models of DMD (Tinsley et al., 

1996). More recently, small molecule drugs have been shown to stimulate 

utrophin transcription. (Tinsley et al., 2011). Utrophin-based therapies have 

different advantages over the dystrophin-based ones. Being utrophin natively 

present in DMD patients, no immunological response is expected upon its up-

regulation at variance with what previously observed upon the introduction of 

a functional dystrophin (Mendell et al., 2010a; Wells et al., 2002). Utrophin-

based approaches might also be effective for all DMD patients, regardless of 

gene defect. Moreover, the use of small molecules open possibilities for 

systemic administration to the patients, since constitutive overexpression of 

utrophin in mdx mice resulted to be nontoxic (Fisher et al., 2001). These 

utrophin modulators have been recently tested in a Phase I clinical trial to 

investigate safety, tolerability and pharmacokinetics, with encouraging results 

(Tinsley et al., 2015).  

Several other drugs have been proposed with the aim of treating dystrophic 

patients and are undergoing preclinical and clinical experimentation. 

Examples include anti-inflammatory molecules (Serra et al., 2012), nitric 

oxide (Brunelli et al., 2007), IGF1 (Barton et al., 2002), agents capable of 

neutralising / blocking Myostatin (Wagner et al., 2008) and  more recently, 
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drugs to improve blood supply and muscle tissue oxygenation such as the 

PDE5 inhibitor Sildenafil, aiming to reduce the intrinsic muscle ischemia 

(Nelson et al., 2014). 

 

1.5.2. Exon skipping, gene editing and gene addition / 
replacement 

In order to induce de novo protein expression in patients affected by muscular 

dystrophies, exon skipping, gene correction and gene replacement therapies 

have been developed to: modulate the RNA processing; repair the underlying 

genetic defect or to replace the defective gene. 

1.5.2.1. Exon skipping 

In exon-skipping synthetic antisense oligonucleotides (AONs) hybridise 

specific pre-mRNA targeted motif, causing the “skipping” of the mutation-

containing exon. This process restores the normal mRNA reading frame 

leading to the production of a (slightly shorter) functional dystrophin protein, 

similar to what is found in BMD patients (Helderman-van den Enden et al., 

2010). Based on successful results obtained in preclinical in vivo studies (Lu 

et al., 2005; Yokota et al., 2009), exon-skipping technology has progressed to 

two main clinical trials: a phase III study of the oligonucleotide PRO051 

(Drisapersen) by Prosensa and GSK, and a phase IIb study of the 

oligonucleotide AVI-4658 (Eteplirsen) by Sarepta Therapeutics (Aartsma-Rus, 

2010; Mendell et al., 2013). Encouraging results were obtained in the phase II 

clinical trial on Drisapersen, indicating a slight increase in dystrophin 

production and better performance in the six minutes walk test (6MWT) 
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(functional assay commonly utilised to evaluate the muscle function in 

dystrophic patients) (Voit et al., 2014). However the phase III clinical trial on 

this drug has been prematurely interrupted by GSK since it failed to meet the 

primary endpoint of a statistically significant improvement in the 6MWT, 

where a possible reason has been ascribed to the relatively rapid clearance 

of the compounds from the circulation. Moreover, controversial interpretation 

of the results coming from these studies (i.e. the non-correlation of amount of 

dystrophin positive fibres via immunohistochemistry and the level of protein 

detected via western blot), revealed the need to refine those analytical 

approaches (Lu et al., 2014). In order to avoid repeated administration of 

AONs and enable sustained levels of dystrophin protein for a long-term 

therapeutic efficacy, modified small nuclear RNAs (U1 and U7snRNA) have 

been designed to shuttle AONs via recombinant adeno-associated vectors 

(rAAV) (Benchaouir and Goyenvalle, 2012). In this way, AONs involved in the 

repairing of the mutated genes (and the consequent restoration of gene 

expression), are efficiently delivered in vivo through viral vectors by 

enhancing the efficiency in comparison with their original way of being 

delivered. The potential of this approach has been shown in preclinical 

studies in murine and canine DMD models, where a single systemically 

delivered dose of rAAV-snRNA–mediated exon skipping was able to restore 

near-normal levels of dystrophin improving function in the muscles examined, 

including the heart (Denti et al., 2008; Goyenvalle et al., 2012; Vulin et al., 

2012).  
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Apart from DMD, the therapeutic potential of exon-skipping techniques 

has also been exploited for other muscular dystrophies, such as in vitro and in 

vivo studies conducted for myotonic dystrophy type 1 (Francois et al., 2011; 

Wheeler et al., 2012), limb-girdle muscular dystrophy 2B (Kergourlay et al., 

2014; Wein et al., 2010) and congenital muscular dystrophy (Aoki et al., 2013; 

Taniguchi-Ikeda et al., 2011).  

1.5.2.2. Gene editing 

Alternative gene correction strategies are based on the use of engineered 

nucleases for site-specific correction of mutated genes. Zinc-finger (ZFNs), 

transcription-activator like effector nucleases (TALENs), clustered regularly 

interspaced short palindromic repeats (CRISPR) and mega nucleases have 

been recently exploited to genetically correct pluripotent stem cells and 

myogenic progenitors (Bertoni, 2014; Rousseau et al., 2011). Meganucleases 

have been successfully used to correct a specific mutation in the dystrophin 

gene, leading to the restoration of the reading frame and to the expression of 

a truncated form of the missing protein in myoblasts in vitro and in vivo 

(Chapdelaine et al., 2010). In another study, meganucleases have been used 

to target a specific deletion in the DMD gene of human patient myoblasts 

resulting in expression of a full-length dystrophin (Popplewell et al., 2013). 

Other endonucleases, more efficient than meganucleases, have been taken 

into consideration for gene therapy approaches for muscular dystrophies. 

Ousterout and colleagues used both ZFNs and TALENs to exclude the 

mutated exon 51 of the dystrophin gene in DMD myoblasts leading to the 
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production of the protein both in vitro and upon transplantation in 

immunodeficient animals (Ousterout et al., 2015b; Ousterout et al., 2013).  

TALENs are also capable of highly efficient manipulation in pluripotent stem 

cells, and are characterised by low toxicity (Hockemeyer et al., 2011). This 

genome editing system has been recently used to correct the mutation and 

revert the phenotype in neural stem cells derived from a myotonic dystrophy 

type 1 (DM1) patient induced pluripotent stem cells (iPSCs) (Xia et al., 2015). 

Li and colleagues utilised recently a TALEN / CRISPR-based gene editing 

approach to genetically correct DMD iPSCs restoring dystrophin expression 

upon myogenic differentiation (Li et al., 2015). However, this approach can 

correct only one specific mutation and would require a specific design for the 

vast majority of patients. To overcome this limitation, a multiplex CRISPR / 

Cas9-based system has been developed to target the mutational hotspot at 

exons 45-55 of DMD gene in patient myoblasts, offering a system that can 

correct up to 62% of the known DMD mutations. The efficiency of this method 

was proven by the restoration of dystrophin expression in vitro and in vivo 

upon transplantation of the genetically corrected cells in immunodeficient 

mice (Ousterout et al., 2015a). These results can be considered the first steps 

towards novel gene editing-based therapeutic approaches. However, 

extensive in vivo studies on functional correction of the dystrophic phenotype 

still need to be performed. 
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1.5.2.3. Gene replacement 

Recent gene replacement approaches have successfully shown the 

possibility of providing an additional functional copy of the genes affected by 

the mutation causing the specific muscular dystrophy. These strategies aim to 

restore the production of the missing protein in order to recover the muscle 

function. Gene replacement methods do not face the mutation-specific 

limitations of the gene correction methods mentioned above, although safety 

and long-term efficiency of the gene delivery techniques are more challenging. 

Triggering an immune response against either the vector or the newly 

expressed protein is the main hurdle related to gene replacement methods. 

Moreover, the abundant volume of muscle tissue that needs to be treated in 

muscular dystrophies and its intrinsic feature of being composed of fibres 

surrounded by connective tissue affects the efficiency of delivering the gene 

of interest.  

The types of vectors currently under investigation to treat skeletal 

muscles can be divided into viral and non-viral. Viral vectors have been 

largely exploited as gene transfer vehicle for in vivo and ex vivo gene therapy 

approaches for muscular dystrophies, due to their ability to transfect different 

cell types and stably integrate into the genome. For example, helper-

dependent adenoviral vectors can accommodate the full-length dystrophin 

cDNA (14 kilobases) resulting in its efficient expression (Guse et al., 2012; 

Kawano et al., 2008), but the applicability of these vectors for a gene therapy 

purpose is limited by the need of multiple intramuscular administrations and 
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the high risk of immune response, highlighted in preclinical studies in non-

human primates (Brunetti-Pierri et al., 2004).  

Recombinant adeno associated virus (rAAV) vectors overcome some 

of these limitations and are suitable for systemic delivery (Gregorevic et al., 

2004; Lai et al., 2005; Wang et al., 2005) also exhibiting lower 

immunogenicity (Zaiss et al., 2002). For these reasons rAAVs are currently 

considered an ideal delivery tool for gene therapy for muscular dystrophies. 

However, this promising therapeutic approach is challenged by the small 

packaging capacity of these vectors (~ 4.5 kilobases), restricting their use to 

the delivery of small therapeutic genes such as the sarcoglycans or shorter 

versions of the dystrophin (Fougerousse et al., 2007; Gregorevic et al., 2006; 

Koppanati et al., 2010; Krahn et al., 2010). These encouraging results 

validated the use of rAAV vectors in large dystrophic animal models as well 

as in patients (Koo et al., 2011; Mendell et al., 2010b; Rodino-Klapac et al., 

2010; Wang et al., 2012). While rAAV resulted non immunogenic in mice, 

several studies have observed that rAAVs can elicit an immune response in 

a canine DMD model (Wang et al., 2007) and in humans (Mingozzi et al., 

2009) leading to a re-evaluation of the role of these viral vectors for future 

trials. Micro / mini-dystrophin have been engineered to fit the small rAAV 

cargo size. However it has been reported in both dogs and DMD patients, 

that T lymphocytes against these transgenes appear likely hampering their 

long-term expression (Mendell et al., 2010a; Yuasa et al., 2007). This 

indicates that further studies will be needed to develop systemic treatments 

for patients who suffer from muscular disorders (Nayak and Herzog, 2010) 



	 56	

Differently from rAAV, lentiviral vectors have a relatively large size 

capability (~ 7.5 kilobases) and are characterised by low immunogenicity, as 

shown in in vivo and ex vivo pre-clinical studies (Modlich et al., 2009; Montini 

et al., 2006). Lentiviral vectors have been used to deliver micro / mini-

dystrophin in vivo via intramuscular injection, showing successful genetic 

correction although with a low efficiency (Kimura et al., 2010; Kobinger et al., 

2003). Consequently, these vectors have been exploited to develop ex vivo 

gene therapy strategies. In these approaches muscle progenitors, isolated 

from dystrophic animals have been genetically corrected as above. Upon 

transplantation in dystrophic recipients, the expression of missing protein 

was restored (Bachrach et al., 2004; Li et al., 2005; Pichavant et al., 2010; 

Quenneville et al., 2007). Although this approach might represent a valid 

platform for the development of an autologous stem cell-gene therapy, in vivo 

studies in DMD dogs have shown that micro-dystrophin does not replicate all 

of the essential functions of the full-length dystrophin (Sampaolesi et al., 

2006). On the other hand, lentiviral vectors could be used for ex vivo gene 

therapy studies of other muscular dystrophies such as LGMD2D. Recently, 

we have transduced via a lentiviral vector the full cDNA of the α-sarcoglycan 

(disrupted in LGMD2D patients) in myogenic cells derived from patient-

specific induced pluripotent stem cells (iPSCs). We subsequently 

transplanted these cells into ad hoc generated α-sarcoglycan-null 

immunodeficient mice (Sgca-null / scid / beige an animal model for LGDM2D 

disease optimised to improve the xenograft efficiency) where they restored 
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the α-sarcoglycan protein expression and the reconstitution of the DAPC 

ameliorating the phenotype of the animals (Tedesco et al., 2012).  

Although lentiviral vectors are currently in use for gene therapy-based 

clinical trials (Aiuti et al., 2013; Biffi et al., 2013), their use is hampered by the 

risk of insertional mutagenesis (unfavourable integration in the host genome). 

To circumvent this problem, non-integrating lentiviral vectors have been 

recently generated based on the inactivation of the integrase (IDLV) (Matrai 

et al., 2011). This system is highly attractive for gene transfer in post-mitotic 

tissues such as muscles even though the levels of expression and 

transduction efficiency are generally low (Kaufmann et al., 2013; Kymalainen 

et al., 2014). However, a level of dystrophin production as low as 30% is 

reported to be sufficient to prevent muscular dystrophy in healthy mice and 

humans (Neri et al., 2007; Wells et al., 1995). For these reasons, the use of 

non-viral vectors for gene-transfer based therapies for muscular dystrophies 

can be considered as a valid alternative for gene replacement to overcome 

the limitations mentioned above. 

Non-viral vectors evoke only limited immune response and allow 

transfer of genetic material of larger sizes, such as the dystrophin cDNA of 

14 kilobases and even its whole locus of 2.4 megabases. These features 

allowed the use of these vectors in various gene therapy approaches, in 

particular for diseases caused by mutations in large genes such as DMD. 

Naked plasmids have been the first kind of these vectors considered 

attractive for gene delivery. Direct intramuscular injection of DNA constructs 

encoding for the full-length dystrophin, showed no adverse events in DMD 
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patients. However this approach was limited to a defined area and the 

expression of the protein was not sustained; in addition intra-muscular 

injection elicits a strong immune reaction against the transgene (Romero et 

al., 2004). Hydrodynamic limb vein injections have been suggested as an 

alternative to the intramuscular injections (Herweijer and Wolff, 2007). By 

applying these techniques, pre-clinical studies in dystrophic mice showed the 

restoration of the full-length dystrophin into the lower limbs and long-term 

protection of skeletal muscles (Zhang et al., 2010). Interestingly, studies on 

dose-response in rodents and nonhuman primates reached a transfection 

efficiency of 20-36%. These numbers are potentially sufficient to support the 

application of this method for possible therapeutic treatments of patients 

affected by DMD and other muscular dystrophies (Hegge et al., 2010; 

Wooddell et al., 2011). 

Alternative non-integrating and non-viral vectors are the human 

artificial chromosomes (HACs) (Kazuki et al., 2011; Kazuki and Oshimura, 

2011; Kouprina et al., 2013). HACs have a potentially unlimited cargo size 

and do not integrate in the host genome bypassing the risk of insertional 

mutagenesis (with possible activation of oncogenes). The use of HAC has 

been exploited for therapeutic approach for DMD where the entire 2.4 

megabases human dystrophin gene, as well as its promoter and native 

regulatory elements, have been accommodated into the HAC (DYS-HAC) 

(Hoshiya et al., 2009). Our group provided the first evidence of HAC-

mediated gene replacement therapy for DMD. Dystrophic murine 

mesoangioblasts have been genetically corrected with a DYS-HAC and 
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transplanted intramuscularly and intra-arterially into scid / mdx dystrophic 

immunodeficient mice. These genetically corrected cells supported the 

production of the human dystrophin in the engrafted skeletal muscle restoring 

a level of protein production up to 20% of control muscles, leading to a 

phenotypical and functional improvement of the dystrophic phenotype 

(Tedesco et al., 2011). Recent studies on DYS-HACs currently under 

development in our laboratory include the translation of this strategy to 

reversibly immortalised human cells (Benedetti et al., In preparation). In 

parallel, we derived myogenic progenitors from patient specific DMD iPSCs 

genetically corrected with a DYS-HAC that successfully differentiated into 

myotubes and produced human dystrophin in vitro (Tedesco et al., 2012). 

Further studies currently on going in the Tedesco laboratory will include 

transplantation studies based upon human (stem) cells containing the DYS-

HAC. The main limitation of this approach is represented by the low 

efficiency achievable in transferring the chromosome to the target cells. This 

process, named microcell-mediated chromosome transfer (MMCT) still needs 

to be optimised and the current technology makes it costly and time-

consuming. The pre-clinical studies performed so far showed stability and 

safety of the HAC. However, further studies will be required in order to see 

clinical application of this strategy (Tedesco, 2015). 

Transposons are DNA-based mobile genetic elements able to 

integrate in the target genome, and guarantee a stable and prolonged 

expression of the gene of interest, showing low immunogenicity, an improved 

safety profile of integration and a reduced risk of oncogenic mutagenesis 
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compared to viral vectors (Di Matteo et al., 2012; Doherty et al., 2012; Huang 

et al., 2010; Yant et al., 2005). Transposons safety has been recently 

evaluated in a clinical trial based on genetic engineering of T cells 

(Kochenderfer et al., 2010; Singh et al., 2013). Sustained expression of the 

transgene has been shown in various proof-of-principle studies, showing 

transposons ability to target clinically relevant cells (Di Matteo et al., 2014; 

Mates et al., 2009). Within these, human satellite cells and pericyte / 

myogenic progenitors can be genetically manipulated with transposons (Ley 

et al., 2014). Interestingly, transposons carrying micro-utrophin have been 

successfully used to genetically correct dystrophic murine iPSC-derived 

myogenic cells (Filareto et al., 2013). Unlike viral vectors, transposons are 

not able to deliver genetic material directly to the nucleus. For this reason, 

invasive delivery methods (i.e. electroporation) are required, making the 

direct use of transposons in vivo more challenging than viral vectors. 

Interesting recent studies are focusing on the use of hybrid technologies 

combining the viral delivery ability to the advantages of transposons (de Silva 

et al., 2010; Staunstrup et al., 2009; Vink et al., 2009). 

 

1.5.3. Stem / progenitor cell therapies 
	

Satellite cells are considered the main player in skeletal muscle development, 

postnatal growth and regeneration of the damaged myofibres (Relaix and 

Zammit, 2012). Other myogenic progenitor cells located outside the basal 

lamina of the muscle fibres (e.g. pericytes, endothelial and interstitial cells) 
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have been shown to possess some myogenic potential in vitro and in vivo 

during growth and upon transplantation (Tedesco et al., 2010). Although the 

origin and the physiological contribution of these progenitors to muscle 

homeostasis is still unclear, lineage tracing experiments have demonstrated 

that some populations (e.g. pericytes) can contribute to the satellite cell niche 

during development and tissue regeneration This suggests a possible lineage 

relationship (or plasticity) between these cell types (Dellavalle et al., 2011).  

Among the various strategies aiming to treat muscular dystrophies, 

several cell therapy approaches based on different stem / progenitor cell 

populations are undergoing preclinical and clinical investigation. This section 

will provide an insight on the cell types known to be involved in skeletal 

muscle regeneration, mainly focussing on satellite cells and pericytes (a 

central topic for this work), also giving an overview on the other cell types 

relevant for this process. A comprehensive list of the cell types proposed as 

cell therapy tools to treat muscular dystrophies, including details on the 

delivery route, preclinical and clinical studies performed is summarised in  

Table 1.  

1.5.3.1. Preclinical and clinical studies on myoblast transplantation 

	

Because of their ability of regenerating skeletal muscle, myoblasts were the 

first cell type considered for transplantation, with promising results obtained 

since the late eighties transplanting wild type myoblasts in murine models of 

muscular dystrophy and achieving a level of dystrophin expression of 30-40% 
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of control non dystrophic muscles in the transplanted extensor digitorum 

longus (EDL) muscles (Partridge et al., 1989). In light of these preclinical 

achievements, several groups performed the clinical trials based on myoblast 

allogeneic transplantation in Duchenne Muscular Dystrophy (DMD) patients in 

the early nineties (Gussoni et al., 1992; Karpati et al., 1993; Tremblay et al., 

1993b). These trials showed safety but very limited efficacy: death of injected 

cells and host immune-rejection were identified as the main causes of the 

poor outcome. This was confirmed following additional preclinical studies, 

showing improved engraftment upon immunosuppression (Kinoshita et al., 

1994; Morgan and Partridge, 1992; Vilquin et al., 1994). To investigate this 

further and assess the efficacy of a syngeneic approach, a proof of principle 

transplantation was performed in twin monozygotic girls carrying Duchenne 

muscular dystrophy (Tremblay et al., 1993a). Mendell and colleagues then 

attempted to improve engraftment efficiency combining myoblast 

transplantation with a strong immunosuppressive regime. The achievements 

obtained with this strategy were far below the expectations, leading to a 

maximum of 10% donor-derived dystrophin-positive myofibres in one single 

patient out of 12 treated (Mendell et al., 1995). In addition to the issue of host 

immune-rejection, myoblast transplantation failures have been mainly 

ascribed to high cell-mortality rate upon transplantation and to the poor 

migration ability of these cells (Law et al., 1992; Partridge, 2002; Skuk et al., 

2007b). More recently, intramuscular transplantation of myoblasts has been 

performed in patients affected by oculopharyngeal muscular dystrophy 

(OPMD) in a phase I / IIa clinical trial (Perie et al., 2014). In this particular 
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pathology, caused by heterozygous mutation in the gene encoding poly(A)-

binding protein-2 (PABPN1), small muscles of the face and neck are 

specifically affected by the degeneration. Autologous myoblasts were isolated 

and cultured from less affected muscles (quadriceps or sternocleidomastoid) 

and transplanted in the pharyngeal muscles. The encouraging results 

achieved with local administration of myoblasts are paving the way to a 

possible novel treatment for this disease, though more stringent controls will 

be needed. However, this approach is so far inapplicable for DMD patients 

that require treatment of large muscular districts. Different groups have 

attempted to treat a larger area of the muscles, for example by performing 

clusters of intramuscular myoblast injections using grids of needles at a 

distance of 1mm each. This technique, named high-density injection (Skuk et 

al., 2007a), is far from solving the issue of myoblast migration. Moreover, the 

damage induced by the multiple injections (and the consequent appearance 

of fibrotic and inflammatory infiltrate) might even outweigh the advantage of 

having more and better-distributed cells in the transplanted muscle. Notably, 

this system does not allow the treatment of the diaphragm, one of the mostly 

affected muscles and responsible for respiratory failure in DMD patients.  

An ideal delivery route to target all the muscle districts of the body would be 

to exploit the circulatory system. Although intravenous injection would be the 

simplest to approach, cells administered via this route will need to get through 

the filter organs (liver, kidney and lungs) causing a premature trapping before 

they reach their target organ (the skeletal muscles). For this reason, intra-

arterial injection has been considered as a preferential route, offering the 
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possibility of firstly targeting the muscles, in a loco-regional fashion. However, 

myoblasts are considered unable to cross the blood vessel wall upon 

systemic delivery, therefore limiting their use for the treatment of patients 

affected with systemic myopathies (Sampaolesi et al., 2003). In light of the 

poor results achieved with myoblast-based clinical trials, various groups have 

looked to alternative cell types, for the development of novel strategies to 

treat muscular dystrophy patients. 

	

1.5.3.2.  Other myogenic cell types 

 

To overcome the limitations that impede the clinical use of satellite cells and 

myoblasts for cell therapy purposes, other myogenic progenitors isolated from 

various tissues have been investigated exploiting the use of tissue-specific 

transgenic markers (Cossu, 1997). Diverse cell types have indeed been 

demonstrated to undergo myogenic differentiation (for a recent review, see 

Benedetti et al., 2013). Exposure to the myogenic regulator MyoD (via 

transfection, co-culture or transplantation in the muscle environment) has 

been indicated as the dominant factor able to direct these cells towards the 

myogenic lineage.  

The only ectodermal cells that have been shown to have some 

myogenic potential when co-cultured with skeletal myoblasts or upon 

intramuscular transplantation have been neural stem cells (Galli et al., 2000). 

The presence of cells positive for the early myogenesis marker Myf5 within 
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the spinal cord and in the brain, suggested that a latent myogenic potency 

might be present in some of these cells and that is possible to restore it by 

exposing these cells to the muscle environment (Tajbakhsh et al., 1994). 

In 1998 it was reported that bone marrow-derived cells have limited 

myogenic potential. The bone marrow-derived cells of donor transgenic 

animals carrying the nuclear LacZ reporter under the muscle specific 

promoter Myosin light chain (MLC3f), were transplanted into irradiated 

recipient animals. The muscles of these recipients were subsequently injured, 

and regenerated muscles showed expression of the bone marrow-derived 

beta galactosidase, indicating unequivocally bone marrow contribution to the 

tissue regeneration (Ferrari et al., 1998). This study highlighted for the first 

time the possibility (although with a very low efficiency) of recruiting 

circulating cells to the myogenic lineage. Further preclinical studies 

underlined that the efficiency of this phenomenon was too low to consider 

possible therapeutic applications (Ferrari et al., 2001; Gussoni et al., 1999). 

Interestingly this phenomenon has also been observed, again with a very low 

efficiency, with the presence of donor-derived nuclei in the muscles of 

patients that received bone marrow transplantation (Gussoni et al., 2002).  

CD133 positive cells are a circulating population, ascribed to the 

haematopoietic stem cell compartment that has been reported to have 

myogenic potential (Torrente et al., 2004). These cells are able to contribute 

to muscle regeneration and to the satellite cell pool upon transplantation in a 

murine model of DMD (Benchaouir et al., 2007; Meng et al., 2014). A 

preliminary clinical trial performed in 2007 demonstrated the safety of 
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autologous CD133-positive cells transplantation (Torrente et al., 2007). 

Patient recruitment for a follow-up phase II clinical trial based on the 

transplantation of these cells is currently on going. 

Muscle derived stem cells (MDSCs) have been isolated from skeletal 

muscle tissue using different techniques. These cells share some markers 

with other myogenic progenitors (such as satellite cells and mesoangioblasts) 

and have been transplanted in murine models of muscular dystrophy with 

variable outcome (Asakura et al., 2002; Gussoni et al., 1999; Meng et al., 

2011; Qu-Petersen et al., 2002) and upon intraarterial delivery in dystrophic 

dogs (Rouger et al., 2011). Although these are interesting findings, MDSCs 

have not yet stepped into clinical experimentation.  

PW1 positive interstitial cells (PICs), have been identified by Sassoon’s 

group in the mouse as a subset of cells located in the muscle interstitium and 

capable of contributing to muscle growth, regeneration and to replenish the 

satellite cell pool. Lineage tracing experiments have shown that these cells do 

not share the origin with satellite cells (Mitchell et al., 2010). This study 

revealed the presence of PW1 positive cells with similar features, in different 

adult tissues (i.e. central nervous system, skin and bone). It has been then 

suggested the possibility of using PW1 as a marker for tissue-specific self-

renewing progenitor cells (Besson et al., 2011). More recently, PW1 was 

found expressed also by mesoangioblasts, regardless of the species of origin 

and age of isolation (Bonfanti et al., 2015). This study showed also that PW1 

expression is required for mesoangioblasts engraftment and extravasation. 
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1.5.3.3. Mesoangioblasts as therapeutic tool to treat muscular 

dystrophies 

	

Mesoangioblasts are considered the in vitro counterpart of post-natal skeletal 

muscle Alkaline Phosphatase-positive pericytes. These cells have been 

proposed as an alternative to myoblasts for cell therapy protocols aiming to 

treat skeletal muscle diseases (Sampaolesi et al., 2005). At variance with 

myoblasts, mesoangioblasts have been shown to be capable of crossing the 

vessel wall upon intra-arterial delivery, actively contributing to muscle 

regeneration and ameliorating the dystrophic phenotype of murine and canine 

models of muscular dystrophy (Sampaolesi et al., 2006; Sampaolesi et al., 

2003). These works indicated also that these cells are easily transduced with 

lentiviral vectors, making them suitable for gene and cell therapy approaches. 

Following these studies, Dellavalle and colleagues showed that 

mesoangioblasts could be also isolated from the human skeletal muscle, 

genetically corrected and engrafted in a murine model of DMD (Dellavalle et 

al., 2007). These cells, distinct from satellite cells, showed the presence of 

some pericyte markers (i.e. NG2 and AP) (Dellavalle et al., 2007; Tonlorenzi 

et al., 2007). Based upon these findings a series of studies investigated the 

possible applications of mesoangioblasts for other forms of muscular 

dystrophy (Diaz-Manera et al., 2010) and to correct aged dystrophic muscles 

(Gargioli et al., 2008) and cardiac defects (Galli et al., 2005). Notably, in 2011 

we demonstrated the possibility of exploiting mesoangioblasts for a cell-

mediated non-viral gene replacement approach. This study provided the first 
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evidence of on the in vivo use of a HAC containing the whole human 

dystrophin locus. Genetically corrected mesoangioblasts supported human 

dystrophin expression in recipient animals, leading to a long-term functional 

amelioration of the dystrophic phenotype in scid / mdx mice (Tedesco et al., 

2011).  

As mentioned above, immunological reactions play a key relevant in 

cell muscle cell therapy (Maffioletti et al., 2014). Indeed, similarly to what was 

observed with mesenchymal stem cells (English and Mahon, 2011), adult 

human mesoangioblasts have been also reported to have an 

immunomodulatory potential, inhibiting T cell proliferation (English et al., 

2013). Allogeneic human mesoangioblasts have been shown to elicit an 

immune response only in presence of inflammatory cytokines (Noviello et al., 

2014).  

These encouraging findings have led to a first-in-man phase I / II 

clinical trial, in which allogeneic mesoangioblasts have been transplanted in 

DMD patients (“Cell Therapy Of Duchenne Muscular Dystrophy by intra-

arterial delivery of HLA-identical allogeneic mesoangioblasts”; EudraCT no. 

2011-000176-33). In light of this clinical study, a better understanding of self-

renewal potential, mechanisms of fate choice and differentiation ability of 

these cells, will have a key importance aiming to improve the outcome of 

possible cell therapy protocols exploiting this cell type.		
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1.5.3.4. Myogenic progenitors from pluripotent stem cells 

	

The derivation of myogenic progenitors from embryonic stem (ES) cells and 

induced pluripotent stem (iPS) cells could represent an alternative route for 

the cell therapy of muscular dystrophies. ES cells are pluripotent stem cells 

isolated from the inner cell mass of the blastocyst and have the ability to 

differentiate into any cell type (Evans and Kaufman, 1981; Thomson et al., 

1998). However the generation of ES cell lines often involves the destruction 

of human blastocysts, although a recent study has shown the possibility to 

derive ES cells from single blastomere cells without destroying the embryo 

(Rodin et al., 2014). For this reason some ethical concerns raised from the 

use of ES cells (de Wert and Mummery, 2003).  These concerns have been 

overcome with the generation of the iPS cells (Takahashi et al., 2007; 

Takahashi and Yamanaka, 2006). iPS cells are adult somatic cells 

reprogrammed to pluripotency by the transient expression of four 

reprogramming factors octamer-binding transcription factor 4 (Oct4), kruppel-

like factor 4 (Klf4), sex determining region Y-box 2 (Sox2) and c-Myc  (2012 

Nobel Prize for Physiology or Medicine).  Differently from ES cells, iPS cells 

can be patient-specific and therefore their derivatives can be potentially more 

applicable for autologous transplantation thus avoiding immune rejection (de 

Almeida et al., 2013). Importantly, a pilot clinical study is currently on-going 

for the treatment of age-related macular degeneration to assess a first proof 

of safety in using iPS-derived cells (Nakano-Okuno et al., 2014). 
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Several protocols have been developed to derive transplantable 

myogenic cells from murine and human ES and iPS cells.  Darabi, 

Perlingeiro and co-workers reported the derivation of myogenic progenitors 

from pluripotent stem cells, exploiting a combination of the overexpression of 

myogenic determinants (Pax3 and Pax7), differentiation into embryoid bodies 

and prospective isolation via FACS sorting (Darabi et al., 2012; Darabi et al., 

2009; Darabi et al., 2008; Darabi et al., 2011a; Filareto et al., 2013). Cells 

derived with this methodology successfully engrafted in dystrophic mice and 

also showed a functional improvement of muscle function.  

Alternative approaches exploited the upregulation of the myogenic 

regulatory factor MyoD, to trigger the terminal differentiation of the cells 

(Goudenege et al., 2012; Tanaka et al., 2013; Tedesco et al., 2012; Yasuno 

et al., 2014). Among these, our laboratory published in 2012 the first protocol 

to derive myogenic progenitors from human dystrophic iPS cells without the 

use of embryoid bodies or prospective isolation (Tedesco et al., 2012). These 

cells, defined as human iPS cell-derived mesoangioblast-like cells (HIDEMs) 

have been successfully transplanted intramuscularly and intra-arterially in an 

immunodeficient murine model of LGMD2D (as detailed in Gerli et al., 2014), 

engrafting the muscles and inducing the reassembly of the DAPC on the 

myofibres membranes. Interestingly, translating this protocol to an 

intraspecific setup we achieved functional amelioration of the dystrophic mice 

phenotype, with improvements in force and motor capacity. A recent follow 

up study extended the applicability of this protocol to human ES cells and iPS 

cells cultured in feeder-free conditions (Maffioletti et al., 2015). Considering 
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my significant contribution to these developments, more details on these 

strategies are reported in this thesis in chapter 4 and the recently published 

article has been included as an appendix. Interestingly, these cells have also 

been shown able to suppress T-cell proliferation (Li et al., 2013) as observed 

in mesoangioblasts, their tissue-derived counterpart (English et al., 2013). 

More in general, safety hurdles related to the possible use of iPS-derived 

cells in cell therapy approaches include immunogenicity, genetic instability 

and residual pluripotency (Tan et al., 2014), indicating that further studies will 

be needed to reduce immunogenicity and exclude eventual tumorigenic 

potential before extensive clinical translation. 
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Cell type Derivation Delivery Animal model (disease) Clinical Trials 

Satellite 
cells and 
myoblasts  

Skeletal 
muscle 

Local mdx mice (DMD) (Partridge et al., 
1989) 

Phase II: 
completed (DMD) 
(Skuk et al., 
2007a)*  

Phase II: 
completed 
(OPMD) (Perie et 
al., 2014) 

Pericytes 
and 
Mesoangio
blasts 

Vessel/  
Skeletal 
muscle 

Systemic
/ Local 

scid/mdx mice (DMD) (Dellavalle et 
al., 2007; Tedesco et al., 2011); 
sgca-null mice (LMG2D)  (Galvez et 
al., 2006; Gargioli et al., 2008; 
Sampaolesi et al., 2003); scid/BIAJ 
mice (LMG2B) (Diaz-Manera et al., 
2010);  GRMD dogs (DMD) 
(Sampaolesi et al., 2006) 

Phase I/II: 
completed (DMD) 
(Cossu et 
al.,Submitted) 

 MDSCs Skeletal 
muscle 

Local mdx mice (DMD) (Cao et al., 2003; 
Gussoni et al., 1999; Qu-Petersen 
et al., 2002); mdx nude mice (DMD) 
(Meng et al., 2011); GRMD dogs 
(DMD) (Rouger et al., 2011) 

N/A 

CD133 
positive 
cells 

Blood and 
skeletal 
muscle 

Systemic
/ Local 

scid/mdx mice (DMD) (Benchaouir 
et al., 2007; Torrente et al., 2004) 

Phase I: 
completed (DMD) 
(Torrente et al., 
2007);  

Phase II: 
Recruiting (DMD) 

 PICs Skeletal 
muscle  

Local Injured nude mice (Mitchell et al., 
2010) 

N/A 

Mesenchy
mal stem 
cells 
(MSCs) 

Bone 
marrow 
vessels§ 

Systemic
/ Local 

Injured rats and mdx nude mice 
(DMD) (Dezawa et al., 2005); 
injured NOD/scid and scid/mdx mice 
(Crisan et al., 2008); injured Rag2-/-

ϒc-/-/C5 mice (Meng et al., 2010); 
injured nude mice (De Bari et al., 
2003); mdx mice (DMD)  (De Bari et 
al., 2003; Gang et al., 2009; Wernig 
et al., 2005) 

N/A 

Hematopoi
etic stem 
cells 
(HSCs) 

Bone 
marrow 
and blood 

Systemic 
/Local 

mdx mice (DMD) (Gussoni et al., 
1999); injured scid/beige mice 
(Ferrari et al., 1998); mdx4cv mice 
(Ferrari et al., 2001); injured mice 
(Corbel et al., 2003) 

N/A 

Amniotic 
fluid stem 
cells 

Amniotic 
fluid 

Systemic HSA-Cre, SmnF7/F7 mice (Piccoli et 
al., 2012)⌘ 

N/A 
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Table 1. Summary of the reported preclinical and clinical studies on cell 
therapy approaches to treat muscular dystrophies. *Past clinical trials 

have been summarised and reviewed in (Tedesco et al., 2010) and (Tedesco 

and Cossu, 2012). §Although this is the standard tissue to derive MSCs, 

there is reported heterogeneity with regards to the tissue from which the cells 

have been isolated in the quoted articles. ⌘Model of spinal muscular atrophy 

carrying an homozygous deletion of Smn exon 7 presenting signs of 

muscular dystrophy.  N/A: not available. This table has been updated and 

adapted from Benedetti et al. (2013). 

  

ES cell-
derived 
progenitors 

Embryo Systemic
/ Local 

Injured scid/beige mice (Barberi et 
al., 2007); injured mdx mice (DMD) 
(Chang et al., 2009; Darabi et al., 
2008; Darabi et al., 2011b); injured 
nude mice (Sakurai et al., 2008); 
injured Rag2-/-ϒc-/- mice (Darabi et 
al., 2008); injured NSG mice and 
NSG-mdx4Cv (Darabi et al., 2012); 
Rag2-/-/mdx and injured  Rag2-/-

/mice (Goudenege et al., 2012); 

N/A 

iPS cell-
derived 
progenitors 

Dermis, 
muscle 
and other 
tissues 

Systemic
/ Local 

sgca-null/scid/beige mice (LMG2D) ; 
sgca-null mice (LMG2D) 
(Quattrocelli et al., 2011; Tedesco et 
al., 2012); injured NSG mice and 
NSG-mdx4Cv (Darabi et al., 2012); 
Rag2-/-/mdx (DMD) (Goudenege et 
al., 2012); 

N/A 
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1.6. Cell fate plasticity 

The ability of a committed cell to change fate (trans-differentiate) towards a 

different lineage is defined as fate plasticity (Bonfanti et al., 2012).  

 

Figure 11. Schematic representation of the meaning of fate plasticity. 
The stem cell / progenitor A can trans-differentiate originating B. This 

phenomenon could be also bi-directional. 

A classic example of fate plasticity observed in patients is metaplasia. In this 

pathological condition one tissue type is partially or fully replaced by a 

different one in response to stress or abnormal stimuli (Mosby, 2009).  In the 

intestinal metaplasia of the oesophagus (Barret’s oesophagus) for example, 

the normal squamous epithelium of the oesophagus is replaced by intestinal 

columnar epithelium (Shaheen and Richter, 2009). However, whether Barret’s 

oesophagus is indeed caused by a fate switch of differentiated cells or by 

selective proliferation of undifferentiated progenitors from different origin is 

still debated (Krishnadath and Wang, 2015). 

The scientific community interest started focussing more on fate 

plasticity in the last two decades, mainly for its possible implications for 

regenerative medicine. Plasticity could indeed be re-defined as extrinsic 

factor-mediated reprogramming (Bonfanti et al., 2012).  MyoD, the myogenic 

determination gene, provided the first and most remarkable example of 
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induced lineage plasticity or, as most recently defined, reprogramming. Upon 

transfection, this single transcription factor has been shown able to induce 

skeletal muscle differentiation in non-myogenic cells (Davis et al., 1987). A 

spontaneous example of this process has been indeed reported in 1995, in a 

paper reporting spontaneous smooth to skeletal muscle trans-differentiation in 

the murine oesophagus (Patapoutian et al., 1995), although this work was 

later questioned upon lineage tracing results (Rishniw et al., 2003). A 

milestone for the field was indeed a 1998 paper demonstrating that adult 

murine bone marrow contains cells that are capable of contributing to skeletal 

muscle regeneration (Ferrari et al., 1998). Following this study, many papers 

have been published showing that different cells of adult tissue can contribute 

to the regeneration of various tissues, mainly by adapting to the recipient 

environment (Bjornson et al., 1999; Krause et al., 2001; Lagasse et al., 2000; 

Orlic et al., 2001). However, some of these results were incorrect 

interpretations of the results, in which for example direct reprogramming was 

in fact mainly due to cell fusion, instead of an actual stimulation by extrinsic 

factors (Alvarez-Dolado et al., 2003; Balsam et al., 2004; Wang et al., 2003).  

 

1.6.1. Pericyte multi-potency and plasticity  

On top of covering the pericyte functions detailed above, recent studies 

suggest that pericytes have the ability to differentiate into various mesodermal 

lineages. Pericytes have been indicated as multi-potent resident tissue 

progenitors, able to differentiate both into smooth muscle and in the various 
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mesodermal cell types composing tissue in which are located (Bianco et al., 

2008). In the kidney for example, pericytes play a crucial role during tissue 

regeneration as well as in pathologic fibrosis (Duffield and Humphreys, 2011; 

Kramann and Humphreys, 2014). Pericyte ability to differentiate into bone for 

example, opened the possibility of these cells having a role in ectopic 

calcification found in arteries and muscles (Johnson et al., 2006). Indeed, 

recent evidence linked pericytes to the muscular ossification observed in 

patients affected by fibrodysplasia ossificans progressiva (Hegyi et al., 2003). 

Additionally, in a publication where Annexin 5 was used to isolate pericyte 

cells from the brain, it was shown that these cells undergo osteogenic, 

chondrogenic and adipogenic differentiation in vitro (Brachvogel et al., 2005). 

This was further confirmed with differentiation assays in vitro and in vivo, 

performed in pericytes isolated from the retina (von Tell et al., 2006).  

On the other hand, whether different cells/progenitors could acquire a 

pericyte fate is still under investigation. Glioblastoma stem cells for example 

have been observed to acquire pericyte functions to support vascular 

stabilization during tumour growth (Cheng et al., 2013). The acquisition of 

pericyte markers and properties has also been recently reported in cultured 

embryonic myoblasts upon stimulation of Notch and PDGF signalling 

(Cappellari et al., 2013). Further details on the observation of fate plasticity 

involving skeletal muscle pericytes are detailed in the next paragraph. 
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1.6.2. Muscle pericytes and satellite cells fate plasticity  

An interesting aspect outlines the close relationship between satellite cells 

and pericytes and the possible fate plasticity across these two lineages. In a 

lineage tracing study, in which TnAP-positive pericytes were labelled with 

LacZ through a Tamoxifen-mediated Cre recombinase system, these cells 

were shown to contribute to the satellite niche, generating Pax7 positive cells 

during growth and regeneration (Dellavalle et al., 2011).  

 

Figure 12. Generation of satellite cells from AP positive pericytes 
during postnatal growth. Immunohistochemistry on pectoralis muscles 

explanted from TnAP-CreERT2:R26R mice, one week (a) and one month (b) 

after Tamoxifen-mediated Cre-recombination. The blue staining has been 

obtained via LacZ enzymatic reaction and labels the TnAP pericyte-derived 

cells; in brown are highlighted the Pax7 positive satellite cells. The insets 

show high magnification images, in which is possible to observe pericytes 

(blue arrows), endogenous satellite cells (brown arrows) and pericyte-derived 

satellite cells (green arrows). Scale bar 100 µm. Adapted from Dellavalle et al. 

(2011). 

In line with these results, b-galactosidase-labelled mesoangioblasts, 

genetically corrected with a human artificial chromosome containing the 

whole dystrophin locus, have been shown to generate Pax7 positive satellite 

cells when transplanted in dystrophic animals. These cells correctly localised 

underneath the myofibre basal lamina, replenishing the satellite cell niche 

(Tedesco et al., 2011). 
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Figure 13. Genetically corrected mesoangioblasts engraft the satellite 
cells niche upon transplantation. A. Immunofluorescence staining showing 

donor derived βGal labelled cells in a transplanted scid / mdx muscle. The 

arrow shows a donor nucleus integrated in a skeletal muscle fibre. The 

arrowhead points to a donor-derived cell, located in the satellite cell position, 

underneath the muscle fibre basal lamina, expressing the satellite cell marker 

Pax7 (scale bar 100 µm). B. The left panel shows the FACS sorting plot 

obtained upon staining of a digested transplanted muscle with SM/C-2.6 to 

isolate the donor derived satellite cell fraction (gate outlined in red). Right 

panel shows a confirmation of the donor origin with the expression of EGFP 

from the sorted cells in live imaging (top). Central panel shows the 
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immunofluorescence that confirms the expression of Pax7 co-localised with 

the EGFP. The bottom part of the panel shows a FISH confirming the 

presence of the human artificial chromosome in the isolated cells (scale bars 

50 µm, 50 µm, 4 µm). Adapted from (Tedesco et al., 2011). 

A recent publication from Cappellari and colleagues indicated for the first time 

that primary embryonic myoblasts could trans-differentiate to pericytes, 

indicating possible bi-directional lineage plasticity. Among the pathways that 

regulate this phenomenon in the embryo, this work highlighted that the Notch 

cascade, interplaying with PDGF signalling is of key importance. When 

primary embryonic myoblasts were exposed to Notch ligands and PDGF, 

known to regulate the inhibition of myogenesis and pericyte recruitment, 

these cells activated pericyte markers and started showing perivascular cell 

properties (Cappellari et al 2013).  

 

 

Figure 14. Reported evidence of fate plasticity between satellite cells / 
myoblasts and pericytes / mesoangioblasts. 
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It is therefore conceivable that the mechanisms of trans-determination (or fate 

plasticity) seen in the embryo might be preserved in the adult. Possible 

lineage plasticity between satellite cells and other myogenic progenitors, such 

as pericytes, still needs to be understood and the mechanisms driving this 

phenomenon to be elucidated.  
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1.7. Notch signalling 

Notch signalling is an evolutionary conserved cell fate regulator that plays 

essential roles in the development and homeostasis of potentially all the 

tissues of the body (Artavanis-Tsakonas et al., 1999; Kimble and Simpson, 

1997). In mammals four Notch heterodimers have been identified: Notch1, 

Notch2, Notch3 and Notch4. These receptors are large trans-membrane 

proteins. The extracellular domain of all the Notch receptors contains up to 36 

EGF-like domains repeated in tandem. These domains mediate the 

dimerisation process and in particular the domains 11 and 12 are crucial to 

inhibit cis-activation, when a Notch ligand is expressed on the same cell 

membrane (Cordle et al., 2008). Five molecules have been recognised to act 

as Notch ligands: Delta-like ligand 1, 3, 4, Jagged 1 and Jagged 2. Because 

all these Notch ligands are trans-membrane proteins, cell-to-cell interaction is 

normally required to achieve an efficient signal transduction (Gerhardt and 

Betsholtz, 2003).  

When the ligand-receptor interaction occurs, it causes a proteolytic 

cleavage operated by γ-secretase. As a result, a fragment of the Notch 

protein known as Notch intracellular domain (NICD) is released in the cytosol 

and subsequently translocate within the nucleus. Once in the nucleus, NICD 

interacts with DNA-binding proteins (such as the transcription factor RBP-J), 

which positively and negatively regulates the transcription of a wide range of 

downstream targets (Gridley, 2007). 
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Figure 15. Core components of the canonical Notch signalling pathway. 

The Notch ligands (DLL1, DLL3, DLL4, JAG1 and JAG2), present on the 

stimulating cell interact with the Notch family receptors (NOTCH1,2,3 and 4) 

of the recipient cell. The intracellular domain of the Notch receptor (NICD) 

undergoes a proteolytic cleavage operated by the γ-secretase and it is 

released in the cytosol. Then, the NICD translocate to the nucleus and forms 

a complex with the RBPJ protein. This is done displacing a histone 

deacetylase (HDAc)-co-repressor (CoR) complex from the RBPJ. Then, an 

activation complex, such as MAML1 and histone acetyltransferases (HAc), its 

recruited to the NICD-RBPJ complex, leading to the transcriptional activation 

of Notch target genes. 
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It has been reported that Notch has a direct role as an initiator of the fate 

choice during asymmetric cell division. During this process both Notch ligands 

and receptors can be internalised into specific endosomes that are then 

differentially distributed in the daughter cells, directly acting as a fate 

determinant (Coumailleau et al., 2009). The Notch cascade is tightly 

modulated at various developmental stages by miRNA regulation, endosome 

trafficking and transcriptional target selection. Moreover, Notch cross talk with 

other signalling cascades such as BMP and Wnt maintains a delicate 

signalling homeostasis, which is still under investigation (Shin et al., 2009).  

	

1.7.1. Roles of notch in the vasculature 

Notch activity regulates embryonic vascular development, angiogenesis, adult 

vasculogenesis and arterial-venous specification (Hofmann and Iruela-Arispe, 

2007; Regan and Majesky, 2009). Cell-to-cell interactions between pericytes 

and endothelial cells have been demonstrated to be sufficient to induce 

Notch3 up-regulation both in pericytes and vascular smooth muscle cells (Liu 

et al., 2009). Consistent with this, Notch3 has been reported to play a crucial 

role in pericyte and vascular smooth muscle cell survival (Liu et al., 2010; 

Walshe et al., 2011), in particular upon Delta-like ligand 4-mediated 

stimulation (Stewart et al., 2011). Indeed, mice with specific endothelial 

ablation of RBP-J showed impaired pericyte adhesion, reduced pericyte 

coverage of the blood vessels and a high frequency of perinatal haemorrhagic 
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events, confirming that Notch signalling has role in pericyte survival and cell-

adhesion to the endothelial cells (Li et al., 2011; Winkler et al., 2011b).  

 

1.7.2. Notch in skeletal muscle development and homeostasis 

	

Notch signalling also plays a major role during skeletal muscle differentiation, 

from the early stages of the myogenic specification in the embryo through to 

involvement in postnatal muscle regeneration. During development, 

oscillatory waves of Notch signalling contribute in defining the antero-

posterior patterning of somites (Lewis et al., 2009). Active Notch signalling 

has long been known to suppress myogenic differentiation. This has been 

observed in the murine myoblast cell line C2C12 (Kopan et al., 1994; Lindsell 

et al., 1995; Nofziger et al., 1999) and in primary satellite cells (Wen et al., 

2012) where it acts with various mechanisms among which repression of the 

myogenic differentiation gene MyoD is one of the most studied (Buas et al., 

2010; Hirsinger et al., 2001). In adult muscle, Notch regulates satellite cell 

activation during quiescence, niche colonisation and myogenic differentiation 

(Brohl et al., 2012; Conboy and Rando, 2002; Delfini et al., 2000; Mourikis et 

al., 2012; Mourikis and Tajbakhsh, 2014).  

Notch signalling is crucial for normal developmental myogenesis. 

Indeed, animals with induced mutations in Notch Delta ligand 1 (DLL1) or in 

its downstream transcriptional mediator Rbpj present hypotrophic muscles 

and lack myogenic progenitors. Depletion of Notch signalling leads to a 
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premature exhaustion of the satellite cell pool, leading to an impairment of 

muscle regeneration (Schuster-Gossler et al., 2007; Vasyutina et al., 2007). 

On the other hand repeated injuries in animals carrying mutations of Notch3 

lead to muscle hypertrophy and to an increase in the number of muscle 

satellite cells indicating the presence of compensatory mechanisms (Kitamoto 

and Hanaoka, 2010).  

Intramuscular injections of a Notch1 antibody activated Notch 

signalling, allowing the rescue of regenerative defects observed in aged 

muscles (Conboy et al., 2003) while sustaining Notch activation (via Delta 

Ligand 1; DLL1) in canine satellite cells during in vitro expansion improves 

their engraftment ability by promoting quiescence (Parker et al., 2012a). A 

recent report from Quattrocelli and colleagues demonstrated that the Notch 

cascade regulates also mesoangioblasts activity. DLL1-mediated notch 

depletion lead indeed to a reduction in mesoangioblasts engraftment ability 

while its activation has an opposite effect (Quattrocelli et al., 2014).  

Notably, the above mentioned publication by Cappellari et al. showed 

that embryonic myoblasts undergo a fate switch towards the perivascular 

lineage upon DLL4 and PDGF-BB stimulation, implying that bidirectional 

plasticity between these two cell types is present in the embryo (Cappellari et 

al., 2013). The interplay between Notch and PDGF, and the mechanisms and 

roles of PDGF and its receptors, relevant for this project, are detailed in the 

next section.	  
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1.8. PDGF signalling 

 

Platelet derived growth factor (PDGF) was one of the first growth factors 

identified (Paul et al., 1971). This molecule mediates cell proliferation and 

plays a significant role during the angiogenesis, where it acts as a potent 

mitogen on fibroblast, smooth muscle and other cell types (Heldin, 1992). The 

PDGF family is divided in PDGF-A and PDGF-B according to the composition 

of their polypeptide chains. These chains are formed of a series of 100 amino 

acid residues with a 60% homology between the two types (Heldin and 

Westermark, 1999). Part of this chain is similar to the ones observed in the 

VEGF family (Joukov et al., 1997).  PDGF-A and B associate in hetero- and 

homo-dimers (i.e. PDGF-AA, PDGF-BB, PDGF-AB) able to bind to three 

dimeric receptors: PDGFrα, PDGFrαβ and PDGFrβ. PDGF-AA has been 

reported active only on α-receptors, AB works on both α- and αβ-receptors 

while PDGF-BB is effective on all the three receptors (Hammacher et al., 

1989; Kanakaraj et al., 1991; Seifert et al., 1989). These receptors are 

localised on the cell membrane and when activated show a tyrosine kinase 

activity (Matsui et al., 1989). Different factors have been reported to regulate 

isoform specific PDGF signals. IL1α, TNFα and basic-FGF for example 

specifically upregulate the receptors binding PDGF-AA (Bonner et al., 1996; 

Centrella et al., 1992), while IL1 and TGFβ induce a downregulation of the 

beta receptors (Bonner et al., 1995; Xie et al., 1994).  
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Ligand-receptor interaction activates PDGF signalling transduction. 

The ligand induces a conformational change that starts the intracellular signal 

transduction, mediated by proteins that dock to the tyrosine kinase domain 

upon via SH2/SH3 domains. This activation mediates the one of different 

signalling transduction pathways involving PI3-kinases, Phospholipase C, 

Src, GRB2, GTPases activating protein and Stat3 (Darnell, 1997; Erpel and 

Courtneidge, 1995; Heidaran et al., 1993; Hu et al., 1995; Kamat and 

Carpenter, 1997; Vanhaesebroeck et al., 1997). It is difficult to dissect the 

precise role of all these different effectors, however the main ascribed to 

these signalling pathways have been linked to cell division, actin 

reorganisation, chemotaxis and to the Akt/PKB anti apoptotic effect (Heldin 

and Westermark, 1999).  

In addition to its mitogen activity, PDGF has a role in tissue 

remodelling, cell migration and differentiation (Hoch and Soriano, 2003). 

PDGF is considered a required element for the regulation of fibroblast 

proliferation, in particular during the wound healing process (Pierce et al., 

1991). For this reason, PDGF overexpression has been linked to the 

development of different diseases, among which are atherosclerosis and 

fibrotic disorders (Abboud, 1995; Trojanowska, 2008). 

PDGF-B and its receptor PDGFrβ are essential for pericyte recruitment 

in the CNS, kidneys and for the cardiovascular system (Leveen et al., 1994; 

Lindahl et al., 1997; Tallquist et al., 2003). During vessel growth, endothelial 

cells directly recruit mesodermal progenitors to the pericyte fate by secreting 

PDGF-BB (Hellstrom et al., 1999). In the embryo, Notch signalling works 
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together with PDGF-BB in driving fate choice between the smooth and 

skeletal muscle lineages, where it induces an up-regulation of PDGFrβ, 

leading to an increased cell response to PDGF-BB stimulation (Jin et al., 

2008). Importantly, it has been recently shown that a combinatory treatment 

with DLL4 and PDGF-BB induces a lineage switch in embryonic myoblasts 

towards the pericyte lineage (Cappellari et al., 2013). These results set the 

basis for the hypothesis behind this thesis. 
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1.9. Other pathways involved in skeletal muscle 

regeneration and recruitment of mesodermal progenitors 

to the pericyte fate. 

 

Several signalling pathways regulate recruitment of mesodermal progenitors 

to the pericyte fate. In particular, tissue culture studies have shown that the 

cytokine TGFβ1, in combination with PDGF, is involved in the recruitment of 

mesenchymal precursors to the smooth muscle lineage (Hellstrom et al., 

1999; Hirschi et al., 1998). Moreover, TGFβ1 has been shown to induce 

vessel maturation, inhibiting endothelial cell proliferation and migration (Sato 

et al., 1990). Noggin, expressed from the newly formed myofibres in the 

embryo, acts in contrast with BMP 2 / 4 produced from the vessels (i.e. aorta), 

to play a fundamental role in mesodermal progenitors recruitment to the 

muscle fate (Ugarte et al., 2012). The progression from commitment to 

terminal differentiation of satellite cells relies on a temporal switch from Notch 

to Wnt signalling (Tsivitse, 2010).	The crosstalk between these two pathways 

involves the activity of Gsk3β, that maintains Notch signalling by inhibiting the 

Wnt3a cascade (Brack et al., 2008). Notch has also been linked to TNF 

signalling. DMD patients show increased levels of TNF-α, which has also 

been proposed as a novel marker of the disease (Abdel-Salam et al., 2009). 

This signalling pathway has been shown to down-regulate Notch1 mRNA 

levels and inhibit the self-renewal capacity of cultured murine myoblasts 

(Acharyya et al., 2010).  
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1.10. Stem cell self-renewal  

Self-renewal is defined as a series of cell division cycles that repeatedly 

generate at least one daughter cell equivalent to the mother with latent 

capacity for differentiation. This concept is considered to be a defining 

property of a stem cell (Smith, 2006).  

 

Figure 16. Schematic representation of the meaning of self-renewal. The 

“stem cell” A undergoes a cycle of asymmetric cell division that generates two 

daughter cells. Of these two cells, A is identical to the mother and will 

replenish the stem cell pool while B represents a more committed progenitor. 

In light of this definition, self-renewal is a phenomenon strictly linked to 

another fundamental concept of stem cell biology: asymmetric cell division 

(Figure 16). This property defines a cell able to generate progenies with 

distinct fate from a single mitosis (Jan and Jan, 1998). This oriented cell 

division may position daughter cells in different microenvironments (or 

anatomical compartments). Intrinsic determinants (i.e. transcription factors) 

may also be segregated into only one daughter cell. This property is observed 

in some, but not all stem cells and can occur in other types of progenitors 
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(Smith, 2006). Indications of self-renewal have been observed in different 

tissues including intestine, epidermis and testis (Simons and Clevers, 2011).  

Serial transplantation of clonal stem cell populations is recognised as 

the most stringent assay to study stem / progenitor cell regenerative potential. 

This assay provides a thorough outcome for the investigation of the self-

renewal capacity of a stem cell population. Serial transplantation assays have 

been utilised to prove the self-renewal potential of hematopoietic, skeletal and 

epidermal stem cells (Blanpain et al., 2004; Claudinot et al., 2005; Sacchetti 

et al., 2007) In the skeletal muscle field there is increasing evidence indicating 

that satellite cells retain self-renewal potential, together with other stem cell 

properties, such as asymmetric distribution of cell fate determinants and DNA 

strands (Kuang et al., 2007; Shinin et al., 2006). Recently, satellite cells have 

been formally proved capable of self-renewal with a serial transplantation 

assay (Rocheteau et al., 2012).  

Various methods have been proposed aiming to isolate satellite cells 

via flow cytometry (Conboy et al., 2010; Motohashi et al., 2014; Pasut et al., 

2012). The group of Sinhichi Takeda, reported in 2004 the possibility of 

isolating quiescent (i.e. non-committed and non-proliferating) satellite cells 

from digested adult skeletal muscle via fluorescence-activated cell sorting 

(FACS), using a monoclonal antibody against the surface antigen SM/C-2.6 

(Fukada et al., 2004; Fukada et al., 2007; Ikemoto et al., 2007). Utilising this 

antibody, it has been possible to isolate donor-derived satellite cells from 

muscles transplanted with mesoangioblasts (Tedesco et al., 2011).  
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Although pericytes can give origin to Pax7-positive satellite cells during 

development (Dellavalle et al., 2011), whether myogenic progenitor different 

from satellite cells (i.e. mesoangioblasts) could generate myogenic 

progenitors capable of self-renewal still needs to be rigorously elucidated. 

Understanding the self-renewal potential of mesoangioblasts and their 

progeny is particularly relevant considering the role that self-renewal has in 

the long-lasting effectiveness of cell therapy protocols that exploit this cell 

type.  
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CHAPTER 2:  

2. OBJECTIVES OF THE RESEARCH 

Aim 1: Investigation of satellite cell fate plasticity 

The main aim of my PhD project has been to investigate the fate plasticity of 

adult muscle satellite cells, focussing on the possibility to directly reprogram 

these cells towards the pericyte lineage.  

Indications of fate plasticity between these two lineages have been 

reported in the literature. In particular, pericytes and mesoangioblasts have 

been shown to contribute to the satellite cell niche during growth, tissue 

regeneration and upon transplantation (Dellavalle et al., 2011; Tedesco et al., 

2011). On the other hand, the only available evidence that this plasticity could 

be bidirectional is restricted to primary embryonic myoblasts stimulated in 

culture with a combination of cytokines. Upon treatment, these cells were able 

to activate pericyte genes and acquire rudimental pericyte features, providing 

the first evidence in this direction (Cappellari et al., 2013). Our hypothesis is 

that primary adult satellite cells and myoblasts may retain a level of plasticity 

similar to the one observed in the embryo.  

The recruitment of adult cells to the perivascular fate and the idea that 

these cells might act as resident progenitors in various tissues has been 

hypothesised and indicated in some past work (Abou-Khalil et al., 2010; 

Bianco and Cossu, 1999; Cossu and Bianco, 2003; Minasi et al., 2002). 
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Notch and PDGF signalling have been shown to have a crucial role both in 

vascular homeostasis and in skeletal muscle biology, where cross-talk 

between these pathways regulates tissue regeneration, stem cells 

quiescence and activation. Delta-like ligand 4 is a Notch signalling stimulating 

molecule that is physiologically produced by the endothelial cells during 

vessel formation. In combination with a PDGF-B dimer (PDGF-BB), DLL4 is 

involved in the recruitment of mesodermal cells to the pericyte fate during 

vessel formation (Hellstrom et al., 1999; Stewart et al., 2011). Nevertheless, 

whether this process is active in adult skeletal muscle homeostasis and 

regeneration still needs to be elucidated. 

Therefore it is conceivable that treating adult muscle satellite cells with 

DLL4 and PDGF-BB could induce in these cells a direct reprogramming to the 

pericyte-like fate. To our knowledge, at the time of this thesis, there are no 

examples of this in the literature. 

If true, this work will provide indications of bi-directional fate plasticity 

between these two lineages, and insights into skeletal muscle homeostasis 

and regeneration. Importantly, the possibility of skeletal-to-smooth muscle 

lineage reprogramming could also be exploited to give to the cells beneficial 

properties for cell therapy purposes. For example, treated myoblasts might 

acquire the ability to cross the blood vessel wall upon systemic delivery (a 

particular property of pericyte-derived mesoangioblasts), while retaining the 

remarkable myogenic memory that characterises satellite cells and 

myoblasts.  



	 95	

The cellular response to the treatment has been characterised firstly by 

analysing phenotypic variations in terms of morphology, activation of pericyte 

markers, proliferation and the ability to undergo myogenic differentiation. The 

gene expression profile of the cells will then be assessed via quantitative real 

time PCR (qRT-PCR) analyses, to investigate variations in the genes targeted 

by the stimulation as in satellite cell and pericyte markers. Treated cells will 

then be tested for functional pericyte properties in vitro, investigating their 

ability to support endothelial network formation and stabilisation. Additional 

tests will include the assessment of the cell migration ability toward an 

endothelial cell layer in vitro. Tumour formation assays will ensure that the 

treatment does not alter the “non-transformed” state of the cells. 

Transplantation experiments will be performed with the aim of assessing the 

engraftment potential of these cells. Moreover, proof of principle experiments 

will be also performed, aiming to understand if reprogrammed cells gain the 

ability to migrate through the vessel wall in vivo.  

If translated to human cells, this direct reprogramming mechanism may 

have the potential to produce a more clinically relevant stem cell product that 

shares both the beneficial properties of both satellite cells and pericytes. This 

might have a significant impact for the development of novel cell therapy 

strategies aiming to treat muscular dystrophies.  
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Aim 2: Understanding the self-renewal potential of 

mesoangioblast-derived cells. 

Previous observations showed that pericytes and mesoangioblast derivatives 

are capable of repopulating the satellite cell niche, generating Pax7 positive 

cells that correctly localise underneath the myofibres basal lamina during 

muscle regeneration and upon transplantation (Dellavalle et al., 2011; 

Tedesco et al., 2011). Tajbakhsh and co-workers have recently provided a 

formal demonstration of the long-term self-renewal capacity of satellite cells, 

combining lineage tracing and label retaining assays in an elegant serial 

transplantation approach (Rocheteau et al., 2012).  

Whether pericyte-derived cells are able to self-renew as demonstrated 

for bona-fide muscle stem cells still need to be elucidated. A series of 

experiments performed in our laboratory have indicated that transplanted 

mesoangioblasts are able to sustain long-term engraftment (up to 8 months) 

and a subsequent round of regeneration upon acute myoinjury. This 

publication also showed the possibility of isolating donor-derived satellite-like 

cells from the transplanted muscles (Tedesco et al., 2011). Taken together, 

these data provided preliminarily indications on the self-renewal ability of 

pericytes / mesoangioblast-derived cells in vivo. However, this phenomenon 

needs to be formally proved via serial transplantation assays. 
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Based upon the above observations, our hypothesis is that upon 

transplantation, mesoangioblasts are able to generate cells that are capable 

of self-renewal.  

To this aim, we performed a series of serial transplantation 

experiments to assess the self-renewal of these mesoangioblast-derived cells 

in vivo. Intramuscular injection was chosen over intra-arterial delivery for 

feasibility reason, given the complexity of the microsurgical technique 

required to transplant cells intra-arterially in mice (Gerli et al., 2014). 

Transplanted muscles will be subject to a mechanical and enzymatic 

digestion protocol implemented to isolate mononuclear cells from 

transplanted skeletal muscles. Donor derived cells, will be then subjected to 

FACS sorting purification exploiting also a monoclonal antibody (SM/C-2.6) 

reported to allow the separation of satellite from non-satellite cells (Fukada et 

al., 2004). Isolated cells will then be serially transplanted to investigate their 

potential in vivo (Figure 17).  

 

 

 Figure 17. Schematic representation of the serial transplantation 

strategy. Mesoangioblasts (MABs) will be transplanted intramuscularly in 

dystrophic mice. One month after transplantation, muscles are harvested and 

digested. The single cell suspension obtained will be FACS-sorted for SM/C-
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2.6 to identify and isolate mesoangioblast-derived satellite cells, which are 

subsequently cultured and serially transplanted intramuscularly into a new 

recipient (Illustrations obtained from Servier Medical Art).  
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CHAPTER 3:  

3. MATERIALS AND METHODS 

3.1. Cell isolation and culture 
	

Primary satellite cells were isolated from adult muscles, mechanically 

fragmented and digested twice in an HBSS solution containing Collagenase D 

(0.1%; Roche, Switzerland; 11088882001), Dispase (0.24U / ml; Gibco, USA; 

17105-041) and DNAse (0.1mg / ml; Roche, Switzerland; 11284932001) for 

20 minutes at 37°C in a shaking waterbath. The digestion product was filtered 

through a 40 µm strainer (Corning, USA; 352340) and enzymatic activity was 

inhibited with 20% of Foetal Bovine Serum (FBS; Gibco, USA; 10270-106). 

The cell suspension was then centrifuged for 30’ at 1100rpm in a centrifuge, 

pre-cooled to 4° C. The pellet was washed twice in Phosphate-Buffered 

Saline (PBS, Gibco, USA; 10010015), then re-suspended in culture medium 

and pre-plated on cell culture plastic and incubated for one hour at 37° C 5% 

CO2 to remove eventual contaminant fibroblasts and enrich the floating 

fraction of satellite cells, typically low adherent on uncoated cell culture plastic. 

The supernatant containing the satellite cells was then collected and 

transferred to collagen-coated dishes (Sigma-Aldrich, USA; C8919) at a 

density of 1.2x103 cells / cm3. The cells were then cultured at low density in 

an ad-hoc defined satellite cell media (DMEM-F / 12, Gibco, USA, 11039-21; 

10% Horse Serum, Euroclone, Italy, ECS0090L; 20% FBS and 5ng / ml 

basic-fibroblast growth factor, 5ng / ml b-FGF, Gibco, USA, AA10-155; 1% 
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penicillin / streptomycin / gentamicin). Mesoangioblasts / Pericytes utilised in 

this study were described, isolated and maintained in culture in DMEM 

(GIBCO, USA; 21063-029) containing 20% FBS as reported previously 

(Dellavalle et al., 2011; Tedesco et al., 2011; Tonlorenzi et al., 2007). 

3.2. Fluorescence-activated cell sorting purification 
	

Fluorescence activated cell-sorting purification of the Pax7nGFP (satellite 

cells), TnAP-YFP (freshly isolated pericytes) positive cells from bulk 

preparations were performed with a FACS Aria III (Becton Dickinson, USA) at 

the Institute of Child Health flow cytometry facility. When donor-derived 

satellite-like cells have been re-isolated from transplanted muscles (i.e. for the 

self-renewal project) these have been labelled using a biotinylated SM/C-2.6 

monoclonal antibody (kindly provided by Prof. Shin’ichi Takeda, National 

Centre of Neurology and Psychiatry, Kodaira, Tokyo, Japan), as previously 

described (Fukada et al., 2004; Tedesco et al., 2011). After two washes in 

PBS (Gibco, USA; 10010015) containing 1% FBS and 0.5 mM EDTA (Gibco, 

USA; 15575-020), freshly digested cell suspensions were incubated with the 

SM/C-2.6 primary antibody, washed in PBS and incubated with the 

appropriate APC, PE or PeCy7-conjugated streptavidin. Cell sorting has been 

performed with a MoFlow (Beckman coulter, USA) or FACS Aria III (Becton 

Dickinson, USA) sorter. 

3.3. DLL4 and PDGF-BB treatment 
	

Murine recombinant delta-like ligand 4 (DLL4; R&D, USA: 1389-D4) was 

resuspended to a final concentration 10 µg / ml in sterile PBS containing 0.1% 
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wt / vol Bovine serum albumin (BSA; Sigma-Aldrich, USA; A9418-10G) as 

carrier protein. To induce reprogramming, standard cell culture plastic flasks 

were coated with the DLL4 solution and incubated at 37° C for 45 minutes 

prior use. The cells were then seeded on the coated flasks and the cultures 

were then supplemented with 50ng / ml of PDGF-BB (Sigma-Aldrich, USA; 

P4056) daily for the first week of treatment, then every other day together 

with medium changes. One week was considered the minimum duration of 

the treatment. 

3.4. Myogenic differentiation assays 
	

Myogenic differentiation assays were performed seeding the cells at a density 

of 1.2x104/cm2 as previously described (Tedesco et al., 2011). When 

confluecy was reached, the cultures were switched to a differentiation media 

(DMEM 2% Horse serum) replaced every other day for one week. For the γ-

secretase inhibitor supplementation experiments, L-685,458 (Sigma-Aldrich, 

USA; L1790) has been added to the cultures in proliferation media one day 

before starting the differentiation protocol and then every other day together 

with the differentiation media changes as previously reported (Cappellari et al., 

2013). The dishes were then fixed with 4% Paraformaldehyde (PFA; TAAB 

Laboratories Equipment, England; P001) for 5 minutes, washed in PBS and 

stored covered in PBS and refrigerated at 4°C until use for 

immunofluorescence analysis. If the cells already had a fluorescence reporter, 

the exposure to light was minimised by covering the samples with aluminium 

foil.  
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3.5. Immunofluorescence and enzymatic reaction staining 
	

Cells and tissues were processed as previously reported (Tedesco et al., 

2012). Firstly a 15 minutes permeabilisation in a solution of PBS containing 

0.1% Triton (Sigma-Aldrich, USA; T8787) and 1% bovine serum albumin 

(BSA) was performed. Next, the non-specific binding sites were blocked by 

incubating the samples in PBS containing 0.1% Triton and 1% BSA, 

supplemented with 10% goat or donkey serum (Jackson ImmunoResearch 

Laboratories, USA, 005-000-121; Sigma-Aldrich, USA, D9663-10ML) for 30 

minutes. The samples were then incubated overnight at 4° C with the 

following primary antibodies: mouse anti-myosin heavy chain (Developmental 

Studies Hybridoma Bank, USA; MF20), CD31 (Developmental Studies 

Hybridoma Bank, USA; PECAM), Pax7 (Developmental Studies Hybridoma 

Bank, USA; Pax7), mouse anti alpha sarcoglycan (Novocastra, UK; NCL-a-

SARC); mouse anti-dystrophin Dys1 and Dys2 (Novocastra, UK; NCL-DYS1 

and NCL-DYS2); mouse anti-MyoD1 (Dako, Denmark; M3512), rabbit anti-

EGFP (Molecular Probes, USA; A-11122), chicken anti-EGFP (Millipore, 

Germany; AB16901), chicken anti-Laminin (Abcam, England; ab14055). To 

minimise the evaporation of the primary antibodies solution a humid 

environment was created placing a wet tissue in the box utilised for the 

staining. Following this, samples were washed twice in PBS. The samples 

were then incubated in the dark for 60 minutes at room temperature with the 

following secondary antibodies diluted 1:500 in PBS: Donkey and Goat IgG 

were used as secondary antibodies (Molecular Probes, USA; Alexa Fluor 

series), Hoechst 33342 (Sigma-Aldrich, USA; B2261) was used to highlight 
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the nuclei. Before use, secondary antibody solutions were centrifuged for 5 

minutes at 12000 RPM to eliminate eventual antibody clusters, avoiding 

collecting the precipitate at the bottom of the tubes. After the incubation and 

two PBS washes, coverglasses were mounted using fluorescent mounting 

medium (DAKO, Denmark; S302380). The samples were stored at 4°C 

minimising exposure to light until use. The imaging of the stained samples 

was performed using Leica DM and DMI 6000 optical fluorescent 

microscopes, equipped with 405, 488, 546 and 647 filters. Alkaline 

phosphatase stainings were performed on fixed cells and tissue preparing the 

staining solution following the standard procedures available in the 

manufacturer kits (Roche, Switzerland, NBT / BCIP 11681451001). X-gal 

staining was performed following the standard manufacturer procedures 

(Invitrogen, USA, B-1690). The samples were then incubated with the staining 

solution for one hour at 37° C, washed in PBS and counterstained as 

required. 

3.6. Quantitative real time PCR and gene expression 
analyses 

	

RNA extraction was performed with RNeasy kits (Qiagen, Germany; 74004), 

quantified with a Nanodrop 2000 (Thermo scientific) and reverse-transcription 

with Improm RT kit (Promega, USA; A3800) using a BioRad T100 

thermocycler and following the standard manufacturers procedure. Samples 

were then processed for quantitative real time PCR using Real Time Master 

Mix (Promega, USA; A600A) on a BioRad CFX96 system. Annealing 

temperatures were adjusted to be optimal for each pair of primers (See Table 
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2 for details on the primers). qRT-PCRs were performed in triplicate on 

samples obtained from three independent experiments (with the exception of 

the one performed on purified Pax7nGFP cells for which a single cell 

preparation was available). GAPDH was used as normaliser gene for each 

run. Amplicons were then resolved by electrophoresis on a 2% agarose gel to 

confirm the fragment length. RNA extraction and amplification reactions have 

been performed in compliance with the MIQE guidelines (Bustin et al., 2013). 

Data analysis was performed with Microsoft Excel and GraphPad Prism 6 

using a standard ΔΔCt / fold increase method (Schmittgen and Livak, 2008). 

Data were presented as mean ± standard deviation (SD). Significance was 

assessed on the ΔCt values using Student’s t-test assuming two-tailed 

distribution and equal variances. Large standard deviations were observed 

trough the independent biological replicates. Therefore, to increase the power 

of the statistical analysis a Two-way ANOVA (using Fisher LSD uncorrected 

multiple) and a multiple regression analysis on the fold transformations have 

been implemented (Yuan et al., 2006).  

Gene Sequence (5’->3’) 
Annealing 
temperature (°C) 

Notch1 FW TGGACGCCGCTGTGAGTCA 55 

Notch1 REV TGGGCCCGAGATGCATGTA 55 

HesI FW ACACCGGACAAACCAAAGAC 60 

HesI REV AATGCCGGGAGCTATCTTTC 60 

Hey1 FW CACCTGAAAATGCTGCACAC 60 
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Hey1 REV ATGCTCAGATAACGGGCAAC 60 

Pax7 FW ATGTTCAGCTGGGAAATCCGGG 60 

Pax7 REV TCCCGAACTTGATTCTGAGCACTCG 60 

MyoD FW GCCCGCGCTCCAACTGCTCTGAT 60 

MyoD REV CCTACGGTGGTGCGCCCTCTGC 60 

PDGFrβ FW GCTCACGGTCTGAGCCATTC 60 

PDGFrβ REV GCTCGGACATTAAGGCTTGCT 60 

TnAP FW GTGGATACACCCCCCGGGGC 56 

TnAP REV GGTCAAGGTTGGCCCCAATGCA 56 

SM22 FW CCAACAAGGGTCCATCCTACG 60 

SM22 REV ATCTGGGCGGCCTACATCA 60 

NG2 FW ACAAGCGTGGCAACTTTATC 55 

NG2 REV ATAGACCTCTTCTTCATATT 55 

GAPDH FW AGGTCGGTGTGAACGGATTTG 60 

GAPDH REV TGTAGACCATGTAGTTGAGGTCA 60 

 

Table 2. List of the qRT-PCR primers utilised for this study. Listed in the 

table the qRT-PCR primers utilised for this study with the optimum melting 

temperature calculated using PrimerBlast.  

3.7. Endothelial network formation assay 
	

Endothelial network formation assays were carried out as previously 

described (Cappellari et al., 2013; Goodwin, 2007; Tedesco et al., 2012; You 
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et al., 2014). Primary human umbilical vein endothelial cells (HUVEC) were 

maintained in culture in EGM media (Lonza, Switzerland; CC-4133) on 1% 

gelatine-coated flasks (Sigma-Aldrich, USA; G9136). HUVECs were kept 

below 70% of confluence and used up to passage 7. For the network 

formation assays, cell culture dishes were coated with 25% of reduced-growth 

factors Matrigel resuspended in phenol red-free DMEM at 37°C for 30 

minutes. HUVECs were then seeded on the Matrigel coated dishes at a 

density of 5x104 cells / cm2. After thirty minutes, the cells to be tested were 

added at a ratio of 1:10 to the HUVECs and the cultures were supplemented 

with 10 ng / ml of vascular endothelial growth factor (VEGF) (Sigma-Aldrich, 

USA; V7259) to stimulate the formation of the endothelial networks. Dishes 

were then monitored via fluorescent live imaging using a Leica DMI600b 

microscope equipped with a thermostatic chamber and an electronic CO2 

regulator. The number of network branches / 20X field (0.31 mm2) was 

quantified over time to assess the stability of the networks. The number of 

cells co-localised with the endothelial network branches was also quantified 

using image J. 

3.8. In vitro migration assay 
	

In vitro migration assay was performed using the H5V murine endothelial cell 

line (Garlanda et al., 1994). H5V were grown to full confluence on 1% gelatin-

coated 8µm pore transwell membranes (BD Biosciences, USA; 353093). 

Confluence of the endothelial layers was assessed, by measuring the 

permeability of BSA with the Protein Assay Reagent Kit A-B-S (BioRad, USA) 

using an ELISA plate reader (iMark microplate reader; BioRad, USA). The 



	 107	

upper chamber of the transwell was loaded with the cells to be tested, re-

suspended in a serum-free media. The lower chamber was loaded with a 

chemoattractant medium composed of 50% fresh growth media and 50% 

myoblasts conditioned media (previously exposed for 24 hours to 

differentiated C2C12 murine myoblasts to mimic the muscle environment). 

After six hours, the membranes were gently washed in PBS and fixed for 5 

minutes in 4% PFA. The top of the membrane was scraped off with a cotton 

bud to remove the non-migrated cells. After an additional PBS wash, the 

membranes were mounted with fluorescent mounting media above glass 

microscope slides. The number of cells that migrated through the H5V 

endothelial layer was quantified by counting the number of fluorescent cells 

on the lower side of the membrane using an inverted microscope (Leica 

DMI6000B). A minimum of 30 random 20X field (0.31 mm2) / condition was 

counted per each independent experiments. 

3.9. Mice 
	

All the animals used for this study were housed in specific pathogen free 

(SPF) conditions in clean ventilated racks at the UCL facility (London, United 

Kingdom). All procedures involving living animals have been approved by the 

UCL ethical committee and conformed to the Home Office regulations (ASPA 

1986), PPL 70 / 7435 and PIL 70 / 24251. The use of animals has been 

rationalised following the Home Office guidelines and implementing the 3Rs 

(Reduction, Refinement, Replacement). Pax7-nGFP mice were bred at the 

Pasteur institute (Paris, France) complying the European legislation and 

under the approval of the institutional ethical committee. 
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3.10. Intramuscular cell transplantation   
	

Three to five-month-old Sgca-null / scid / beige (Tedesco et al., 2012) and 

scid / mdx (Farini et al., 2007) immunodeficient dystrophic mice were used for 

the transplantation experiments listed in this thesis. After trypsinisation 

(Trypsin-EDTA solution, Sigma-Aldrich, USA; T3924), cells were washed 

twice in PBS to eliminate the residual FBS present in the media. The final cell 

preparation was then resuspended in Ca++ / Mg++ free PBS to a concentration 

of 5x105 cells / 30ul. The skin of the animals was disinfected with a 

chlorexidine-based disinfectant. Injection was performed with a 30G needle 

syringe into tibialis anterior, gastrocnemius and quadriceps muscles. In detail 

For the tibialis anterior, 5 mm of the needle was inserted approximately 2 mm 

below the insertion of the proximal tendon (cranio-caudal direction) with a 15° 

inclination relative to the tibia and the cell suspension was slowly injected 

while retracting the needle emptying the syringe with 2 mm of the needle still 

inside the muscle. For the GC and QC, the same procedure was repeated as 

detailed for the tibialis anterior, with the main difference being the caudo-

cranial insertion of the needle 2 mm above the myotendinous junction of the 

Achilles tendon for the GC and 2 mm above the distal tendon for the QC (15° 

inclination with respect to the femur). Further details on the intra-muscular cell 

transplantation procedure are reported in a protocol paper published during 

this PhD a copy of which is attached to this thesis (Gerli et al., 2014).   
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3.11. Intra-arterial cell transplantation   
	

For intra-arterial transplantation, the mice were anesthetised using 

isofluorane (2 litres / min in O2). Analgesia (Caprofen, Bayer) was 

administrated 40 minutes before the surgery to avoid to the animals further 

discomfort related to the surgical procedure. After trypsinisation (Trypsin-

EDTA solution, Sigma-Aldrich, USA; T3924), cells were washed twice in PBS 

to eliminate the residual FBS present in the media and filtered through a 

40um cell strainer to eliminate possible cell clusters from the cell suspension. 

The final cell preparation was then resuspended in Ca++ / Mg++ free PBS to a 

concentration of 5x105 cells / 50ul. After having shaved and sanitised the skin 

of the inguinal region of the mice with a chlorexidine-based disinfectant, a 5 

mm incision to access to the femoral artery was performed. The femoral 

bundle was exposed gently removing the connective tissue fascia overlaying 

it. The artery was separated from the femoral vein and nerve by gently 

introducing the tip of a forceps (or a 30 G needle) in between them and by 

progressively enlarging the hole. Transplantations were performed lifting the 

artery with one tip of a forceps and clamping it with the other tip. The artery 

was then punctured with a syringe equipped with a 30 G needle and injected 

with 50 ul of cell suspension, at a concentration of 2.5 x 105 cells / 50µl. The 

needle and the forceps were then gently removed from the artery to restore 

bloodstream in the limb. Pressure was applied with sterile gauze to avoid 

bleeding and/or cauterization was performed as required. The wounds were 

sutured and the animals monitored until recovery from anesthesia. Analgesia 

was administered for 3 additional days and the wound inspected daily for at 
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least one week. Further details on the intra-muscular cell transplantation 

procedure are reported in a protocol paper published during this PhD a copy 

of which is attached to this thesis (Gerli et al., 2014).   

3.12. Tumour formation assay 
	

Tumorigenic formation assays were performed injecting subcutaneously 

immunodeficient mice with 2 x 106 cells washed in PBS as described above 

and resuspended in a volume of 100ul. After the injections, the animals were 

observed biweekly for a minimum of 2 months as a follow-up to verify the 

absence of tumour masses. At the end of the experiment, the animals were 

humanely culled and dissected to confirm the absence of tumour masses. An 

appropriate positive control for this experiment could be the subcutaneous 

injection of a tumorigenic cell line such as S180 murine sarcoma cells (ATCC, 

TIB-66). However, this control experiment has not been performed for this 

project, aiming to implement the 3Rs (reduction, refinement and replacement) 

taking in consideration that I have demonstrated to master this technique in a 

recently published article (Tedesco et al., 2012; Figure S1B). 

 

3.13. Tissue explant and processing 
	

At the suited time point, transplanted mice were humanely killed following the 

schedule 1 procedures approved by the UCL ethical committee and 

conformed to the Home Office regulations (ASPA 1986). Tissues were 

explanted applying aseptic techniques and removing the muscle fascia 
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(epimysium) with the forceps.  Whenever the transplanted cells were labelled 

with a fluorescent protein, engraftment was assessed at first via direct 

fluorescent stereomicroscopy using an UV-equipped stereomicroscope 

(Leica Microsystems, Leica MZ10F). The tissue samples were then 

processed for cryopreservation as follow. 4% Tragachant gum was utilised 

as a sample holder for the inclusion. 1 g of gum was placed above a cork 

support. The tip of the muscle (possibly a tendon) was then embedded in the 

gum being careful that the myofibres were oriented vertically. The cork was 

then moved in a beaker containing 50 ml of isopentane pre-chilled in liquid 

nitrogen for one minute to achieve the snap-freezing of the specimen. The 

samples were then moved for two additional minute in liquid nitrogen to 

complete the freezing and then stored in a -80° C freezer until processing.   

Tissues were then cryosectioned with a cryostat (Leica biosystems, Leica 

CM1850) set to a temperature of -22°C and 7-10 µm thick sections were cut. 

Eight to ten replicate slides (25-40 sections / slide) were obtained from each 

tissue specimen. Slides were then placed into -80 C for long-term storage, 

and used for histological, immunohistochemistry and immunofluorescent 

stainings. For each sample, a series of sections have been collected into 1.5 

ml tube and stored at -80° C to perform molecular biology assays.  
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CHAPTER 4:  

4. PROTOCOL DEVELOPMENT 

	

This section aims outline my contribution to the development of protocols 

with relevance for the field and in light of the experiments detailed in this 

thesis. In particular the first section (4.1) details refinements introduced into 

the in vivo transplantation and surgical procedures aiming to reduce its 

impact on the animal’s welfare. Section 4.2 details my contribution in the 

improvement and extension of a protocol to derive mesoangioblast-like cells 

from pluripotent stem cells. Although his protocol has marginal direct 

relevance in light of the work detailed in this thesis, this offers an alternative 

strategy to develop an efficacious cell therapy platform to treat muscular 

dystrophies. This paragraph has been included to underline that the way to 

achieve an effective treatment for these diseases is still long and my interest 

in these developments is not restricted to a single candidate technique.  
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4.1. Establishing and optimising the in vivo methodology 
of myogenic cell transplantation. 

	

Together with Sara Martina Maffioletti, another PhD student from our 

laboratory and with the help and supervision of Francesco Saverio Tedesco, 

I have significantly contributed to the develop and improve of the available 

protocols and methodologies utilised to perform the in vivo experiments 

detailed in this thesis. The improvements have been introduced in the 

transplantation protocols, to allow fine tune of the transplantation and 

ameliorate the welfare of the animals utilised for the studies implementing the 

3Rs (reduction, refinement and replacement). 

The techniques utilised in this thesis included surgical procedures and 

cell transplantation in murine models of muscle regeneration and muscular 

dystrophy. These techniques require extensive training and supervision and 

for this reason, we decided to detail these methods in a protocol paper / 

video protocol highlighting the steps required for this approach (Gerli et al., 

2014). This paper details the procedure of intramuscular and intra-arterial 

transplantation of myogenic progenitors, describing the steps required for the 

preparation of cultured cells, the transplantation procedure and possible 

ways to evaluate the functional amelioration of the animal’s phenotype. The 

aim of this paper is not only to provide visual training material for researchers 

that aim to acquire these techniques, but will also help other scientist aiming 

to reproduce the experiments reported in this thesis and other works from our 

lab.  
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Amongst the various refinement of the protocols achieved along these 

years, recent updates include the use of gas anaesthesia (e.g. isofluorane) 

over the previously utilised injectable tribromethanol (Avertin) (Tedesco et al., 

2011). Although Avertin is easily accessible and simple to administrate via 

intra-peritoneal injection, it’s toxicity and side effects led some countries 

(including the United Kingdom) to ban its use for recovery procedures (Meyer 

and Fish, 2005). Isofluorane gas anaesthesia requires additional equipment 

and training but offers less side effects, lower toxicity and faster recovery, 

significantly improving the animal welfare (Ludders, 1992).  

For intramuscular injection procedures, the volume in which the cells 

are re-suspended has been reduced from 50 µl to 30 µl aiming to reduce the 

volumetric stress to the muscles. On the other hand, a volume of 50 µl has 

been chosen for intra-arterial transplantation, since it has no reported 

influence on the total blood volume of the mice (1.5 - 2.5 ml). This more 

diluted cell suspension keeps the solution less thick, facilitating the flow 

through the small 30 G needle, reducing the stress for the cells and allowing 

a more precise volume dosing. 

Administration of the non-steroidal anti-inflammatory analgesic 

Caprofen, previously performed via subcutaneous injection after the surgery 

has been anticipated on suggestion of the NACWO to 40 minutes before 

starting the procedure. This allows achieving the active analgesic effect 

concomitantly with the beginning of the procedure, further reducing the 

discomfort for the animals. 
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4.2. Derivation of mesoangioblast-like myogenic progenitors 
from pluripotent stem cells. 

 
Cell therapy approaches aiming to treat pathologies that affect large body 

districts such as in the case of muscular dystrophies have to face the 

problem of the limited expansion potential of primary cells. The possibility of 

differentiating myogenic progenitors from pluripotent stem cells might help to 

overcome this limitation. 

In parallel with the main line of research conducted during my PhD, 

starting from the year before registering to the graduate school, I have 

significantly contributed to the development of a method to differentiate 

mesoangioblast-like myogenic cells from human iPS cells (HIDEMs). With 

this newly established protocol we derived HIDEMs from healthy donor and 

patient specific LGMD2D dystrophic iPS cells. We then genetically corrected 

these patient-derived cells with a lentiviral vector containing the gene 

mutated in this pathology (the alpha-sarcoglycan) and successfully engrafted 

these cells in an ad-hoc generated dystrophic immunodeficient murine model 

of the disease. The results obtained were published in Science Translational 

Medicine during the first year of my PhD (Tedesco et al., 2012).  

During the following years I provided equal contribution together with 

Sara Martina Maffioletti (PhD student in our group), in extending the 

applicability of this protocol to human embryonic stem cells and iPSCs 

cultured in feeder-independent conditions. The methodology required to be 

amended in several of the culture step, adjusting seeding density and culture 

conditions to accommodate the different cell mortality and adaptability to the 



	 116	

substrate observed in particular for the feeder-independent iPSCs. Once 

adapted, this protocol has been applied to generate new lines of patient 

specific and healthy donor HIDEMs, in light of a collaborative project carried 

out with Sumitava Dastidar, PhD student in Thierry VandenDriessche and 

Marinee K Chuah laboratory at the Free University of Brussels, Belgium. 

With the aim of increasing the accessibility to the method to other 

groups and allow a better reproducibility, a detailed version of the protocol 

including these recent ameliorations, has been included in a recently 

published protocol paper in which I am listed as co-first author (Maffioletti et 

al., 2015). This protocol paper has been also selected as the cover story of 

the journal (Nature Protocols, July 2015, Volume 10 No 7). 

As mentioned above, this methodology allows the production of a 

potentially unlimited amount of cells with a robust myogenic differentiation 

potential (triggered by synchronous activation of MyoD). This opens 

possibilities for further developments not only in the field of cell therapy, but 

also for the development of novel tissue engineering and drug development 

platforms. 
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CHAPTER 5:  

5. RESULTS: Direct reprogramming of adult muscle 

satellite cells to pericyte-like cells via Notch and 

PDGF signalling 

The main aim of this chapter is to investigate the fate plasticity of adult 

muscle satellite cells, focussing on the possibility to directly reprogram these 

cells towards the pericyte lineage exploiting Notch and PDGF signalling. The 

experimental results reported in this section of the thesis aim to investigate 

this possibility, stimulating these two pathways with DLL4 and PDGF-BB, 

previously reported to exert a similar effect on embryonic myoblasts 

(Cappellari et al., 2013). Treated satellite cells have been evaluated for 

variation in morphology, gene expression pattern and ability to undergo 

myogenic differentiation in vitro. We have then assessed if treated cells 

acquire the pericyte abilities of stabilising endothelial networks and migrate 

through endothelial layers in vitro. To investigate if the cells acquire beneficial 

properties exploitable for cell therapy purposes, such as improved 

engraftment and the ability to cross the blood vessel walls, we report here the 

results of proof of principle transplantation experiments in dystrophic mice. 
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5.1. Primary satellite cells change their morphology when 
subjected to DLL4+PDGF-BB treatment 

 

Primary satellite cell cultures were established from wild type mice and 

cultured on type I collagen-coated dishes in an ad-hoc defined satellite cell 

medium (please refer to the materials and methods section for further details 

on the primary cell isolation and culture). The cells were then seeded on 

DLL4-coated dishes and supplemented daily with PDGF-BB. After one week 

of treatment the cells, that initially showed a circular morphology typical of 

satellite cells, acquired a more flat elongated shape resembling the one of 

cultured control pericytes (Figure 18A). This phenomenon was shown to be 

consistent over three independent cell preparations. Cultured cells have been 

imaged and cell circularity was evaluated using the ImageJ measurement 

tool. Treated cells revealed that a remarkable decrease in the average cell 

circularity ratio indicating the consistent acquisition of a non-circular 

morphology over three independent cell preparations (Figure 18B). 
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Figure 18. Characterisation of the morphological properties of treated 
satellite cells. A Phase contrast images showing the morphology of 

untreated satellite cells (Left), satellite cells treated with DLL4+PDGF-BB 

(Centre) and pericyte-derived mesoangioblasts (Right; scale bar 80µm). B To 

quantify the variation in morphology, the circularity ratio of the cells has been 

evaluated using ImageJ.  A minimum of 500 cells / condition has been 

measured from three independent experiments. Data are represented as 

mean circularity ratio ± SEM; Satellite cells 0.66 ± 0.01; Treated 0.42 ± 0.01; 

CT Pericytes 0.23 ± 0.003. One-way ANOVA P-value 0.0001  (Pairwise 

comparisons have been performed using the Bonferroni’s method and are 

reported on the graph as:  **** P<0.0001). 
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5.2. Treated cells show increased alkaline phosphatase 
activity 

 

Alkaline phosphatase is a recognised marker of skeletal muscle pericyte-

derived mesoangioblasts (Tonlorenzi et al., 2007). For this reason cells 

subjected to the DLL4 and PDGF-BB stimulation were assessed for the 

presence of alkaline phosphatase enzymatic activity using the NBT/BCIP kit 

(Roche; Please refer to the material and methods section for further details). 

This kit allows the formation of a black/purple precipitate in the cells 

expressing the enzyme (Figure 19A). The treated satellite cell cultures 

showed an increase in the percentage of AP-positive cells compared to the 

untreated population and even higher than the one observed in control 

pericytes (Figures 19B).  
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Figure 19. Evaluation of the Alkaline Phosphatase enzymatic activity in 
treated and control cells. A The panel depicts an overlay of phase contrast 

and Hoechst images of untreated satellite cells, treated satellite cells and 

control pericytes. Alkaline Phosphatase (AP) positive cells are identified by 

the formation of a black precipitate in their cytoplasm (Right; scale bar 90 

µm). B The graph shows the percentage of AP positive cells. A minimum of 

nine 1.5 mm2 microscopic fields has been quantified from three independent 

experiments. The column bars represent the mean percentage of AP positive 

cells / field ± SEM: Satellite cells 1.16 ± 0.14; Treated 10.5 ± 2.53; CT 

Pericytes 3.76 ± 0.50; One-way ANOVA p-value: 0.0008. Pairwise 

comparisons have been performed using the Bonferroni’s method and are 

reported on the graph as: ns not significant; ** P<0.01; *** P<0.001. 
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5.3. DLL4+PDGF-BB treatment induces a reversible 
decrease in cell proliferation 

 

Growth curve proliferation analyses revealed that DLL4+PDGF-BB treated 

satellite cells proliferate less in comparison with both satellite cell-derived 

myoblasts and control pericytes (Figure 20A). Notch signalling is well known 

to control satellite cell activation and quiescence (Brohl et al., 2012; Mourikis 

et al., 2012), therefore the reduction in cell proliferation observed with the 

DLL4 treatment is not surprising. Although this result appears to be in 

contrast with the short-term proliferation analyses performed on embryonic 

myoblasts (Cappellari et al., 2013), experiments on DLL1-mediated Notch 

activation (Parker et al., 2012a; Parker and Tapscott, 2013) and upon 

overexpression of the Notch intracellular domain (Wen et al., 2012) reported a 

similar proliferative slowdown in both canine and murine adult satellite cells. 

Importantly the reduction of proliferation observed did not impede the cell 

expansion required for transplantation purposes.  

This reduction in the proliferative capacity has also been observed 

when the treatment was started on satellite cells that have been already 

cultured for two weeks in control conditions. This indicated that cultured 

satellite cells preserve responsiveness to the treatment at least up to 8 

passages (Figure 20B, red inset). Interestingly, this phenomenon was 

reversible when the treatment was discontinued after two weeks, confirming 

its signal-dependence. Seeding treated cells in un-supplemented satellite 

cells culture condition promptly restored their proliferative potential (Figure 

20B, red inset). 
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Figure 20. Proliferation analysis on DLL4+PDGF-BB treated satellite 
cells. A The graph shows the proliferation curve obtained culturing satellite 

cells, DLL4+PDGF-BB treated satellite cells and control pericytes. The cells 

have been counted every other day for three weeks. Each point represents 

the average counting of three independent experiments. Each point 

represents the average of the counting obtained from three independent 
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experiments; error bars represent the SEM. Statistical significance between 

the Satellite cell and DLL4+PDGF-BB group has been assessed with  Two-

way ANOVA (Bonferroni’s multiple comparison) ** P<0.01; **** P<0.001 B 

The graph shows the same proliferation curve in which an additional set of 

data has been added. Two weeks after having started the treatment or having 

cultured the cells un-supplemented, a fraction of each population was seeded 

in the opposite culture condition and its proliferation was assessed for an 

additional week to verify the reversibility of the treatment and the possibility of 

starting it on long-term cultured cells (red rectangle). Each point represents 

the average of the counting obtained from three independent experiments; 

error bars represent the SEM. Statistical significance between the two groups 

with the switched culture conditions has been assessed with a Two-way 

ANOVA (Bonferroni’s multiple comparison) * P<0.05; ** P<0.01.  Part of these 

proliferation analyses, have been performed under my supervision by James 

Lane and Ekin Ucuncu. 
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5.4. Treated cells show Notch-dependent reduction of their 
myogenic differentiation potential 

  

Notch activation has been widely reported to inhibit myogenesis in embryonic 

and adult myoblasts in vitro (Brohl et al., 2012; Conboy and Rando, 2002; 

Delfini et al., 2000; Mourikis and Tajbakhsh, 2014; Nofziger et al., 1999). To 

assess if this mechanism is also triggered upon the DLL4+PDGF-BB 

treatment, cells were seeded at high density (1.2x104 / cm2) as previously 

reported (Tedesco et al., 2011), grown to confluence and kept for one week in 

myogenic differentiation medium (DMEM supplemented with 2% horse 

serum) as previously described. This myogenic differentiation assay revealed 

that satellite cells previously subjected to the DLL4+PDGF-BB treatment have 

a reduced myogenic differentiation ability compared to both untreated satellite 

cells and control pericytes (Figure 21A, left; Figure 21B, left plot) 

To further investigate the possible Notch dependency of this 

phenomenon, replicate dishes of the differentiating cultures were 

supplemented with a γ-secretase inhibitor (L-685,458). This molecule blocks 

the Notch signalling cascade hampering the proteolytic activation of Notch 

receptor, operated by the γ-secretase, consequently preventing nuclear 

translocation of the Notch intracellular domain (Vilquin et al., 1994). Blocking 

the Notch cascade with the γ-secretase inhibitor treatment was sufficient to 

revert the functional impairment observed in the treated cells and restore the 

latent myogenic memory of this cells (Figure 21A, right; Figure 21B, right 

plot).  
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 Figure 21. Assessment of myogenic potential of DLL4+PDGF-BB 
treated cells, with and without γ-secretase-mediated Notch signalling 
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inhibition. A Immunofluorescence staining for Myosin Heavy Chain (MyHC; 

marker of terminal myogenic differentiation) performed on untreated satellite 

cells, treated satellite cells and control pericytes subjected to a terminal 

myogenic differentiation assay with and without γ-secretase inhibitor 

supplementation (Scale bar 100µm). B The graph on the left shows 

quantification of the percentage of nuclei inside myosin heavy chain positive 

cells. The plot indicates that cells treated with DLL4+PDGF-BB shows 

reduced myogenic potential in comparison with untreated satellite cells and 

pericyte controls. The data are represented as mean percentage of nuclei 

inside Myosin Heavy Chain positive cells ± SEM: Satellite cells 70.39 ± 2.58; 

Treated 27.64 ± 8.23; CT Pericytes 77.88 ± 2.07; One-way ANOVA p-value 

0.0009. Pairwise comparisons have been performed using the Bonferroni’s 

method and are reported on the graph as: ns not significant; ** P<0.01. A 

minimum of 10 10x (1.5mm2) fields quantified in 3 independent experiments. 

The plot on the right shows the effect of γ-secretase inhibitor supplementation 

in reverting the myogenic inhibition trend as observed in two independent 

experiments. Data are represented as mean percentage of nuclei inside 

Myosin Heavy Chain positive cells ± SEM: Satellite cells 83.90 ± 1.3; Treated 

78.35 ± 1.34; CT Pericytes 96.4 ± 0.94.  
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5.5. Gene expression profile of treated satellite cells  

 

To investigate a possible variation in the gene expression profile of the cells 

upon DLL4+PDGF-BB treatment and understand the reasons for the 

observed proliferation and myogenic potential reduction, a series of 

quantitative real time PCR (qRT-PCR) analyses was performed. After the 

treatment, RNA was extracted and reverse transcribed to cDNA. A first series 

of qRT-PCRs was performed aiming to verify the effect of DLL4 on the cells 

in activating the Notch signalling pathway. Analysis of the expression of its 

target gene Notch1 and of its downstream regulators Hes1 and Hey1 

confirmed that these three genes were upregulated in treated cells (Figure 22 

top row), validating the effectiveness of the treatment. The expression of the 

satellite cell marker Pax7 increased in treated cells (although without 

reaching statistical significance), giving a qualitative indication of an 

increased quiescence status. This hypothesis was confirmed by reduction of 

the MyoD transcript, indicating a less-activated status (i.e. more satellite cell-

like and less myoblast-like). A remarkable increase in the expression of the 

PDGFrβ gene was observed upon treatment (Figure 22 central row). This 

may be because active Notch signalling is reported to be sufficient to induce 

an upregulation of this gene in vascular smooth muscle cells (VSMCs), 

leading also to an increased cell response to PDGF-BB (Jin et al., 2008). 

Further qRT-PCR analyses showed up-regulation of the mostly recognised 

pericyte markers TnAP, NG2, SM22 (Figure 22 lower row) and as mentioned 

above PDGFrβ.  
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A 

 

B 

	
Student's	t-test	 2-way	ANOVA	 Multiple	regression	

Notch1 0,0553923 ns 0,0473 * 1,43E-06 *** 
Hes1 0,0148241 * 0,3383 ns 0,02972 * 
Hey1 0,00909924 * 0,0013 ** 2,56E-13 *** 
Pax7 0,28906 ns 0,5001 ns 0,12335 ns 
MyoD 0,00279303 * 0,0433 * 5,51E-06 *** 
PDGFRb 0,0920756 ns 0,0001 *** 2,00E-16 *** 
TnAP 0,0915078 ns 0,0222 * 1,29E-06 *** 
SM22 0,124432 ns 0,0154 * 2,22E-08 *** 
NG2 0,220125 ns 0,24 ns 0,00575 ** 

 

Figure 22. qRT-PCR analyses on treated and untreated satellite cells. A 

The image shows the calculation of fold increase variation in gene 

expression assessed via qRT-PCR obtained trough the ddCT method. The 
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black bars depict the expression level of untreated satellite cells while the 

white bars depict satellite cells treated with DLL4 and PDGF-BB. Each bar 

represents mean ± SEM of the triplicate qRT-PCR analyses performed for 

three independent biological replicates (3 independent cell preparations 

analysed, each gene analysis run in triplicate). B The table present an 

overview on the statistical analysis performed before the fold transformation 

presented in A. Statistical significance on the dCT has been assessed 

implementing Student’s t-test; Two-way ANOVA and with a multiple 

regression model.  
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5.6. Gene expression profile of treated purified Pax7-nGFP 
satellite cells 

 

To exclude the possibility that the effects observed were artefacts due to a 

possible contamination with other cell types that might be present in the 

primary cell preparations, these analyses were repeated using a purified 

satellite cell preparation. With this aim a collaboration with the group of 

Shahragim Tajbakhsh was established. This group developed in 2009 a 

murine model in which the Pax7 positive cells co-express the nuclear GFP 

(Sambasivan et al., 2009). Thanks to this collaboration, we obtained a 

muscle cell preparation from these Pax7-nGFP mice. Satellite cells were 

then purified from this preparation via fluorescent-activated cell sorting 

(FACS) exploiting their GFP fluorescence (Figure 23A). These cells were 

subsequently treated as described above and used for RNA extraction, 

reverse transcription and qRT-PCR analyses. Purified Pax7-GFP positive 

satellite cells showed a comparable response to the treatment with a gene 

expression profile consistent to what observed in non-purified cells (Figure 

23B). 	
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Figure 23. qRT-PCR analyses on treated and untreated purified 
Pax7nGFP positive satellite cells. A Histogram plot of the FACS sorting 

purification of the Pax7nGFP positive cells. In black the profile of a non-GFP 

control satellite cell preparation. The top bar indicates the gate utilised for the 

isolation. B The plots show the fold increase variation in gene expression 

assessed via qRT-PCR. The black bars depict the expression level of 

untreated Pax7nGFP positive satellite cells, while the green bars Pax7nGFP 

positive satellite cells treated with DLL4 and PDGF-BB. Each bar represents 

the average of a triplicate qRT-PCR run performed for each gene. A single 

cell preparation was available for this set of experiments (mice currently not 

available within UCL), therefore the lack of biological replicates impeded the 

assessment of statistical significance. 



	 133	

5.7. Reprogrammed cells stabilise endothelial networks in 
vitro 

 

Primary satellite cells were isolated from CAG-EGFP reporter mice. These 

animals ubiquitously express the green fluorescent protein under a strong 

beta-actin promoter (Okabe et al., 1997), thus allowing the isolation of 

fluorescent satellite cells, easily traceable in co-culture experiments. 

Fluorescent satellite cells were then treated as described above (DLL4 

coating and PDGF-BB supplementation), and used for endothelial network 

formation assays (Figure 23A) This assay exploits the property of human 

umbilical vein endothelial cells (HUVECs) in forming vascular-like networks in 

vitro upon vascular-endothelial growth factor (VEGF) stimulation on Matrigel-

coated dishes. In normal conditions, networks formed by the HUVECs are not 

stable and are disrupted in the first twenty-four hours. Among their various 

physiological functions, pericytes contribute to vessel stabilisation. This 

property, previously reported as preserved in vitro, helps the formation and 

stabilisation of HUVEC endothelial networks in vitro (Cappellari et al., 2013; 

Goodwin, 2007; Tedesco et al., 2012; You et al., 2014). We utilised this assay 

to investigate if treated and untreated satellite cells, are capable of behaving 

like bona fide pericytes stabilising endothelial networks in vitro. 

In the first five hours after VEGF stimulation, HUVECs started forming 

the endothelial networks in all of the culture conditions: HUVEC; 

HUVEC+Satellite cells; HUVEC+Treated satellite cells; HUVEC+Control 

Pericytes. Twenty-four hours after the induction, HUVEC networks showed 
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partial disaggregation when cultured alone, they were destabilised when 

HUVECs when co-cultured with control satellite cells but found to be stable 

when HUVECs when co-cultured with satellite cells exposed to DLL4+PDGF-

BB and control pericytes (Figure 24A and B). The number of network 

branches per each 10X microscopic field (1.5 mm2) was quantified and no 

significant differences in its stability were detected at the various time points 

(Figure 24C; average number of branches / 1.5 mm2 ± SEM: HUVEC only 

4.75 ± 1.55; HUVEC+Satellite cells 0.00; HUVEC+Treated 24.25 ± 3.57; 

HUVEC+Treated 48h 19.17 ± 2.15; HUVEC+Treated 72h 23.00 ± 2.48; 

HUVEC+Treated 120h 20.6 ± 3.51; HUVEC+CT Pericytes 42.07 ± 2.26). In 

support to these results, treated satellite cells were found to be in close 

proximity to the HUVEC endothelial networks and were able to stabilise the 

structure for up to 120 hours after induction, consistent with what was 

observed with control pericytes (Figure 24D; number GFP positive cells co-

localised with the network branches / 1.5 mm2 ± SEM: HUVEC only 0; 

HUVEC+Satellite cells 0; HUVEC+Treated 96.99 ± 1.48; HUVEC+Treated 

48h 97.51 ± 1.06; HUVEC+Treated 72h 100.00 ± 0.00; HUVEC+Treated 

120h 99.13 ± 0.54; HUVEC+CT Pericytes 99.14 ± 0.39). 
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Figure 24. Endothelial network formation assay. A Images acquired 

twenty-four hours after the endothelial network induction. HUVECs have been 

utilised as a positive control for the formation of the network (top left). When 

mixed with untreated satellite cells, HUVEC formed an unstable endothelial 

network that dissociated in the first 24 hours while it was stabilised with 

primary pericytes, the positive control of the experiment (Scale bar 100 µm). 



	 136	

B The images show that treated satellite cells contribute to the stability of the 

endothelial networks after 24 and 72 hours similarly with what observed with 

control pericytes in A. C The bars represent the quantification of the number 

of GFP positive endothelial networks branches ± SEM. D The bars represent 

the quantification of the average number of GFP positive cells that co-

localised with an endothelial network branch in three independent 

experiments ± SEM. One-way ANOVA (Bonferroni’s multiple comparisons 

test) **** p<0.0001; ns: not significant.  
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5.8. Assessment of migration ability in vitro 

 

The above experiments demonstrated that treated satellite cells acquire 

pericyte markers and network stabilisation properties. A transwell migration 

assay was performed with the aim of investigating if this switch towards the 

pericyte lineage was reflected also in increased migration ability. Treated and 

untreated GFP-positive satellite cells were seeded on a murine H5V 

endothelial layer previously grown on an 8 mm-pored transwell membrane 

coated with 1% gelatine. The upper chamber of the well was loaded with 

serum-deprived medium while the lower chamber of the transwell was loaded 

with myotube-conditioned medium to give the cells a chemoattractant 

stimulus to migrate through the endothelial layer (Figure 25A). The number of 

GFP-positive cells that migrated through the endothelial layer over 6 hours 

was calculated to be for the treated cells 2.4 folds more than the untreated 

control, indicating that treated cells have an improved migration ability, either 

superior to the one observed with control pericytes (Figure 25B; number of 

GFP-positive cells / 1.5mm2 microscopic field ± SEM: H5V+Satellite cells 

45.13 ± 1.83; H5V+Treated 113.7 ± 5.27; H5V+CT Pericytes 85.91 ± 1.89; 

H5V 0).  
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Figure 25. Assessment of cell migration through a layer of endothelial 
cells. A The panel shows images of the lower side of the transwell 

membranes utilised to assess the migration of treated and untreated GFP-

positive satellite cells. The top part of the panel shows merged phase contrast 

and green fluorescence images of the lower side of the transwell membranes 

at a 6-hour time point. The non-fluorescent cells are murine endothelial H5V 

cells, which migrate freely through the pored membrane. The bottom images 

depicts the green fluorescent channel of the same fields, in which GFP-

positive cells are those that migrated through the endothelial layer (Scale bar: 

100 µm) B The bar graph depicts the quantification of the GFP-positive cells 
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that migrated through the membrane in 2 independent experiments performed 

in triplicate, in which a minimum of 15 1.5mm2 microscopic field / condition 

were quantified. These data represent the outcome of 2 independent 

biological experiments; a third independent biological replicate will be 

performed within the project of Ekin Ucuncu, MRes student in the laboratory. 

The final results of this experiment will be then included in a manuscript 

describing this project currently under preparation. 	
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5.9. Treated cells show no evidence of tumourigenesis 
 

 One of the strengths of the above-described DLL4+PDFG-BB direct 

reprogramming approach resides in the lack of genetic manipulation. 

Compared to other gene-based reprogramming strategies, the methodology 

developed in this thesis aims to obtain a cell product with less safety hurdles. 

To confirm that the signalling manipulation did not induce cell transformation, 

tumour formation assay were performed injecting treated and untreated 

satellite cells subcutaneously in immune-deficient (scid/beige) mice (please 

refer to the material and methods section for further details). None of the 

animals that received the injections showed the presence of a tumour mass 

after 2 months of follow up (n = 5), providing preliminary indication of the 

safety of the strategy. 
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5.10. Increased engraftment in dystrophic animals upon 
intramuscular delivery  

 

To assess whether the treatment with DLL4+PDGF-BB has a positive impact 

on myoblast engraftment potential a pilot intramuscular transplantation 

experiment was performed. Treated and untreated satellite cells were 

transduced with a nuclear LacZ lentiviral vector; this approach was then 

utilised to allow the detection of the donor-derived nuclei via X-Gal staining in 

an intraspecific mouse-into-mouse transplant. In this experiment 5 x 105 cells 

were intramuscularly transplanted in two dystrophic immunodeficient α-

sarcoglycan-null/Scid/Beige mice. Three weeks after transplantation, the 

animals were humanely culled and the transplanted muscles explanted. X-Gal 

and α-sarcoglycan staining were performed on cryosections of the 

transplanted muscles to evaluate cell engraftment and differentiation (Figure 

26A). We observed an increase in the average number of X-Gal positive 

nuclei in the sections of the muscles transplanted with the DLL4+PDGF-BB 

treated cells, in comparison to the ones transplanted with untreated satellite 

cells (Figure 25B; 44 sections analysed, average number of Xgal positive 

cells / section ± SEM: Satellite cells 10.51 ± 1.74; DLL4+PDGF-BB 110.3 ± 

8.08). Similarly, an increase in the number of donor derived α-sarcoglycan 

positive myofibres (completely absent in this murine model) was observed 

(Figure 25C; 24 sections analysed, average number of αSG positive fibres / 

section ± SEM: Satellite cells 3.58 ± 0.67; DLL4+PDGF-BB 36.96 ± 3.73). 

This data is purely qualitative considering the small sample size (n = 2) and 
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further biological replicates will be required to assess statistical significance 

and validate these preliminary encouraging results. 

 

 

Figure 26. Intramuscular transplantation of reprogrammed satellite cells. 
A The panel shows on the left X-Gal staining to assess the presence of 

nLacZ positive donor derived cells. The central column depicts an overlay of 

the X-gal staining, with immunofluorescence staining to detect the presence 

of the α-sarcoglycan (Sgca), also depicted on the right as an overlay with the 

nuclear dye Hoechst (Scale bar: 180µm). B The graph on the left depicts the 

average number of nLacZ positive nuclei traced in each 7µm-thick muscle 

section analysed ± SEM (44 sections analysed). The graph on the right 

depicts the quantification of the average number of α-sarcoglycan positive 

fibres in each 7 µm-thick muscle section analysed ± SEM (24 sections 

analysed). 
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5.11. Treated satellite cells acquire the ability to cross the 
vessel wall upon intra-arterial delivery 

 

As an additional proof of principle experiment, we transplanted 2.5 x 105 cells 

in the femoral arteries of two Sgca-null/Scid/Bg mice as previously detailed 

(Gerli et al., 2014). Two weeks after transplantation the presence of donor-

derived nLacZ positive nuclei in the muscles downstream of the injection site 

was assessed via whole mount X-gal staining of the hind limbs. The 

presence of donor-derived nuclei was scarce in the animals transplanted with 

control satellite cells, with a total of 2 nuclei identified by stereoscopic 

microscopy (Figure 27A top row). Animals transplanted with treated satellite 

cells instead showed a more marked presence of donor cells at two weeks 

post-transplantation, with up to 53 nuclei identified (Figure 27A bottom row). 

Donor-derived myonuclei were identified upon X-Gal and eosin stainings on 

sections from muscles transplanted with treated satellite cells, indicating 

fusion of donor nuclei with the host myofibres (Figure 27B). 

Immunohistochemistry staining performed on the sections showed that the 

positive nuclei did not co-localise with PECAM-positive vessels (in brown; 

Figure 27C), indicating that treated cells has the ability to cross the blood 

vessel wall upon systemic delivery. Further experiments will be performed 

prior to submission of this project for publication, in order to quantitatively 

support these preliminary observations and assess statistical significance. 
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Figure 27. Evidence of in vivo migration of DLL4+PDGF-BB treated cells 
engrafted upon intra-arterial delivery. A Stereomicroscopic images of 

murine limbs that received untreated (top) and treated satellite cells (bottom). 

Donor-derived nuclei are labelled in blue upon whole mount X-gal staining 

giving preliminary indications of engraftment upon intra-arterial delivery 

(Scale bars: Left 1mm; Right 0.5mm). B The panel shows phase contrast 

images of sections of the muscles explanted from animals that received intra-

arterial delivery of untreated (top) and treated satellite cells (bottom). The left 

images depict haematoxylin and eosin staining showing the presence of blue 

nuclei within the muscle fibres. On the right, immunohistochemistry staining 

for the endothelial marker PECAM (right) performed on the serial sections 

highlight the localisation of the donor-derived X-Gal-positive nuclei outside 

the PECAM positive vessel structures (Scale bar: 100 µm).	
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5.12. Conclusions 
	

The results reported in this chapter indicate that adult muscle satellite cells 

respond to a treatment with the Notch ligand DLL4 in combination with the 

growth factor PDGF-BB, acquiring a pericyte/mesoangioblast-like phenotype. 

The treatment induced a morphological switch from the classic round shape 

typical of satellite cells, to a more elongated morphology that resembles the 

one of fibroblasts / pericytes (Figure 18). An increase in the alkaline 

phosphatase enzymatic activity provided indication of a possible shift towards 

the pericyte lineage (Figure 19). This hypothesis was then verified via qRT-

PCR analysis, showing an increased level of expression of all the pericyte 

markers analysed (TnAP, NG2, SM22, PDGFrβ; Figure 22 and 23).  

The effectiveness of the Notch stimulation was also confirmed upon 

qRT-PCR analyses. The increased expression of Notch1 and its downstream 

targets Hes1 and Hey1, confirmed the presence in treated cells, of an active 

Notch signalling cascade (Figure 22 and 23). This activation led also to a 

Notch-dependent reduction in the myogenic potential of the cells. This 

phenomenon resulted to be fully reversible upon blocking of the Notch 

signalling cascade with a γ-secretase inhibitor (Figure 21). 

Surprisingly, in contrast with our fate switch hypothesis, we observed 

an up-regulation of the satellite cell marker Pax7 indicating that upon 

treatment, the cells maintained a “satellite cell memory”. This Pax7 up-

regulation, in combination with a down regulation of the activation marker 

MyoD, appears to recapitulate what is considered a “quiescence profile” 
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(Figure 22 and 23). In line with this possible “increased quiescence”, treated 

cells showed reduction in their proliferative ability (Figure 20A). This result is 

consistent with what previously reported in other studies involving Notch up-

regulation in myogenic progenitors (Parker et al., 2012a; Quattrocelli et al., 

2014; Wen et al., 2012). Interestingly we confirmed the signalling-

dependence of this phenomenon easily reverting the reduced proliferation 

trend by discontinuing the treatment (Figure 20B).	

Treated cells resulted capable in stabilising endothelial networks in 

vitro upon co-culture with primary endothelial cells (Figure 24). This assay 

models in vitro the ability of pericytes to contribute to vessel stabilisation and 

regulation (Andreeva et al., 1998). The localisation of the cells in proximity to 

the network branches indicated also the role of a physical interaction 

between the two cell types, resembling what happens during Notch/PDGF-

mediated pericyte recruitment operated physiologically by the endothelial 

cells (Armulik et al., 2005; von Tell et al., 2006). Overall these experiments 

provided indication that upon treatment, satellite cells acquire functional 

pericyte properties in vitro. 

Consistently with previous and recent observations on Notch-

stimulated satellite cells and mesoangioblasts (Parker et al., 2012a; 

Quattrocelli et al., 2014), treated cells showed improved engraftment in our 

pilot transplantation experiments in dystrophic mice (Figure 26). Moreover, 

manipulating the Notch and PDGF-BB signalling cascades did not alter the 

safety of the cells upon tumor formation assays. 
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The ability of pericytes / mesoangioblasts to cross the vessel wall 

made this cell type appealing for the development of the cell therapy protocol 

recently exploited in a phase I/II clinical trial (EudraCT no. 2011-000176-33). 

Treated satellite cells showed in vitro ability to migrate through artificial 

endothelial layers superior to the untreated controls and surprisingly even to 

the one observed in control pericytes (Figure 25). Following this path we 

performed a proof-of-principle intra-arterial transplantation experiment in a 

murine model of muscular dystrophy. Three weeks after intra-arterial delivery 

of treated satellite cells, it was possible to identify donor-derived cells outside 

the PECAM-positive vessels and inside the host myofibres. This provided 

preliminarily indication on the possibility of delivering manipulated satellite 

cells/myoblasts through the arterial circulation (Figure 27). 

In conclusion these results show for the first time that a DLL4+PDGF-

BB treatment in adult muscle satellite cells induces a partial fate-switch 

towards the pericyte lineage. This triggers the acquisition of a hybrid pericyte / 

satellite cell phenotype that gives to the cells possible beneficial properties for 

cell therapy. Although further in vivo validation of this strategy will be required, 

the results obtained so far indicate that treated satellite cells acquire pericyte 

features and show an increased engraftment potential (Figures 26 and 27). 

Importantly, these reprogrammed cells acquired improved migration and 

extravasation properties superior to what observed with untreated satellite 

cells. Overall this project highlights that a satellite cell / pericyte conversion 

could be considered a new and exciting strategy to develop novel cell therapy 

strategies for muscle diseases.  
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CHAPTER 6:  

6. RESULTS: Investigation of self-renewal of pericyte 

/ mesoangioblast derived myogenic progenitors 

	

This chapter describes the result achieved in a set of analyses 

complementary to the study on fate plasticity outlined in Chapter 5.  The 

experiments shown above provide evidence of inducible lineage plasticity, 

where satellite cells are reprogrammed to pericyte-like cells. After having 

defined the differentiation capacity of a putative stem/progenitor cell 

population, it is critical to investigate its self-renewal potential. While it is 

reported that satellite cells can self-renew in vivo, even upon serial 

transplantation (Rocheteau et al., 2012) it is not known if 

pericytes/mesoangioblasts could do the same. Pericytes and 

mesoangioblasts have been shown to contribute to the satellite cell pool upon 

transplantation (Dellavalle et al., 2011; Diaz-Manera et al., 2010; Tedesco et 

al., 2011). The set of experiments detailed in this chapter was mainly 

performed to investigate the self-renewal potential of mesoangioblast-derived 

satellite-like cells, using serial transplantation in dystrophic murine skeletal 

muscle. 
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6.1. Wild type mesoangioblasts engraft host dystrophic 
skeletal muscles and generate clonogenic SM/C-2.6 
positive and negative cells 

A first series of transplantation experiments has been conducted using 

previously characterised wild type adult mesoangioblasts (C57-MABs; Diaz-

Manera et al., 2010) as a proof-of-principle of the feasibility of the strategy. 

These cells were previously transduced with a lentiviral vector encoding for 

the GFP (driven by a constitutive PGK promoter) in order to trace them in the 

host muscle (Figure 28A). Scid/mdx mice were used as recipient animals for 

these experiments. The Scid/mdx is an immune-deficient model of DMD that 

allows transplant of non-syngeneic cells (Farini et al., 2007). C57-GFP MABs 

were transplanted intramuscularly (106 cells / injection) into tibialis anterior, 

gastrocnemius and quadriceps muscles of scid/mdx mice (n=4). One month 

after transplantation, the muscles were explanted and analysed under a 

fluorescent stereomicroscope to confirm the presence of GFP-positive areas 

(Figure 28B). The samples were then digested mechanically and 

enzymatically with the aim of isolating mononuclear cells. The cell suspension 

obtained with the digestion was then FACS-purified to retrieve donor-derived 

GFP positive and SM/C-2.6 positive (13.9%; 1.4 x 105 cells) and donor-

derived GFP positive and SM/C-2.6 negative cells (0.13%; 1.3 x 103 cells) 

(Figure 28C). SM/C-2.6 is a monoclonal antibody reported to allow the 

separation of satellite and non-satellite cells (Fukada et al., 2004). Previous 

experiments performed in our laboratory confirmed the identity of the cells 

isolated with this method through immunofluorescence staining for the 

satellite cell marker Pax7 (Tedesco et al., 2011; Figure 4J).  
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The clonogenic assay is a well-established method for testing survival 

and proliferative capability of cells. The ability to form single cell clones is a 

shared property of both satellite cells and mesoangioblasts (Dellavalle et al., 

2007; Molnar et al., 1996; Zammit et al., 2006a). For this reason the two 

donor derived cell fractions were subjected to single cell cloning and showed 

respectively a 20.1% and 68% ability of generating single cell clones (29/144 

and 98/144 of the single cells seeded generated a clonal colony).  

Experimental replicates of the transplanted muscles have been also 

analysed via cryosectioning and immunofluorescence, to confirm the 

presence of GFP co-localised with donor derived dystrophin positive 

myofibres (Figure 28D). Two randomly picked clones were subsequently 

expanded in culture, assessed for myogenic differentiation in vitro and 

transplanted with the same setup utilised for the polyclonal population. After 

one month, the muscles were explanted and processed for imaging as 

described above (representative example in Figure 28E). The results with this 

experiment have indicated the feasibility of the serial transplantation approach 

and have provided preliminary indication that the regenerative potential of 

donor mesoangioblasts is retained also at the clonal level.  
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Figure 28. Serial transplantation of wild type mesoangioblasts in 
dystrophic mice. A Fluorescent microscopy image of the c57-GFP MABs 

utilised for this set of experiments (Scale bar: 50um). B Stereomicroscopic 

image showing the green area, engrafted by GFP-positive cells, in a tibialis 

anterior muscle explanted one month after transplantation (Scale bar: 0.5mm). 

C Dot plot of the FACS sorting performed on the digested muscles aiming to 

isolate the GFP and SM/C-2.6 fractions. D Section of a transplanted muscle 

showing the engrafted GFP positive area. This area co-localises with 

dystrophin-positive fibres traced via immunofluorescence (centre) and 

quantified on the plot on the right (Scale bar: 100µm) E The images show a 

muscle transplanted with a GFP positive SM/C2.6 positive clone. Sections of 

the muscles highlight co-localised positivity for GFP (central) and dystrophin 

(right) indicating the donor origin of the fibres (Scale bar: 0.5mm and 100µm). 
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This last part of the panel is part of the characterisation work currently on 

going, performed under my co-supervision by Chrystalla Constantinou.  
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6.2. Dystrophic mesoangioblasts, genetically corrected with 
a human artificial chromosome, are serially 
transplantable 

	

On the basis of the experiments with wild type mesoangioblasts, a second 

series of serial transplants utilising genetically corrected cells was performed. 

These cells, namely DYS-HAC mesoangioblasts, were previously generated 

from dystrophic mdx mesoangioblasts genetically corrected with a human 

artificial chromosome (HAC) containing the entire human dystrophin locus 

(Tedesco et al., 2011). EGFP was also included in the HAC as fluorescent 

marker to allow cell tracing in transplantation setups. These cells have been 

previously shown capable of long-term engraftment (8 months), generated 

Pax7 positive satellite cells and sustained muscle regeneration after acute 

injury of the transplanted muscles (Tedesco et al., 2011). Here we sought to 

formally assess the self-renewal capacity of these mesoangioblast-derived 

cells in a serial transplantation approach (For a schematic overview on the 

experiment see Figure 29A).  

Transplantation of mesoangioblasts containing the DYS-HAC was 

performed in mdx/scid mice as described above. At variance with the 

experiments performed with wild type mesoangioblasts, in this series of 

transplants we administered 3 x 106 cells / muscle, aiming to increase the 

number of isolated cells, to reduce the culture time required to obtain 

sufficient cells for the following transplantation. One month after the injection, 

the transplanted muscles were mechanically and enzymatically digested. The 
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derived cell suspension was FACS purified for EGFP and SM/C-2.6. Both 

SM/C-2.6 positive and negative fractions have been isolated, cultured and 

cryopreserved for future analyses. We then serially transplanted only the 

SM/C-2.6 positive donor derived fraction, assuming that this contained mostly 

satellite cell. The SM/C-2.6 negative population was harvested, cultured and 

cryopreserved for future analyses. The donor derived SM/C-2.6 positive cells 

were cultured and assayed for their myogenic potential in vitro. After one 

week in myogenic differentiation medium, cells generated large 

multinucleated myotubes positive for myosin heavy chain and human 

dystrophin (Figure 29B), indicating that a subpopulation of transplanted cells 

did not fuse with the host myofibres, maintaining an undifferentiated 

mononuclear state in vivo that allowed re-isolation. The transplanted muscles 

utilised to re-isolate the cells have been assessed for engraftment by 

stereomicroscopic fluorescence. This assay revealed the presence of EGFP 

positive areas in the transplanted muscles indicating the contribution of donor 

cells to the muscle regeneration (Figure 29C). As an additional confirmation 

of engraftment, a series of transplanted muscles was processed and cryo-

sectioned in order to perform immunofluorescence staining to assess the 

expression of the human dystrophin (Figure 29D).  

 



	 156	

 

 

Figure 29. Serial transplantation of genetically corrected DYS-HAC 
mesoangioblasts in scid / mdx mice. A Experimental scheme of the serial 

transplantation of genetically-corrected DYS-HAC mesoangioblast-derived 

cells (Illustrations obtained from Servier Medical Art). B Immunofluorescence 
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staining of in vitro differentiated donor-derived Sm/c-2.6-positive cells 

isolated in light of this project. The cells show the expression of EGFP, 

myosin heavy chain (MyHC) and dystrophin (scale bars 120 µm). C 

Representative stereomicroscopic images showing bright field (top) and 

EGFP-positive area (bottom) of a gastrocnemius muscle explanted after the 

second round of transplant (scale bar 0.5 mm). D Cryostat section and 

immunofluorescent staining of the same muscle shows the expression of 

dystrophin co-localised with the EGFP engrafted area of a serial section 

(scale bar  100mm). E An example of a FACS-sorting dot plot obtained after 

digestion of replicates of the muscle shown in (C). The isolated double-

positive cells are shown in the bottom part of the panel, both in phase 

contrast and by direct fluorescence (scale bar 120 µm). 

The SM/C-2.6 positive cells were also expanded in culture and serially 

transplanted intramuscularly in scid/mdx mice (n = 6). One month after the 

second round of transplantation, muscles were harvested. Some of the 

explanted muscles were included for histological analysis; the remainder were 

digested and isolated cells were FACS-sorted as described above. EGFP-

positive areas visible upon analysis using the stereomicroscope suggested 

successful engraftment of donor cells in host muscles (Figure 30A). EGFP-

positive and SM/C-2.6-positive cells were again cultured and used for a third 

round of serial transplantation in scid/mdx mice (n = 6), scaling down the cell 

number to 2 x 106 cells / muscle. One month later, transplanted muscles were 

harvested, digested and FACS-sorted as described above (Figure 30B). Both 

the EGFP-positive / SM/C-2.6-positive and the EGFP-positive / SM/C-2.6-

negative fractions were collected and amplified. We then performed a single 

cell cloning experiment with the aim of investigating if cells undergoing 3 

rounds of serial transplantation retained their clonogenic ability. Both 
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populations generated single cell clones to a different extent (SM/C-2.6-

positive: 23.61%, SM/C-2.6-negative: 65.6%). Interestingly, two clones (A9 

and B5), obtained from the double positive fraction were expanded and 

transplanted into scid/mdx mice, scaling down the dose to 106 cells / muscle 

(n = 4 / clone) (Figure 30C). Characterisation of the cryosectioned replicates 

from transplanted muscles and of the SM/C-2.6-negative fractions is on going 

as part of the project of Chrystalla Constantinou, an UCL MRes student that I 

am co-supervising, currently working in the laboratory. Overall these results 

indicate that genetically corrected mesoangioblast-derived satellite cells can 

support three rounds of serial transplantation, plus an additional one as single 

cell clones. Both SM/C-2.6 positive and negative (satellite-like and non-

satellite-like) cells were generated at every step, providing indications on the 

ability of these cells to self-renew. 
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Figure 30. Engraftment and isolation of DYS-HAC mesoangioblast-
derived cells upon further rounds of serial transplantation. A 
Stereomicroscopic image of a transplanted muscle at the 2nd round of 

transplantation, with the paired FACS sorting plot (Scale bar: 0.7 mm). B 
Stereomicroscopic image of a transplanted muscle at the 3nd round of 

transplantation, with the paired FACS sorting plot (Scale bar: 0.7 mm). C 
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Stereomicroscopic image of two muscles that have been transplanted with 

cells expanded from single cell clones obtained with the sorting in B (Scale 

bar: 0.7 mm). 

	 	



	 161	

6.3. Fresh isolation of primary pericytes for serial 
transplantation 

To further test the hypothesis that pericytes are able to generate self-

renewing cells in vivo, a series of experiments combining serial 

transplantation and lineage tracing experiments was recently established. 

Transplanting freshly isolated cells, we aim to eliminate the possible cell 

culture bias. Moreover, under physiological conditions, the number of resident 

myogenic progenitor is not as abundant as in a transplantation setup. For this 

reason, we decided to reduce the number of transplanted cells (down to 104 

cells / injection). Compared to the experiments based on cultured 

mesoangioblasts shown above, this fresh-isolation strategy aims to get closer 

to the natural process of muscle regeneration.  

The isolation of primary pericytes from freshly explanted tissues was 

performed using the tissue non-specific alkaline phosphatase (TnAP)-

CreERT2 mouse model (Dellavalle et al., 2011). In these animals the Cre 

recombinase is specifically expressed only in TnAP positive cells upon 

exposure to tamoxifen. To perform this series of experiments the TnAP-

CreERT2 mice were crossed with a reporter mouse that carries a floxed 

fluorescent YFP cassette (Srinivas et al., 2001). Subcutaneous injection of 

the oestrogen receptor ligand Tamoxifen in juvenile mice activates the 

recombination and permanently label the TnAP positive cells with the YFP 

fluorescent marker as previously described (Dellavalle et al., 2011). The 

timeline of the administrations detailed in Figure 31A. Isolation of YFP-

positive pericytes was performed using a FACS sorter; isolated cells were 
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viable and positivity for the YFP was confirmed by immunofluorescent 

staining (Figure 31B). 

Transplantation of 104 cells was performed in scid/mdx mice as 

outlined in the schematic representation in Figure 31C. One month after 

transplantation it was possible to isolate YFP-positive, SM/C-2.6-positive cells 

(representative sorting dot plot in Figure 31C. This confirmed that primary 

pericytes give origin to satellite-like cells in vivo, consistently with the data 

obtained in MAB cell lines.  

A reported drawback of the YFP reporter is its faint brightness(Shaner 

et al., 2005). For this reason, together with the lower number of injected cells, 

made the identification of donor-derived cells within the transplanted muscles 

challenging (Figure 31D). However, the number of dystrophin-positive fibres 

in two transplanted tibialis anterior muscles was counted and found increased 

when compared to age-matched non-transplanted controls (Figure 31D, right; 

average number of dystrophin-positive fibres / section ± SEM: transplanted 

55.43 ± 5.186; control 27.55 ± 2.38; 2 animals transplanted and analysed). 

Having age-matched controls (either littermates or an un-transplanted PBS 

injected contralateral muscle from the same animals) is relevant when 

working with scid/mdx mice. In this murine model, some muscle fibres 

undergo a spontaneous exon-skipping event that allows sporadic expression 

of a truncated form of dystrophin on the myofibres’ sarcolemma. These 

myofibres, known as revertant fibres, create a “background noise" that might 
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be problematic in transplantation studies (Pigozzo et al., 2013), in particular 

when the number of transplanted cells is very limited as in this experiment. 

 

Figure 31. Fresh isolation and transplantation of primary pericytes. A 

Tg:TNAP-CreERT2 mice were crossed with R26R-YFP reporters (top), 
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Tamoxifen-induced Cre-Lox recombination was induced following the 

depicted timeline (bottom) and utilised to isolate primary pericyte. The right 

part of the panel depicts a representative sorting plot to isolate primary YFP-

positive pericytes. B Phase contrast and immunofluorescence image of 

freshly-isolated YFP-positive pericytes obtained from the progeny of the 

crossing shown in A (scale bar 100 µm). C Schematic representation of the 

transplantation experiment performed using freshly-isolated pericytes. The 

right part of the panel shows the FACS-sorting dot plot of the cells obtained 

from the transplanted muscles. SM/C-2.6 positive satellite-like cells are 

labelled with an APC fluorochrome. D Immunofluorescence staining showing 

dystrophin and YFP expression on a section of muscle transplanted with 

TNAP-YFP pericytes (scale bar 100 µm). The graph on the right shows 

quantification of the number of dystrophin-positive fibres compared with the 

ones present in an age-matched untransplanted control, aiming to quantify 

the difference in comparison with the baseline number of revertant fibres 

normally present in the scid/mdx mice (Illustrations obtained from Servier 

Medical Art).. 
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6.4. Conclusions 
	

The serial transplantation experiments detailed in this chapter were designed 

to test the self-renewal potential of mesoangioblast-derived cells (presumably, 

donor-derived satellite-like cells). Wild type mesoangioblasts successfully 

engrafted the transplanted muscles giving rise to dystrophin positive fibres. 

These cells were able to generate in vivo SM/C-2.6 positive satellite-like cells 

(Figure 28A-D), which were able to generate single cell clones, capable to re-

engraft dystrophic muscles also upon clonal expansion. This set of data 

provided indications on the self-renewal potential of mesoangioblasts in vivo 

(Figure E).  

A more extensive series of serial transplantation experiments was 

performed using genetically corrected mesoangioblasts containing the DYS-

HAC. These cells already showed a remarkable engraftment potential, the 

ability to regenerate the engrafted tissue upon serial injury and to contribute 

to the satellite cell niche (Tedesco et al., 2011). We report here the ability of 

these mesoangioblast-derived satellite-like cells to serially engraft the 

dystrophic muscles. These cells successfully supported three subsequent 

round of transplantation and re-isolation, generating at each round both 

donor-derived SM/C-2.6 positive and negative cells (Figure 29 and 30). Both 

fractions successfully generated single cell clones after three rounds of serial 

transplantation, indicating that the engraftment in vivo did not impair their 

clonogenic potential. Two randomly picked clones have also been expanded 

and transplanted. These cells engrafted the host muscles indicating their 

preserved myogenic potential (Figure 30C).  
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Overall these data indicate that mesoangioblast-derived satellite-like 

cells are capable of self-renewal upon serial transplantation. It is important to 

mention that due to the articulate process of chromosome transfer requiring 

long term culture and single cell cloning, the DYS-HAC mesoangioblasts have 

lost their spontaneous myogenic potential. For this reason, the starting cells 

have been previously transduced with a lentiviral vector containing MyoD as 

reported in Tedesco et al. (2011). Despite the constitutive expression of 

MyoD, we were able to isolate SM/C-2.6 positive and negative DYS-HAC 

mesoangioblasts-derived mononuclear cells at each round of transplantation. 

This indicates that a fraction of the donor-derived cells did not fuse with the 

host myofibres upon transplantation, acting as a progenitor-reservoir available 

for further rounds of regeneration despite the expression of a factor normally 

associated with commitment more than with self-renewal. This last 

observation is in line with what was published by Zammit and co-workers on 

the dynamics of the endogenous MyoD expression in primary mouse satellite 

cells (Zammit et al., 2004). 

The preliminary results obtained with fresh isolation of TnAP-positive 

pericytes indicate that a serial transplantation approach could be used to 

investigate the self-renewal potential of these cells. However, indications 

obtained with the pilot experiment of transplantation / isolation of YFP cells 

suggested the use of a brighter fluorescent marker will be required to perform 

this series of experiments.  
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CHAPTER 7:  

7. Discussion 

	

The data reported in this thesis aim to improve our understanding of 

myogenic progenitor biology, particularly focusing on muscle satellite cells 

and pericyte-derived mesoangioblasts, with the aim of developing efficacious 

and long-lasting cell therapy protocols to treat muscular dystrophies. A first 

phase of this project has been dedicated to establishing and optimising the 

available techniques to deliver cells via local intramuscular injection and 

through the vascular route of dystrophic mice. These improvements, detailed 

in chapter 4.1, allowed me to perform the in vivo experiments detailed in 

chapter 5 and 6.  

The results reported in chapter 5 indicate that adult murine satellite 

cells can be conditionally reprogrammed to a pericyte-like fate, upon 

exposure to a combination of the Notch ligand DLL4 and the growth factor 

PDGF-BB. A similar approach, recently described by Cappellari and 

colleagues, demonstrated the acquisition of a pericyte-like phenotype by 

embryonic myoblasts (Cappellari et al., 2013). To our knowledge, this work 

represent the first report indicating that adult satellite cells retain a similar 

level of plasticity. 

With this innovative approach we aimed to make the first steps to 

overtake the major hurdle faced in the development of cell therapy protocols 
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based on satellite cells / myoblasts. Although myoblasts are relatively easy to 

isolate and possess a remarkable myogenic potential, their limited migration 

ability compromised the results achieved in cell therapy protocols based on 

this cell type (Sampaolesi et al., 2003). Having cells with a strong migration 

potential is a crucial requirement to treat large muscular districts affected by 

pathologies like muscular dystrophies (Benedetti et al., 2013; Tedesco and 

Cossu, 2012). Pericyte-derived mesoangioblasts on the other hand, have 

been shown to contribute to muscle regeneration in different animal models 

of muscular dystrophy (Dellavalle et al., 2007; Diaz-Manera et al., 2010; 

Galvez et al., 2006; Gargioli et al., 2008; Giannotta et al., 2014; Sampaolesi 

et al., 2006; Sampaolesi et al., 2003) and are now undergoing clinical 

experimentation with a Phase I/II clinical trial (EudraCT no. 2011-000176-33). 

Our results highlight that adult satellite cells treated with DLL4 and 

PDGF-BB show an increased pericyte marker expression (TnAP, NG2, 

SM22, PDGFrβ), indicating that the level of plasticity so far observed only in 

embryonic myoblasts may be conserved in adulthood. Active Notch signalling 

was confirmed by the increased expression of Notch1 and its downstream 

targets Hes1 and Hey1, indicating the effectiveness of the treatment. The up-

regulation of the PDGF receptors is a known phenomenon in cells with an 

active Notch signalling cascade (Jin et al., 2008). Our strategy might then 

activate a loop leading, through Notch stimulation, to an increased cell 

response to PDGF supplementation.  
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The gene expression analyses conducted by qRT-PCR (Figure 21 and 

22) have been recently extended to a high-throughput gene expression 

profiling using RNA microarrays (Affymetrix GeneChip® Mouse Genome 

430). This set of experiments, performed in collaboration with the team of 

Professor Enrico Tagliafico (Università di Modena e Reggio Emilia, Italy), aim 

to study the clustering of the treated cells in comparison with control 

untreated satellite cells and with control pericytes in a principal component 

analysis. Moreover, these on-going analyses will be extended to other 

muscle cell types, utilising dataset available in the literature (i.e. meta-

analyses). Different sets of genes will then be analysed paying particular 

attention to molecules involved in cell migration, relevant signalling pathways, 

myogenic differentiation genes and other mesodermal progenitor markers. 

Novel potential pericyte marker genes, recently identified in a project 

currently on-going in the laboratory of Professor Giulio Cossu at the 

University of Manchester, will be also assessed for possible up-regulation 

(Moreno-Fortuny A. and Cossu G., unpublished results). The datasets 

generated in light of this collaboration will be also uploaded on the GEO 

repository to make it freely accessible to other researchers in the field. The 

results of these gene expression-profiling experiments will help to unravel the 

molecular mechanism of the fate switch observed in this project. 

Several reports available in the literature have shown that 

transplanted freshly isolated cells (Montarras et al., 2005), myofibres (Collins 

et al., 2005) and even whole muscle biopsies (Zhang et al., 2014), have a 

superior engraftment ability when compared to cultured cells, mainly because 
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a more quiescent status (and/or the niche)  is preserved. Our results suggest 

that, at variance with their embryonic counterpart (Cappellari et al., 2013), 

adult satellite cells may acquire a more “quiescent-like” gene expression 

profile upon DLL4 and PDGF-BB treatment. This is reflected in the down-

regulation of the activation marker MyoD and in a low but consistent up-

regulation of the quiescence marker Pax7 (no statistical significance 

observed for this gene). This gene expression profile resembles also the one 

observable in freshly isolated satellite cells. We believe this supported the 

improvement in the engraftment efficiency observed in our proof-of-principal 

transplantation experiments. This improved engraftment is also consistent 

with what observed in other studies on Notch-stimulated satellite cells and 

mesoangioblasts (Parker et al., 2012a; Quattrocelli et al., 2014). Consistently 

with our “increased quiescence” theory, treated cells showed also a reduction 

in their proliferation and myogenic potential in vitro. These observations 

complement what previously reported in other studies involving Notch up-

regulation in myogenic progenitors (Parker et al., 2012a; Quattrocelli et al., 

2014; Wen et al., 2012). Our results confirmed also that these phenomena 

are signalling-dependent. However, these variations did not affect the cell 

expansion required to perform in vivo experiments.  

It has to be mentioned that for the reported series of qRT-PCR 

experiments GAPDH has been used as normalizer. Although its use is 

commonly accepted, a recent report from Hildyard and Wells indicated that 

this gene might not retain the same level of expression in differentiating 

myogenic cells and it might not be an ideal gene expression normaliser. For 
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this reason the use of Csnk2a2 and Ap3d1 will be taken into account for 

future experiments involving myogenic cells (Hildyard and Wells, 2014). 

Similarly to bona fide pericytes, treated cells were capable to stabilise 

endothelial networks in vitro. This indicated that the treatment not only 

induced pericyte marker expression, but also that the cells acquired functional 

pericyte properties. As an additional validation experiment, future analyses 

might include in vivo Matrigel plug assays. In this technique, a mixture of 

HUVEC, treated / untreated cells and Matrigel is administered 

subcutaneously to immunodeficient mice to assess the formation of a 

vascular network (Akhtar et al., 2002).  

The migration ability of pericyte-derived mesoangioblasts led to the 

development of a cell therapy protocol recently used in a phase I/II clinical 

trial (EudraCT no. 2011-000176-33). Our results indicated that the pericyte-

like phenotype acquired by our treated satellite cells was reflected also in an 

improved migration through artificial endothelial layers in vitro. In light of 

these results we performed a proof-of-principle intra-arterial transplantation 

experiment. Notably, three weeks after transplantation we have identified 

donor-derived cells that migrated towards the blood vessel walls downstream 

of the injection site and contributed to muscle regeneration.  

With the aim of improving the migration ability observed in treated 

satellite cells even further, a proposed follow up to this project could include 

testing a combination of molecules known to stimulate cell migration such as 

Diprotin A, Adiponectin or SDF1 (Fiaschi et al., 2010; Galvez et al., 2006; 
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Parker et al., 2012b). Moreover, a recent work published by Giannotta, 

Benedetti and colleagues showed that pharmacological inhibition of the 

GTPase Rap1 significantly increase engraftment and migration ability of intra-

arterially transplanted mesoangioblasts impeding the tightening of endothelial 

cell junctions targeting the molecule JAM-A (Giannotta et al., 2014). It is not 

unconceivable that this mechanism, in combination with the strategies 

mentioned above, might also be exploited to improve the migration of cells 

obtained with the protocols detailed in this thesis. 

It will be important, as a follow up of this study, to assess if the Notch / 

PDGF stimulation elicits a similar response in human cells. Human 

myoblasts, isolated on purpose or obtained from bio-banks are currently 

being subjected to the stimulation aiming to investigate their possible fate 

plasticity. A pilot experiment we recently performed treating human myoblast 

indicates that the treatment has no visible effect on morphology, induces an 

up-regulation of the alkaline phosphatase activity (Figure 32A) but appears 

not to alter the myogenic differentiation potential of the cells (Figure 32B). 

Although a more systematic analysis of additional cell population may be 

required, this preliminary experiment suggests that further studies are 

needed to adapt the treatment conditions to human cells. 

If an adaptation of this protocol to human cells will be successful it 

may allow the generation of a novel hybrid human pericyte-like cell type with 

relevance for possible future clinical applications. The ideal cells will harbour, 

upon treatment, the key properties of both pericytes and satellite cells: 
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namely, the ability of crossing the vessel upon systemic delivery combined 

with high myogenic potential and ability to self-renew.	

Figure 32. Assessment of alkaline phosphatase activity and myogenic 
differentiation potential of treated human myoblasts. The panel shows 

the results of a preliminary experiment conducted using one line of human 

myoblasts. A The image shows a staining for the alkaline phosphatase 

activity on untreated and treated human myoblasts (Scale bar: 100um). The 

percentage of AP positive cells is quantified on the right (Untreated 10.96% ± 

0.84 SEM; Treated 65.72% ± 3.05 SEM). B Immunofluorescence staining for 

Myosin Heavy Chain performed on untreated and treated human myoblasts 

subjected to terminal myogenic differentiation assay (Scale bar: 140um). The 

graph depicts the percentage of cells within the  (Untreated 24.03%  ± 1.11 

SEM; Treated 26.86% ± 2.51 SEM). 

The self-renewal potential of satellite cells has been formally demonstrated by 

Rocheteau and colleagues in a rigorous serial transplantation setup 

(Rocheteau et al., 2012). Previous reports from our group indicated that 

pericyte- and mesoangioblast-derived cells repopulate the satellite cell niche 
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and generate Pax7 positive cells during muscle regeneration and upon 

transplantation (Dellavalle et al., 2011; Tedesco et al., 2011). 

Mesoangioblasts were also capable of sustaining long-term engraftment and 

a subsequent round of regeneration upon acute myoinjury (Tedesco et al., 

2011).  

Understanding if pericytes are capable of generating self-renewing 

cells upon transplantation has a crucial importance, considering the impact 

this might have on novel cell therapy protocols arising for the recent 

mesoangioblast-based clinical trial. Moreover, investigating if pericyte-like 

cells possess this property, is also important in light of the results detailed in 

chapter 5 in which satellite cells are shifted towards that lineage. The 

experiments reported in chapter 6 were designed to investigate if 

mesoangioblasts are capable of generating self-renewing satellite-like cells by 

means of serial transplantation assays.  

Wild type mesoangioblasts engrafted the host muscles and generated 

satellite-like cells. It was then possible to re-isolate these cells that re-

engrafted dystrophic muscles and generate single cell clones. We extended 

these findings to genetically corrected mesoangioblasts, which allowed the 

generation of serially transplantable satellite-like cells up to three round of 

transplantation. We subjected the cell population isolated from the third round 

of transplants to single cell cloning and then re-transplanted two of these 

randomly picked clones, with the aim of confirming the potency of 

engraftment also at the clonal level. Genetically corrected mesoangioblasts 
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successfully supported three subsequent round of transplantation and re-

isolation, generating at each round both donor-derived SM/C-2.6-positive 

(satellite) and negative (non-satellite) cells. With the exception of a single 

report from Sacco and colleagues (Sacco et al., 2008), transplantation of a 

single cell in the skeletal muscle is known to be extremely challenging 

(Rocheteau et al., 2012). Experiments using donor-derived single cell clones 

obtained from transplanted muscles could recapitulate the behaviour of a 

single cell, subjected to subsequent rounds of amplification during tissue 

regeneration, indirectly providing indications on the potential of these cells.  

Replicates of the muscles serially transplanted with genetically 

corrected DYS-HAC mesoangioblast have been cryopreserved and are now 

being cryosectioned and analysed by immunofluorescence staining and 

molecular biology techniques (such as qRT-PCR) to evaluate the efficiency of 

the engraftment. This characterisation is part of a project developed under my 

co-supervision by Chrystalla Constantinou (UCL MRes student). 

The main limitation of this set of experiments was the use of cells lines. 

Although these cells have been utilised and characterised from recent 

previous studies, the long-term culture might have introduced a bias in our 

evaluation of their potency. With the aim of overcome this limitation we 

decided to perform a series of serial transplantation experiments using freshly 

isolated cells, obtained crossing the TnAP-CreERT2 mouse with the R26R-

YFP reporter. Isolation of YFP-positive pericytes was performed using the 

FACS sorter but although the cells were viable and positive for the YFP, the 
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weakness of the fluorescence of this reporter, impeded tracing the cells in the 

transplanted muscles.  

To overcome the limitation in the ability to trace the cells, pericytes 

have been recently isolated in the laboratory from TnAP-CreERT2-R26R-

tdTomato mice. These animals were obtained upon crossing the TNAP-

CreERT2 mice with a reporter mouse that carries a tdTomato fluorescent 

cassette, whose fluorescence is brighter than the one of the YFP (Madisen et 

al., 2010; Shaner et al., 2005). With the aim of improving the detection of few 

donor cells in a dystrophic muscle, the freshly isolated TNAP-tdTomato 

pericytes will be transplanted in α-sarcoglycan-null/scid/beige mice (Tedesco 

et al., 2012), excluding the bias of the revertant fibres not present in this 

model.  

Serial transplantation of freshly isolated pericytes will be performed for 

at least three rounds of transplantation / isolation aiming to validate what 

observed with the two mesoangioblast cell lines. A single-cell cloning assay 

will also be performed on the serially transplanted TnAP-tdTomato pericyte-

derived cells to analyse if their clonogenic potential is in line with the 

observations reported in this thesis. Some of these experiments have been 

recently performed under my co-supervision as part of Chrystalla 

Constantinou MRes project. These results will be included as original data in 

her final dissertation.  

The data obtained so far provided indications that mesoangioblast-

derived satellite-like cells are capable of self-renewal in a serial 
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transplantation setup. Notably donor-derived SM/C-2.6-negative myogenic 

cells were present and have been isolated from each isolation experiment 

performed. The generation of pericytes/mesoangioblasts in vivo upon 

transplantation of satellite-like cells cannot therefore be excluded. While the 

possibility of performing serial transplantation experiments with these cells is 

currently under consideration, the characterisation of these negative fractions 

is in the pipeline. If these results will indicate the presence of satellite cell-

derived mesoangioblasts in the negative fractions, the mechanism underlying 

this fate switch will be investigated aiming to dissect the biological relevance 

of this phenomenon.  

Meaningful insights about the mechanisms guiding this fate plasticity in 

vivo will come also from the microarrays performed for the project described 

in chapter 5. These results might provide significant information that will help 

to unveil what rules the homeostatic balance between satellite cells and 

pericytes. Particular attention will be given in comparing the signals in use to 

induce the fate switch in vitro (Notch activation and PDGF-BB) with the ones 

involved in the self-renewal mechanism, aiming to investigate a possible 

correlation between the two phenomena. 
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