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Abstract 

Geographical Information Systems (GIS) have become widely used for applications 

ranging from web mapping services to environmental modelling, as they provide a rich 

set of functions to solve different types of spatial problems. In the meantime, 

implementing GIS functions in an accurate and efficient manner has received attention, 

throughout the development of GIS technologies. This thesis describes the development 

and implementation of a novel geo-processing approach, namely Combinative Geo-

processing (CG), which is used to address data processing problems in GIS. 

The main purpose of the CG approach is to improve the data quality and efficiency of 

processing complex geo-processing models. Inspired by the concept of Map Calculus 

(Haklay, 2004), in the CG approach GIS layers are stored as functions and new layers 

are created through a combination of existing functions. The functional programming 

environment (Scheme programming language) is used in this research to implement the 

function-based layers in the CG approach. Furthermore, a set of computation rules is 

introduced in the new approach to enhance the performance of the function-based layers, 

such as the CG computation priority, which provides a way to improve the overall 

computation time of geo-processing. 

Three case studies, which involve different sizes of spatial data and different types of 

functions are investigated in this research in order to develop and implement the CG 

approach. The first case study compares Map Algebra and our approach for 

manipulating two different raster layers. The second case study focuses on the 

investigation of a combinative function through the implementation of the IDW and 

Slope functions. The final case is a study of computational efficiency using a complex 

chain processing model.   

Through designing the conceptual model of the CG approach and implementing the CG 

approach in the number of case studies, it was shown that the new approach provides 

many advantages for improving the data quality of geo-processing. Furthermore, the 

overall computation time of geo-processing could be reduced by using the CG approach 

as it provides a way to use computer resources efficiently and avoid redundant 

computations. Last but not least, this thesis identifies a new research direction for GIS 

computations and GIS software development, such as how a robust geo-processing tool 
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with higher performance (i.e. data quality and efficiency) could be created using the CG 

approach. 
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1. Introduction 

1.1 Background 

Geographical information systems (GIS) form a powerful set of spatial analysis tools, 

where spatial data processing contributes significantly to the quality of the information 

and critically affects a GIS user’s ability to carry out reliable and valid analysis. In 

principle, spatial data processing provides a comprehensive computation progress, 

including input data, functions operating on the input data, and the output or 

visualisation of the results. Spatial data processing components can be linked together in 

order to build different types of geo-processing models, which can then be used for 

more advanced spatial analyses within various contexts, such as urban planning, climate 

modelling, utility network management and transport network analysis. 

Due to the rapid development of GIS technologies, various implementation approaches 

and tools for spatial data processing are already available within GIS software, with one 

of the most common approaches being geo-processing. This is based upon a framework 

of data transformation, which allows users to interpret data and functions obtained from 

different resources (Krivoruchko and Gotway-Crawford, 2003). Geo-processing tools 

were first developed and applied in the UK and US in the 1950s in order to reduce map 

production and maintenance costs (Vulera, 2011). Currently, geo-processing is a 

popular approach within GIS for decision-making and risk assessment purposes due to 

the large number of functions provided, such as the integration of geographical features, 

features selection and analysis, topology processing, raster processing, and spatial data 

conversion (Sommer and Wade, 2006). 

A common characteristic of the traditional geo-processing approach is the sequential 

computation for implementing a set of functions or a geo-processing model, and Figure 

1-1 displays a sequential computation in a simple chain processing model. The system 

initially loads ‘Input Data1’ into the function ‘Funtion1’, which yields the output 

‘Output1’; ‘Output1’ is then used as input data for the next function ‘Function2’, which 

returns the final result ‘Ouput2’. This sequential computation strategy is applied in the 

traditional geo-processing approach for the implementation of various geo-processing 

models mainly due to the fact that many GIS software packages have been developed 

using imperative programming languages (e.g. Java and C++), where a function must be 
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completed and return a value before it can be used by the next function and so on. 

 

Figure 1-1 An example of the simple chain process. 

A sequential computation may introduce uncertainties and errors into the traditional 

geo-processing approach. For example, the conversion of spatial data is one of the 

primary areas where different types of results need to be transferred and converted into 

a specific data format. The influence of data uncertainty is potentially increased when 

spatial data are converted from ‘one system to another’, ‘one data format to another’ or 

‘one resolution to another’. Furthermore, round-off errors during numerical 

computations, re-sampling operations, and error propagation can also affect the quality 

of geo-processing results, and these will be discussed in more detail in Section 2.3.3.  

Given the aforementioned problems, this research investigates a number of 

methodologies for improving the performance of processing GIS data and functions, 

especially with respect to data quality and computational efficiency. The next section 

commences with a brief discussion on geo-processing models in order to explain the 

major functionalities. 

1.2 Geo-Processing Models 

A geo-processing model aims to help individuals to understand a problem and study the 

effects of different factors in the real world in order to identify solutions and make 

predictions (Longley et al., 2005). The major functionalities of a geo-processing model 

include: 

a) A simplified way to describe a relationship amongst various spatial problems 

The primary target of a geo-processing model is to use suitable tools to 

understand the relationships between the factors for a specific problem. For 

example, when users want to evaluate site suitability there are several factors 

that may need to be considered, such as land cost, elevation and slope, the 

transport network, and residential distributions. Overlaying the data for the same 

area helps users to understand the relationships between them. 
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b) To solve problems, find potential patterns, and support decision-making 

A geo-processing model provides a powerful tool for manipulating different 

types of GIS data and functions in order to answer questions such as ‘where is 

the best location?’ Consequently, the results will help users to understand 

different types of problems in the real world. 

c) To provide an assumption or prediction 

Many successful applications have been created for modelling environmental 

problems and for making predictions. For example, when predicting areas where 

flooding may be an issue, users need to assess the amount of rainfall, acquire 

information about river discharges, and utilise a terrain model.  

A geo-processing model may involve different types of GIS data and functions in order 

to solve complex spatial problems, and a geo-processing tool provides a useful way to 

implement and manipulate various geo-processing models. Consequently, different 

spatial questions can be answered using geo-processing tools, such as ‘Where is the best 

location to live?’ or ‘What spatial features does this region include?’ 

An example of a geo-processing model is how a site for a new school in Stowe, 

Vermont, USA was identified (ESRI, 2011). The model included four steps: (a) define 

input datasets, which include land use, elevation, recreation site locations, and existing 

schools; (b) calculate the slope and distance data from the inputs; (c) reclassify the new 

datasets; and (d) weight datasets and combine them in order to identify suitable 

locations. The resultant map displays suitable locations for the new school, and is an 

integrated map of the four different classification layers (Figure 1-2). 
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Figure 1-2 The site selection model for identifying a potential school location (Source: ESRI 2011). 

1.3 Research Motivation 

Although the traditional geo-processing approach offers a convenient means for dealing 

with different types of GIS data and functions within a geo-processing model, GIS 

experts have already identified many limitations. For example, Box argues that ‘.. all 

models are wrong. We make tentative assumptions about the real world which we know 

are false but we believe may be useful’ (1979, pp.201-236). It should be noted that the 

assumptions and predictions of GIS models may introduce various data uncertainties 

and errors, which are discussed later in this thesis. 

In this research the term ‘data uncertainty’ refers to the lack of certainty with regards to 

spatial data processing, such as assumption values, raster data re-sampling, error 

propagation and round-off errors during numerical computations (Devillers and 

Jeansoulin, 2010). The influence of data uncertainty issues are very difficult to manage 
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within the traditional geo-processing approach, as most geo-processing models are 

calculated straightforwardly and without the progress of data quality control. Therefore, 

many GIS users apply spatial data analysis using the traditional geo-processing 

approach under the assumption that data processing is entirely error free (Burrough and 

McDonnell, 1998). However, to further clarify the importance of errors in this context, 

consider the following geo-processing scenarios and their associated data quality 

problems: 

 Geo-processing operations often produce results that are generated by 

aggregating or disaggregating form input datasets. A common example is the 

application of Digital Elevation Model (DEM) data. With the aim of integrating 

geographical information, DEM data are often upscaled or downscaled to 

provide estimated elevation values for a particular scale, and during this process 

spatial interpolation methods, such as Kriging and inverse distance weight 

(IDW), are frequently employed for re-sampling raster data. However, the 

interpolation methods provide only estimated values for attributes associated 

with the newly created features, not the real values. Therefore, how to control 

data quality and the impact of estimated values during geo-processing should be 

considered.  

 Vectorisation is a geo-processing function for converting a raster image to vector 

data. In common GIS tools, such as ArcGIS, the vectorisation function includes 

two different algorithms: (a) to generate vector lines along the centre of the 

raster linear elements; and (b) to generate vector lines at the border of the 

connected cells. However, which algorithm represents more closely the true 

features and what is the impact of these algorithms on subsequent computations?  

 Raster data provide a simple data structure for representing spatial information. 

However, the resolution of the raster significantly affects the data quality. In a 

raster image with a resolution of five metres, any points located within the same 

grid will be represented as the same value even they are five meters apart. What 

will happen if users apply this image as the input dataset to generate a new 

output and how are errors propagated in this context? 

These scenarios indicate that data quality problems influence different types of geo-

processing models. Moreover, there are a number of existing problems in spatial data 

processing: 
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 Data conversion: The main characteristic of geo-processing is to link various 

functions into an integrated model, whereby data conversion is a basic process to 

transfer the results from different type of functions. When spatial data are 

converted, there is the potential of increasing the error in the resulting data 

(Devillers and Jeansoulin, 2006). 

 Numerical computation: This is widely used by current GIS software packages, 

such as ArcGIS, MapInfo, GRASS, and Manifold, for data processing. This 

method uses numerical approximation algorithms to represent mathematical 

equations, and it is worth noting that there is an error between approximated 

values and true values. The accumulated errors in traditional geo-processing may 

directly affect the quality of the final result (Hildebrand, 1987). 

 Error propagation: One of the most important functionalities of geo-processing 

is to derive new attributes from attributes already held within a GIS database. 

However, no data stored in a GIS database are truly error-free and no GIS tools 

exist that can mitigate the effect of error propagation in a reliable manner 

(Heuvelink, 2006). 

 Cost of large computation resources: In addition to data quality, the 

computational efficiency when processing a large spatial dataset has also 

attracted attention in recent years. There are many potential issues concerning 

current geo-processing tools with respect to computational efficiency, for 

example, spatial data always needs to be processed by entire region, not by the 

specific request. 

Finally, the influence of data uncertainties and computational efficiency during data 

processing may cause additional and more critical problems (e.g. system damage) when 

such geo-processing models are used to solve spatial problems in the real world. For 

example, the interpolation method (e.g. IDW) in GIS is commonly used to produce 

DEM data in order to describe land surface features (i.e. elevation values), and many 

engineering applications rely on DEM data (e.g. hydrological system, infrastructure 

network, property construction, and utility services). Therefore, if DEM data produced 

by a geo-processing model includes a significant level of data uncertainties or errors, 

then there is the potential for many issues to occur following the application of such 

data, e.g. flooding, infrastructure system failures, transport network system failures, or 

water supply system damage.  
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1.4 Research Aims and Objectives 

A number of existing problems concerning the traditional geo-processing approach have 

been briefly discussed in the previous section. Further details on the causes of these 

problems and their effects on spatial data processing will be discussed in Sections 2.3 

and 2.4. Based on their influences on spatial data processing, the current issues 

concerning geo-processing can be classified into two categories: data quality and 

computational efficiency. Table 1-1 provides a summary of the problems with the 

traditional geo-processing approach and their categories. It should be noted that this 

thesis focuses on the computation method, and applying how GIS data and functions are 

processed, and not on the technical issues of data acquisition and measurement. 

Table 1-1 Brief summary of the existing issues concerning the traditional geo-processing approach. 

Issues Problem Category  

Spatial data conversion 

Data Quality Numerical computation 

Error propagation 

Large computation  

resources cost 

Computational efficiency (Overall 

computation time) 

 

This thesis proposes the combinative geo-processing (CG) approach in order to improve 

the traditional geo-processing approach. Specifically, this thesis aims to improve data 

quality and reduce the overall computation time of geo-processing using the CG 

approach. The two main research objectives of this thesis are outlined below.  

As shown in Table 1-1, the first category of geo-processing issues is data quality, which 

is an important research topic in GIS because it heavily affects the quality of the 

information generated. This topic has been actively pursued since the 1980s, and 

previous researchers have shown that errors cannot be avoided but can be managed 

(Heuvelink, 2006; Krivoruchko and Gotway-Crawford, 2003; Devillers and Jeansoulin, 

2006). In order to provide accurate outcomes in geo-processing, the first objective of 

this thesis is to improve the quality of the data using the CG approach and to validate 
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the results by comparing them with the traditional geo-processing approach. This 

objective leads to the following research questions:  

 How can the data quality be improved in the CG approach?  

This requires an exploration of the methods that can be applied in the CG 

approach to improve data quality and also how these methods can be 

implemented in the CG approach.  

 How can the results of the CG approach be validated? 

 

The second category of the problems illustrated in the Table 1-1 is the computational 

efficiency of geo-processing. GIS is widely used in various fields, such as 

transportation, environmental modelling, asset management, and citizen science. 

Nevertheless, computational efficiency is a major concern for the development of GIS 

tools as the size of spatial datasets and the complexity of spatial problems are 

dramatically increasing (Brown and Coenen, 2000). Moreover, the CG approach is 

employed to process large geographical data and complex GIS functions then there is 

the potential risk of heavy computation time costs, as many computation rules (e.g. 

symbolic computation) will be used to improve the data quality and may potentially 

extend the overall computation time. Therefore, the second objective of this thesis is to 

improve the overall computation time of geo-processing using the CG approach and to 

validate the results by comparing them with the traditional geo-processing approach. To 

address this objective the following research questions should be explored:  

 What methods can be applied to reduce the overall computation time in geo-

processing? 

 How can computer resources (e.g. computer memory and CPU) be efficiently 

used for the geo-processing computations?  

 How can redundant computations be avoided in a geo-processing model?  

 How can the results from the CG approach be validated? 

 

1.5 The Structure of Thesis 

The CG approach is a multidisciplinary concept and consequently this research includes 

many important topics, such as functional programming, data quality, computational 

efficiency, and so on. Therefore, it is necessary at this stage to provide a brief overview 

of the thesis outline.  
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The research is organised into four steps for the development of the CG approach: 

Step 1: An extensive review of the traditional processing of GIS data and 

functions, and potential methods that can be applied in the CG approach 

(Chapter 2).   

The major characteristics of the traditional geo-processing approach and their 

limitations are investigated in this step in order to identify the major problems. A 

preparation phase has been previously undertaken, which involved a study of the 

basic methods related to the CG approach in order to improve the traditional geo-

processing approach. 

Step 2: Design of a framework for the CG approach and the basic methodologies 

for the implementation of the CG approach (Chapters 3 and 4). 

A conceptual framework for the CG approach is required in order to answer the 

research questions. This research needs to build a set of formulae to create the CG 

functions and function-based layers, before establishing a set of computation rules 

to manipulate the CG functions and function-based layers. 

Step 3: Design of a set of case studies to demonstrate how the CG approach can 

be implemented and the evaluation of the results (Chapter 4). 

A set of scenarios is designed for the development of the CG approach. These 

scenarios are focused on the basic questions of geo-processing, such as how to 

generate spatial information from functional layers.  

Step 4: Implementations and analysis of the results (Chapters 5 to 7). 

The case studies are implemented and a comprehensive comparison of the results is 

performed as the last step of this research. The investigation attempts to answer the 

research questions by discussing how the influence of data uncertainties is reduced 

in the CG approach and how the computational efficiency is improved.  

Table 1-2 illustrates the structure of the thesis in relation to the research steps and 

objectives in a diagrammatic form. 
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Table 1-2 The structure of the thesis. 

 

Chapter 2 presents the literature review in relation to the fundamental elements of geo-

processing, such as the spatial data model, data processing functions, computational 

strategies, and existing problems. Section 2.2 begins with an overview of data 

processing within GIS, such as the computation strategy of the traditional geo-

processing approach, and the challenges for the current approach. Section 2.3 is a 

discussion on the data quality of geo-processing and provides suggestions for improving 

the quality of the data. Section 2.4 discusses the computational efficiency of geo-

processing, such as the problems of sequential computation and how the overall 

computation time of a geo-processing model could be improved. Finally, Section 2.5 

concludes this chapter with a summary of the major findings of the literature review. 

Chapter 3 provides the conceptual model for the CG approach. Section 3.2 commences 

with a discussion of the basic characteristics of the CG approach in order to understand 

the differences compared to the traditional geo-processing approach. Section 3.3 

proposes a conceptual model for the CG approach and discusses in detail 

implementation issues, which mainly refer to: how spatial objects are represented; how 

different types of GIS functions are applied in the CG approach; how the GIS functions 

and spatial data are further evaluated; and how the CG outputs are produced. Section 3.4 

discusses the strengths and limitations of the proposed CG approach.  

Chapter 4 provides an overview of the main methodological framework of this thesis. 

Section 4.2 begins with a discussion of a set of case studies, which gradually increase in 

complexity, and which were carried out in order to implement and also evaluate the CG 

functions and the results obtained. Section 4.3 illustrates CG computations in the three 

case studies for the development of the CG approach, e.g. building up function-based 

layers and dealing with a group of function-based layers. Section 4.4 describes how the 

CG approach can be implemented in a digital computer environment, while Section 4.5 
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describes the selected data that are used in the case studies. Finally, Section 4.6 

summarises the main issues that are discussed in this chapter. 

A set of experiments was designed for this research through a series of case studies. The 

first case study is explained in Chapter 5, and investigates a multi-layer overlay 

operation using the CG approach and map algebra. Section 5.2 discusses the ‘Raster 

Overlay with Raster’ function. Section 5.3 explains how the ‘Raster Overlay with 

Raster’ function is implemented using map algebra, which is commonly used within the 

context of the traditional geo-processing approach in order to overlay more than one 

raster data layers. Section 5.4 presents the datasets and more specifically the reference 

and sample data that are used in the case study. Section 5.5 describes the 

implementation strategy for the ‘Raster Overlay with Raster’ function and Section 5.6 

presents the results. Section 5.7 provides a more detailed comparison of the map algebra 

and the CG approach results, and Section 5.8 discusses the differences. Finally, Section 

5.9 discusses the main issues and problems that are revealed in the first case study. 

Chapter 6 validates the quality of a simple chain processing model. Section 6.2 starts 

with a discussion of a primitive simple chain processing model and describes the geo-

processing model that it is used in this case study. Section 6.3 introduces the two 

different approaches that can be used for the implementation of any simple chain 

processing models: the traditional geo-processing approach using the ModelBuilder tool 

in ArcGIS and the CG approach. Section 6.4 presents the datasets that are used in this 

second case study. Section 6.5 discusses the implementation strategy for executing the 

simple chain processing model and Section 6.6 presents the results. In Section 6.7 the 

Monte Carlo simulation is used to compare the influences of data uncertainties in both 

simple chain processing model implementations. Section 6.8 discusses the differences 

between the various Monte Carlo simulation outcomes and Section 6.9 summarises the 

main issues that are discussed in the second case study. 

Chapter 7 discusses how the computational efficiency of geo-processing can be 

improved in the CG approach. Section 7.2 reviews the implications of an inefficient 

computation strategy in geo-processing and discusses the concepts of computation 

flexibility and computation sequence. Section 7.3 introduces the concept of CG 

computation priority, which aims to reduce the overall computation time of geo-

processing through the use of an improved computation strategy. Section 7.4 discusses 

the complex chain processing model that is applied in the third case study and Section 

7.5 describes how the model is implemented in the traditional geo-processing and the 



  

33 

 

CG approaches using computation priority. Section 7.6 presents the datasets that are 

used in the third case study. Section 7.7 discusses in detail the implementation and 

strategy for executing the complex chain processing model using the two different geo-

processing approaches and Section 7.8 presents the results. Section 7.9 compares the 

implementation results on overall computation time using the Monte Carlo simulation 

method. Finally, Section 7.10 concludes with a summary of the main issues and 

findings discussed in this third case study. 

Chapter 8 concludes the thesis by discussing and summarising the research undertaken. 

Section 8.1 presents a brief overview and Section 8.2 discusses the major research 

findings. Section 8.3 discusses the contribution of this thesis, whilst Section 8.4 reviews 

the limitations of the CG approach development, and Section 8.5 proposes the direction 

of future research.   
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2 Processing GIS Data and Functions  

2.1 Introduction 

Data processing involves extracting meaningful information from raw data, which is 

then used for data analysis and decision-making (French 1996). Data processing has 

been a topic of research in various applications, such as commercial data processing and 

data analysis, and is widely accepted as a critical part of addressing complex problems. 

In GIS, spatial data processing, known as ‘geo-processing’, includes various 

computational tasks, such as spatial analysis, GIS visualisation and geostatistics (Karimi 

et al. 2011). The aim of geo-processing is the collection and manipulation of spatial data 

to produce useful information and solve complex spatial problems (Niu et al. 2013). 

Geo-processing relies on a computational framework consisting of spatial functions and 

models, which traditionally are applied in sequence. Such a framework usually lacks 

mechanisms for data quality control and effective management of computation time. 

Moreover, some basic methods involved in geo-processing (e.g. spatial data 

representation and basic computation) may introduce uncertainties and errors through 

approximations and error propagation. This thesis addresses the implications of this 

framework, which we call the ‘traditional geo-processing approach’, and proposes a 

new approach – the ‘Combinative Geo-processing (CG) approach’ – aimed at 

improving the data quality and computational efficiency of geo-processing.  

The proposed CG approach is realised using a point-based spatial data model, symbolic 

computation, and functional layers in order to improve data quality. By describing 

features of both discrete objects and continuous fields, the point-based spatial data 

model aims to reduce the complexity of GIS representations and avoid problems with 

data quality that can arise from raster resolution and spatial data conversion. Symbolic 

computation and functional layers minimise the effects of data uncertainty and error 

propagation on geo-processing results. Additionally, the proposed CG approach 

employs a priority-based computation strategy that reduces the entire time-cost of a geo-

processing model and thereby improves computational efficiency. 

This chapter reviews problems with data quality and computational efficiency that arise 

from the traditional geo-processing approach, and discusses how these problems can be 

improved. First, basic concepts of spatial data processing are introduced; these then 

enable an exploration of traditional geo-processing problems which influence data 
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quality and computational efficiency. Lastly, potential ways to improve the traditional 

geo-processing approach are discussed.  

Section 2.2 discusses the major characteristics and implications of the traditional geo-

processing approach. Section 2.2.1 reviews the concept of data processing and enables 

us to understand its fundamental elements. In Section 2.2.2 the discussion narrows 

down to spatial data processing and describes how a geo-processing model is built and 

executed. Section 2.2.3 summarises and concludes with the major characteristics of the 

traditional geo-processing approach and its challenges. 

Section 2.3 discusses major data-quality problems that arise in traditional geo-

processing and provides evidence of scope for improvement. Section 2.3.1 defines 

common data-quality terms that are used in this thesis. Section 2.3.2 reviews common 

errors in GIS, and Section 2.3.3 discusses the specific data-quality problems seen in 

geo-processing, including with spatial data representation and geo-processing 

computation. These two methods are singled out because they have many existing data-

quality problems affecting on the traditional geo-processing approach, such as data 

uncertainty and error propagation. Section 2.3.4 discusses methods that are applicable to 

the CG approach for improving geo-processing, particularly by reducing the influence 

of data-quality problems. 

Section 2.4 discusses another issue – computational efficiency – with the traditional 

geo-processing approach, as this provides further evidence for the necessity of 

improving the traditional geo-processing approach. Section 2.4.1 reviews common 

computational efficiency definitions that are used in this research. Then, Section 2.4.2 

discusses existing problems with computational efficiency in a complex geo-processing, 

including ‘waiting’ functions and unnecessary computations. These two problems are 

selected because they can extend the entire computation time of a geo-processing model. 

Section 2.4.3 concludes by contrasting the traditional geo-processing approach with 

improvements in computational efficiency achieved by the CG approach. 

Section 2.5 summarises the main points discussed and concludes with suggestions for 

improving the data quality and computational efficiency of geo-processing. 

2.2 Data Processing In GIS 

To understand the fundamental methods and basic characteristics of data processing, 

this chapter presents a historical review of the development of data processing, focusing 
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on both manual and automatic processing. Then the research narrows down to spatial 

data processing, i.e. geo-processing, and its major functionalities, in order to explain 

how spatial data and functions are manipulated in GIS. Furthermore, the traditional geo-

processing approach and its challenges are discussed in this section. 

2.2.1 Data Processing Overview 

As the real world becomes more complex, various questions need to be investigated. 

For example, global networked risks (e.g. economic, environmental, health, and food) 

are extremely complicated, as they are globally connected and influence each other 

(Helbing 2013). In order to address complicated problems and support useful 

information for decision making, there is a need to organize, manipulate, and analyse 

large amounts of data using different data-processing tools (French 1996). Consequently, 

this section discusses the basic concept of data processing. 

Most data processing tools include "a group of interrelated components that seek the 

attainment of a common goal by accepting inputs and producing outputs in an 

organised process" (O'Brien 1986, p. 66). In principle, a data processing system has 

three components. The first component is the data input. Some popular functions of 

data input include data capture and collection in preparation for processing. The second 

component is the data processing, which includes functions such as data sorting, 

classification, interpolation, assumptions, and valuation. Sorting and classification 

arrange items or data in a specific order or in different sets for processing; interpolation 

and assumptions provide a way to calculate unknown information from captured data; 

evaluation tries to ensure the manipulated data is correct, reliable, and useful. The third 

component is the output of information, and common processing functions here include 

data aggregation, presentation, summarization, and reportation. Data aggregation 

integrates different outputs into a comprehensive result, for example by combining 

different data layers into a final single layer. Data validation ensures that the 

manipulated data are correct, reliable, and useful for problem-solving. Data presentation 

is used to illustrate the results of the data processing. Summarisation and reportation 

capture the main features of the datasets and results. Taken together, the three 

components provide the basic structure of the data processing framework and can help 

users to build their own data-processing system, such as the conceptual framework for 

the CG approach, discussed in Chapter 3. 
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Data processing developed in three stages (Bohme and Wyatt 1991). The first stage was 

manual data processing, which was costly and required intensive resources to 

implement. For example, data processing functions were performed manually in the 

1880 US census survey, for which the Census Bureau employed a tallying system to 

mutually record and classify information. It took over seven years to publish the results 

of this census (Bohme and Wyatt 1991). The second stage was automatic data 

processing, which was less costly than manual data processing. Automatic data 

processing operated functions by using unit record equipment, which allowed large-

volume, sophisticated data-processing tasks to be accomplished before electronic 

computers were invented. For example, the Census Office completed most of the 1890 

census data in two to three years using automatic data processing, compared with seven 

to eight years for the 1880 census survey (Bohme and Wyatt 1991). The third – and 

current – stage is digital data processing, which enables users to process computational 

tasks more efficiently by exploiting modern computers and the latest computational 

methods. Cloud computing, for example, enables the production of computational 

results in real time (Mathew 2014).  

Digital data processing with modern computational techniques is a main direction for 

future development. Many commercial companies rely on data-processing techniques to 

provide their services. A successful example is the Amazon Web Service, which 

provides a web cloud sever to handle major functions including data sharing, storage, 

analysis, summarization, and reportation (Shao et al. 2012). Many data-processing tools 

are also developed commercially. Bu et al. (2010) proposed an efficient open-source 

tool for digital data processing, named HaLoop, to enable large-scale data mining and 

data analysis applications, and this tool has been applied at Yahoo!, Facebook, and other 

companies. These examples indicate that digital data processing is a promising avenue 

for providing useful information and efficient computational performance.  

This section has reviewed the basic concept of data processing and discussed how 

current data-processing techniques could be applied for commercial purposes. Data 

processing is also an essential tool in GIS for producing useful information for spatial 

analysis. The next section (2.2.2) narrows the discussion to spatial data processing in 

order to understand its major characteristics and limitations.  
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2.2.2 Spatial Data Processing: Geo-processing 

Spatial data processing, or geo-processing, is a core part of GIS. It not only embodies a 

large number of functions for processing, querying, and analysing spatial data, but also 

provides a way to organise and integrate GIS functions and processes into a 

sophisticated system for modelling and solving complex spatial problems (Almeida et al. 

2011; Sun and Yue, 2010). 

Four concepts related to geo-processing are discussed in the next Section (2.2.2.1). 

2.2.2.1 Geo-processing Concepts 

Before geo-processing is further discussed in this chapter, it is essential to define basic 

geo-processing concepts and corresponding terminology.  

1. Geo-processing: Krivoruchko and Gotway-Crawford (2003) explain that geo-

processing is actually a data transformation framework, which is implemented 

using various computational algorithms and functions in GIS computation. 

Therefore, in this thesis, geo-processing represents a data transformation 

framework that it is used to produce useful information from various data inputs. 

2. Geo-processing model: A geo-processing model is a representation of reality 

(Longley et al. 2005). The aims of a geo-processing model are to help people 

understand a spatial problem, study the effects of different factors in the real 

world, and identify a solution or make a prediction (Cao and Ames 2012; Lv et 

al. 2011). 

3. Geo-processing tool: Geo-processing tools are used in order to build geo-

processing models. Modelbuilder is an example of a powerful geo-processing 

tool, which is incorporated in the ArcGIS software package, because 

Modelbuilder can be used to connect existing functions, components, and scripts 

together to create a new model with the aim of improving the efficiency of 

computations. The components of ModelBuilder are illustrated by Figure 2-1.  
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                Figure 2-1 An example of a geo-processing model in ModelBuilder. 

4. Traditional geo-processing approach: As the term ‘traditional geo-processing 

approach’ is very frequently used in this thesis, it should be clarified that it 

refers to the current digital data-processing method for a geo-processing model 

implementation, which is applied in different geo-processing tools.  

The basic geo-processing concepts and corresponding terminology enable us to describe 

geo-processing in detail. Section (2.2.2.2) discusses the major characteristics of a geo-

processing model, emphasising mainly how a basic geo-processing model can be built 

using the traditional geo-processing approach. 

2.2.2.2 Characteristics of a Geo-processing Model 

This section discusses the major characteristics of a geo-processing model. For 

example, how can a geo-processing be built using the traditional approach? What is the 

computation strategy to calculate a complex geo-processing model? These 

characteristics are essential for this research because they will help us to explore the 

potential challenges of the traditional geo-processing approach. 

2.2.2.2.1Creating a Geo-processing model 

Although most geo-processing models differ in their functionalities and applications, 

there is a basic way to create and calculate geo-processing models. The following 

paragraphs discuss how a geo-processing model can be built using the traditional geo-

processing approach. 
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There are three basic steps to build a geo-processing model with the traditional geo-

processing approach. First, the most basic element of a geo-processing model comprises 

three components: the input data, the GIS function itself, and the output (Figure 2-2).  

   

Figure 2-2 The basic components of a simple geo-processing model. 

Second, this simple geo-processing model could be used to build more complicated geo-

processing models, such as simple and parallel chain models. Figure 2-3 illustrates a 

simple chain model, in which the output of one model becomes the input of the resulting 

model. As it can be seen by Figure 2-3 the first model applies an inverse distance 

weighting (IDW) function to produce a continuous elevation surface (i.e. ‘Output1’) 

from the input of ‘Raw LiDAR Points’. The derived raster layer becomes the input data 

for the next model, which classifies the input data based on a set of conditions.  

 

Figure 2-3 Geo-processing example of a simple chain model. 

Figure 2-4 illustrates a parallel chain model that has the same input data (i.e. 

‘Continuous Elevation Surface’) and produces two outputs, the ‘Slope Map’ and 

‘Classified Map’. It should be noted that the direction of the parallel chain model could 

be reversed, which means it could produce a single output from many functions and 

input datasets. 
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Figure 2-4 Geo-processing example of a parallel chain model. 

Third, based on the simple and parallel chain models, different types of GIS functions, 

tools, and scripts could be graphically linked to solve real spatial problems (Bruns and 

Egenhofer 1997).  For instance, Figure 2-5 demonstrates a complex geo-processing 

model that was developed for the identification of a new location for building a school. 

As noted previously, this specific example involves several stages.  

 

Figure 2-5 The geo-processing model for location analysis. 

The geo-processing model of location analysis illustrates two characteristics: (a) the 

complex geo-processing model is implemented using many sub-models; and (b) these 

sub-models are sequentially linked together. These characteristics indicate that a 

computation strategy is required to manage and calculate the sub-models in a complex 

geo-processing model. The next Section (2.2.2.2.2) discusses the computation strategy 

of the traditional geo-processing approach. 
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2.2.2.2.2 Computation strategy of the Traditional Geo-processing Approach 

This section discusses the computation strategy of the traditional geo-processing 

approach in order to understand how different spatial data and functions are executed in 

a geo-processing model. A computation strategy is a plan to achieve one or more 

computational tasks (Ansola et al. 2006). 

Existing geo-processing tools (e.g. ArcGIS’s ModelBuilder) employ a simple 

computation strategy to calculate spatial data and functions. In particular, these geo-

processing tools graphically link spatial data and functions based on a specific 

workflow, which is then implemented in a sequential strategy (ESRI, 2011). Figure 2-6 

shows how this sequential strategy is currently implemented using the traditional geo-

processing approach. The geo-processing model illustrated by Figure 2-6 includes three 

GIS functions, with each function evaluated one after another until the final result 

(‘Output3') is produced. This model also produces two intermediary results, ‘Output1’ 

and ‘Output2’. It should be noted that the spatial data and functions involved in a simple 

chain, parallel chain, and complex model are also implemented individually and 

sequentially from the first to the last function. 

 

Figure 2-6 The basic strategy of sequential computation. 

The major characteristics of this sequential sequence are visualised in Figure 2-6. First, 

the input and output of a function must always involve a value. These values are 

processed using specific GIS functions, in a similar way that ‘Input1’ is used by 

‘Function1’, to produce a result which will be used by subsequent functions (e.g. As 

‘Ouput1’ is used by ‘Function2’). Second, sequential programming involves a 

consecutive and ordered execution of these functions, which are implemented one after 

another, in a similar way that ‘Function1’ to ‘Function3’ are executed. The programme 

will execute a function that will initially wait for user input or for output from the 

previous function. 

Although sequential computation provides a simple way to implement a geo-processing 

model, many potential challenges may influence its data quality and computational 

efficiency, such as data uncertainty and error propagation. Section (2.2.2.3) discusses 

these challenges in detail. 
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2.2.2.3 Identifying the Challenges in the Traditional Geo-processing Approach 

While the traditional geo-processing approach with sequential computation is used to 

process spatial data and functions, it incorporates many challenges, which are discussed 

here to illustrate that there is a need to improve the traditional geo-processing approach 

2.2.2.3.1 Data Quality  

Data quality is a major challenge for the development of the traditional geo-processing 

approach as different data-quality issues can cause many problems in data processing. 

Spatial representation is a fundamental issue in geo-processing, as spatial features must 

be correctly represented in a digital environment to produce meaningful information 

(Komarkova et al. 2011, Komarkova et al. 2012). However, many data-quality issues 

arise in spatial representation methods that are applied in the traditional geo-processing 

approach, especially in relation to raster data. Braunisch and Suchant (2010) state that 

there is a trade-off between the size of raster data and the precision with which spatial 

features can be represented, so spatial data quality can be reduced due to limited 

computer memory. Haklay (2004) observes that because spatial attributes are 

represented as raster layers with an arbitrary resolution, many potential data 

uncertainties exist in raster data. Kienzle (2004) claims that many types of raster data, 

such as DEM or DTM, have data quality problems because they are created using 

interpolation methods (e.g. IDW) and there is a trade-off between data accuracy and 

computational efficiency. Furthermore, when raster and vector data are converted, there 

is potential for adding further problems to the resulting data. Liao et al. (2012) explain 

that vector-to-raster conversion is accompanied by errors because there is a loss of 

information with regard to spatial accuracy. These errors vary with grid size, data 

sources, and computational algorithms (Burrough 1986, Shortridge 2004).  

A second data quality issue lies with the basic computation method applied in the 

traditional geo-processing approach. Numerical computation is applied in current GIS 

software packages (e.g. ArcGIS, MapInfo, GRASS, and Manifold) to implement a geo-

processing model, and this uses numerical approximation algorithms to represent 

mathematical equations. Hildebrand (1987) claims that approximated values in 

numerical computations always come with with errors. Specifically, two types of errors 

in a numerical computation are truncation error and round-off error (Vandergraft and 

Rheinboldt 2014). Truncation error is the difference between an infinite value and its 

approximation by a finite value (Fraysse et al. 2012). Round-off error is the difference 
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between the calculated approximation of a number and its exact mathematical value 

(Spada 2013). Additional common errors in geo-processing include data entry errors 

(Irizarry et al. 2013), data generalization errors (Zhao et al 2012), and error 

propagations (Bingham and Karssenberg 2014). Therefore, it is necessary to manage the 

data errors and data uncertainties of the traditional geo-processing approach. 

Lastly, error propagation is a data quality issue in the traditional geo-processing 

approach because any errors and uncertainties in the input data will propagate to the 

output of the function (Lemmens  2011, Bingham and Karssenberg 2014). Biljecki et al. 

(2014) claim that error propagation in geo-processing is an unavoidable fact, and errors 

propagate differently depending on the applied GIS operations. Heuvelink (2006) 

concludes that the main research question for error propagation is quantifying the 

influence of input data errors on the output data of a geo-processing model. Hence, 

understanding and managing the propagation of errors in geo-processing is important.  

2.2.2.3.2 Computational efficiency  

Computational efficiency has long been a challenge in the development of the 

traditional geo-processing approach. Sequential programming involves consecutive 

execution of a geo-processing model, whereby the computer programme will execute a 

function that will initially wait for user input or for output from a previous function. 

Mitchell et al. (2001) observed that these wait functions in sequential programming 

allow a thread to block its own execution. Moreover, a geo-processing model potentially 

carries out unnecessary computations, because it always produces data on the entire 

extent of the study area, rather than only for a Region Of Interest (ROI). These issues 

are important for the traditional geo-processing approach because they can extend the 

overall computation time of a geo-processing model. 

Challenges of the traditional geo–processing approach relate mainly to data quality and 

computational efficiency. These will be further discussed in the following sections 

(Section 2.3 and 2.4) in order to provide a suggestion for development of a new CG 

approach. 

To sum up, this section reviewed the basic idea of data processing. A historical review 

of data processing development facilitated an understanding of the methods of data 

processing, which indicate that digital data processing with modern computational 

techniques is a main direction for future development. As data processing is an essential 

tool in spatial data analysis, the major functionalities of geo-processing were reviewed 
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in the second part of this section, with particular focus on the computation strategy of 

the traditional geo-processing approach. Although the traditional geo-processing 

approach provides a simple computation strategy to implement a complex geo-

processing model, it comes with difficulties in managing data quality and computational 

cost. Therefore, an improvement to the traditional geo-processing approach is required, 

especially with respect to data quality and computational efficiency. 

2.3 Geo-Processing Data Quality 

Although the traditional geo-processing approach can be used for GIS modelling and 

decision-making purposes, it has been repeatedly acknowledged in the literature that 

many data-quality problems are associated with this approach, such as spatial 

representation (Komarkova et al. 2011, Komarkova et al. 2012), numerical computation 

errors (Hildebrand 1987, Vandergraft and Rheinboldt  2014), and error propagation 

(Heuvelink 2006, Leibovici et al 2013). In the interest of reducing the impact of these 

problems, this section reviews existing data-quality problems of geo-processing and 

explains how potential improvements can be applied. 

Section 2.3.1 reviews the definition of data quality. Section 2.3.2 provides an overview 

of data quality problems in GIS, and Section 2.3.3 narrows the discussion to the specific 

data quality problems of geo-processing to understand their major characteristics, 

causes, and influences. Section 2.3.4 discusses potential improvements that can 

minimise these problems.  

2.3.1 Defining Data Quality Concepts 

Data quality is a major concern in data processing because it can cause a variety of 

problems. For example, Strong et al. (1997) observed that around 50% to 80% of the 

computerized criminal data in U.S. organizational databases were identified as having 

data quality issues, which may influence the accuracy of criminal data analysis results. 

Arts et al. (2002) discussed data quality issues in medical registries; these records 

depend on the quality of the data contained in the registry, so there is a potential risk for 

health data analysis and decision making. Chiu et al. (2012) discovered a data 

completeness problem in the Health-Related Quality Of Life (HRQOL) database arising 

from the fact that psychometric properties of HRQOL were largely missing for people 

who abuse heroin. 

Many terms have been used to describe the different problems related to data quality. 

Weidem and Wesnæs (1996) describe data quality as a specific characteristic expressed 
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through information about the data, and it includes many common attributes, such as 

uncertainty, accuracy, and reliability. Furthermore, Wang and Strong (1996) view data 

quality as a major dimension for evaluating the success of an information system. This 

dimension includes some attributes, such as error, uncertainty, reliability, accuracy, and 

precision.  

Four common terms pertaining to data quality are applied in this thesis to build up the 

research framework: error, uncertainty, accuracy and precision. The next paragraphs 

define and discuss each of these attributes in more detail. 

Error is the most common data quality problem in geo-processing. In principle, an 

error has different meanings in various contexts. In science and engineering, an error 

represents a difference between a computed, estimated, or measured value and the true 

value (Parodi et al. 2014, Kolokoltsov and Tomasz 2015). In numerical computation, 

errors arise from a trade-off between efficiency (space and computation time) and 

accuracy, as only a limited amount of numbers can be stored exactly in a digital 

computer (Standage et al. 2014).  

Figure 2-7 illustrates a conceptual model of different types of uncertainty in spatial data 

(Devillers and Jeansoulin, 2010). This figure shows that the central issue for uncertainty 

is defining the class of objects or features to be manipulated (e.g. a set of critical 

infrastructure network data). If these objects or features are well-defined, uncertainty is 

caused by errors and probabilities; that is, input errors in critical infrastructure network 

data may cause uncertainty. Otherwise, if the objects or features are poorly defined, 

many additional types of uncertainty may be identified in the dataset, including 

vagueness and ambiguity. Vagueness means that items are not explained or expressed 

clearly (for example, if there is a ‘significant’ influence on a water main pipe burst, how 

should ‘significant’ be quantified?). Ambiguity means that a concept can be understood 

in more than one way (for example, if the material of a water pipe is defined as ‘metal’, 

this can be either iron or copper). 
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Figure 2-7 A conceptual model of uncertainty (after Devillers and Jeansoulin, 2010). 

Accuracy and precision are two common terms aiming to quantify the quality of spatial 

data produced from a measurement system, such as a GPS receiver (Lee et al. 2015). 

Theoretically, accuracy and precision have a fundamental difference (Brown 2012). 

Accuracy indicates the degree of closeness between a measurement of a quantity and its 

actual value (the centre point of the cross in Figure 2-8). In contrast, precision indicates 

the resolution to which repeated measurements under unchanged conditions show the 

same results, and the ability to reproduce the same target using a given measurement. 

Accuracy and precision can be influenced by many issues, such as measurement errors, 

systematic methodological problems, data capture, and processing problems 

(Komarkova et al. 2011). As illustrated in Figure 2-8, a set of spatial data can be 

accurate but not precise, precise but not accurate, neither, or both.  

 

Figure 2-8 A comparison between accuracy and precision (after Lee et al 2015). 



 

48 

Common terms related to data quality can avoid ambiguity in this thesis and enable us 

to describe the corresponding data quality problems in detail. Section 2.3.2 provides an 

overview of the data quality problems in GIS to help us explore typical data quality 

problems in geo-processing. 

2.3.2 Overview of Data Quality Problems in GIS 

Data quality is a key issue in data processing, as it frequently influences operations, 

decision making, and planning. In GIS, the term spatial data quality refers to the degree 

of spatial data excellency that satisfies the given conditions and objectives, such as 

positional and attribute accuracy (Li et al. 2012). Komarkova et al. (2012) claim that a 

higher quality of data and/or information provided by information systems could 

support better decision making. However, as spatial data are mainly produced from 

models which are simplified from a complex reality, these data have different levels of 

imprecise, inaccurate, incomplete, and outdated problems (Devillers and Jeansoulin, 

2010).  

In order to understand the problems of spatial data quality, Figure 2-9 summarises 

typical errors in GIS, including three levels (Beard 1989). The first and most basic level 

is the so-called source of errors (Figure 2-9, bottom of the pyramid), which involves 

problems that are mainly observed at the stages of data collection, data processing, and 

data usage. Data collection errors include errors from field surveys and measurements, 

inaccurate equipment and devices, and fuzzy input data. Data processing can lead to 

digitising errors, inaccurate prediction and assumption, errors in re-sampling, and error 

propagation. Data usage can produce errors due to the misunderstanding of spatial 

information.  
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Figure 2-9 A review of errors in GIS (after Hunter and Beard 1992). 

The second level of GIS errors is called forms of error, and includes such errors as 

attributed errors and logical consistency (Hunter and Beard 1992). Finally, the top level 

of the pyramid consists of errors in the final result (Resulting), which are mainly caused 

due to errors in the two lower levels (Devillers and Jeansoulin, 2010).   

Figure 2-9 indicates that most errors are produced from the basic level (source of 

errors), and these errors can propagate to the upper levels and influence the final result 

and decision-making. Table 2-1 summarises the specific causes of source of errors in 

GIS, including measurement, assignment, class generalization, spatial generalization, 

entry, temporal, and data processing (Fisher 1999). The summary of common errors in 

GIS and their causes indicates that spatial data quality is a broad topic, with many error 

sources that can influence the final results of a geo-processing model. Thus, it should be 

clarified that this thesis focuses only on data-processing problems. 
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Table 2- 1 Cause of spatial data errors (Fisher 1999).  

Type of error Cause of error 

Measurement A mistake in measurement of a property. 

Assignment The object is assigned to the wrong class because of 

measurement error. 

Class generalization Following observation in the field, and for reasons of 

simplicity, the object is grouped with objects 

processing somewhat dissimilar properties. 

Spatial generalization Generalization of the cartographic representation of 

the object before digitising, including displacement, 

simplification, etc.. 

Entry Data are miscoded or misdigitized during entry in a 

GIS. 

Temporal The object changes character between the time of data 

collection and the time of database use. 

Data processing In the course of data transformations an error 

arises because of computation, rounding, re-

sampling, algorithm, error propagation, etc. 

 

After reviewing generic data-quality problems in a GIS, Section (2.3.3) discusses 

specific problems in a geo-processing model, such as data representation and basic 

computation methods. 

2.3.3 Data Quality Problems of Geo-processing 

This section narrows down the data-quality discussion to typical problems in geo-

processing. These are spatial representation and basic computation methods. Whether 

spatial data correctly represent real features can impact the quality of spatial data and 

processing results (Sadeghi-Niaraki et al. 2011). Furthermore, the current computation 

method has many potential data-quality problems due to approximated value 
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(Hildebrand 1987) and error propagation (Rasouli and Timmermans 2013). Hence, this 

section discusses spatial representation and basic computation methods in detail. 

2.3.3.1 Spatial Representation  

A fundamental issue in geo-processing is how spatial features can be represented in a 

digital environment to produce meaningful information (Komarkova et al. 2011, 

Komarkova et al. 2012). Many spatial data models are used for storing geographical 

data digitally, while others have been proposed for different purposes, such as 

describing discrete objects and continuous field features. 

Vector data comprise the most common spatial data model for describing discrete 

objects, and can be used to store linear features, such as city locations, popular places, 

road networks, and national boundaries, on a digital computer (Worboys and Duckham, 

2004). There are three main advantages of vector data. First, vector data offer an 

accurate spatial representation of spatial objects at all levels (Worboys and Duckham, 

2004). For example, spatial objects may be represented at their original resolution, 

without map generalisation, and maintained by location. Secondly, vector data provide 

an easy way to retrieve, update, and generalise spatial attributes. For instance, the 

attributes of a point, including its coordinate value and location name, can be directly 

modified or updated by users. Lastly, more complicated spatial features, such as 

topological networks, can be represented and described explicitly and efficiently using 

vector data (Dowers et al. 2000).  

Compared with vector data, raster data can be used to effectively describe continuous 

field features. In principle, raster data divide the real-world surface into an array or 

matrix of pixels in a continuous field, and each pixel represents its position and attribute 

in a raster layer (Worboys and Duckham, 2004). In fact, raster data provide an easier 

and faster way to describe continuous surfaces. There are three advantages of raster data 

for representing continuous fields. First, raster data have a simplified data structure (e.g. 

a matrix of cell values) and thus can be more easily processed by computer 

programming tools (Worboys and Duckham, 2004). Secondly, raster data provide an 

efficient way to model continuous data and perform surface analysis. Thirdly, raster 

data are ideally suited for GIS functions such as query and overlay, as a pixel size can 

be converted to a specific dimension using interpolation methods (Arbia et al.1998). 
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2.3.3.1.1 Spatial Data Model Problems 

Although vector and raster are the most commonly used data models for storing and 

representing discrete object features and continuous field features, respectively, their 

major characteristics may cause different data quality problems in a geo-processing 

model.  

There is a trade-off between the size of raster data and the precision with which spatial 

features can be represented (Braunisch and Suchant 2010). For example, a very fine 

raster grid will represent sufficient detail (e.g. high-resolution satellite images) but will 

require a large amount of disk space. A point object (e.g. elevation value) must occupy a 

full cell in raster, which may create problems for processing (e.g. data uncertainty and 

error propagations). 

Haklay (2004) claims that spatial attributes are represented as raster layers with an 

arbitrary resolution. For example, Figure 2-10 shows how to treat slopes in a raster-

based layer, where each grid is assigned a value that represents the slope from the centre 

of the pixel. Any irregular points, such as the sample locations illustrated by Figure 2-10 

(green circles), must represent the same value as the centre of the pixel (red cross). This 

generates a problem that directly affects the accuracy of the results and may introduce 

additional errors when the output is used as input for other GIS functions. 

  

Figure 2-10 Slopes in a raster-based layer. 

When raster and vector data are converted, further problems can be added to the 

resulting data, such as data errors and uncertainties (Devillers and Jeansoulin, 2010). 

Spatial data conversion refers to either rasterisation and/or vectorisation. Rasterisation is 

the conversion of vector data into a raster form, while vectorisation is the conversion of 

raster data into a vector form (Worboys and Duckham, 2004). There are many spatial 
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data-quality problems associated with rasterisation and vectorisation functions. 

Rasterisation involves a loss of information, such as topological relationships, which 

may lead to missing data and produce data uncertainties in the spatial analysis 

(Dendoncker et al. 2008). In vectorisation, two choices are possible for converting the 

raster into a vector data model: either no more information is added, and the result may 

have significant pixel edges, or additional data are needed to smooth pixel borders, but 

no accurate information is available (Kovalerchuk and Perlovsky 2011).  

This section discusses the major GIS representation problems in the traditional geo-

processing approach. Section (2.3.3.2) discusses the computation method for geo-

processing to understand how errors and data uncertainties are produced and propagated 

in the traditional geo-processing approach. 

2.3.3.2 Geo-processing Computation  

A computation is a process that manipulates one or more input in order to produce one 

or more results. In GIS, computations are used to interpret spatial characteristics, 

explain geographical phenomena, and solve spatial problems (Couclelis 1998; Cheng et 

al. 2012). This section discusses the drawbacks of computation methods in the 

traditional geo-processing approach. 

2.3.3.2.1 Numerical Computation Problems 

Numerical computation is widely used by current GIS software packages (e.g. ArcGIS, 

MapInfo, GRASS, and Manifold) for data recording and storage purposes. Numerical 

computation uses numerical approximation algorithms to represent mathematical 

equations, which are usually expressed using algebra, differentiation, integration, or 

other types of equations. The problem with numerical computation is that, because 

digital computers cannot accurately express real numbers, all results obtained using 

numerical calculations approximate the true value (Hoffmann 1989).  

Hildebrand (1987) defined the relationship between an approximation and its true value 

using Formula 2.1, in which the true value is the real value without any distortions and 

errors, and the approximation is the result of numerical computations. This equation 

indicates that errors always accompany approximated values.  

True value = approximation + error                         (Formula 2.1)     
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To understand the influence of errors on approximated results, it is necessary to discuss 

the potential drawbacks of numerical computations. One problem is round-off error, 

which represents the difference between the approximated value of a number and its 

exact value (Murat et al. 2004). Widrow and Kollár (2008) demonstrated that round-off 

errors occur whenever physical quantities are represented numerically. Examples 

include the time displayed by a digital watch, and the temperature indicated by a digital 

thermometer. Table 2-2 gives an example of a round-off error introduced by an attempt 

to represent the approximated value of the number π. If three digits for π are used, the 

error could be 0.15% below the exact value.  

Table 2- 2 Errors due to π values with different accuracies. 

 

In the traditional geo-processing approach, when round-off errors are produced in a 

sequence of GIS functions, initial errors will accumulate in subsequent intermediary 

steps, and this will eventually lead to serious round-off errors in the final result 

(Chapman 2012). Moreover, round-off error is a major resource of quantization noise, 

which may accumulate, sometimes dominating the calculation results (Widrow and 

Kollár 2008). For example, distances given on a map have round-off errors, which can 

be magnified as any initial errors are carried through one or more intermediate steps in a 

geo-processing model. Therefore, the numerical computation applied in the traditional 

geo-processing approach needs improvement. 

2.3.3.2.2 Data Uncertainty and Error Propagation   

All data carry a level of inherent uncertainty associated with their truth and correctness. 

Identifying potential sources of uncertainty can help to distinguish between reliable and 

π Error (30 decimal digits) 

3.14159265358979323846264338327 

(round to 30 digits) 

Ignore (very small) 

3.141592653 (round to 10 digits) 0.00000000058979323846264338327 

3.1415 (round to five digits) 0.00009265358979323846264338327 

3.14 (round to three digits) 0.00159265358979323846264338327 
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unreliable data. Most data uncertainty is associated with errors in direct measurements 

of a quantity (Morgan et al. 1990).  

Within a GIS, no spatial data are truly error-free, because much of the data are produced 

by assumption, interpolation, and prediction methods (Devillers and Jeansoulin 2010). 

An assumption is a major resource of data uncertainty because it provides something 

that users assume to be true or assume will happen, often without proof. As Shahriar et 

al. (2012) discuss, it is a challenge to characterise model uncertainty that arises from an 

assumption of independence among different risk events. Interpolation is another major 

resource of data uncertainty, as it produces data based on a assumed value. Brodlie et al. 

(2012) claim that uncertainty is introduced in an interpolation step by guessing the 

output data. Additionally, a prediction or forecast could increase the chances of data 

uncertainties because it deals with the future. For example, a weather forecast is an 

application of science and technology to predict information (e.g. temperature, wind 

speed) about the atmosphere in a specific location, but these data have multiple 

uncertainties due to interpolations (Hu et al. 2010). 

When users select spatial data from a GIS database to use as input datasets for a geo-

processing process, errors and uncertainties that exist in the input data will propagate to 

the output of the function (Bingham and Karssenberg 2014). Error propagation becomes 

more complicated when the output from one function or a sub-model is used as the 

input for a subsequent function or sub-model (Rasouli and Timmermans 2013). For 

example, re-sampling is an important function in image processing, as it can be used for 

the integration of different raster layers (Skifi and Bosner 2014); however, the re-

sampling process complicates the raster overlay function and introduces uncertainties 

into the computations, and is a major source of error propagation (Haklay, 2004). 

Moreover, inaccuracies (e.g. data errors and data uncertainties) may be introduced 

during this calculation step, which will also affect any subsequent computations due to 

error propagation. 

This section discussed the major data quality problems of geo-processing. The 

drawbacks of spatial representation and computation methods applied in the traditional 

geo-processing approach can cause many data quality problems and influence the final 

results. The next section discusses how these data-quality problems could be improved 

using the new CG approach. 
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2.3.4 Data Quality Improvement 

The problems discussed in Section 2.3.3 lead us to the conclusion that we need to 

address data-quality concerns in traditional geo-processing. Nevertheless, it is widely 

accepted that data uncertainty and its related implications cannot be avoided, but rather 

can be managed (He et al. 2004, Heuvelink 2006).  

The CG approach is proposed in this thesis with the aim to improve the data quality and 

computational efficiency of geo-processing. Specifically, a set of methods comprising 

the CG approach, including a point-based spatial data model, symbolic computation, 

and functional layers, is introduced to address the previously discussed problems.  

2.3.4.1 Spatial Data Model Improvement 

It was noted that raster and vector data are popular spatial data models to represent the 

real world features. However, these two spatial data models introduce data quality 

problems into geo-processing, such as the resolution of raster data and conversion 

between raster data and vector data. This section reviews other spatial data 

representation method in order to provide a suggestion for reducing the influence of 

raster and vector data in the traditional geo-processing approach. 

2.3.4.1.1 Spatial Data Models Review 

This section discusses how spatial features can be described using different 

representation methods. These is a Triangulated Irregular Network (TIN). 

A TIN is a vector-based spatial data model used to represent elevation in a 3D surface 

(Worboys and Duckham, 2004), and is comprised of triangles which are constructed 

from a set of points with ‘X and Y’ coordinate values and ‘Z’ elevation values. 

Moreover, each triangle apart from the coordinates is further associated with topological 

information. As Longley et al. (2005) explain, the key benefit of a TIN is that the 

density of sampled points, and consequently the size of triangles, can be adjusted to 

better reflect the relief of the surface that it is being modelled. In contrast to raster data 

(e.g. DEM), an advantage of TINs is that points are distributed based on the complexity 

of an area (De Smith et al. 2007). Therefore, TIN data are flexible and require less 

storage space, especially when compared with raster data models. However, a 

disadvantage of TIN data is that they can be hard or extremely complex to integrate 

with other spatial data models.   
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2.3.4.1.2 Point-based Spatial Data Model 

Point data play an important role in spatial representation, as the majority of spatial data 

models are based on, or consist of, points. For example, as Table 2-3 demonstrates, a 

polygon (vector data) is composed of a group of points, and a raster image (raster data) 

is constructed from a matrix of values or centroids with grid size. Additionally, a 3D 

object can be represented using point data (e.g. X, Y coordinates and Z elevation value) 

(Chen and Schneider 2009). Table 2-3 illustrates that the point-based spatial model has 

more flexibility for representing various spatial objects. For example, when point-based 

spatial data are processed in a model, the outputs can take any form of spatial data 

model (e.g. raster or vector) according to the user’s request. 
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Table 2- 3 A summary of major spatial data models and their relationships with points. 

Spatial Data 

Type 

Description Relationship with points 

Polyline 

(Vector) 

Representing linear objects, 

such as road networks, rivers. 

A polyline is constructed by a 

straight line joining two or more 

points (vertex). 

Polygon 

(Vector) 

Representing area objects. 

 

A polygon is constructed by a close 

path joining a group of points 

(vertex). 

Triangular 

Irregular 

Network 

(TINs) 

A TIN is a vector-based 

representation of the physical 

land surface. 

This is constructed by irregularly 

distributed points (nodes) and lines 

with three dimensional coordinates 

(X, Y, and Z) that are arranged in a 

network with no overlapping 

triangles (Worboys and Duckham, 

2004). 

Grid cells 

(Raster) 

Representing land surface by a 

grid of small units (pixels) that 

are widely applied in satellite 

images and digital elevation 

models. 

A raster image is constructed from 

a matrix of representative values. 

In addition, the location of each 

pixel is recorded by its centre point 

coordinate values.   

3D data Representing three-

dimensional features or 

surfaces. 

A 3D model is created from a basic 

set of points with coordinate and 

height values (X, Y, and Z) (Chen 

and Schneider 2009). 

 

The point-based data model does not require rasterisation and vectorisation processes, 

because it describes both discrete objects and continuous field features. As a result, any 

data-quality problems and concerns that arise from rasterisation and vectorisation can be 

avoided using the point-based spatial data model. 
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Additionally, the point-based spatial data model provides a way to reduce the 

complexity of spatial data models (Jjumba and Dragicevic 2014, Camara et al. 2014). 

Although many types of spatial models have been created to model spatial features, 

such as vector, raster, TIN, and 3D data, these structures directly increase the 

complexity of a GIS database, and this complexity may potentially increase the 

difficulty of maintaining the realism and clarity of the system content (Goodchild et al. 

2007). 

For these reasons, the point-based spatial data model is introduced in the CG approach 

to improve its spatial representation. 

2.3.4.2 Geo-processing Computation Improvement 

It was discussed that numerical computation and sequential computation are applied in 

the traditional geo-processing approach for spatial data calculation. However, there are 

some data quality problems in these methods, such as approximate values and error 

propagation. This section explains the reasoning behind using symbolic computation 

and function-based layers in the CG approach to improve the data quality of geo-

processing. 

2.3.4.2.1 Symbolic Computation and Function-Based Layer 

An alternative to the numerical computation applied in the traditional geo-processing 

approach is symbolic computation. Symbolic computation provides an exact method of 

mathematical calculation, such as differentiation and integration, linear algebra and 

matrix calculus, and the simplification of algebraic equations (Grossman 1989). A 

significant characteristic of symbolic computation is that mathematical formulas are 

manipulated in a symbolic form. Heck (2003) noted that symbols can represent numbers 

such as integers, rational numbers, real numbers and complex numbers, but they may 

also be used to represent mathematical operations.  

Symbolic calculation provides greater flexibility for users to define the quality of a 

result (Carminati and Vu 2000). Software applications that perform symbolic 

calculations are called computer algebra systems (Cafuta et al. 2011). Such systems 

have been widely used in various applications, such as high energy physics, chemical 

engineering, mechanics, cybernetics, and computer science.  

Symbolic computation has two main advantages for mathematical computations in a 

geo-processing model (Hoffmann 1989). First, it could avoid a large number of 
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complicated operations, such as simplification of algebraic equations, which helps to 

improve the efficiency of geo-computations. Table 2-4 provides two examples of 

simplification, which illustrates how the complited  algebraic equations could be 

simplified by the simplification rules. 

Table 2- 4 The examples of simplification. 

Equation NO Equation Simplification 

1 5x
2
 +3x(-9x+5) 

=5x
2
 +3x(-9x)+ 3x (5) 

=5x
2
 -27x

2
+ 15x  

= -22x
2
+ 15x  

 

Use distributive property. 

Clear parenthess. 

Combine like terms by 

adding coefficients. 

2 6m
2
n

3
- (6mn - 4m

2
n

3 
+ 3) + 6 

=6m
2
n

3
- 6mn  + 4m

2
n

3
-3 + 6 

=(6 + 4) m
2
n

3 
- 6mn  -3 + 6 

=10m
2
n

3 
- 6mn  +(-3 + 6) 

=10m
2
n

3 
- 6mn -3 

 

Use distributive property. 

Combine like terms. 

Combine constants. 

 

Secondly, more calculation methods are provided, such as approximate calculation and 

exact calculation. This allows users, depending on project requirements, to choose 

between numerical calculations and symbolic calculations as needed to improve data 

quality. A typical example of a computer algebra software is Maple, which was first 

developed in 1980 by the Symbolic Computation Group at the University of Waterloo 

and ETH Zurich (Heck, 2003). Table 2-5 provides two examples of symbolic 

computation in Maple. In this table, ‘Rational Number’ keeps the dynamic function for 

the result because users can define the accuracy of the final output. ‘Flexible Accuracy’ 

shows that the quality of a result can be defined by users with a greater flexibility. 
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Table 2- 5 Examples of functional programming: Maple. 

 Input Output 

Rational 

Number  

>41! / 

(2^32-1) 

(131186378875152184737921811974277457510400

000000) 

/ (16843009) 

Flexible 

Accuracy  

>evalf (a, 

20) 

7.39562677840266521267 

 

To support both numerical calculations (i.e. approximate values) and symbolic 

calculations (i.e. exact values)  in a geo-processing model, the CG approach introduces 

a completely different way to create and process GIS functions, called function-based 

layers. The theory of function-based layers is inspired by the idea of Map Calculus 

(Haklay 2004), which provides an approach for spatial representation. The key idea 

behind the function-based layer is integrating functional programming and symbolic 

computations to calculate spatial data and perform GIS functions. 

The function-based layer attempts to support the following functionalities in a geo-

processing model: (a) it supports both numerical and symbolic computations in order to 

reduce the influence of approximation; (b) it can apply a function or functions as input 

or output to minimise the influence of error propagation; (c) computations can be 

suspended or reordered to increase efficiency, and (d) it can produce results directly 

from a combination of functions. Function-based layers are discussed in more detail in 

Chapter 4. 

In summary, data quality is an essential issue for geo-processing as it influences model 

outputs and decision-making results. The traditional geo-processing approach is subject 

to a variety of data-quality problems. Specifically, the spatial representation method 

applied in the traditional geo-processing approach can cause data-quality problems 

because there are several drawbacks to raster and vector data and conversion between 

them. The basic computation methods applied in the traditional geo-processing 

approach cause additional data errors and uncertainty problems. To address these 

problems, a set of methods comprising the CG approach is proposed. The new approach 
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includes a point-based spatial data model, a symbolic computation, and a function-based 

layer. The point-based spatial data model minimises spatial representation problems, 

while symbolic computation and function-based layers reduce data error and uncertainty 

when users apply numerical computation in a geo-processing model. 

2.4 Computational Efficiency of Geo-Processing  

The sequential computation strategy applied in the traditional geo-processing approach 

not only has data-quality problems, but also causes computational efficiency problems 

such as extra computation time costs. Consequently, problems related to computational 

efficiency need to be further considered in this thesis.  

This section continues to discuss the problems of the traditional geo-processing 

approach, toward the aim of improving the computational efficiency of geo-processing. 

Section 2.4.1 reviews computational efficiency concepts and Section 2.4.2 discusses 

computational efficiency problems associated with the traditional geo-processing 

approach. Section 2.4.3 discusses how computational efficiency in geo-processing can 

be improved using the CG approach.  

2.4.1 Defining the Computational Efficiency Concept 

Computational efficiency is a common term used in digital computation to quantify the 

performance of a digital device. For example, computational efficiency can refer to the 

resources (e.g. computer memory and computation time) used by an algorithm (Liu and 

Wang 2012). ‘Big O’ notation is used to quantify the performance of algorithms (e.g. 

processing time or working space requirements) when they have different input data 

(Cormen et al. 2001; De Smith et al. 2007). As illustrated in Figure 2-11,  denotes 

processing time or memory space that is constant (a flat line) regardless of the size of 

the dataset;  indicates linear growth in direct proportion to the size of the input 

dataset, that means the performance is directly dependent on the size of the input data; 

and indicate the performance will be directly proportional to a 

power of the input data size; and and  denote growth curves that rise 

sharply at the beginning of the execution and then increase more slowly as the size of 

the dataset grows. 
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Figure 2-11 The performance of various algorithms (after Apelbaum 2011). 

In addition, Thakur et al. (2013) state that computational efficiency represents the 

performance or speed of the Central Processing Unit (CPU), a core part within a 

computer that carries out the instructions of computer programs. 

Computational efficiency is a wide topic and has been investigated in many different 

contexts. In this research, the computational efficiency of geo-processing focuses only 

on the resources required for spatial data and function processing, such as the total 

computation time cost of a geo-processing model implementation.  

2.4.2 Computational Efficiency Problems of Geo-processing 

The total computation time cost of a geo-processing model implementation can be 

influenced by several factors, such as a computation strategy (Stallings 2004), 

computational algorithms (Gao et al. 2012), and complicated system structure (Chiang 

et al. 2013). This section focuses on computation strategy because it is an important 

problem for the traditional geo-processing approach that has not yet been fully 

investigated.  

Over the last 30 years, computational strategies have been developed using different 

applications in order to implement complex computations (Jones et al. 1997). For 

example, Ladevèze et al. (2001) demonstrate a micro-macro computation strategy to 

analyse highly heterogeneous structures with a large number of degrees of freedom. 

Helton et al. (2007) present a sampling-based computation strategy for representing 
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epistemic uncertainty in model predictions for evidence theory. These examples indicate 

that strategy is an essential element of computation.  

However, the current computation strategy applied in traditional geo-processing has 

some problems of computational efficiency, due to ‘waiting’ functions and unnecessary 

computations. An example of complex geo-processing is given in Figure 2-12 to 

illustrate such problems in a geo-processing model, which involves three main steps. 

The first step involves input of the original spatial data, which includes LiDAR points, 

property locations, and road network data (shown by the blue circles in Figure 2-12). 

LiDAR points are used to produce elevation and slope values. Property locations and 

road networks are applied to understand additional features such as local noise levels. 

The second step refers to data processing and consists of five main types of 

computational tasks for this geo-processing model, which are shown by the orange 

circles in Figure 2-12. 

 

Figure 2-12 An example of a complex geo-processing model. 

In the traditional geo-processing approach, the functions in Figure 2-12 model are 

processed one by one in sequence (i.e. starting with the first computational task and 

moving to the next one). Therefore, all functions should follow the sequence for 

implementation of a geo-processing model, which means a function needs input data 

from its previous function. For example, in Figure 2-12, ‘Slope’ needs the output from 

‘IDW’, and ‘Map Layers Overlay’ must wait for results from the four previous 

functions ‘S_Output1’, ‘S_Output 2’, ‘S_Output 3’, and ‘S_Output 4’. This example 

indicates that if early functions deal with intensive datasets, later functions have to be 

suspended while they wait for the results. However, wait functions in sequential 

programming allow a thread to delay its own execution (Mitchell et al. 2001).  
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Figure 2-13 illustrates unnecessary computations in a complex geo-processing model. 

This figure shows an example of the Region of Interest (ROI) in ‘Land Use’ (grey 

colour), which occupies approximately 20% of the region. The ROI, a popular approach 

in image processing which involves a selected subset of samples within a dataset 

identified for a particular purpose, may only use a portion of the whole area (Bendell 

and Wan 2011). For example, if users need to produce DEM or DTM data, 

computations in the traditional geo-processing approach always produce the data on the 

entire extent of the study area, while only the ROI area is needed. In the example in 

Figure 2-13 it is unnecessary to calculate the data located outside the ROI (80% of the 

entire region) because it may not be considered in the final result.  

 

Figure 2-13 Region of Interest (ROI) in Land Use. 

This section discusses existing problems with geo-processing models, especially in 

relation to a computation strategy and its efficiency. Sequential computation causes two 

computational efficiency problems in traditional geo-processing. First, all functions 

need to await input data from previous functions; and secondly, unnecessary 

computations may occur in a complex geo-processing model. These two problems can 

potentially increase the computational cost (e.g. computation time) of a geo-processing 

model. Addressing these implications will support the more efficient processing of 

spatial data and functions.  

Section (2.4.3) reviews current methods that may be used to improve computational 

efficiency and suggests improvements to the traditional geo-processing approach. 
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2.4.3 Computational Efficiency Improvement  

In geo-processing, issues related to computational efficiency have received increasing 

attention due to the number and complexity of spatial problems, which have both 

increased dramatically in recent years. This section reviews recent computational 

methods to facilitate a later demonstration of how computational efficiency problems in 

traditional geo-processing can be addressed. 

2.4.3.1 Modern Computation Methods Review 

In recent years, many high performance computational techniques have been applied in 

GIS to improve computational efficiency, including parallel computation and spatial 

data query methods. Parallel computation has been widely used in GIS as it enables the 

implementation of multiple instructions by using multi-core processors (Grama 2003). 

Spatial query is a fundamental function which supports various spatial analyses and data 

processing applications (Zhong et al. 2012). These two methods are discussed in the 

next Sections (2.4.3.1.1 and 2.4.3.1.2). 

2.4.3.1.1 Parallel Computation 

Before 2005, most CPUs had only one core for processing all instructions, which 

frequently influenced the computational efficiency as the instructions had to be 

implemented one by one. Then, the multi-core processor (including more than one core 

in a single computing component) was introduced in 2009. The multi-core processor 

supported a way to run multiple instructions at the same time and increase overall speed 

for programs amenable to parallel computation. 

In traditional computing, a problem is divided into a discrete series of instructions 

which are executed sequentially on a single processor. In contrast, parallel computation 

breaks a problem into discrete parts, with each part further divided into a series of 

instructions. Final instructions for each part execute concurrently on a multi-core 

processor or different processors (Megiddo 1983). 

Currently, parallel computation is widely used in GIS in order to improve computational 

efficiency, especially in relation to large data sharing, dynamic data processing, and 

web-GIS. Jiang et al. (2012) proposed a parallel computation approach of spatial vector 

data conversion based on a common interface, which provides an efficient way to share 

large geospatial data from a variety of data resources. Kremmydas et al. (2011) 

developed a parallel computation approach to reduce the data processing time of a web 
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based Spatial Decision Support System (web SDSS), which was implemented in 

Thessaly to evaluate the supply of selected energy crops. These studies showed that 

total solution time drops significantly under the parallel computational approach.  

Although parallel computation can improve the computational efficiency of traditional 

geo-processing by using a multi-core processor, it does not change the sequential 

computation strategy. Consequently, the problems discussed in Section 2.4.2 still exist 

in parallel computation. 

2.4.3.1.2 Spatial Data Query  

In addition to parallel computation, many other methods can be used to improve 

computational efficiency and performance in geo-processing. For example, spatial data 

query methods support a way to access and search larger spatial databases more 

efficiently to reduce the entire computation time of a geo-processing model.  

Guttman (1984) describes the so-called R tree, a spatial data access method used to 

store, search, and query spatial information. The R-tree method is an efficient way to 

query a spatial database as it reduces computer memory and temporary database usage. 

R-tree has been widely used in different applications of spatial data management. For 

example, R-tree is commonly used to store spatial data, such road networks and city 

locations, and then to query the data quickly and efficiently; for example, to ‘Find a 

shortest distance from city A to city B’ or ‘Find a nearest motorway access point around 

city C’. Spatial data query methods are widely used in GIS to improve the 

computational speed of access, query, and storage of large spatial databases (Luo et al. 

2012, Aji et al. 2012). 

Kriegel et al. (1993) discuss a method which combines spatial access and computational 

geometry concepts to improve the performance of GIS operations. The method can be 

used in different applications or algorithms, such as map overlay and map merge. 

However, the current method needs further investigation into the design of efficient 

algorithms based on spatial access methods and computational geometry for all retrieval 

operations.  

To sum up, spatial data query methods contribute to geo-processing, especially with 

respect to accessing and querying large spatial datasets. Nevertheless, these methods do 

not improve the computational efficiency of executing a large group of computation 

tasks in a geo-processing model. 
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2.4.3.2 Computation strategy 

Although computational efficiency of geo-processing could be improved using parallel 

computational and spatial data query, these methods do not address the sequential 

computation problem in the traditional geo-processing approach. This means that spatial 

data and functions are still evaluated one by one until the final result is computed in 

parallel. 

In order to address the sequential computation problem in the traditional geo-processing 

approach, this section discusses how a different computation strategy, priority-based 

computation, can be used for geo-processing.  

Computational priority, or scheduling, is a method that optimizes use of computation 

resources and improves computation performance (Jones et al. 1997). In computer 

science, priority (or scheduling) is used for implementing multiple computation tasks. 

For example, scheduling could be used to suspend a heavy computation task in order to 

free up the main computing memory for other computation tasks which have less 

computational cost (e.g. time and memory) (Stallings 2004). Moreover, priority (or 

scheduling) has also been widely applied in GIS, mainly for the purposes of determining 

least-cost paths across a continuous surface (De Smith et al. 2007) or reducing delay 

due to an unexpected event in a complex railway network (Pellegrini et al. 2014) 

Similar to the priority rule used in computer science or in spatial problems of path 

selection, the priority-based computation strategy provides a new computation strategy 

in geo-processing to implement various computation tasks more efficiently, especially 

by lowering computation time and use of costly computer resources. In the priority-

based computation strategy, priority (or scheduling) can be used to suspend a 

computation task that has a low priority, or a computation task which allocates a large 

amount of memory, in order to free up main memory for other computation tasks, 

implementing the computation task later when more computer memory is available 

(Stallings 2004). More details of priority-based computation strategy will be discussed 

in Chapter 7. 

In summary, computational efficiency is an important concern in geo-processing, as it 

can influence computation performance and delay decision-making. In particular, the 

current computation strategy (sequential computation) applied in traditional geo-

processing can cost extra computation time and computer memory because it involves 

‘waiting’ functions and unnecessary computations. In view of our study of 
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computational efficiency methods, we propose a priority-based computation strategy for 

the CG approach in order to improve the computation time of a complex geo-processing 

model.  

2.5 Conclusion 

Geo-processing is used to solve complex spatial problems. The traditional geo-

processing approach has been widely applied in tools for spatial modelling, spatial 

analysis, and decision-making systems. Although the traditional geo-processing 

approach provides a simplified computation strategy for implementing a complex 

spatial model, the trade-off between simplification and complexity shows that data 

quality and computational cost have yet to be fully understood in the traditional geo-

processing approach. 

Data quality is a key concern in a geo-processing model because it influences the final 

geo-processing outputs and decision support system. Our review of data quality under 

the traditional geo-processing approach (Section 2.3.3) shows that the current approach 

is influenced by several data-quality problems. The first problem is the current spatial 

data representation, which may cause problems due to the limitations of raster and 

vector data formats. The second problem involves basic computation methods, which 

also can cause data error and uncertainty problems due to numeric computation and 

error propagation.  

Computational efficiency is another important concern for geo-processing, as it can 

influence computation performance. Our review of computational efficiency in 

traditional geo-processing (Section 2.4.2) suggests that the current computation strategy 

(sequential computation) costs extra computation time and computer memory because it 

employs inefficient processes (i.e. waiting functions) and unnecessary computations. 

This thesis introduces the CG approach in order to address these problems related to 

data quality and computational efficiency. A set of methods is proposed for the CG 

approach, including a point-based spatial data model, a symbolic computation, a 

function-based layer, and a priority-based computation strategy. The point-based spatial 

data model is used to minimise spatial data representation problems such as data 

conversion. The symbolic computation method and function-based layers are applied to 

reduce the data error and uncertainty associated with numerical computation in a geo-

processing model. The priority-based computation strategy is used to reduce 

computation time by re-ordering the computational sequence. 
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This chapter has reviewed the current data quality and computational efficiency 

problems that arise under the traditional geo-processing approach, and has discussed the 

methods that we apply in the CG approach for improvement of these issues. The next 

chapter discusses the conceptual model of the CG approach, which provides a basic 

element for the development of the new approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 

3 Conceptual Model of Combinative Geo-processing 

(CG) Approach 

3.1 Introduction 

One of the important characteristics of the traditional geo-processing approach is that a 

geo-processing model is composed of one or more processes, which are implemented 

individually and in a sequence. As was explained in the previous chapter, this influences 

the data quality and computational efficiency. In an attempt to overcome these 

problems, Chapter 3 introduces the CG approach. The major characteristics of the CG 

approach are presented together with a conceptual model, as well as the limitations and 

strengths of this approach.  

More specifically, Section 3.2 discusses the basic characteristics of the CG approach, 

with the aim of understanding the differences compared to the traditional geo-

processing approach, which was reviewed in the previous chapter. Section 3.3 

introduces a conceptual model for the CG approach and discusses in detail the 

implementation issues, which mainly refer to how spatial objects are represented and 

how different types of GIS functions are applied in the CG context, together with how 

the GIS functions and spatial data are further evaluated. A set of CG computational 

rules are introduced and how the CG output is produced in order to solve spatial 

problems is described. Section 3.4 discusses the strengths and limitations of the 

proposed approach, and finally, Section 3.5 concludes with a summary of the main 

issues discussed in this chapter.  

3.2 Basic Characteristics of the Combinative Geo-Processing 

Approach 

A major characteristic of the CG approach is that there is only one CG function for the 

entire geo-processing model. In other words, a complex geo-processing model, which in 

the traditional geo-processing approach is normally implemented using a sequence of 

different processes, is integrated into only one CG function. To further clarify what a 

CG function involves, Figures 3-1 and 3-2, which are discussed in Sections 3.2.1 and 

3.2.2, respectively, demonstrate two examples; a ‘simple chain’ and a ‘complex chain’ 

process which focus on the computation steps that are needed to execute them using the 

traditional geo-processing approach and the CG approach. 
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3.2.1 Simple Chain Process 

The upper workflow chart in Figure 3-1 illustrates an example of a simple chain process 

in the traditional geo-processing approach, while the lower workflow chart shows the 

same example but within the context of the CG approach.  

 

Figure 3-1 A comparison of a ‘simple chain’ process using the traditional geo-processing and CG 

approaches. 

The simple chain process for the traditional geo-processing approach incorporates two 

continuous processes: the first uses the ‘IDW function’ to produce ‘Output1’ from ‘Raw 

LiDAR points’; and the second applies the ‘Classification function’ to calculate the 

result from ‘Output1’. In the workflow for the CG approach it can be seen that these 

two processes are now combined into one process, i.e. {Classification (IDW CG 

dataset)}. In addition, in the CG approach the final result is produced without any 

intermediary outputs (i.e. ‘Output1’), as in the traditional geo-processing approach. 
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3.2.2 Complex Chain Process 

An example of a complex chain process is demonstrated in Figure 3-2. The upper 

workflow describes how a complex chain process is executed using the traditional geo-

processing approach, while the lower workflow illustrates how a complex chain process 

is executed using the CG approach.  

Using the traditional geo-processing approach to execute the complex chain function 

illustrated involves three processes: first, the ‘Slope function’ is used to produce a 

‘Slope Map’ from the ‘Continuous Elevation Surface’; second, the ‘Classification 

function’ is applied to produce a ‘Classified Map’ from the ‘Continuous Elevation 

Surface’; and finally, the ‘Map Overlay function’ is used to integrate the two previous 

outputs and produce the final ‘Result output’. The lower workflow chart clearly 

demonstrates that these three processes are integrated into one CG function. The ‘Slope’ 

and ‘Classification’ functions are loaded into the ‘Map Overlay’ function as two 

parameters, and then the result is directly produced from the CG function, i.e. {Map 

Overlay (Slope + Classification)}.  

Both examples demonstrated by Figures 3-1 and 3-2 show that the CG approach 

provides a different way to deal with the simple and complex chain processes, as all the 

necessary GIS functions are combined into one CG function. Thus, it may be suggested 

that the proposed CG approach provides an entirely new way of dealing with different 

types of geographical information and GIS functions in geo-processing.  

After detailing the major characteristics of the CG approach, in which all geo-

processing tasks can be integrated into one CG function, the next section introduces the 

conceptual model for the CG approach. 
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Figure 3-2 A comparison of a ‘complex chain’ process using the traditional geo-processing and CG 

approaches.  
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3.3 The Combinative Geo-Processing Conceptual Model 

The CG conceptual model introduces the major components of the CG approach and the 

relationships between them. It should be noted that the elements that were reviewed in 

the previous chapter are also integrated into the following conceptual model, which is 

shown in Figure 3-3. For example, one of the fundamental elements of the CG 

conceptual model is the CG function library, which should include all types of GIS 

functions that are needed during processing. 

 

Figure 3-3 Conceptual model of the CG approach. 

The CG conceptual model consists of three parts which are discussed separately in 

Sections 3.3.1-3.3.3. Section 3.3.1 describes the first part of the CG conceptual model, 

which focuses on the input level of the CG approach, such as the basic data model, 
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functions, and computation framework. Section 3.3.2 discusses the second part of the 

CG conceptual model, which focuses on the processing and computation rules 

employed in the CG approach. Finally, Section 3.3.3 describes the major characteristics 

of the output or results of the proposed CG approach.   

3.3.1 Input Level 

There are three basic elements that a GIS user needs to consider before designing a geo-

processing model using the CG approach. The first element refers to the primary spatial 

data model, as this influences many fundamental elements related to geo-processing, 

e.g. data quality and computational efficiency. The second element refers to the CG 

functions, as these are key components for building complex geo-processing models 

using the CG approach. Finally, the third element is the CG framework, which 

illustrates how to process CG datasets and CG functions using the proposed approach. 

1) Combinative Geo-processing Dataset 

An important concern of the proposed CG approach is the storage and representation of 

spatial objects. In the previous chapter two main data types were discussed (i.e. vector 

and raster data), and it was explained that vector data provides a popular way to 

represent discrete objects, such as city boundaries and road networks, while raster data 

can be used to show continuous fields, such as elevation models and land surface. At the 

same time, it was also noted that both vector data and raster data representations have 

limitations, such as for vector data a massive data storage space is required and the 

algorithms for processing spatial analysis functions are complex, while for raster data a 

very fine raster grid will represent sufficient detail but will require a large amount of 

disk space.  

As discussed in Section 2.3.4.1, the CG approach uses the point-based model concept to 

represent spatial entities. In other words, the CG approach uses point data to represent 

geographical features that include both discrete objects and continuous field features. 

Point data plays an important role in GIS representations, as the majority of spatial data 

are based on, or consist of, points.  

The primary spatial data model in the CG approach involves points and the 

mathematical model shown in Formula 3.1 is used to define a CG Dataset.  
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        CG Dataset ϵ ((X1, Y1, (Z1))…(Xn, Yn, (Zn)))                                              [3.1] 

Where, ‘CG Dataset’ is a single dataset, which could include a single point (X1, Y1, (Z1) 

or a series of points from 1 to n ((X1, Y1, (Z1))… (Xn, Yn, (Zn))). X1 and Y1 refer to the 

coordinate value, and Z1 is the optional elevation value.  

2) Combinative Geo-processing Functions 

A CG function also consists of a fundamental component of the CG approach. In 

contrast to the traditional geo-processing approach, the CG approach proposes the use 

of function-based layers for the creation of a CG function. In the CG approach a 

function-based layer includes the following functionality: it can store a single function 

or a set of functions (e.g. a function to calculate distance or a geo-processing model to 

analyse complicated objects); the input for a function-based layer can be a dataset or a 

function(s) (e.g. an IDW function can be the direct input to a SLOPE function to 

produce a function-based layer); and the output of a function-based layer can be a 

dataset or a function(s).  

The four mathematical forms of a CG function, based on CG datasets and function-

based layers, are illustrated in the following formula (3.2).  

      CG Function ϵ  

 

                                                                                                                               [3.2] 

                                                                                                                       

Where the ‘CG function’ represents a function in the CG approach, ‘FL’ is a function-

based layer, and n is an integer. 

(a) FL (null) is a single, temporary, and generic function-based layer without any 

datasets, such as an IDW function: IDW (null);   

(b) FL (CG dataset) is a single function-based layer linked to a CG dataset, such as 

loading a set of LiDAR points into an IDW function: IDW (LiDAR); 

{  FL (null) |  

   FL (CG dataset) | 

  (FLn…..(FL2 ( FL1 (null)))) | 

  (FLn…..(FL2 ( FL1 (CG dataset)))) } 
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(c) (FLn….. (FL2 (FL1 (null)))) is a group of function-based layers (FL2 ( FL1 (null))) 

is loaded into another function-based layer FLn, such as loading (Slope (IDW (null))) 

into a Combination function: (Combination… (Slope ( IDW (null)))). 

(d) (FLn….. (FL2 ( FL1 (CG dataset)))) is different to (c) as F1 is linked to a CG 

dataset, such as: (Combination… (Slope ( IDW (LiDAR)))). 

This method for creating a generic function in the CG approach can be used to further 

incorporate in the CG approach various GIS functions, which were reviewed in the 

previous chapter. Thus, it is essential that the proposed CG approach provides a CG 

function library to effectively store and manage different CG functions. In principle, a 

function library is a collection of ready-to-use segments of code that can be used for 

development purposes. It has been widely accepted that an optimum function library 

can save development costs and reduce errors because the library’s codes can be reused, 

and this means that they only have to be debugged once (Drepper, 2011). Therefore, a 

CG function library was created at this early development stage of the CG approach. 

Figure 3-4 provides an overview of the CG function library, which is composed of eight 

function classes. It is common practice for a function class to include a group of 

functions that have similar functionality. Thus, the eight function classes shown in 

Figure 3-4 are grouped according to basic GIS functionality; six (orange boxes) are 

common GIS functions, while the other two function classes (blue boxes) involve 

additional functions that can be used to store and query geographical data.   

It should be noted that the proposed CG function library currently includes only thirty 

core GIS functions, which were developed and can be directly cited and frequently re-

used. The proposed CG function library may significantly help to improve development 

time. 
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Figure 3-4 Basic GIS functions included in the CG function library. 
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3) The Combinative Geo-processing Framework 

The CG framework provides a means of integrating the CG datasets and CG functions 

together in order to solve complex spatial problems. Figure 3-5 illustrates the generic 

frameworks of the traditional geo-processing and CG approaches. The upper flow chart 

shows the traditional geo-processing framework, where the initial step loads the ‘Input’ 

into a function ‘Fun1’, and then this yields an output ‘Out1’. ‘Out1’ is re-used as an 

‘Input’ for function ‘Fun2’ and returns the result ‘Out2’. This sequential computation 

strategy is used until the model produces the final result. In contrast, the lower flowchart 

illustrates the CG framework, where a function can take other functions as parameters 

and return functions as results.    

 

Figure 3-5 The generic frameworks of the traditional geo-processing and CG approaches. 

The corresponding generic mathematical models for the traditional geo-processing and 

CG frameworks are described respectively by formulas 3.3 and 3.4. In formula 3.3 the 

various functions are performed sequentially until the model reaches the final function. 

In contrast, formula 3.4 shows that the final result is produced directly from the CG 

function. It is essential to note that the parameters Etradition and ECG are incorporated into 

these formulas in order to compare data quality between the traditional geo-processing 

approach and the proposed CG approach. 
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[3.3]       

 

In formula 3.3, the ‘dataset’ is the input, which can be raster or vector data,  and ‘F1, F2, 

F3, …, Fi’ represent different types of GIS functions, such as data interpolation, map 

algebra, vectorisation and network analysis. ‘O1, O2, O3, …, Oi’ are the  various outputs 

based on the numerical computations and approximated value, while ‘E1, E2, E3, …, Ei’ 

represent the potential errors accompanying each single stage of the sequential 

computation. ‘Etradition’ represents the potential errors in the traditional geo-processing 

approach. Finally,  represents the computation progress,  represents the 

‘stage by stage’ computation strategy, and  describes the last step in the entire 

framework. 

 

 [3.4] 

 

In formula 3.4, ‘CG dataset’ is the input, and ‘FL1, FL2, FL3, …, FLi’ represent the 

different types of function-based layers in the CG approach. The ‘CG function’ 
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represents a combinative function which includes all function-based layers (i.e. FL1, 

FL2, FL3, …, FLi). ‘ECG’ represents the potential error in the CG approach. Moreover, a 

recursive algorithm will be applied in this formula to execute the functions from FL1 to 

FLi.  

It should be noted that this thesis attempts to compare the difference between ‘E tradition’ 

and ‘ECG’, something which is discussed further in Chapters 5 and 6, where different 

case studies are presented with the aim of investigating the data quality of the CG 

implementations. 

3.3.2 Processing and Computation 

Following the discussion on the fundamental components of the CG approach, this 

section discusses the processing and computational issues, and explains how the CG 

framework can be evaluated in the proposed approach.  

An ideal CG framework needs a reliable way to operate and evaluate various CG 

datasets and CG functions, thus a set of CG computational rules is introduced, which 

include ‘suspending’, ‘computation priority’, and ‘symbolic computation’. Notably, 

these computation rules essentially constitute the key difference between the CG 

approach and the traditional geo-processing approach. 

‘Suspending’ is a method which can help manage a CG function. All CG functions in a 

geo-processing model can be suspended until a GIS needs them for producing the 

results. Suspending can further help to understand a basic difference between the 

traditional geo-processing and CG approaches. As illustrated in Figures 3-1 and 3-2, the 

traditional geo-processing approach uses a sequential computation strategy, with each 

function returning a specific result; therefore the final result will only be calculated 

when all the functions have been executed. In contrast, using the CG approach the input 

datasets are temporarily stored in the function-based layers and calculations are 

suspended until the user defines the parameters of the final result or requests the value 
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of a function at a specific location. Thus, computations will only commence when 

requested by the end user, and this is when the final result will be calculated.  

It should be noted that there are two main advantages to suspended functions. First, the 

CG-enabled GIS does not need to use extra memory space to store intermediary results 

during the computation processes. Second, functions are only executed when users 

require the final results, which may reduce the total computational period and introduce 

fewer errors, especially when compared with the errors that can be generated when there 

are several intermediary steps involved (Haklay, 2004). These aspects are explored in 

later in this thesis. 

The second rule refers to ‘computation priority’, and it is similar to the priority rule used 

in mathematics. When functions are suspended in a geo-processing model the CG 

approach needs to decide which spatial function will be executed first. The aim is to 

provide an optimum computational sequence for implementing a set of spatial functions 

at a lower computational cost. A typical example of a priority-based computation is that 

of algorithm scheduling, which is concerned with the optimal allocation of scarce 

resources to activities over time. When there are many spatial functions that need to be 

executed (e.g. in Figure 3-2 the functions ‘Slope’, ‘Classification’ and ‘Map Overlay’ 

all needed to be executed), the computational priority should make a judgment 

concerning which function should be performed first. Computational priority helps to 

further define in what order the functions will be executed until the entire set of 

functions is finally executed as efficiently as possible. 

The third rule refers to symbolic computation. In contrast to the traditional geo-

processing approach, where functions are evaluated using numerical calculations and 

approximate values, the CG approach uses symbolic computation to calculate the CG 

functions. As discussed in Section 2.3.4.2, symbolic computation provides an exact 

method for mathematical calculation. 
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3.3.3 Outputs and Results 

The last part of the proposed CG conceptual model is concerned with the production of 

the final result. There are two alternative formats in the CG approach for producing a 

final output and which further differentiate it from the traditional geo-processing 

approach. 

The first format of the final result is points, which is due to the fact that the primary 

spatial data model of the CG approach involves the use of points. GIS users can process 

these points straightforwardly or transform them into other spatial data models, such as 

raster and vector data, for further computations.  

The second format of the final result is functions, because the way CG functions are 

operated by higher-order functions could produce new functions from existing 

functions. In other words a CG function can produce a function or a set of functions as 

the final outcome. Consequently, the functions can be reused or can be used as the input 

for other geo-processing models for advanced spatial analysis. 

Formula 3.5 defines the CG output in two different forms.  

CG Output ϵ (  {(X1, Y1, (A1, …, Am))…(Xn, Yn, (An, …, Am))} |              

                            {CG functions} )                     [3.5]   

Where ‘(X1, Y1, (A1, …, Am)’ represents an output point location (X1, Y1) with a single or 

several attributes ‘(A1, …, Am)’. n and m are both integers.  

The major components of the conceptual model of the CG approach have now been 

described  and the next section discusses the strengths and also potential limitations of 

the CG approach. 
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3.4 Potential Advantages and Disadvantages of the 

Combinative Geo-Processing Approach  

The previous sections have explained some of the advantages of the proposed CG 

approach over the traditional geo-processing approach, which include the final output 

being directly produced from a CG function. One of the benefits of this is that the CG-

enabled GIS does not need to produce any intermediary results. In addition, in CG-

enabled GIS there is no need to convert geographical data in different spatial data 

models, such raster and vector data, because all the CG datasets are stored as points and 

all the computations and manipulations use points. For example, in the traditional geo-

processing approach two conversion steps are needed to convert LiDAR to a DEM 

image, and convert a DEM image to a contour map in order to implement this task, 

while the CG approach can produce a contour map using LiDAR points directly.  

The CG approach provides more flexibility in terms of producing a final result. For 

example, in existing GIS tools the resolution and extent (or study area) of the final 

results are the default values and are defined by the system when users run a layer 

combination operation. However, the CG approach can provide a flexibility in the final 

result creation. For instance, the resolution can be defined by the user and the extent can 

be based on a five metre buffer of residential area. 

Finally, when users calculate different CG functions in a CG-enabled GIS, all the 

computations run on computer random access memory (RAM) are faster, while the 

traditional approach may take longer. This is because the traditional geo-processing 

approach needs to access, query, and save multi-step results on locally available storage. 

Although the proposed CG approach has the potential to significantly improve the 

performance of geo-processing, there are still two significant concerns that should be 

noted and the remainder of this thesis aims to address these specific concerns.   

The first concern refers to the development period. The fact that geo-processing is an 

integrated platform means that the tasks include not only the GIS functions, but also 
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various functionalities which can be used to capture, store, and visualise spatial data. 

Therefore, the more CG functions developed, the more effective the development of the 

proposed CG approach will be. However, it should be clarified that due to time 

restrictions this research will only consider the most popular GIS functions, such as 

interpolation methods, map algebra, and slope. 

The second issue refers to the efficiency of functional programming. Functional 

programming (i.e. Scheme, the functional programming language that is used in this 

research) was selected as the basic programming tool for developing the CG functions 

as it provides full support for high-order functions and symbolic computation. However, 

in general functional programming languages are typically less efficient in their use of 

the CPU and memory than imperative languages such as C and Pascal. This means that 

the use of a functional programming language for the development of the proposed CG 

approach may reduce efficiency with respect to the CPU and computer memory. Taking 

this limitation into account a case study is discussed in Chapter 8, where computational 

priority is used as a way to improve computational efficiency and possibly 

counterbalance the negative effects of functional programming.  

3.5 Summary 

This chapter has introduced the conceptual model of the CG approach, which used three 

levels to illustrate the differences between the new approach, the traditional geo-

processing approach and the computation progress in the new approach. The conceptual 

model showed that the CG approach provides a completely different way of processing 

geographical data and GIS functions. Additionally, a number of the strengths and 

limitations of the CG approach have been briefly discussed, as these help in the 

organisation of the development process.  

To implement the proposed CG conceptual model, the next chapter will address the 

development design of the CG approach and discuss the appropriate methodologies. 
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4 Case Study Design and Combinative Geo-Processing 

Implementation Methods 

4.1 Introduction 

This chapter provides an overview of the main methodological framework of this thesis. 

Section 4.2 introduces a set of case studies, which gradually increase in complexity, and 

which were carried out in order to implement and also evaluate the CG functions and 

the results obtained. Section 4.3 explores the manipulation and execution of CG 

computations in the three case studies for the development of the CG approach, e.g. 

building up function-based layers and dealing with a group of function-based layers. 

Section 4.4 describes how the CG approach can be implemented in a digital computer 

environment, while Section 4.5 describes the selected data that are used in the case 

studies. Finally, Section 4.6 summarises the main issues that are discussed in this 

chapter. 

4.2 Experimental Design 

Three case studies were designed which try to demonstrate how function-based layers, 

i.e. CG functions, and a priority-based computation strategy are used in the CG 

approach. These also support the investigation into understanding whether the CG 

approach improves data quality and computational efficiency, which are aims of this 

thesis. 

4.2.1 Case Study Selection 

In the early stages of case study design it is worth explaining the reasons for selecting 

the case studies and their specific research questions. As discussed in Figure 4-1, 

Sections 2.3.3 and 2.4.2 provides an overview of the common issues within a complex 

geo-processing model, which is a popular geo-processing model used to select potential 

locations for a new property development. There are three typical issues illustrated in 

this model: (1) the multiple map layers overlay function, which could cause data 

uncertainty and error problems due to re-sampling and data conversion operations; (2) 

simple chain processing, which may cause data uncertainty and error propagation 

problems due to approximated values and round-off errors; and (3) overall computation 

time cost, which could cause extra computation time due to the ‘wait’ functions and 

unnecessary computations.  
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Figure 4- 1 Overview of three typical issues in a complex geo-processing model. 

The three case studies have been designed in order to investigate these three typical 

issues in a complex geo-processing model (Figure 4-2). The first two case studies focus 

on the evaluation of data quality problems, such as re-sampling, data conversion, data 

uncertainty and error propagation, while the third case study focuses on the evaluation 

of computational efficiency problems, such as ‘wait’ function and unnecessary 

computations. During the case study development, the output of the previous case study 

will be used in the next case study as a benchmark for further investigation. For 

example, the CG functions developed in the case studies 1 and 2 will be applied in case 

study 3 to build up a complex geo-processing model. The three case studies are 

discussed separately in the following paragraphs. 
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Figure 4- 2 Summary of the experimental case studies used for the development of the CG 

approach. 

4.2.1.1 Case Study 1: Map Overlay Function 

The purpose of this case study is to investigate the influence of re-sampling and data 

conversion issues in the traditional geo-processing approach, and how these influences 

can be reduced using the CG approach.  

The Map Overlay function is a basic GIS function used in spatial analysis as it enables a 

way to integrate different types of information or map layers. Map Algebra is 

traditionally used for Map Overlay operations and was originally introduced by Tomlin 

(1990). It involves the process of re-sampling and data conversion in order to combine 

co-registered map layers, which are raster-based and which have the same size and 

resolution. In this case study the implementation of the same process is explored using 

the CG approach. 

Figure 4-3 illustrates this case study’s model, which requires the overlay of two 

different outputs (from IDW1 and IDW2). This is a simplified geo-processing model 

and the purpose is to test the data quality of the results obtained when combining two 

different layers which have different grid sizes, as the IDW1 layer has a 1 metre pixel 

size, while the IDW2 layer has a 1.5 metre grid size. It should be noted that data 

uncertainties and errors may be introduced when two raster layers with different pixel 

sizes are converted into the same pixel size for implementing Map Layers Overlay 

operations.  This case study is discussed in Chapter 5. 
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Figure 4- 3 Map Overlay function used in the second case study.  

4.2.1.2 Case Study 2: A Combinative Function 

This case study aims to investigate the influences of data uncertainty and error 

propagation issues in the traditional geo-processing approach and how these influences 

can be reduced using the CG approach. Furthermore, this case study also focuses on the 

implementation of a CG function, which is composed of functions-based layers, using 

the CG approach.  

Figure 4-4 demonstrates the CG function (shown in the red dashed box), which consists 

of an IDW function layer and a Slope function layer. In traditional geo-processing this 

process would involve: (a) the IDW function producing the DEM surface, and (b) the 

DEM data being re-used as the input for the Slope function in order to derive the new 

slope surface. This sequential computation may introduce data uncertainties and errors 

due to approximated values and error propagation. However, in the CG approach this 

geo-processing model is applied using a single computation step and the results are 

directly produced from the CG function without any intermediate outputs. A Monte 

Carlo simulation is also used here to validate and compare the data quality of the results 

from traditional geo-processing (using ModelBuilder in ArcGIS) and those obtained 

from the CG approach. This case study is discussed in Chapter 6.  

 

Figure 4- 4 A CG function used in the second case study. 

As previously noted, in the first two case studies the focus of the evaluations is on data 

quality issues and on demonstrating how data uncertainties and errors in the traditional 

geo-processing can be reduced using the CG approach. In the third case study, the focus 

of the evaluation is on the computational efficiency of the CG approach. 
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4.2.1.3 Case Study 3: Facility Location Model 

This case study attempts to investigate computational efficiency problems in the 

traditional geo-processing approach, e.g.  the ‘wait’ function and unnecessary 

computations, and how the influence of these problems can be reduced using the CG 

approach. 

This case study demonstrates the implementation of a complex geo-processing model 

using the CG approach, and also provides the basis to further investigate the issue of 

computational efficiency by reducing the time cost of geo-processing. Thus, in this case 

study the concept of CG computation priority for processing spatial data and functions 

is introduced. The goal of CG computation priority is to improve the performance of 

GIS computations using an optimum evaluation and manipulation sequence. In contrast 

to the sequential computation of a traditional geo-processing model, a more 

sophisticated variant of this method is that each spatial function is given a priority value 

derived from the particular computation cost, and then the available functions with the 

highest priority are evaluated. 

The third case study involves a complex geo-processing model for the identification of 

potential locations for building new properties. This model uses LiDAR points, 

transport networks, and existing residential locations as the input data, as well as 

various GIS functions (Figure 4-5). 

 

Figure 4- 5 Property Location Planning Model used in the third case study. 

The proposed Facility Location Planning Model is executed using both the CG approach 

and the traditional geo-processing approach (using ModelBuilder in ArcGIS) in order to 

compare the computational efficiency, especially with respect to the time cost of 

implementation. This case study is discussed in Chapter 7. 
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This section has introduced the three case studies in this thesis and the next section pre-

defines the parameters for the functions applied in the three case studies. 

4.2.2 Parameter and Function Declaration 

Different types of parameters and functions will be used in this research to implement 

the three case studies and compare their outputs. In order to illustrate the basis for 

comparison is identical across software platforms, this section pre-defines the 

parameters and the selected functions for each case study. 

4.2.2.1 Case Study 1  

The first case study aims to investigate a GIS overlay function for the integration of two 

raster layers with different grid sizes. There are two types of GIS functions, including 

IDW and raster overlay functions, which will be applied in this case study (Table 4-1). 

IDW is used to produce two different raster layers, then raster overlay function enables 

us to combine the two raster layers. The algorithm and calculation strategy of these two 

functions are illustrated in Appendix D and Section 5.2. It should be noted that these 

algorithms are not only applied in the CG approach to develop the GIS functions, but 

also used in the commercial GIS tools.   

Furthermore, the online help documents for IDW and raster overlay functions are given 

in Appendix E (E.1 and E.2). These documents are cited from ArcGIS (Esri) website 

and help us to identify the conceptual formulae for the GIS functions. 

Table 4- 1 GIS functions and software platforms in Case Study 1. 

Function Name GIS software platform Functionally 

IDW MapInfo Produce the sample layers 

IDW ArcGIS  Produce the sample layers 

IDW The CG Approach Produce the sample layers 

IDW R Produce the reference layers 

Raster Overlay MapInfo Produce the sample layers 

Raster Overlay ArcGIS  Produce the sample layers 

Raster Overlay The CG Approach Produce the sample layers 

Raster Overlay R Produce the reference layers 
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Parameters (Case Study 1) 

The parameters for IDW and raster overlay functions are given in the Table 4-2.  These 

parameters will be used in the selected GIS software platforms repeatedly. 

Table 4- 2 Parameters of GIS functions in Case Study 1. 

 

Input Dataset (Case Study 1) 

The attribute of input dataset for Case Study 1 is illustrated in Table 4-3. These data will 

be used as the input data for the IDW functions in the selected GIS software platforms. 

More details about the input data are discussed in Section 5.4. 

Table 4- 3 Input dataset for Case Study 1. 

Function Name Parameter Name Description 

IDW Spatial Reference British National Grid 

 Grid Size 1 meter and  1.5 meters grid size  

 Input (for reference data) Reference Dataset 

 Input (for sample data) Sample Dataset 1; 

Sample Dataset 2 

Raster Overlay Spatial Reference British National Grid 

 Input Raster (reference data) Outputs of IDW function 

 Input Raster (sample data) Outputs of IDW function 

Input Name Description Value 

Reference Dataset Number of sample points 1010 points 

 Spatial Reference British National Grid 

 Data Resource See Appendix A 

 Attributes X, Y Coordinate Location; 

Z Elevation Value 

Sample Dataset 1 Number of sample points 819 points 

 Spatial Reference British National Grid 

 Data Resource 80% of  Reference Dataset 

 Attributes X, Y Coordinate Location; 

Z Elevation Value 

Sample Dataset 2 Number of sample points 70 % of Reference Dataset 
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Comparison Method (Case Study 1) 

The map algebra and statistical analysis are used in this case study to exam the outputs. 

Produced from the GIS software platforms. Raster Algebra’s minus function subtracts 

the value of the second input raster from the value of the first input raster on a cell-by-

cell basis and supports investigating the difference of grid cells between the actual, 

observed values that are stored in the Integrated Reference Layers (IRLs) and the 

derived values that are stored in Integrated Sample Layers (ISLs). Furthermore, 

statistical analysis was also undertaken in order to compare the Raster Algebra (Minus) 

results in more detail. For the purposes of this comparison, the Maximum (Max), 

Minimum (Min), and the Standard Deviation values are used. The results of 

comparison, such as the key discrepancies of outputs, are discussed in Section 5.7.  

4.2.2.2 Case Study 2  

The second case study focuses on a simple chain processing, which includes two GIS 

functions: IDW and slope (Table 4-4). IDW is used to produce elevation value from 

point data, and slope is applied to produce a surface model from the elevation value.  In 

addition to IDW, the algorithm and calculation strategy of slope function is discussed in 

Section 6.2.1 and Appendix E (E.3). It should be noted that this algorithm is not only 

applied in the commercial GIS software platforms (e.g. ArcGIS), also used in the CG 

approach to develop the slope function. 

 

 

 

 

 

 

 Spatial Reference British National Grid 

 Data Resource See Appendix A 

 Attributes X, Y Coordinate Location; 

Z Elevation Value 
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Table 4- 4 GIS functions and software platforms in Case Study 2. 

Function Name GIS software platform Functionally 

IDW ArcGIS  Produce the sample layers 

IDW The CG Approach Produce the sample layers 

Slope ArcGIS  Produce the sample layers 

Slope The CG Approach Produce the sample layers 

 

Parameters (Case Study 2) 

The parameters for IDW and slope functions are given in the Table 4-5. These 

parameters will be used in the ArcGIS and the CG approach repeatedly. 

Table 4- 5 Parameters of GIS functions in Case Study 2. 

 

The Input Dataset (Case Study 2) 

The attribute of input dataset for Case Study 2 is illustrated in Table 4-6. More details 

about the input data are discussed in Section 6.4. 

 

 

 

 

 

Function Name Parameter Name Description 

IDW Spatial Reference British National Grid 

 Grid Size 1 Meter  

 Input data Input Dataset  

Slope Spatial Reference British National Grid 

 Input (elevation 

value) 

Output from the IDW function 

 Grid Size Depends on the input data 
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Table 4- 6 Input dataset for Case Study 2. 

Input Name Description Value 

Input Dataset Number of sample points 26499 points 

 Spatial Reference British National Grid 

 Data Resource See Appendix A 

 Attribute X, Y Coordinate Location; 

Z Elevation Value 

 

The Comparison Method (Case Study 2) 

In this case study, Monte Carlo simulation is used to calculate the results’ mean and 

variance in order to investigate the impact of data uncertainties on data quality in both 

simple chain processing model implementations, including ArcGIS and the CG 

approach. Table 4-7 illustrates the primary parameters of Monte Carlo simulation. The 

details about the computation strategy and comparison results are discussed in Section 

6.7.  

Table 4- 7 Primary parameters for Monte Carlo simulation in Case Study 2. 

Parameter Name Description 

Input data Randomly select 60% of raw LiDAR points 

(Input Dataset) 

Output data Slope values 

Iterations  50 times 

 

4.2.2.3 Case Study 3  

The third case study focuses on a complex chain processing, which includes five types 

of GIS functions: IDW, slope, selection, distance, and map layer overlay (Raster) (Table 

4-8). In addition to IDW, slope, and map layer overlay (Raster), the computation 

algorithms of selection and distance are illustrated in the Appendix E (E.4 and E.5). 

These algorithms are used in both GIS software platforms (ArcGIS and the CG 

approach) in the third case study. 
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Table 4- 8 GIS functions and software platforms in Case Study 3. 

Function Name GIS software platform Functionally 

IDW ArcGIS  Produce elevation value 

IDW The CG Approach Produce elevation value 

Slope ArcGIS  Produce slope value 

Slope The CG Approach Produce slope value 

Selection 1 ArcGIS  Select the suitable location 

based on the elevation 

condition (< 390m)  

Selection 1 The CG Approach Select the suitable location 

based on the elevation 

condition (< 390m) 

Selection 2 ArcGIS  Select the suitable location 

based on the slope condition 

(< 30 degree) 

Selection 2 The CG Approach Select the suitable location 

based on the slope condition 

(< 30 degree) 

Selection 3 ArcGIS  Select the suitable location 

based on the distance 

between properties (> 30 m) 

Selection 3 The CG Approach Select the suitable location 

based on the distance 

between properties (> 30 m) 

Selection 4 ArcGIS  Select the suitable location 

based on the distance 

between property and main 

road (> 50 m) 

Selection 4 The CG Approach Select the suitable location 

based on the distance 

between property and main 

road (> 50 m) 

Distance 1 ArcGIS  Calculate the distance 

between properties  
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Distance 2 The CG Approach Calculate the distance 

between properties 

Map layer overlay 

(raster) 

ArcGIS  Combine the outputs from  

Selection 1 - 4 

Map layer overlay 

(raster) 

The CG Approach Combine the outputs from  

Selection 1 - 4 

 

Parameters (Case Study 3) 

The parameters for IDW, Slope, Selection, Distance, and Map layer overlay are given in 

the Table 4-9.  These parameters will be applied in ArcGIS and the CG approach 

repeatedly. 

Table 4- 9 Parameters of GIS functions in Case Study 3. 

Function Name Parameter Name Description 

IDW Spatial Reference British National Grid 

 Grid Size  1 Meter  

 Input data Input Dataset  

Slope Spatial Reference British National Grid 

 Grid Size  Depend on input value  

 Input data Output from IDW  

Selection 1 Spatial Reference British National Grid 

 Grid Size  Depend on input value  

 Input data Output from IDW  

 Condition  Pixel Value < 390m 

Selection 2 Spatial Reference British National Grid 

 Grid Size  Depend on input value  

 Input data Output from Slope 

 Condition  Pixel Value < 30 degree 

Selection 3 Spatial Reference British National Grid 

 Grid Size  Depend on input value  

 Input data Output from Distance 1 

 Condition  Pixel Value > 30 m 

Selection 4 Spatial Reference British National Grid 
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 Grid Size  Depend on input value  

 Input data Output from Distance 2 

 Condition  Pixel Value > 50 m 

Distance 1 Spatial Reference British National Grid 

 Grid Size  1 Meter  

 Input data Property Location 

Distance 2 Spatial Reference British National Grid 

 Grid Size  1 Meter  

 Input data Road Network 

Map layer overlay (raster) Spatial Reference British National Grid 

 Grid Size  Depend on input value  

 Input data Outputs from  Selection 1 - 4 

 

The Input Dataset (Case Study 3) 

The attribute of input dataset for Case Study 3 is illustrated in Table 4-10. More details 

about the input data are discussed in Section 7.6. 

Table 4- 10 Input dataset for Case Study 3. 

Input Name Description Value 

Input Dataset Number of sample points 1000000 Points 

 Spatial Reference British National Grid 

 Data Resource See Appendix A 

 Attribute X, Y Coordinate 

Location; 

Z Elevation Value 

Property Location Number of sample points 145 Points 

 Spatial Reference British National Grid 

 Data Resource Digitised from the Bing 

Maps satellite image. 

 Attribute X, Y Coordinate 

Location; 

Z Elevation Value 

Road Network Number of sample points 170 Points 
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 Spatial Reference British National Grid 

 Data Resource Digitised from the Bing 

Maps satellite image. 

 Attribute X, Y Coordinate 

Location; 

Z Elevation Value 

 

The Comparison Method (Case Study 3) 

Monte Carlo simulation is continuously applied in this case study to trace the average 

computation time (i.e. mean value) of both GIS tools, including ArcGIS and the CG 

approach. Based on the output of Monte Carlo simulation, we can investigate the two 

different implementations of the complex chain processing model with respect to their 

overall computation time. Table 4-11 illustrates the key parameters of Monte Carlo. The 

details about the computation strategy and comparison results are discussed in Section 

7.9. 

Table 4- 11 Primary parameters for Monte Carlo simulation in Case Study 3. 

Parameter Name Description 

Input data 90% of the raw LiDAR points (Input Dataset) 

Output data Average computation time by using ArcGIS and 

the CG approach  

Iterations  100 times 

 

The next section presents the computation methods which are used in order to 

implement the major functionalities in the three case studies, such as a combinative geo-

processing model and a priority-based computation strategy. 
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4.3 Methods Used in Combinative Geo-processing Function 

Execution 

The three case studies implementation requests a set of methods in the CG approach to 

manipulate and execute the CG functions. The basic methods applied in the CG 

approach were introduced in Chapter 3, such as symbolic computation. Therefore, this 

section focuses on the computation methods applied in the CG approach practically, 

with respect to the development of the ‘CG function’ and a ‘priority-based computation 

strategy’. The CG function enables a basic way to implement the function-based layer 

together with an attempt to improve data quality, while the priority-based computation 

strategy is a key method for computational efficiency improvement. 

It was also noted in Sections 3.2 and 3.3 that there are two main characteristics of the 

proposed CG approach that differentiate it from traditional geo-processing: first, a CG 

function is used to implement the entire geo-processing model; and second, a priority 

sequence is used for the execution of the CG functions. To achieve these two 

characteristics the CG approach uses the concepts and functionality of ‘Higher-Order 

Function’, ‘Recursive Algorithms’ and ‘Lazy Evaluation’, which are discussed in the 

following sections. 

4.3.1 Higher-Order Function 

A Higher-Order Function is a function which takes functions as parameters and returns 

functions as results (Dybvig, 2002). A pseudo-code to demonstrate how Higher-Order 

Functions are executed is provided below: 

Step1: define the first Higher-Order ‘Function1’  Function1(x)= x +9;  

Step2: define the second Higher-Order ‘Function2’  Function2 (fun, x) = fun (x) * fun 

(x) 

Where the input is ‘fun’ (i.e. function) and a value ‘x’ and output is ‘fun (x) * fun (x)’                      

After defining Higher-Order Functions, i.e. Function1 and Function2, users can run a 

calculation similar to the example below: 

Function2 (Function1, 7)   →  ((7 + 9)*(7 + 9))  →      256                  

Where ‘Function1’ is loaded into ‘Function2’ as a parameter.  
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This algorithm demonstrates that the Higher-Order Function has the ability to take a 

pre-defined function and pass it as a parameter to other functions. This functionality is 

used for the development and implementation of the CG function, which can accept 

other function-based layers as parameters and then process them using other functions. 

This was discussed in detail in Section 3.3.1. 

CG functions, which are implemented using Higher-Order Functions, have three main 

advantages in geo-processing. A CG function can directly produce the final result of a 

mathematical computation or a geo-processing model; hence the impact of 

intermediary-step outputs, such as round-off errors, data conversion, and error 

propagation, can be reduced in a CG computation. Both symbolic computation and 

numerical computation can be applied in CG functions in order to improve data quality. 

Finally, computer memory, which is used to store and process intermediary-step results, 

can be also saved using CG functions.  

4.3.2 Recursive Algorithms   

The concept of ‘Recursive Algorithms’ is also used in the CG approach, as these 

algorithms further enable the implementation of Higher-Order Functions. In principle, a 

Recursive Algorithm calls itself repeatedly until a certain condition is met. Compared to 

other algorithms, e.g. Iterative Algorithms, Recursive Algorithms are simpler to apply 

as they provide a natural way of thinking about the problem. Niklaus (1976) noted that 

the power of recursion lies in the possibility of defining an infinite set of objects by 

using a finite statement. Thus, an infinite number of computations can be defined by a 

finite recursive program, even if it contains no explicit repetitions. 

In data processing users can use a Recursive Algorithm to implement a recursive 

function or a data structure.  One popular example of such a recursive function is the 

algorithm for calculating the ‘n
th

’ Fibonacci number for a given number ‘n’. Fibonacci 

numbers include an infinite sequence of integers, whereby each new number is the sum 

of the two previous numbers (e.g. 0, 1, 1, 2, 3, 5, 8, 13, 21,…). Recursive Algorithms 

are also widely used in geometric analysis and an example of this context is given in 

Figure 4-6, which illustrates the Sierpinski triangle, a confined recursion of triangles 

that form a geometric lattice. The first Sierpinski triangle was described by the Polish 

mathematician Waclaw Sierpinski in 1915 and the entire Sierpinski triangle is 

characterised by its fractal or self-similar character. Rothemund introduced a basic 

principle for constructing a Sierpinski triangle, with a large triangle consisting of three 
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smaller triangles, and each of them consisting of a further three smaller and black 

triangles. This process is repeated recursively until the final Sierpinski triangle is built.  

 

Figure 4- 6 The Sierpinski triangle (after Weisstein, 2013). 

In the next section the concept of Lazy Evaluation is discussed, which is used in this 

research thesis in order to run CG functions using a specific sequence of execution, i.e. 

the priority-based computation strategy. 

4.3.3 Lazy Evaluation   

In computer science, there are two common strategies that can be used in order to 

execute functions; the Eager Evaluation and Lazy Evaluation strategies. Eager 

Evaluation is the most commonly used strategy and is applied by various popular 

programming languages, such as C and Java. In this evaluation strategy a function is 

executed once it bonds to a variable, while a Lazy Evaluation offers an alternative way 

that can be used for the calculation of functions. In the Lazy Evaluation strategy 

functions are only executed when the calculation needs them. As memory and time 

efficiency issues are considered in the CG approach, the Lazy Evaluation strategy is 

used. Lazy Evaluation enables the suspending of function-based layers and calculating 

them via a specific sequence.  

The use of Lazy Evaluation for the manipulation and execution of function-based layers 

in the CG approach has two main advantages: Lazy Evaluation executes a function only 

when it is necessary and it never performs the same step twice. To illustrate these 

advantages two examples are provided below, which compare calculating the mean, 

variance and standard deviation of a list of numbers, using the Eager and Lazy 
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Evaluation strategies. The algorithms are shown in Figure 4-7 and Figure 4-8, are in 

Scheme and furthermore, they implement the Higher-Order Function concept. 

Figure 4-7 demonstrates the Eager Evaluation strategy algorithm. In this example, 

calculating the standard deviation involves calculating the mean three times and the 

variance twice, before the actual value for the standard deviation can be calculated to 

give the final result. It should be obvious that this strategy involves considerably more, 

and possibly useless, computations as opposed to the Lazy Evaluation example 

illustrated in Figure 4-8.  

 

Figure 4- 7 Eager Evaluation algorithm for calculating the mean, variance and standard deviation 

for a set of numbers. 

Figure 4-8 provides the Lazy Evaluation algorithm for the same task. As can be seen 

from Figure 4-8, Lazy Evaluation uses the keyword ‘delay’, which allows users to delay 

the evaluation of code until they need a specific value.  

 

Figure 4- 8 Lazy Evaluation algorithm for calculating the mean, variance and standard deviation 

for a set of numbers. 

Figure 4-8 also shows that there are two basic rules in the Lazy Evaluation strategy. 

First, computation flow is managed in a way that ‘nothing happens until it is needed’. 
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For example, if users request the variance first then this will lead to running and saving 

the mean value before calculating and saving the variance value. The second rule is that 

Lazy Evaluation does not duplicate computations. For example, if a user asks for the 

standard deviation, then the program will use the saved value for the variance to 

calculate the standard deviation. As a result, these rules may provide an efficient means 

of data processing. 

Mainly due to the previously discussed advantages of Lazy Evaluation, this strategy is 

used in the CG approach for the development of the CG computation rules, e.g. the CG 

priority-based computation strategy. For example, a CG function with a higher cost 

(computation time and computer memory) could be re-ordered in a Lazy Evaluation 

until to the computation system requires them, thereby improving the computational 

efficiency.  

This section has discussed the major methods applied in the CG approach to implement 

the CG function and priority-based computation strategy. The next section discusses 

how these methods can be achieved in a digital computer. 

4.4 Implementation Tool and Computational Environment 

This section introduces the implementation tools that support the development of the 

CG approach. Section 4.3.1 discusses the major types of computer programming 

languages, i.e. imperative and functional programming, which could be potentially used 

for the development of the CG function-based layers and it is explained why a 

functional programming language is used herein. Section 4.3.2 introduces Scheme, the 

programming language that is used here for the development of the CG functions and 

finally, Section 4.3.3 describes the computational environment for implementing the 

three case studies. 

4.4.1 Programming Paradigms 

In this research a computer programming language is needed in order to develop the CG 

function-based layers and also in order to implement a set of CG computational rules. It 

should be noted that there are two types of computer programming languages that may 

be used for this purpose, the so-called imperative and functional programming 

languages. 

Imperative programming uses a programming pattern that executes commands 

following a specific sequence, e.g. ‘First do A, next do B'. Typical examples of 
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imperative programming languages include FORTRAN, Algol, Pascal, Basic, Java, and 

C. In contrast, functional programming languages are a class of languages that are 

mainly designed to reflect the mathematical thinking of people rather than following a 

specific sequence (Goldberg, 1994). Typical examples of functional programming 

computer languages include Erlang, Haskell, Lisp, ML, Miranda, and Scheme.  

There are two main differences between imperative and functional programming 

languages. First, basic imperative language constructs are imperative statements which 

are applied in order to change existing values, e.g. x = x + 3; while basic functional 

language constructs are declarative statements which are used to declare new values, 

e.g. (function f (int x) {return x + 3}).  

Before the second key difference is described, it is necessary to explain the side effects 

which influence the predictability of the behaviour of a computer programming 

language. By definition, any function or expression which modifies the state of a 

computer or which interacts with the outside world is said to have a side effect (Hughes, 

1989). Consequently, the execution of a function which is built using an imperative 

programming language can have side effects, which will affect any future executions of 

that function or other functions. Functional programming languages avoid these side-

effects and make it much easier to understand and predict the behaviour of a program, 

which is apparently one of the key motivations that led to the development of functional 

programming languages in the first place (Hudak, 1989).  

With the need to utilise High-Order Functions, Recursive Algorithms, and Lazy 

Evaluation, a functional programming language is more suitable as a basic 

programming tool for the development of the CG implementation framework and for 

the development and implementation of the function-based layers and the CG functions 

which are utilised in the CG approach. Hughes (1989) claimed that two important 

features of functional languages, including Higher-Order Function and Lazy Evaluation, 

can contribute significantly to functional modularity, while Fokker (1995) noted that 

High-Order Functions and Lazy Evaluation are built-in features of functional 

programming languages, and these features can be flexibly manipulated by users. 

The first functional programming language, LISP, was created as a mathematical 

notation for the IBM 704 computer by the Artificial Intelligence group at the 

Massachusetts Institute of Technology (Steele, 1990). As one of the earliest high-level 

programming languages, LISP was designed for symbolic calculations in various 
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domains, e.g. differential and integral calculus, electrical circuit theory, mathematical 

logic, game playing, and artificial intelligence. Today, the Scheme programming 

language is one of the most widely known LISP dialects and the next section discusses 

the Scheme programming language in more detail.  

4.4.2 The Scheme Programming Language 

The Scheme programming language has been applied in this research as it provides full 

functionality to support the execution of Higher-Order Functions and has other 

capabilities required in this research. Scheme was designed by Guy L. Steele and Gerald 

J. Sussman in the 1970s and was one of the first programming languages to incorporate 

first class procedures, as in Lambda Calculus, thereby proving the usefulness of static 

scope rules and block structure in a dynamically typed language (Dybvig, 2002).     

Scheme handles data values quite differently compared to other programming 

languages. The basic objects manipulated in Scheme are called atoms or objects, and 

can represent numbers, strings, symbols, and lists, as illustrated in Table 4-12. 

Table 4- 12 Basic objects in the Scheme programming language. 

Number 100 

String  AAAAA 

Symbol $$$ 

List (at least two parameters) (a b)               

The fundamental data structure in the Scheme programming language is a ‘pair’, which 

is a special data type which is used to record a pair of attributes, such as (a b) or (x y).  

For example, ‘100’  is represented as: 

 

‘(a b)’  is represented as: 

 

‘((a b) (c d))’ is represented as:  
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In addition, ‘(cons)’, ‘(car)’, and ‘(cdr)’ are common Scheme operations, which are 

explained in more detail in Table 4-13. 

Table 4- 13 Common operations in Scheme. 

Operation 

Name 

Functionality Example 

 

(cons) a pair constructor procedure  
Two individual objects a, b can 

construct a pair (a b) 

(car) returns the first object of a list (car (a b)) => (a)     

(cdr) returns the second object of a list (cdr (a b)) => (b)     

The Scheme programming language was applied as the main computer programming 

tool to develop the various CG functions in this research and the next section discusses 

the benchmark to exam the performance of the exsiting GIS tools. 

4.4.3 Benchmark 

In order to select the GIS tools that will be used in this thesis to implement the case 

studies, a benchmark process is designed in this section. Due to the rapid development 

of computing technology, many GIS tools have been developed, such as ArcGIS, 

MapInfo and Manifold. However, it was difficult to compare the performance of these 

GIS tools simply by looking at their specifications; therefore, the benchmark is provided 

so that this research can evaluate the existing GIS tools for geo-computation. 

The comparison process of the benchmark includes four steps. First of all, a set of 

specific GIS tools is identified for comparison. Second, the implementation strategy and 

comparison methods are designed in order to evaluate the performance of the selected 

GIS tools, especially as regards data quality. Third, the initial data are gathered for 

implementation of the benchmark. Finally, we discuss the result of the benchmark 

process and provide a guide for the CG development approach. 
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4.4.3.1 Scope of benchmark 

This section discusses the GIS tools and function which are used for the benchmark. 

Four GIS tools are used (Table 4-14). ArcGIS, MapInfo and Manifold are used for this 

purpose, as they are commercial GIS software packages, which are widely used by 

various private and public companies for spatial analysis purposes. R, which is an open-

source statistical package with spatial analysis capabilities, is also used to validate the 

computation performance in the benchmark.  

The computer programmer language Python is applied in this section to produce the 

reference data. The reference layer plays an important role in the benchmark, as the 

various results are compared with the reference layer in order to validate the data quality 

obtained using the four GIS tools.  

Table 4- 14 GIS tools used for evaluating findings. 

GIS tools Description 

ArcGIS A desktop GIS software developed by ESRI. There are three 

product levels in ArcGIS’s licences, which include 

ArcReader (basic level), ArcView (middle level), and 

ArcInfo (top level). ArcGIS was developed using an object-

orientation approach for storing and operating spatial 

features and basic information. Currently, ArcGIS includes 

several integrated applications, such as ArcMap, ArcCatalog, 

ArcToolbox, ArcSence, and ArcGlobe. 

MapInfo MapInfo was the first desktop GIS, developed in 1986 with 

the initial aim of creating an easy-to-use GIS software. Its 

major characteristics include: (a) good support for the 

Microsoft operating system – Microsoft Excel®, Microsoft 

Access® or database data which can be directly opened in 

MapInfo; (b) MapInfo collaborated with Oracle Corporation 

to develop the original spatial database, therefore, Oracle® 

data can be easily accessed and viewed in MapInfo.   

Manifold A low-cost GIS commercial software product. 

R (R Project for R provides an open-source environment for implementing 
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Statistical Computing) many spatial analysis functions and it is assumed that more 

care was paid to its implementation to ensure that it 

resembles the basic equation. 

 

The IDW function is selected in the benchmark to test the performance of the GIS tools. 

This function is a commonly used spatial interpolation method, and it can be used to 

assign values to unknown points by using values from a scattered set of known points 

(Hengl 2009). However, the assumed value has data uncertainties which could impact 

on the data quality of outputs. Therefore, the IDW function is selected in the benchmark 

to compare the data quality of outputs which are produced from the selected GIS tools. 

The IDW algorithm is displayed in Appendix D, which is used in Python and CG 

approach to implement the IDW function. The next section introduces the 

implementation strategy and the comparison methods used. 

4.4.3.2 Implementation Strategy and Comparison Methods 

In the benchmark process, the IDW function was implemented using the CG approach, 

as well as the traditional geo-processing approach, by using the following GIS tools and 

computer programming language: ArcGIS, MapInfo, Manifold, R, and Python.  

Figure 4-9 illustrates the three major steps that were undertaken for the IDW 

implementation. As can be seen from Figure 4-9, in the first step the points are selected 

from the raw LiDAR data, and then the selected points are used to produce a sample 

dataset, which includes 80% of the selected data. This sample dataset is to be used as 

input data for the IDW function implementation to examine the impact of data quality 

issues. 

The second step mainly focuses on the generation of the sample layer by using ArcGIS, 

MapInfo, Manifold, R, and the CG approach. The sample layer is the layer that is 

produced after the IDW implementation and includes the interpolated values. Since five 

GIS tools are used to apply the various IDW functions, the interpolated values in IDW 

outputs may differ, and thus, as explained in the following sections, the results of the 

various IDW implementations are further validated.  

Python is used to create a reference layer for comparison. Specifically, Python is 

applied to implement the same IDW algorithm, which is displayed in Appendix D, to 
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produce the reference layer. The reference layer plays an important role in the third step 

of the proposed implementation strategy, as the various IDW results are compared with 

the reference layer in order to validate the data quality of the various IDW 

implementations. It should be noted that all the IDW results use a one-metre grid size to 

generate the various interpolated surfaces. 

 

Figure 4- 9 IDW implementation steps. 

Finally, in order to validate the data quality of GIS tools and the CG approach, two 

methods are used here to validate the IDW outputs; the ‘Raster Algebra (subtract)’ and 

‘Statistical Analysis’ methods. Although these methods and the results are extensively 

discussed in the next sections, it should be briefly noted that the ‘Raster Algebra’ 

method can be used to compare the difference of input rasters based on a mathematical 

function. Subsequently, statistical analysis further enables the validation of the IDW 

results using their actual numerical values and statistical methods. 

The next section introduces the initial data for the benchmark. 

4.4.3.3 The Initial Data 

Input data for the implementation of the IDW function are the elevation values of point 

data (i.e. Z value).  In the benchmark process, the initial data are manipulated using two 

different datasets, selected data and sample data. 
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Selected Data 

The primary dataset of this research involves raw LiDAR points, which include a group 

of points with X, Y, and Z values. Figure 4-10 illustrates that a total of 910 LiDAR 

points were selected from the dataset of raw LiDAR points, as well as the geographical 

location (i.e. around 2,000 square metres) and the topographical features within the 

study area (shown by the yellow rectangle in the Bing Maps satellite image in Figure 

4-10). The selected dataset includes 910 points which were selected from the original 

raw LiDAR dataset (i.e. the first group of the LiDAR dataset
1
), and which are used as 

reference data in the benchmark process to represent the actual observed values. It 

should be noted that 910 is a smaller amount of points and it used as the start level (i.e. 

minimum number) of sample points in order to test the accuracy of the new CG function 

(i.e. IDW function) in this research.  

Moreover, the purpose of the selected data is to produce the reference layers, which 

include the actual observed values and are later used to validate the CG approach and 

the other GIS tools results. 

 

Figure 4- 10 The Selected data for the benchmark process. 

 

 

                                                 
1
 Technical information on the first group of raw LiDAR dataset is provided in the Appendix A (Table 

A.1). 
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Sample Dataset  

In order to examine the IDW functions provided by different GIS software packages, 

and especially in order to examine the quality of the interpolated values for the areas 

with unknown elevation values (i.e. the areas where there is no LiDAR point coverage), 

80% of the selected points (910 X 0.8 = 722 points) were randomly selected from the 

selected data.  

The next section shows the result of the benchmarking based on the two comparison 

methods: raster algebra and statistical analysis. 

4.4.3.4 Benchmark results and discussion 

4.4.3.4.1Raster Algebra 

The raster algebra (using the Minus function) method subtracts the value of the second 

input raster from the value of the first input raster on a cell-by-cell basis. Figure 4-11 

illustrates this process. After inputting the ‘sample layer’ and ‘reference layer’, the 

generated ‘difference of values’ layer shows the change in values in a single grid cell. 

This method is applied here to understand the difference in grid cells between the 

actual, observed values (stored in the reference layer) and the interpolated values (stored 

in the sample layer). Figure 4-12 shows the strategy to compare the various GIS tools 

and CG results of the raster algebra function (minus) amongst the reference layer and 

the five sample layers. 

 

Figure 4- 11 An example of raster math. 
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Figure 4- 12 The strategy to compare the various GIS tools and CG results. 

Based on the comparison strategy, Figure 4-13 illustrates the results from raster algebra. 

In Figure 4-13, the grid values are classified using the ‘natural break’ option, which can 

be used to classify unevenly distributed data and which divides the data into different 

groups according to value gaps. For example, the ‘black’ grid cells, where the grid value 

ranges from -1 to -0.1 and from 0.1 to 1, are defined by the gaps of the classified data, 

representing the groups with a higher ‘difference of values’.  
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Figure 4- 13 Raster algebra: Comparison of IDW outcomes. 

 

The results of the ‘raster algebra (minus)’ operation are illustrated in Figure 4-13, and it 

is noteworthy that the results generated using Manifold and MapInfo have many 

differences with respect to the reference layer. At the same time the ArcGIS, R and CG 

results are very similar. Therefore, a mainly descriptive-based statistical analysis was 
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further undertaken in order to compare the ‘raster algebra (minus)’ results in more 

detail.  

4.4.3.4.2 Statistical Analysis 

For the purposes of comparison of the differences of ‘reference layer’ and ‘sample 

layer’, the maximum (max) and minimum (min) and the standard deviation values are 

used. The maximum and minimum values show the range of significant differences 

between the sample layer and reference layer, and standard deviation shows the 

variability or dispersion of the data. 

The results are summarised in Table 4-15. In this table, the highest standard deviation 

value is observed when the Manifold results are compared with the reference layer 

(StDev=0.182194), while the lowest standard deviation value (StDev=0.046599) is 

observed in the CG approach and R comparisons with the reference layer. Similarly, the 

highest differences in the maximum and minimum values are observed in the Manifold 

comparison with the reference layer (Max=0.4904, Min=-0.4718). These values further 

confirm that the interpolated values using the CG approach and R have higher precision 

and less differences with the observed data. 

Table 4- 15 Comparison on statistical analysis. 

 Standard 

Deviation 

Max Min 

Manifold Sample layer MINUS 

Reference layer 

0.182194 0.4901 -1.5995 

MapInfo Sample layer MINUS 

Reference layer 

0.102878 0.8275 -0.6692 

CG approach Sample layer 

MINUS Reference layer 

0.046599 0.4896 -0.4471 

R Sample layer MINUS 

Reference layer 

0.046599 0.4896 -0.4471 

ArcGIS Sample layer MINUS 

Reference layer 

0.05114 0.4904 -0.4718 
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The next section provides a discussion of the various IDW findings.   

4.4.3.4.3 Discussion 

Based on the previous analysis, it is clear that the IDW results (i.e. sample layers) of the 

CG approach and R are exactly the same and are closer to the reference layer. This 

similarity can be explained on the basis that the same IDW algorithm and parameters 

were used for both R and CG implementations. However, the identical results improve 

confidence about the accuracy and correct implementation of the new CG IDW 

function, which is important for the next steps of the development of the thesis. 

Moreover, it is clear that there was variation in the IDW results (sample layers) that 

were produced using different GIS tools. This is clear from the comparisons of the 

various sample layers with the reference layer and despite the fact that the same input 

dataset (sample data) was used for all the IDW implementations. Manifold’s IDW 

function, which is called ‘Gravity’, generated the most different results, compared to the 

rest, and possibly the least accurate output. This conclusion is mainly based on Figure 4-

13 (top left corner layer), where it can be clearly seen that the black grid cells, which 

represent the differences between the interpolated and the observed values, cover almost 

60% of the study area. Finally, the statistical analysis in Table 4-15 confirms this 

conclusion, as the Standard Deviation value when Manifold results are compared with 

the reference layer (StDev = 0.182194) is four times larger than the standard deviation 

value of the CG results when these are also compared with the reference layer (StDev 

=0.046599). 

MapInfo’s IDW function also generated results that were different from the rest of the 

IDW implementations. This conclusion is based on Figure 4-13 (top right corner layer), 

where it can be clearly seen that the difference of the ‘MapInfo IDW Sample Layer 

Minus Reference Layer’ (black grids) covers almost 30% of the study area. 

Furthermore, the statistical analysis in Table 4-15 confirms this conclusion, as the 

standard deviation value when we compare MapInfo’s result with the reference layer 

(StDev = 0.102878) is twice as large as the CG approach’s results when also compared 

with the reference layer (StDev = 0.046599). 

MapInfo’s results can be explained on the basis of its algorithm for interpolating sample 

points. This specific feature is explained in Figure 4-14, which is composed of two 

elements:  ‘Black Dot’ and ‘Regular Grid Net’. The ‘Black Dot’ represents the centroid 

of the interpolated grid created by the interpolation function, (e.g. IDW). The ‘Regular 
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Grid Net’ is a virtual regular vector net generated by using the geographical extent 

(bounding rectangle of study area) and resolution of the interpolation, (e.g. 1 metre grid 

size). Figure 4-14 (a) shows that the interpolated grid (illustrated by the ‘Black Dot’) is 

located within each grid of  ‘Regular Grid Net’ in ArcGIS, while in Figure 4-14 (b), it 

can be seen that the interpolated grid is located at the cross point of  ‘Regular Grid Net’ 

in MapInfo. 

 

Figure 4- 14 The geometry (centroid) of the interpolated grid (a. in ArcGIS; b. in MapInfo). 

 

Figure 4-15 shows how this strategy works on the same sample data using ArcGIS and 

MapInfo: the same sample points result in different IDW output images. We also note 

that because commercial GIS tools are provided as a ‘black box’ to their users, it is very 

hard to identify these differences, and thus investigative work is required in order to 

infer what their algorithm has implemented. 

 

Figure 4- 15 Examples of interpolating sample points in ArcGIS and MapInfo. 
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Compared with Manifold and MapInfo, ArcGIS, the CG approach and R provided the 

most accurate results. In Figure 4-13, it is difficult to identify the differences between 

the results between these three GIS tools. However, based on the statistical analysis, we 

observe that the CG approach and R are slightly more accurate than ArcGIS. For 

instance, Table 4-15 reveals that the Standard Deviation value from the comparison of 

the CG approach and R results and the reference layer (StDev = 0.046599) is 20% better 

than the comparison of the ArcGIS result and the reference layer (StDev = 0.05114). 

In conclusion, this benchmark process has demonstrated the performance of the selected 

GIS tools. Specifically, the results of the different IDW implementations were 

compared and it was found that the CG IDW implementation results were very similar 

to the IDW implementation results using R, while the interpolated results using the CG 

approach and R had the smallest standard deviation value. Thus, the CG approach has 

many potential advantages, especially when dealing with simple raster data (e.g. the 

interpolated values using the CG IDW function are closer to the observed values). 

Moreover, ArcGIS provides a better performance than other commercial GIS tools (e.g. 

MapInfo and Manifold) based on the ‘raster algebra (subtract)’ and ‘statistical analysis’ 

comparison results. Therefore, the CG approach and ArcGIS are used as the two major 

GIS tools in the following case studies.  

Moreover, it should be noted that R will be not used in the case studies, although it 

produced the same output with the CG approach in the benchmark. That is because R 

provides fewer spatial analysis functions, compared with ArcGIS and MapInfo. 

The next section discusses the computational environment for the case studies. 

4.4.4 Computational Environment 

This section introduces the computational environment for the three case studies, 

including both the traditional geo-processing approach (Section 4.4.3.1) and the CG 

approach (Section 4.4.3.2). The computational environment is defined as a summary of 

the features of the software packages and the computer for implementing the three case 

studies in this thesis. 

4.4.4.1 The Traditional Geo-processing Approach 

There are two GIS tools that were used in this thesis to implement the case studies using 

the traditional geo-processing approach: ArcGIS Version 9.2 (Figure 4-16) and MapInfo 
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Version 8.5.1 (Figure 4-17). ArcGIS and MapInfo are common commercial GIS 

software packages, which are widely used for spatial analysis purposes. 

 

Figure 4- 16 ArcGIS 9.2 software. 

 

Figure 4- 17 MapInfo 8.5.1 software. 

4.4.4.2 The CG Approach 

As described in the previous section, the Scheme programming language was used to 

create the computer programs that perform the computations in the CG approach. In this 

research, the Scheme programming language was implemented using a software tool, 

named Racket Version 6.1.0 (Figure 4-18). Racket, formerly named PLT Scheme, is a 

full-spectrum programming language in the Lisp/Scheme family. In fact, it goes beyond 

the computer programming of Lisp and Scheme, through dialects that support objects, 

types, laziness, and more. One of Racket’s design goals is to serve as a platform for 

language creation, design, and implementation (Figure 4-19). 
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Figure 4- 18 Racket main webpage. 

 

Figure 4- 19 The Racket interface. 

Finally, it should be noted that all three computer programming tools, including 

ArcGIS, MapInfo, and Racket, were run on the same computer. A full description of the 

computer is provided in Figure 4-20. In brief, it is equipped with an i3-2367M @ 1.40 

GHz CPU and Windows 7 operating system. 
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Figure 4- 20 Description of the testing computer.  

The next section presents and discusses the selected data for the case studies. 

4.5 Case Study Data Selection 

In all three case studies and their subsequent models, raw LiDAR points were used as 

the primary input data type in order to produce new elevation or slope data. Two groups 

of LiDAR datasets were downloaded from the INSIDE IDAHO (Interactive Numeric 

and Spatial Information Data Engine) website (http://inside.uidaho.edu/popular 

_data.html) and these were separately captured in 2007 and 2008.
2
 The webpage 

interface used to access the data is illustrated in Figure 4-21, where the LiDAR data 

access is highlighted by a red box. The Projected Coordinate System of the selected 

LiDAR data is NAD_1983_NSRS2007_UTM_Zone_11N.  

                                                 
2 Full details of the downloaded LiDAR datasets are provided in Appendix A. 

http://inside.uidaho.edu/popular%20_data.html
http://inside.uidaho.edu/popular%20_data.html
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Figure 4- 21 Source of the selected LiDAR data. 

LiDAR data are cheaper and thus provide a more efficient way for creating digital 

elevation data, especially when automated processing methods are used to generate 

elevation data. An example of raw LiDAR data are illustrated in Figure 4-22 and Figure 

4-23. 

 

Figure 4- 22 Visualisation of LiDAR sample points and their attributed values (X, Y, and Z) in 2D. 
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Figure 4- 23 Visualisation of LiDAR sample points in 3D. 

In this research, LiDAR data are used for three purposes: first, as the input for the 

interpolation functions that generate the DEM surface that can be used to represent a 

continuous surface; second, to produce additional data, such as deriving the slope value 

from the DEM; and finally, LiDAR data are used for their integration with other map 

layers for spatial analysis purposes, e.g. combining a DEM with land use for the 

location analysis model used in the third case study. 

It should be noted that the amount of selected LiDAR points and the size of the study 

area is increased gradually across the case studies in order to validate the accuracy, 

capability, and efficiency, i.e. computation time, of the CG approach and the newly 

developed CG functions. Figure 4-24 shows the specific details of the selected LiDAR 

points and the size of the study area.  This figure also highlights that case study 1 used a 

minimum set of LiDAR points and had the smallest study area, then these increased 

steadily in the following case studies, until finally in case study 3 one million LiDAR 

points (1000 times larger than the case study 1’s) are utilised and the study area is 

around 50,000 square metres, 12.5 times larger than in case study 1. 
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Figure 4- 24 Number of selected LiDAR points and size of the study area in the three case studies. 

4.6 Chapter Summary 

The three case studies were introduced that are used in this research to implement the 

CG approach by applying simple and then progressing to more complex functions and 

models. These case studies allow the practical implementation of the CG approach and  

also enable the evaluation of the conceptual CG model that was introduced in Chapter 3. 

The case studies involve the implementation of the Map Overlay function (case study 1), 

a CG function (case study 2) and a complex geo-processing model for Facility Location 

(case study 3). 

This chapter has also described a set of methods that have been used to implement the 

CG computations. A High-Order Function provides a basic way to implement the CG 

functions, while Recursive Algorithms were also discussed as they further enable the 

implementation of Higher-Order Functions. Lazy Evaluation provides a method to 

control the computation sequence and avoid duplicate computations. 

This chapter has introduced functional and imperative programming languages and it 

was explained why a functional programming language is the most suitable for the 

implementation of the CG approach.  Scheme, a functional programming language was 

reviewed, as it is the basic programming language used in this research thesis for the 

development of the function-based layers and CG functions. Finally, the computational 

environment and selected data were also described.  

The three case studies are discussed separately in the following chapters, starting with 

the first case study which is discussed in Chapter 5. 
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5 Comparing a Raster Overlay Function between Map 

Algebra and Combinative Geo-processing 

5.1 Introduction 

The first case study concerned with the development and implementation of a GIS 

overlay function for the integration of two raster layers with different grid sizes, using 

the CG approach and the traditional geo-processing approach (i.e. Map Algebra). 

Section 5.2 starts with a discussion of the ‘Raster Overlay with Raster’ function and 

Section 5.3 explains how the ‘Raster Overlay with Raster’ function is implemented 

using Map Algebra, which is commonly used within the context of traditional geo-

processing in order to overlay more than one raster data layers. This section also 

discusses the ‘Raster Overlay with Raster’ function within the context of the CG 

approach; its similarities and differences from traditional geo-processing.  

Section 5.4 describes the datasets and in specific the reference and sample data that are 

used in this case study. These datasets are used to create the map layers, which are then 

integrated using the ‘Raster Overlay with Raster’ function. The implementation strategy 

of the ‘Raster Overlay with Raster’ function is described in Section 5.5 and Section 5.6 

presents the results. Section 5.7 provides a more detailed comparison of the Map 

Algebra and the CG approach results and Section 5.8 discusses their differences. Finally, 

Section 5.9 provides a summary and concludes with the main issues that are discussed 

in this chapter. 

5.2 Case Study 1: ‘Raster Overlay Function Review’ 

The first case study provides an investigation of the CG approach development on the 

multi-layers operations, such as overlay different GIS layers together. Amongst the 

several available overlay functions provided by various GIS software packages, the 

‘Raster Overlay with Raster’ function is of high significance. Raster data are widely 

used for capturing and representing real world phenomena, and thus ‘Raster Overlay 

with Raster’ function is one of the most popular spatial analysis methods that it is used 

for the integration of two or more raster layers in order to understand complex spatial 

problems.  

Figure 5-1 illustrates an example of the ‘Raster Overlay with Raster’ function, using the 

addition operation, and which in this case is used within the context of site suitability 
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analysis. As it can be seen from Figure 5-1 three raster layers (i.e. steep slopes, soils, 

and vegetation) are ranked for their suitability on a scale from one to seven. When the 

layers are added together each cell is ranked on a scale from three to 21 to produce the 

map shown at the bottom of Figure 5-1. The pixels with the largest values (i.e. closer to 

21) represent the areas which are more suitable for the development of new facilities 

within the area of analysis. 

 

Figure 5-1 Example of ‘Raster Overlay with Raster’ function (‘Overlay Analysis’, ESRI ArcGIS 

Resource Centre Online, 2008). 

Another example of the ‘Raster Overlay with Raster’ function is illustrated in Figure 5-

2, which aims to understand the influences of topographical features (e.g. elevation and 

slope) on the locations of resident activities. This model is developed from the original 

example of Map Stack, which is used to explain how a group of raster data could be 

organised and combined through a raster layer overlay operation (Madden 2009). As it 

can be seen from Figure 5-2, the input datasets include a set of activity sampling points 

and raw LiDAR points. The activity sampling points represent the most popular 

locations of human activity in the study area, and the raw LiDAR points are a group of 

points which record the elevation values. In this model, the activity sampling points are 

processed by using IDW_1 function (using 1.5 metres resolution) to produce the activity 

map (Grid) showing the distribution of activity evens in the entire study area. The raw 

LiDAR points are calculated by using IDW_2, IDW_3 and Slope_1 functions (using 

one metre resolution) to create the elevation map1 (Grid) and slope map (Grid). The 
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results of processing the raw LiDAR points are used in order to investigate the variation 

of topographical features in the study area. Finally, the three raster layers, which 

displayed as activity, elevation and slope in the Map Stack, are integrated together to 

produce the final output in order to answer the question related to human activity and 

the topographical features. 

 

Figure 5-2 Another example of ‘Raster Overlay with Raster’ function (After Madden 2009). 

To better understand how the ‘Raster Overlay with Raster’ function can be implemented 

within the CG approach, the next section describes the geo-processing model of Case 

Study 1 that utilises the function and which is similar to the geo-processing models that 

discussed in the examples.   

5.2.1 Geo-processing Model (Case Study 1) 

Figure 5-3 illustrates this case study’s geo-processing model, which as it can be seen 

includes two IDW functions (i.e. ‘IDW1’ and ‘IDW2’) that are used to produce two 

raster layers (i.e. ‘Raster Layer1’ and ‘Raster Layer2’) with different grid sizes (i.e. one 

metre and 1.5 metres respectively). The two raster layers are combined to produce the 

final integrated map layer (i.e. ‘Final Result’). Although the geo-processing model that 

it applied in this chapter is a simple model - as it only uses two layers and one ‘plus’ 

operation, while spatial problems may involve the integration of more than two layers, 

which may result in more complex geo-processing models - this case study still 

provides the foundations for improving our understanding with respect to the 

development, implementation and use of the ‘Raster Overlay with Raster’ function 

within the CG approach context.  
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Figure 5-3 Case study 1: Geo-processing model (‘Raster Overlay with Raster’ Function). 

The next section explains the implementation of the ‘Raster Overlay with Raster’ 

function using Map Algebra and the CG approach. 

5.3 Methodology: ‘Raster Overlay with Raster’ Function 

Implementations 

This section discusses separately the different ‘Raster Overlay with Raster’ function 

implementations in traditional geo-processing (Section 5.3.1) and in the CG approach 

(Section 5.3.2), which purpose is to compare and validate the accuracy of new raster 

overlay CG function between the CG approach and the traditional approach. 

5.3.1  ‘ Raster Overlay with Raster’ Function Implementation in The 

Traditional Geo-processing Approach: Map Algebra 

Within the context of traditional geo-processing, Map Algebra is a popular computation 

method for the utilisation of the ‘Raster Overlay with Raster’ function to integrate raster 

data layers. It was originally introduced by Tomlin (1990) as the process of combining 

co-registered raster layers of identical size and resolution.  

Map Algebra provides the vocabulary and conceptual framework for combining map 

data in order to produce new maps (Tomlin 1990). Map Algebra’s common operations 

include arithmetical calculations, classification and statistical calculations (De Smith et 

al., 2007). Arithmetical calculations are based on algebraic operators such as plus, 

minus and multiply which are used to integrate layers of the same grid size. The 

classification method provides a tool that can be used to re-code, slice (classify) single 

input layers, and combine multiple layers using a range of local and focal operators. 

Finally, a number of statistical tools for grid processing can be used, including focal and 

zonal statistical calculations.   

When Map Algebra is used to integrate various raster layers, all input grids must have 

identical extent and cell sizes. The selection of the most appropriate grid extent and cell 
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size complicate the process of integrating these various layers as it is further 

demonstrated by Figure 5-4, which illustrates the workflow for implementing the Map 

Algebra geo-processing model that it is used in the first case study. As Figure 5-4 shows 

the input data, which consist of LiDAR points, are loaded into a single GIS function 

(e.g. IDW1 and IDW2) which is then used to produce two raster layers. These two raster 

layers can be combined using the Map Algebra function in order to produce the final 

result.  If the raster layers have different resolution, then the ‘Resampling’ function 

should be firstly used in order to convert them into an identical grid size before they can 

be integrated using Map Algebra.  

 

Figure 5-4 ‘Raster Overlay with Raster’ function workflow in traditional geo-processing (Map 

Algebra). 

The corresponding equations of Figure’s 5-4 geo-processing model is provided below 

by Formula (5.1). The functions ‘FIDW1’, ‘FIDW2’, and ‘FMap Algebra’ represent the IDW 

and Map Algebra functions respectively. Functions ‘FIDW1’ and ‘FIDW2’ use different 

input datasets and resolution values to produce the new raster data layer. ‘Single Map 

Layer1’ and ‘Single Map Layer2’ are the outputs of ‘FIDW1’ and ‘FIDW2’ respectively and 

the input of the ‘FMap Algebra’ function. The ‘Final Output’ represents the final integrated 

layer, which is the outcome of the Map Algebra function. 

    FIDW1 (Data Source 1) = Single Map Layer1 

    FIDW2 (Data Source 2) = Single Map Layer2 

    FMap Algebra (Single Map Layer1, Single Map Layer2) = Final Output           [5.1] 
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The next section discusses how the same geo-processing model can be implemented 

using the CG approach. 

5.3.2  ‘ Raster Overlay with Raster’ Function Implementation in The 

Combinative Geo-processing Approach 

Figure 5-5 illustrates the ‘Raster Overlay with Raster’ function workflow in the CG 

approach. As it can be seen the final result is the direct output of the CG function, which 

in this case is composed of two function-based layers (‘GIS Function 1’ and ‘GIS 

Function 2’). In other words, the ‘Resampling’ function which is used in traditional geo-

processing can be avoided here because during the processing there are no requests for 

intermediary data.   

 

Figure 5-5  ‘Raster Overlay with Raster’ function workflow in the CG approach. 

The corresponding mathematical model for the implementation of the ‘Raster Overlay 

with Raster’ function using the CG approach is provided by Formula (5.2) below. In 

Formula (5.2), ‘CG FOverlay’, ‘CG FIDW1’, and ‘CG FIDW2’ represent the CG functions of 

‘Raster Overlay with Raster’ and IDW respectively. ‘CG Dataset1’ and ‘CG Dataset2’ 

represent the input data. The final output is directly produced when running the ‘Raster 

Overlay with Raster’ function (i.e. ‘CG FOverlay’) in the CG approach. 

 

   {CG FOverlay (CG FIDW1 (CG Dataset1)) (CG FIDW2 (CG Dataset2))} = Final Result                                          

                                                                                                                            [5.2] 

Sections 5.3.1 and 5.3.2 described two different approaches for the implementation of 

the map overlay geo-processing model. The key difference, as previously noted, is that 

while Map Algebra uses the ‘Resampling’ operation to manipulate raster layers with 
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different resolutions, this step is completely avoided when using the CG approach. The 

next Section (5.4) discusses the datasets that are used in the first case study. 

5.4 Case study 1: ‘Raster Overlay with Raster’ Function 

Implementation Datasets 

The input dataset that is used in this case study to implement the ‘Raster Overlay with 

Raster’ function consists of LiDAR points. Raw LiDAR points are manipulated in two 

different datasets, to produce the reference and sample data, which are discussed 

separately in Sections 5.4.1 and 5.4.2.  

5.4.1 Reference data 

Figure 5-6 illustrates a total of 1010 LiDAR points were selected from a dataset of raw 

LiDAR points, as well as, the geographical location (i.e. around 4,000 square metres) 

and the topographical features within the study area (shown by the yellow rectangle in 

Bing Maps satellite image in Figure 5-6). The sample dataset includes 1010 points that 

were selected from the original raw LiDAR dataset (i.e. the first group of the LiDAR 

dataset
3
), and which are used as reference data in this case study to represent the actual 

observed values. Moreover, the purpose of the reference data is to produce the reference 

layers, which include the actual observed values and are later used to validate the CG 

approach and Map Algebra results. 

                                                 
3
 Technical information of the first group of raw LiDAR dataset is provided in the Appendix A (Table 

A.1). 
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Figure 5-6  Reference data (Case study 1). 

5.4.2 Sample Data 

The sample data consist of two sample datasets that were randomly selected from the 

reference data and they are used in this case study to produce the sample layers, which 

will be later integrated using the ‘Raster Overlay with Raster’ function. Although the 

both of sample datasets are selected from the same data source (i.e. reference data of 

Case study 1), the different percentages of the amount of points are used in order to 

create two different sample layers. Specifically, the first sample dataset contains an 80% 

of randomly selected reference data points (i.e. 1010 * 0.8 ≈ 819 points)
4
. The first 

sample dataset contains a 70% of randomly selected reference data points (i.e. 1010 * 

0.7 ≈ 742 points)
5
. 

The next section discusses in detail the implementation of the ‘Raster Overlay with 

Raster’ function in Case study 1. 

 

                                                 
4
 The first sample dataset is illustrated in the Appendix B (Figure B-1). 

5
 The second sample dataset is illustrated in the Appendix B (Figure B-2). 
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5.5  ‘ Raster Overlay with Raster’ Function 

Implementation Strategy 

In the first case study, five GIS implementation of IDW were tested (ArcGIS, MapInfo, 

Manifold GIS, R and CG appraoch). As a consequence of previous study, R and the CG 

approach provided the same and best results of IDW therefore R was used in here to 

produce the reference data. ArcGIS, MapInfo and CG approach were used for creating 

the test layers (i.e. sample layers). 

Figure 5-7 illustrates the implementation procedure of the ‘Raster Overlay with Raster’ 

function in this case study. As can be seen from Figure 5-7 from the raw LiDAR points 

the reference and sample data were selected. Following this, single map layers were 

constructed using R for the reference layers and ArcGIS, MapInfo, and the CG 

approach was used for the construction of the sample layers. The ‘Raster Overlay with 

Raster’ function was implemented for the layers’ integration using both the CG 

approach and Map Algebra. The results of the various implementations are finally 

compared in order to explore data quality implications. 
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Figure 5-7  ‘Raster Overlay with Raster’ function implementation steps (Case study 1). 

Moreover, it should be noted that for the IDW implementation the search radius was set 

to eight meters, and the grid size was set to 1 metre for ‘Layer1’ and 1.5 metres for 

‘Layer2’. 

The next two sections (Section 5.5.1 and 5.5.2) review in more detail the creation of the 

single and integrated map layers. 

5.5.1 Single Layers 

This Section discusses separately the construction of the single reference layers and the 

single sample layers. 

The single reference layers were used to construct the reference data in the later 

comparison step. As Figure 5-8 shows the IDW function in R was used to create the two 

different single reference layers (i.e. ‘Reference Layer 1’ and ‘Reference Layer 2’) in 
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order to make a comparison with the two sample layers (i.e. ‘Sample Layer 1’ and 

‘Sample Layer 2’), 

The key difference compared with the sample layers is that the ‘Reference Layer 1’ and 

‘Reference Layer 2’ are produced using the full sample data (i.e. 1010 reference data 

points). Moreover, there is a grid size of one metre for ‘Reference Layer 1’ and a grid 

size of 1.5 metres of ‘Reference Layer 2’.  

 

Figure 5-8 Case study 1: The process of generating the reference layers using R. 

The single sample data were used to create the sample layers. As Figure 5-9 illustrates, 

two sample datasets (i.e. ‘Sample Data 1’ and ‘Sample Data 2’ ) were used to produce 

two different raster layers using the IDW function in ArcGIS and MapInfo (i.e. ‘Sample 

Layer 1’ and ‘Sample Layer 2’) with a grid size of one metre for ‘Sample Layer 1’ and 

1.5 metres for ‘Sample Layer 2’. 

 

Figure 5-9 Case study 1: The process of generating the simple layers using ArcGIS and MapInfo. 

It should be noted that the CG approach does not require generating the sample layers 

separately, as the integrated layer is produced directly without any intermediary steps. 

5.5.2 Integrated Layers 

After the generation of the single reference and sample layers, the next step involved 

their integration using the ‘Raster Overlay with Raster’ function. 

1) Integrated Reference Layer (IRL) 
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Based on the grid extents and the resolution of the sample layers, two different IRLs 

were produced in R (Figure 5-10). It should be noted that as R does not support Map 

Algebra’s functionality for the integration of the two raster layers, each pixel cell was 

multiplied by two, which returned the same result with the addition operation in the 

‘Raster Overlay with Raster’ function (addition operation). 

 

Figure 5-10 Case study 1: The process of generating the Integrated Reference Layer (IRL) using R. 

2) Integrated Sample Layer (ISL) 

As it was previously noted ArcGIS and MapInfo were also used for the integration of 

sample layers. Figure 5-11 illustrates the workflow for the implementation of the 

‘Raster Overlay with Raster’ function in ArcGIS and MapInfo. The two single map 

layers that were produced using the IDW function (i.e. ‘Sample Data 1’ and ‘Sample 

Data 2’), were loaded into the ‘Raster Overlay with Raster’ function in ArcGIS and 

MapInfo in order to create the ISLs separately. 

 

Figure 5-11 Case study 1: The process of generating the Integrated Sample Layer (ISL) using 

ArcGIS and MapInfo. 

For the CG approach, as Figure 5-12 illustrates, the same single map layers were used 

(i.e. ‘Sample Data 1’ and ‘Sample Data 2’) but the ‘Raster Overlay with Raster’ 

function was used directly without any intermediary steps such as generating ‘Sample 

Layer 1’ and ‘Sample Layer 2’. It was expected that avoiding this step could potentially 

reduce data uncertainty during processing. 
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Figure 5-12 Case Study 1: The process of generating the Integrated Sample Layer (ISL) using the 

CG approach. 

The GIS software packages that were used in this case study provide different 

algorithms for the implementation of the ‘Raster Overlay with Raster’ function. Thus, it 

was expected that the results and the quality of the generated integrated layers will not 

be the same. The next section critically assesses the quality of the various results.  

5.6 ‘Raster Overlay with Raster’ Function Results 

Section 5.6.1 focuses on the single map layers results and Section 5.6.2 on the 

integrated map layers results. 

5.6.1 Single Layers 

Six single layers, including two single reference layers and four single sample layers, 

were created in total and they are discussed in this section. The single reference layer 

results that were created using R and the single sample layer results that were generated 

using ArcGIS and MapInfo.  

Two single reference layers, with different grid sizes (i.e. one and 1.5 meters) were 

created using R and they are illustrated by Figures 5-13a and 5-13b. These two single 

reference layers were integrated to produce the final integrated reference layer in R. 
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Figure 5-13 Single reference layer 

(a) Single reference layer 1 (output of IDW, 1M grid size) generated using R.  

(b) Single reference layer 2 (output of IDW, 1.5M grid size) generated using R.                                                                                 

Figures 5-14a to 5-14d present the single sample layers that were generated using the 

IDW function in ArcGIS and MapInfo. These four single reference layers were used to 

produce the integrated sample layers using Map Algebra in ArcGIS and MapInfo. 

As it can be seen from Figures 5-14c and 5-14d MapInfo’s results show a significant 

‘edge effect’ compared to the results generated in ArcGIS (Figures 5-14a and 5-14b). 

As it is discussed in the next Section (5.7), the edge was cut off to enable the 

comparison of the IDW results within the same region. 
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Figure 5-14 Single sample layer 

(a) Single sample layer 1  (output of IDW, 1M grid size)  generated using ArcGIS.   

(b) Single sample layer 2 (output of IDW, 1.5M grid size)  generated using ArcGIS.   

(c) Single sample layer 1  (output of IDW, 1M grid size)  generated using MapInfo.   

(d) Single sample layer 2  (output of IDW, 1.5M grid size)  generated using MapInfo. 

5.6.2 Integrated Layers 

This section presents the results of the ‘Raster Overlay with Raster’ function, which 

including two IRLs using R and four ISLs using ArcGIS, MapInfo, and the CG 

approach. 

The IRLs produced in R are illustrated in Figures 5-15 and 5-16.  These two layers are 

used to validate the ‘Raster Overlay with Raster’ function results that were produced in 

ArcGIS, MapInfo, and the CG approach. 
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Figure 5-15 Integrated Reference Layer (1M) generated using R.                                              

 

Figure 5-16 Integrated Reference Layer (1.5M) generated using R. 

The ISLs that were produced using ArcGIS is shown in Figure 5-17, using MapInfo is 

shown in Figure 5-18, and using the CG approach are shown in Figures 5-19 and 5-20. 

It should be noted that there is a critical difference between the ArcGIS and MapInfo 

results. While the grid size of the resulting integrated layer in ArcGIS is 1.5 metres, in 

MapInfo is one metre by software’s default. This difference is probably due to the fact 

that the algorithm in ArcGIS uses the raster layer with the largest grid size (1.5 metres) 

to specify the resolution of the resulting integrated layer, while the MapInfo algorithm 

operates in the opposite manner (i.e. uses the raster with the smallest grid size to define 

the resolution of the resulting integrated layer). 
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Figure 5-17 Integrated Sample Layer  (1.5M) generated using ArcGIS.                             

 

Figure 5-18 Integrated Sample Layer (1M) generated using MapInfo. 

 

Figure 5-19 Integrated Sample Layer (1.5M) generated using the CG approach.                
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Figure 5-20 Integrated Sample Layer(1M) generated using the CG approach. 

The next section discusses the differences of the various ‘Raster Overlay with Raster’ 

function outputs. 

5.7 Case Study Results Comparison 

Raster Algebra (Section 5.7.1) and Statistical Analysis (Section 5.7.2) are used to 

explore and validate the quality of the various results of the traditional geo-processing 

and the CG approaches. 

5.7.1 Raster Algebra 

As it was explained in the previous Chapter (Section 5.7.1), Raster Algebra’s minus 

function subtracts the value of the second input raster from the value of the first input 

raster on a cell-by-cell basis and supports investigating the difference of grid cells 

between the actual, observed values that are stored in the Integrated Reference Layers 

(IRLs) and the derived values that are stored in Integrated Sample Layers (ISLs).  

Figure 5-21 illustrates the Raster Algebra results. As it can be seen the top images of 

Figure 5-21 illustrate the results for the 1.5 meter grid size raster layer that were 

produced using ArcGIS and the CG approach. The bottom images illustrate the results 

for the one meter grid size raster layer that were produced using MapInfo and the CG 

approach. Moreover, it should be noted that in Figure 5-21, the grid values represent the 

difference between the (new derived) values of the various ISLs, and the (observed) 

values of the IRLs. These grid values are classified using the ‘Natural Break’ option. 

For example, the black grid cells with grid values ‘Smaller than (<) -0.1’ and  ‘larger 

than (>) 0.1’, are defined by the gaps of the classified data and represent the groups with 

bigger differences. It is clear from Figure 5-21 that in the ArcGIS and MapInfo results 
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(top and bottom left hand side images) the black grid cells occupy the majority of the 

study area. This means that the results produced using Map Algebra in ArcGIS and 

MapInfo have more differences between the derived values and the actual, observed 

values (i.e. the reference data) than the CG approach derived values which are much 

closer to the observed values, as the black grid cells occupy a much smaller part of the 

study area (top and bottom right hand side images). 

 

Figure 5-21 Raster Algebra: Comparison of the ‘Raster Overlay with Raster’ function outcomes. 

5.7.2 Statistical Analysis 

Descriptive statistical analysis was also undertaken in order to compare the Raster 

Algebra (Minus) results in more detail. For the purposes of this comparison, the 

Maximum (Max), Minimum (Min), and the Standard Deviation values are used.  

The results are summarised in Table 5-1. In this table, the highest Standard Deviation 

value (StDev=0.209) is observed when we compare the ArcGIS integrated sample layer 

with the integrated layer (i.e. ArcGIS ISL MINUS IRL). The lowest Standard Deviation 

value (StDev=0.055) is observed when we compare the CG approach integrated sample 

layer with the integrated reference layer (i.e. CG ISL MINUS IRL). Moreover, the 

highest Maximum and Minimum values (Max=1.14, Min=-1.284) are observed when 

ArcGIS integrated sample layer is compared with the integrated reference layer (i.e. 

ArcGIS ISL MINUS IRL). The lowest Maximum and Minimum values (Max=0.401, 
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Min=-0.3) are observed in the CG approach amongst the integrated sample layer and the 

integrated reference layer (i.e. CG ISL MINUS IRL). These results confirm the Raster 

Algebra findings and they further show that the results of the CG approach are much 

closer to the actual, observed values of the reference data layer. Thus, it can be 

concluded that the CG approach provides higher precision results. 

Table 5-1 Statistical analysis results. 

 ArcGIS ISL 

MINUS  

IRL 

(grid size 1.5 m) 

CG ISL 

MINUS  

IRL 

 (grid size 1.5 m) 

MapInfo ISL 

MINUS 

IRL 

(grid size 1 m) 

CG ISL 

MINUS 

IRL 

(grid size 1 m) 

Standard 

Deviation  

0.209 0.055 0.165 0.073 

Maximum 1.14 0.401 0.659 0.442 

Minimum -1.284 -0.3 -0.773 -0.433 

 

The next section provides a discussion of the various ‘Raster Overlay with Raster’ 

function findings.   

5.8 Discussion 

Currently, raster-based data and its related algorithms are widely used in spatial analysis 

for describing real world phenomena. As demonstrated in this case study, while ArcGIS 

and MapInfo have different Map Algebra algorithms, their common aspect is that they 

both need to transform multiple two-dimensional raster datasets into a unique resolution, 

(e.g. ArcGIS selects 1.5 metres resolution for the both of IDW1 and IDW2 outputs), for 

entry into conventional Map Algebra functions. When a GIS tool selects automatically 

the largest of the raster layers to define the resolution of the resulting layer, then the 

accuracy and precision of the final result are influenced. For example, it was 

demonstrated that ArcGIS selects the largest grid size and as a result the derived values 

in ArcGIS have more differences with the reference data. 

In contrast to the traditional geo-processing approach, the CG approach applies 

function-based layers to store and process spatial data. For the ‘Raster Overlay with 

Raster’ implementation, the CG approach does not need to produce any intermediate 

results during computations. This enables reducing potential data uncertainty issues (e.g. 
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spatial data resolution and raster data conversion) in the CG approach. The findings of 

this case study show that the ‘Raster Overlay with Raster’ function in the CG approach 

resulted in values that are much closer to the actual values of the reference data layer. 

For example, the Raster Algebra results (Figure 5-21) reveal that the difference between 

traditional geo-processing’s derived values and actual values of the reference data layer 

cover almost 50% of the study area, while this difference in the CG approach covers 

only about 10% the study area. Also, the statistical analysis results demonstrate again 

that the calculated Standard Deviations of the traditional geo-processing values (i.e. 

ArcGIS and MapInfo’s) are much larger than the Standard Deviation of the CG values, 

which means the results of traditional geo-processing values have more data 

uncertainties. 

5.9 Summary 

This case study focused on the implementation of the ‘Raster Overlay with Raster’ 

function in the CG and traditional geo-processing (Map Algebra) contexts. The basic 

idea of ‘Raster Overlay With Raster’ function was reviewed in the first part of this case 

study. Then, this chapter discussed how the ‘Raster Overlay With Raster’ function can 

be implemented in the CG approach and the traditional approach. In specific, in the 

traditional geo-processing the single raster layers were firstly produced and then the 

derived data (i.e. ISL) were produced from the single raster layers’ (i.e. Raster layer1 

and Raster layer2) integration. However using the CG approach the final result (i.e. ISL) 

were produced directly from the original input datasets (i.e. Sample Data1 and Sample 

Data2). Moreover, this chapter reviewed the implementation datasets (i.e. reference data 

and sample datasets) and further illustrated the ‘Raster Overlay with Raster’ 

implementation strategy. 

The first case study described various ‘Raster Overlay with Raster’ implementations 

using the CG approach, ArcGIS, MapInfo, and R. The various results were compared 

and it was found that the CG approach resulted in values that are much closer to the 

observed values (i.e. reference data). In addition, this case study also demonstrated that 

the new approach improves flexibility as the ‘Raster Overlay with Raster’ function can 

be implemented using different grid sizes. As a result, it can be concluded that the CG 

approach offers many advantages over traditional geo-processing for the integration of 

two or multiple raster map layers within a geo-processing model. 
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However, it should be acknowledged that there are additional concerns that influence 

the development of the CG approach. For example, one of the key characteristics of the 

CG approach is the use of a combinative CG function in order to process an entire geo-

processing model, which may include various computation tasks. Thus, how various 

computation tasks can be linked together within a combinative CG function is a major 

concern, which will be investigated in the next case study, which is discussed in Chapter 

6.
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6 Implementing a Simple Chain Processing Using the 

Combinative Geo-Processing Function 

6.1 Introduction 

The case study that was described in Chapters 5 was used to respectively demonstrate 

the implementation of the ‘Raster Overlay with Raster’ functions using the CG 

approach. The results of this case study demonstrate that the CG approach has the 

potential to improve the data quality of GIS function implementation. This Chapter is 

concerned with the implementation of a simple chain processing model, which is not 

only a fundamental geo-processing operation, but it may provide the basis to develop 

more complex GIS models, which are also essential in spatial analysis. 

Section 6.2 discusses the characteristics of a generic simple chain processing model and 

describes the geo-processing model that it is used in this case study. Section 6.3 

describes the two different approaches that may be used for the implementation of any 

simple chain processing model; the traditional geo-processing approach using the 

ModelBuilder tool in ArcGIS and  the CG approach. Section 6.4 presents the datasets 

that are used in Case study 2. Section 6.5 discusses in detail the exact implementation 

and strategy for executing the simple chain processing model in this case study using 

both the traditional geo-processing and the CG approaches. Section 6.6 presents the 

results of this case study. In Section 6.7 Monte Carlo simulation is used to compare the 

influences of data uncertainties in both simple chain processing implementations and 

presents the Monte Carlo simulation results. Section 6.8 discusses the differences 

amongst the various Monte Carlo simulation outcomes and Section 6.9 provides a 

summary of the main issues that are discussed in this Chapter. 

6.2 Case study 2: Simple Chain Processing Model Review 

Simple chain processing models are very popular in GIS analysis and they are 

fundamental operations in traditional geo-processing.  Figure 6-1 illustrates the 

workflow of a generic simple chain processing model, with ‘Function1’ and ‘Function2’ 

representing two different computation tasks. In specific, ‘Function1’ uses the ‘Input 

Value’ to produce ‘Output1’, which is then used as an input for ‘Function2’ to return the 

final  ‘Result’. A simple chain processing model may form the basis for building more 
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complex chain processing models, such as the one that it is presented and discussed in 

the next Chapter (Chapter 7). 

 

Figure 6-1 The workflow of a generic simple chain processing model. 

Figure 6-2 illustrates the geo-processing model that it is used in this case study, which 

has two basic computation tasks; these are the IDW and Slope functions, which are 

commonly used in geo-processing, as the model aims to produce slope values from a set 

of LiDAR points. The IDW function was extensively reviewed in Chapter 5 and thus 

the next section only introduces in detail the Slope function. 

 

Figure 6-2 Case study 2: Geo-processing model (Simple chain processing model). 

6.2.1 Slope Function 

 ‘Slope’ is a commonly used spatial analysis processing model with many applications 

especially in the environmental context (e.g. in hydrological modelling) (Hunter and 

Goodchild 1997). The original Slope algorithm is a raster-based method in spatial 

computations. Burrough and McDonnell (1998) explain that the hypsometric curve is 

computed locally from each cell in the elevation matrix from data within a 3 X 3 grid 

‘window’, as demonstrated by Figure 6-3.  

 

Figure 6-3 Example of elevation matrix used for Slope computation. 
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The geo-processing model of this case study uses the same Slope algorithm that it is 

also used in ArcGIS. The same geo-processing model is used in order to later compare 

the ArcGIS and the CG results and explore any data quality issues. The ArcGIS Slope 

algorithm is a third-order finite difference estimate of the gradient in east-west and 

south-north directions (Horn 1981). The computational equation is given by Formula 

6.1. 

 

Gradient (x) = [(C3 + 2C6 + C9) – (C1 + 2C4 + C7)] / (8 * бx) 

Gradient (y) = [(C3 + 2C6 + C9) – (C1 + 2C4 + C7)] / (8 * бx)                     [6.1]          

 

Slope is commonly measured in degrees based on the algorithm given by Formula 6.2 

below.   

 

       Slope Degrees = ATAN (√ ([Gradient (x) ]^2 + [Gradient (y) ]^2) ) * 57.29578                     

                                                                                                                                   [6.2] 

The next section demonstrates the methodological approach for the implementation of 

the simple chain processing model in both traditional geo-processing and the CG 

approaches. 
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6.3  Methodology: The Simple Chain Processing Model 

Implementations 

This section discusses the simple chain processing model implementation using the 

traditional geo-processing approach (Section 6.3.1) and the CG approach (Section 6.3.2) 

separately. 

6.3.1 Simple Chain Processing Model Implementation in Traditional Geo-

processing: Sequential Computation 

It was already explained in Section 3.2 that sequential computation is one of the most 

commonly used computational approaches for the execution of a set of functions and 

geo-processing models in commercial GIS software. Figure 6-4 illustrates a simple 

chain processing model in ArcGIS ModelBuilder, which combines an IDW and a Slope 

function. This model involves two main computation steps: first, the raw LiDAR points 

are loaded into the IDW function, using one-metre grid size; second, the IDW output is 

loaded into the Slope function to finally produce the Slope result, as a raster 

representation. 

 

Figure 6-4 Case study 2: Simple chain processing model in ArcGIS ModelBuilder. 

The corresponding mathematical model for the geo-processing model illustrated by 

Figure 6-4, is given by Formula 6.3; where ‘FSLOPE’ and ‘FIDW’ represent the Slope and 

IDW functions. ‘OutputIDW’  is the output of the IDW function and ‘OutputSLOPE’ is the 

final output of the Slope function. 
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                    FIDW (LiDAR points) = OutputIDW 

                    FSLOPE (OutputIDW) = OutputSLOPE                                                   [6.3] 

 

The next section introduces how the simple chain processing model is implemented 

using the CG approach. 

6.3.2 Simple Chain Processing Model Implementation in Combinative Geo-

processing 

The major steps for the implementation of a simple chain processing model using the 

CG approach are illustrated in Figure 6-5. These include loading the raw LiDAR points 

into the combinative function {(IDW) (Slope)}, which will generate the final Slope 

value only upon user request (i.e. the system can directly generate the slope values on a 

set of randomly selected locations, which are defined by a group of coordinate values). 

 
Figure 6-5 Case study 2: Simple chain processing model in the CG approach. 

Formula 6.4 provides the mathematical model for the implementation of the simple 

chain processing model which was illustrated by Figure 6-5. This mathematical model 

was built using the concept of function-based layers in order to directly generate the 

final result (i.e. slope values) and minimise the influence of data uncertainties. In more 

detail, the ‘CG Function’ is a combinative CG function, which was constructed using 

two function-based layers: the CG Slope function (i.e.‘CG FSLOPE’) and the CG IDW 

function (i.e. ‘CG FIDW’). In this geo-processing model ‘CG dataset’, the input data of 

the ‘CG Function’, includes a set of coordinate values. ‘CG dataset’ aims to define the 

location of the study area and extract the final slope values. Finally, the ‘LiDAR Points’ 

represent the input of the CG IDW function.  
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CG Function (CG dataset) =  

{CG FSLOPE (CG FIDW (LiDAR Points)) (CG dataset)}            [6.4]                                 

                                                                                                                                                           

Sections 6.3.1 and 6.3.2 discussed two different approaches that can be used for the 

implementation and execution of a simple chain processing model. The fundamental 

difference, is that in traditional geo-processing (i.e. ModelBuilder in ArcGIS) a 

sequential computation approach is used to process the model and its tasks, while in the 

CG approach a combinative function is used to directly execute it.  

6.4 Case study 2: The Simple Chain Processing Model 

Dataset 

Figure 6-6 shows the sample of raw LiDAR point data used in this case study, as well 

as,  the geographical location (around 10,000 square metres) and the topographical 

features within the study area (shown by the yellow rectangle in Bing Maps satellite 

image in Figure 6-6). The sample dataset includes 26,499 points that were selected from 

the original LiDAR dataset (i.e. the second group of the LiDAR dataset
6
). It should be 

noted that in contrast to the first case study where 1,000 points were selected from the 

original LiDAR dataset, this case study uses a significantly higher number of points in 

order to further test the time performance of the CG approach in terms of processing 

large spatial datasets. 

                                                 
6
 Technical information of the second group of raw LiDAR dataset is provided in the Appendix A (Table 

A.2). 
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Figure 6-6 Case study 2: Raw LiDAR point data and case study area (yellow rectangle in Bing 

Maps satellite image). 

The next section describes the implementation strategy for the execution of the geo-

processing model in this Case Study. 

6.5 The Simple Chain Processing Model Implementation 

Strategy in Case study 2  

The framework of the simple chain processing model implementation and validation 

process, within the context of both traditional geo-processing and the CG approaches, is 

illustrated in Figure 6-7. It involves calculating the slope values using the two different 

geo-processing approaches and validating their results using Monte Carlo simulation 

and includes four major steps. The first step involves loading the raw LiDAR points 

separately in the two different geo-processing tools (i.e. Modelbuilder in ArcGIS and 

the CG approach); the second step involves the data processing and the execution of the 

IDW and Slope functions; the third step focuses on data query and provides a set of 

results which are used for data validation purposes and; finally the fourth step, involves 

using the geostatistical method of  Monte Carlo simulation to compare the results (i.e. 

slope values) that were produced using the two different approaches. 
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Figure 6-7 Case study 2: Implementation strategy of simple chain processing model. 

As it is illustrated by Figure 6-7, Step 2 (i.e. Data processing) involves the 

implementation of the simple chain processing model using ArcGIS and the CG 

approach  which is followed by Step 3 (i.e. Data Query), which focuses on extracting 

the slope values from the sampling locations. In the traditional geo-processing 

approach, slope values are usually stored and calculated in a raster data model to 

represent a surface object, but its quality is influenced by the grid size and the storage 

capacity of computer memory (Burrough and McDonnell 1998). Therefore, in this case 

study slope values were extracted from real geographical locations in order to reduce 

the influence of grid size and further providing the accurate values for the comparison 

of the results. 
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Figure 6-8 shows that 2,000 sampling locations, which are randomly selected from the 

case study area, as well as, the geographical location and the topographical features in 

the study area (shown by the yellow rectangle in Bing Maps satellite image in Figure 6-

8). In this case study, these 2,000 sampling locations are used in Step 3 (i.e. Data 

Query) to extract the slope values. 

 

Figure 6-8 Case study 2: The 2,000 sampling locations and the case study area (shown by the yellow 

rectangle in Bing Maps satellite image). 

Two additional functions are used in ArcGIS, as it is illustrated by Figure 6-9, in order 

to further query the slope values from the sampling locations. The first is the ‘Raster to 

Polygon’ function, which converts raster data into a vector format, as a set of polygons. 

The resulting map layer is then digitised on a single pixel boundary and has an 

individual slope value. The second function is the ‘Spatial Join’ which merges the 

polygons and the sampling locations in order to subsequently query the slope values of 

the requested locations. 
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Figure 6-9 Case study 2: ArcGIS model for querying slope values from the sampling locations. 

In the CG approach the same process requires only specifying  the coordinate values 

(i.e. the X, Y coordinate of the sampling points within the CG function), before it will 

directly produce the slope values. This computation step is summarised by Formula 6.5 

below.  

 

CG Function (X, Y) = {CG FSLOPE (CG FIDW (LiDAR Points)) (X, Y)}                [6.5] 

 

Two different GIS tools (i.e. ModelBuilder in ArcGIS and the CG approach) were used 

in this case study for the implementation of the simple chain processing model. It is 

expected, as it was found in previous case studies, that the results will again vary. The 

next section discusses the results of the two simple chain processing model 

implementations. 

6.6 The Simple Chain Processing Model Results  

Figure 6-10a and Figure 6-10b illustrate the slope results of the randomly selected 

sampling locations, that were generated using respectively the CG approach and ArcGIS 

ModelBuilder. The slope values, as it can be seen in both figures, are classified in five 

groups using the ‘Natural Break’ option, which means that the classification is based on 

the natural distribution of the slope values and the gaps amongst them. As the legend 

illustrates, the bottom group with slope values from 60.1 to 85 degrees includes 

locations which have the highest slope values, while the top group with slope values 

from 0 to 10 degrees, represents the sample locations which have lowest slope values. 

The other groups include slope values, which range from ‘10.1 to 25 degrees’, ‘25.1 to 

40 degrees’, and ‘40.1 to 60 degrees’.  
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Figure 6-10 (a) Slope values of sample points (CG approach).  (b) Slope values of sample points 

(ArcGIS). 

Figure 6-11 illustrates the results of the MINUS function that was used in order to 

investigate the difference in the results produced using the CG approach and ArcGIS 

Model Builder.  In other words, the points in Figure 6-11 represent the slope values 

differences in degrees and which are classified in seven groups using again the ‘Natural 

Break’ option. It is clear from Figure 6-11 that there is a difference in the slope values 

produced using the CG approach and ArcGIS; for example, the highest difference is 61 

degrees (i.e. the highest value in the legend) and around 30% of slope values in the 

corresponding sampling locations (i.e. more than 600 sample location points) differ in 

more than 10 degrees. It should be noted that these differences are observed in the 

south-eastern part of the case study area, where the slope is steeper, due to the existence 

of hills. 

 

Figure 6-11 Difference in sample slope value results that were produced using the CG approach 

and ArcGIS ModelBuilder. 

The next section provides a further discussion and comparison of the results that were 

produced using the CG approach and traditional geo-processing. 
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6.7 Case study 2: Comparison and Validation of results  

This section provides a further investigation of the two different chain processing model 

implementations using Monte Carlo Simulation in order to trace the influences of data 

uncertainties in both geo-processing approaches. 

6.7.1 Monte Carlo Simulation Model 

In this case study, Monte Carlo simulation is used to calculate the results’ mean and 

variance in order to investigate the influence of data uncertainties in both simple chain 

processing model implementations. 

Monte Carlo Simulation is used to compute the result of the slope algorithm repeatedly 

using randomly selected, from the case study area, input values. In specific, this process 

includes the following three steps: 

(1) Repeat the following computation steps 50 times: 

(a) Randomly select 60% of raw LiDAR points, which were previously 

illustrated by Figure 6-6. 

(b) Generate the slope values of the selected LiDAR points using both 

ArcGIS and the CG approach. 

(2) Store the results of Monte Carlo Simulation  (i.e. the generated slope values 

for all 50 iterations). 

(3) Based on the Monte Carlo simulation results compute the mean, maximum 

and minimum values, as well as, the sample variance and standard deviation. A 

brief description of mean, maximum and minimum values and the standard 

deviation was provided in Section 2.3.6.2. This case study further requires 

calculating the sample variance, which is a measure of how far a set of samples 

is spread out, in order to understand the influence of data uncertainties. 

Heuvelink (2006) describes extensively the computation method of Monte Carlo 

Simulation and explains that one of its limitations is its numerical load, which is caused 

by the number of required iterations,as the simulation must be executed ‘N’ times in 

order to provide a sufficient estimation of the mean, variance and standard deviation 

values. In GIS research, most studies run the Monte Carlo Simulation with only 20 or 

even ten iterations (Fisher, 1999; Goodchild et al., 1992), but Goodchild et al (1992) 

claim that ten iterations are not sufficient to obtain an accurate estimation of the results. 
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Heuvelink (2006) suggests that in most cases Monte Carlo Simulation should take at 

least 50 computational iterations and thus 50 iterations are also used in this case study. 

6.7.2 Monte Carlo Simulation Results 

The results of Monte Carlo Simulation are illustrated in Figure 6-12 for the CG 

approach and Figure 6-13 for ArcGIS. The results are based on the 50 computational 

iterations of Monte Carlo Simulation, and include the distribution of sample Mean, 

Maximum and Minimum values. These values are sorted by the mean slope values from 

lowest to highest degree (e.g. shown by the blue dots in both Figure 6-12 and Figure 6-

13). In specific, the X-axis of both Figures 6-12 and 6-13, represents the index of 

sampling locations (i.e. 1 - 2,000) and the Y-axis represents the slope values in degrees. 

It is clear that the ArcGIS results illustrated by Figure 6-13 spread wider, which 

indicates that the slope results in ArcGIS have more noise and a larger variance than the 

CG approach results.  
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Figure 6-12 Case study 2: Monte Carlo Simulation (CG approach results). 

 

Figure 6-13 Case study 2: Monte Carlo Simulation (ArcGIS results). 

The standard deviation results of Monte Carlo simulation for the sampling locations are 

illustrated in Figure 6.14 for the CG approach and Figure 6.15 for ArcGIS. In Figures 

6.14 and 6.15 the standard deviations are classified in five groups using the ‘Natural 

Break’ classification option. As the legend illustrates, the dark black points represent the 

sampling locations with the highest standard deviation of slope values, which ranges 

from 10.1 to 20 degrees. The white points show the sampling locations with the lowest 

(i.e. from 0.01 to 2 degrees ) standard deviation of slope values. In addition, there are 
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three other groups , where the standard deviation of the slope values ranges from ‘2.1 to 

5 degress’, ‘5.1 to 8 degress’, and ‘8.1 to 10 degrees’. 

 

Figure 6-14 Case study 2: Standard deviation on sample locations (CG approach results). 

 

Figure 6-15 Case study 2: Standard deviation on sample locations (ArcGIS results). 

The ArcGIS results which are illustrated in Figure 6.15 include a higher number of dark 

black points, which means that the slope standard deviation is much higher than the 

slope standard deviation of the CG approach results. This indicates that the traditional 

geo-processing approach (i.e. ModelBuilder in ArcGIS) results spread over a large 

range of values and thus may include data uncertainties. 

Table 6.1 shows the average value of the sample variance and the standard deviation 

based on the slope values of the 2,000 sampling locations. The average variance (i.e. 

confidence interval) in ArcGIS is 31.818 degrees-squared, and it is nearly four times 
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larger than CG approach’s average variance, which is 7.304 degrees-squared. Also the 

average standard deviation in ArcGIS, which is equal to 3.844 degrees, is nearly two 

times larger than CG approach’s standard deviation, which is equal to 1.811 degrees. 

Table 6-1 further indicates that the ArcGIS results have a larger distribution than the CG 

approach results, which means that they include data uncertainties.  

Table 6-1 Case study 2: A comparison of variance and standard deviation. 

 ArcGIS Results (Average 

value) 

CG Results 

Average of Variance 31.818  degrees-squared 7.304  degrees-squared 

Average of Standard 

Deviation 

3.844   degrees 1.811  degrees 

6.8 Discussion  

Monte Carlo simulation analysis revealed many differences between the CG and 

traditional geo-processing results.  These may occur due to mainly two reasons, which 

are discussed in the following paragraphs. 

First, the two approaches differ in terms of storing numerical numbers. In traditional 

geo-processing, numerical computation is a common method to store the results. 

However, one problem with numerical computation is round-off values, which may 

result in round-off errors (Goldberg 1994). Table 6-2 provides some examples of round-

off errors that may occur in numerical computation. For example, if ‘log10 2’ is rounded 

to three decimal places (i.e. 0.301), the total round-off error is 

‘0.000 029 995 663 981 195 21’. It should be noted that increasing the number of 

decimal digits may reduce the magnitude of round-off error, but limited computer 

storage memory may still cause round-off errors in various real numbers. On the other 

hand, the CG approach uses symbolic computation, which improves the precision of 

various calculations. Moreover, in the CG approach round-off errors do not exist 

because symbols and algebraic relationships are manipulated without storing numerical 

values (Recktenwald 2006). 

http://en.wikipedia.org/wiki/Logarithm
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Table 6-2 Example of round-off errors in numerical computation. 

Real  

Number 

Representation 

Value 

Approximation 

Value 

Round-off Error 

1/7 0.142 857 0.142 857 0.000 000 142 857 

ln 2  0.693 147 180 559 945 309 41...   0.693 147 0.000 000 180 559 945 309 41... 

log10 2 0.301 029 995 663 981 195 21...   0.301 0.000 029 995 663 981 195 21... 

∛ 2  1.259 921 049 894 873 164 76...   1.25992 0.000 001 049 894 873 164 76... 

√ 2  1.414 213 562 373 095 048 80...   1.41421 0.000 003 562 373 095 048 80... 

 

Second, spatial attributes, such as elevation and slope, are represented as raster layers in 

the traditional geo-processing approach, which have an arbitrary resolution and may 

cause data uncertainties (Haklay 2004). For instance, Figure 6-16 shows how slope can 

be represented in a raster-based layer, where each grid is assigned with a value that 

records the slope value from the centre of the grid (shown by the red cross in Figure 6-

16). In the traditional geo-processing approach, all geographical points, that belong to 

the grid are assigned with the same slope value, which is assigned to the centre of the 

grid. As a result, the distance shift  (shown by the black arrow in Figure 6-16) between 

the randomly selected locations and the centre of the grid may cause distortions in the 

slope values. These data uncertainties may be propagated when the slope values are 

used as an input into further computation tasks in a traditional geo-processing model. 

http://en.wikipedia.org/wiki/Natural_logarithm
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Cube_root
http://en.wikipedia.org/wiki/Square_root
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Figure 6-16 The slope representation (i.e. raster-based) and the distance shift (i.e. the cause of 

distortion) between randomly selected location and grid centre point. 

In contrast to raster-based layers that are used in ArcGIS, the CG approach applies 

function-based layers to store and process spatial data. With the CG approach no 

intermediary results are produced during implementation of a geo-processing model. As 

a consequence, there is no need to produce any raster images in order to store elevation 

or slope values, while the slope values are calculated based on the specific locations that 

are defined by the users. For example, if users want to query the slope values from the 

randomly selected locations illustrated in Figure 6-16, the CG approach should calculate 

the slope values based on their specific geopraohical locations (i.e. does not assign the 

slope value to the centre of the grid). Therefore, any potential data uncertainties caused 

by raster data representation can be minimised within the context of the CG approach. 

6.9 Summary 

This Chapter described the implementation of a simple chain processing model using 

the CG and traditional geo-processing approaches. First, a generic simple chain 

processing model, as well as, the model used in Case study 2 were reviewed. It was also 

discussed how the simple chain processing model can be implemented using the CG and 

traditional geo-processing approaches. In specific, it was explained that in traditional 

geo-processing the computation tasks (i.e. IDW and Slope) are executed one by one, 

and the intermediate result (i.e. the output of IDW) is used as the input of Slope function 

in order to generate the final result. However, using the CG approach the final result 
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(i.e. slope values) is produced directly from the input dataset (i.e. the LiDAR point) and 

the CG function (i.e. a combinative CG function of IDW and Slope).  

The results of Case study 2 were compared using Monte Carlo simulation. It was found 

that the CG approach provides improved Monte Carlo simulation results. For example, 

the CG approach’s average variance (i.e. 7.304 degrees-squared ) was nearly four times 

lower than the ArcGIS’s average variance (i.e. 31.818 degrees-squared), also the 

average standard deviation in the CG approach (i.e. 1.811 degrees) was nearly two times 

lower than ArcGIS’s standard deviation (i.e. 3.844 degrees). The results of Monte Carlo 

simulation indicated that the CG approach results include less data uncertainties when 

compared with traditional geo-processing; this is because the CG approach uses 

symbolic computation and function-based layers for the execution of the various 

computation tasks. In addition, this case study was also found that round-off errors in 

numerical computation and the data uncertainties caused by raster data representations 

in traditional geo-processing may further influence the results’ accuracy. 

A potential limitation of the CG approach is that it can be time consuming when large 

datasets and complex models are involved. Thus, improving computational efficiency 

(i.e. time cost) is a critical concern, which is discussed in the next Chapter (Chapter 7). 
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7 Implementing a Complex Chain Processing Model 

Using Combinative Geo-processing Function 

7.1 Introduction 

The previous Chapter (Chapter 7) demonstrated how a simple chain processing model is 

implemented in the CG approach. The Monte Carlo simulation results of Case Study 2 

show that the CG approach helps to overcome and improve data uncertainty problems 

which exist in the traditional geo-processing. Nevertheless, it is should be noted that the 

simple chain processing model implementation using the CG approach increases the 

required computation time, possibly due to the inefficient computation strategy used in 

the execution and manipulation of geographical data and GIS functions. To further 

investigate and resolve this implication this case study focuses on the efficiency (i.e. 

computation time) of the computation strategy of the CG approach. 

Section 7.2 discusses the implications of inefficient computation strategy in geo-

processing and introduces the concepts of computation flexibility and computation 

sequence. Section 7.3 proposes the concept of CG computation priority, which aims to 

reduce the overall computation time of geo-processing through the use of an improved 

computation strategy. Section 7.4 reviews the complex chain processing model that it is 

applied in this case study and Section 7.5 discusses how the model is implemented in 

traditional geo-processing and the CG approach using computation priority. Section 7.6 

presents the datasets that are used in Case study 3. Section 7.7 discusses in detail the 

exact implementation and strategy for executing the complex chain processing model in 

this case study using the two different geo-processing approaches. Section 7.8 presents 

the results of the complex chain processing model implementations. Section 7.9 

compares the implementation results of the overall computation time and Section 7.10 

discusses the significant differences of the results. Finally, Section 7.11 provides a 

summary of the main issues that are discussed in this Chapter. 

7.2 The Implications of Computation Strategy in Geo-

processing 

The first two case studies described in Chapters 5 and 6, mainly focused on the 

improvement of data uncertainty using the CG approach. Nevertheless, it became 

evident that a problem of the previous CG implementations was concerned with the 
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required computation time. Specifically, intensive computation time is usually required 

to implement the various CG functions and the computations based on Higher-Order 

Functions in order to reduce the influence of data uncertainties in the geo-processing. In 

some case studies, especially those which involve large spatial datasets (e.g. in Case 

Study 3), the computation time of processing the LiDAR point dataset (around 26,000 

points) and the CG functions (‘IDW’ and ‘Slope’) required several hours in the current 

CG approach (i.e. without an efficient computationa strategy). To further investigate 

and address this problem, Case study 3 focuses on computational efficiency and it 

involves the implementation of a complex geo-processing model with larger spatial 

datasets. 

This section discusses the implications of computation strategy as it is a fundamental 

element for improving computational efficiency (Loogen et al., 1993; Fijany et al., 

1995). Computation strategy represents a plan, which is used to solve one or more goals 

by applying an optimum method in order to efficiently control the computations (Martin 

and Virseda 2005). For example, Loogen et al., (1993) discuss a computation strategy 

for lazy conditional narrowing, which is based on the idea of transforming patterns into 

decision trees to manage the computation; Manoranjan et al., (2004) also describe new 

efficient similarity metric and generic computation strategy for pattern-based very low 

bit-rate video coding. These examples show that an optimum computation strategy may 

potentially improve computational efficiency. 

In this thesis, the computation strategy of the traditional geo-processing approach has 

been discussed in Case Studies 1 and 2, which showed that the computation tasks (i.e. 

GIS functions) of a geo-processing model are executed sequentially in the traditional 

geo-processing approach. Moreover, it was also found from these case studies that there 

are two factors which frequently influence the existing computation strategy and which 

may extend the overall computation time, and these refer to computation flexibility and 

computation sequence. Computation flexibility refers to the procedures that can manage 

the allocations of costly resources, such as time, memory, or information (Martin and 

Virseda 2005). Computation sequence represents the execution order of computation 

tasks in a geo-processing model. 

Computation flexibility may influence the efficiency of a computation strategy 

implementation because an optimum computation strategy needs a capability to control 

the computations and manage the costs, such as amount of computation resources and 

calculations (Martin and Virseda 2005). The earlier case studies showed that the current 
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geo-processing approach executes computation tasks or GIS functions straightforward, 

and does not provide a capability to manage the cost, such as the amount of 

computations to solve a spatial problem.  

Figure 7-1 demonstrates an example of a complex chain processing model in order to 

illustrate the problem related to computation flexibility in the traditional geo-processing 

approach. This model is trying to solve the spatial analysis problem of finding a suitable 

location for a dairy farm (Sujoni and Hardjomidjojo, 2010). As it can be seen from 

Figure 7-1 the input datasets include a DEM and a land use map. The DEM data provide 

the elevation, which could be further used to investigate the temperature and humidity 

in the case study area. The land use map provides the soil types, which could be used to 

understand the food supplements for animals, such as pasture supply. Then, these input 

data are processed using five computation tasks, (i.e. ‘Feature to Raster’, ‘Reclassify’, 

‘Slope’, ‘Reclassify2’, and ‘Weighted Overlay’), to produce the final result. It should be 

noted that all the outputs of each computation task have to be processed on the entire 

region of the study area because it is the default option in the traditional geo-processing 

tools, such as Modelbuilder, ArcGIS. This problem may lead to redundant computations 

in the geo-processing model and potentially increase the required computation time.  

 

Figure 7-1 The geo-processing model for identifying a suitable location for a dairy farm site (After 

Sujoni and Hardjomidjojo, 2010). 

The redundant computations could be avoided by improving computation flexibility, 

such as managing and reducing the amount of computations based on specific criteria. 

In geo-processing models, different types of criteria are frequently used to identify GIS 

user’s interested areas, such as five metres buffer to a road network or the area has 

elevation values lower than 100 metres. These selected areas could be defined as ROI in 

a geo-processing model. In principle, a ROI represents a selected subset of samples 
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within a dataset identified for a particular purpose, and possibly covers only a part of the 

entire study area.  

For instance, in the geo-processing model displayed in Figure 7-1, one of the site 

selection criteria is that the proposed for the dairy farm site should be located within a 

pasture area. This means that any data located outside the pasture area will not be 

considered in the GIS analysis, so no further processing of these data is required. As 

Figure 7-2 shows the ROI of this geo-processing model, which includes the pasture 

area, takes approximately 20% of the entire region, which means that the outside of the 

ROI area data, (almost the 80% of the entire region), will not require any further 

processing. Therefore if further processing of data outside of the ROI area can be 

avoided, it could significantly improve computational efficiency.  

 
Figure 7-2 Region Of Interest (ROI), which shows the pasture area of the dairy farm model. 

Moreover, computation sequence, which provides an order to execute various 

computation tasks in a geo-processing model, may also influence the efficiency of the 

computation strategy. As was discussed in Chapter 3 that current geo-processing tools 

use a sequential computation sequence to execute the computation tasks that are 

included in a geo-processing model. This is mainly because popular geo-processing 

tools (e.g. ArcGIS and MapInfo) are developed using programming languages such as 

JAVA and C, where the so-called ‘Call-by-Value’ computation strategy is used to store 

and calculate a value. The major characteristic of the ‘Call-by-Value’ computation 

strategy is that the argument of a function (e.g. x is a single argument in the function: 
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f(x) = x
2
 + 2) is calculated before the argument is used and the resulting values are 

bound to the corresponding variables in the function (Lengrand 2003). 

For instance, the implementation of a single GIS function in ArcGIS, which is 

developed in C programming language, includes: (a) the ‘input’, which is an argument; 

(b) when the ‘input’ loads into a GIS function, the resulting value is executed and 

bounded to the corresponding variable (i.e. output). This computation strategy is 

repeatedly applied in a chain sequence in order to implement all computation tasks of a 

geo-processing model. Nevertheless, this chain computation sequence may not be 

efficient when large geo-processing models are involved; it may include computations 

that are not necessary to be executed at run time (Muchnick 1997, p.117). 

Due to the previously noted computation strategy implications, the next section 

introduces the concept of CG computation priority, which aims at improving the overall 

computation time of a geo-processing model. 

7.3 Implementations Combinative Geo-processing 

Computation Priority 

CG computation priority is an important computation rule in this research. It is used in 

the CG approach and enables the execution of computation tasks or functions that are 

included in a geo-processing model using a different computation strategy. Specifically, 

the computation tasks are assigned initially with different priority values, and then they 

are implemented according to this priority value, from highest to lowest. 

7.3.1 Improving GIS Computational efficiency 

Nowadays, GIS have been widely used in various fields, such as transportation, 

environmental modelling, asset management, and citizen science. Nevertheless, 

computational efficiency is a major concern of GIS development as the size of spatial 

datasets and the complexity of spatial problems are dramatically increasing (Brown and 

Coenen 2000).  

There are many methods that can be used to improve computational efficiency and 

performance of existing GIS technologies, such as spatial data structure and data access 

methods which provide a way to access and query larger spatial databases more 

efficiently. For example, Guttman (1984) states a spatial data access method, the so-

called R tree, to store, search, and query spatial information. R-tree provides an efficient 

way to query a spatial database as computer memory and temporary database usage are 
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reduced in this method. R-tree has been widely used in different applications of spatial 

data management. For example, R-trees are commonly used to store spatial data such 

road networks and city locations, and then for querying the data quickly and efficiently 

such as ‘Find a shortest distance from city A to city B’ or ‘Find a nearest motorway 

access point around city C’. Moreover, Kriegel et al., (1993) discuss a method which 

combines spatial access and computational geometry concepts in order to improve the 

performance of GIS operations. The method could be applied in different applications 

or algorithms, such as map overlay and map merge. However, the current method relies 

on certain criteria (e.g. the robust spatial access method) and the further investigation is 

needed to design efficient algorithms based on spatial access methods and 

computational geometry for all retrieval operations.  

The previously noted methodologies contribute to the GIS computations, especially 

with respect to accessing and querying large spatial datasets. Nevertheless, these 

methods do not improve the efficiency of executing a large group of computation tasks 

in a geo-processing model. 

7.3.2 Computation Combinative Geo-processing (CG) Computation Priority 

Computation priority, or scheduling, is a common method used to effectively use 

computation resources and improve computation performance (Jones et al., 1997). In 

computer science, the priority (or scheduling) is used for implementing multiple 

computation tasks. For example, the scheduling could be used to suspend a computation 

task which has a low priority, or a computation task which is allocating a large amount 

of memory in order to free up main memory for other computation tasks, implementing 

the computation task later when more computer memory is available (Stallings 2004). 

Moreover, the priority (or scheduling) has also been widely applied in GIS, mainly for 

the purposes of determining least cost paths across a continuous surface (De Smith et 

al., 2007). 

Similarly to the priority rule that it is used in computer science or in spatial problems of 

path selection, the CG computation priority is trying to provide a new computation 

strategy in geo-processing to implement various computation tasks more efficiently, or 

in other words, using the minimum computation time and computer resources. 

Specifically, the basic principle of CG computation priority is that the CG approach 

starts with an analysis of the computation tasks or GIS functions included in the geo-

processing model and then the system assigns priority values to each computation task 
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or function. Finally the computation tasks or functions are executed according to the 

priority values assigned to them starting from the highest to the lowest.  

An example of a simple workflow in geo-processing with CG computation priority is 

given in Figure 7-3 in order to demonstrate the characteristics of the new computation 

strategy. Specifically a set of GIS functions (F1, F2, F3,…, F5) and input datasets 

(LiDAR Point, …) are first provided. The system defines the computation cost of each 

function. It should be noted that the term computation cost in this thesis is a generic 

idea, which refers to some composite factors that vary during a geo-processing model 

implementation (e.g. time complexity of an algorithm, processing area, and spatial data 

volume), and which needs to be taken into account when computation tasks or GIS 

functions are executed. It should be also noted that the lowest computation cost will be 

given the highest computation priority. The CG computations are executed according to 

the priority assigned to them, from highest to lowest. As a result, an original 

computation sequence in traditional geo-processing approach (e.g. ‘F1 ->F2 ->F3 ->F4 -

>F5’) will be re-organised in a new computation sequence in the CG approach (e.g. ‘F2 

->F4 ->F1 ->F5 ->F3’).  

 
Figure 7-3 An example of applying the CG computation priority in a simple geo-processing model. 

The example of the CG computation priority displayed in Figure 7-3 indicates that the 

new proposed computation strategy has the potential to provide more flexibility and a 

new computation sequence for calculating a geo-processing model. Specifically, the 

system executes first the highest priority functions because they cost the least 

computation time and resources. Then the lower priority functions are further executed, 
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as they usually allocate more computation resources and extend the overall computation 

time.  

We can now turn to the geo-processing model that it is used in this case study. 

Specifically, Case study 3 utilises the CG functions developed from the earlier three 

case studies, (e.g. ‘IDW’, ‘Slope’, and ‘Raster Layer Overlay’ functions), in order to 

understand how the CG computation priority can be implemented using the CG 

approach and the new computation strategy. 

7.4 Case study 3: The Complex Chain Processing Model 

Review 

This section describes the implementation of CG computation priority in a complex 

chain processing model, which involves a site selection for new property development 

problem. Compared to the geo-processing model implemented in Case Study 3, a higher 

number of computation tasks and a larger dataset are involved in this case study in order 

to evaluate the overall computation time of the CG approach using the CG computation 

priority rule. The specific details of the complex chain processing model are explained 

in the following paragraphs. 

Figure 7-4 illustrates this case study’s geo-processing model, which involves three main 

steps. The first step refers to data input and involves input of the original spatial data, 

which includes LiDAR Points, property locations, and road network data (shown by the 

blue circles in Figure 7-4). LiDAR points are used to produce elevation and slope 

values. Property locations and road network are applied to understand additional 

problems such as examining the local noise levels. The second step refers to data 

processing and there are five main types of computation tasks which are applied in this 

geo-processing model, which are shown by the orange circles in Figure 7-4. These are: 

1. IDW: Create grid digital elevation surface (grid size: five metres).  

2. Slope: Produce slope value from digital elevation surface. 

3. Selection 1 to Selection 4: According to a group of criteria, the model will select 

the potential area for new property development. The specific criteria include: 

Selection 1 is to choose elevation values that are less than 100 metres; Selection 

2 is to identify the slope values that are less than 30 degrees; Selection 3 is to 

find the locations with a distance to the existing property locations which is 
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more than 30 meters; Selection 4 is to find the locations with more than 50 

meters distance to the road network which. 

4. Distance 1 and 2: Calculate the distance to existing property locations and road 

network. 

5. Map Layers Overlay: Produce the final output from an integration of all GIS 

layers. 

The green circles in Figure 7-4 represent the output of each computation task. Finally, 

the objective of this model is to produce the Final Output, which is illustrated by the red 

circle in Figure 7-4 and which shows the potential locations for constructing new 

residential properties. 

 

Figure 7-4 The complex chain processing model used in Case study 3. 

The next section provides more details about the exact methodological approach that it 

is used to implement the complex chain processing model. 

7.5 Methodology: The Complex Chain Processing Model 

Implementations 

7.5.1 The Complex Chain Processing Model Implementation: ModelBuilder, 

ArcGIS 

Figure 7-5 illustrates the implementation steps of the complex chain processing model 

in traditional geo-processing using ArcGIS ModelBuilder tool. Specifically, the blue 

circles represent the input datasets, the yellow circles represent the computation tasks 

(i.e. GIS functions), and the green elliptical circles represent the output of each 

computation task. Furthermore, the lowercase letters (i.e. a, b, c,…, I) indicate the 

computation sequence of the complex chain processing implementation. It should be 
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noted that the computation sequence is based on the workflow of the complex chain 

processing model (i.e. from first computation task to the next one). 

 
Figure 7-5 Case study 3: Example of complex chain processing model in ModelBuilder (ArcGIS). 

The corresponding mathematical model for the geo-processing model illustrated by 

Figure 7-5, is given by Formula 7.1; where the entire geo-processing model is 

implemented using nine GIS functions (i.e. ‘FIDW’, ‘FSLOPE’, ‘FRECLASSIFY’, ‘FRECLASSIFY 

(2)’, ‘FEUCLIDEAN DISTANCE’, ‘FRECLASSIFY (3)’, ‘FEUCLIDEAN DISTANCE (2)’, ‘FRECLASSIFY (4)’, 

‘FRASTER CALCULATOR’) and which are listed based on their sequential computation 

sequence (i.e. from a to i). The nine GIS functions and their computation tasks are 

further summarised in Table 7-1 to provide further information about the complex chain 

model and how it is built using ModelBuilder ArcGIS. 
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a. FIDW (LiDAR points) = OutputIDW 

b. FSLOPE (OutputIDW) = OutputSLOPE 

c. FRECLASSIFY(OutputSLOPE) = OutputRECLASSIFY 

d. FRECLASSIFY(2)(OutputIDW) = OutputRECLASSIFY(2) 

e. FEUCLIDEAN DISTANCE (Property Locations) = OutputEUCLIDEAN DISTANCE 

f. FRECLASSIFY(3)(OutputEUCLIDEAN DISTANCE) = OutputRECLASSIFY(3) 

g. FEUCLIDEAN DISTANCE(2) (Road Network) = OutputEUCLIDEAN DISTANCE(2) 

h. FRECLASSIFY(4)(OutputEUCLIDEAN DISTANCE(2)) = OutputRECLASSIFY(4) 

i. FRASTER CALCULATOR(OutputRECLASSIFY + OutputRECLASSIFY(2) + 

OutputRECLASSIFY(3) + OutputRECLASSIFY(4)) = Final Result                                                                                                                                                                                                                                                                 

 

[7.1] 
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Table 7-1 A summary of GIS functions in the complex chain processing model. 

 Function Name Computation Task  Input Output 

a FIDW Create five metres grid 

digital elevation 

surface 

LiDAR points OutputIDW 

b FSLOPE Produce slope value 

from the digital 

elevation surface 

OutputIDW OutputSLOPE 

c FRECLASSIFY To identify the slope 

values that less than 30 

degrees 

OutputSLOPE OutputRECLAS

SIFY 

d FRECLASSIFY(2) To choose elevation 

values that less than 

100 metres 

OutputIDW OutputRECLAS

SIFY(2) 

e FEUCLIDEAN 

DISTANCE 

Calculate the distance 

to existing property 

locations 

Property Locations OutputEUCLIDE

AN DISTANCE 

f FRECLASSIFY(3) To find the locations 

which have distance to 

the existing property 

locations more than 30 

meters 

OutputEUCLIDEAN 

DISTANCE 

OutputRECLAS

SIFY(3) 

g FEUCLIDEAN 

DISTANCE(2) 

Calculate the distance 

to the existing road 

network 

Road Network OutputEUCLIDE

AN DISTANCE(2) 

h FRECLASSIFY(4) To find the locations 

which have distance to 

the road network more 

than 50 meters 

OutputEUCLIDEAN 

DISTANCE(2) 

OutputRECLAS

SIFY(4) 

i FRASTER 

CALCULATOR 

Produce the final 

output from an 

integration of the GIS 

layers 

OutputRECLASSIFY; 

OutputRECLASSIFY(2); 

OutputRECLASSIFY(3); 

OutputRECLASSIFY(4) 

Final Result 

 

The next section introduces how the complex chain processing model is implemented 

using the CG approach with computation priority. 
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7.5.2 The Complex Chain Processing Model Implementation: Combinative Geo-

processing (CG) Approach  

The implementation of the complex chain processing model using the CG approach is 

illustrated in Figure 7-6. Specifically the implementation includes first loading the input 

datasets (i.e. LiDAR Points, property locations, and road network) into the combinative 

CG function, which includes nine CG functions and generates the final result only upon 

user request and it only involves processing the computations within the ROI areas. The 

mathematical model and structure of the combinative CG function are further discussed 

in the following paragraphs in order to explain how the CG computation priority is 

implemented in this case study. 

 
Figure 7-6 Case study 3: Complex chain processing model in the CG approach. 

Formula 7.2 provides the mathematical model for the implementation of the complex 

chain processing model which is illustrated by Figure 7-6. This mathematical model 

was built using the same method that it was used in Case Study 3 for the simple chain 

processing model. Specifically, the ‘CG Function’ was constructed using the following 

nine functions: ‘CGIDW’, ‘CGSlope’, ’CGSelection1’, ‘CGSelection2’, ‘CGSelection3’, ’CGSelection4’, 

’CGDistance1’, ’ CGDistance2’, ‘CGMap Layers Overlay’. These functions involve the same 

computation tasks with those involved in ModelBuilder and which were presented in 

section 7.5.1. The main difference is that in CG the computation tasks are assigned with 

different computation priority values in order to improve computational efficiency. 
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CG Function (CG dataset) = { CGMap Layers Overlay 

                                    {CGSelection1 (CGIDW (LiDAR Points))}  

                                    {CGSelection2 (CGSlope (CGIDW (LiDAR Points)))} 

                                   {CGSelection3 (CGDistance1 (Property Locations))} 

                                   {CGSelection4 (CGDistance2 (Road Network))} 

                               (CG dataset)}                                                                       [7.2] 

                                                                          

 

The structure of the mathematical model is displayed in Figure 7-7 using different size 

of blue dashed outline boxes which are used to illustrate how the CG functions are 

organised. For example, the largest blue dashed outline box represents the ‘Map Layers 

Overlay’ function, which aims to integrate the results from the four sub-functions, a, b, 

c, d, which have different functionalities in the complex geo-processing model as it is 

explained below: 

a. {CGSelection1 (CGIDW (LiDAR Points))} // The main functionality is to select the 

suitable area by the elevation value criterion. 

 

b. {CGSelection2 (CGSlope (CGIDW (LiDAR Points)))} // The main functionality is to 

select the suitable area by the slope value criterion. 

 

c. {CGSelection3 (CGDistance1 (Property Locations))} // The main functionality is to 

select the suitable area by the distance to existing property locations. 

 

d. {CGSelection4 (CGDistance2 (Road Network))} // The main functionality is to select the 

suitable area by the distance to the road network. 
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Figure 7-7 Case study 3: The structure of the CG function in the complex chain processing model. 

As noted, the main characteristic of the CG computation priority is to assign the 

different priority values to each function and then implement them starting with the 

highest priority to finish with the execution of the function which was given the lowest 

priority. Therefore, in the next paragraphs the a, b, c, d sub-functions are used as an 

example to illustrate how the different priority values could be assigned to these 

functions in this complex chain processing model. 

In this case study, the CG computation priority is defined considering the computation 

cost of each function. As was explained in Section 7.2.3, the term computation cost 

refers to a group of composite factors, including computation complexity, processing 

area, and spatial data volume. The corresponding generic mathematical model for 

computation cost assessment is described in formula (7.3). In this formula, 

VALUEComputation Cost is the computation cost value of a CG function or a computation 

task, Factorcomplexity, Factorprocessing area, and Factordata volume are the different composite 

factors which influence on the computation cost assessment. Finally, Wcomplexity, 

Wprocessing area, and W data volume are the weight value of each factor. It should be noted that, 

the further details of Factorcomplexity, Factorprocessing area, and Factordata volume are illustrated 

in Table 7-2, while the Wcomplexity, Wprocessing area, and W data volume are simplified as the 

same weight value (i.e. value 1) in Case study 3. 
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VALUEComputation Cost = (Factorcomplexity x Wcomplexity + Factorprocessing area  x 

Wprocessing area + Factordata volume x W data volume)                                     [7.3] 

 

Specifically, Sipser (2006) discusses that time complexity represents the number of 

instructions which a program executes during its running time and time complexity is 

usually used to quantify the amount of time taken by an algorithm. The computation 

complexity could be expressed by using the Big O Notation, which is a mathematical 

model and applied to classify algorithms according to how they respond (e.g., in their 

processing time or computing memory requirements) to changes in input dataset size 

(Cormen et al., 2001). For example, if an algorithm on input datasets of size N is 10N
2
 + 

5N, it’s time complexity is O(N
2
), where O represents an O - notation. The result of the 

example (i.e. O(N
2
)) is produced according to two simplification rules in Big O 

Notation (Cormen et al., 2001):  

a) If the function or algorithm f(x) is a sum of several terms, the one with the 

largest growth rate is kept, and all others omitted. 

b) If the function or algorithm f(x) is a product of several factors, any constants 

(terms in the product that do not depend on x) are omitted. 

Moreover, the example of the time complexity shows that the size of the input dataset 

N, which could be measured by using the data processing area and the volume of data, 

is a fundamental element to calculate the computation time of a function or an 

algorithm. Therefore, the processing area and spatial data volume are also applied in the 

CG computation priority to assess the priority values.     

Figure 7-8 shows the customised CG computation priority for the sub-functions a, b, c, 

d. In this example, the priority values are defined by the composite factors of time 

complexity using the Big O Notation, the processing of the area involved, and the input 

data volume, which are described in Table 7-2. 
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Figure 7-8 Case study 3: The structure of the CG functions in the complex chain processing model 

(assigned to CG computation priority values). 

Table 7-2 further explains how the priority values are assessed in the specific functions. 

As shown in this table, the four sub-functions a, b, c, d have the same time complexity, 

but the values of the data processing area and the input data volume vary. Specifically, 

the time complexity of sub-functions a, b, c, d is produced by using the two 

simplification rules in Big O Notation and the algorithms of the sub-functions a, b, c, d. 

The data processing areas of the sub-functions a and b are derived from the entire size 

of the case study area as the LiDAR points are randomly distributed to the whole case 

study area. The data processing areas of the sub-functions c and d are calculated from 

their selection criteria, which refer to identifying areas that are 30 metres away from 

existing property locations and 50 metres away from the road network. The input data 

volumes refer to the amount of points which are processed in the sub-functions a, b, c, 

d. 
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Table 7-2 Case study 3: Input data volume of the functions. 

Function 

Name  

Time 

Complexity 

(Big O) 

Data Processing 

Area 

Input Data Volume 

a O(n
2
) 400,000 M

2
 One million points (LiDAR points) 

b O(n
2
) 400,000 M

2
 One million points (LiDAR points) 

c O(n
2
) 138,469 M

2
 250 points (Existing Property 

Locations) 

d O(n
2
) 312,000 M

2
 510 points (Vertex of Road Network) 

 

As it can be seen from Figure 7-8, Function a: {CGSelection1 (CGIDW (LiDAR Points))} 

and Function b: {CGSelection2 (CGSlope (CGIDW (LiDAR Points)))} are given lower priority 

b as they deal with the larger LiDAR dataset which contains one million LiDAR points 

(i.e. nearly 2000 times larger than the input dataset volumes of Function c and d) and 

the larger data processing areas, while Function c: {CGSelection3 (CGDistance1 (Property 

Locations))} and Function d: {CGSelection4 (CGDistance2 (Road Network))} are given higher 

priority as they deal with a smaller dataset size and data processing area.  

There are four computation steps in the CG approach implementation using the CG 

priority computation rule, which include: 

1. The system firstly executes Function c: {CGSelection3 (CGDistance1 (Property 

Locations))} and Function d: {CGSelection4 (CGDistance2 (Road Network))} as they 

given higher priority. The outputs of this step record two criteria (i.e. the ROI 

areas of Case study 3), which are produced from the distance to property 

locations and road network and which could be used to investigate the necessary 

computations in order to avoid potential redundant computations in the next 

step. It should be noted that the outputs are stored in the RAM temporarily. 

2. Before calculating the lower priority computation tasks, the system processes 

and analyses the necessary computations. For example, the temporary results 

(i.e. the boundary of ROIs) from the previous step will be used to select the 

essential LiDAR points which satisfy the criteria, or else, the LiDAR points 

which are located within the ROIs. So the raw point dataset (LiDAR Points) is 

transferred to the necessary point dataset (Necessary LiDAR Points) according 

to the ROIs criterion.  



 

185 

 

3. The next step is to execute Function a: {CGSelection1 (CGIDW (Necessary LiDAR 

Points))} and Function b: {CGSelection2 (CGSlope (CGIDW (Necessary LiDAR 

Points)))}. 

4. The last step is to run the ‘Map Layers Overlay’ function in the CG approach. 

Sections 7.5.1 and 7.5.2 explained the two different approaches that can be used for the 

implementation and execution of the complex chain processing model. The fundamental 

difference is that in traditional geo-processing (i.e. ModelBuilder in ArcGIS) a 

sequential computation method is used to process the model and its computation tasks, 

while in the CG approach the CG functions are implemented based on their priority 

values.  

The following section discusses the input datasets that are used in Case study 3.  

7.6 Case study 3: The Complex Chain Processing Model 

Dataset 

As it was already explained in Figure 7-4, the input datasets of Case study 3 include 

LiDAR Points, property locations, and road network. They are separately described in 

this section. 

1) LiDAR Points (Case study 3) 

The LiDAR Points are randomly selected from the original raw LiDAR dataset that also 

used in the previous case study. It should be noted that there is a significant increase in 

the number of LiDAR points used; from 26,666 points (i.e. the amount of LiDAR points 

selected in Case Study 3) to 1,000,000 points. The purpose of using a large LiDAR 

point dataset is to test and compare the overall computation time between the traditional 

geo-processing approach and the CG approach, where CG computation priority is 

further used. Figure 7-9 shows the sample of raw LiDAR point data used in this case 

study, as well as, the geographical location and the topographical features of the study 

area (shown by the yellow rectangle on top of the Bing Maps satellite image).  



 

186 

 

 
Figure 7-9 Case study 3: Raw LiDAR point data (one million points) and case study area (yellow 

rectangle on Bing Maps satellite image). 

In this case study, the raw LiDAR points dataset is stored using Qtree, which is a 

common spatial data structure and which is widely applied in many GIS software 

packages to store spatial database (Rigaux et al., 2001), such as ArcGIS and MapInfo. 

2) Property Locations   

One of the site selection criteria in this case study involves is that the new building 

locations should be 30 metres away from the existing property locations. Figure 7-10 

shows the existing property locations in the case study area, which were digitised from 

the Bing Maps satellite image. 
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Figure 7-10 Case study 3: Existing property locations. 

3) Road Network   

Another site selection criterion is that the new building locations should 50 metres away 

from the existing road network to avoid any noise pollution problems due to local 

traffic. Figure 7-11 shows the existing road network data in the case study area. In order 

to simplify the data processing, this study uses vertices (i.e. point) with a ten metres 

interval for representing the road network (i.e. polyline). Road network data were also 

digitised from the Bing Maps satellite image. 

 
Figure 7-11 Case study 3: Road network represented by vertices. 

The next section describes the complex geo-processing model implementation using the 

two different geo-processing approaches. 
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7.7  The Complex Chain Processing Model Implementation 

Strategy in Case study 3 

The framework of the complex chain processing model implementation and validation 

process, within the context of both traditional geo-processing and the CG approaches, is 

illustrated in Figure 7-12. It involves analysing the potential residential property 

locations using the two different geo-processing approaches and comparing their overall 

computation time using Monte Carlo simulation and includes three major steps. 

The first step involves loading the LiDAR points, property locations, and road network 

in the two different geo-processing tools (i.e. Modelbuilder in ArcGIS and the CG 

approach using computation priority). The second step involves the data processing and 

the execution of the complex chain processing model. The third step focuses on the 

comparison of the results, using the geostatistical method of Monte Carlo simulation to 

compare the overall computation time of the two different approaches. 

 
Figure 7-12 Case study 3: Implementation strategy of complex chain processing model. 

It is expected, as it was also the case with the previous case studies that the results of the 

two approaches would again vary, especially with respect to the overall computation 

time.  
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7.8 The Complex Chain Processing Model Results 

7.8.1 The Complex Chain Processing Model Results: ModelBuilder ArcGIS 

The outputs of the complex chain model, which is implemented by using ArcGIS 

ModelBuilder, are illustrated according to the sequential computation sequence in the 

traditional geo-processing approach (i.e. as displayed in Figure 7-5, it ranges from 

computation task a to i):  

a. Load the LiDAR points in the ‘IDW’ function, in order to produce the elevation 

values. The result (illustrated by Figure 7-13) shows a range of elevation values 

from 359.89 metres to 517.91 metres.  

 
Figure 7-13  Outcome of computation task a (‘IDW’ function). 

b. Load IDW’s result in the ‘Slope’ function, in order to produce the slope values. 

The result (illustrated by Figure 7-14) shows a range of slope value from 0.02 

degrees to 69.28 degrees.  
 

 
Figure 7-14 Outcome of computation task b (‘Slope’ function). 

c. Load Slope’s result in the ‘Reclassify’ function, in order to calculate the potential 

suitability for the new development area, which should have a slope value less than 

30 degrees. It is shown from the result (illustrated by Figure 7-15) that Class 0 
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(False) represents the not accepted area and Class 1 (True) represents the accepted 

area.  

 

 
Figure 7-15 Outcome of computation task c (‘Reclassify’ function). 

d. Load IDW’s result in the ‘Reclassify (2)’ function, which will calculate the 

potentially suitable area, which needs to have an elevation value less than 390 

metres. It is shown from the result (illustrated by Figure 7-16) that Class 0 (False) 

represents the not accepted area and Class 1 (True) represents the accepted area.  

 
Figure 7-16 Outcome of computation task d (‘Reclassify (2)’ function). 

e. Load ‘Property Location’ in the ‘Euclidean Distance’ function, to calculate the 

shortest distance to existing property locations. The result (illustrated by Figure 7-

17) shows a range of distance values from 0 metres to 250.79 metres. The result 

will be further used in the ‘Reclassify (3)’ function to select the locations, which 

have a minimum distance of 30 metres to the existing properties.  
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Figure 7-17 Outcome of computation task e (‘Euclidean Distance’ function). 

f. Load Euclidean Distance’s result in the ‘Reclassify (3)’ function, in order to 

calculate the potentially suitable areas, which should have a minimum 30 meters 

distance from existing property locations. It is shown from the result (illustrated by 

Figure 7-18) that Class 0 (False) represents the not accepted area and Class 1 (True) 

represents the accepted area.  

 

 
Figure 7-18 Outcome of computation task f (‘Reclassify (3)’ function). 

g. Load ‘Road Network’ in ‘Euclidean Distance2’ function, in order to calculate the 

shortest distances to the road network (vertices). The result (illustrated by Figure 7-

19) shows a range of distance values from 0 metres to 264.76 metres. The result 

will be further used in the ‘Reclassify (4)’ function to select the locations, which 

have a minimum distance of 50 meters to the road network.  
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Figure 7-19 Outcome of computation task e (‘Euclidean Distance2’ function). 

h. Load Euclidean Distance2’s result in the ‘Reclassify (4)’ function, in order to 

calculate the potentially suitable areas, which should have a minimum of 50 meters 

distance from the road network. It is shown from the result (illustrated by Figure 7-

20) that Class 0 (False) represents the not accepted area and Class 1 (True) 

represents the accepted area. 

 

 
Figure 7-20  Outcome of computation task f (‘Reclassify (4)’ function). 

i. Finally, load the results of ‘Reclassify’, ‘Reclassify (2)’, ‘Reclassify (3)’, 
‘Reclassify (4)’ in the function ‘Raster Calculator’, in order to integrate the 

intermediate outcomes and produce the final result of the site selection analysis. It 

is shown from the result illustrated by Figure 7-21 that the case study area is 

represented using five classes. Specifically, the area with blue colour (‘Class 4’) 

represents the accepted locations for the new property development as it satisfies all 

the criteria, while ‘Class 0’ to ‘Class 3’ represents the not accepted locations as 

they have at least one criterion which is not satisfied. 
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Figure 7-21 Case study 3: The final result of the site selection analysis (produced using 

ModelBuilder, ArcGIS). 

7.8.2 The Complex Chain Processing Model Results: The CG Approach using 

Computation Priority 

Figure 7-22 illustrates the final result from the CG approach using CG computation 

priority, where the potentially suitable areas for the new property development are 

illustrated by the blue region (i.e. ‘Class 2’). ‘Class 1’ represents the not accepted areas 

that satisfy only one criterion, such as elevation smaller than 390 meters or slope value 

less than 30 degrees. ‘Class 0’ represents the not accepted areas that do not meet any of 

the suitability criteria.  
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Figure 7-22 Case study 3: The final result of the site selection analysis (produced using the CG 

approach using CG computation priority). 

Figure 7-22 shows that the entire case study area is divided by only three classes, as 

opposed to the previous Figure 7-21 which illustrated the ArcGIS results and where 

there were five classes. This is due to the new computation strategy (e.g. ROI), which is 

applied in the CG approach. Specifically, as was explained in Section 7.2, ROI is used 

to avoid the potential redundant computations in order to reduce the amount of 

computation time. In this case study, when the site selection model is processed using 

the CG approach with CG computation priority, the outcomes of the CG functions 

{CGSelection3 (CGDistance1 (Property Locations))} and {CGSelection4 (CGDistance2 (Road 

Network))} are applied to identify the boundary of ROIs, such as the regions which have 

30 meters distance from existing property locations and also have 50 metres distance 

from the road network. As a result, the computations are only implemented inside these 

ROIs, and thus there are only three classes which are applied in the final result to further 

investigate the other two criteria. They refer to the elevation values which should be 

smaller than 390 meters and the slope value which should be less than 30 degrees. 
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Moreover, the white colour area displayed in the final result (Figure 7-22) represents the 

locations, which did not involve any further processing as they are located outside the 

ROIs. 

This section presented the results of the complex chain processing model. The main 

difference between the two approaches is that in the CG approach the final result is 

directly produced, while the geographical data which is within the ROI are processed. In 

contrast, the traditional geo-processing approach requires the sequential execution of all 

the functions involved, which processes the data within the entire case study area.  

7.9 Case study 3: Comparison of Results 

We can now investigate the two different implementations of the complex chain 

processing model with respect to their overall computation time. Monte Carlo 

simulation is continuously applied in this case study to trace the average computation 

time (i.e. mean value) of both geo-processing approaches. 

7.9.1 Monte Carlo Simulation Model (Case study 3) 

The Monte Carlo simulation model of this case study is given in Figure 7-23, which 

involves three main steps: 

 

1) The first step is to randomly select 90% of the LiDAR points as one of the input 

datasets, which also include the property locations and the road network. 

2) In the second step, the input datasets are loaded into the two different 

approaches for data processing. 

3) Finally, the average computation time of each approach is calculated and 

compared.   

 

It should be noted that the number of iterations used in the Monte Carlo simulation 

model was increased to 100 iterations compared to the 50 iterations that were used in 

the previous case study. The larger iteration number applied in this case study is due to 

two reasons: (a) the amount of LiDAR data are gradually increased to one million points 

from 26,499 points, which is the amount of LiDAR data used in the third case study; (b) 

the geo-processing model applied in this case study is more complex than the one used 

in Case Study 3 (i.e. the combinative function of ‘IDW’ and ‘Slope’). As a result, this 

case study uses 100 iterations in the Monte Carlo simulation model. Moreover, 

Heuvelink (2006) claims that 100 iterations are sufficient to obtain a reasonable 
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estimate of the mean value (e.g. the average value of computation time) in a Monte 

Carlo simulation. 

 
Figure 7-23 Case study 3: the validation process (Computation time). 

7.9.2 The Result of Monte Carlo Simulation Model (Case study 3) 

The Monte Carlo simulation results are displayed in Figure 7-24 and Table 7-3. Figure 

7-24 shows the results of the overall computation time in ArcGIS and the CG approach. 

In this figure, the X axis represents the index of the 100 iterations running test, while the 

Y axis shows the computation time of each single test. It is clear that there is a 

significant difference in the computation time between the two geo-processing 

approaches. Specifically, the computation time in ArcGIS ranges from 57 seconds to 75 

seconds, while the computation time in the CG approach ranges from 43 seconds to 50 

seconds. Thus, the results indicate that the CG approach has a lower overall 

computation time than the traditional geo-processing approach (i.e. ArcGIS). 
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Figure 7-24 Case study 3: Overall computation time in traditional geo-processing and the CG 

approach. 

In addition to Figure 7-24, Table 7-3 summarises the statistical result of the Monte 

Carlo simulation’s 100 iterations. It can be observed that the mean value (i.e. the 

average of 100 iterations’ computation time) of the CG approach is 46.35 seconds, 

which is 29.2% lower than the ArcGIS’s mean value (i.e. 65.31 seconds). The 

maximum computation time occurs in ArcGIS (i.e. 75 seconds), but the minimum 

computation time is observed in the CG approach (i.e. 43 seconds). The standard 

deviation value also indicates that the CG approach’s results are very close to the mean 

value, while the ArcGIS’s results are spread out over a larger range of values which 

may lead to a higher computation time. 
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Table 7-3 The statistical results of overall computation time between the ArcGIS and CG approach 

using CG computation priority (Unit: Second). 

 Mean Max Min Standard 

Deviation 

ArcGIS 65.31 75 57 2.94 

CG Approach 46.35 50 43 1.26 

 

7.10 Discussion 

It was demonstrated by Figure 7-24 and Table 7-3 that the Monte Carlo simulation 

analysis revealed that there are differences in the CG and traditional geo-processing 

approaches with respect to their computation time. The average computation time of the 

CG approach (i.e. 46.35 seconds) is nearly 20 seconds less than the traditional 

approach’s computation time (i.e. 65.31 seconds). This difference in the computation 

time occurs due to mainly two reasons, the new computation sequence and computation 

flexibility that are applied in the CG approach with computation priority. 

First, in the CG approach the implementation sequence of the computation tasks is re-

organised according to their computation cost in order to use more efficiently the 

computer’s memory and resources. For instance, the functions with the lowest 

computation cost were the first that were executed. Second, computation flexibility is 

used in the CG with computation priority, which also helps to avoid execution of 

redundant computations. For example, the specific criteria were used to define ROIs in 

this case study and the data only within these ROIs were processed. This means that 

only a portion of the data of the whole case study area was used in processing and this 

helped to reduce the required computation time. 

Furthermore, it should be noted that total computation time that it is required to process 

100 iterations of the geo-processing model of Case study 3 in Monte Carlo simulation, 

which using the CG approach with computation priority is 4,635 seconds. In other 

words the CG approach with computation priority in this case saves about 1,896 

seconds, as the computation time of ArcGIS to process 100 iterations of the geo-

processing model of Case study 3, in Monte Carlo simulation is 6,531 seconds. Thus, 

the amount of total computation time may be significantly reduced if the CG 

computation approach with computation priority is repeatedly used in geo-processing 

models to implement their computations. 
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Although site selection geo-processing models are popular, it might be argued that these 

models are not used by a significant amount of people so that also significant savings of 

computation time occur due to the repetitive application of the proposed improved 

approach in its existing form. However, it should be noted that the CG approach with 

computation priority in its current form (i.e. without further research and subsequent 

improvements) can be used in applications such as web mapping or online mapping, 

which is used by thousands of people on a daily basis and which could significantly 

improve computation time, as it is explained in the next paragraphs. 

Web mapping provides a new way to design, implement, generate, and deliver 

geographical information on the World Wide Web (Fu and Sun 2010). As web mapping 

has many advantages, such as it could easily deliver information through internet 

network, it can combine different data sources which are published online, and it could 

work cross browsers and various operating systems to provide mapping services, while 

there is a larger amount of users that are using web mapping services every day (Haklay 

et at., 2008). In the early 2000s, the major characteristic of the web mapping is that geo-

processing functions can be executed on the powerful server’s side in order to process 

geographical data and reduce in that way the computations that would be required to 

execute on the client side (i.e. the user computer) (Peng and Tsou 2003). Then Google 

Map applications which appeared in 2005, and the number of users is dramatically 

increasing as Google Map applications provide a lot of convenient online map services. 

For example, Google Maps API, which is a server side web mapping service, provides a 

function to overlay user’s own data on a customized 2D Google Map, and Google Earth, 

which is a client side web mapping service, offers a function to overlay user’s own data 

on a customized 3D Google Map. Nowadays, Google Map applications are widely used 

in various fields to implement different tasks, such as data visualisation, geo-processing 

and spatial data integration.    

If geo-processing functions are provided on web mapping services using the CG 

approach with computation priority, significant computation time can be saved to the 

service provider. For example, if the site selection geo-processing model implemented 

using the CG approach in the Case study 3 is published on the server side for analysing 

and sharing the information of potential property locations. The time saved could be 

represented by ‘Number of Users’ times by ‘X seconds’, where ‘Number of Users’ 

describes how many people use this web mapping service and ‘X seconds’ means the 

time saved of a single implementation. It might not be important for one user to save 20 
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seconds, which is based on the average computation time between the CG approach and 

ArcGIS as demonstrated by Table 7.3, but for the provider it means that his the services 

can save ‘Amount of Users’ x 20 seconds. 

Therefore, based on the results of this case study and the earlier case studies (i.e. Case  

Study 1 to 3), it can be concluded that the CG approach using computation priority 

offers many advantages (i.e. improved data quality and better computation time) over 

the traditional geo-processing approach for the implementation of a geo-processing 

model. 

7.11 Summary 

This Chapter introduced the concept of CG computation priority, which was used in 

order to improve the computational efficiency (i.e. the overall computation time) of geo-

processing. In the beginning, this Chapter reviewed the current problems related to 

computational efficiency and introduced the concept of the CG computation priority. 

Compared to the traditional geo-processing approach, the CG computation priority 

provides an alternative computation strategy. Specifically, with the CG computation 

priority the computation tasks or GIS functions of a geo-processing model are 

implemented in a way that takes into account their computation cost, which is defined 

by the size of the data involved and the computation complexity. In other words, the 

function which involves a smaller data size and less complexity will be executed first. 

The third case study focused on the implementation of a complex chain processing 

model using the two different geo-processing approaches in order to demonstrate the 

main characteristics of CG computation priority. The implementation results were 

compared and it was found that the CG approach can produce the final result directly 

and process the geographical data included in ROIs, while the implementation of 

traditional geo-processing approach was executed sequentially and included processing 

of the data within the entire case study area. The outcome of Monte Carlo simulation, 

which was used to compare the computation time between two different geo-processing 

approaches, confirms that the average of overall computation time in the CG approach 

is 29.2% lower than the traditional geo-processing approach’s result. The results of 

Monte Carlo simulation indicated that the CG approach using CG computation priority, 

compared to the traditional geo-processing’s computation strategy, provides an 

improved computation strategy for dealing with the complex geo-processing model and 

the larger GIS datasets. 
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Although the CG approach with computation priority improved the computation time, it 

may be argued that it only resulted in a very small fraction of computation time 

reduction (around 20 seconds). Thus, it should be acknowledged that there are 

additional concerns with respect to the implementation of CG computation priority. 

It was explained in Section 7.3.2, the current method produces computation priority 

values according to the composite factors, such as time complexity, processing area, and 

input data volume. It should be noted that this current assessment progress may extend 

the overall computation time as the composite factors are observed and evaluated one 

by one until to produce a final priority value. Therefore, improving the speed of priority 

value assessment is an important research question that should be addressed in the 

further research, which does beyond the scope of this thesis, to further reduce the 

overall computation time of geo-processing. For example, the computation priority 

could be assessed by using an optimum computation algorithm, where the different 

computation cost factors could be automatically and efficiently calculated. 

The site selection geo-processing model was applied this this case study to demonstrate 

how the CG approach with computation priority could be implemented. Moreover, the 

site selection geo-processing model was used in the Monte Carlo simulation to validate 

the computation time between the CG and traditional geo-processing approaches. 

However, only a single geo-processing model implementation may not enough to 

support the final conclusion of the new geo-processing approach if inappropriate inputs 

were entered into the model, such as grid size and data volume. Therefore, various 

implementation models are needed in the further CG approach development, although 

these are beyond the scope of this thesis, to validate the performance of the CG 

approach with computation priority. 
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8 Conclusion 

8.1 Introduction 

This thesis has described the development of a new geo-processing approach, the CG 

approach, which was aimed at improving data processing issues related to data quality 

and computational efficiency. Within this context, this thesis has described how the data 

quality and computation time cost of geo-processing models can be optimised using the 

CG approach. The research findings have been implemented and evaluated through 

three test case studies, which focused on using the CG approach to optimise a set of 

primitive geo-processing model implementations. 

This chapter summarises the major findings of this research and discusses its 

contributions, limitations and future research directions. Section 8.2 commences with a 

brief overview of the research undertaken, whilst Section 8.3 discusses the research 

questions of this thesis, and Section 8.4 discusses the contributions of this thesis. 

Finally, the chapter concludes with a critical discussion of the limitations of the current 

development of the CG approach (Section 8.5) and provides suggestions for future 

research (Section 8.6).     

8.2 Overview of the Research 

This thesis has focused on the improvement of data quality and computational 

efficiency in geo-processing. Although current geo-processing tools are used to model 

and solve spatial decision-making problems, there are many significant concerns with 

respect to the quality of their geo-processing results and the computational cost of a 

geo-processing model. These were extensively described in Sections 2.3 and 2.4, where 

the problems that are caused due to a sample’s resolution, the propagation of errors in 

spatial information, and the extensive time cost were discussed. As the aim of this thesis 

was to identify a solution in order to overcome these problems, a new geo-processing 

approach was proposed which investigated how data quality problems can be minimised 

and how computational efficiency, i.e. the overall computation time, of geo-processing 

can be improved. 

Chapter 2 reviewed geo-processing and the related issues, such as data quality and 

computational efficiency. The data quality of a geo-processing model is extremely 

important as it influences the final output of geo-processing models. Chapter 2 firstly 
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reviewed data quality issues in traditional geo-processing and then explained that the 

current approach is influenced by different data quality problems, namely due to the 

limitations of raster and vector spatial data models, and numerical computation and 

error propagation. In order to minimise the spatial data representation problems and to 

reduce data error and uncertainty, this research proposed the use of a point-based spatial 

data model, i.e. spatial data representation, symbolic computation, and function-based 

layers in the CG approach, i.e. data error and uncertainty. Chapter 2 also reviewed the 

computational efficiency in geo-processing, as this can potentially influence 

computational performance. The computation strategy, based on sequential computation 

that it is used in traditional geo-processing, costs extra computation time and computer 

memory. In order to address this problem, a priority-based computation strategy is 

proposed in the CG approach, which is used to reduce computation time by re-ordering 

the computational sequence in which the computation tasks in geo-processing are 

implemented through the use of priority values from highest to lowest. 

Chapter 3 introduced the conceptual model that links the main components of the CG 

approach and it was explained that this conceptual model involves three parts: the first 

focuses on the input level of the CG approach, such as the basic data model, functions, 

and computation framework; the second part involves the processing and computation 

rules that are used within the context of the CG approach; and the final part focuses on 

the output level of the CG approach, such as the result of a geo-processing model. This 

conceptual model of the CG approach provides the fundamental framework and the 

basis for the development of the CG approach. Chapter 3 also discussed the two main 

functionalities of the CG approach for executing spatial data and functions: (a) a CG 

function, which can be constructed from sub-functions, is used to implement an entire 

geo-processing model to reduce the impact of data errors and uncertainties; and (b) the 

priority-based computation sequence, which is used to execute the CG functions 

efficiently. 

Chapter 4 discussed the case study design and the implementation of the methods. The 

three case studies were introduced, which were implemented in order to demonstrate 

how the CG function and the priority-based computation sequence could be practically 

implemented using the CG approach, and further supported the investigation of whether 

the CG approach improves data quality and computational efficiency. As the CG 

function and priority-based computation sequence requires a set of implementation 

methods, a ‘Higher-Order Function’, ‘Recursive Algorithm’ and ‘Lazy Evaluation’ 
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were applied as the primary execution methods in the CG approach. The ‘Higher-Order 

Function’ and ‘Recursive Algorithm’ can be used to build up and execute CG functions, 

while ‘Lazy Evaluation’ can be applied to define the computational sequence. 

Furthermore, the computational environment was also discussed in this chapter to 

illustrate the software packages and computer tools which were used to implement the 

three case studies. 

The first case study was described in Chapter 5, and drew attention to the overlaying 

raster layers in GIS. Due to the fact that this function is widely used by several geo-

processing models, e.g. for integrating different map layers in a complex geo-processing 

model, this case study investigated and compared the computation strategy of the raster 

layer overlay function. The second case study described in Chapter 6, showed how a 

simple chain processing model can be implemented using the CG approach. This simple 

chain processing model is a fundamental operation in traditional geo-processing, as it 

forms the basis for building more complex geo-processing models. The last case study, 

discussed in Chapter 7, demonstrated the implementation of a complex chain processing 

model using the CG approach with computation priority, and also provided the basis to 

further investigate the issue of computational efficiency in order to investigate how the 

overall computation time cost in geo-processing can be reduced. Thus, in the third case 

study, this thesis also introduced the concept of CG computation priority in processing 

GIS data and functions. These three case studies are particularly important in the 

development of the CG approach, especially for data quality and computational 

efficiency improvement. The research findings from these three case studies are 

discussed in the next section. 
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8.3 Overview of Research Objectives and Findings 

This section discusses the major finding of the development of the CG approach, 

specifically in relation to data quality improvement (Section 8.3.1) and computation 

time optimisation (Section 8.3.2) which was one of the thesis aims. 

8.3.1 Improving Data Quality via the Combinative Geo-Processing Approach 

The research findings from case studies 1 and 2 illustrated that some fundamental 

methods applied in the traditional geo-processing approach, such as spatial data 

representation and the basic computation method, may influence data quality, due to: (a) 

data conversion and re-sampling operations amongst raster and vector data models; and 

(b) approximated values and error propagation during numerical and sequential 

computation. It was concluded in Chapter 2 that the current spatial data representation 

and the basic computation methods applied in the traditional geo-processing approach 

can influence the data quality of the final results of a geo-processing model, and that 

there is a need to improve the existing approach to provide a better result. 

Addressing data quality problems was one of the main concerns in this research and was 

an aspect of the CG approach at the conceptual and implementation levels. It was 

discussed in Section 2.3 that there are two issues in the traditional geo-processing 

approach, including the current method for spatial data representation and the basic 

computation method, as these issues can cause different data quality problems. Two 

case studies were undertaken in order to test the CG approach and to address these 

problems. The findings of these case studies are discussed in the following paragraphs. 

The first case study focused on the multiple raster map layers integration, which is a 

common function commonly used in many geo-processing models and frequently 

influences and causes data quality problems. A comparison between the CG approach 

and the traditional geo-processing approach was demonstrated in the first case study 

through implementing an overlay function of two different raster layers, with different 

grid sizes. In particular, this case study involved the implementation of the raster layers 

overlay function using the CG approach, ArcGIS, and MapInfo. The various results of 

the raster layers overlay function were compared and it was found that the CG approach 

resulted in values that were much closer to the observed values, i.e. the reference data. 

As a result, it can be concluded that the CG approach offers an advantage over 

traditional geo-processing for the integration of two or multiple raster map layers within 

a geo-processing model. 
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The second case study also focused on data quality and was concerned with the 

implementation of a simple chain processing model. A simple chain processing model is 

central within geo-processing as it is used to build more complex and advanced models. 

The second case study involved the implementation of a model using the CG approach 

and the ModelBuilder tool provided by the ArcGIS software package. The 

implementation results were compared using the Monte Carlo simulation method. 

Monte Carlo simulations were used in this research to estimate standard deviation and 

variance values of the samples, thereby enabling the tracking of the propagation of 

uncertainties and errors of GIS computations. It was found that the CG approach 

provided improved results, for example in the CG approach the average variance (7.304 

degrees-squared) was nearly four times lower than the average variance in ArcGIS 

(31.818 degrees-squared), in addition, the average standard deviation in the CG 

approach (1.811 degrees) was nearly two times lower than the ArcGIS standard 

deviation (3.844 degrees). The results of the Monte Carlo simulation indicated that the 

CG approach results included less data uncertainty when compared to traditional geo-

processing, which is because the CG approach uses symbolic computation and function-

based layers for the execution of the various computational tasks.  

To conclude, this research illustrates how the data quality of the traditional geo-

processing approach can be improved using the point-based spatial data representation, 

symbolic computation and functional programming in the CG approach. In specific, the 

point-based spatial data representation method improves the implementation of geo-

processing models as it reduces the complexity of spatial data models, while any 

problems caused due to rasterisation and vectorisation of data processing functions can 

be completely avoided. Furthermore, a combination of symbolic computation and 

functional programming provides a novel approach in geo-processing for processing 

spatial data and functions more accurately. There are many advantages to applying 

symbolic computation and functional programming in the CG approach: first, both 

numerical and symbolic computations are supported in the CG approach to reduce the 

influence of an approximated value; second, computations can be suspended or 

reordered in order to implement them more efficiently; and third, results can be 

produced directly from a combination of functions thereby reducing data uncertainty. 

Furthermore, the point-based spatial data representation, symbolic computation and 

functional programming in the CG approach can contribute to many further contexts 

within GIS, such as point cloud geo-data and geocomputation and these contributions 

are discussed further in Section 8.4. 
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Apart from the data quality investigation, this thesis has also explored how 

computational efficiency, i.e. overall computation time, can be improved when the CG 

approach is applied in geo-processing. The findings of this investigation are separately 

summarised in the next section. 

8.3.2 Improving Computational Efficiency through the Combinative Geo-

Processing Approach 

The sequential computation strategy applied in the traditional geo-processing approach 

is another issue, as it could result in problems related to computational efficiency. A 

common problem is that all functions need to wait for input data from the previous 

functions, and also unnecessary computations may occur in a complex geo-processing 

model. Together, these two problems can potentially increase the computational cost of 

geo-processing models. Thus, it may be concluded that the sequential computation 

sequence can influence the computational efficiency of a geo-processing model, and 

that there is a need to improve the existing approach in order to reduce the computation 

cost. 

The computational efficiency problems in the traditional geo-processing approach have 

influenced the development of the CG approach. In order to reduce the total 

computation time, the design of the CG approach has focused on improving the 

sequential computation in the traditional geo-processing approach by using a priority-

based computation strategy. The priority-based computation strategy attempts to 

overcome the problem of overall computation timeof geo-processing, especially when 

large spatial datasets and complex geo-processing models are involved. The priority-

based computation strategy enables an alternative computation sequence to execute GIS 

functions in a geo-processing model, which is achieved by initially assigning 

computation tasks with different priority values, and then implementing them according 

to this priority value, from highest to lowest. 

The third case study showed how the CG approach with the priority-based computation 

strategy can be implemented in a complex chain processing model. The model was 

implemented using the traditional approach (ModelBuilder in ArcGIS) and the CG 

approach with computation priority in order to compare the computation time costs of 

the two approaches. The implementation results revealed that the CG approach can 

produce the final result directly, i.e. without any interim outputs, and process 

geographical data included in ROIs, while the implementation of the traditional geo-



 

208 

 

processing approach was executed sequentially and included processing of the data 

within the entire case study area. Furthermore, a Monte Carlo simulation was used in 

this case study to compare the average of the overall computation time (based on 100 

iterations) between the two different geo-processing approaches. The outcome of the 

simulation confirmed that the average overall computation time in the CG approach is 

29.2% lower than in the traditional geo-processing approach. The results indicated that 

the CG approach using computation priority, compared to the traditional geo-processing 

computation strategy, provides an improved computation strategy for dealing with 

complex geo-processing models and larger GIS datasets. 

To summarise, this research has illustrated how the computational efficiency of the 

traditional geo-processing approach can be improved using the priority-based 

computation strategy employed in the CG approach. Moreover, the priority-based 

computation strategy could create more contributions to high-performance 

geocomputations and daily geo-processing tasks, as it enables an efficient way to 

process GIS data and functions. The further contributions of the priority-based 

computation strategy are discussed in Section 8.4. 

8.4 Contribution of Thesis 

This thesis contributes to the area of geo-processing, which is a popular approach in 

GIS and has been widely used in various spatial analysis tasks. Specifically, it 

introduces novel thinking and an approach to the field of geo-processing computations, 

such as using function-based layers and a priority-based computation strategy to process 

GIS data and functions. Based on the previous discussion of the research findings, the 

primary contribution of the research undertaken can be concluded as: (a) the 

development of a new approach for processing GIS data and functions; (b) a 

demonstration of how the influence of data errors and uncertainties in geo-processing 

can be minimised using a point-based spatial model  and a combination of symbolic 

computation and function-based layers; and (c) a demonstration of how the overall 

computation time of geo-processing can be improved using the priority-based 

computation strategy. The contributions of this thesis to different GIS research areas are 

discussed in the following paragraphs. 

The point-based spatial data model provides a simplified way to represent spatial 

features. In other words, the CG approach uses point data to represent spatial features 

that include both discrete objects and continuous field features. It should be noted that a 
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point-based spatial data model is not a new concept in GIS, as it is usually used to 

represent individual point objects in a geo-processing model, such as address points. 

However, this is the first time a point-based spatial data model has been used to 

represent both discrete and continuous data in a geo-processing model in order to reduce 

the influence of data quality issues, such as rasterisation and vectorisation.   

Furthermore, the contribution of the point-based spatial data model has an important 

implication for the analysis of large point cloud geo-data. Point cloud geo-data are 

defined as X, Y, and Z coordinates within a geographical coordinate system, and aim to 

represent spatial objects, such as three-dimensional buildings (Höfle et al., 2009). Point 

cloud geo-data have been applied in different applications in order to represent spatial 

objects, for example, Oude and Vosselman (2009) stated that three dimensional 

modelling of complex highway interchanges could be represented using point cloud 

geo-data. In addition, Hentschel and Wagner (2010) discussed that Points Of Interests 

(POI), such as traffic signs, gas stations and restaurants, could be represented using 

point cloud geo-data.  

Although point cloud geo-data are increasing in popularity, there are some existing data 

quality issues which may cause problems. In particular, Pauly et al. (2004) illustrated 

the data uncertainty and variability issues which exist in point cloud geo-data due to 

incomplete information captured by 3D acquisition devices. Joerg et al. (2012) 

discussed point cloud geo-data collected from different airborne sensors which are often 

integrated together to build a complete database, where massive point cloud data 

captured from different platforms and sensors create potential data quality problems for 

data integration and manipulation. If the point-based spatial data model in the CG 

approach could be applied to point cloud geo-data, then it will reduce the influence of 

data uncertainty and error propagation in point cloud geo-data processing and improve 

GIS representations.  

The CG approach introduces a completely different way to process GIS data and 

functions using function-based layers. The basic idea of function-based layers was 

discussed in Section 3.3 and based on the first and second case studies, it was found that 

function-based layers provided a way to improve the data quality of geo-processing. For 

example, the influence of data uncertainties, e.g. error propagation and spatial data 

conversion, could be minimised by using symbolic computation and function-based 

layers in the CG approach, and increased flexibility was also provided in the CG 



 

210 

 

approach as the resolution and extent of the output could be defined by the users 

according to a request. 

The contribution of function-based layers has an important implication for improving 

the data quality of geocomputation. Geocomputation is an approach that it is used for 

interpreting spatial characteristics, explaining geographical phenomena, and solving 

spatial problems (Couclelis, 1998; Cheng et al., 2012). Nowadays, geocomputation is 

widely applied in various fields to understand complex geographical phenomena, such 

as health data analysis (Câmara and Monteiro, 2001) and geodemographics (Ashby and 

Longley, 2005). It should be noted that spatial data quality improvement is an ongoing 

topic in geocomputation due to many existing issues which were discussed in Section 

2.3.3, such as data transformation and error propagation. If the function-based layers in 

the CG approach could be applied to geocomputation, then this will enable a different 

way to manipulate GIS data and functions and reduce the influence of data uncertainties 

and errors in geocomputation. 

Aside from data quality, this thesis has also paid attention to the overall computation 

time through the concept of CG computation priority. It is particularly important to note 

that this is probably the first time priority values have been applied to GIS functions in 

order to improve computational efficiency. In contrast to the computation strategy of the 

traditional geo-processing approach, a more sophisticated variant of the CG 

computation priority is that each GIS function has a priority value derived from the 

particular computation cost, which is used to execute the available functions from 

highest to lowest priority. As a result, the overall computation time of geo-processing 

can be reduced, as the new approach enables a way to use computer resources 

efficiently and avoid redundant computations.  

The novel CG computation priority has an important implication for improving the 

performance of geo-processing. Nowadays, many geo-processing research studies relate 

to high performance computation, such as parallel computation. For example, Dowers et 

al. (2000) suggested a framework and a series of software libraries, which allow the 

integration of parallel computation technology into the GIS software to improve 

computational efficiency. Parallel computation has two benefits for implementing multi-

computational tasks in a geo-processing model; first, it supports an efficient platform to 

encompass a wider range of complex processes in a geo-processing model, which can 

be divided and achieved by multi-streaming sequential geo-processing tasks across 

different cores (Qin et al., 2014); and second, it enables a new platform to store the 
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ocean of GIS data which are collected from spatial and temporal dimensions (Zhong et 

al., 2012). However, it should be noted that parallel computation focuses on how heavy 

computational tasks can be efficiently divided into smaller computational tasks via the 

use of a multi-core processor. This characteristic indicates that: (a) parallel computation 

doesn’t change the sequential computation strategy in the traditional geo-processing 

approach; and (b) the problems related to sequential computation strategy still exist in 

parallel computation. These issues raise several questions for future research, such as 

can parallel computation be applied in the CG approach and can the priority-based 

computation strategy be integrated into the parallel computation? Although the 

integration between the two methods may further reduce the overall computation time 

of a geo-processing model, this integration also has some potential challenges in future 

development. For example, how could a combinative function divided into sub-

computation tasks and how are sub-computation tasks prioritised in parallel 

computation?  

The contribution of the CG approach could be further extended to several research 

contexts, e.g. environmental modelling, web mapping services, urban planning, risk 

assessment, or asset management, as it fundamentally improves geo-processing. People 

currently work in many different fields and use geo-processing models to solve many 

spatial problems. For example, scientists use geo-processing models to monitor and 

analyse daily atmospheric changes, such as temperature and air pollution, biologists use 

geo-processing models to track animal migration patterns, city planners and engineers 

use geo-processing models to help plan their response in the case of a natural disaster, 

such as an earthquake or hurricane and engineers and specialists use geo-processing 

models to plan local resources needed for energy services, like gas and electricity. 

Therefore, there are many potential opportunities for the CG approach to be applied to 

different fields in order to improve data quality and computational efficiency.  

Last but not least, if the CG approach could be frequently and repeatedly used in Web 

GIS and online geo-processing, further computation time and computer resources could 

be saved. It should be noted that the current geo-processing tool, not only could be used 

in different GIS desktop software packages (e.g. ERDAS and ArcGIS) for spatial 

analysis and decision-making, but also has been widely and repeatedly applied in Web 

GIS and online geo-processing to support spatial data processing and map publishing 

services. Niu et al. (2013) discussed how geo-processing services could be provided 

using Web GIS and concluded that online geo-processing provides a convenient way to 
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reduce the differences between platforms and programming languages, but that 

computational efficiency is a potential problem for online geo-processing and requires 

further investigation.  Another example is Google Map applications which appeared in 

2005, where the number of users dramatically increased as Google Map applications 

provide convenient online mapping services. If the popular online data processing 

functions that are repeatedly applied in GIS users’ daily jobs could be implemented 

using the CG approach, then there are significant computation times that could be saved 

for web service providers and potential contributions that could be made for different 

web mapping service users. For example, the overlay of map layers and potential site 

selection, which were discussed in Chapters 5 and 7, are two popular functions and have 

been widely applied in online geo-processing. If these functions could be implemented 

using the CG approach, then this would improve data quality and the computational 

efficiency of online geo-processing. 

The next section discusses the limitations of the CG approach.  

8.5 Research Limitations 

In this thesis different methods were used to develop the CG approach. For example, a 

conceptual model was discussed at the beginning of the thesis to build the framework 

for the development of the CG approach, then there are the three case studies that were 

applied to the CG approach implementation, and finally a geostatistical method (i.e. a 

Monte Carlo simulation) was used to trace the uncertainties, e.g. data quality and 

computation time cost, and evaluate the results of the case studies. These different 

methods, which each have their own limitations, were applied to answer the research 

question of this thesis and therefore they are critically discussed in this section. 

8.5.1 Conceptual Model of the Combinative Geo-Processing Approach 

The conceptual model of the CG approach was discussed in Chapter 3 in order to 

explain the major characteristics of the new approach, and this model plays an important 

role in the three case studies that were used for the development of the CG approach. 

However, it should be noted that there are some limitations with respect to the 

implementation of the conceptual model in the current CG approach, which mainly refer 

to the CG function library and the CG function output visualisation.  

First, there is a barrier for many GIS users in comprehending the performance gains 

delivered by the CG approach because of the limited amount of CG functions and geo-
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processing models that were implemented in the development of the CG approach. As 

was discussed in Section 3.3, the CG function library is a core element in the input level 

of the CG conceptual model for storing and managing different CG functions 

effectively. CG functions can be developed and stored in the CG function library, and 

subsequently these functions were used in the case studies for the implementation of the 

CG approach. However, due to time restrictions, only a basic set of CG functions was 

created in the library for test purposes. Therefore, further research is required to expand 

the diversity of the functions that are included in the CG function library so that the 

approach will be eventually used to implement various CG functions and geo-

processing models in different fields.  

Second, although the CG approach provides flexibility regarding the data formats of the 

output level, it should be noted that there is a potential limitation with respect to data 

visualisation. Specifically, the results of the current CG approach need a further step to 

enable data visualisation. For example, if users want to display the CG approach result 

in raster format, then a point list data need to be converted using the ‘ASCII to raster’ 

function. Therefore, the CG approach would ideally require the development of a 

graphical user interface (GUI) to solve this limitation of data visualisation. This 

potential GUI of the CG approach would provide greater flexibility for data 

visualisation, as it could display the same list point data in various data formats (e.g. 

raster, vector, 3D). Moreover, as the CG approach can produce a function or functions 

for the results, then the GUI of the CG approach also needs to provide the ability to 

display these functions. For instance, instead of displaying raster or vector data, the GUI 

of the CG approach could visualise the function-based layers and their manipulation 

progress. 

8.5.2 Design of Case Studies  

Three different case studies were applied in this thesis for the development of the CG 

approach. These case studies have different limitations and implications, which are 

critically discussed in this section. 

Although the results of case study 1 showed that the CG approach improved the results, 

especially when compared with the traditional raster layer overlay method in map 

algebra, it may still receive some criticism as the geo-processing model implementation 

involves a simple model which requires the integration of only two raster layers. Thus, a 

chain processing model, including two different GIS functions (IDW and Slope) was 
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introduced in case study 2 in order to increase the complexity of the implementation 

model. In addition, the case study area and the sample data volume were gradually 

increased in case study 2 to validate the result of the CG approach. 

Case study 2 showed how a combinative function (IDW and Slope) can be implemented 

using the CG approach. This case study can also be criticised with respect to the large 

amount of computation time that was required by both geo-processing approaches. 

Although this was mainly due to the large amount of sample data that were applied in 

case study 2, it is still evident that the existing geo-processing approaches, i.e. the CG 

approach without computation priority and the traditional geo-processing approach, do 

not encapsulate an efficient computation strategy that can be used to deal with large 

spatial data and complex computations. In order to overcome this limitation CG 

computation priority was introduced in the next case study to improve the overall 

computation time.  

The objective of case study 3 was to develop the computational priority rule of the CG 

approach in order to improve the overall computation time. Although the final results 

showed that the average overall computation time in the CG approach with computation 

priority is 29.2% (around 20 seconds) lower than for the traditional geo-processing 

approach, this case study may subject to several criticisms. Case study 3 only resulted in 

a very small reduction in computation time (around 20 seconds) and it may not convince 

GIS users to use the CG approach with computation priority to execute their geo-

processing tasks. Yet it is essential to highlight that if the CG approach with 

computation priority is used in geo-processing tasks which are frequently applied in 

daily jobs, such as web mapping services, then significant computation time can be 

saved for web mapping service providers, such as Google Maps and Bing Maps. 

The speed of computation priority assessment in the current CG computation priority 

rule is not efficient, as the composite factors of computation priority are observed and 

evaluated one by one until a final priority value is produced. Improving the speed of the 

priority value assessment is an important research question that requires further 

investigation in order to reduce the overall computation time of geo-processing.  

Finally, there is only one geo-processing model, i.e. the site selection model, that was 

applied in case study 3, and thus various additional implementation models are required 

to further validate the performance of the CG approach with computation priority. 
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8.5.3 Data Validation Method (Monte Carlo Simulation) 

A Monte Carlo simulation was used in this research to evaluate the uncertainties of the 

final results. A Monte Carlo simulation was applied in case study 2 to calculate the  

mean and variance of the results in order to investigate the influence of data 

uncertainties in the simple chain processing model implementation. Furthermore, a 

Monte Carlo simulation was applied in case study 3 to trace the average computation 

time, i.e. mean value, of both geo-processing approaches. Although a Monte Carlo 

simulation provides a useful method to trace the uncertainties and compare the results of 

the CG and the traditional geo-processing approaches, it should be noted that a Monte 

Carlo simulation has two limitations with respect to the iteration times and input data, 

and these problems are discussed in more detail in the remainder of this section. 

The first limitation in a Monte Carlo simulation is the numerical load or computation 

iterations, as the operation must be executed ‘N’ times. Heuvelink (2006) argued that 

the iteration time N is a limitation of a Monte Carlo simulation mainly due to two 

reasons: a) if a small number of iterations is applied in a Monte Carlo simulation, then 

the simulation can lead to misleading results as there are not enough computations; and 

b) if a larger number of iterations is applied then this may lead to heavy computations. 

These limitations therefore draw attention to the question of how many iterations should 

be used in the case studies presented in this thesis. This problem was discussed for both 

case studies 2 and 3 in order to identify a suitable number of computation iterations. 

Most GIS studies run a Monte Carlo simulation with only 20 or even ten iterations 

(Fisher, 1999; Goodchild et al., 1992), although Goodchild et al. (1992) claimed that ten 

or twenty iterations are not sufficient to obtain an accurate estimation of the results. 

Furthermore, Heuvelink (2006) suggested that in most cases a Monte Carlo simulation 

should include at least 50 computation iterations. Therefore, case study 2 used 50 

iterations in order to provide an accurate estimation of the influence of data 

uncertainties. In contrast, case study 3 used 100 iterations, for two main reasons: a) the 

amount of LiDAR data were gradually increased to one million points from 26,499 

points, which is the amount of LiDAR data used in the third case study; and (b) the geo-

processing model applied in this case study is more complex than the one used in case 

study 2, i.e. the combinative function of ‘IDW’ and ‘Slope’. Moreover, Heuvelink 

(2006) claimed that 100 iterations are sufficient to obtain a reasonable estimate of the 

mean value (e.g. the average value of computation time) in a Monte Carlo simulation. 
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The second limitation of a Monte Carlo simulation is the input datasets, as simulations 

can lead to misleading results if inappropriate inputs are entered into the model 

(Ibbotson Associates, 2005). For instance, a small sized input dataset in a Monte Carlo 

simulation is not enough to support the outcomes based on statistical analysis (e.g. mean 

and standard deviation values) because the outputs may be totally changed based on 

different small sized datasets. This problem was investigated in Section 4.4, and the size 

of the sample dataset was gradually increased in the three case studies. For example, 

case study 2 used 26,000 points from the original LiDAR dataset, whereas in case study 

1 1,000 points were selected from the original LiDAR dataset and in case study 3 one 

million LiDAR points were used to validate the overall computation time between the 

two different geo-processing approaches. 

The next section discusses the future research directions for the CG approach. 

8.6 Directions For Future Research 

The CG approach was developed based on a limited number of sample data and case 

studies due to the complexities of model development and the limitations regarding time 

and knowledge. Therefore, a future research is requested to extend the functionalities 

and contributions of the CG approach. This section summarises some interesting 

directions for the future research. 

a. Advancing the Combinative Geo-Processing Function Library  

An ideal geo-processing approach needs to be supported by sufficient GIS functions, 

(i.e. different types of function libraries, such as the ModelBuilder in the ArcGIS 

software package which offers thousands of functions in its Toolbox in order to provide 

a powerful means of GIS modelling. However, only a basic set of common GIS 

functions was developed in the current CG function library due to time restrictions. 

Future research should also extend the development of more CG functions as part of the 

CG function library, in order to enhance the functionality and capability of the CG 

approach for a wider spectrum of GIS applications, e.g. 3D land surface models, 

weather temperature prediction models, hydrological models, and environmental risk 

assessment models. 

b. Combinative Geo-processing Computation Priority  

This thesis introduced the concept of CG computation priority as a solution for reducing 

the overall computation time of geo-processing. However, the current method for 

assessing computation priority is very slow and could extend the overall computation 
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time. Therefore, improving the speed of the priority value assessment is an important 

research area that should be addressed in the future to further reduce the overall 

computation time of geo-processing. Future research should focus on identifying an 

efficient method that can assess the computation priority value through the design of an 

optimum computational algorithm to address this problem and its implementation. 

Furthermore, as was discussed in Section 8.4, in future research CG computation 

priority may be applied to parallel computation in order to further improve 

computational efficiency.  

c. Developing New Combinative Geo-Processing Computation Rules  

To date three computation rules have been introduced into the CG approach to improve 

data quality and computation time, and these include ‘suspending’, ‘computation 

priority’, and ‘symbolic computation’ (see Section 3.3.2). New computation rules could 

be developed in future research to further enhance the performance of the CG approach. 

For instance, the CG approach is in need of a reduction rule to simplify complex geo-

processing models which are constructed of various function-based layers or CG 

functions. Therefore further investigation is needed to create a reduction rule in the CG 

approach to improve computational efficiency. A reduction rule based on the function-

based layers should also be created to understand how data quality can be maintained 

during the reduction operations. 

In conclusion, this thesis has used the CG approach to implement different types of geo-

processing models, e.g. a single GIS function, a simple chain processing model, and a 

complex chain processing model. The results of the case studies show that the CG 

approach provides an improved methodology for geo-processing. Future investigations 

should focus on the improvement of CG computation rules, e.g. the reduction rule and 

the computation priority rule, and the enhancement of the CG function library, as these 

will further improve the performance of the CG approach and increase the potential 

number of users of the CG approach in wider GIS applications. It is hoped that this 

approach will continue to be developed in order to provide more accurate and efficient 

results for various geo-processing models in different GIS fields. 
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Appendix A Chapter 4 LiDAR Data 

As described in the Section 4.4.2, this research applied LiDAR points in the three case 

studies and these points were downloaded from the INSIDE IDAHO (Interactive 

Numeric and Spatial Information Data Engine) 

(http://inside.uidaho.edu/popular_data.html). 

In specific, there are two groups of the raw LiDAR points that were downloaded from 

two different data capture projects undertaken in the INSIDE IDAHO (Interactive 

Numeric and Spatial Information Data Engine). The technical information about the two 

groups of the raw LiDAR points is given in the Table A.1 and Table A.2 separately. 
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Table A. 1 Technical information of the first group raw LiDAR dataset. 

Project Name Boise River 

Download Web Link http://www.idaholidar.org/data/45 

Technical Description 

(source from the Download 

Web Link) 

The United States Geological Survey (USGS) Center for Coastal and 

Watershed Studies, the National Aeronautics and Space 

Administration (NASA), United States Bureau of Reclamation 

(Reclamation), Idaho Department of Water Resources (IDWR) and a 

consortium of local city, county agencies and private entities (see 

supplemental information) are using airborne LiDAR to measure the 

submerged topography of the Boise River. The study area 

encompasses the 500 year floodplain from Lucky Peak Reservoir to 

the confluence of the Boise River and the Snake River. Elevation 

measurements were collected in March of 2006 using the NASA 

Experimental Advanced Airborne Research LiDAR (EAARL). 

Initially developed by NASA and Wallops Flight Facility (WFF) in 

Virginia and now administered by the USGS Coastal and Marine 

Geology Program, EAARL measures ground elevation with a vertical 

accuracy of roughly 15 centimeters. The data were processed by 

IDWR using the Airborne LiDAR Processing System (ALPS), a 

multi-tiered processing system developed by a USGS/NASA 

collaborative project for the use of subaerial and submarine LiDAR. 

The output from this processing is 2 meter resolution raster data that 

can be easily ingested into a Geographic Information System (GIS). 

The data were organized as 2 km by 2 km data tiles in ERDAS 

imagine format. Point data information is also available for first 

return, bare earth, submerged topography and a submerged 

topography/bare earth combination. These tiles are created for visual 

interpretation and regional quantitative analysis. The data are in 

UTM Zone 11 meters, NAD83, NAVD88 (Geoid 03 model). At the 

same time that the Boise River LiDAR data were collected, USGS 

collected cross sectional data using survey grade GPS at three 

separate sections along the river - upper, middle and lower. These 

ground observations were then used to quality check the LiDAR data 

and to provide a vertical accuracy assessment. The results of the 

quality assessment will be available by the end of December, 2009. 
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Project Location Map 

(The red polygon represents 

the captured LiDAR data 

area) 

 

Acquisition Date 01/03/2007 

Sensor   NASA EAARL 
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Table A. 2 Technical information of the second group of raw LiDAR dataset. 

Project Name National Park Service Northern Idaho 

Download Web Link http://www.idaholidar.org/data/41 

Technical Description 

(source from the 

Download Wed Link) 

The LiDAR data was collected by Terrapoint USA Inc. between 

November 16th and December 4th, 2008. This LiDAR project's 

purpose was to provide high accuracy, classified multiple return 

LiDAR, for approximately 89 square miles, in North Idaho. Part of the 

collection was over the Coeur d'Alene Reservation, the remainder of 

the collection was done for the National Park Service for their areas of 

interest. The LiDAR data was acquired and processed by Terrapoint 

USA to support engineering planning purposes. The product is a high 

density mass point dataset with an average point spacing of 0.7m. The 

original data was provided to the Coeur d'Alene Tribe in LAS 1.0 

format. 

The area consists of (1) Asotin Creek (7.8 km2),  (2) Captain John 

Creek (4.7 km2), (3) Deary Area (6.8 km2), (4) Jim Ford Creek (6.3 

km2), (5) Nikesa Creek (3.1 km2), (6) South Fork Clearwater River 

(10.0 sq km2), and (7) White Bird Creek (19 km2). 

Project Location Map 

(The red polygon 

represents the captured 

LiDAR data area) 

 

Acquisition Date 16/11/2008 – 04/12/2008 

Sensor   Optech ALTM 3100EA 
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Appendix B  Chapter 5 Additional Data 

 

Figure B- 1 Sample dataset of Case Study 1. 
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Appendix C  Chapter 6 Additional Data 

 

Figure C- 1 First sample dataset of Case Study 2. 

 

Figure C- 2 Second sample dataset of Case Study 2. 
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Appendix D  IDW Algrithem 

The basic principle of IDW is that it assigns weights to neighboring observed values 

based on distance and estimated grid values by averaging the values of sample data 

points in the neighborhood of each processing grid (O’Sullivan and Unwin, 2003).  

The standard IDW algorithm can be summarised as:  

First the interpolated value, Zj, of a given point is estimated by: 

 

                                                (Equation 2.3) 

 

In Equation 2.3, Wij is a weight between 0 and 1 which is based on the distance 

from selected sample points to the estimated point, and Zi is the elevation of the 

sample points. If distance is represented by Dij, the value of each weight value is 

calculated by: 

 

                                               (Equation 2.4) 

 

Where ( ) is the sum of all inverse distance weighted values and this 

rule gives the proportional weight of each selected sample point. We can 

determine that a large value of  will give a small weight value, however, a 

close distance between a sample point and the estimated point will lead to a 

higher weight. 

 

                                                                      (Equation 2.5)                     
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The weights of neighbouring observed values are calculated based on the 

geographical distance between the selected sample point and the target point. 

We can define the weight of distance by using an exponent k. Defining a higher 

value of k (greater than 1), will decrease the relative effect of distant points and 

create a peakier map; defining lower values of k (less than 1), will increase the 

relative effect of distant points and smooth the resulting surface (O’Sullivan and 

Unwin, 2003).  

Normally, not all observation points are considered when estimating a new value; this 

means that each sample point within the pre-defined radius is weighted between 0 and 1 

and all others outside it are not considered. To understand how this works, an example 

is provided below. Figure D-1 shows how a generic IDW algorithm works. The 

elevation value is calculated at the point shown as a hollow circle. There are four 

neighbourhood sample points (solid circles) that are selected, with z values equal to 75, 

68, 99, 110 and 88. Table D-1 shows the required parameters and calculations in the 

IDW process. In this case, a pre-defined maximum search radius of three metres is used, 

therefore, the sample point (110) is not considered in this calculation. Finally, the 

estimated Zj value is 81.679 in this example.  

 

Figure D- 1 An example of IDW interpolation. 
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Table D-1  Results from the IDW example. 

Sample 

point 

Elevation 

(Z) value  

Distance 

(d) 

Inverse 

distance 

(i=1/d) 

Weight 

(w=i/[sum of i]) 

Weighted 

value ( w*z) 

1 75 1.2 0.833 0.322 24.15 

2 68 1.9 0.526 0.203 13.804 

3 99 2.2 0.454 0.175 17.325 

4 88 1.3 0.769 0.3 26.4 

Sum   2.582 1 81.679 
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Appendix E  Online Document For the GIS Fuctions 

E.1 Implementing Inverse Distance Weighted (IDW) (ArcGIS Online Document) 

Resource: 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Implementing%20In

verse%20Distance%20Weighted%20(IDW) 

Inverse Distance Weighted (IDW) is a method of interpolation that estimates cell values 

by averaging the values of sample data points in the neighborhood of each processing 

cell. The closer a point is to the center of the cell being estimated, the more influence, or 

weight, it has in the averaging process.  

 

 

  

 

This method assumes that the variable being mapped decreases in influence with 

distance from its sampled location. For example, when interpolating a surface of 

consumer purchasing power for a retail site analysis, the purchasing power of a more 

distant location will have less influence because people are more likely to shop closer to 

home.  

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Implementing%20Inverse%20Distance%20Weighted%20(IDW)
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Implementing%20Inverse%20Distance%20Weighted%20(IDW)
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Power 

With IDW you can control the significance of known points on the interpolated values 

based on their distance from the output point. By defining a higher power, more 

emphasis is placed on the nearest points, and the resulting surface will have more detail 

(be less smooth). Specifying a lower power will give more influence to the points that 

are farther away, resulting in a smoother surface. A power of two is most commonly 

used with IDW and is the default.  

 

Search radius 

The characteristics of the interpolated surface can be controlled by applying a fixed or 

variable search radius, which limits the number of input points that can be used for 

calculating each interpolated cell. You limit the number of points for each cell's 

calculation to improve processing speeds. You may also limit the number of points 

because points far from the cell location where the prediction is being made may have 

no spatial correlation.  

Fixed search radius 

A fixed search radius requires a neighborhood distance and a minimum number of 

points. The distance dictates the radius of the circle of the neighborhood (in map units). 

The distance of the radius is constant, so for each interpolated cell, the radius of the 

circle used to find input points is the same. The minimum number of points indicates 

the minimum number of measured points to use within the neighborhood. All the 

measured points that fall within the radius will be used in the calculation of each 

interpolated cell. When there are fewer measured points in the neighborhood than the 

specified minimum, the search radius will increase until it can encompass the minimum 

number of points. The specified fixed search radius will be used for each interpolated 

cell (cell center) in the study area; thus, if your measured points are not spread out 

equally (which they rarely are), there are likely to be a different number of measured 

points used in the different neighborhoods for the various predictions.  

Variable search radius 

With a variable search radius, the number of points used in calculating the value of the 

interpolated cell is specified, which makes the radius distance vary for each interpolated 

cell, depending on how far it has to search around each interpolated cell to reach the 
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specified number of input points. Thus, some neighborhoods will be small and others 

will be large, depending on the density of the measured points near the interpolated cell. 

You can also specify a maximum distance (in map units) that the search radius cannot 

exceed. If the radius for a particular neighborhood reaches the maximum distance 

before obtaining the specified number of points, the prediction for that location will be 

performed on the number of measured points within the maximum distance. Generally, 

you will use smaller neighborhoods or a minimum number of points when the 

phenomenon has a great amount of variation. 

 

Barrier 

A barrier is a polyline dataset used as a breakline that limits the search for input sample 

points. A polyline can represent a cliff, ridge, or some other interruption in a landscape. 

Only those input sample points on the same side of the barrier as the current processing 

cell will be considered.  

 

E.2 Raster overlay (ArcGIS Online Document) 

Resource: 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Overlay_analysis 

In raster overlay, each cell of each layer references the same geographic location. That 

makes it well suited to combining characteristics for numerous layers into a single layer. 

Usually, numeric values are assigned to each characteristic, allowing you to 

mathematically combine the layers and assign a new value to each cell in the output 

layer.  

 

Below is an example of raster overlay by addition. Two input rasters added together to 

create an output raster with the values for each cell summed. 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Overlay_analysis
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This approach is often used to rank attribute values by suitability or risk and then add 

them, to produce an overall rank for each cell. The various layers can also be assigned a 

relative importance to create a weighted ranking (the ranks in each layer are multiplied 

by that layer's weight value before being summed with the other layers). 

 

Below is an example of raster overlay by addition for suitability modeling. Three raster 

layers (steep slopes, soils, and vegetation) are ranked for development suitability on a 

scale of 1 to 7. When the layers are added (bottom) each cell is ranked on a scale of 3 to 

21. 

  

 

Alternatively, you can assign a value to each cell in the output layer based on unique 

combinations of values from several input layers.  
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E.3 Calculating slope (ArcGIS Online Document) 

Resource: 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Calculating_slope 

The Slope tool calculates the maximum rate of change between each cell and its 

neighbors, for example, the steepest downhill descent for the cell (the maximum change 

in elevation over the distance between the cell and its eight neighbors). Every cell in the 

output raster has a slope value. The lower the slope value, the flatter the terrain; the 

higher the slope value, the steeper the terrain. The output slope raster can be calculated 

as percent of slope or degree of slope.  

 

When the slope angle equals 45 degrees, the rise is equal to the run. Expressed as a 

percentage, the slope of this angle is 100 percent. As the slope approaches vertical (90 

degrees), the percentage slope approaches infinity.  

 

  

 

The Slope tool is most frequently run on an elevation dataset, as the following diagrams 

show. Steeper slopes are shaded red on the output slope raster. However, the function 

can also be used with other types of continuous data, such as population, to identify 

sharp changes in value.  

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Calculating_slope
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E.4 Selection (Understanding reclassification) (ArcGIS Online Document) 

Resource: 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Understanding_recla

ssification 

The reclassification functions reclassify or change cell values to alternative values using 

a variety of methods. You can reclass one value at a time or groups of values at once 

using alternative fields; based on a criteria, such as specified intervals (for example, 

group the values into 10 intervals); or by area (for example, group the values into 10 

groups containing the same number of cells). The functions are designed to allow you to 

easily change many values on an input raster to desired, specified, or alternative values.  

 

All reclassification methods are applied to each cell within a zone. That is, when 

applying an alternative value to an existing value, all the reclassification methods apply 

the alternative value to each cell of the original zone. No reclassification method applies 

alternative values to only a portion of an input zone. 

Some of the many reasons to reclassify are detailed below. 

 

Replacing values based on new information 

Reclassification is useful when you want to replace the values in the input raster with 

new values. This could be due to finding out that the value of a cell should actually be a 

different value, for example, the land use in an area changed over time. 

Grouping values together 

You may want to simplify the information in a raster. For instance, you may want to 

group together various types of forest into one forest class. 

Reclassifying values of a set of rasters to a common scale 

Another reason to reclassify is to assign values of preference sensitivity, priority, or 

some similar criteria to a raster. This may be done on a single raster (a raster of soil type 

may be assigned values of 1 to 10 to represent erosion potential) or with several rasters 

to create a common scale of values. 

For example, a soil type may be good to build on when soils are being viewed as an 

input to a building suitability model. But for erosion, animal habitat, siting a pond, or 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Understanding_reclassification
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Understanding_reclassification
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identifying farm land, that same soil type will have a different suitability weighting 

based on the problem at hand. To represent a raster relative to these many different 

suitability weightings, the values on the raster must be changed from nominal values—

values that represent a class—to interval or ratio values so that the values can be used in 

relation to one another. It does not make sense to add soil type and land use to obtain a 

building suitability raster. But if soil type and land use were in a measurement system 

that represented a relative weighting to building suitability, analysis could be completed 

freely between the rasters. 

When identifying slopes most at risk of avalanche activity, input rasters might be slope, 

soil type, and vegetation. Each of these rasters might be reclassified on a scale of 1 to 10 

depending on the susceptibility of each attribute in each raster to avalanche activity—

that is, steep slopes in the slope raster might be given a value of 10 because they are 

most susceptible to avalanche activity. 

Each of the above examples is considered a suitability model. There are usually four 

steps in producing a suitability map: 

1. Input datasets. Decide which datasets you need as inputs. 

2. Derive datasets. When applicable, create the datasets that you can derive from 

your base input datasets— for example, slope and aspect can be derived from the 

elevation raster. Create data from existing data to gain new information. 

3. ssify datasets. Reclassify each dataset to a common scale (for example, 1 to 10), 

giving higher values to more suitable attributes. 

4. Weight and combine datasets. Weight datasets that should have more influence 

in the suitability model if necessary, then combine them to find the suitable 

locations. 

Below is a flow diagram of a sample for finding the best locations for a school. The 

input base layers are landuse, elevation, recreation sites, and existing schools. The 

derived datasets are slope, distance to recreation sites, and distance to existing schools. 

Each raster is then reclassified on a scale of 1 to 10. The reclassified rasters are added 

together with distance from recreation sites and other schools having a higher weight. 
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Setting specific values to NoData or setting NoData cells to a value 

Sometimes you want to remove specific values from your analysis. This might be, for 

example, because a certain land use type has restrictions, such as wetland restrictions, 

which means you cannot build there. In such cases, you might want to change these 

values to NoData to remove them from further analysis. 

In other cases, you may want to change a value of NoData to a value, such as when new 

information means a value of NoData has become a known value. 
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E.5 Distance (Understanding Euclidean distance analysis) (ArcGIS Online 

Document) 

Resource: 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Understanding_Eucli

dean_distance_analysis 

The Euclidean distance functions describe each cell's relationship to a source or a set of 

sources. 

 

There are three Euclidean functions: 

1. Euclidean Distance gives the distance from each cell in the raster to the closest 

source. Example of usage: What is the distance to the closest town?  

2. Euclidean Allocation identifies the cells that are to be allocated to a source based 

on closest proximity. Example of usage: What is the closest town?  

3. Euclidean Direction gives the direction from each cell to the closest source. 

Example of usage: What is the direction to the closest town?  

 

The input raster used in each of the Euclidean functions and a discussion about the 

output from the functions is described below. 

The source 

The source identifies the location of the objects of interest, such as wells, shopping 

malls, roads, and forest stands. If the source is a raster, it must contain only the values 

of the source cells while other cells must be NoData. If the source is a feature, it will 

internally be transformed into a raster when you run the function. 

The Euclidean distance output raster 

The Euclidean distance output raster contains the measured distance from every cell to 

the nearest source. The distances are measured as the crow flies (Euclidean distance) in 

the projection units of the raster, such as feet or meters and are computed from cell 

center to cell center. 

 

The Euclidean Distance function is used frequently as a standalone function for 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Understanding_Euclidean_distance_analysis
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Understanding_Euclidean_distance_analysis
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applications, such as finding the nearest hospital for an emergency helicopter flight. 

Alternatively, this function can be used when creating a suitability map, when data 

representing the distance from a certain object is needed. 

 

In the example below, the distance to each town is identified. This type of information 

could be extremely useful for planning a hiking trip. You may want to stay within a 

certain distance of a town in case of emergency or know how much farther you have to 

travel to pick up supplies. 

  

 

The Euclidean allocation output raster 

Every cell in the Euclidean allocation output raster is assigned the value of the source to 

which it is closest. The nearest source is determined by the Euclidean Distance function. 

Use this function to assign space to objects such as identifying the customers served by 

a group of stores. In the example below, the Euclidean Allocation function has 

identified the town that is closest to each cell. This could be valuable information if you 

needed to get to the nearest town from a remote location. 
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The Euclidean direction output raster 

The Euclidean direction output raster contains the azimuth direction from each cell to 

the nearest source. The directions are measured in degrees, where north is 360 degrees. 

 

In the example below, the direction to the nearest town is found from every location. 

This could provide useful information for an emergency helicopter when transporting an 

injured hiker to the nearest town for medical treatment. 

  

 

The Euclidean Distance functions give you information according to Euclidean, or 

straight-line, distance. It may not be possible to travel in a straight line to a specific 

location; you may have to avoid obstacles such as a river or a steep slope. In such cases, 

you should consider using the Cost Distance function to achieve more realistic results.  
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